
Panoramic 3D-camera SLAM for natural
localization

A performance comparison with 2D-LiDAR in an industrial environment
Master’s thesis in Systems, control and mechatronics

André Idoffsson & Stefan Larsson

Department of Electrical Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2021
www.chalmers.se

www.chalmers.se

Master’s thesis 2021

Panoramic 3D-camera SLAM for natural localization

A performance comparison with 2D-LiDAR in an industrial environment
André Idoffsson & Stefan Larsson

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden 2021

Panoramic 3D-camera SLAM for natural localization
A performance comparison with 2D-LiDAR in an industrial environment
André Idoffsson & Stefan Larsson

© André Idoffsson & Stefan Larsson, 2021.

Supervisor: Joar Manhed, FlexQube
Supervisor: Rikard Karlsson
Examiner: Petter Falkman

Master’s Thesis 2021
Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Point cloud obtained by a panoramic 3D-camera setup in an warehouse, each color
corresponds to data captured by a separate camera.

Typeset in LATEX
Printed by Chalmers Reproservice
Gothenburg, Sweden 2021

iv

Panoramic 3D-camera SLAM for natural localization
A performance comparison with 2D-LiDAR in an industrial environment
André Idoffsson & Stefan Larsson
Department of Electrical Engineering
Chalmers University of Technology

Abstract
A necessary component for the navigation of an Automated Guided Vehicle (AGV) is to
accurately estimate where the vehicle is located in its current environment. It may also
be beneficial for the AGV to have visual data of its environment to be able to perform
tasks such as object identification and object avoidance. One sensor that is capable of all
these tasks is the 3D-camera. However, it has been shown that the data provided by a
single 3D-camera is insufficient for accurate localization.

This thesis presents a system for natural 2D-localization using multiple 3D-cameras ar-
ranged in a panoramic setup. The performance of the system is compared on both po-
sitional accuracy and repeatability against a conventional 2D-LiDAR localization sys-
tem, where both systems achieve localization by Simultaneous Localization And Mapping
(SLAM) using the Cartographer library. To optimize the localization performance of the
panoramic system, several filters are applied to the point cloud data generated by the
3D-cameras. Evaluation of both systems are done on multiple data sets, captured in
two different environments and sampled in parallel to give optimal comparability. The
first environment is in a warehouse and is used to show the performance of a real world
implementation. The second environment is from a lab-room equipped with a highly
accurate positioning system, which is used as a reference to quantitatively evaluate the
performance of both the panoramic camera system and LiDAR system.

The proposed system is shown to successfully achieve continuous localization in all tested
environments.

Keywords: SLAM, Natural localization, RGBD, 3D-Camera, LiDAR, Point cloud filter-
ing.

v

Acknowledgements
We would like to thank the R&D team at FlexQube and especially our supervisor Joar
Manhed for welcoming us into the team and helping us out with resources used in the
thesis. We would also like to thank our academic supervisor Rikard Karlsson at Chalmers
for good discussion and input on the thesis work and Krister Wolf for helping us getting
access to and help using the positioning reference system. A last thanks goes to our
examiner Petter Falkman.

André Idoffsson & Stefan Larsson, Gothenburg, June 2021

vii

Contents

1 Introduction 1
1.1 Related work . 2
1.2 Objective . 3

1.2.1 Research question . 3
1.2.2 Limitations . 3

1.3 Thesis outline . 4

2 Theory 5
2.1 Sensors and sensor data . 5

2.1.1 LiDAR . 5
2.1.1.1 2D-LiDAR . 6
2.1.1.2 3D-LiDAR . 7

2.1.2 3D-camera . 8
2.1.2.1 Stereo triangulation . 8
2.1.2.2 Structured light . 10

2.1.3 Point cloud . 11
2.2 Data filtering . 12

2.2.1 Pass-through filter . 12
2.2.2 Decimation filter . 13
2.2.3 Voxel filter . 14
2.2.4 Spatial edge-preserving filter . 17
2.2.5 Temporal averaging filter . 19
2.2.6 Plane-fitting filter . 21

2.2.6.1 Nearest neighbour search 22
2.2.6.2 Normal estimation . 22
2.2.6.3 Discontinuity map . 23
2.2.6.4 Plane labeling . 23
2.2.6.5 Point to plane projection 25

2.3 Localization . 26

3 Implementation 27
3.1 Test platform . 27
3.2 Localization . 30
3.3 System architecture and data filtering . 31

3.3.1 Data types . 32
3.3.2 Systems architecture . 32

ix

Contents

3.3.3 Data filtering . 33
3.3.3.1 Camera intrinsic filters . 34
3.3.3.2 Point cloud merger . 35
3.3.3.3 Temporal averaging filter 37
3.3.3.4 Plane-fitting filter . 38

4 Evaluation methodology 39
4.1 Ground truth evaluation . 39
4.2 Evaluation of optimization filters . 41
4.3 Evaluation criteria . 41
4.4 Reference map . 42

5 Results 43
5.1 Effects of optimization filters . 43
5.2 Quantitative systems evaluation . 45

5.2.1 2D-LiDAR . 45
5.2.2 3D-Camera . 46
5.2.3 Accuracy . 47
5.2.4 Trueness & Repeatability . 49

5.3 Qualitative systems evaluation . 52
5.3.1 Map and constraint generation . 52
5.3.2 Pure Localization and SLAM comparison 54

6 Discussion 57

7 Conclusion 59

References 61

x

Acronyms

AGV Automated Guided Vehicle.

CAGR Compound Annual Growth Rate.
CCL Connected Component Labeling.

EMA exponential moving average.

FLANN Fast Approximate Nearest Neighbor Search Library.
FoV Field of View.

HOG Histogram of Oriented Gradient.

ICP Iterative Closest Point.
IMU Inertial Measurement Unit.

LiDAR Light Detection and Ranging.

PCA Principal Component Analysis.

RANSAC Random sample consensus.

SIFT scale Invariant Feature Transformation.
SLAM Simultaneous Localization and Mapping.
SURF Speeded-Up Robust Features.

WMS Warehouse Management System.

xi

Acronyms

xii

1
Introduction

Autonomous transportation using an Automated Guided Vehicle (AGV) is a rapidly
adopted means of transportation adopted by many industries [1], with the main moti-
vation of reducing labor costs and increasing productivity [2]. As of 2019, the global
AGV market was a 3.0 billion USD industry and have an estimated Compound Annual
Growth Rate (CAGR) of 14.1% from 2020 to 2027 [2]. This indicates a significant and
continuous interest in the development and improvement of AGV implementations.

From the name Automated Guided Vehicle is it apparent that this is a vehicle that is
guided in an autonomous way. As described by Sabattini, Digani, Secchi, et al. [3] AGVs
are generally controlled by some external supervisory system, usually referred to as a
Warehouse Management System (WMS). The role of the WMS is to manage a fleet of
AGVs inside the warehouse and assign them tasks. However, Sabattini, Digani, Secchi,
et al. [3] also state that, even though the WMS supervise the fleet, each AGV still have
to be able to independently localize itself in it’s environment.

A common navigation method used for AGVs to achieve reliable behavior is to follow a
physical marker on the floor [4]. This marker can, as an example, be a line of a specific
color, or a magnetic tape [5], and thus defines a static path along which the AGV can
travel. This static path gives a predictable behavior as the AGV is not supposed to oper-
ate outside of this defined path unless manual control is obtained. One major drawback
of this static path is that the AGV is then unable to circumvent any obstacle that may
appear along the defined path.

A more adaptive method of navigation would be a general 2D localization method. By
letting the AGV know where in the environment it is positioned, it is given the possibility
of navigating around obstacles throughout some non-obstructed path in a 2D-space. A
2D localization system requires sensors that can capture a 2D-representation of the envi-
ronment. This is commonly achieved by a scanning 2D-LiDAR [5] where LiDAR is the
abbreviation for Light Detection and Ranging [6], which is a laser-based range detecting
sensor. However, it is only able to capture information in a 2D-plane. This makes it
impossible for the sensor to detect objects outside of the sensor plane. Any overhanging
or protruding obstacles can thus be a major safety risk for the AGV.

One way to solve this inherent problem of 2D-navigation would be to instead consider
a 3D approach. This of course require that data can be captured in three dimensions,
which is an exponential increase in data per localization area that needs to be processed
in comparison to 2D. In addition, due to the increased complexity of capturing 3D data

1

1. Introduction

as well as processing it, the price of a 3D sensor is often significantly higher than its 2D
counterpart. An example of this is the scanning 3D-LiDAR as its technique is commonly
just an extension of the 2D-LiDAR [7]. According to Tran, Becker, and Grzechca [8] is
the 3D-LiDAR more expensive when compared to it’s 2D counter part.

One 3D sensor technology that has shown recent improvement in both cost and perfor-
mance is that of the RGB-D camera [9]. These cameras offer in addition to 3D space
information also color data. By acquiring color data in addition to depth data, tasks that
normally would require separate sensors for color and depth can now be achieved by one.

It may be argued that safety is one of the most important aspects when autonomously
navigating a vehicle, especially when moving in the proximity of people. It is therefore
important for the AGVs navigation system to have a good understanding of its environ-
ment. One way to improve safety is to use object detection as described by Bostelman,
Hong, and Madhavan [10] where objects such as people are tracked live in 3D. By partially
knowing the environment, specifically, that of the expected travel path of the AGV and
any obstacles therein, an alternate path without collision, or if a full stop is required, can
be determined, as shown by Pratama, Trong Hai, Kim, et al. [11].

1.1 Related work
This thesis is inspired by a previous master thesis "Investigating simultaneous localiza-
tion and mapping for an automated ground vehicle" [12], which compares 2D-LiDAR to a
3D-Camera for the application of Simultaneous Localization and Mapping (SLAM) [13].
The conclusion from the thesis was that a single 3D-Camera has a hard time replicating
the precision and robustness of a 2D-LiDAR. It was argued whether this was due to a
narrow Field of View (FoV), insufficient detection range, or a combination of both. This
theory is supported by Debeunne and Vivet [9], which also state that a lack of range is a
major issue by 3D-cameras performing SLAM.

A similar problem of precision was also mentioned in a study by Dai, Yan, Liu, et al.
[14]. In the study the authors tried to achieve SLAM with 3D-LiDAR. It was stated that
for many applications the performance of the 3D-LiDAR would be insufficient without
filtering of data. For this, the authors were able to show great improvements in the form
of offline precision optimization. As the mentioned optimization methods were applied
to generic 3D data, which should not necessarily only apply to data acquired with a 3D-
LiDAR, we argue that similar methods may apply to data procured by 3D-cameras.

The authors Ji, Qin, Shan, et al. [15] compare the effects of different FoVs in visual SLAM.
Standard camera FoV were compared to panoramic FoV and also a fisheye camera were
compared. The conclusion from this report was that both the panoramic camera and
fisheye camera exhibited higher robustness. One reason for this were that some algorithms
did not successfully finish the data set tested with a standard field of view. This indicates
that the previous thesis [12] might have been on the right track but with the limitation
of not achieving a FoV large enough for the application.

2

1. Introduction

1.2 Objective
The objective of this thesis is to develop and evaluate whether a panoramic multi 3D-
camera system can achieve 2D positioning accuracy, trueness and repeatability compara-
ble to existing 2D-LiDAR methods for industrial AGV localization.

1.2.1 Research question
This thesis aims to compare a panoramic 3D-camera setup to a 2D-LiDAR for localizing
an AGV in industrial environments.
More precisely, it will attempt to answer the two following questions:

• Is it possible to localize an AGV in 2D with the help of a panoramic 3D-camera
setup as input?

• How does the localization in 2D with a panoramic 3D-camera compare to a 2D-
LiDAR setup in accuracy, trueness, and repeatability?

1.2.2 Limitations
The systems developed in this project will not be designed for navigation, only for local-
ization. To verify a robust localization for an industrial application the proposed method
will be tested in a static environment. That is, no movement of natural landmarks and
no changing of lighting settings. However, multiple and diverse static environments will
be tested.

The systems will be implemented on preexisting hardware in the form of an AGV. This
will restrict the possibilities of sensor mounting location in a way as to not restrict the
intended usage of the AGV.

The implemented localization methods for both systems must be comparable and it is
regarded as of higher importance than absolute precision. The precision of both systems
shall thus not be regarded as their optimal, but shall instead be evaluated in comparison
to each other and when possible, towards a ground truth reference. The evaluation of
both systems will be constrained to the 2D-space of the LiDAR system.

The implemented systems will not strive to achieve real-time localization as this may
require sacrifices in accuracy based on the computational constraints of the implemented
system.

While safety is of great importance when developing and using AGVs, it will not be of
focus in the developed camera solution and will instead rely on preexisting safety systems
of the provided AGV.

3

1. Introduction

1.3 Thesis outline
This thesis is divided into seven chapters. It starts with this introductory chapter, followed
by Chapter 2, where theory prerequisites are presented. Next, Chapter 3 presents the
implementation of the systems while Chapter 4 goes over the evaluation methodology
related to this thesis work. Chapter 5 presents the data from the tests and analyses the
outcome of the implementations presented. Second to last in Chapter 6, are the results
and choices discussed before finally in Chapter 7 ending with a summary of the project
outcome based on the research questions as presented in Section 1.2.1.

4

2
Theory

This chapter aims to help the reader understand the concepts and methods in this thesis.
It is divided into three distinct areas. First is a section about sensors and sensor data
which intends to explain what sensors techniques are used and discussed. Then a section
about the filters used to improve data passed to the system as well as on internal data
streams. Lastly a short section about localization to give an understanding of the usage
of these methods and what is required for their implementation.

2.1 Sensors and sensor data
This section focuses on a few sensor techniques for acquiring depth measurements that
are relevant to this thesis and the data produced by these sensors.

2.1.1 LiDAR
LiDAR is used for detecting objects with the use of light in the form of pulsed laser
beams. The distance to an object is obtained by measuring the time it takes for the beam
to travel to the object, reflect, and then travel back to the sensor [16]. This is shown in
Equation (2.1) where the distance d is obtained as the time t from the emission of the
beam to detection times the speed of light in air c. The time is halved to only get the
time of the beam traveling in one direction.

d = c · t2 (2.1)

A single static laser beam will only measure a distance in 1D [7]. These measurements can
be extended into 2D by applying a known motion to the sensor [7]. A 3D-measurement
can then be achieved by both applying a motion, as in 2D, and also second pivoting
motion [7], or stacking multiple beams at known angles [7].

