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Abstract

Adaptive Cruise Control (ACC) is an improvement of regular cruise control
that has been available in premium cars for over 10 years. With advanced
sensing systems, based on for instance RADAR and camera sensors, ACC makes
it possible for a vehicle to follow the preceding vehicle at a safe distance by
automatically adjusting the velocity.

In this thesis, it is investigated whether more information from the environ-
ment may be used to improve the ACC. By using information from vehicles in
adjacent lanes and vehicles ahead in the same lane, the ACC is extended with
two new functions; Lateral prediction and Multi-target control. Lateral pre-
diction is used to predict the future position of vehicles in the adjacent lanes.
When a vehicle from an adjacent lane is predicted to join the same lane, the
ACC equipped vehicle can change target in the control law faster. Multi-target
control is introduced by letting the ACC use information from more than one
preceding vehicle in the control law. With the extra information it is possible
to earlier detect and react to traffic disturbances further ahead in the lane.

The extended ACC is evaluated with both simulations and in-vehicle tests
and it is shown that it has advantages concerning driving comfort and safety
over the standard ACC.

Key words: Adaptive Cruise Control, Multi-target control, Lateral prediction,
Kalman filtering



Contents

1 Introduction 1
1.1 Adaptive Cruise Control . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 ACC with communication . . . . . . . . . . . . . . . . . . 1
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Lateral traffic disturbances . . . . . . . . . . . . . . . . . 2
1.2.2 Longitudinal traffic disturbances . . . . . . . . . . . . . . 3

1.3 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Lateral prediction 6
2.1 Target model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Kalman filter theory . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Target prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Tuning the filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Variance effect on prediction . . . . . . . . . . . . . . . . 11
2.4.2 Limiting overshoot of predicted position . . . . . . . . . . 14

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Multi-target control 22
3.1 Vehicle platooning . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Spacing policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Local stability . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 String stability . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Spacing policy effect on stability . . . . . . . . . . . . . . . . . . 25
3.4.1 Vehicle dynamics . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.2 Constant spacing . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.3 Constant Time Headway spacing . . . . . . . . . . . . . . 29

3.5 Multi-target control string stability . . . . . . . . . . . . . . . . . 30
3.6 Multi-target control performance . . . . . . . . . . . . . . . . . . 31

3.6.1 Error model of Host . . . . . . . . . . . . . . . . . . . . . 33
3.6.2 Error model of Target . . . . . . . . . . . . . . . . . . . . 34
3.6.3 LQR synthesis . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6.4 Strong link . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6.5 Weak link . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Case study: Multi-target ACC 42



4.1 The existing single-target ACC . . . . . . . . . . . . . . . . . . . 42
4.2 The multi-target ACC . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Target+1 information . . . . . . . . . . . . . . . . . . . . 44
4.2.2 Control law . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Controller synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.1 Driving scenarios . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.2 Contribution from the Target+1 controller . . . . . . . . 46
4.3.3 Limiting Host’s Target+1 controller output . . . . . . . . 47
4.3.4 Time-gap dependency . . . . . . . . . . . . . . . . . . . . 50
4.3.5 Velocity dependent gains . . . . . . . . . . . . . . . . . . 53
4.3.6 Driving scenario 4 - Target accelerates and changes lanes 54
4.3.7 Driving scenario 5 - Target has an initial range-error . . . 54
4.3.8 Driving scenario 6 - Stop & Go driving . . . . . . . . . . 56

4.4 In-vehicle tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4.1 Current Target information filtering . . . . . . . . . . . . 56
4.4.2 Fusing and filtering Target+1 data . . . . . . . . . . . . . 56
4.4.3 Results from the test track . . . . . . . . . . . . . . . . . 60

5 Conclusions and future work 63
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 Bibliography 67

A Test environment 69
A.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.2 Rapid prototyping . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.3 Logging data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



Chapter 1

Introduction

Many vehicles today are equipped with sensors such as RADAR and camera.
The output from these sensors is used by embedded electrical control units
(ECU:s) in the vehicle to perceive the surrounding traffic situation. Based
on this information, other ECU:s in the vehicle adapts the vehicle’s speed by
controlling the engine and the brakes. This opportunity is for instance used in
active safety systems, which are able to control the vehicle speed according to
traffic flow to avoid collisions.

1.1 Adaptive Cruise Control
The function that is able to control the vehicle speed according to traffic speed
is commonly called Adaptive Cruise Control (ACC), and sometimes also called
Intelligent Cruise Control (ICC). The ordinary cruise control, which the ACC
is an extension of, is a function that is able to keep the vehicle at a certain set
speed, usually determined by the driver. The set speed may also be determined
automatically according to traffic regulations (Paine et al., 2007). The controller
implementation of the cruise control is relatively simple, since the controller’s
objective is to regulate to zero difference between set speed and current speed.

The adaptive part of the ACC adds the possibility for the controller to keep
a safety distance to the preceding vehicle (Kesting et al., 2007; Marsden et al.,
2001). This kind of control requires knowledge about the preceding vehicle’s
speed and the distance to it. How this information is obtained may differ, but
at least one of the quantities should be measured. Usually both are available to
the ACC as measurements.

In this thesis the vehicle equipped with the ACC is referred to as Host, while
the vehicle which is being followed is referred to as Target.

1.1.1 ACC with communication
As vehicles get more advanced, the number of possible ways of acquiring pre-
ceding vehicles’ position and speed increases. By using communication links
between vehicles, the information of position and speed can be relayed from
Target to Host (Audi, 2010).
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Additionally, data which has not been available earlier can be sent through
the communication link. The preceding vehicle’s requested acceleration, which
is not directly measurable from Host, can be used as feed-forward contribu-
tion. Steering angle and yaw rate of the preceding vehicle can be used to get
information on whether the vehicle stays in the same lane or not.

It is also possible to let the road infrastructure communicate with the ve-
hicles, and, for instance, relay information of traffic disturbances further down
the road.

1.2 Background
The work presented in this thesis is the result of a collaboration with Volvo
Car Corporation (VCC), whose current ACC implementation is the basis in the
following analysis and discussion. Some of the statements about ACC in the
following text may apply only to this specific implementation, but the aim is to
keep the presentation of this thesis work as general as possible.

The current ACC implementation has the following limitations:

• Normally, implementations of ACC:s utilize only the information of the
closest preceding vehicle for controlling the speed. When the traffic flow is
smooth this method of control behaves well, but in dense traffic where the
speed varies much and vehicles change lanes, situations may arise which
the ordinary ACC has trouble handling efficiently.

• If a vehicle moves into the same lane as Host, a human driver is often able
to identify the lane change before the vehicle completes the maneuvre.
Therefore, the Host driver may adjust the distance to the lane-changing
vehicle in advance to provide sufficient space. However, often in ACC:s,
lane-changing vehicles are not considered as the new Target until com-
pletely within the lane. If the distance to the lane-changing vehicle is
smaller than the preset safety distance, the ACC may have to decelerate
abruptly when the lane-change has been completed.

• In dense traffic, the speed of the traffic in front of Target limits the speed
of Host. The inability of the ACC to adjust to lane changes and traffic
speed further down the road means that the driver may perceive the ACC
as fitful and that it is slow to react.

To extend the ACC capabilities, this thesis will evaluate the possibilities to
consider more vehicles, in addition to the immediate preceding vehicle, when
controlling the speed. The problem consists of recognizing vehicles which are
about to change lanes and to let information about the vehicle in front of Target
influence the ACC.

1.2.1 Lateral traffic disturbances
There are two different lateral disturbances that are important for the behaviour
of the ACC:

• The first is the case where a vehicle in an adjacent lane drives into Host’s
lane and becomes Target. This is called a cut-in and causes the ACC to
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Figure 1.1: Overview of the multi-target ACC equipped vehicle, Host, which
uses information about the two immediate preceding vehicles, Target and Tar-
get+1, in the control law.

brake if the distance to the cutting-in vehicle is small or if it is approached
fast, i.e., it has a lower velocity than Host. Although the ACC is capable
of braking and keeping the safety distance to the cutting-in vehicle, the
braking does not begin until the cutting-in vehicle is entirely in Host’s
lane and selected as new Target by the ACC.

• The second lane change of interest is when Target leaves Host’s lane, which
is called a cut-out. In this case, the ACC should accelerate to either the
set speed, or to the safety distance to the new Target. This acceleration
should commence when the cut-out is apparent, but the ACC will not
recognize the cut-out until Target has left the lane completely and no
longer is selected as Target.

Predicting the lateral trajectories of the cutting in/out vehicles may improve
the response of the ACC.

1.2.2 Longitudinal traffic disturbances
By using information about the vehicle ahead of Target, called Target+1 (see
Figure 1.1), the ACC may react to longitudinal acceleration disturbances intro-
duced by the traffic ahead earlier, and thus improve the responsiveness of the
ACC. In certain traffic situations, Target mimics Target+1 and the behaviour
of Target+1 can be used as a preview in the ACC.

1.3 Purpose
The purpose of this thesis is to investigate how lateral and longitudinal distur-
bances in Sections 1.2.1 and 1.2.2 can be compensated for, by using information
from more vehicles than only Target, and what effects this has on the behaviour
of the ACC, with respect to safety and comfort.

In the cut-in and cut-out situations the ACC may appear slow since a lane
change often is apparent to the driver before the ACC takes the corresponding
action. In this thesis it will be evaluated if the vehicles’ future lateral position
can be predicted and used as a mean to recognize possible lane changes before
they are completed.

The goal of the lateral prediction is to make the ACC react faster in cut-
in and cut-out situations, and to decrease the brake force applied in cut-in
situations.
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Furthermore, this thesis will study whether and how the information from
Target+1 can be used to better anticipate the traffic ahead. The study consists
of two parts, where the first part compares two linear controllers; one with in-
formation only about Target and one with information about both Target and
Target+1. The goal is to evaluate whether the controller with Target+1 infor-
mation responds quicker, and thus assessing whether the Target+1 information
can be used to anticipate traffic ahead. The second part investigates whether
the information of Target+1 successfully can be implemented in the existing
Volvo ACC.

An ACC with only information of Target will be denoted single-target ACC,
while an ACC with the additional information of Target+1 will be denoted
multi-target ACC.

As more vehicles are equipped with ACC the chances of a situation where
several vehicles with ACC drives after each other increases, commonly called a
vehicle string. In such a case it is important that the ACC’s exhibit a property
called string stability. This means that inter-vehicle distance perturbations have
to be attenuated by the vehicle string. It is desired that the string stability
properties of the multi-target ACC are compared to the same properties of a
single-target ACC.

1.4 Objectives
The objectives of this thesis for the lateral prediction are:

• Construct a motion model – In order to predict the lateral position of
preceding vehicles, a model is needed that describes the expected lateral
behaviour of a vehicle at a given time.

• Estimate lateral motion – An algorithm should be developed that uses
the sensor measurements and the motion model to calculate an estimate
of the current lateral motion of a vehicle.

• Predict future lateral position – By combining the estimated lateral
motion and the motion model, a procedure has to be created to calculate
a prediction of the lateral position of a vehicle tH seconds ahead. The
predicted lateral position should be used as a mean for detecting lane
changing vehicles earlier.

• Implementation – The three above mentioned parts should be imple-
mented in a VCC vehicle’s hardware environment. The implementation
should be tested in real traffic to evaluate how the prediction mitigates
lateral traffic disturbances.

