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Abstract

Transformation elastodynamics, the solid mechanical counterpart of transformation optics, is an approach to
re-routing of mechanical, potentially harmful, transient waves and vibrations, in order to protect sensitive
structures or substructures. A large-scale example would be to try to re-route seismic waves, whether from
ground explosions or earthquakes, by arranging the properties of the material beneath and around some sensitive
infrastructure so as to mimic the surrounding soil without any infrastructure. This can be seen as making the
infrastructur ”invisible”. This term does not refers to making the infrastructur unseen, but rather making it
invisible from harmful waves or vibrations. In that case, the effect of the waves acting on the infrastructure
will be minimized. A less ambitious (and considerably more realistic) application would be to re-route elastic
vibrations around the clamping points of panels in a vehicle, so as to minimize the noise from vibrating panels.
Just as for transformation optics, the approach utilizes the concept of form-invariance of the equations of
motion under diffeomorphisms to give recipes of how graded materials can mimic homogeneous and isotropic
bodies, and cloak the presence of structures within the transformational cloak.

We have studied the use of several types of graded materials for cloaking, and in the present paper we
describe how graded micro-polar materials may be used to cloak against Rayleigh waves. We have implemented
recipes for the graded properties of a micro-polar cloak from transformation elastodynamics into a modified
version of the Structural Mechanics module of COMSOL MultiphysicsTM. In numerical experiments we consider
how a modeled, partially buried ‘pipeline’ may be protected from an incident transient Rayleigh wave by
re-routing the wave under the pipeline.

Keywords: Invisibility, Cloak, Meta-materials, Mechanical Invisibility, Homogenization, Micro-polar, Rayleigh
waves, Bulk waves
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1 Introduction
Less than a decade ago, it was discovered that invisibility cloaking devices could be more than mere fiction.

Originally for a type of ‘X-ray’ technique called electric surface impedance tomography, where a voltage
distribution is applied to the surface of a body. The resulting electric currents through the surface are then
measured, with a view to reconstructing the conductivity inside the object. Theoretically, the interior of the
object could, under certain circumstances, hide (or ‘cloak’) an embedded body in such a manner that even the
fact that something was hidden would be undetectable. Soon similar phenomena were shown to be possible
also for electromagnetic waves.

Figure 1.1: Some geometries where mechanical cloaking might be desirable.

Also in solid mechanics, there is considerable interest in achieving ‘invisibility,’ however not primarily for
hiding objects from sight. Important contributions to elastodynamic transformational cloaking have been
given by, among others [16][14][3][8][13]. Recently, an approach to partial cloaking using fiber composites
has been explored, see e.g [15]. The applications in mechanics include protection of structures and parts of
structures from potentially harmful, transient waves and steady state vibrations, see Figure 1.1 for some generic
examples. Another, similar type of situation would be ground waves from trains or other vehicles in rapid
transit. These waves could possibly be redirected so as to protect buildings situated too close to the tracks
or roads. A suggested larger scale application, protection against seismic waves from earthquakes, could be
achieved by using cloaking to re-route the waves around sensitive infrastructure, cf. Figure 1.2. The cost of a
large scale application for protection of for example a nuclear power plant would be astronomical, but it should
be compared to the likewise astronomical cost in case of a large-scale collapse of a nuclear power plant due to
seismic waves.
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Figure 1.2: A potential application of mechanical cloaking.

At smaller scales, an application could be to re-direct elastic waves around e.g. clamping points for panels in
vehicles or other structures, thereby achieving some noise control by entirely passive means. On the very small
scale, protection of sensitive electronic components from vibrations might be accomplished by surrounding the
components by a suitable mechanical cloak. The construction of mechanical cloaks requires fine-tuning of the
elastic properties of the cloaking material, so-called meta-materials [1].

Multiscale mechanics is the topic of connecting different length scales in mechanics. For solid materials,
the macroscale response is defined through suitable microscale models that resolve the actual topology on the
lower scale. The straight-forward question in multiscale mechanics (or micromechanics) is what the macroscale
response will be for a given structure on the microscale. One classical example is homogenization of elastic
properties for micro-heterogeneous materials [12]. Modern approaches in computational homogenization [9]
can also be used to design the microstructure such that a specific response on the macroscale is obtained. In
this thesis the results on simulations of cloaking in solid mechanics are described. COMSOL MultiphysicsTM

has been used to simulate different material responses. In order to apply the non-symmetric elasticity matrix
properties that was needed, a modification of the weak formulation in the software was made. In the next step,
simulations of homogenization are required of micro-heterogeneous materials to find meta-materials suitable for
producing the required macro-properties for cloaking.