5

2. Theory

2.1.1.1 2D-LiDAR

2D-LiDAR normally only uses one laser beam to measure distances [16], but can also use
multiple beams to achieve a faster sample rate by dividing the total FoV per beam instead
of one beam for the entire view [7]. When using a laser beam with the sensor rotating
around some defined axis, usually defined as the sensor’s z-axis. For each rotation, the
sensor will return several distance measurements r spaced evenly at some defined angle
θ throughout the rotation, as seen in Figure 2.1. Note that some sensors have a FoV
throughout the whole rotation and other does not [17]. This may be due to obstructions
in the view of the sensor due to its construction.

The number of data points a 2D-LiDAR can achieve per revolution is then dependent on
the sample rate, its FoV, and rotation speed [7]. In the common case where the LiDAR
rotates around its z-axis the data points will span over the xy-plane of the sensor [17]. As
the distance and angle for each measurement are known, the coordinate to each detection
point can be represented by a polar coordinate.

Figure 2.1: Illustration of 2D-LiDAR measurement with a single laser beam at two time
steps t0 → t1. rt denotes the distance for which the laser beam travels at time t. θt

denotes the angle from the x-axis to the laser beam at time t. The polar coordinate of
the detection point is thus denoted as {r, θ}.

6

2. Theory

2.1.1.2 3D-LiDAR

3D-LiDARs are similar to 2D-LiDAR in that it uses pulsing laser beams while rotating
around its z-axis. In addition to rotating around one axis it will now also pivot the beam
or use multiple stacked laser beams in the third dimension [7]. The pivoted or stacked
laser beams are spread at some known predefined angle ϕ [16], as illustrated in Figure
2.2. This will lead to a collection of multiple horizontal distance measurements. These
will now instead sweep cones as compared to before with 2D-LiDAR which only obtained
one horizontal plane. Since each beam is sent at two known angles, ϕ, and θ, spherical
coordinates are obtained to the objects.

Figure 2.2: Illustration of 3D-LiDAR measurement with 2 pivoted or stacked laser
beams. rϕ denotes the distance for which the laser beam travels at time t and for some
angle ϕ. Note that ϕ correlates with the height of the detection point. θ denotes the
angle from the x-axis to the laser beam at time t. The polar coordinate of the detection
point is thus denoted as {r, θ, ϕ}.

7

2. Theory

2.1.2 3D-camera
3D-cameras, also known as range imaging sensors, are cameras that in addition to cap-
turing 2D images also produce depth data. There exists many techniques in which a
3D-camera can estimate depth, Stereo triangulation [18] and Structured light [19] are
some of them.

2.1.2.1 Stereo triangulation

Stereo triangulation is achieved with two or more cameras that are placed in different
viewing angles, in order to obtain depth from the difference of pixel position for a feature
in each image [20]. Figure 2.3 illustrates the elementary form of stereo triangulation where
two cameras are placed in parallel [21]. The image sensors of the cameras are placed at
a known distance from each other, this distance is known as the baseline of the stereo
camera [22].

Figure 2.3: Illustration of two cameras parallel to each other detecting a feature. The
depth from the cameras to the feature is obtained by triangulation.

To obtain depth from the camera images, first, unique features visible in both cameras are
identified, which can be achieved by methods such as scale Invariant Feature Transforma-
tion (SIFT), Speeded-Up Robust Features (SURF) and Histogram of Oriented Gradient
(HOG) [23]. Then the depth of each feature match between both views is calculated using
triangulation [22].

8

2. Theory

Triangulation as seen in Figure 2.4, is done using a stereo camera with two perfectly
aligned sensors separated by a known baseline distance B in meters and a known focal
length f in pixels that is equal for both sensors [24]. Here Z is the depth in meters [24]
to the features from the cameras calculated with

Z = f
B

(x− x′) (2.2)

as described by Jain, Kasturi, and Schunck [25] were x and x′ are the pixel position of
the two matched features and (x− x′) is known as their disparity [21].

Figure 2.4: Illustration of a Stereo triangulation from two parallel image sensors cap-
turing two features.

Due to the inherent principle of stereo triangulation relying on the known alignment
between the cameras for precision is often calibration needed. There exist many different
calibration schemes but from the authors, Abu Hassan, Hussain, Md Saad, et al.[26] it is
apparent that even with calibration the depth accuracy will be far inferior to the accuracy
in width and height. The authors were able to gain sub-pixel precision in width and height
while the depth produced a mean error of 1.72%±standard deviation of 1.6% in their test
scenario. They were also not able to obtain depth data over 5.5m [26].

9

2. Theory

2.1.2.2 Structured light

Structured light is used to measure the distance to objects in three dimensions by pro-
jecting a pattern onto objects in front of a camera. Infrared light is commonly used in
the projection to minimize the effects of sunlight disturbances [19]. The distance to the
object in front of the camera is obtained by evaluating the distortion of the projected
pattern [27]. The projected pattern can be seen as an artificial feature and is created to
aid the triangulation process.

One camera is enough for extracting depth information from a scene, but it has been shown
that occlusions are minimized when using cameras on opposite sides of the projector [28].
This can be seen from the illustration in Figure 2.5 where Camera 1 would only detect
the left and the front face of the object. The right side is occluded by the object itself for
Camera 1 but not from the projector. When instead using two cameras, both sides and
the front face would be detected by the system.

Figure 2.5: Illustration of Structured light sensor with Stereo vision. Each side is
occluded from the camera in opposite direction, when combined is occlusion minimized.

10

2. Theory

2.1.3 Point cloud
A point cloud is a collection of points in 3D space [29] and is one way of describing the
data acquired from LiDARs and 3D-cameras. Each point must have a coordinate, and
depending on the application, also color or an illumination value [30]. The point can also
be associated with the normal vector of the surface on which the point is detected [31]. The
normal is useful for surface segmentation and reconstruction [32] and can be obtained by
e.g. Principal Component Analysis (PCA) on a point and its closest neighbouring points
[33]. A typical point cloud generated by 3D-cameras can be seen in Figure 2.6. The
normal vectors of each point are illustrated by a black line.

Figure 2.6: Illustration of point cloud generated by a 3D-camera (downsampled). The
normal vector of each point is illustrated by a black line. The point cloud is captured
while traveling down a warehouse corridor (green arrow direction).

The indexing of point cloud data can be constructed as a 1D- or 2D-vector. The 1D
format is known as an unordered point cloud and is usually produced by a LiDAR [34].
The 2D format is instead known as an ordered point cloud and the data is then split into
rows and columns. According to the authors, Rbrusu, Sprickerhof, Brindeiro, et al.[34]
both stereo cameras and Time Of Flight cameras can usually produce data in this format.
The ordered point cloud format resembles the structure of a 2D-cameras where the data
is ordered in rows and columns based on the points x and y coordinate [34]. The advan-
tages of ordered point clouds are the known relationship between neighboring points in
operations such as nearest neighbor search which will then be much more efficient [34].

11

2. Theory

2.2 Data filtering
Data filtering is an important tool used to reduce and improve data passed through the
system. By filtering raw sensor data, noise and other unwanted outlier data can be re-
duced. Inlier data can also be optimized to fit a selected purpose. This can be geometry
identification such as planes, edges, and obstacles. The inlier data can then be modified
to more accurately represent the true geometry of the real-world surface. E.g. any noise
in captured data that is matched to a planar surface can be removed by projecting the
point onto the plane corresponding to the planar surface.

It may not always be possible to directly match captured data to a geometry without
first applying some prior filters. Captured point clouds may also be unnecessary dense
and thus computationally heavy if a fast application is required. In these cases, a down-
sampling filter may be applied. This type of filter efficiently reduces the total number
of points by either combining or discarding points to a defined number or a percentage
of original points. The points being combined or discarded can either be selected uni-
formly throughout the point cloud or be selected based on some filter-specific criteria, as
explained in the following two sections.

2.2.1 Pass-through filter
A Pass-trough filter for the application on point clouds refers to the filtering of points that
either is within or beyond some defined boundaries [35]. It can also be used to remove
non-finite points [35]. The range can be either the radial distance to a point such as a
camera origin, or a Cartesian distance constraint in the camera frame. For the second
type, either one or multiple dimensions can be constrained, such as the height, width, or
depth of the point cloud. An example of Cartesian constraints is illustrated in Figure 2.7.

Figure 2.7: Pass-trough filter illustration. Inlier and outlier points are represented
in blue and red respectively. The box shows the filter boundaries. The point cloud is
captured by a 3D-camera when driving down a warehouse corridor (green arrow direction).
Note that the cluster of points close to the camera (placed at origin) is due to the self-
detection of the AGV. The red points in the center of the corridor are detection of the
ground.

12

2. Theory

The pass-through filter can be used to efficiently reduce the number of points in a point
cloud as few calculations per point are required. A simple low-pass, high-pass, band-pass,
or band-stop filter is applied for the coordinate value or radius that is filtered. If one
coordinate value breaks the constraint, the entire point is deemed invalid and is removed.

The filter can also be used to target a specific volume that is either to be discarded or
extracted. A volume that may be of sole interest e.g. for object avoidance can be that
which is: below the maximum possible height of a loaded AGV and not below the height
of the ground plane. A common volume to be removed is that which corresponds to the
volume of the AGV itself. This is done to efficiently remove any self-detected points that
may occur if the sensor is partially obscured by the AGV. Due to the inherent principle
of stereo triangulation used by some 3D-cameras, as described in the Stereo triangulation
section, the precision is often far greater in width and height than in-depth. Thus a
specialized pass-through filter may be applied which limits the depth of the point cloud
more than width and height.

2.2.2 Decimation filter
A decimation filter is one type of downsampling filter that is applied to the 2D stereo-
images produced by the cameras. The downsampling is achieved by combining the pixels
of 2D-stereo images uniformly to a defined rate, and therefore results in fewer 3D-points
generated by the images [36]. The filter reduces the size of the images by applying a kernel
matrix which averages the data of pixels contained by the kernel. The kernel is passed
throughout the entire image either column- or row-wise and in a moving window fashion
[37]. The rate at which the kernel is moved is defined as the filter stride. The stride is
equal to the number of pixels the kernel is moved at each time. A kernel is usually square
and can be designed to different sizes depending on how much downsampling is desired.
The kernel matrix can be tuned for specific applications but two simple implementations
are to use the median or mean of the kernel patch [37]. Figure 2.8 illustrates an example
of a decimation filter that uses an averaging kernel with the size of two by two pixels and
a stride of two pixels. This will cause the original four pixels to be merged into one.

Figure 2.8: Illustration of decimation filter with an averaging kernel matrix of size two
by two with a stride of two.

13

2. Theory

When using a kernel size of two by two and a stride of two the image size will be one-
quarter of the original image size. Kernel size of three by three with a stride of three the
image size will be one-ninth of the original. It is also possible to have a smaller stride
than the size of the kernel. This will cause a smaller reduction in resolution but with a
larger number of pixels being merged than with equal size and stride.

2.2.3 Voxel filter
A Voxel filter downsamples a point cloud by first sorting all points, based on their co-
ordinate, into a 3D-grid of cubes. These cubes are called voxels and have a defined size
[38]. The voxels are aligned to a 3D-grid, called voxel-grid, spanning from the lowest
coordinate values of the point cloud to the highest, as to contain all points. These points
define the upper and lower bounds of the voxel-grid as can be seen in Figure 2.9.

Figure 2.9: Voxel grid containing all points in the point cloud. The voxel grid origin
is aligned to the lowest independent coordinate values of all points in the filtered point
cloud and the grid spans to contain all points in the point cloud.

All points that are within the same voxel will be merged into one based on a defined
criteria, e.g. mean coordinate value. This point is called the centroid. The points can
also be merged by their median coordinate. The color and normal vectors of the points
are also averaged by their mean or median value.

14

2. Theory

In Figure 2.10 are four different illustrations of a voxel. The one in the lower right corner
shows a voxel that only contains one point ∗ and thus the centroid ◦ is placed at the same
coordinate. The upper right voxel contains two points and a centroid in between the two
points. The upper left voxel illustrates a scenario where you have a set of multiple points
inside the voxel that all affect the location of the centroid. The last voxel illustrates an
edge case where each corner of the voxel contains a point and thus will the centroid be in
the center of the cube.

Figure 2.10: The lower right Voxel shows only one point ∗ an therefore the centroid
◦ lies in the same place. The upper right Voxel shows two points and the centroid in
between. The upper left voxel shows a random set of points and the resulting centroid.
The lower left voxel shows a set of points in each corner and a calculated centroid in the
center of the voxel.

15

2. Theory

One voxel will not necessarily contain the same number of points at all times and will
thus downsample differently in different point clouds. A point cloud with many points
which are near will have a large reduction per volume of points, whereas a sparse cloud
may only have a small reduction. Hence, as the voxel size is defined and constant, the
maximum resolution of the cloud can be controlled. Practically this means that points
unnecessarily densely packed to e.g. a basic geometry such as a plane can be significantly
reduced. As the output of each voxel is one point, the highest density of a point cloud
on average is that of the voxel size, or less. Because of this, the voxel size is naturally
defined as the desired resolution of the filtered point cloud. A well-selected voxel size
shall, for high reduction, give enough resolution to not miss important features but still
remove as many points as necessary. The voxel downsampling filter as implemented in
[39], is described in Algorithm 1.

Algorithm 1: Voxel downsampling filter
Input: Input point cloud P , Voxel size r
Output: Downsampled point cloud Pds

1 xmin := min(P(x))− r
2 // Voxel-grid lower bound point

2 Ivox := ∅ // Voxel index list
3 Pds := ∅
4 for u ∈ P do
5 xref :=

u(x)−xmin

r

6 Ivox ←− Ivox ++
⌊
xref

⌋
7 for v ∈ Ivox do
8 x̄ := v̄x // Mean coordinate
9 n̄ := v̄n // Mean normal

10 c̄ := v̄c // Mean color
11 Pds ←− Pds ++[x̄, n̄, c̄]T

The voxel filter is given an input point cloud P and the desired voxel size r, defined in
meters. Thus a r-value of 0.05 will give a voxel cube of 5 × 5 × 5 cm. The lower bound
of the voxel grid is then calculated as min(P(x)) − r

2 where min(P(x)) is the lowest x, y
and z-value of all points independently. r

2 is subtracted to ensure that the first point is
placed inside a voxel. A voxel index list, Ivox and an output point cloud Pds is initiated.
Then, for each point u(x) a reference coordinate xref is obtained as u(x)−xmin

r . The
reference point is constructed to place the point in its corresponding voxel in the voxel-
grid coordinate system. Each voxel is indexed by its 3D-coordinate in the voxel grid. The
voxel-grid coordinate system spans from zero to the number of voxels in width, height,
and depth necessary to contain all points. The floor-value of the reference coordinate
is then appended to the voxel-list, which means that the point is now assigned to that
corresponding voxel. It is expected that multiple points are appended to the same list
entry, which means that they coexist in the same voxel. Finally, for each non-empty
voxel, the mean value of point coordinates, normal vectors, and colors are obtained and
appended to the output point cloud Pds. The number of points has then been reduced
from the original number of points to the number of non-empty voxels.