The objectives of this thesis for the multi-target ACC are:

• Extend ACC – A controller structure for using both Target and Tar-
get+1 as basis for speed control should be constructed. The controller
should be able to calculate a desired acceleration based on sensor mea-
surement input from both Target and Target+1.
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• Stability study and analysis of multi-target ACC – The effect of
Target+1 should not cause oscillations or unbounded errors. It should be
determined whether the extended controller structure makes a string of
vehicles stable.

• Comparison of single-target and multi-target ACC – The multi-
target ACC should be compared to the single-target ACC to find out in
which situation it is beneficial to use Target+1 information and in which
situation the information will worsen the performance.

• Implementation – The controller structure for controlling with respect
to Target+1 should be implemented and integrated with the VCC single-
target ACC in the vehicle’s hardware environment. The results from the
comparison of a single-target and multi-target ACC should be used to
guide the implementation of the multi-target ACC in order for it to at-
tenuate longitudinal traffic disturbances.

1.5 Delimitations
The thesis has the following delimitations:

• The lateral prediction will only be evaluated on straight road segments,
due to limitations in the current Target acquisition and Target tracking.

• Only longitudinal control will be investigated for the multi-target ACC.

• Experimental testing will only be made with VCC vehicles.

1.6 Outline
In Chapter 2, the lateral prediction is described. Theory for estimating and
predicting future position is presented which is used to extend the Target selec-
tion algorithm in the VCC ACC with lateral prediction. The extended Target
selection algorithm is evaluated by comparing it to the existing Target selection
algorithm, using both recorded vehicle data and in-vehicle tests.

The multi-target ACC part of the thesis is divided into two sub parts. In
Chapter 3, theory about spacing policies and string stability is given together
with string stability analysis and an optimal control analysis, where multi-target
linear control method is compared to single-target control. The result from the
analysis is used in Chapter 4 to extend the existing VCC single-target ACC to
a multi-target ACC. The developed multi-target ACC is designed and tuned in
a simulation environment and then evaluated with in-vehicle tests.

Conclusions from the two main parts are presented in Chapter 5 together
with an outline of future work.
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Chapter 2

Lateral prediction

The ACC system relies on four main subsystems as described in Figure 2.1.
These are the sensing modules, the Target selection algorithm, the controller
and the actuators. The sensor modules and the actuators are shared among
several other systems in the car, but the Target selection and the controller
are only used in the ACC system. Two sensor modules are used by the ACC.
One sensor module provides the Target selection with a list of detected vehicles
in front of Host. The information which is sent from the sensor module to
the Target selection includes relative distance, r, relative speed, ṙ, and relative
angle, φ, as shown in Figure 2.2. The second sensor module provides Host’s yaw
rate, velocity and acceleration.

The information sent to the Target selection is used to designate vehicles as
either Target or not. This is done by estimating the Host’s current route, f(p)
in Figure 2.2. The closest vehicle in the lane is designated as Target and sent
to the controller. If no such vehicle exists, the ACC maintains the set speed.

The controller uses the information from the sensor modules to estimate a
longitudinal range and relative longitudinal velocity to Target. In Figure 2.2 the
longitudinal range is represented by x. The controller also estimates Target’s
absolute acceleration. The estimations of range, range-rate and acceleration are
used as input values to calculate a desired acceleration. The desired acceleration
is sent to the actuators where the acceleration of Host is controlled.

The prediction of the lateral position, henceforth called lateral prediction,
modifies the sensor values which are used in the Target selection, as can be seen
in Figure 2.3. This will affect which vehicle that is selected, without any need
to change the implementation of the Target selection.

This chapter first explains the theory behind the lateral prediction and how

Sensors 
Target 

Selection 
Controller Actuators 

Figure 2.1: System overview of the ACC.
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φ

f(p)

Figure 2.2: The relation of y, x, r, φ and f(t).

Sensors 
Target 

Selection 
Controller Actuators 

Lateral 

Prediction 

Figure 2.3: System overview of the ACC with lateral prediction.

it is implemented. The Target selection and the lateral prediction are then
combined and tested in simulations. The results from the simulations are used
to extend the ACC in a real car with lateral prediction.

2.1 Target model
In order to accurately estimate vehicles’ lateral position and velocity, a model
for the vehicles’ lateral driving dynamics is needed. A complete model of the
lateral driving dynamics for a vehicle includes more information than the lateral
position of the vehicle. An important part is its steering angle, which in general
is not measurable by Host’s sensor modules. However, when a detected vehicle
changes lanes, a simple assumption is to expect its lateral acceleration to be
constant. This can be expressed as

ȧy = 0,

where ay is the lateral acceleration. Moreover

ay = v̇y and vy = ẏ,

where vy is the lateral velocity and y is the lateral position which is calculated
from r and φ in Figure 2.2. Here, y is defined such that zero is the center of
Host and positive values mean to the left of Host’s center. The state space
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form of the lateral dynamics becomes

γ̇(t) =

 ẏ(t)
v̇y(t)
ȧy(t)

 =

0 1 0
0 0 1
0 0 0

 γ(t) = Aγ(t) (2.1)

z(t) =
[
y(t)

]
=
[
1 0 0

]
γ(t) = Cγ(t), (2.2)

where z is the measured lateral position.
By using a Kalman-filter the idea is to combine (2.1) and (2.2), to get an

estimate of the lateral position that takes both the model and the measurements
into account.

2.2 Kalman filter theory
In this section a basic introduction of Kalman filter theory for discrete time is
presented. For further and deeper information about Kalman filters, refer to
(Åström and Wittenmark, 1997).

A basic prerequisite for constructing a Kalman filter is a system in state-
space form

x(k + 1) = Ax(k) +Bu(k) +Nv1(k) (2.3)
y(k) = Cx(k) +Du(k) + v2(k), (2.4)

where x is the state of the system, y is the measurements, u is the external
input, and v1 and v2 are model and measurement noise, respectively. In the
ideal case all states are measurable and the model, as well as the measurements,
are noiseless.

In a typical real world situation this ideal assumptions are not satisfied. The
model is usually not an exact mathematical representation of the real world
system and the measurements are in general affected by noise. Also, not
all states are measurable. This is a problem because knowledge of the non-
measurable states is desired. To address this problem an observer is used to
estimate the state of the system. The state estimate, x̂, has the same dynamics
as x in (2.3), but without the noise term v1. The state estimate will be calculated
in each time step by correcting the a priori estimate, x̂(k, k − 1), with the a
priori estimate error, y(k)− Cx̂(k|k − 1)−Du(k).

In an ideal situation, y(k) and Cx̂(k|k − 1) + Du(k) is equal, but because
of the model and measurement noise they will differ. The difference, y(k) −
Cx̂(k|k− 1)−Du(k), is used as a feedback term to improve the accuracy of the
state estimate. Feedback with gain K results in the equation

x̂(k + 1|k) = Ax̂(k|k − 1) +Bu(k) +K(y(k)− Cx̂(k|k − 1)−Du(k)), (2.5)

which is an observer of the system.
The objective of the observer is to produce an estimate x̂ which is close to

the true state x. This implies that the estimation error

x̃(k) = x(k)− x̂(k),

should be small. From (2.3) and (2.5) the model of the estimation error can be
written as

x̃(k + 1|k) = (A−KC)x̃(k|k − 1) +Nv1(k)−Kv2(k). (2.6)
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Thus, the choice of K affects the behaviour of the estimation error in two ways.
A−KC determines how fast old estimation errors, x̃(k|k − 1), vanishes, while
Kv2(k) determines how much the measurement noise, v2, affects the estimation
error. K should be chosen such that A −KC is stable with the eigenvalues in
the stability region. At the same time K should not amplify the noise much.
The ideal case would be to have all eigenvalues of A − KC to be zero and K
equal to zero. In that way all estimation errors vanishes after one time step, and
the measurement noise would not affect the estimations. However, with such
system the observer would not be necessary at all.

The existence of a K such that A − KC is stable requires that (A,C) is
detectable. If such K exists, the problem of how stability of A − KC and
sensitivity to measurement noise should be weighted depends on v1 and v2. If
the variance of v1 is much larger than v2, it is likely that it is more important
that estimation errors vanishes than that the measurement noise is attenuated.

The covariance of the estimation error is expressed as

P = E[x̃(k)x̃(k)T ].

By minimizing P , an optimal filter with respect to estimation error covariance
is acquired. The covariance of the estimation error is driven by the gaussian
white noise v1 and v2. By (2.6), theorem 5.6 in Glad and Ljung (2000), and
since x̃(k|k−1) is independent of v1(k) and v2(k), the variance can be calculated
as

P = E[x̃(k|k − 1)x̃(k|k − 1)T ]

= APAT +R1 − (APCT +R12)

· (R2 + CPCT )−1

· (CPAT +R12)T ,

(2.7)

where R1 = E[v1v
T
1 ], R2 = E[v2v

T
2 ] and R12 = E[v1v

T
2 ] are the variance of

v1 and v2, and their cross variance, respectively. The optimal observer gain is
calculated by K = (APCT + R12)(CPCT + R2)−1, and used in (2.5) it forms
the Kalman filter (Glad and Ljung, 2000).

The state estimate available in each time step is completely calculated using
information from previous time steps. This means that the new information in
a time step is not used for the current time state estimate. To use the latest
information available in a state estimate, the following update step is used:

x̂(k|k) = x̂(k|k − 1) + K̃(y(k)− Cx̂(k|k − 1)−Du(k)) (2.8)
x̂(k + 1|k) = x̂(k|k) +Bu(k), (2.9)

where K̃ = PCT (CPCT +R2)−1.

2.3 Target prediction
The Target selection is realized in a computer controlled system, which is a
discrete time system. This necessitates a discrete time model of the lateral
vehicle dynamics and a discrete time observer. With the sample time h the
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model (2.1)-(2.2) is discretized by using the second order Taylor polynomial:

γ(k + 1) =

1 h 1
2h

2

0 1 h
0 0 1

 γ(k) = Φγ(k) (2.10)

z(k) =
[
1 0 0

]
γ(k) = Cγ(k). (2.11)

To calculate a discrete time state estimate, equations (2.8) and (2.9) are
used in conjunction with (2.10) and (2.11) to form a discrete time Kalman filter
for the estimation of the lateral position, velocity and acceleration:

γ̂(k|k) = γ̂(k|k − 1) + K̃(z(k)− Cγ̂(k|k − 1)) (2.12)
γ̂(k + 1|k) = Φγ̂(k|k), (2.13)

where
K̃(k) = (ΦP (k|k − 1)CT )(R2 + CP (k|k − 1)CT )−1, (2.14)

and

P (k + 1|k) = ΦP (k|k − 1)ΦT +R1

− (ΦP (k|k − 1)CT )(R2 + CP (k|k − 1)CT )−1(CP (k|k − 1)AT ). (2.15)

The Kalman filter only estimates the current state γ̂(k|k). To make a pre-
diction one step ahead, (2.10) is applied to calculate γ̂(k + 1|k).

A predicted value n steps ahead is achieved by applying the model (2.10) n
times

γ̂(k + n|k) = Φγ̂(k + n− 1|k)
= Φ2γ̂(k + n− 2|k)
...
= Φn−1γ̂(k + 1|k)
= Φnγ̂(k|k)

=

1 nh 1
2n

2h2

0 1 nh
0 0 1

 γ̂(k|k).

(2.16)

Since n is the amount of time steps that are predicted and h is the sample time,

tH = nh,

is the total time predicted, and will be referred to as the prediction horizon.

2.4 Tuning the filter

For the determination of K̃ in the Kalman filter, (2.12), knowledge of R1, R2 and
R12 in (2.15) is required. In this particular case, the variance of the measurement
noise, R2, is scalar since only one state is measured. Thus, R2 is simply the
variance of the lateral position measurement noise.