1.1 Purpose

The purpose of this project was to study a few applications of mechanical cloaking using numerical
implementation (FEM). In particular, the possibility to construct microstructures that return the required
macroscale response, and thus the effective cloaking, was investigated. The analysis was carried out for academic
test problems, indicating future possibilities and allowing for rigorous comparison to results in the literature.
The study was initially restricted to stationary response and then expanded to transient studies. The goal of
the project was to investigate different material models and the possibility to apply these for protection of
structures and parts of structures from potentially harmful transient waves and steady state vibrations, which
was reported October 2012.

1.2 Limitations

The focus of the project have been on testing one of many transformations from a homogenous media into
an anisotropic (cloaking) material. Homogenization of the material should only be made if the investigation
concludes that the material can be homogenized using first- and second-order computational homogenization.
The simulation was performed on a 2D case and the expansion to 3D case is outside the scope of the thesis.
The possibility to design the pertient meta-material is investigated, however the actual design of topology and
properties is outside the the scope of this thesis.
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2 Modeling of meta-materials

2.1 Preliminaries

Meta-materials are artificial materials that are designed to have properties that are not found in nature.
The properties for these materials are not dominated by the individual atoms rather by artificially produced
structures (or ”meta-atoms”). In order to model a meta-material, specific material properties are needed in
order to produce requested results. This information can be obtained by use of homogenization. Material
properties in microscopic scale are studied and RVE:s (Representative volume element) are used to generate
effective properties on macroscopic scale. In order to illustrate the procedure, an overview of the computational
homogenization model is described in which both first and second order computational homogenization are
discussed. Further, micro-polar materal is used as cloaking material and micro-polar continuum is described in
a general sense.

2.2 Homogenization

Multi-scale modeling is a technique used when solving a problem on two or more scales. On the macro-scale
one may have a material that appears isotropic, while being anisotropic/heterogeneous on its micro-scale.
In order to obtain the effective properties on macro-scale, the micro-scale with its RVE is used. Assuming
separation of scales these RVEs represent the material properties in single points on the macro-scale. The
effective properties of a specific material are obtained by use of volume averaging, or homogenization, on a
computational cell with typical diameter L� although the shape of the computational cell is irrelevant in
principle. If a random microstructure is considered, the true effective properties are then obtained as the
converged values when L� becomes sufficiently large. In practice it is always necessary to choose a cell of
finite size, an RVE, with typical diameter LRV E . The definition of the RVE can be expressed as a statistically
representative sample of the considered material on the subscale. See Figure 2.3 for an illustration of a RVE
and its deformation.
If complete scale separation is taken into account then in order for it to be qualified as RVE its size LRV E
must be,

• Sufficiently small compared to the typical macroscale dimension of the structural component
LRV E << LMAC

• Sufficiently large compared to the typical subscale dimension of microconstituents e.g. grains,
Lsub << LRV E

That the RVE is sufficiently small here means that the primery variables such as, macroscale smooth displacement
vary at most linearly within the RVE. This is known as scale separation or first order homogenization. In
the other case when RVE is sufficiently large then this indicates that the average field variables for a given
microscopic “point” do not change significantly at further increase of the RVE size.

Figure 2.1: Undeformed and deformed RVE example
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2.2.1 Computational Homogenization

First, an RVE is assigned to each integration point on macro-scale. Boundary conditions are then applied on
the RVE in order to calculate the stiffness. There are different boundary conditions that can be applied on the
RVE; displacements boundary conditions (DBC), traction boundary condition (TBC) and periodic boundary
conditions (PBC). Solving the boundary value problem gives the consistent constitutive tangent stiffness, C,
which can be calculated for each element of the RVE. Using the volume averaging from homogenization, the
effective properties can be calculated and returned to macro-scale integration point. These are then used
to assemble the macro stiffness and to solve the problem[9]. See Figure 2.2 for the procedure of first order
computational homogenization.