16

2. Theory

2.2.4 Spatial edge-preserving filter

A spatial edge-preserving filter is used to average data while still preserving edges and
corners [36]. This is done by applying a high dimension transform that will result in an im-
age in the transform domain with a low complexity instead of the original high dimension
complexity as it would be if the filter were to be applied in the original transform space
[40]. The image in the transform domain will then be filtered through a space invariant
filter before being turned back into the original domain. Moving the image into the trans-
form domain will not only reduce the complexity but will also preserve the sharp lines
that exist in the image while smoothing the image. For an application on 3D-cameras,
specifically, cameras which obtain depth from the triangulation through disparity images,
a spatial edge-preserving filter may be beneficial as it can be used to remove noise from
the disparity image while still preserving edges [41].

As implemented by the Intel Realsense stereo cameras [41], one way to achieve a spatial
edge-preserving filter is by first raster-scanning the depth-image produced by the sensor,
in x-direction, y-direction and then back, creating four consecutive passes, resulting in the
1D representation of the depth-image, Z = [Z1, . . . , Z4×npixels

]. An averaging coefficient
α is then applied on each depth value based on the trailing neighboring value. If an edge
is detected throughout the scan, no averaging is applied. This will cause an artifact de-
pending on the value of the trailing neighbor, and therefore each axis is scanned in both
directions to compensate.

The averaging coefficient is determined by an exponential moving average (EMA) [41],
where the specific recursive function is defined as:

St =

Z1, t = 1
αZt + (1− α)St−1, t > 1 ∧∆ = |St − St−1| < δthresh

Zt, t > 1 ∧∆ = |St − St−1| > δthresh

(2.3)

and where Zt is the depth value and St−1 is the EMA at some time instance t. Edge
preserving is achieved by evaluating the magnitude of discontinuity ∆ = |St − St−1|. If
the magnitude is larger than a defined threshold δthresh an edge is detected and the filter
is temporarily inactivated, i.e. St = Zt.

The resulting sequence of filtered depth-values S = [S1, . . . , Sx×npixels
] are then combined

per pixel according to the reverted order of the raster-scanning and averaged. This gives
the final filtered depth-image back in 2D. An illustration of a simulated case of the filter
were the dept-image is projected as 3D points can be seen in Figure 2.11.

17

2. Theory

Figure 2.11: Point cloud simulation of a camera capturing a box protruding from a wall.
Red illustrates noisy data and blue the data filtered by a spatial edge-preserving filter.

Figure 2.12 shows a 2D zx-slice in the center of the point cloud in Figure 2.11. In auditing
to the noisy and filtered data, the true reference data as well as a Gaussian-blur [42] filtered
data is also shown. The Gaussian filter is added to illustrate the downsides of using a
simpler averaging filter.

Figure 2.12: zx-slice in center of the point cloud in Figure 2.11.

The benefit of the spatial edge-preserving filter is well apparent when compered to the
Gaussian-blur filter in Figure 2.12. The edges are deliberately preserved whereas the
Gaussian curve is heavily rounded. Note that some smoothing, but no over-smoothing, of
the edges are seen in the spatial curve as well. This is due to the y-scan still smoothing
the sample as it is scanned parallel to the edge but does not pass it.

18

2. Theory

2.2.5 Temporal averaging filter
A temporal averaging filter utilizes knowledge from prior data acquisitions to improve
new data [43]. This is done by averaging the position of a particle in 3D-space based on
its prior positions which will reduce or filter random noise generated by the data capture
[44]. However, as the filter incorporates prior data, unconsidered disturbances such as
sensor motion can negatively impact the data [43]. To mitigate this effect, we present a
method where the senor motion is measured. By including the knowledge of the sensor
motion and transforming prior data based on this motion, new data can more accurately
merge the prior data. The prior data is transformed from the frame it is captured in i.e.
the center of the camera frame, back to the position where it was captured. This can
be visualized as the camera moving in the world frame but the prior point cloud staying
stationary. This is illustrated in Figure 2.13 as the transition of a camera frame F through
the time step tk → tk+1.

Figure 2.13: Temporal filter illustrated by merging points from camera frames Fk into
Fk+1 through time step tk → tk+1. F0 denotes the static world frame.

It is important to note that the quality of the transformation of prior data is directly
dependent on the motion estimation. Therefore the precision of the transformation can
not be better than the underlying location estimation on which the motion estimation is
based. To further improve on the transform estimation Iterative Closest Point (ICP) can
be applied. ICP is the method of optimizing a registration between two 3D geometries as
described by Besl and McKay [45].

If a prior point cloud is the result of additional filtering and thus considered as inliers, and
if these points can match with new points, these may also be considered as inliers. The
matched point does then not need to be filtered. However, it is important to note that, as
prior points which have been evaluated as inliers may have been so within some defined
range of margin, and as it may be necessary to add some margin to match new point to
the prior, additional margin is now added to the previous. Thus, it is necessary to keep
the criteria for assigning both filtered, as well as matched points as inliers, small enough
such that drift due to accumulated error is kept to an acceptable level. Specifically, the
combined error margin for inlier evaluation and temporal matching shall be less or equal

19

2. Theory

to the total acceptable error. An illustration of ill-defined error margins causing an invalid
match can be seen in Figure 2.14. The potential drift can also be reduced by weighting
the position of a new point higher when merging with its prior. A higher weight on the
position of new points will however also give a higher emphasis on any newly introduced
noise, in comparison to the already filtered position of prior points.

Figure 2.14: Illustration of a temporal filter with an ill-defined error constrain allowing
the matching of an invalid point. The expected point is the point that equals the optimal
inlier by some prior filter. The maximal inlier error is the proximity to the expected point
in which the prior point must be within to still be evaluated as an inlier by the prior
filter. The maximal temporal matching error is the proximity in which a new point must
be to the prior point to be matched. The illustrated case shows a defined error margin in
inlier- and matching-error causing a match of a point that is not within the maximal total
error. Note that only inlier and matching errors are checked by the filters and that the
invalid matched point exceeding total error would not be detected. Therefore inlier and
matching error combined shall be defined as less or equal to the total acceptable error.

Another benefit of the temporal filer is that attributes assumed to be constant in time,
such as an accurate estimation of a surface normal, can also be kept throughout iterations,
instead of being recalculated. This can greatly reduce the total computational burden of
each point cloud filtering. By also assuming that any optimization has been applied to the
prior point, such as normal realignment of points corresponding to a known surface, then
the resulting merged point is more optimal than if no temporal filtering had been applied.
Computationally heavy identification operations such as point cloud segmentation [46]
can also be significantly accelerated by storing identifiers, i.e. labels, of already identified
geometries throughout temporal iterations.

20

2. Theory

2.2.6 Plane-fitting filter

A plane-fitting filter is used to segment and fit, points corresponding to planar surfaces
into perfect planes. This is done in an sequential process as described in Algorithm 2 and
which is based on the concepts by Bondemark [47], Salas-Moreno, Glocken, Kelly, et al.
[48] and Trevor, Gedikli, Rusu, et al. [49], but were we present a version with the ability
to handle unordered point clouds. The goal of the filter is to improve the registration of
points that correspond to planar surfaces, such as panels, walls, and floors, by projecting
them onto perfect planes. An illustration of the projection can be seen in Figure 2.15.

Figure 2.15: Points of a noisy measurement projected onto a perfect plane. Projection
vectors are illustrated by the black lines.

Algorithm 2 illustrates the key sequential stages in a plane-fitting filter. The filter is
designed to work on unordered point clouds and with no temporal knowledge. However,
great improvement in throughput speed has been achieved by passing labeling information
through the earlier mentioned temporal filter and is further explained in Section 2.2.6.4
Plane labeling.

21

2. Theory

Algorithm 2: Plane-fitting algorithm
Input: Input point cloud P , number of nearest neighbours knn, distance limit

coefficient δ, angle limit θlim and minimum points in plane ε
Output: Inliers projected to planes P̄ , Inlier map L, Average projection error d̄

1 I ←−search_knn(P, knn) // Search knn for each point in P
2 N ←− estimate_normals(P, I)

// Estimate normals for each point in P
3 for u ∈ P do
4 D ←− ∏

un∈I(u)
S(u, un) // Build discontinuity map

5 L←− label_plane(P, D, I, ε)
6 for l ∈ L do
7 Π←− estimate_plane_model(P [l])
8 P̄ , d̄←− project_points_to_plane(Π, P [l])

2.2.6.1 Nearest neighbour search

To determine if a point is part of a plane, first, knn nearest neighbors for each point
in point cloud P is obtained by a search algorithm such as Fast Approximate Nearest
Neighbor Search Library (FLANN) [50]. The number of neighbors necessary is dependent
on subsequent affected stages such as normal estimation and discontinuity mapping. For
normal estimation knn depends on the desired quality. A larger number of neighbors will
give a more accurate normal estimation but with the cost of a decrease in computational
performance, as shown by Klasing, Althoff, Wollherr, et al. [31]. For discontinuity evalua-
tion the number of neighbour evaluated is implementation specific and can be considered
a tuning variable and where a larger number results in a harder constraint.

2.2.6.2 Normal estimation

For each point u ∈ P the corresponding surface normal n ∈ N is estimated by a Principal
Component Analysis (PCA) on the coordinate covariance matrix C ∈ R3x3 of the point
and its neighbours xk ∈ I[u]. C is defined as:

Cu = 1
knn

knn+1∑
i=1

(xi − x̄) · (xi − x̄)T , x ∈ [xu, xk1 , . . . , xknn] (2.4)

and the normal estimation is then obtained as the eigenvector corresponding to the small-
est eigenvalue of Cu [51]. However, as there is no mathematical way to determine the
correct sign of n via PCA [51], an additional evaluation is required. By assuming that
all points are acquired from the same sensors and which itself is assumed to only acquire
points in its view, i.e. of non-occluded geometries, all points detected must be of surfaces
that normal is pointed in some parts toward the camera. That is, the component of the
normal corresponding to the depth-axis of the capturing sensor must be negative. As a
result, all estimated normals with a positive depth-component shall be inverted [51].

22

2. Theory

2.2.6.3 Discontinuity map

A Discontinuity map D is a binary list with one entry corresponding to each point in P
and where a one indicates that the point is continuous. A point is continuous if it is part of
local plane and is evaluated toward its knn nearest neighbours un ∈ I[u]. The evaluation,
as seen in Equation (2.5), consists of an angle criterion and a distance criterion that both
must be met for all neighbors to the point.

S(a, b) =

1 if ||P (a) ·N (a)− P (b) ·N (b)|| ≤ δP (a)2

(z)︸ ︷︷ ︸
distance criterion

∧ N (a) ·N (b) ≤ cos(θlim)︸ ︷︷ ︸
angle criterion

0 otherwise
(2.5)

The distance criterion of Equation (2.5) assert that the perpendicular distance component
of the two points a and b is within a defined threshold [49]. The angle criterion constrain
the maximal angle deviation of the points normal in reference to its neighbors, i.e. the
curvature of the surface [49]. The tuning parameter δ shall correspond to the depth
precision of the input data and θlim the maximum acceptable angle deviation between
the normal vectors.

2.2.6.4 Plane labeling

Plane labeling refers to the labeling of points corresponding to the same plane. For an
ordered point cloud, continuous points i.e. points corresponding to a local plane [48], can
be labeled by a Connected Component Labeling-algorithm (CCL) as described by Salas-
Moreno, Glocken, Kelly, et al. [48]. However, CCL is not applicable for an unordered
point cloud as no positional information can be obtained by its indexing. A proposed
method for labeling unordered points by instead cluster points with all continuous neigh-
bors is described in Algorithm 3. The algorithm is given an unordered point cloud P,
a discontinuity map D and a neighbor list I. The algorithm then returns a label map
L. An optional variable ε may be passed which defines the minimum number of points
required for a plane label to be stored, otherwise, it is discarded.

23

2. Theory

Algorithm 3: Plane labeling
Input: point cloud P, discontinuity map D, nearest neighbours list I, min

cluster size ε
Output: Cluster map L

1 useed := random(u ∈ P | D[u] = 1) // first point to grow label-set from
2 L̂ :=

[
[useed]

]
// append seed to first label

3 D[useed] := 0 // indicate that the seed is labeled
4 unew := useed

5 while D 6= 0 do
// get neighbours of new points

6 uneigh := I[unew]
// get unique neighbours which are to be sorted

7 unew := unique(u ∈ uneigh|D[u] = 1)
8 if unew = ∅ then

// no new points, make new cluster
9 useed := random(u ∈ P | D[u] = 1)

// append seed as new cluster
10 L̂←− L̂ ++[useed]
11 D[useed] := 0
12 unew := useed

13 else
14 D[unew] := 0

// append new points to last cluster
15 L̂(last) ←− L̂(last) ++unew

// only return cluster greater or equal to min cluster size
16 L←− ∀l ∈ L̂ | l ∈ Nn|n ≥ ε

A significant speedup in plane labeling can be achieved by incorporating labels from prior
matching. This by including the plane label of each matched point in the prior point
set, used by a temporal filter, see Section 2.2.5. By assuming that a new point has been
successfully matched to a prior point by a temporal filter and where the prior had a valid
plane label, then the new point shall also attain the same plane label. The speedup can
thus be achieved by first evaluating each pre-existing plane label from the prior points,
as these are known to be part of a valid plane. Specifically by, as seen in Algorithm 3 on
line 1 and 9, instead of seeding with a random point u ∈ P | D[u] = 1, seed with all valid
points from a prior plane label. That is, all points from a prior plane label that satisfies
u ∈ Pprior | D[u] = 1, ∀Pprior ∈ Lprior. By this implementation, a new plane label is
first initiated as all valid prior points to the same plane. Then, similar to the original
algorithm, any valid points not labeled are evaluated. Note that, new points that are
not corresponding to a prior plane label can still be matched to the same plane by the
algorithm. This is correct as parts of a plane that previously may have been obstructed
can now have come into view and shall thus be appended to the same plane.