The covariance of the unmodelled dynamics is defined by

R1 =

σ2
11 σ2

12 σ2
13

σ2
21 σ2

22 σ2
23

σ2
31 σ2

32 σ2
33

 , (2.17)
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where the values on the diagonal are the variance of the lateral position, lateral
velocity and lateral acceleration noises, respectively. The off-diagonal values
are the covariance of the lateral position noise, lateral velocity noise and lateral
acceleration noise. Since σ2

ij = σ2
ji, there are six parameters to be determined

for R1.
Since R1 and R2 are unknown, they are considered as tuning parameters.
Analysis of logged sensor data shows that most lane changes takes between

one and three seconds to complete. Thus, the prediction horizon, tH , is con-
strained by these values. Larger horizons would not give any advantage since
most lane changes are not possible to predict more than three seconds ahead.

The upper bound on the prediction horizon is also determined by the amount
of noise amplification which a large time horizon introduces. A small amplifica-
tion of noise on the lateral acceleration could have large effect on the prediction.
In order to get a time horizon that is both significant for predicting lane changes
accurately and which does not introduce too much noise amplification, the path
taken in this thesis is to set the prediction horizon to two seconds; the average
time of a lane change.

2.4.1 Variance effect on prediction
The variances σ2

11, σ2
22, σ2

33 from (2.17), and R2 compose the four design param-
eters of the Kalman filter, and they are used for tuning the lateral predictor.
The tuning is done by testing different parameter sets on a range of scenarios.

If the variance of the model noise of the acceleration, σ2
33, is low compared

to the variance of the model noise of the position and velocity, σ2
11 and σ2

22, e.g.

R1 =

1 0 0
0 1 0
0 0 0.05

 , R2 = 500, (2.18)

then the predicted acceleration is slowly varying, since the acceleration is as-
sumed constant. In Figure 2.4 the effect of (2.18) on the prediction of lateral
position is shown for a representative scenario. The blue line in 2.4a is the
lateral position measured by the sensors at time t, i.e. y(t). The green line,
ŷ(t|t − tH), is the prediction of y at time t, given measurements up to time
t− tH . In 2.4b the prediction error can be seen. The predicted position errors
are for the most part not larger than a meter, but at the lane change, which is
initiated at 85 seconds, the assumption of low σ2

33 leads to low responsiveness of
the predictor output. As can be seen at the lane change at 89 s, the prediction
crosses the threshold one second after the measurement. Since the prediction
horizon is 2 seconds, the cut-out will be detected one second ahead when using
lateral prediction.

When σ2
33 is high compared to σ2

11 and σ2
22, e.g.

R1 =

1 0 0
0 1 0
0 0 500

 , R2 = 500, (2.19)

then the prediction error is very large over all time, and can be as much as 3
meters, but the responsiveness of the predictor is high at the moment of the
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Figure 2.4: A cut-out situation where the assumed acceleration variance is too
low, R1(3, 3) = 0.05. The estimated acceleration is then stiff to changes, which
leads to smooth prediction and a delay of the prediction. tH = 2.
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(b) Prediction error.

Figure 2.5: A cut-out situation where the assumed acceleration variance is too
high, R1(3, 3) = 500. The estimated acceleration is then allowed to change a
lot, which leads to noisy prediction and larger errors. tH = 2.
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lane change, as shown in Figure 2.5. The high variance of σ2
33 also gives rise

to large overshoots when the lane change is completed. The detected vehicle is
predicted to a position almost two lanes away. At a cut-out, the overshoot does
not introduce errors in the Target selection. On the contrary, an overshoot of
the lateral position during a cut-in may cause errors if the detected vehicle is
predicted across the Host’s lane.

The effect of the measurement noise variance is the opposite of the process
noise variance of the acceleration; low values of R2 imply large errors and higher
responsiveness of the predictor , while large values of R2 means smaller errors
but lower responsiveness of the predictor . Figures 2.6 and 2.7 shows what
happens when the measurement variance is too low and too high, respectively.

The design parameters of the Kalman filter R1 and R2 have finally been
chosen as

R1 =

1 0 0
0 1 0
0 0 5

 , R2 = 500. (2.20)

This means that the measurement noise variance is a lot larger than the variance
of any of the modelling errors, and that the assumption of constant lateral
acceleration is more uncertain than the assumptions on lateral position and
velocity.

The chosen parameter configuration is a compromise to get acceptable pre-
diction errors over time and to get a high responsiveness when the detected
vehicle changes lanes. In Figure 2.8 it can be seen that the predicted and the
measured lateral position both cross the threshold at the same point, i.e., the
lane change will be detected two seconds in advance.

2.4.2 Limiting overshoot of predicted position
Shortly after 90 seconds in Figure 2.8 , the prediction error is more than 2
meters. This error appears directly after the cut-out and it is a consequence of
the high estimated lateral velocity and acceleration in γ̂ in (2.12) during the
cut-out.

The assumption that the lateral acceleration is constant is not realistic, since
with a constant non-zero acceleration, Target would soon leave the road. To
address this issue the variance of the model noise for the acceleration could be
increased. In that way the acceleration is expected to deviate much more from
the model (2.10). Increasing the variance does decrease the total time of the
overshoot, but not its magnitude. In addition it introduces high magnitude
noise in regular driving as can be seen in Figure 2.5 at 70 seconds. After the
initial velocity increase caused by driver steering, the acceleration should tend
to zero during the cut-out or cut-in. This indicates that the model may need
adjustments. Thus, the dynamics of the acceleration in (2.10) is changed to

â(k + 1) = ρâ(k),

where 0 ≤ ρ ≤ 1. The effect of setting ρ to 0.975 can be seen in Figure 2.9.
The magnitude of errors decreases with almost a meter compared to when ρ
is 1 (Figure 2.8). A side effect is that the responsiveness of the predictor drops
as ρ decreases, since the estimated lateral acceleration is lower for decreasing ρ.
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(b) Prediction error.

Figure 2.6: A cut-out situation where the assumed measurement variance is set
too low, R2 = 5. The prediction becomes noisy and has larger errors. tH = 2.
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Figure 2.7: A cut-out situation where the assumed measurement variance is set
too high, R2 = 50000. The prediction becomes smooth and delayed. tH = 2.
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Figure 2.8: The prediction output in a cut-out situation. tH = 2.
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With the modified model, the cut-out is detected 1.2 seconds in advance if the
prediction is used instead of the measurement.

2.5 Results
The simulation results show that with the selected tuning in (2.20), the cut-in
and cut-out situations could in some cases be detected up to two seconds ahead
of the standard Target selection module (i.e, without predictor). The smallest
prediction times that are attained are half a second. Increasing the predic-
tion horizon increases the swiftness of the Target selection, but at a prediction
horizon larger than 2 seconds the effect begins to saturate.

When selecting a prediction horizon, the attained prediction time needs to
be evaluated with respect to accuracy.

The accuracy is defined as

A ,

∫ t
t=0

δ(ŷ(t+ tH |t), t)∫ t
t=0

1

where
δ(y, t) =

{
1, if y is in the correct lane at time t
0, otherwise.

When no lane change is ongoing, the measured position determines the correct
lane of Target. During the lane change, both lanes are considered correct.
However, ŷ(t + tH |t) may only change lanes once during the lane change. All
additional changes is considered as errors.

In Figure 2.10, the average attained prediction time, i.e., how much faster
the lane change is detected with the lateral prediction than the standard Target
selection, is plotted with respect to accuracy for four different parameter set-
tings. Points to the upper right are desirable, which means high accuracy and
high attained prediction time. From the figure, it is evident that the difference
between the different parameters in the set ρ ∈ {1, 0.975, 0} is small. However,
for a given prediction horizon, lower values of ρ give higher accuracy and lower
attained prediction time. The same effect may be acquired by lowering the
prediction horizon. Increasing the measurement noise variance in the Kalman
filter, e.g. setting R2 = 5000, decreases the performance. This is mostly due to
reduced responsiveness of the lateral predictor and not worse accuracy.

Results from tests conducted in vehicles are harder to evaluate than the
results obtained from the simulations, but the improvement measured from log
files are around one second with a prediction horizon of two seconds. The vehicle
tests were camera recorded, and screen captured pictures show that without the
predictor a vehicle is selected as Target when three wheels have crossed the lane
markings, while the predictor lets the Target selection designate the vehicle as
Target when only one wheel has crossed the lane markings. This can be seen in
Figure 2.11. The first figure shows the position of the vehicle when the Target
selection designates the vehicle as Target without lateral prediction. The second
picture shows the same situation with lateral prediction. It is easy to see that
lateral prediction makes a positive difference.
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Figure 2.9: The prediction output in a cut-out situation. tH = 2 and ρ = 0.975.
tH = 2.
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(a) Without the Kalman predictor.

(b) With the Kalman predictor.

Figure 2.11: The pictures depicts a cut-in situation from the left lane. The
pictures are captured at the instant the Target selection designates the vehicle
as Target. tH = 2.
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Chapter 3

Multi-target control

Typically, in today’s vehicles the Adaptive Cruise Control only uses single-target
control. This means that it only uses information about the immediate preceding
vehicle, Target, in the control law. The information that is used in the control
law is mainly the range, which is the distance between Host and Target, and
the range-rate, which is the difference of velocity between Host and Target, i.e.,
the derivative of the range. The acceleration of Target is also often used in the
control law.

A driver using ACC will in many situations experience that the vehicle reacts
slowly when vehicles ahead accelerates or decelerates, which largely is due to
time constants and delays in the propulsion and brake system of the vehicle.
One way to improve the ACC would be to use a multi-target controller. Instead
of only using information of Target, the ACC can also use information from the
second closest preceding vehicle, Target+1, as shown in Figure 3.1. By using
information from more than one vehicle ahead the goal is to react faster to
traffic disturbances and thus decrease the range error and range-rate error, as
well as the acceleration, compared to a corresponding single-target controller.

In this chapter the effects of introducing a multi-target controller is evaluated
with respect to stability and performance, by comparing it with a correspond-
ing single-target controller. In the analysis it is assumed that Target follows
Target+1 in a well-defined way. This is of course not true in reality, since it
can never be guaranteed that Target follows Target+1. In Chapter 4 the multi-
target controller is modified to also handle situations when Target does not
follow Target+1.

Figure 3.1: System overview of the multi-target ACC equipped vehicle, Host,
which uses information about the two immediate preceding vehicles, Target and
Target+1, in the control law.
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3.1 Vehicle platooning
An emerging research area in the automotive industry is vehicle platooning,
where several vehicles drive together in a string. The goal is to achieve small
inter-vehicle distances and making the vehicles less sensitive to traffic shock-
waves by letting the vehicles exchange information wirelessly.

There are several expected benefits of vehicle platooning. Traffic through-
put on roads is expected to increase (Robinson et al., 2010). The aerodynamic
drag is expected to reduce because of the small inter-vehicle distance, leading
to lower fuel consumption. Since the vehicles in a platoon are assumed to be
autonomously driven, the driver do not need to control the vehicle, but just
supervise the autonomous driving systems, thus reducing the driving workload.

One key difference between vehicle platooning and a commercial available
ACC is in what way the vehicles follow each other. In the platooning case the
expected behaviour of the vehicles is known, i.e., the vehicles should follow each
other. This is not the case in regular traffic, where Target+1 for example can
drive faster than the set speed of Target.

Both the longitudinal control and the lateral control of the vehicles is impor-
tant in vehicle platooning. However in this report the only problem considered
will be the longitudinal control.