Figure 2.2: First-Order Computational Homogenization Scheme.

2.2.2 First order homogenization

Static equilibrium equation

−∇ • σT = f in Ω� (2.2.1)

The volume averages on the RVE can be defined as

〈�〉 def=
1

|Ω�|

∫
Ω�

�dΩ

Introducing the effective strain and stress tensors as the averages yields

ε
def
= 〈ε〉�, σ

def
= 〈σ〉�

From now on the strain tensor is denoted as, ε = ∇ ⊗ u. By use of the Gauss Theorem it is possible to
transform the volume integrals from the strain and stress averages to surface integrals on the RVE [5].
From the strain and stress averages we make use of the Gauss Theorem to obtain the identity∫

Ω�

∇⊗ u dΩ =

∫
Γ�

u⊗ n dΓ (2.2.2)

Here, n is the outward unit normal on Γ�. This then gives that

〈ε〉� =
1

|Ω�|

∫
Ω�

ε dΩ =
1

2 |Ω�|

∫
Ω�

[∇⊗ u+ [∇⊗ u]T] dΩ =
1

2 |Ω�|

∫
Γ�

[u⊗ n+ [u⊗ n]T] dΓ (2.2.3)
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〈σ〉� =
1

|Ω�|

∫
Ω�

σ dΩ =
1

|Ω�|

∫
Ω�

∇ • [σT ⊗ x] dΩ +
1

|Ω�|

∫
Ω�

f ⊗ x dΩ =

=
1

|Ω�|

∫
Γ�

n • σT ⊗ x dΓ +
1

|Ω�|

∫
Ω�

f ⊗ x dΩ (2.2.4)

In the special case when f = 0

〈σ〉� =
1

|Ω�|

∫
Γ�

t⊗ x dΓ (2.2.5)

In order to conect the macroscopic properties to the microscopic the Hill- Mandel macrohomogeneity condition
is used

σ •• δε = 〈σ •• δε〉� ∀δu ∈ U� (2.2.6)

Where U� is the space of admissible displacements u which is restricted to a given RVE occupying the domain
Ω� with the boundary Γ�.
In the case of linear elasticity on the subscale the effective constitutive relationship is defined as

σ = C •• ε (2.2.7)

where C is the constitutive tangent stiffness. The classical boundary conditions used for the RVE problem in
2.2.1 are the

Displacement boundary conditions (DBC)

u(x) = u+ ε • [x− x] x ∈ Γ� (2.2.8)

Which typically gives an overly stiff response for a small RVE.

Traction boundary condition (TBC)

t(x) = σ • n x ∈ Γ� (2.2.9)

Which typically results in a too low stiffness.
When the size of the RVE increases, the results for (DBC) and (TBC) converges. Periodic boundary conditions
(PBC) are more accurate but does not the desired boundary conditions.

Two scale implementation in FEM, FE2, for a linear problem

Figure 2.3: Implementation scheme.
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First a macro mesh is generated for the problem considered. At every integration point a RVE is assigned.
Loop over all elements in the macro mesh and for each element a RVE calculation is performed based on the
boundary conditions discussed earlier. Using the homogenization theory the averaged material properties can
be calculated from the assembled RVE stiffness matrix.
The consistent constitutive tangent stiffness is then computed and returned to every integration point on the
macro mesh. Using the tangent, the stiffness matrix of the macro scale is computed and used when solving the
macroscopic system, see Figure 2.3
Note : If microscopically homogeneous, the tangent will be the same and only one RVE has to be calculated.
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2.2.3 Second order homogenization

Previously the first order computational homogenization has been presented. This method has two major
disadvantages; first, the method does not incorporate the size of the microstructure analyzed which makes it
impossible to address geometrical size effects that can occur. Secondly, when it comes to uniformity of the
microscopic fields to each microstructural representative cell a difficulty arise. This uniformity relies on scale
separation and is not valid in critical regions of high deformation gradients, where a high variation of the
microscopic fields is pressent. In order to solve the mentioned problems, a second order computational homoge-
nization procedure is used. This method leads to a higher order continuum model that uses the macroscopic
deformation tensor and its gradient to define the essential boundary conditions on a microstructural RVE.
Based on the boundary conditions, the boundary value problem can be solved which generates the macroscopic
stress tensor and a higher-order stress tensor. In general this will by automation deliver the microstructurally
based constitutive response of the higher order macrocontinuum. Figure 2.4 illustrates the procedure for a
second order homogenization scheme.