24

2. Theory

2.2.6.5 Point to plane projection

For each label l ∈ L a plane model Π in general form [52] is estimated:

Π : ax+ by + cz + d = 0 (2.6)

The model is estimated by a Random sample consensus (RANSAC)-algorithm. The
algorithm iteratively tries to find the plane model which minimizes the total projection
error for each point u ∈ l. It does this by randomly selecting three points from the label
set and then produces a plane satisfying Equation (2.6). The plane estimation is then
evaluated on all points and with the goal of obtaining as many inliers as possible. A
point is determined to be an inlier if its distance to the plane is within a defined margin.
Only the model with an increasing number of inliers is kept till the next iteration. The
algorithm iterates either until a defined number of iterations are reached, or if the mean
distance error for all points to the optimal plane estimation falls below a desired threshold.
Finally, all valid points are projected to planes based on their corresponding plane model:

n = [a, b, c]T (2.7)

p = d√
a2 + b2 + c2

(2.8)

D = n · x+ p (2.9)
err = Dn (2.10)
x̄ = x− err (2.11)

where D is the point to plane distance [52]. Additionally, the mean projection error d̄ for
each plane is obtained.

Finally, both the projected points P̄ and mean projection errors are returned by the
algorithm. The projection error can then be utilized by subsequent filters to determine if
the projected plane is viable.

25

2. Theory

2.3 Localization
Localization is one of the more important features of complex AGVs and the ability to
accurately sense and estimate the location of a platform, lies at the heart of almost all
AGV applications according to Durrant-Whyte, Rye, and Nebot [53]. In order to perform
localization in an environment must a map of the environment exist. For localization in
situations where the system has no prior data of the environment or where the environ-
ment does not stay the same, the system must then simultaneously create a map of its
environment and keep track of its position in that map, this is known as SLAM [54], [55].
To extend the reach of the map the position of the sensors must travel, if the sensor is
mounted to a platform and this moves so will also its location in the map.

One thing in common for 2D-LiDAR, 3D-LiDAR, and 3D-Cameras used on AGVs is that
these sensors can be used to simultaneously create a map of the environment since the
position of the sensors relative to the platform is known, the platform’s position in the
environment can be estimated [56]. Many different algorithms are classed as SLAM-
algorithms. Some use artificial landmarks [57], such as reflectors and AprilTags [58] to
achieve higher performance. Some algorithms rely only on natural landmarks such as
corners, pillars, and walls. The latter may be referred to as Natural Localization [59] and
no modifications of the environment are required.

As both LiDARs and cameras use measurements based on the reflection of the surrounding
surfaces are they all sensitive to effects that may distort these reflections. In situations
that may cause incorrect readings, such as shiny but transparent windows, additional
sensors may be used to aid in the localization. This can be an Inertial Measurement Unit
(IMU) which can sense transitional and rotational accelerations [60]. Wheel odometry
can also be used to calculate the relative motion of the AGV based on the rotation of the
wheels.

26

3
Implementation

This chapter will present the hardware and software implementations of the developed
localization system.

3.1 Test platform
An industrial AGV is used as a test platform to emulate a real-world application of the
system. The AGV allows for a rigid mounting of sensors and also predictable travel
patterns due to its differential steering. This allows for consistent testing in different
environments as the physical construction of the system shall not change and therefore
any change is related to the environment, not the systems and test platform itself. The
AGV is supplied by FlexQube and is of their eQart line of AGVs. The supplied AGV
contains its own LiDAR navigation system, this is not used in order to not disrupt its
safety system. However, the AGV can supply wheel odometry data without interference.
The AGV can be seen in Figure 3.1.

Figure 3.1: eQart supplied by FlexQube.

As shown by Silva Neto, Lima Silva, Figueredo, et al. [61] from their testing of ten
different RGBD-cameras are Orbbec Astra Pro, Asus Xtion PRO live, and Realsense
D435 identified as good choices for use on mobile platforms such as robots. The D435
RGBD-camera was also used by Manhed [12] and from his testing it was argued that

27

3. Implementation

a longer range may have been needed. The Realsense D400 series have the ability to
arrange the cameras in an outward-facing configuration and synchronize the shutters
between each camera, in practice this creates a sensor arrangement that has a much
wider FoV than the single camera[62]. No other cameras on the market were found to
have this function. These factors combined made the Realsense D455 a great choice since
it is a newer generation to the D435 sensor but which have an increased range. One of
the mounted sensor can be seen in Figure 3.2.

Figure 3.2: Realsense D455 mounted on the AGV.

The hardware synchronization of the shutters in the D400 series can be done by either
utilizing one camera as master or supplying an external signal via an extra cable [62]. For
this thesis one of the cameras were used as a master, supplying the shutter signal to the
other two cameras.

The utilization of three cameras allows for extended flexibility in the form of camera
placement. A natural way for a three camera setup would be to place one camera in the
driving direction, similar to Manhed [12], and then place the other cameras to extend the
total FoV as were theorized to be one of the main issues. This setup will then ensure
object avoidance in the driving direction as these are assumed to be detected by the
forward camera. The other cameras can then be placed either in a stacked or panoramic
configuration. In addition, as each camera have an oblong FoV, they can either be placed
in a portrait or landscape configuration.

(a) Maximum distance (b) No gaps in field of view (c) Hybrid solution

Figure 3.3: Camera FoV alternatives solutions.

28

3. Implementation

The chosen configuration uses all cameras in landscape orientation, one facing forward
and the other two translated and rotated 65° outwards in the right and left direction
respectively, this results in an FoV of 216°. An illustration of the camera placements
can be seen in Figure 3.3c. Notice that the FoVs are not overlapping for any camera in
Figure 3.3a and 3.3b. This is done to ensure maximum distance and maximum coverage
respectively. The chosen solution is a hybrid of the two first in order to ensure as wide
FoV as possible but still have a continuous field of view.

A Hokuyo UAM-05LP 2D-LiDAR is mounted on top of the system module. This LiDAR
was chosen as it is the same model as the one used naively by the AGV and thus is shown
to satisfy the criteria for navigating an AGV in an industrial environment. The sensor
scans a horizontal plane 431mm over the ground. The sensor has a utilized FoV of 216°
where the center of the view is directed in the forward driving direction of the AGV i.e
the effective FoV. The sensor measure distance by the time of flight principle and have a
specified angular resolution of 0.125° [63].

Figure 3.4: LiDAR provided by FlexQube.

The complete implementation of the systems can be seen in Figure 3.5. The implemen-
tation consists of a test platform in the form of an AGV, a system module, and external
sensors and mounts. The system module contains one 2D-LiDAR, three 3D-cameras, and
an integrated computer. The computer is an Nvidia Jetson AGX and with an internal
extended storage of 2Tb used to record sensor data in real-time.

29

3. Implementation

Figure 3.5: Complete test platform with one LiDAR and three 3D-cameras in a
panoramic setup.

3.2 Localization
To evaluate the performance of the developed system, localization will be achieved in two
ways, one is by SLAM, the other is by pure localization. Pure localization means that the
map will not be updated. Instead, the map previously generated by SLAM will be used.
The same algorithm for localization will be used in both cases.

To achieve a comparable result for both the 3D-camera system and 2D-LiDAR system,
multiple SLAM frameworks which are capable of handle both of these data types was in-
vestigated. According to Pålsson and Smedberg [64] there are three 2D-SLAM algorithms
which are the most popular, GMapping [65], Hector SLAM [66] and Google Cartogra-
pher [67]. The authors Filipenko and Afanasyev [68] also shows that Cartographer is the
2D-SLAM algorithm that have the lowest absolute error of the compared algorithms in
there study, among these were the previously three most popular algorithms mentioned.
This result is also shown by Pålsson and Smedberg [64]. The authors Milijas, Markovic,
Ivanovic, et al. [69] shows that Cartographer is a good choice of algorithm, especially
when there may be lack of features. Cartographer is also not a strictly a 2D algorithm
and can support 3D-SLAM. According to Nuchter, Bleier, Schauer, et al. [70] is the 3D-
SLAM of Cartographer a continuation of its 2D algorithm but with some minor tweaks for
efficiency. This is good for the evaluation of the 2D-LiDAR and 3D-cameras systems as
this should in theory, neglect the performance difference of running separate independent
algorithms. Thus Cartographer [71] was chosen as the SLAM method used to test and
verify the proposed panoramic 3D-camera setup.

Even if Cartographer is able to localize in 3D, to be comparable to the 2D-LiDAR system,
only the equivalent 2D-localization of the 3D-camera SLAM is evaluated. Cartographer is
configured by several codependent tuning variables. These are tuned empirically on mul-
tiple test data sets and independently for both systems. Cartographer achieves mapping
in two stages, first by creating a submap describing a local environment, then aligning
multiple submaps to create a global map of the environment [67]. Each submap consists
of a number of data-samples, which the authors refer to as scans and is in reference to
the scans acquired by a scanning LiDAR [67], but can also be used to describe each point
cloud produced by the camera system. The number of scans required for a submap is one

30

3. Implementation

of the parameters that is tuned. When this limit of scans is reached the submap is finalized
and aligned to a larger global map and a new submap is initiated. To align the multiple
scans of a submap, intra-map constraints are produced. Similarly, to align the submaps
in the global map, inter-maps constraints between the submaps are generated. Figure 3.6
illustrated the multiple, densely-packed, intra-map constrains as well as some inter-maps
constrains which are more sparse. Inter-maps constrains are divided into constraints of
the same trajectory, shown as the yellow lines in Figure 3.6 and loop-closure constraints,
shown as turquoise lines. A loop-clousure is an event where the SLAM algorithm enters a
submap which it recognises as somewhere it have already mapped. If the map have some
misalignment of these two matching submaps, a stronger constraints can be applied as to
give a higher reward for an alignment [67].

Figure 3.6: Top-down view of the map and constraints generation by Cartographer
SLAM. All constraints are connecting to the current trajectory. Intra-map constraint are
shown as densely packed lines of multiple colors. Inter-maps constraints are shown as
yellow for constraints of the same trajectory and turquoise for loop-closure constraints,
i.e. constraints between a submap from a different trajectory, to the current.

The number of scans to be used for each submap shall be enough to achieve a distinct
enough submap for global alignment, but also few enough such that the drift, due to
misalignment, is acceptable [72].

3.3 System architecture and data filtering
This section will explain the structure of the localization systems implemented, that is,
the proposed 3D-camera system and the 2D-LiDAR system as well as the filters utilized by
the camera system. To accurately quantify the performance of the systems, an additional
stationary high precision localization system will be used as a ground truth reference. This
system will hereinafter be referred to as the ground truth system and further explained
in Chapter 4.

31

3. Implementation

3.3.1 Data types
The main data types passed trough the localization systems are: point clouds P, points u,
position state vectors x and transformation matrices T. All point clouds handled in this
project are assumed to be unordered and to have coordinates. Throughout the systems,
the point may also receive a surface normal estimation. The position state vector describes
the position of an object. An identifier of the object iobj , as well as the coordinate frame
iframe it relates to, is also included. A transformation matrix contains the rotation matrix
R and translation vector t required to align one coordinate frame with another. The data
types are structured as:

P = {u1, . . . , unmax}
u = {x, n, c}
x = {x, iobj , iframe}
T = [R | t]

(3.1)

3.3.2 Systems architecture

Figure 3.7: Systems overview. P denotes point cloud data and x denotes a state vector.
The SLAM localization estimations are compiled in a Positing evaluation stage where
the deviation to a ground truth reference is evaluated. If a ground truth reference is not
available a relative comparison is performed.

Both filtering for the camera and LiDAR systems are sampled in parallel, and when
available, combined with a ground truth source used for validation. This is done to allow
for testing and validation of both systems when applied to the same environment. That

32

3. Implementation

is, when tested, the input odometry data will be the same for both systems. However,
to manage the increased load of parallel SLAM algorithms, the system will be tested
separately with data obtained from the same sampling. For tuning, both systems are
run separately on the sampled data. The ground truth system is running on an external
computer and will produce a validation trajectory after the test is done.

3.3.3 Data filtering
Data filtering is a major part required to achieve good results from the captured point
cloud data. The filters must achieve adequate performance in both data optimization and
throughput. No additional filtering will be done one the 2D-LiDAR system, the following
filters are only applied to the camera localization system.

Data filtering of the camera system is implemented in two main stages, pre-filtering and
filtering done by the SLAM algorithm. This with the main goal of obtaining the optimal
position estimation. The pre-filter stage consists of several internal subsequent filters.
The overall task of the pre-filter is to merge, filter and optimize the multiple point clouds
obtained by the cameras into one point cloud.

The filters applied by the SLAM algorithm are tasked with time aligning input data,
downsample, and removing outliers. The SLAM algorithm will finally produce a trajectory
estimation as well as a map of the environment. The position data is then passed back
to the pre-filter stage. The usage of this data will be further explained in the plane filter
Section 2.2.6.

Figure 3.8: Camera data Pcam from each camera is first merged into one cloud Pmrgd

then through a temporal averaging filter and finally a plane-fitting filter. Pfilt is the
resulting filtered data and Pprior are the same points as in Pfilt but with the addition
of points corresponding to the ground. The ground points are separated as these are not
interesting for the SLAM algorithm.

The Camera-placement block illustrates the static camera placement parameters passed
to the Pre-filter. These are parameters defining the position of each camera related to the
desired unified coordinate frame. In this case, the unified coordinate frame is that of the

33

3. Implementation

front-facing camera. The camera placement parameters must be of high accuracy such
that the merging of all point clouds is correct.

A Motion filter is implemented with the goal of obtaining the current position of the
unified frame. The last estimation is also saved. Both the current and last pose is then
used to calculate the relative motion between the two iterations, Tdelta. This transform
is then passed to the temporal filter to be used for aligning the prior point cloud with the
new, as explained in Section 2.2.5.

Before the temporal filter, each point cloud passed from the cameras are merged in the
Point cloud merger block. In addition to some per-cloud filtering, the merger also merge
the points that are overlapping. That is, the point that have a close enough proximity
where a merging of both points will not negatively effect the geometry of the cloud.