3.2 Spacing policies
An important property for both vehicle platooning and commercial ACC is the
spacing policy, i.e., what range a vehicle should keep to the preceding vehicle.
There are a few spacing policies suggested in literature. One of the most common
is the constant time headway policy (CTH), where the desired range to the
preceding vehicle is calculated from a desired time gap (Ferrara and Vecchio,
2006; Liang and Peng, 2000; Naus et al., 2010; Xiao and Gao, 2011). This can
be expressed as:

xd(t) = v(t)Tg, (3.1)

where xd(t) is the desired range to the preceding vehicle, v(t) is Host’s velocity
and Tg is the desired time gap, i.e., the time it takes for Host to reach Target,
when the velocity is kept constant (Naus et al., 2010). A constant term, xd,0,
can be added in (3.1) in order to maintain a minimum range at low velocities:

xd(t) = xd,0(t) + v(t)Tg. (3.2)

The CTH spacing policy is common in commercial ACC:s because the desired
range in the control law will become larger when the velocity is increased, which
gives a safer behaviour; if a larger range is kept between the vehicles it will be
easier to react in time when, for instance, Target brakes.

Another way to choose the spacing is to let it be constant, i.e.,

xd(t) = xd,0(t). (3.3)

The advantage of using constant spacing is that the range can be kept small
independent of the velocity, which leads to less aerodynamic drag and larger
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traffic throughput (Naus et al., 2010; Peppard, 1974; Seiler et al., 2004). This
spacing policy is however not used in ordinary traffic since the constant range
between the vehicles will lead to dangerously small ranges at high velocities.
But for vehicle platooning, where the vehicles are driven autonomously and
have short reaction times, this spacing policy can be favourable (Robinson et al.,
2010).

3.3 Stability
To get an understanding of what the differences are between single-target and
multi-target control the properties of both are discussed with respect to local
stability and string stability.

3.3.1 Local stability
The spacing error is defined as

ε(t) = x− xd, (3.4)

where x is the range between Host and Target, and xd is the desired range
according to the adopted spacing policy.

An essential property of the ACC is the stability of the underlying longitu-
dinal dynamics control system. That is, the spacing error, ε(t), and the velocity
error ε̇(t) should tend to zero as t→∞:

|ε(t)| → 0
|ε̇(t)| → 0

, t→∞. (3.5)

Closed loop stability can be presented by resorting to classical stability re-
sults, e.g., for linear systems the Nyquist stability criterion, and for non-linear
systems the theory of Lyapunov stability.

3.3.2 String stability
An important concept for vehicle platooning is the string stability. In literature,
several ways to present string stability exists, but the underlying desire is to
have a stability concept that concludes whether perturbations in the range or
range-rate amplifies or attenuates downstream (i.e. further back in the platoon)
(Swaroop, 1997). If the platoon is not string stable, traffic shockwaves will be
amplified downstream. This will make it uncomfortable to ride the vehicle and
can lead to collisions.

The stability concept also depends on whether the platoon are assumed to
be homogeneous, i.e., all vehicles have identical dynamics and controllers, or if
it is assumed to be heterogeneous, i.e., the dynamics and controllers can differ
between the vehicles.

The most general case is the non-linear heterogeneous interconnected system,
where the vehicles in the platoon can have non-linear dynamics and controllers.
A rigorous definition has been developed by Swaroop and Hedrick (1996), and
defines a platoon of vehicles as string stable if all vehicles, for bounded initial
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range and range-rate errors, have bounded range and range-rate errors over all
time and for any number of vehicles.

For homogeneous linear interconnected systems, this simply becomes

||εi||∞
||εi−1||∞

< 1 , (3.6)

where i is the i:th vehicle in the platoon (Naus et al., 2010). This expression
holds for ε being both range error and range-rate error. If this were not the case,
with infinite number of vehicles the range and range-rate errors would grow to
infinity.

Instead of requiring that the errors should be bounded, some definitions use
L2 norms as the measure to be attenuated (Klinge and Middleton, 2009; Rapa-
port and Astolfi, 2004). This means that low steady state errors are penalized,
which may be counter productive. Since no allowed steady state errors means
stiff control on range, the L2 norms may lead to high accelerations and high
range-rate errors.

In the remainder of this thesis the string stability definition in (3.6) is used
with respect to range and range-rate error.

3.4 Spacing policy effect on stability
The spacing policy’s effect on stability has been extensively studied in literature.
Depending on the spacing policy and the set of sensors available, different results
hold. In this section the fundamental results on string stability are presented.

3.4.1 Vehicle dynamics
The output of the ACC, the desired acceleration, is sent to the vehicle’s low-
level control system, where it is used to calculate appropiate requests for the
vehicle’s propulsion and brake system. The relation between the acceleration
of the vehicle, A(s), and the desired acceleration, U(s), can approximately be
described by

A(s)

U(s)
=

1

1 + sT
e−sτ , (3.7)

where T is the time constant and τ is the time delay of the vehicle’s propulsion
and brake system.

The relation between a vehicle’s position, P (s), and acceleration is

P (s) =
1

s2
U(s). (3.8)

Combining (3.7) and (3.8) gives the following transfer function from desired
acceleration to actual position of the vehicle

G(s) =
1

s2
1

1 + sT
e−sτ . (3.9)

Model (3.9) approximately describes the vehicle dynamics and will be suffi-
cient in this thesis, since τ includes all system delays and T is the time constant
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Figure 3.2: Range error dynamics between vehicles in a homogeneous platoon
of vehicles using PD-controllers. G(s) is the vehicle dynamics and K(s) is the
controller. Inputs to the controller are the range and the range-rate error to the
preceding vehicle.

of the vehicle actuators. Since the actuators are regulated by closed loop con-
trollers, the time constant T is chosen such that all vehicle dynamics is accounted
for. The model (3.9) could be improved by using different values on T and τ
depending on whether it is the propulsion or the brake system that currently is
being used, and also introduce a delay when switching between these systems.

The vehicle dynamics will have an impact on the string stability. Larger
time constants and time delays means that shorter reaction times are needed
to avoid collisions. By the same reason the stability margins of the closed loop
system of any vehicle in the vehicle string are decreased.

3.4.2 Constant spacing
It has been shown that a platoon, consisting of vehicles described by (3.9), never
can be string stable if the vehicles employ constant spacing policy and only have
information of Target (Naus et al., 2010; Seiler et al., 2004; Sheikholeslam and
Desoer, 1993). With range and range-rate error to Target available as system
inputs for each vehicle, a simple PD-controller will give the following control
signal

Ui(s) = K(s)Ei(s), (3.10)

where Ei(s) is the range error between vehicle i and the preceding vehicle, and

K(s) = Kp +Kvs, (3.11)

where Kp is the proportional gain and Kv is the derivative gain. The range
error dynamics between the vehicles, shown in Figure 3.2, can then be written
as

Γ1 = E1

P0
=

1

1 +G(s)K(s)
=

s3T + s2

s3T + s2 + e−sτ (sKv +Kp)
(3.12)

Γi = Ei

Ei−1
=

G(s)K(s)

1 +G(s)K(s)

=
e−sτ (sKv +Kp)

s3T + s2 + e−sτ (sKv +Kp)
, for i > 1, (3.13)

where Γ1 describes the dynamics of the first range error, and Γi describes the
dynamics of the consecutive range errors.
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In the following analysis, the time delay, τ , is assumed to be zero to be able
to perform an initial linear analysis. The influence of the time delay will be
investigated later on in Chapter 4. The time constant, T , is assumed to be 0.5.

String stability will only be achieved when Γi is smaller than 0 dB over all
frequencies. A bode plot of (3.12) and (3.13) is shown in Figure 3.3 where it
can be seen that Γi is not below 0 dB for all frequencies. Although Figure 3.3
only shows one set of control parameters, it can be proven that it does not exist
any set of control parameters that will attenuate disturbances at all frequencies
for Γi. This can be proven with the Bode sensitivity integral as done in Seiler
et al. (2004).
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Figure 3.3: Example of non string stable platoon when constant spacing policy is
used and only information regarding the preceding vehicle is available. Kp = 0.3
and Kv = 0.9.

On the other hand, with information of the lead vehicle (the first vehicle in
the platoon) available to all vehicles, it is possible to make the platoon string
stable (Naus et al., 2010; Seiler et al., 2004; Sheikholeslam and Desoer, 1996).

The control signal (3.11) is extended with a term depending on the range
error between vehicle i and the lead vehicle, Elp,i(s), in the following way:

Ui(s) = K(s)Ep,i(s) +Kl(s)Elp,i(s), (3.14)

where

Kl(s) = Kl
p +Kl

vs. (3.15)

The range error dynamics between the first and second vehicle will be the
same as in (3.12) and for the following pair of vehicles it will be as shown in
Figure 3.4. This can be written as

Γi =
Ei
Ei−1

=
e−sτ (sKv +Kp)

s3T + s2 + se−sτ (Kv +Kl
v) + e−sτ (Kp +Kl

p)
, for i > 1, (3.16)
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Figure 3.4: Range error dynamics between vehicles in a homogeneous platoon of
vehicles using PD-controllers. G(s) is the vehicle dynamics and K(s) and Kl(s)
are the controllers. Input to K(s) is the range error to the preceding vehicle, ε,
and input to Kl(s) is the range error to the lead vehicle εl. The desired range
to the lead vehicle, xld,0,i and x

l
d,0,i−1, depend on how far back in the platoon

the vehicles are.
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Figure 3.5: Example of string stable platoon when constant spacing policy is
used and information regarding the preceding vehicle and the lead vehicle are
available. Kp = 0.3, Kv = 0.9, Kl
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which for certain set of parameters can be made string stable, see Figure 3.5.
Peppard (1974) has shown that with information from both the preceding

vehicle and the following vehicle it is possible to achieve string stability. How-
ever, as mentioned in the paper, the effects on driving behaviour when taking
rear vehicles into consideration in the controller are probably not wanted from
a driver’s comfort point of view. If for instance a vehicle approaches from the
rear it will push Host forward towards Target. If the driver of Host has not
noticed the vehicle behind, this action will come as a surprise.

Additionally, Shaw and Hedrick (2007) have shown that heterogeneous pla-
toons using only leader following are stable, but this approach to string stable
platoons does not consider vehicle separation. If enforced correctly, the strat-
egy could be effective, but, if some error occur, for instance if one vehicle in the
platoon receives an erroneous range measurement, the vehicles will not be able
to avoid collisions with each other.

3.4.3 Constant Time Headway spacing
If the CTH spacing policy is used, the string stability conditions are easier to
fulfill. Naus et al. (2010) have provided a constraint on the headway time Tg,
in (3.1), which guarantees string stability for a given controller, implying that
the constant time headway policy may have a positive effect on string stability.
If the linear feedback controller has a cut-off frequency of ωK Hz, then the
constraint on Tg for guaranteeing string stability is

Tg ≥
√

2/ωK .

However it should be noted that, in the paper by Naus et al. (2010), the con-
straint on Tg is calculated by assuming an ideal vehicle in the form of a double
integrator. Although this is not an accurate assumption, the results give an in-
dication on how string stability is affected by the constant time headway spacing
policy.

Xiao and Gao (2011) have developed another constraint on the headway
time. The constraint is that a headway time that is twice as large as the
total of the system’s time lag and time delays makes the platoon string stable.
The derivation of the constraint is only valid for homogeneous platoons with
linear dynamics, but simulation results suggest that the same constraint applies
for heterogeneous platoons as well (Xiao and Gao, 2011). A similar result is
obtained by Zhou and Peng (2005).