Figure 2.4: Second-Order Computational Homogenization Scheme.

Consider an non-linear map that describes the transformation from the undeformed macroscopic state X, to
the deformed state x at time t. This map can then be described as x = φ(X, t). For an infinitesmal element,
classical continuum mechanics lead to the linear maping

dx =
∂φ

∂X
• dX = H • dX (2.2.10)

The deformation gradient tensor H is given by

H =

(
∂φ

∂X

)
= (∇x) = ∇⊗∇⊗ u (2.2.11)

The equations 2.2.11 can be used as point of departure from the first-order computational homogenization.
When line elements in volumes of finite size are involved, the computations become more complicated due
to the fact that equation 2.2.11 is not appliable in this case. Therefore a new expression for ∆−→x might be
obtained as

∆x = H •∆X +
1

2
∆X •∇G •∆X +O(∆X3) (2.2.12)

where G is a third order tensor and computed as

G =
∂

∂X

(
∂φ

∂X

)
= ∇H (2.2.13)
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For the second order computational homogenization approach both the macroscopic deformation tensor
H, and its gradient G are used to prescribe the kinematic boundary conditions on an RVE. The equilibrium
equation for the microstructural RVE (in the absence of body forces) is defined as

∇ • σT = 0 (2.2.14)

where σT is the Caushy stress tensor. To be able to determine the RVE averaged stress measures an extention
of the Hill-Mandel condition is used as

1

V0

∫
V0

σ •• δHdV0 = σ •• δH +Q
...δG (2.2.15)

here Q is the macroscopic higher order stress tensor. The relations for σ and Q are

σ =
1

V0

∫
Γ0

pXdΓ0 (2.2.16)

Q =
1

2V0

∫
Γ0

XpXdΓ0 (2.2.17)

These equations relate the macroscopic stress tensor and the macroscopic higher order stress tensor to
microstructural variables on the RVE boundary. Here the higher order model on the macroscale is defined as

−∇ • σT +∇ • (∇ •Q)T = 0 (2.2.18)

2.3 Micro-polar continuum

Another empiric model accounting for size effects is the micro-polar continuum. When classical continuum
mechanics is considered then each material particle is assigned a certain position, irrespective of orientation, at
a certain time. The difference between these materials and micro-polar materials is that, micro-polar material
can additionally be oriented. In order to define the orientation of the micro-polar material an additional
object is assigned, called ”director”. Micro-polar continuum can be viewed as a special case of micromorphic
continuum. This means that micromorphic materials undergo an additional micromotion in comparison to
classical continuum mechanics. This additional micromotion corresponds to the rotation and deformation of
the material particle at microscale. This micromotion is the ”director” and is denoted by φ [17].
Considering the stress tensor of micro-polar continuum mechanics then it is noted that this tensor is no longer
symmetric which is a result of the independent spin of particles. In order to derive the balance laws of mechanics
and the constitutive equations needed for a broad arsenal of micro-polar materials, axiomatic methods of
rotational mechanics or continuum mechanics as well as methods for invarient quantity and of functional
analysis are taken into consideration.
In the begining of this chaper the governing and constitutive equations for the case considered are described.
In order to use a material that has the posibility to cloak or deflect vibrations of different kinds, a specific
configurations has to be fullfilled. The constitutive stiffness matrix C has to have major symmetry but not minor
symmetry. Therefore one of the materials that satisfies the needed configuration is micro-polar material. This
leads to some difficulities regarding computational homogenization. Both first and second order computational
homogenization requires not only major symmetry but also minor symmetry. This indicates that neither of
these can be used in order to model the material of intrest. Therefore other evaluation techniques have to be
used. A study on the relation between second order homogenization and micro-polar theory is presented in [6].
A general (hemitropic) micro-polar medium satisfies the constitutive equations[18][4]

σ = C •• (∇⊗ u− ε • φ) + B •• (∇⊗ φ) (2.3.1)