Finally, after the merging of all point clouds and temporal filtering, the unified point
cloud is passed to a Plane fitting filter. This is a complex filter that contains multiple
internal stages and with the goal of fitting points corresponding to planar surfaces onto
perfect planes. All points which are successfully fitted to planes, in combination with the
filtered but non-fitted points, are then passed to the SLAM stage.

3.3.3.1 Camera intrinsic filters

Figure 3.9: Camera intrinsic filters

The Realsense D455 camera also have several intrinsic filters. A subset of these was ap-
plied in this implementation. These are a Range limiting filter, Decimation filter and a
Spatial edge-preserving filter.

The filters are tuned with the main goal of downsampling raw data and to do an initial
outlier removal. i.e points that are erroneous detections or otherwise of no interest.
Outliers are mainly removed by the Range and Spatial filter whereas the Decimation filter
is added to uniformly reduce the output data. The Range filter was tuned to discard any
point beyond the recommended range as specified by the camera manufacturer while the
spatial filter was tuned empirically to smooth the data without losing the sharpness of
edges and corners. The Decimation filter uses a square median averaging kernel of size
kdec and stride sdec and was tuned to give a desired output cloud density for subsequent
filters. The resulting filter parameters were:

34

3. Implementation

drange ≤ 8 [m]
Mspatial = 3
αspatial = 0.5
δspatial = 20
kdec = 3
sdec = 3

3.3.3.2 Point cloud merger

Figure 3.10: Multi point cloud merging. Point clouds are merged based on the given
Transformation matrix for each camera.

The Point cloud merger is given several time-synced point clouds. It is assumed that
frames from each cloud are captured very close in time as such that they describe the
environment with the same position of the unified frame. To ensure good frame timing,
hardware synchronization is applied, as described in Section 3.1. To merge all streams
into the defined unified frame, a transformation matrix Tcam is given for each point cloud.
This is a static transformation that must be of high accuracy as any deviation will have
a constant effect on all acquired data.

Before the transformation, a Pass-trough-filter was applied to each cloud. This was done
before the transformation so that the parameters of each filter can be set to optimally
filter the data of the specific camera in its own frame. A pass-through filter of band-pass
type was used. The depth range, corresponding to the z-limits in the camera frame, was
tuned with a lower bound equal to the camera specification and an upper bound tuned
to achieve maximal depth range but with acceptable depth precision for the application.
A symmetric limit in x, corresponding to width in the camera frame, was selected. The
selection is to suffice a range enough to fit all valid x-coordinate of a point corresponding
to the cameras FoV and the defined depth limit, obtained as:

35

3. Implementation

xmax = zmax · tan
(FoV(x)

2

)
(3.2)

The y-limits, corresponding to the cameras height limits, were selected with a lower bound
such that ground points could be detected and with some margin as to account for small
downhills. The upper bound was used to tune the total volume evaluated, to give a desired
average in a total number of points. The resulting filter limit in meters was:

−5.6 ≤ x ≤ 5.6
−1.0 ≤ y ≤ 3.0

0.5 ≤ z ≤ 6.0

When all streams are transformed into the unified frame a voxel filter is applied. This is
done both to reduce the total number of points but also to remove point cloud overlap.
As these overlapping points will, if any, detect the same geometry, will it be because their
position is close. This will cause many of these overlapping points to coexist in the same
voxel and thus be merged, as mentioned in Section 2.2.3. The voxel size was tuned to
achieve a desired average point cloud density sufficient for subsequent filter applications
in relation to the desired execution speed. This size is also used for any subsequent voxel
filter to keep a consistent point cloud density. The voxel size in meters was selected as:

rvoxel = 0.05m

Next, a Radial outlier removal-filter is applied. The filter evaluates whether an evaluated
point of a point cloud has a sufficient number of neighbors within a specified radius. If
the number of neighbors is too few, does it mean that the point is not part of any local
geometry and is thus discarded. The specified number of neighbors and radius range was
selected as:

nneigh ≥ 10
r ≤ 0.1m

Finally, the number of remaining points is counted. If the number is over a defined limit,
only the closest points are kept. This is based on the assumption of higher data accuracy
at a closer range as mentioned in Section 2.1.2.1. The limit on the number of points
highly affects the worst-case execution time, per point cloud filter iteration as it directly
correlates with the highest number of combined per-point calculations done. To achieved
a sufficient throughput, the maximal number of points was selected as:

npoints ≤ 15000

36

3. Implementation

3.3.3.3 Temporal averaging filter

Figure 3.11: The temporal filter when give a new and prior point cloud, will optimize
the new point cloud based on knowledge of the prior. Due to potential misalignment of
the new and prior point cloud, an estimated relative motion transform Tdelta is also given.

The Temporal averaging filter will obtain the most recent merged point cloud Pmrgd as
well as the last filtered point cloud Pprior. It will then attempt to merge points from the
last cloud into the new cloud. However, as described in Section 2.2.5, any motion of the
sensor in the time span of capturing the last cloud and the new will cause misalignment
of the two clouds. To prevent this effect, the filter will attempt to estimate and mitigate
this motion. This is done by obtaining the position of the unified frame at the time of the
last frame acquisition as well as the new. The position information is also given for both
sources as transformation matrices. These matrices show the transformation from one,
common in time and position, reference frame. The reference frame is that of the world
frame at startup time t0. As both given transformation matrices have the same reference
frame, the difference in transformation will be the same as the relative transformation
between the two given point cloud frames. This relative transformation matrix called
Tdelta is then used to transform the prior cloud to align with the new point cloud. This
will cause the new and prior cloud to overlap at multiple points. The clouds are then
passed through a Union-combine filter to remove points from the new cloud which are
close to prior points. The motivation for this is that the prior points are already filtered
and known to be relevant. However, any prior points that are not close to a new point,
are omitted as it is not sure that they are still valid. The resulting output of the filter
are: new points that are not close to prior points and, prior points close to new points as
illustrated in Figure 3.12.

Figure 3.12: Resulting set of points from union of Ppior and Pnew.

37

3. Implementation

The intended effect of the temporal averaging filter is to preserve the knowledge of the
already filtered and known to be valid prior geometries, i.e. planes. However, as one
detected geometry may be reused for subsequent frames, and as new data of the same
geometry is added, this estimation of a geometry can be improved instead of staying the
same. To make this possible, the tolerance for merging new and prior points in the tem-
poral filter shall be lower than that the overall criteria for inliers of the geometry. This
means that only points fitting well to the geometry will be kept by the temporal filter
and, as more points are fitted to the geometry, the filtered points in combination with
new inliers will move the estimation into a more optimal average.

3.3.3.4 Plane-fitting filter

Figure 3.13: Points from the Temporal averaging filter Pavg that correspond to planar
surfaces are fitted to planes. All fitted points in combination with points corresponding
to the ground plane are returned as Pprior. Pfilt are all filtered points not corresponding
to the ground.

The main benefit of applying a plane-fitting filter is that it can reduce the ambiguity of
noisy point cloud data. As the measurement noise of the 3D-camera increases exponen-
tially as the distance is increased, by applying the plane fitting filter this ambiguity can
be reduced. The problem is converted into a binary decision problem where the points
are either fitted to a plane or not. If the points are fitted to a plane this will be of a
perfect plane without any ambiguities. However, as it may not be sufficient to only rely
on the detection of planar geometries, some non-planar points may also be included.

38

4
Evaluation methodology

To adhere to the research questions as stated in Section 1.2.1, all evaluation methods must
be developed to give both the camera system and the LiDAR system an equal opportu-
nity. That is, the panoramic 3D-camera system and 2D-LiDAR system shall be tested on
the same computer and AGV, it should also be in the same environments. Therefore, by
running both systems in parallel, as proposed in Section 3.3.2, all of these criteria can be
met. The implementation of mounting both sensor systems rigidly to the same platform
ensures that both systems can utilize the same auxiliary data acquired in the form of
wheel odometry. This ensures that any error propagated from this data is affecting both
systems equally. The speed and trajectory of the AGV are also equally perceived by both
systems due to the rigid mounting.

Both systems will be tested on data from the same environments, specifically a warehouse
and a lab-room of approximately 6x8m in which a ground truth system is installed. The
warehouse will not have a ground truth system and therefore the results will be evaluated
relatively between the two systems. The warehouse will also be in use throughout the
tests and shall thus be considered as an authentic industrial environment. The lab-room
is instead arranged to emulate a small workstation.

Due to software limitations on the integrated computer of the test platform, the data will
be evaluated on an external computer.

4.1 Ground truth evaluation
The developed 3D-camera system will be tested in parallel with the reference 2D-LiDAR
system and compared to a highly accurate positioning system. The highly accurate po-
sitioning system is a Qualisys motion capture system1 consisting of eight cameras, as
can be seen in Figure 4.1. These are calibrated to achieved a self-diagnosed precision of
approximately 2mm per camera. The trajectories are thus not perfect and each position
measured by it contains a residual. The residual is the potential measurement error to
the true position and can be seen as the radius of which the point can actually be within.
The residual is based on the self diagnosed precision by each camera contributing to the
measurement [73]. However, since the precision is at least one order of magnitude better
than the expected precision of the systems compared, it is regarded as a ground truth for
test in the lab-room.

1https://www.qualisys.com

39

4. Evaluation methodology

Figure 4.1: Illustration of the eight Qualisys Cameras placed in the room and with the
three outermost static markers (green) placed on the walls and four static markers placed
on a dummy-wall in the center.

The data from the Ground truth system, 2D-LiDAR, and 3D-Cameras will not use the
same origin and orientation. Thus alignment is needed in order to obtain data that is
comparable between these systems. ICP will be used to align a LiDAR trajectory to the
ground truth trajectory, in order to align the map as accurately as possible to the room.
The match will then be verified by manually placed reference markers which are then
detected by the ground truth system, seen as three points in Figure 4.1, the bottom one,
the left-most one, and the right-most one. These are used to give a known location of
room walls. The aligned map of the room will then be stored and used as a reference for
the rest of the obtained data. In the subsequent data acquisitions the maps are matched
to the reference map with ICP. It could be argued that matching maps is better than
continuing to match trajectories of the 2D-LiDAR and 3D-Cameras to the ground truth
trajectory. This since the comparison desired is of how accurate the trajectory is, and
therefore shall the trajectory not be matched to prevent overfitting.

The systems are not synced, therefor the localization estimations will not necessarily
produce positions at comparable times and places. To obtain a comparable position error
evaluation, a spline between the points of the ground truth system is interpolated. Then
the position error for each evaluated system is computed as the minimal distance for each
point to the interpolated spline. Note that, special care needs to be taken in a situation
where loops in the path occur, e.g. circular paths, as a distance might be calculated to
the spline corresponding to the wrong point in time if it is closer. As a result, only a
smaller region around the last evaluated point of the ground truth path is interpolated at
a time, any non interpolated points are ignored.

40

4. Evaluation methodology

4.2 Evaluation of optimization filters
The optimization filters are the implemented filters that, in addition to filter data, also
augment the data to optimize the localization result, i.e the developed temporal averaging
filter and plane-fitting filter. Their importance is evaluated by comparing the resulting
performance towards a similar test system implementation where these filters are omit-
ted. Note that, as previously mentioned, only the proposed panoramic-camera system
have these optimization filters applied. Therefore, the systems for this test are of two
versions of the proposed panoramic camera system, implemented as in one way, the com-
plete proposed system, and in the other way as a simplified version where the temporal
averaging filter and plane fitting filter are omitted. These versions are hereinafter referred
to as Optimized and Unoptimized.

Both the optimized and unoptimized system versions are tested on the same environment
data obtained from the Lab-room. Therefore ground-truth reference data is also avail-
able. Localization estimations, i.e path estimation, for both systems are obtained via the
Cartographer SLAM algorithm and with the same tuning parameters. The performance
is evaluated based on the localization error produced by each system, and in comparison
to the ground truth data.

4.3 Evaluation criteria
To achieve an accurate evaluation of both system’s estimation errors in reference to the
ground truth system, three evaluation criteria are defined. The parameters investigated
are Accuracy, Trueness, and Repeatability, these can be seen in Figure 4.2 and they are
defined as:

Figure 4.2: Illustration of Accuracy, Trueness, and Repeatability.

Accuracy is hereby defined as the absolute distance error of a single localization estima-
tion, to the ground truth reference.

Trueness is hereby defined as the distance error from the mean value of multiple samples
of the same data, to the ground truth reference.

Repeatability is hereby defined as the variation of multiple samples, specifically the
difference of the best and worst estimation.

41

4. Evaluation methodology

4.4 Reference map
This section will present how a reference map is obtained in order to be able to com-
pare obtained data against the ground truth system. The reference map is generated by
matching one LiDAR trajectory with ICP to the same trajectory generated by the ground
truth. The resulting map alignment is then verified by reference markers can be seen in
Figure 4.3.

Figure 4.3: Reference map aligned to room, three green dots on the walls are markers
from the ground truth system, walls are drawn from laser measurements and data from
the ground truth system. AGV starts at (1936, −990) and runs a left-hand lap around
the room.

The walls of Figure 4.3 are manually placed by inspecting multiple maps generated by
LiDAR. Note that these are only intended as a visual aid and will not affect any results.
On the walls are three static markers used to verify that the maps from the LiDAR are
correct. Additionally, as the walls are drawn based on LiDAR data which are in 2D, the
following maps generated by the 3D-camera system are expected to not perfectly match
them.

This method of alignment is not perfect due to the additive error when using multiple ICP
matchings, i.e path to path matching and map to map matching, and also the assumption
that the LiDAR trajectory is perfectly aligned with the ground truth. An exact method
utilizing precision timestamps of all position data, which would improve the matching,
as well as a know initial pose would be preferable. However, this data is not available
for either the tested systems nor the ground truth system. The only other identified
alternative would be to hand align every map and trajectory, but this is considered as an
alternative with the potential of introducing larger errors than the chosen solution.

42

5
Results

This chapter will present all results obtained from both the developed panoramic 3D-
system and the reference 2D-LiDAR system and in both described test environments.
The first part of the data presented will be from the panoramic system and where the
effects of optimization filters are evaluated. The second part is of test performed on two
data sets sampled from the lab-room environment. That is, from two different test runs,
one shorter and one longer, hereinafter called Case 1 and Case 2 respectively. The per-
formance of the systems and on the test cases will be quantified by the evaluation criteria
as defined in Section 4.3. The reference map was generated from matching trajectories
with ICP as described in Section 4.4. The third and last section presents data obtained
in the industrial environment and will present a qualitative evaluation of the systems as
no ground truth reference was available.