The previous mentioned articles have only dealt with linear systems. With
non-linear systems it is complicated to analyse the string stability. Since string
stability means that a spacing error should decrease through the platoon, the
amplification of the spacing errors should be less than unity. For linear systems
the amplification is usually easy to calculate for all frequencies. In the non-
linear case, however, the amplification of spacing errors can in many cases only
be determined to be within a range of values. This range can be determined by
finding a Lyapunov function for the given system that are bounded from below
and above by two different non-decreasing functions (Teel, 1996). There is no
guarantee that such functions exist for a given system. If the amplification can
be determined to be in a range of values that are all less than unity, then the
interconnected system is string stable.
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3.5 Multi-target control string stability
In the above mentioned papers, only information about Target and the lead
vehicle are available in the control law of Host. Next it is investigated if string
stability can be achieved when information of more than one preceding vehicle is
available and constant spacing policy is used. For simplicity it is assumed that
only information about Target and Target+1 are available, but it is possible to
use more vehicles ahead in the control law. The control law (3.11) extended
with an additional part that acts on the range error to Target+1, E′p,i(s), is
given by:

Ui(s) = K(s)Ep,i(s) +K ′(s)E′p,i(s), (3.17)

where

K ′(s) = K ′p +K ′vs. (3.18)

E′p,i(s) can for example be obtained via wireless communication between
Host and Target+1 or via on-board sensors on Host.

The transfer functions for the error dynamics for the first two errors then
becomes

G1(s) =
Ep,1(s)
P0(s)

=
1

1 +H(s)K(s)
=

s2

s2 + sKv +Kp
(3.19)

G2(s) =
Ep,2(s)
Ep,1(s)

=
s(Kv −K ′v) +Kp −K ′p

s2 + s(Kv +K ′v) +Kp +K ′p
. (3.20)

Since each multi-target vehicle uses information from Target and Target+1,
the order of the transfer function for the error dynamics will increase for each
vehicle further back in the platoon.

K(s) and K ′(s) can easily be chosen such that ||G2||∞ < 1. The third
vehicle has information of both Target and lead vehicle. In Seiler et al. (2004)
it is shown that if the vehicles in a platoon has information about both Target
and lead vehicle the whole platoon can be made string stable. However, for the
multi-target control case only the third vehicle has information about the lead
vehicle, and thus the string stability is only valid for the second error G2, i.e., the
error between the second and the third vehicle. The error dynamics for vehicles
further back in the platoon will not be as favourable. The error dynamics
between two consecutive pair of vehicles, where all vehicles uses multi-target
control, will be:

Ep,i(s) =
Kvs+Kp

s2 + s(Kv +K ′v) +Kp +K ′p
Ep,i−1(s) +

K ′vs+K ′p
s2 + s(Kv +K ′v) +Kp +K ′p

Ep,i−2(s). (3.21)

Since the complexity of the transfer functions for the error dynamics in-
creases further back in the platoon, no simple conclusion whether the vehicles
are string stable has been found. To get an idea about the behaviour, a platoon
containing 10 vehicles has been simulated with different values on the control
parameters in (3.17). From the simulations one can infer that multi-target con-
trol is not string stable by default. Figure 3.6 shows the best found set of control
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parameters for the multi-target controller, and Figure 3.7 shows the correspond-
ing simulation for a single-target controller. As can be clearly seen, range errors
increase in the end of the platoon, but it is also evident that the multi-target
controller has better performance than the single-target controller. The errors
become smaller, and for the first few vehicles the errors are actually decreasing.
A corresponding controller with leader information can be made string stable
as can be seen in Figure 3.8.
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Figure 3.6: Ten vehicle platoon where the vehicles uses multi-target control.
Kp = 1, Kd = 1.5, K ′p = 0.5, K ′v = 0.75.

3.6 Multi-target control performance
In Section 3.5 it was investigated whether a platoon of vehicles adapting multi-
target control and constant spacing policy can be made string stable. No proof of
string stability where found, but the results indicate that it can be advantageous
to use multi-target control instead of single-target control. It was assumed that
Target always follows Target+1, which is not true in regular traffic. However,
if the range between Target and Target+1 is small it is likely that their driving
behaviour will be linked to some extent.

Target and Target+1 are strongly linked if Target follows Target+1 strictly
and tries to keep the range and range-rate errors small. Conversely, they are
weakly linked if Target allows large range and range-rate errors to Target+1.

It is necessary to distinguish the situation where Target+1 accelerates from
the situation where Target+1 decelerates. When Target+1 accelerates to a
higher velocity than Target, Target can either accelerate and continue to follow
Target+1, remain at the same velocity, or decrease the velocity. When Tar-
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Figure 3.7: Ten vehicle platoon where the vehicles uses single-target control.
Kp = 1, Kd = 1.5.
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Figure 3.8: Ten vehicle platoon where the vehicles uses leader information in
the control law. Kp = 1, Kd = 1.5, Kl

p = 0.5, Kl
v = 0.75.
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get+1 decelerates to a lower velocity than Target, Target must also decelerate,
otherwise a collision will occur.

To be able to compare the performance between a single-target and multi-
target controller, both will be designed to be optimal using the Linear-quadratic
regulator (LQR) algorithm described in Glad and Ljung (2000). The single-
target controller only uses Target information in the control law, while the
multi-target controller additionally uses Target+1 information. The knowledge
that Target and Target+1 is linked is used in the design of the multi-target
controller, and it is assumed that Target uses an optimal single-target controller.
Since this is not always true, the Host’s multi-target controller must be designed
to be able to handle the situation where the link between Target and Target+1
is weak.

The two different Host controllers are evaluated and compared against each
other both in the situation where Target and Target+1 are strongly linked, and
in the situation where Target and Target+1 are weakly linked.

The vehicle dynamics are assumed to be equal for all vehicles, which means
that all differences between simulations can be attributed to differences in the
control algorithms.

3.6.1 Error model of Host
Host, using multi-target control, has knowledge of range and range-rate to both
Target and Target+1. Host also has knowledge of the ego acceleration and the
accelerations of Target and Target+1. Target, which uses single-target control,
can only use the range and range-rate to Target+1, the ego acceleration and
the acceleration of Target+1 in the control law. The following error model of
Host, using multi-target control, is used in the LQR-design:

ẋ1(t) = x3(t) (3.22a)
ẋ2(t) = x4(t) (3.22b)
ẋ3(t) = x6(t)− x5(t) (3.22c)
ẋ4(t) = x7(t)− x5(t) (3.22d)

T ẋ5(t) = uH(t− τ)− x5(t) (3.22e)
T ẋ6(t) = uT (t− τ)− x6(t) (3.22f)
T ẋ7(t) = uT+1(t− τ)− x7(t) (3.22g)

where

• x1(t) = Range between Host and Target

• x2(t) = Range between Host and Target+1

• x3(t) = Range-rate between Host and Target

• x4(t) = Range-rate between Host and Target+1

• x5(t) = Host acceleration

• x6(t) = Target acceleration

• x7(t) = Target+1 acceleration
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and uH(t− τ),uT (t− τ) and uT+1(t− τ) are the control signals for Host, Target
and Target+1 respectively;

uH(t) = αh1x1(t) + αh2x2(t) + αh3x3(t) + αh4x4(t) +

αh5x5(t) + αh6x6(t) + αh7x7(t) (3.23)
uT (t) = αt1(x2(t)− x1(t)) + αt2(x4(t)− x3(t)) +

αt3x6(t) + αt4x7(t) (3.24)
uT+1(t) = w(t) (3.25)

The control signal of Target+1 is modelled as noise, w(t), since its driving
behaviour is unknown.

Host, using single-target control, can only use states that includes itself and
Target as feedback. That means that αh2 , αh4 and αh7 are zero. The remaining pa-
rameters, (αh1 , α

h
3 , α

h
5 , α

h
6 ), are equal to the Target parameters, (αt1, α

t
2, α

t
3, α

t
4),

since both are assumed to be using optimal single-target control.
The transfer function from the range error between Target and Target+1,

x2(t)− x1(t), to the range error between Host and Target, can be written as:

G1(s) =
X1(s)

X2(s)−X1(s)
, (3.26)

and the transfer function from the acceleration of Target to the acceleration
of Host can be written as:

G2(s) =
X5(s)

X6(s)
. (3.27)

3.6.2 Error model of Target
Target, which uses single-target control, only has information about the range
and range-rate to Target+1, the ego acceleration and the acceleration of Tar-
get+1. The error-model for Target becomes:

ẋ∗1(t) = x∗3(t) (3.28a)
ẋ∗3(t) = x∗6(t)− x∗5(t) (3.28b)

T ẋ∗5(t) = uT (t− τ)− x∗5(t) (3.28c)
T ẋ∗6(t) = uT+1(t− τ)− x∗6(t), (3.28d)

where

x∗1(t) = x2(t)− x1(t)

x∗3(t) = x4(t)− x3(t)

x∗5(t) = x6(t)

x∗6(t) = x7(t).

The control law for Target, (3.24), can be re-written as:

uT (t) = αt1x
∗
1(t) + αt2x

∗
3(t) + αt3x

∗
5(t) + αt4x

∗
6(t). (3.29)
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3.6.3 LQR synthesis
The control laws of the vehicles are determined by minimizing the following cost
function:

J =

∞∫
0

(xTQx+ uTRu)dt, (3.30)

where x is the states in the dynamic models of the vehicles described in Section
3.6.1-3.6.2, and u is the vehicle’s control signal. Q and R are the weighting
matrices of the states and control signal, respectively. Larger weights on a
state or control signal means that the control law will be chosen such that the
particular state or signal will be as close to zero as possible at all times. By using
the same weight function for both controllers, the controllers will be comparable.

LQR design is used to calculate the optimal state feedback u = −Kx for both
Host and Target. First the state feedback of Target in (3.29), uT (t) = Ktx∗(t),
is calculated. The control gains αt1 through αt4 for Target are calculated using
the model (3.28).

The calculation of the control parameters of the multi-target Host is based
on (3.22). LQR is used to acquire Kh which contains the parameters αh1
through αh7 in (3.23).

In the following analysis it is assumed that T = 0.5. Q and R are chosen as:

Q =



1 0 0 0 0 0 0
0 q2 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


, R = 1. (3.31)

Since the accelerations of Target and Target+1 (x6 and x7) are not controllable
from Host’s point of view, the weighting of these states are not important when
calculating Kh. The weight on the range to Target+1, q2, will affect how large
the gains on the Target+1 states will be (i.e. αh2 , αh4 and αh7 ). The analysis
and comparison of the two types of controllers are concerned only with their
differences and whether a multi-target controller can be made better than the
corresponding single-target controller, hence the specific values of the weights
are not important. However, Target’s control law uT (t) will be varied after uH(t)
is obtained, which means that the weight q2 needs to be adjustable. A too high
value of q2 will make Host follow Target+1 and collide with Target in some
situations, while a too low q2 will make the effect of Target+1 in Host’s control
law minimal. The former case is bad when Target is not following Target+1,
while the latter is bad when Target is following Target+1.

By comparing the performance of the single-target and multi-target con-
troller for different values of q2 when the link is strong and weak, appropriate
values for αh4 and αh7 can be obtained for different scenarios. This will then be
the basis for choosing parameters in the next chapter.
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3.6.4 Strong link
The multi-target controller is evaluated for two different Target control param-
eter configurations. The first configuration is chosen such that the link between
Target and Target+1 is strong. The control parameters for Target is determined
with LQR, where Q is the identity matrix and R is unity. This will penalize all
states equally when minimizing the loss function.