µ = BT •• (∇⊗ u− ε • φ) + A •• (∇⊗ φ) (2.3.2)

and the equations of motion

∇ • σT = ρ ü (2.3.3)

∇ • µT + ε •• σ =  • φ̈ (2.3.4)

The totally non-symmetric third order tensor in three diemensions may be defined as ε = I× I, where I is the
second order unit tensor. The double contraction is defined so that X •• Y = XijYij for X = Xijei ⊗ ej and

8



Y = Yijei ⊗ ej . Similarly K •• Y = Kijk`Yk`ei ⊗ ej for K = Kijk` ei ⊗ ej ⊗ ek ⊗ e`. C, A are major symmetric
tensors of order 4. The symmetry is under transpose of the first and last index pairs. Boldface superscript T
has been used to denote this transposition, and ordinary sans serif T for transpose of second-order tensors.
The major symmetry requirement can thus be stated as

AT = Ak`ijei ⊗ ej ⊗ ek ⊗ e`

= Aijk`ei ⊗ ej ⊗ ek ⊗ e` = A

and similarly for C. Note that neither of these tensors need satisfy the minor symmetries, whereby e.g.
Cijkl 6= Cijlk in general. B is a tensor of order 4, with no assumptions on symmetry. Computational
homogenization for micro-polar material continuum has been proposed by [6] where an energy equivalent RVE
was considered. However, the consistent kinematic description is still an open question.

We now assume three things. First, that the material is centro-symmetric so that B = 0. Second, that
time-harmonic conditions prevail, with time factor exp(−iωt). And third, that the curvature stiffness is much
higher than the stiffness with respect to strains. Then the tensor A in some suitable sense becomes very large,
while the micro-moment tensor µ remains finite.

To be slightly more specific regarding the last point, let’s say that we e.g. have some scalar parameter a
that we let tend to positive infinity, and that for some ε > 0

A = aM � M +O[a1−ε] as a→ +∞

where M = Mijei⊗ej is some second order tensor. (We also assume that the matrix formed from its coefficients
Mij is invertible.) Here the boxed multiplication of two second order tensors is defined as

X � Y = XikYj` ei ⊗ ej ⊗ ek ⊗ e`

Then, if µ is to remain finite, we must have that ∇⊗ φ→ 0 as a→ +∞, and φ→ constant throughout the
body. If the boundary condition is φ


∂Ω

= 0, and the limit of φ is uniform, then in the limit φ must vanish
throughout Ω.

Under these three assumptions, the set of four equations implies

∇ • σT + ρω2 u = 0 in Ω (2.3.5)

σ = C •• (∇⊗ u) (2.3.6)

This means that, given suitable boundary conditions on the displacement and/or traction vecto, the assumption
leads to gives a boundary value problem for the displamentfield alone. The field µ may subsequently be
retrieved. Equations 2.3.5 and 2.3.6, must be supplemented by a boundary condition

n̂ • σT

∂Ω

= h (2.3.7)

where h is a prescribed vector field defined on ∂Ω, and n̂ is the outward-pointing unit normal.
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3 Mechanical cloaking of structures

3.1 Cloaking transformation

As found in a special case in [7], and more generally in [13], a body consisting of this kind of micro-polar
material can mimic a homogeneous isotropic elastic body in the following sense: If the body inside Ω is
micro-polar with a stiffness and density that varies in a suitable manner, the Traction-to-Displacement (TtD)
map, that maps h 7→ u


∂Ω

for the micro-polar solid, may be identically the same as that of a homogeneous,
isotropic solid occupying the same region Ω.

Consider a diffeomorphism ψ : Ω → Ω such that the limit of ψ on ∂Ω is the identity map. Let
C = Cijk` ei ⊗ ej ⊗ ek ⊗ e` denote the elasticity tensor a homogeneous isotropic elastic material, and let ρ0 be
its constant mass density, and put

Cijk`(X) = J(X)
∂Xj

∂xp
cipkq

∂X`

∂xq
(3.1.1)

ρ(X) = J(X)ρ0

where

x = ψ(X), J(X) = det

(
∂ψ(X)

∂X

)
,

∂X

∂x
=

(
∂ψ(X)