The AGV was operating autonomously for the sampling of the lab-room environment.
This was to simulate the movements of a real-world autonomous application in terms
of speed, positioning, and repeatability and was achieved by the pre-existing navigation
system of the AGV. For the warehouse, the AGV was maneuvered manually by an operator
as the autonomous system could not be configured for the environment at the time of
sampling.

5.1 Effects of optimization filters

In this section, data is presented illustrating the performance of running the SLAM al-
gorithm with and without the optimization filters, i.e. temporal averaging filter and
plane-fitting filter. The data is generated in the lab-room environments Case 1. The
mean distance error to the ground truth reference for 3D-Camera SLAM with and with-
out optimization filter of this test was:

Optimized: 29.9mm
Unoptimized: 126.9mm

Figure 5.1 illustrates the ICP aligned maps produced by the optimized and unoptimized
filter scheme, their respective path estimation, and the ground truth reference path. Note
the large deviation in the generated maps in the lower right region indicating a poor map
generated by the unoptimized filter scheme.

43

5. Results

Figure 5.1: Case 1: SLAM with and without the optimization filters. AGV starts at
(1930, −905) and runs a right-hand lap around the room.

Figure 5.2: Case 1: SLAM error with and without the optimization filters. The blue
line shows the residual of the ground truth system.

Analyzing the data in Figure 5.1 and Figure 5.2 shows that without filtering the algorithm
is not able to generate an accurate trajectory, neither is it able to create an accurate map
of the environment. This means that it would neither be able to localize in the map later
on. Thus further on in the results only filtered data will be used for evaluation.

44

5. Results

5.2 Quantitative systems evaluation

The data presented here is obtained from the 2D-LiDAR system and the panoramic
3D-camera system. The plots contain a map produced by the corresponding SLAM algo-
rithms. This map has been fitted against the reference map by ICP. Each figure contains
the trajectory produced by the SLAM algorithm and the localization algorithm for that
sensor and case. Two different cases are presented from the lab-room. As previously
mentioned SLAM is running both localization and mapping, while localization only runs
localization on an existing map. The raw input data to both SLAM and localization will
be the same. The results presented will be used to analyze the systems based on the
criteria presented in Section 4.3.

5.2.1 2D-LiDAR

Figure 5.3: Case 1: LiDAR map matched to reference map, AGV starts at (1930, −905)
and runs a right-hand lap around the room.

45

5. Results

Figure 5.4: Case 2: LiDAR map matched to reference map, AGV starts at (1942, −923)
and runs two left-hand laps around the room, three-point turn, and another two laps
right-hand laps around the room. Lastly is a three-point turn and a last left-hand lap.

5.2.2 3D-Camera

Figure 5.5: Case 1: 3D-Cameras map matched to reference map, AGV starts at
(1930, −905) and runs a right hand lap around the room.

46

5. Results

Figure 5.6: Case 2: 3D-Cameras map matched to reference map, AGV starts at
(1942, −923) and runs two left-hand laps around the room, three-point turn, and an-
other two laps right-hand laps around the room. Lastly is a three-point turn and a last
left-hand lap.

5.2.3 Accuracy

Comparing and analyzing the accuracy is done on the data presented in previous sec-
tions to the ground truth system. Figure 5.7 and 5.8 contains the residual and errors for
Case 1 and 2 respectively. The error is how far each trajectory is from the ground truths
trajectory. The mean of each residual and error in Figure 5.7 and 5.8 is found in Table 5.1.

47

5. Results

Figure 5.7: Case 1: Trajectories from Figure 5.3 and Figure 5.5 compared to the ground
truth.

Figure 5.8: Case 2: Trajectories from Figure 5.4 and Figure 5.6 compared to the ground
truth.

48

5. Results

Table 5.1: Mean residuals and mean errors from case 1 and case 2. All measurements
are in mm.

Method: truth
Ground

SLAM
LiDAR

Localization
LiDAR

SLAM
Camera

Localization
Camera

Case 1: 1.1 25.1 25.4 36.0 35.2
Case 2: 1.2 21.3 21.4 82.8 141.3

By analyzing the data presented above it is shown that both LiDAR SLAM and localiza-
tion have approximately 1cm higher accuracy (lower mean residual) respectively than the
developed camera system for Case 1. For Case 2 does LiDAR have approximately 6cm
higher accuracy in SLAM and approximately 12cm for localization. One may also note
that in both cases did the camera localization have higher peaks of error than the SLAM
algorithm, even though it performed better than Camera SLAM for Case 1. This could
indicate a poor map generated by the SLAM algorithm.

5.2.4 Trueness & Repeatability

In this section data is presented from running the SLAM algorithms five times for both
the LiDAR and camera, and analyzed with regards to trueness and repeatability. The
data is the same in every instance. Localization for both LiDAR and camera uses the
first generated map by each corresponding SLAM algorithm. The localization are then
tested five times for both systems.

(a) Case 1: LiDAR SLAM five times on raw
data.

(b) Case 1: LiDAR Localization five times
on raw data with the first map from LiDAR
SLAM.

Figure 5.9

49

5. Results

(a) Case 1: 3D-Cameras SLAM five times
on raw data.

(b) Case 1: 3D-Camera Localization five
times on raw data with the first map from
3D-Camera SLAM.

Figure 5.10

(a) Case 2: LiDAR SLAM five times on raw
data.

(b) Case 2: LiDAR Localization five times
on raw data with the first map from LiDAR
SLAM.

Figure 5.11

50

5. Results

(a) Case 2: 3D-Cameras SLAM five times
on raw data.

(b) Case 2: 3D-Camera Localization five
times on raw data with the first map from
3D-Camera SLAM.

Figure 5.12

Table 5.2: Deviation error from running the same data five consecutive times in Case
1. Max and min is calculated by taking the max and min of each sample and the taking
the mean of them respectively. All measurements are in mm.

Method: SLAM
LiDAR

Localization
LiDAR

SLAM
Camera

Localization
Camera

Max: 26.8 31.8 82.9 32.8
Mean: 26.6 27.0 64.5 27.7
Min: 26.1 24.1 48.1 23.4

Table 5.3: Deviation error from running the same data five times consecutive in Case
2. Max and min is calculated by taking the max and min of each sample and the taking
the mean of the respectively. All measurements are in mm.

Method: SLAM
LiDAR

Localization
LiDAR

SLAM
Camera

Localization
Camera

Max: 23.0 24.0 112.1 141.3
Mean: 21.1 21.1 74.7 117.9
Min: 16.8 19.9 49.6 78.6

From Table 5.2 and Table 5.3 is it observable that the trueness (mean deviation error) of
the LiDAR is generally below 3cm while the camera system struggles and only makes it

51

5. Results

below 3cm in Case 1 when running localization. The mean repeatability for Case 1 and
Case 2 be calculated to:

Table 5.4: Mean repeatability from Case 1 and Case 2. All measurements are in mm.

Method: SLAM
LiDAR

Localization
LiDAR

SLAM
Camera

Localization
Camera

Case 1: 0.7 7.7 34.8 9.4
Case 2: 6.2 14.1 62.5 62.7

Analyzing the Figures 5.9a, 5.9b, 5.11a, and 5.11b yields that LiDAR is quite small in the
spread between max and min, this can be verified with the mean repeatability in Table
5.4. From the plots can it also be noted that none of the cases have major separations
between the max and min. When analyzing the Figures 5.10a, 5.10b, 5.12a, and 5.12b
does they show that the camera on the other hand have a large spread overall between
max and min in all instances except for localization in Case 1. Here is camera localization
in the size range of the LiDAR repeatability. However, from the plots can it also be
noted that there is some major separation between the max and min at some peaks. All
these factors combined imply that the result from the camera is not as repeatable when
compared to the LiDAR.

5.3 Qualitative systems evaluation

As no ground truth reference was available in the warehouse environment, the generated
data was evaluated qualitatively. That is, by visual inspection and evaluating the relative
distance deviation. The following evaluations are all from two data sets generated in
the warehouse, one smaller illustrating the sequence of driving through two aisles as to
complete a trajectory loop, and one larger to representing a full mapping of the operation
area. This area approximates 750 square meters.

5.3.1 Map and constraint generation

The two images in Figure 5.13 illustrates both the 3D-camera 5.13a and 2D-LiDAR SLAM
5.13b algorithms initiating a map and a path estimation. The starting point of each
trajectory, as seen in the bottom center of each image, is from the test platform facing
the end of an aisle. An operator then manually moves the AGV, through the corner and
down the next aisle. The trajectory constraints are also highlighted for both algorithms.

52

5. Results

(a) Camera SLAM map and con-
straints generation

(b) LiDAR SLAM map and constraints generation

Figure 5.13: Map and constraints generation of Camera and LiDAR SLAM. Note the
multicolored intra-map constrains are in similar size for both systems also indicating a
similar size of submaps.

Note that the Camera SLAM in 5.13a generates a map that has started to warp when
compared to the more accurate map generated by the LiDAR in 5.13b. Nonetheless, the
constraints and trajectory are near identical for both systems, indicating a still compara-
ble path estimation. It is also well apparent that the detection range of the LiDAR is far
superior.

In the same sample sequence, the AGV continues down the aisle and the operator then
takes another left turn, back into the previous aisle. The corresponding SLAMs are shown
in Figure 5.14.

(a) Camera SLAM with major misalign-
ment

(b) Equivalent position of LiDAR SLAM

Figure 5.14

In Figure 5.14a it is apparent that the two, parallel in real life, aisles do not align. The
path however still correctly shows the AGV driving in the center of the aisle, as compared
to the LiDAR trajectory seen in Figure 5.14b. Another noteworthy comparison of both
maps is that, due to the sparse surfaces placed at the detection level of the LiDAR, the
map it produces lacks many of the obstacles at each side of the aisle, whereas the camera
detects multiple surfaces.

Finally, after continuing further down the same aisle, the camera SLAM detects a loop-
closure, i.e it recognizes its position in the current environment as somewhere it has been

53

5. Results

before. The SLAM algorithm can then realign the path and map to the correct position,
as seen in Figure 5.15.

Figure 5.15: Camera SLAM post loop closure

In the above evaluations, all maps and trajectories were produced by their corresponding
SLAM algorithm and with no prior knowledge of the environment. Below is the same
environment data first processed by the SLAM algorithms to then generate a full map of
the environment. Now, this map is used to achieve pure localization, i.e, the map itself
is no longer update. This effectively prevents the misalignment that was seen in Figure
5.14a as the map is already realigned.

(a) Camera localization full map closure. (b) Camera localization completer run

Figure 5.16

5.3.2 Pure Localization and SLAM comparison

For both localization systems, a larger map of the warehouse was generated to represent a
case where a larger operation area was required. To get a comparable metric, the distance
deviation of each trajectory was evaluated and which is plotted in Figure 5.17. This shows
a maximal deviation of 335.7mm and a mean deviation of 99.2mm. The impact of this
deviation is implementation specific and the LiDAR trajectory shall not be considered as
a ground truth reference.

54

5. Results

Figure 5.17: Per-sample deviation in LiDAR SLAM and camera SLAM trajectory esti-
mations. Max: 335.7mm, Mean: 99.2mm

The generated map produced by the camera SLAM algorithm was then used to achieve
pure localization. The result of the final map can be seen in Figure 5.18. The same figure
also shows the trajectories generated by the camera algorithm, both by SLAM in blue,
and pure localization in green.

Figure 5.18: Full map generated by the camera SLAM. The Blue trajectory is generated
by SLAM and green is generated by localization on the final map generated by SLAM.

55

5. Results

The localization trajectory successfully follows the SLAM trajectory with a maximal de-
viation of 93.2mm and mean deviation of 10.3mm. The per-sample deviation is plotted
in Figure 5.19. This indicates that pure localization is highly accurate and performs very
well based on the map generated by the camera SLAM algorithm.

Figure 5.19: Per-sample deviation in camera localization and camera SLAM trajectory
estimations. Max: 93.2mm, Mean: 10.3mm

56

6
Discussion

This section will discuss the results presented in the previous chapter and motivations for
some of the choices made throughout the making of this thesis.

The SLAM algorithms were evaluated on a separate computer. This was done due to
software limitations on the integrated computer which prevented the use of the Temporal
averaging filter. Instead, raw-data was first captured on the internal computer of the
AGV. The data was then offloaded onto a separate computer where all filters could be
applied. The computer did however not have sufficient cooling and would thermal throttle
under heavy load. Especially for the camera SLAM due to the additional filtering. After
adding external cooling to the computer the results for the camera SLAM significantly
improved in both accuracy and repeatability. We can however not be sure that the final
results are the actual optimal as an even faster computer may improve the results even
further. In addition, it have been indicated that a software update of the integrated com-
puter is pending and which then may allow for complete implementation of the whole
system on the integrated computer.

Cartographer was chose as the framework for SLAM due to its ability to handle both 2D-
and 3D-SLAM. This was argued to generate a result from both investigated systems that
are less dependent on the SLAM framework and more on the sensor solutions themselves.
However, Cartographer was not developed with 3D-cameras in mind and is not optimized
for this sensor type, neither does it benefit from the color image that 3D-cameras can
produce. There exist SLAM frameworks that are designed for 3D-cameras and in theory,
could produce better results for the panoramic 3D-camera solution than whats is possible
with Cartographer.

Due to the result in Section 5.1 illustrating the importance of the optimization filters,
the decision was made to not continue testing the performance difference on unoptimized
filters in more cases since the performance of the unoptimized had such a hard time cre-
ating a correct map in the shorter case of the two used from the lab-room. Thus it would
not be any point to try and run SLAM on the long case as the map was far from correct
and the localization in further testing would also be guaranteed to fail.

In the testing of both the 2D-LiDAR and the panoramic 3D-camera does the setup heavily
rely on the odometry data provided by the AGV. As can be noted in the results, it seem
that most of the areas contributing to inaccurate maps and trajectories for the panoramic
3D-camera setup, are around corners. One theory for this behavior is that in corners are
the AGVs wheels slipping and underestimating the rotation of the AGV. As can be seen

57

6. Discussion

in Section 5.3, it is also observed that in the straight corridors no slip is occurring, thus
that section works quite well, further strengthening this theory. In the same section is it
however also observed that the LiDAR is not affected to the same extent, if any. A theory
to this is the longer range and higher accuracy measurements make the SLAM algorithm
see more features and therefore is better at parrying the slippage occurring in the corners.