The control parameters for Host with a single-target controller equals the
control parameters for Target. The control parameters for Host with a multi-
target controller is determined with LQR for a set of different values of q2 in
(3.31). Since all vehicles will follow each other closely, this can be seen as a
mini-platoon.

Figure 3.9 shows a bode plot of G1, which is the amplification of Host’s range
errors. The dashed line represents Host with single-target control, and the solid
lines represent Host with multi-target control. As expected from the papers
mentioned in Section 3.4.2, when leader information is available, i.e. Target+1,
the platoon is string stable. This can be seen in figure 3.9 by noting that the
magnitude for multi-target control is always less than 0 dB.
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Figure 3.9: Bode plot of range error between Host and Target, when the link
between Target and Target+1 is strong.

Figure 3.10 shows a bode plot of G2; the amplification from Target accel-
eration to Host acceleration. From the figure it is evident that the maximal
amplification of acceleration for Host with multi-target control is less than for
Host with single-target control.

Figure 3.11 shows a step response of the system where Target+1 requests
an acceleration of 3 m/s2 during 3 seconds, i.e.:

uT+1(t) =

{
3, if 3 < t ≤ 6
0, otherwise. (3.32)
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Figure 3.10: Bode plot of acceleration of Host, when the link between Target
and Target+1 is strong. The bottom subplot shows a zoomed view.
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As can be seen, a higher q2 causes the range-error and range-rate to be smaller.
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Figure 3.11: Pulse response when Target+1 accelerates 3 m/s2 for three seconds,
and the link between Target and Target+1 is strong.

3.6.5 Weak link
The second configuration is chosen such that the link between Target and Tar-
get+1 is weak. This behaviour is acquired by heavily penalizing the control
signal in the LQR loss function, where Q is the identity matrix and R = 100.
When Target+1 accelerates away, Target increases its speed, but with a lot less
acceleration than Target+1.

The control parameters have been recalculated for Target, but the control
parameters for Host with single-target and multi-target control have not, and
are the same as when there was a strong link between Target and Target+1.

Figure 3.12 shows a bode plot of G1, which is the amplification of range
errors. Since the different Host controllers are much stiffer than the Target
controller, each one is attenuating range errors.

Figure 3.13 shows a bode plot of G2; the amplification from Target accel-
eration to Host acceleration. As opposed to the strong link, the acceleration
amplification for Host with multi-target control is higher than for Host with
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Figure 3.12: Bode plot of range error between Host and Target, when the link
between Target and Target+1 is weak.

single-target control. This is a natural consequence of the less stiff Target con-
troller.

Figure 3.14 shows a step response of the system where Target+1 requests
an acceleration of 3 m/s2 during 3 seconds. In this figure the downsides of
the multi-target controller comes forth. When q2 is high the Host controller
is affected too much by the range and range-rate errors to Target+1, and the
range error to Target becomes negative. This means that the range to Target
is smaller than desired, and if it gets too low, Host and Target may collide.

When the link between Target and Target+1 is weak, the behaviour will
become worse if the gains on the Target+1 information are too large. This fact
is used in the next chapter when a multi-target controller is synthesized for the
ACC case.
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Figure 3.13: Bode plot of acceleration of Host, when the link between Target
and Target+1 is weak. The bottom subplot shows a zoomed view.
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Figure 3.14: Pulse response when Target+1 accelerates 3 m/s2 for three seconds,
and the link between Target and Target+1 is weak.
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Chapter 4

Case study: Multi-target
ACC

In the previous chapter it was shown that an optimal multi-target ACC can
be used in vehicles to decrease range error, range-rate error and acceleration in
certain situations. This knowledge is used in this chapter to expand the existing
single-target ACC used in vehicles by VCC to a multi-target ACC. Since there
already exists a single-target ACC in the vehicles, which must be used as a base,
the analysis in the previous section will only give a hint of how the existing ACC
should be modified and tuned to achieve a well behaving multi-target ACC.

4.1 The existing single-target ACC
The existing ACC from VCC is based on a non-linear single-target control law
that uses the range, range-rate and acceleration of Target to calculate a desired
acceleration,

u(t) = f(x1(t), x3(t), x6(t)), (4.1)

where the state variables are defined according to (3.22), i.e., x1(t) and x3(t) are
the range and range-rate between Host and Target and x6(t) is the acceleration
of Target.

The exact structure of f(x) can not be disclosed in this report due to intel-
lectual property reasons and in the remaining part of the chapter it is modelled
as a black box that will not be changed. The reason for not changing the single-
target ACC is that it has already been tested extensively by VCC and is known
to have a comfortable behaviour at the same time as the range and range-rate
errors are kept small. Often, Host will only have one vehicle close ahead, i.e,
no Target+1 will be present. In these situations it is important that it exists a
robust single-target controller to fall back to.

It is known that the single-target controller will force the range and range-
rate error to Target to go to zero in finite time.

Velocity dependent spacing is used in the single-target ACC to attain a safer
and comfortable behaviour, see Section 3.2.
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To further improve the comfort a rate-limiter is used to limit the rate of
change of the acceleration. By limiting the first derivative of the desired accel-
eration the output is not allowed to change faster than a specified limit.

4.2 The multi-target ACC
The single-target ACC is extended to a multi-target ACC by adding a separate
controller that acts on the Target+1 information, see Figure 4.1. The desired
accelerations from the Target controller and the Target+1 controller are added
together to calculate a combined desired acceleration. In Section 4.3 the multi-
target controller is further extended by letting these parts interact with each
other.
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(a) Single-target ACC.
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(b) Multi-target ACC.

Figure 4.1: In (a) the system overview of the already existing single-target
ACC is shown. In (b) the single-target controller has been extended to a multi-
target controller where Target+1 information is used in addition to the Target
information.

An important requirement on the multi-target controller is that it should
never request unnecessary accelerations leading to unsafe situations. If for ex-
ample Target+1 accelerates and Target does not follow, it is crucial that Host
does not start to accelerate, since this unnecessary acceleration could lead to a
unsafe situation where the range to Target becomes too short.
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4.2.1 Target+1 information
It is assumed that range and range-rate between Host and Target+1 are avail-
able, either via communication or through on-board sensors on Host. The range
between Host and Target+1 will not be used in Host’s control law, since it is not
known at what range Target desires to follow Target+1. It could be assumed
that the desired range between Target and Target+1 is the same as the desired
range between Host and Target, but this is not always true, since the preferred
range to the preceding vehicle will vary from driver to driver. Another aspect
is that the length of the Target vehicle can vary largely. The length of a truck
could be many times larger than the length of car.

There are some special cases when it could be beneficial to also use the range
to Target+1 in the control law. If the range between Target and Target+1 is
very small, safety could be improved by letting Host keep a larger range to
Target. In case Target would collide with Target+1, Host would be at a safe
range and a second collision could be avoided.

4.2.2 Control law
The non-linear single-target controller (4.1) is extended to a multi-target con-
troller with the following control law:

u(t) = f(x1(t), x3(t), x6(t))︸ ︷︷ ︸
Target controller

+ α1x4 + α2x7︸ ︷︷ ︸
Target+1 controller

, (4.2)

where x4 is the range-rate between Host and Target+1, x7 is the acceleration of
Target+1 and α1 and α2 are control parameters used to tune the multi-target
controller.

4.3 Controller synthesis
To achieve a well-behaving multi-target ACC, the control law (4.2) needs to be
tuned and modified. A simulation environment of three vehicles (Host, Target
and Target+1) is used in the controller synthesis to evaluate different tunings
and modifications. The vehicles are modelled with the dynamics in (3.9) with
T = 0.5 and τ = 0.3.

The performance of the multi-target ACC is evaluated by comparing it with
the corresponding single-target ACC. The multi-target ACC will be used in
regular vehicles in regular traffic, hence it should be tuned and modified for
real-life situations. To be able to do this, six different driving scenarios have
been identified, which are used to tune and modify the multi-target ACC.

4.3.1 Driving scenarios
The identified driving scenarios aim to cover both situations where multi-target
control can be beneficial, as well as situations where it can lead to problems.
The six identified driving scenarios are:

1. Target+1 accelerates and Target follows. In Section 3.6 it was shown
that it is possible to achieve smaller range error, range-rate error and

44



acceleration if multi-target control is used instead of single-target control
when Target+1 accelerates and Target follows. With multi-target control,
the reaction will be faster due to the extra information from Target+1.

2. Target+1 accelerates and Target does not follow. In Section 3.6 it was
shown that if the link between Target and Target+1 is weak or non exist-
ing, i.e., Target does not follow Target+1, multi-target control could have
a worse behaviour than single-target control. The Target+1 information
will in this scenario only worsen the behaviour.

3. Target+1 decelerates which leads to Target deceleration. The same reason-
ing as for driving scenario 1 holds; the extra information from Target+1
will give multi-target control a faster response than with single-target
control. In fact, Target must always decelerate if Target+1 decelerates,
otherwise a collision will occur. If Target+1 decelerates at the same time
as Target keeps constant velocity, Host should decelerate to avoid a multi-
vehicle collision.

4. Target accelerates and changes lanes, which makes Target+1 the new
Target. With a single-target controller, Host will follow Target and in-
crease the velocity until Target leaves the lane. Then Host will have to
decelerate since Target+1 drives with a lower velocity. With the extra
information from Target+1, it should be possible to lower these accelera-
tions.

5. Target has an initial range error to Target+1 and catches up. When Target
catches up with Target+1 it has to decelerate to get the same velocity as
Target+1. Host, that follows Target, has to do the same thing if it is using
a single-target controller. If Host is using multi-target control it should
be possible to decrease the acceleration earlier on due to the Target+1
information.

6. Stop & Go driving. The Stop & Go driving scenario is meant to resemble
queue driving. Target follows Target+1 which alternates between accel-
erating and decelerating, i.e., a combination of driving scenarios 1 and 3
with fast changes in-between.

In driving scenario 1-4 and 6 it is assumed that the initial range and range-rate
error for the vehicles are equal to zero.

In the following controller synthesis a large number of simulations have been
done with different control parameters, velocities and accelerations. The simula-
tions that are presented show the typical behaviour with the best found control
parameters aiming to reduce range error, range-rate error and acceleration of
Host.

To be able to handle all kind of velocities and accelerations of Target and
Target+1, one set of control parameters is not sufficient, instead gain scheduling
is introduced in Subsection 4.3.5.

The figures in the controller synthesis contain 4 sub-plots; range errors,
range-rate, accelerations and desired accelerations. In the second sub-plot the
range-rate from Host to Target is shown with solid lines. The range-rate from
Host to Target+1, for the multi-target ACC, is shown with a dashed green
line. In the fourth sub-plot the contribution to the desired acceleration from
the Target controller and the Target+1 controller of Host are shown separately.
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4.3.2 Contribution from the Target+1 controller
The Target+1 controller in the control law (4.2) consists of two parts. One
part that acts on the range-rate to Target+1, x4, and one part that acts on
the acceleration of Target+1, x7. To see how each of these two parts affect the
behaviour of the multi-target controller, they are simulated separately. First
only the range-rate is used in the Target+1 controller in (4.2), i.e., α2 = 0.
Driving scenario 3, Target+1 decelerates which leads to Target deceleration, can
be seen in Figure 4.2 . The multi-target ACC will not react faster than the
single-target controller since the acceleration of Target+1 is not used. However,
the range-error, range-rate error and acceleration will in total be smaller since
the range-rate error to Target+1 will give a contribution earlier than the range-
rate error to Target. When Target+1 stops decelerating a range-rate error
between Host and Target+1 occurs due to the dynamics and the rate-limiter of
Host, i.e., Target+1 drives faster than Host. This range-rate error will lower the
deceleration of Host with multi-target ACC, which in the end leads to smaller
errors to Target.
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Figure 4.2: Driving scenario 3, α1 = 0.2 and α2 = 0. The initial velocity of the
vehicles are 30 km/h. After 5 seconds Target+1 decelerates 1 m/s2 during 2
seconds.