∂X

)−1

Note that the elasticity tensor of the micro-polar material, with components given by Eq. (3.1.1), does
indeed satisfy the major symmetry condition. Then we may consider the xj as cartesian coordinates in the
homogeneous isotropic solid, and the Xj as cartesian coordinates in the inhomogeneous, anisotropic micro-polar
material, each occupying Ω. If the displacement field in the homogeneous material is u(x), satisfying

∂

∂xj

(
cijpq

∂up(x)

∂xq

)
+ ρ0 ω

2ui(x) = 0 (3.1.2)

then U(X) = u(ψ−1(X)) satisfies

∂

∂Xj

(
Cijpq(X)

∂Up(X)

∂Xq

)
+ ρ(X)ω2Ui(X) = 0 (3.1.3)

Even without special assumptions on the normal derivative of ψ on ∂Ω, it may be verified that both tractions
and displacements on the boundary ∂Ω coincide in the two cases. For any surface excitation of the micro-polar
body, the response at the boundary is the same as for a homogeneous body. The TtD maps of the two bodies
are identical.

Figure 3.1: ‘Blowing up’ a point to make a hiding-place.
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The idea is by blowing up a point in the homogeneous material model into the anisotropic (cloaking) material
model by means of the transformation, one can then hide an object inside the new domain, see Figure 3.1.
The cloak is primeraly constructed for bulk waves, but also works well with Rayleigh waves. This because the
Rayleigh wave effects are isolated to the surface and will thus mimic bulk waves and the boundary conditions
on the surface will be satisfied because of symmetry [11].

3.2 Special case of cloaking transformation for bulk waves

One possible transformation can be found in litterature by Brun et al. [7]. The transformation used is
illustrated in Figure 3.1

Figure 3.1: Brun transformation

Coordinate transformation

r
′

= r0 +
r1 − r0

r1
r, θ

′
= θ if r ≤ r1

r
′

= r, θ
′

= θ if r > r1

Outside the cloak (r > r1) and inside the cloak (r < r0) we have (Navier equation):

∇ ·C : ∇u + ρω2u + b = 0

where u is the displacement, ρ is density, C is the fourth-order constitutive tensor of linear elastic material and
b = b(x) is the spatial distribution of a simple harmonic force.

After the transformation, in the region r
′ ∈ [r0, r1] the Navier equations are mapped into equations:

∇ ·C′ : ∇u + ρ′ω2u = 0

where the body forces are outside the ring and the stretched density is:

ρ
′

=
r − r0

r

(
r1

r1 − r0

)2

ρ

and the elasticity tensor C
′

has non zero cylindrical components:

C
′

rrrr =
r − r0

r
(λ+ 2µ) , C

′

θθθθ =
r

r − r0
(λ+ 2µ) ,

C
′

rrθθ = C
′

θθrr = λ, C
′

rθθr = C
′

θrrθ = µ,
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C
′

rθrθ =
r − r0

r
µ, C

′

θrθr =
r

r − r0
µ

with λ and µ the Lame moduli characterizing the isotropic behavior described by C. C
′

has not the minor
symmetries.

At the outer boundary of the cloak (r = r1), the transformation gives r
′

= r1. The transformed density on
this boundary is:

ρ
′

=
r1

r1 − r0
ρ

and the transformed cylindrical components of the elasticity tensor are:

C
′

rrrr =
r1 − r0

r1
(λ+ 2µ) , C

′

rθrθ =
r1 − r0

r1
µ

This transformation has been tested to verify the implementation in the software and the results can be found
in Chapter 5.
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4 FE- implementation

4.1 Finite Element Method Theory

To implement and test our transformation a model can be implemented using FEM. There are a lot of
software that are based on this theory and COMSOL MultiphysicsTMis one of them. With this theory one can
implement the model in MATLAB, but the calculation speed may be slow.