By using color data could visual odometry and visual SLAM be utilized. We cannot say
if this would yield any performance benefits but it would be an alternative or additional
approach to the problem. The color image could also be used for object detection and
object avoidance as previously mentioned. Being able to do this with one single sensor
were the alignment between color and depth data is already known could prove beneficial,
since it would be possible to use Machine Learning or AI in order to detect objects in the
image and then with the help of the depth data get a depth reading.

Only structured light and stereo vision cameras were further investigated in this thesis.
However, one sensor technique also considered was that of the LiDAR-camera. This is
a sensor that could potentially combine both the benefits of the long and precise depth
measurements of a LiDAR and RGB data from a camera. The sensor type was however
discarded due to the lack of scientific publications evaluating its performance in compari-
son to other 3D-cameras. Additionally, the only camera found at market in a comparable
price range could not handle other sensors of the same type being in the same view. This
would make it unsuitable for our proposed panoramic solution which relies on a overlap
in the view. It would also be impossible to apply on multiple AGVs if these are to be
operating in the same area. However, due to it’s larger detection range and higher ac-
curacy compared to the previously mentioned sensor types, making this kind of sensor
an interesting alternative for future work. As long as the inability to handle crosstalk is
solved.

58

7
Conclusion

To conclude, this work has proposed a panoramic 3D-camera system based on the Re-
alsense D455 camera for natural localization in industrial environments. In order to
improve the data obtained by the 3D-cameras, two optimization filters have been devel-
oped. These have then been shown to significantly improve the proposed localization
system. Compared to previous work in this field, is it now possible to obtain usable maps
and trajectories with the 3D-cameras if using a system such as the panoramic 3D-camera
setup and optimization filter proposed in this thesis.

Comparing the trajectories produced by both systems via a ground truth reference, is it
shown that the trajectories produced by the panoramic 3D-camera system do not produce
the same level of accuracy, trueness, or repeatability as the 2D-LiDAR. However, it still
manages to produce a continuous trajectory in both small and large environments, as
shown in the presented tests.

There could be a performance to gain from testing a SLAM framework designed for 3D-
cameras and new sensors are coming to market rapidly improving the performance of
3D-cameras.

59

7. Conclusion

60

References

[1] A. Chihani. (Nov. 2018). “What is an agv?” [Online]. Available: https://www.
flexqube.com/news/what-agv/.

[2] (Feb. 2020). “Automated guided vehicle market size, share & trends analysis report
by vehicle type, by navigation technology, by application, by end-use industry, by
component, by battery type, by region, and segment forecasts, 2020 - 2027,” [On-
line]. Available: https://www.grandviewresearch.com/industry- analysis/
automated-guided-vehicle-agv-market.

[3] L. Sabattini, V. Digani, C. Secchi, G. Cotena, D. Ronzoni, M. Foppoli, and F. Oleari,
“Technological roadmap to boost the introduction of agvs in industrial applications,”
in 2013 IEEE 9th International Conference on Intelligent Computer Communication
and Processing (ICCP), 2013, pp. 203–208. doi: 10.1109/ICCP.2013.6646109.

[4] BlueBotics. (Jan. 2021). “Agv navigation methods 1: Line following and tags,” [On-
line]. Available: https://bluebotics.com/agv-navigation-line-following-
tags/.

[5] A. TREVOR and H. CHRISTENSEN, “Automated guided vehicle survey,” Georgia
Institute of Technology, Tech. Rep., 2009.

[6] N. MADALI. (Jul. 2020). “Light detection and ranging (lidar),” [Online]. Available:
https://towardsdatascience.com/light- detection- and- ranging- lidar-
8f22971eeaea.

[7] H. Weber, “Lidar sensor functionality and variants,” Product Unit Ranging LiDAR
sensors at SICK AG, Whitepaper, Jul. 2018.

[8] T. Q. Tran, A. Becker, and D. Grzechca, “Environment mapping using sensor fusion
of 2d laser scanner and 3d ultrasonic sensor for a real mobile robot,” Sensors, vol. 21,
no. 9, 2021, issn: 1424-8220. doi: 10.3390/s21093184. [Online]. Available: https:
//www.mdpi.com/1424-8220/21/9/3184.

[9] C. Debeunne and D. Vivet, “A review of visual-lidar fusion based simultaneous
localization and mapping,” Sensors, vol. 20, no. 7, p. 2068, Apr. 2020.

[10] R. Bostelman, T. Hong, and R. Madhavan, “Towards agv safety and navigation ad-
vancement obstacle detection using a tof range camera,” in ICAR ’05. Proceedings.,
12th International Conference on Advanced Robotics, 2005., 2005, pp. 460–467. doi:
10.1109/ICAR.2005.1507450.

[11] P. Pratama, N. Trong Hai, H.-K. Kim, D. H. Kim, and S. Kim, “Positioning and
obstacle avoidance of automatic guided vehicle in partially known environment,”

61

https://www.flexqube.com/news/what-agv/
https://www.flexqube.com/news/what-agv/
https://www.grandviewresearch.com/industry-analysis/automated-guided-vehicle-agv-market
https://www.grandviewresearch.com/industry-analysis/automated-guided-vehicle-agv-market
https://doi.org/10.1109/ICCP.2013.6646109
https://bluebotics.com/agv-navigation-line-following-tags/
https://bluebotics.com/agv-navigation-line-following-tags/
https://towardsdatascience.com/light-detection-and-ranging-lidar-8f22971eeaea
https://towardsdatascience.com/light-detection-and-ranging-lidar-8f22971eeaea
https://doi.org/10.3390/s21093184
https://www.mdpi.com/1424-8220/21/9/3184
https://www.mdpi.com/1424-8220/21/9/3184
https://doi.org/10.1109/ICAR.2005.1507450

References

International Journal of Control, Automation and Systems, vol. 14, Oct. 2016. doi:
10.1007/s12555-014-0553-y.

[12] J. Manhed, “Investigating simultaneous localization and mapping for an automated
ground vehicle,” M.S. thesis, Linköping University, 2019.

[13] MathWorks. (Jan. 2021). “Slam (simultaneous localization and mapping),” [Online].
Available: https://www.mathworks.com/discovery/slam.html.

[14] J. Dai, L. Yan, H. Liu, C. Chen, and L. Huo, “An offline coarse-to-fine precision
optimization algorithm for 3d laser slam point cloud,” Remote Sensing, 2019.

[15] S. Ji, Z. Qin, J. Shan, and M. Lu, “Panoramic slam from a multiple fisheye camera
rig,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 159, pp. 169–183,
2020, issn: 0924-2716. doi: https://doi.org/10.1016/j.isprsjprs.2019.11.
014. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0924271619302758.

[16] G. Robots. (Jan. 2019). “What is lidar technology?” [Online]. Available: https:
//blog.generationrobots.com/en/what-is-lidar-technology/#:~:text=
For%20a%202D%20LiDAR%20only,on%20X%20and%20Y%20axes.%5C&text=For%
20a%203D%20LiDAR%2C%20the,X%2C%20Y%20and%20Z%20axes..

[17] T. Raj, F. Hashim, A. Huddin, M. F. Ibrahim, and A. Hussain, “A survey on
lidar scanning mechanisms,” Electronics, vol. 9, p. 741, Apr. 2020. doi: 10.3390/
electronics9050741.

[18] W. Boonsuk. (Aug. 2016). “Investigating effects of stereo baseline distance on ac-
curacy of 3d projection for industrial robotic applications,” [Online]. Available:
http://cd16.iajc.org/wp- content/uploads/Camera- ready- papers/101-
x-16___Investigating%20Effects%20of%20Stereo%20Baseline%20Distance%
20_REVISED--Boonsuk_.pdf.

[19] T. Jia, Z. Zhou, and H. Gao, “Depth measurement based on infrared coded struc-
tured light,” Journal of Sensors, vol. 2014, p. 8, 2014. doi: https://doi.org/10.
1155/2014/852621.

[20] R. Hamzah, M. S. Hamid, H. Rosly, N. M. Z. Hashim, and Z. A. F. M. Napiah,
“An aligned epipolar line for stereo images with multiple sizes roi in depth maps for
computer vision application,” International Journal of Information and Education
Technology, pp. 15–19, Jan. 2011. doi: 10.7763/IJIET.2011.V1.3.

[21] G. Farnebäck, “The stereo problem,” M.S. thesis, Link¨oping University, Sweden,
2002.

[22] V. Tata. (May 2020). “3-d reconstruction with vision,” [Online]. Available: https://
towardsdatascience.com/3-d-reconstruction-with-vision-ef0f80cbb299.

[23] S. Routray, A. K. Ray, and C. Mishra, “Analysis of various image feature extraction
methods against noisy image: Sift, surf and hog,” in 2017 Second International
Conference on Electrical, Computer and Communication Technologies (ICECCT),
2017, pp. 1–5. doi: 10.1109/ICECCT.2017.8117846.

62

https://doi.org/10.1007/s12555-014-0553-y
https://www.mathworks.com/discovery/slam.html
https://doi.org/https://doi.org/10.1016/j.isprsjprs.2019.11.014
https://doi.org/https://doi.org/10.1016/j.isprsjprs.2019.11.014
https://www.sciencedirect.com/science/article/pii/S0924271619302758
https://www.sciencedirect.com/science/article/pii/S0924271619302758
https://blog.generationrobots.com/en/what-is-lidar-technology/#:~:text=For%20a%202D%20LiDAR%20only,on%20X%20and%20Y%20axes.%5C&text=For%20a%203D%20LiDAR%2C%20the,X%2C%20Y%20and%20Z%20axes.
https://blog.generationrobots.com/en/what-is-lidar-technology/#:~:text=For%20a%202D%20LiDAR%20only,on%20X%20and%20Y%20axes.%5C&text=For%20a%203D%20LiDAR%2C%20the,X%2C%20Y%20and%20Z%20axes.
https://blog.generationrobots.com/en/what-is-lidar-technology/#:~:text=For%20a%202D%20LiDAR%20only,on%20X%20and%20Y%20axes.%5C&text=For%20a%203D%20LiDAR%2C%20the,X%2C%20Y%20and%20Z%20axes.
https://blog.generationrobots.com/en/what-is-lidar-technology/#:~:text=For%20a%202D%20LiDAR%20only,on%20X%20and%20Y%20axes.%5C&text=For%20a%203D%20LiDAR%2C%20the,X%2C%20Y%20and%20Z%20axes.
https://doi.org/10.3390/electronics9050741
https://doi.org/10.3390/electronics9050741
http://cd16.iajc.org/wp-content/uploads/Camera-ready-papers/101-x-16___Investigating%20Effects%20of%20Stereo%20Baseline%20Distance%20_REVISED--Boonsuk_.pdf
http://cd16.iajc.org/wp-content/uploads/Camera-ready-papers/101-x-16___Investigating%20Effects%20of%20Stereo%20Baseline%20Distance%20_REVISED--Boonsuk_.pdf
http://cd16.iajc.org/wp-content/uploads/Camera-ready-papers/101-x-16___Investigating%20Effects%20of%20Stereo%20Baseline%20Distance%20_REVISED--Boonsuk_.pdf
https://doi.org/https://doi.org/10.1155/2014/852621
https://doi.org/https://doi.org/10.1155/2014/852621
https://doi.org/10.7763/IJIET.2011.V1.3
https://towardsdatascience.com/3-d-reconstruction-with-vision-ef0f80cbb299
https://towardsdatascience.com/3-d-reconstruction-with-vision-ef0f80cbb299
https://doi.org/10.1109/ICECCT.2017.8117846

References

[24] I. Cabezas, V. Padilla, and M. Trujillo, “A measure for accuracy disparity maps
evaluation,” vol. 7042, Nov. 2011, pp. 223–231, isbn: 978-3-642-25084-2. doi: 10.
1007/978-3-642-25085-9_26.

[25] R. Jain, R. Kasturi, and B. G. Schunck, “Machine vision,” in. Published by McGraw-
Hill, Inc, 1995, ch. 11.

[26] M. F. Abu Hassan, A. Hussain, M. H. Md Saad, and K. Win, “3d distance measure-
ment accuracy on low-cost stereo camera,” Scientific International, vol. 29, pp. 599–
605, May 2017.

[27] M. Gustafsson and P. Jarnemyr, “3d camera selection for obstacle detection in a
warehouse environment,” M.S. thesis, Linköping University, 2020.

[28] von Terry Arden. (Mar. 2017). “The advantages of stereo snapshot over single cam-
era design,” [Online]. Available: https://lmi3d.com/blog/advantages-stereo-
snapshot-over-single-camera-design/.

[29] S. Doggett. (Jan. 2020). “What are point clouds, and how are they used?” [Online].
Available: https://www.dronegenuity.com/point-clouds/.

[30] T. M. |. (Jan. 2021). “What is point cloud modeling?” [Online]. Available: https:
//www.takeoffpros.com/2020/07/14/what-is-point-cloud-modeling/.

[31] K. Klasing, D. Althoff, D. Wollherr, and M. Buss, “Comparison of surface normal
estimation methods for range sensing applications,” May 2009, pp. 3206–3211. doi:
10.1109/ROBOT.2009.5152493.

[32] K. Pulli and M. Pietikäinen, “Range image segmentation based on decomposition
of surface normals,” 2004.

[33] T. Hashimoto and M. Saito, “Normal estimation for accurate 3d mesh reconstruc-
tion with point cloud model incorporating spatial structure,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, Jun. 2019.

[34] Rbrusu, J. Sprickerhof, G. Brindeiro, and F. Kuang. (Sep. 2018). “The pcd (point
cloud data) file format,” [Online]. Available: https : / / pcl . readthedocs . io /
projects/tutorials/en/latest/pcd_file_format.html#pcd-file-format.

[35] C. Moreno and M. Li, “Frame filtering and skipping for point cloud data video
transmission,” Advances in Science, Technology and Engineering Systems Journal,
vol. 2, pp. 76–83, Jan. 2017. doi: 10.25046/aj020109.

[36] W. Boonsuk. (20119). “Post-processing filters,” [Online]. Available: https://dev.
intelrealsense.com/docs/post-processing-filters.

[37] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http:
//www.deeplearningbook.org.

[38] P. C. Lib. (Jan. 2021). “Downsampling a pointcloud using a voxelgrid filter,” [On-
line]. Available: https : / / adioshun . gitbooks . io / pcl / content / Tutorial /
Filtering / pcl - cpp - downsampling - a - pointcloud - using - a - voxelgrid -
filter.html.