If instead only the acceleration of Target+1 is used in the Target+1 controller
in (4.2), i.e., α1 = 0, the response will be faster if multi-target ACC is used
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instead of single-target ACC. This will lead to a smaller deceleration, as can be
seen in Figure 4.3, since the multi-target ACC will start the deceleration earlier,
i.e., the deceleration will be smaller but will take place during a longer period
of time. The deceleration of the multi-target ACC is, with the selected tuning,
25 % lower compared to the single-target ACC.
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Figure 4.3: Driving scenario 3, α1 = 0 and α2 = 0.6. The initial velocity of the
vehicles are 30 km/h. After 5 seconds Target+1 decelerates 1 m/s2 during 2
seconds.

Using both the range-rate error to Target+1 and the acceleration of Tar-
get+1 in (4.2) leads to smaller range and range-rate errors at the same time as
the size of the deceleration will be smaller, as can be seen in Figure 4.4. The
acceleration is lowered by 22 % at the same time as the range and range-rate
error is significantly smaller than those of the corresponding single-target ACC.
Since the range error to Target is small, the multi-target ACC can have a low
acceleration after Target+1 has stopped decelerating. Compare the acceleration
of ‘Host, multi-target’ at 15 s in Figures 4.3 and 4.4.

4.3.3 Limiting Host’s Target+1 controller output
If the control law in (4.2) is used for driving scenario 2, i.e Target+1 accelerates
and Target does not follow, the behaviour of Host will be very bad due to the
Target+1 contribution of the controller. The range-rate error between Host and
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Figure 4.4: Driving scenario 3, α1 = 0.2 and α2 = 0.6. The initial velocity of
the vehicles are 30 km/h. After 5 seconds Target+1 decelerates 1 m/s2 during
2 seconds.
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Target+1, x4, and the acceleration of Target+1, x7, in (4.2) will become large
when Target+1 accelerates, as can be seen in Figure 4.5. After the acceleration
of Target+1 is finished there will still be a range-rate error between Host and
Target+1, which will require Host to accelerate .
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Figure 4.5: Driving scenario 2, α1 = 0.2 and α2 = 0.6. The initial velocity of
the vehicles are 30 km/h. After 5 seconds Target+1 accelerates 2 m/s2 during
2 seconds.

To avoid this unnecessary and unsafe behaviour, the maximum Target+1
contribution to the acceleration is limited. The maximum contribution from
Target+1 is linearly limited with respect to the contribution from Target in
(4.2), i.e., a dependency between the two parts of the multi-target ACC is
introduced. If the contribution from Target is large, then the contribution from
Target+1 is also allowed to be large. The upper limit umax,Target+1 controller is
calculated as

umax,Target+1 controller = αlimureq,Target controller, (4.3)

where αlim decides how large the contribution from Target+1 is allowed to be
for a given contribution from Target, ureq,Target controller. The limit function,
with αlim = 0.15, can be seen in Figure 4.6. The reason for selecting αlim to be
smaller than one is to make the contribution from Target+1 work better together
with the contribution from Target. The already existing Target controller, which
can not be changed, is tuned to be more aggressive when Target decelerates
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compared to when Target accelerates. By using αlim less than one this behaviour
is also achieved for the Target+1 controller of Host.
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Figure 4.6: Limit function for the Target+1 controller of Host with αlim = 0.15.

When Target+1 decelerates, Target must decelerate to avoid a collision.
Therefore no lower limit is required for the requested acceleration of the Tar-
get+1 controller.

Driving scenario 1, Target+1 accelerates and Target follows, can be seen
without the limit in Figure 4.7 and with the limit implemented in Figure 4.8.
Without the limit the multi-target ACC will respond very fast when Target+1
accelerates, but the limit must be used to handle a situation when Target does
not follow Target+1. With the limit implemented the response will not be
faster for the multi-target ACC compared to the corresponding single-target
ACC. Due to the calm behaviour of the Target controller the acceleration will
be slightly higher, but the range and range-rate error will be smaller. Whether
this behaviour is desirable or not needs to be investigated with extensively in-
vehicle tests.

4.3.4 Time-gap dependency
If the range from Target to Target+1 is large it is obvious that Target does not
follow Target+1. In these cases the Target+1 controller of Host will only make
the behaviour of the multi-target ACC worse. A weight function is inserted in
the multi-target ACC to solve this problem. The output from the Target+1 con-
troller is modified with respect to the time-gap between Target and Target+1.
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Figure 4.7: Driving scenario 1, α1 = 0.2 and α2 = 0.6. The initial velocity of
the vehicles are 30 km/h. After 5 seconds Target+1 accelerates 2 m/s2 during
2 seconds.
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Figure 4.8: Driving scenario 1, α1 = 0.2 and α2 = 0.6 and Target+1 con-
troller limited. The initial velocity of the vehicles are 30 km/h. After 5 seconds
Target+1 accelerates 2 m/s2 during 2 seconds.
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The time-gap, T ′g, between Target and Target+1 is expressed as:

T ′g =
x2 − x1

v
, (4.4)

where x2 − x1 is the range between Target and Target+1 and v is the velocity
of Host. When the time-gap is small the entire output of Host’s Target+1
controller will be used, and when the time-gap is large the output will not be
used at all. A piecewise linear weight function is used to get a smooth transition,
see Figure 4.9. Time-gap T1 is where the transition starts and time-gap T2 is
where the transition ends. At time-gaps up to T1 it is assumed that Target
follows Target+1 and at time-gaps larger than T2 it is assumed that Target
drives completely independent of Target+1. A larger T2 will give an improved
performance when Target+1 follows Target well, but a worse behaviour when
this not is true.
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Figure 4.9: Weight function of α1 and α2 with respect to time-gap between
Target and Target+1. T1 is the start of the transition and T2 is end of the
transition.

4.3.5 Velocity dependent gains
The Target controller (4.1) of Host is gain scheduled to have a comfortable
and robust behaviour for all different kinds of driving scenarios, i.e., there is
a good balance between keeping the accelerations small at the same time as
range and range-rate errors are attenuated. The gains depend on many different
factors, e.g., velocity of Host and headway time to Target. In Section 4.3.3 the
contribution from Target+1 in (4.2) was made dependent on the contribution
from Target. To further improve the multi-target ACC, velocity dependent
gain scheduling is inserted for α2 and α5. By simulating the different driving
scenarios at different velocities and evaluating different gains, a set of gains has
been obtained, see Figure 4.10. This set of gains makes the Target+1 controller
of Host work well together with the Target controller. With in-vehicle tests it
should be possible to fine-tune these gains.
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Figure 4.10: Weighting of α1 and α2 with respect to time-gap between Target
and Target+1.

4.3.6 Driving scenario 4 - Target accelerates and changes
lanes

Next it is evaluated how the multi-target ACC behaves in driving scenario 4,
Target accelerates and changes lanes, which makes Target+1 the new Target .
With a single-target ACC, Host will follow Target and increase the velocity until
Target leaves the lane, then Host will have to decelerate since Target+1 drives
with a lower velocity. The multi-target ACC will have a similar behaviour, but
due to the Target+1 controller the acceleration will be smaller since Target+1
drives with constant velocity.

In Figure 4.11 Target starts to accelerate after 5 seconds. Host with multi-
target ACC will accelerate and follow Target which will introduce a range-rate
error to Target+1. This range-rate error will result in a negative contribution
from the Target+1 controller leading to a smaller total acceleration. When
Target leaves the lane, at t = 10 s, Host has to decelerate. Since the range-rate
error is smaller than for the corresponding single-target ACC, the deceleration
will also be smaller.

4.3.7 Driving scenario 5 - Target has an initial range-error
to Target+1 and catches up

Figure 4.12 show a catch-up scenario where Host starts with zero range and
range-rate error to Target, and Target starts with 25 meters range error to
Target+1. Target accelerates due to the range error which makes Host accelerate
as well . This will introduce a range-rate error to Target+1 which will lead to
a negative contribution from the Target+1 controller of Host with multi-target
ACC. The total requested acceleration will thus become smaller for the multi-
target ACC compared to the corresponding single-target ACC.

When Target is getting closer to Target+1 it has to decelerate to get the
same velocity as Target+1. The behaviour of Host is similar, but if a multi-
target ACC is used, this acceleration is smaller since the acceleration used in
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Figure 4.11: Driving scenario 4. The initial velocity of the vehicles are 50 km/h.
Target starts accelerating after 5 seconds and leaves the lane after 10 seconds.

55



the catch-up was smaller.

4.3.8 Driving scenario 6 - Stop & Go driving
The Stop & Go driving scenario is used to resemble queue driving. This has
been simulated in Figure 4.13 where Target+1 alternates between accelerating
and decelerating 1 m/s2.

The multi-target controller has a superior behaviour compared to the single-
target controller. The extra information from Target+1 decreases both the
range and range-rate error as well as the acceleration. Also, the range error is
kept at a more stable level.

4.4 In-vehicle tests
The multi-target ACC from the previous section is further evaluated through
implementing it in a test vehicle and evaluating it on a test track.

4.4.1 Current Target information filtering
The available Target information in the test vehicle are the range and range-
rate. The acceleration for Target is calculated from the range and range-rate
with a Kalman filter. The acceleration is also low-pass filtered with a range
dependent time constant. The time constant is large at high range and low at
short range. At short ranges the feed-forward gain of the acceleration must be
quite large, since small range errors is desirable. At larger ranges (larger time-
gaps), errors in range and range-rate will not be as noticeable and they will not
matter as much. In those cases it is better to increase the comfort and lower
the change of acceleration through the use of heavier low-pass filtering.

4.4.2 Fusing and filtering Target+1 data
Due to intellectual property issues it can not be disclosed in this report how the
Target+1 information is obtained.

The Target+1 information is not always available and contains a lot of noise.
The transition between single-target control and multi-target control must be
bump-less to achieve a comfortable behaviour of the vehicle.

The information available to Host of Target+1 are range, range-rate and
range acceleration. To get the absolute acceleration of Target+1 a Kalman
filter is used as an observer.

The available signals which can be used to estimate the absolute Target+1
acceleration are, in addition to the information about Target+1, Host speed and
acceleration. These signals are filtered in a Kalman filter. The accelerations are
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Figure 4.12: Driving scenario 5. The initial velocity of the vehicles are 50 km/h.
Target starts with 25 meters range error to Target+1. Host has no range error
to Target.
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Figure 4.13: Driving scenario 6. The initial velocity of the vehicles are 15 km/h.
Target+1 alternates between accelerating and decelerating 1 m/s2.
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assumed to be constant, which leads to the following discrete state space model:

x†(t+ 1) =


x†1
x†2
x†3
x†4
x†5

 =


1 h 0 0 0
0 1 0 0 0
−h −h2/2 1 h h2/2
0 0 0 1 h
0 0 0 0 1

x†(t) (4.5)

y† =


y†1
y†2
y†3
y†4

 =


1 0 0 0 0
0 0 1 0 0
−1 0 0 1 0
0 −1 0 0 1

x†(t), (4.6)

where

• x†1 = Host speed

• x†2 = Host acceleration

• x†3 = Range to Target+1

• x†4 = Target+1 speed

• x†5 = Target+1 acceleration

• y†1 = Host speed

• y†2 = Target+1 range

• y†3 = Target+1 range rate

• y†4 = Target+1 range acceleration

and h is the sample time. The covariances for the measured signals in R2 are set
high relative to R1 to get smooth filtered signals. The range-rate to Target+1
is then obtained simply by subtracting the speed of Host from the Target+1
speed.