4.1.1 Strong form

The equation of motion is stated as (stationary):

∇ • [C •• (∇⊗ u)]T + ρω2 u + b = 0 (4.1.1)

which can be written as:

∇ • σT + ρω2 u + b(t) = 0 (4.1.2)

4.1.2 Weak form

Using a weight vector v and multiplicating it on both sides of the equation gives:∫
A

vT
(
∇ • σT + ρω2u + b

)
dA = 0 (4.1.3)

Using that (Gauss theorem):∫
A

vT
(
∇ • σT

)
dA =

∫
Γh

vTh dΓ +

∫
Γg

vTt dΓ−
∫

A

(∇v)
T
σ dA

We get∫
A

vT
(
∇ • σT

)
dA−

∫
A

vTρω2u dA=

∫
Γh

vTh dΓ +

∫
Γg

vTt dΓ+

∫
A

vTb(t) dA for t ∈ (0,T)

(4.1.4)

u = g (t) on Γg, t ∈ (0,T)

u = u0 in A, t ∈ (0,T)

(u = u̇0 on Γg, t ∈ (0,T) )

This is the weak form with boundary conditions, which can be used together with Galerkins method in order
to implement this in FEM.

4.1.3 FE-formulation

Hooke’s elasticity:

σ = C •• (∇⊗ u) (4.1.5)

With Galerkin method one can convert the continuous problem into a discrete problem which can then be
implemented in the computer. Using Galerkin method we approximate u as u = Na and inserting into the
weak form yields:

−ω2Ma+Ka=f (4.1.6)

where

(K)ij=

∫
A

(∇⊗Ni) •• C •• (∇⊗Nj)dA
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(M)ij=

∫
A

NiρNjdA

f=

∫
Γh

NTh dΓ +

∫
Γg

NTt dΓ +

∫
A

NTb (t) dA

The final equations for the stationary problem can be written as:

(K− ω2M)a=f (4.1.7)

In order to model a transient problem we have the equation of motion as:

∇σ + ρω2 ü + b(t) = 0 (4.1.8)

Using the same procedure as before, e.g. obtaining weak form and then strong form, we obtain the final
equation:

Mä + Ka=f (4.1.9)

which is semi-discrete, e.g. discrete in space but not in time.

4.2 Implementation in COMSOL MultiphysicsTM

Figure 4.1: Parameters used in COMSOL MultiphysicsTM

To implement the considered model into COMSOL MultiphysicsTM , a number of parameters had to be
defined, as indicated in Figure 4.1. With these values all other important functions and parameters can be
constructed and used in the software. The radial values, r0 and r1 describe the inner and outer radii of the
cloaking region. ks and As are parameters used for the Rayleigh wave construction in the software while the
rest are material parameters that describe the material characteristics.
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4.2.1 Modifications to COMSOL MultiphysicsTM

In the model considered in this thesis, the elasticity matrix is not symmetric as in the standard COMSOL
MultiphysicsTM Structural Mechanics module. The elasticity matrix in COMSOL MultiphysicsTM is represented
as in Figure 4.2.

Figure 4.2: Elasticity matrix in COMSOL MultiphysicsTM Structural Mechanics module

In the case considered the matrix of elasticity needs to be expanded to a 9x9 matrix with all the components.
The reason for this is that the elasticity matrix is non-symmetric in this case. Below is an illustration of a
general 9x9 elasticity matrix and how it looks for the case considered.

C =



c1111 c1122 c1133 c1112 c1123 c1113 c1121 c1131 c1132

c2211 c2222 c2233 c2212 c2223 c2213 c2221 c2231 c2232

c3311 c3322 c3333 c3312 c3323 c3313 c3321 c3331 c3332

c1211 c1222 c1233 c1212 c1223 c1213 c1221 c1231 c1232

c2311 c2322 c2333 c2312 c2323 c2313 c2321 c2331 c2332

c1311 c1322 c1333 c1312 c1323 c1313 c1321 c1331 c1332

c2111 c2122 c2133 c2112 c2123 c2113 c2121 c2131 c2132

c3111 c3122 c3133 c3112 c3123 c3113 c3121 c3131 c3132

c3211 c3222 c3233 c3212 c3223 c3213 c3221 c3231 c3232


=

=



c1111 c1122 0 0 0 0 0 0 0
c2211 c2222 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 c1212 0 0 c1221 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 c2112 0 0 c2121 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


This matrix is then implemented into COMSOL MultiphysicsTMby a modification.
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Figure 4.3: Modifying module in COMSOL MultiphysicsTM

The relevant module is based on weak form formulation, and may be modified to suit the problem on hand.
In order to implement the non-symmetric 12 and 21 components, the weak formulation was modified in the
Linear Elastic Material model, see Figure 4.3.