63

https://doi.org/10.1007/978-3-642-25085-9_26
https://doi.org/10.1007/978-3-642-25085-9_26
https://lmi3d.com/blog/advantages-stereo-snapshot-over-single-camera-design/
https://lmi3d.com/blog/advantages-stereo-snapshot-over-single-camera-design/
https://www.dronegenuity.com/point-clouds/
https://www.takeoffpros.com/2020/07/14/what-is-point-cloud-modeling/
https://www.takeoffpros.com/2020/07/14/what-is-point-cloud-modeling/
https://doi.org/10.1109/ROBOT.2009.5152493
https://pcl.readthedocs.io/projects/tutorials/en/latest/pcd_file_format.html#pcd-file-format
https://pcl.readthedocs.io/projects/tutorials/en/latest/pcd_file_format.html#pcd-file-format
https://doi.org/10.25046/aj020109
https://dev.intelrealsense.com/docs/post-processing-filters
https://dev.intelrealsense.com/docs/post-processing-filters
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://adioshun.gitbooks.io/pcl/content/Tutorial/Filtering/pcl-cpp-downsampling-a-pointcloud-using-a-voxelgrid-filter.html
https://adioshun.gitbooks.io/pcl/content/Tutorial/Filtering/pcl-cpp-downsampling-a-pointcloud-using-a-voxelgrid-filter.html
https://adioshun.gitbooks.io/pcl/content/Tutorial/Filtering/pcl-cpp-downsampling-a-pointcloud-using-a-voxelgrid-filter.html

References

[39] Q.-Y. Zhou, J. Park, and V. Koltun, Open3d, https : / / github . com / intel -
isl/Open3D, 2021.

[40] E. S. L. Gastal and M. M. Oliveira, “Domain transform for edge-aware image and
video processing,” ACM TOG, vol. 30, no. 4, 69:1–69:12, 2011, Proceedings of SIG-
GRAPH 2011.

[41] D. T. Anders Grunnet-Jepsen, Depth post-processing for intel® realsense™ depth
camera d400 series, https://dev.intelrealsense.com/docs/depth-post-processing, Jun.
2020.

[42] E. Gedraite and M. Hadad, “Investigation on the effect of a gaussian blur in image
filtering and segmentation,” Jan. 2011, pp. 393–396, isbn: 978-1-61284-949-2.

[43] R. L. Lagendijk, J. Biemond, A. Rareş, and M. J. Reinders, “Chapter 4 - video
enhancement and restoration,” in The Essential Guide to Video Processing, A.
Bovik, Ed., Boston: Academic Press, 2009, pp. 69–108, isbn: 978-0-12-374456-2.
doi: https : / / doi . org / 10 . 1016 / B978 - 0 - 12 - 374456 - 2 . 00005 - 0. [On-
line]. Available: https : / / www . sciencedirect . com / science / article / pii /
B9780123744562000050.

[44] R. Kromer, A. Abellan, D. Hutchinson, M. Lato, T. Edwards, and M. Jaboyedoff, “A
4d filtering and calibration technique for small-scale point cloud change detection
with a terrestrial laser scanner,” Remote Sensing, vol. 7, pp. 13 029–13 052, Oct.
2015. doi: 10.3390/rs71013029.

[45] P. Besl and N. D. McKay, “A method for registration of 3-d shapes,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, pp. 239–256,
1992. doi: 10.1109/34.121791.

[46] A. Nguyen and B. Le, “3d point cloud segmentation: A survey,” Nov. 2013, pp. 225–
230, isbn: 978-1-4799-1201-8. doi: 10.1109/RAM.2013.6758588.

[47] R. Bondemark, “Improving slam on a tof camera by exploiting planar surfaces,”
M.S. thesis, Linköpings Universitet, Sep. 2016.

[48] R. F. Salas-Moreno, B. Glocken, P. H. J. Kelly, and A. J. Davison, “Dense planar
slam,” in 2014 IEEE International Symposium on Mixed and Augmented Reality
(ISMAR), 2014, pp. 157–164. doi: 10.1109/ISMAR.2014.6948422.

[49] A. Trevor, S. Gedikli, R. Rusu, and H. Christensen, “Efficient organized point
cloud segmentation with connected components,” Proceedings of Semantic Percep-
tion Mapping and Exploration, S., pp. 1–6, Jan. 2013.

[50] M. Muja and D. Lowe, “Fast approximate nearest neighbors with automatic algo-
rithm configuration.,” vol. 1, Jan. 2009, pp. 331–340.

[51] R. Rusu, “Semantic 3d object maps for everyday manipulation in human living en-
vironments,” KI - Künstliche Intelligenz, vol. 24, Nov. 2010. doi: 10.1007/s13218-
010-0059-6.

[52] E. W.Weisstein. (). “Hessian normal form.,” [Online]. Available: https://mathworld.
wolfram.com/HessianNormalForm.html (visited on 05/24/2021).

64

https://github.com/intel-isl/Open3D
https://github.com/intel-isl/Open3D
https://doi.org/https://doi.org/10.1016/B978-0-12-374456-2.00005-0
https://www.sciencedirect.com/science/article/pii/B9780123744562000050
https://www.sciencedirect.com/science/article/pii/B9780123744562000050
https://doi.org/10.3390/rs71013029
https://doi.org/10.1109/34.121791
https://doi.org/10.1109/RAM.2013.6758588
https://doi.org/10.1109/ISMAR.2014.6948422
https://doi.org/10.1007/s13218-010-0059-6
https://doi.org/10.1007/s13218-010-0059-6
https://mathworld.wolfram.com/HessianNormalForm.html
https://mathworld.wolfram.com/HessianNormalForm.html

References

[53] H. Durrant-Whyte, D. Rye, and E. Nebot, “Localization of autonomous guided
vehicles,” in Robotics Research, G. Giralt and G. Hirzinger, Eds., London: Springer
London, 1996, pp. 613–625, isbn: 978-1-4471-0765-1.

[54] M. Veisman, Y. Noam, and S. Gannot, “The hybrid cramér-rao lower bound for
simultaneous self-localization and room geometry estimation,” EURASIP Journal
on Advances in Signal Processing, vol. 2021, no. 1, Jan. 2021. doi: 10.1186/s13634-
020-00702-6. [Online]. Available: http://dx.doi.org/10.1186/s13634-020-
00702-6.

[55] H. Durrant-Whyte, D. Rye, and E. Nebot, “Localization of autonomous guided
vehicles,” in Robotics Research, G. Giralt and G. Hirzinger, Eds., London: Springer
London, 1996, pp. 613–625, isbn: 978-1-4471-1021-7.

[56] T. Chong, X. Tang, C. Leng, M. Yogeswaran, O. Ng, and Y. Chong, “Sensor
technologies and simultaneous localization and mapping (slam),” Procedia Com-
puter Science, vol. 76, pp. 174–179, 2015, 2015 IEEE International Symposium on
Robotics and Intelligent Sensors (IEEE IRIS2015), issn: 1877-0509. doi: https:
//doi.org/10.1016/j.procs.2015.12.336. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S1877050915038375.

[57] M. W. M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte, and M.
Csorba, “A solution to the simultaneous localization and map building (slam) prob-
lem,” IEEE Transactions on Robotics and Automation, vol. 17, no. 3, pp. 229–241,
2001. doi: 10.1109/70.938381.

[58] roboticsknowledgebase. (Aug. 2018). “Apriltags,” [Online]. Available: https : / /
roboticsknowledgebase.com/wiki/sensing/apriltags/#:~:text=AprilTags%
20is%20a%20visual%20fiducial,even%20in%20low%20visibility%20conditions..

[59] F. Li, J. Hao, J. Wang, J. Luo, Y. He, D. Yu, and X. Cheng, “Visiomap: Lightweight
3-d scene reconstruction toward natural indoor localization,” IEEE Internet of
Things Journal, vol. 6, pp. 8870–8882, Oct. 2019. doi: 10 . 1109 / JIOT . 2019 .
2924244.

[60] G.-S. Cai, H.-Y. Lin, and K. Shih-Feng, “Mobile robot localization using gps, imu
and visual odometry,” Nov. 2019, pp. 1–6. doi: 10.1109/CACS47674.2019.9024731.

[61] J. G. da Silva Neto, P. J. da Lima Silva, F. Figueredo, J. M. X. N. Teixeira, and
V. Teichrieb, “Comparison of rgb-d sensors for 3d reconstruction,” in 2020 22nd
Symposium on Virtual and Augmented Reality (SVR), 2020, pp. 252–261. doi: 10.
1109/SVR51698.2020.00046.

[62] A. Grunnet-Jepsen, A. T. Paul Winer, J. Sweetser, K. Zhao, T. Khuong, D. Nie,
and J. Woodfill, “Multi-camera configurations - d400 series stereo cameras,” Tech.
Rep., 2020.

[63] Hokoyo, Safety laser scanner safety laser scanner uam-05lp user’s manual, English,
Hokuyo, 151 pp., published.

[64] A. Pålsson and M. Smedberg, “Investigating simultaneous localization and mapping
for agv systems,” M.S. thesis, Chalmers University of Technology / Department of

65

https://doi.org/10.1186/s13634-020-00702-6
https://doi.org/10.1186/s13634-020-00702-6
http://dx.doi.org/10.1186/s13634-020-00702-6
http://dx.doi.org/10.1186/s13634-020-00702-6
https://doi.org/https://doi.org/10.1016/j.procs.2015.12.336
https://doi.org/https://doi.org/10.1016/j.procs.2015.12.336
http://www.sciencedirect.com/science/article/pii/S1877050915038375
http://www.sciencedirect.com/science/article/pii/S1877050915038375
https://doi.org/10.1109/70.938381
https://roboticsknowledgebase.com/wiki/sensing/apriltags/#:~:text=AprilTags%20is%20a%20visual%20fiducial,even%20in%20low%20visibility%20conditions.
https://roboticsknowledgebase.com/wiki/sensing/apriltags/#:~:text=AprilTags%20is%20a%20visual%20fiducial,even%20in%20low%20visibility%20conditions.
https://roboticsknowledgebase.com/wiki/sensing/apriltags/#:~:text=AprilTags%20is%20a%20visual%20fiducial,even%20in%20low%20visibility%20conditions.
https://doi.org/10.1109/JIOT.2019.2924244
https://doi.org/10.1109/JIOT.2019.2924244
https://doi.org/10.1109/CACS47674.2019.9024731
https://doi.org/10.1109/SVR51698.2020.00046
https://doi.org/10.1109/SVR51698.2020.00046

References

Computer Science and Engineering, https://hdl.handle.net/20.500.12380/250073,
2017.

[65] B. Gerkey. (Feb. 2019). “Gmapping,” [Online]. Available: http://wiki.ros.org/
gmapping.

[66] S. Kohlbrecher and J. Meyer. (Apr. 2014). “Hector slam,” [Online]. Available: http:
//wiki.ros.org/hector_slam.

[67] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in 2d lidar
slam,” in 2016 IEEE International Conference on Robotics and Automation (ICRA),
2016, pp. 1271–1278.

[68] M. Filipenko and I. Afanasyev, “Comparison of various slam systems for mobile
robot in an indoor environment,” Sep. 2018. doi: 10.1109/IS.2018.8710464.

[69] R. Milijas, L. Markovic, A. Ivanovic, F. Petric, and S. Bogdan, A comparison of
lidar-based slam systems for control of unmanned aerial vehicles, 2021. arXiv: 2011.
02306 [cs.RO].

[70] A. Nuchter, M. Bleier, J. Schauer, and P. Janotta, “Improving google’s cartographer
3d mapping by continuous-time slam,” ISPRS - International Archives of the Pho-
togrammetry, Remote Sensing and Spatial Information Sciences, vol. XLII-2/W3,
pp. 543–549, Feb. 2017. doi: 10.5194/isprs-archives-XLII-2-W3-543-2017.

[71] C. Authors. (Jan. 2021). “Cartographer ros integration,” [Online]. Available: https:
//google-cartographer-ros.readthedocs.io/en/latest/.

[72] ——, (2021). “Algorithm walkthrough for tuning.” Revision c06879b6, [Online].
Available: https://google-cartographer-ros.readthedocs.io/en/latest/
algo_walkthrough.html.

[73] Qualisys track manager, 2.5, Qualisys AB, Mar. 2017.

66

http://wiki.ros.org/gmapping
http://wiki.ros.org/gmapping
http://wiki.ros.org/hector_slam
http://wiki.ros.org/hector_slam
https://doi.org/10.1109/IS.2018.8710464
https://arxiv.org/abs/2011.02306
https://arxiv.org/abs/2011.02306
https://doi.org/10.5194/isprs-archives-XLII-2-W3-543-2017
https://google-cartographer-ros.readthedocs.io/en/latest/
https://google-cartographer-ros.readthedocs.io/en/latest/
https://google-cartographer-ros.readthedocs.io/en/latest/algo_walkthrough.html
https://google-cartographer-ros.readthedocs.io/en/latest/algo_walkthrough.html

DEPARTMENT OF ELECTRICAL ENGINERING
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden
www.chalmers.se

www.chalmers.se

	Introduction
	Related work
	Objective
	Research question
	Limitations

	Thesis outline

	Theory
	Sensors and sensor data
	LiDAR
	2D-LiDAR
	3D-LiDAR

	3D-camera
	Stereo triangulation
	Structured light

	Point cloud

	Data filtering
	Pass-through filter
	Decimation filter
	Voxel filter
	Spatial edge-preserving filter
	Temporal averaging filter
	Plane-fitting filter
	Nearest neighbour search
	Normal estimation
	Discontinuity map
	Plane labeling
	Point to plane projection

	Localization

	Implementation
	Test platform
	Localization
	System architecture and data filtering
	Data types
	Systems architecture
	Data filtering
	Camera intrinsic filters
	Point cloud merger
	Temporal averaging filter
	Plane-fitting filter

	Evaluation methodology
	Ground truth evaluation
	Evaluation of optimization filters
	Evaluation criteria
	Reference map

	Results
	Effects of optimization filters
	Quantitative systems evaluation
	2D-LiDAR
	3D-Camera
	Accuracy
	Trueness & Repeatability

	Qualitative systems evaluation
	Map and constraint generation
	Pure Localization and SLAM comparison

	Discussion
	Conclusion
	References