The filter is in use when Target+1 information is available. Which vehicle
that is reported as Target+1 depends on the traffic situation, and the Target+1
can suddenly disappear, appear or change to another vehicle. This means in-
stantaneous changes of range, range rate and range acceleration to Target+1.
As the Kalman filter acts in many ways as a low pass filter, the sudden changes
in the measured signals give rise to transients which in certain conditions may
cause undesired actuation requests.

For example, if the designated Target+1 is a vehicle at a range of 60 meters,
and it is then changed to a vehicle at a range of 20 meters, then a transient in the
range would occur. Since the range-rate is the derivative of range, the Target+1
change would lead to a large negative range-rate. Large negative range-rates
makes the ACC brake, which may be undesirable if the new Target+1 is speeding
away.

To prevent such behaviour the Kalman filter is surrounded by logic that han-
dles the abrupt changes in the input signals and makes sure that the transitions
between different Target+1 are smooth.
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The transients that can arise in the filter when Target+1 is changed or lost
are avoided by a reset signal that sets the state of the Kalman filter to the
current measured Host speed and Target range, while the remaining states are
all set to zero. This means that the filter completely loses any knowledge about
past states, and thus the transients are completely avoided.

This solution for avoiding false transients introduces another problem. The
output from the filter will be completely discontinuous at changes or loss of
Target+1. A step input to the controller will produce a step in the desired ac-
celeration, producing a negative effect on comfort. To prevent the step changes
in filter output, a function is introduced which smooths the output. The smooth-
ing function remembers the state immediately before the Target+1 change and
uses a ramp function to weigh between the remembered value and the current
output of the filter, to get a smooth transition.

4.4.3 Results from the test track
Three vehicles were used in the testing. The first vehicle, Target+1, uses a
regular cruise control and varies the set speed between 50 km/h and 30 km/h.
The second vehicle, Target, follows the first vehicle with a single-target ACC.
The third vehicle, Host, uses a multi-target ACC to follow the second vehicle. In
Appendix A more information about the test environment is given. In Figure
4.14 the behaviour of Host can be seen when single-target ACC is used. In
Figure 4.15 multi-target ACC is used. By comparing Figure 4.14 to Figure
4.15, it can be seen that the Target+1 part of the controller gives the controller
a faster response compared to if only the Target part would have been used.
The range-rate error is also smaller when multi-target ACC is used.

It can be seen that the multi-target ACC behaves well also when the Tar-
get+1 information is lost (when the Range goes towards 150) and that this does
not cause any bumps in the desired acceleration.
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Figure 4.14: In-vehicle test where the Host vehicle uses single-target ACC.

61



50 60 70 80 90 100 110 120 130 140 150

20
40
60
80

100
120
140

R
a
n
g
e
[m

]

 

 
Range to Target
Range to Target+1

50 60 70 80 90 100 110 120 130 140 150
−5

0

5

R
a
n
g
e-
ra
te

[m
/
s]

 

 
Range-rate to Target
Range-rate to Target+1

50 60 70 80 90 100 110 120 130 140 150

−1

0

1

A
cc
el
er
a
ti
o
n
[m

/
s2
]

 

 Acceleration Target

Acceleration Target+1

50 60 70 80 90 100 110 120 130 140 150

−2

−1

0

1

Time [s]R
eq
u
es
te
d
a
cc
el
er
a
ti
o
n
[m

/
s2
]

 

 
Target controller

Target+1 controller

Total

Figure 4.15: In-vehicle test where the Host vehicle uses multi-target ACC.
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Chapter 5

Conclusions and future work

In this thesis two different subjects have been discussed; lateral prediction and
multi-target control. This chapter presents conclusions for the different parts
together with proposals of future work.

5.1 Conclusions
The results in the thesis clearly shows that it is possible to predict the lateral
position of detected vehicles a few seconds ahead with a Kalman filter and a
predictor. The used Target model with constant acceleration corresponds well
to reality at cut-ins and cut-outs. With the modification of the acceleration
dynamics in Section 2.4.2, the errors of the predictor can be reduced. Even
though the prediction is simple, the errors can be kept at a low level and at the
same time it is able to speed up the Target selection.

In Chapter 3 it is shown that a multi-target controller performs better than
a single-target controller in many traffic situations. Although the multi-target
controller in itself does not make a vehicle string stable, it decreases the error
propagation gain, and up to a number of vehicles, the maximal leader error is
not exceeded by the followers.

The optimal multi-target controller designed in Chapter 3 performs better than
the optimal single-target controller when Target and Target+1 are strongly
linked. In the other case, when the link between Target and Target+1 is weak,
the behaviour can in some situations be worse than the single-target controller.
This knowledge needs to be considered when multi-target control is used in an
ACC application.

Multi-target ACC in traffic is beneficial over single-target ACC since the ACC
has the possibility to react earlier to changes in traffic speed. This increases both
comfort and safety since the reaction time of the ACC is decreased. Great care
has to be put in the tuning and the surrounding logic to avoid bad behaviour
when the Target vehicle does not follow Target+1. By limiting Host’s Target+1
controller in certain situations, unnecessary accelerations can be avoided. Also,
making the controller dependent on the time-gap between Target and Target+1
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will improve the behaviour. The evaluations of the in-vehicle tests show that the
multi-target ACC shows tendencies to improve the behaviour, and the logic for
falling back to single-target control works well without causing noticeable effects.

5.2 Future work
The lateral prediction is sensitive to large variance noise with low frequency. A
better knowledge on where other vehicles are located relative to the current lane
would allow for increased prediction horizon without introducing larger errors.
For instance a bicycle model where vehicles are modelled as objects with lateral
and longitudinal position, absolute velocity, absolute acceleration, heading an-
gle and curvature could be used. The prediction of lane changes would be two
consecutive circular arcs with opposite sign in curvature. This could allow for
a more accurate prediction of the lateral position.

In Chapter 2, (2.10) is used iteratively to get a state prediction of the future.
While this method of prediction is true to the assumed model, this is not an
accurate assumption of what the future state will look like in the real world.
A typical lane change does not consist of constant lateral acceleration in two
seconds. It is more accurate to assume that the lateral acceleration is constant
the first second, and then constant but with opposite sign for the last second.
The assumed model of the lateral vehicle dynamics predicts with constant ac-
celeration for two seconds. As a consequence, an error in the estimated state
will not be corrected by the predictor, instead the predictor will act as a lever
and amplify errors.

Many errors in the lateral prediction occurs close in time to cut-ins and cut-outs.
Since vehicles rarely change to a lane and then immediately back again, a timer
could be used to inhibit the effect of the lateral prediction. That is, immediately
after a lane change the predictor is not allowed to predict the lateral position
across the lane boundary for a preset period of time.

Another way to decrease the effect of overshoot is to reset the lateral accelera-
tion in cut-in situations. When a detected vehicle moves from outside the lane
to inside the lane, the lateral acceleration is set to zero. A drawback of this
method is that a vehicle passing through the lane is in the lane a longer period
of time. It is desirable that vehicles just passing through the lane are selected as
Target for as short time as possible in order to limit the control effort wasted on
the passing vehicle. In Figure 5.1 a state machine can be seen which keeps track
of the type of lane change. The event WithinLane is a flag set by the Target
selection which is true if a vehicle is in the same lane. t is the time period the
vehicle has been in the current lane and T is a threshold value. When entering
Within Lane Left the lateral acceleration is set to max(ay, 0). Conversely, when
entering the state Within Lane Right the lateral acceleration is set to min(ay, 0).

Since typical lane changes takes approximately 2 seconds, a comparison could
be done of how easy it would be for Target to change lanes compared to staying
in the current lane. Instead of directly predicting the lateral position, the lateral
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Figure 5.1: The state machine governing the overshoot prediction logic. When
entering the state Within Lane Left or Within Lane Right the acceleration is
reset to zero.

acceleration required to stay in the current lane the coming two seconds could
be compared to the lateral acceleration required to make a lane change within
two seconds. By assuming that drivers want to be subject to as low lateral
forces as possible, the lower of the two required lateral accelerations is selected
as the most probable manoeuvre. Based on the current lateral position and the
required lateral accelerations, a Target.

In normal straight driving the lateral acceleration required to stay in lane
would be low, while the lateral acceleration required to change lanes would be
large. When a lane change is initiated the lateral acceleration increases, and
therefore the lateral acceleration required to stay in the lane increases. On the
contrary, the lateral acceleration required to change lanes decreases. At a point
the lateral acceleration required to change lanes will be lower than the lateral
acceleration required to stay in the lane. If this point in time is ahead of the
lane change, this method could be used instead of the predictor.

The multi-target controller could use a state machine to detect different driving
scenarios. This would allow for a gain scheduling that depends on the current
traffic situation.

To better be able to synthesize and analyse the multi-target controller, a better
simulation model would be beneficial. The vehicle model (3.9) is not a perfect
model of the dynamics of the vehicle. Depending on whether the vehicle ac-
celerates or decelerates, the time-constant and the delay will be different. By
introducing this in the simulation environment more accurate simulations can
be achieved.

More in-vehicle tests are needed, both for lateral prediction and multi-target
control, to be able to evaluate the performance and tuning, but also to find
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situations that are not handled correctly.
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Appendix A

Test environment

VCC has special equipped vehicles which are designated as test cars. These
cars are ordinary, fully outfitted cars with a prototyping system in the trunk.
The prototyping system’s main task is to function as a replacement of a control
unit in the car. The functionality which should execute in the control unit is
modelled and designed in Simulink models. By compiling the models to low
level machine code, the functions can be tested in real-time in the car.

A.1 Sensors
The sensors used by the ACC are the forward looking radar and the forward
looking camera. These sensor modules are supplied by third party manufac-
turers and communicates with control units in the car via CAN. On CAN, the
sensors communicate the angle, range and range-rate to all detected objects.
All units which are connected to CAN may therefore access the information of
detected objects.

A.2 Rapid prototyping
The prototyping system in the trunk of the car is called Autobox which is a
real-time system with much higher processing capacity than the control units
in the vehicle. The Autobox is connected to CAN and therefore has access to
all information from the sensors.

The Autobox has been used to test the lateral predictor and the extended
functionality of the ACC. The Autobox is loaded with low level machine code,
which means that in order to test implementations and parameters the functions
under test are needed to be compiled by a C++ compiler. All functionality has
been implemented in Simulink.

For the purpose of the thesis, a Simulink model of the Target selection and
the ACC was provided by VCC. This model was modified and extended to house
the lateral prediction and the multi-target ACC. From the extended model,
new C++ code was generated and compiled to low level machine code, and
downloaded to the Autobox.
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A.3 Logging data
The Autobox has, in addition to connections to the CAN, the possibility to
communicate through TCP via Ethernet connections. It is possible to monitor
all variables and signals which are used in the original Simulink model in real
time. It is also possible to change relevant parameters to see what effect they
have on performance. All relevant signals were recorded and saved for further
analysis.

Both the input and output from the tested functionality were logged. The
recorded input was used as input for the test environments, and the resulting
simulated output was validated by comparing it to the recorded output.
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