Figure 4.4: Modified stiffnesses.

The non-zero components of the modified elasticity matrix that were used in the model for the anisotropic
cloaking material is illustrated in Figure 4.4.
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5 Results
In order to validate the model considered in the thesis work, first the results of the special case of cloaking

transformation by Brun [7] are illustrated. Thereafter the model is simulated in COMSOL MultiphysicsTMand
the results are presented.

5.1 Special case - Verification for bulk waves

In order to validate the model considered in the thesis work a comparisson to Brun results is made. Here the
elastic cloak is embedded in an isotropic elastic material with Lame moduli λ = 2.3Pa and µ = 1Pa and the
density ρ = 1m/s2, which corresponds to normalized parameters for fused silica. r0 = 0.2m and r1 = 0.4m can
be used in the example as well as a harmonic concentrated force applied in x-direction with angular frequency
ω = 40Hz.

Figure 5.1: Brun Cloak

The three pictures in Figure 5.1 correspond to three different cases; from left, only homogeneous material,
special case of cloaking transformation by Brun and finally an improvment of the model by Brun with a rigid
body. In the first case, when only homogeneous material is applied, the re-routing of the waves does not occur
at all, which is as predicted. Considering the Brun cloak, where the inner circular material is isotropic as
the outer material, even though it has a cloaking effect a shadow is pressent, which should be minimized. A
possible modification that can be made is to use a rigid body in the inner circle as in this thesis, this leads to a
better cloaking with less shadow. A further comparison between the different cases can be seen in Figure 5.2
and Figure 5.3 which illustrate the displacement along a diagonal cut-through of the geometry in Figure 5.1.
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Figure 5.2: Cloak performance X-direction

Figure 5.3: Cloak performance Y-direction

Comparing the three different cases we can clearly see that Brun cloak mimics the homogenous material
very well. With a modification of the material inside the cloak to be a rigid body, the results are even better.
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5.2 Considered case - Cloaking for surface waves

The results from the special case of cloaking transformation [7] have been reconstructed, the focus is shifted
to the considered problem. Consider the geometry indicated in Figure 5.1, where a pipeline is partially buried
in the ground.

Figure 5.1: A light pipeline, partially buried in a homogeneous and isotropic ground.

We consider two types of support for the pipeline. First the layer between the soil and the pipeline is just
made of the same homogeneous and isotropic material as the rest of the ground, and the pipeline is in ‘welded’
contact with the support. In the second case we consider the intermediate layer to be made of a micro-polar
material which is graded so that it cloaks the pipeline. The diffeomorphism chosen only affects the radial
coordinate r, measured from the rotational symmetry axis of the pipeline. We put ψ(r) = φ(r)er, with φ(r)
being an invertible map of r0 < r < r1 onto 0 < r < r1, where r0 is the inner radius and r1 the outer radius of
the cloaking layer. Since we demand φ(r1) = r1, the transformation (in 2D) must allow

∫ r1

r0

ρ(r)rdr =
1

2
ρ0r

2
1 (5.2.1)

which constitutes a necessary condition on the density function. (Incidentally, this guarantees that the total
mass of the cloak is finite, and in fact equal to the mass of the homogeneous half cylinder it mimics.) There are
of course an infinity of transformations of this type, and we chose one of these, namely

φ(r) = r1

√
r2 − r2

0

r2
1 − r2

0

(5.2.2)

5.2.1 Geometry

The geometry that was used needed to be elongated, in order to simulate uni-directional propagation of
Rayleigh waves. In order to even better model the infinite medium around the model, perfectly matched layers
(PML) were implemented.

Figure 5.2: The geometry

Two different cases were simulated, one with a sliding, a.k.a. roller, boundary condition between the massive
body and the cloak, and the other one with a welded contact and no cloaking material, cf. Figure 5.2.
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5.2.2 Mesh

Figure 5.3: The mesh

The time step is a crucial part of the simulation procedure in COMSOL MultiphysicsTM. To illustrate this,
values on ρ, µ, and ω have been used from the previous section. In order to obtain a suitable illustration, the
time increment has to be within the following tolerance

∆t <
L

Cs
(5.2.3)

where L is the mesh element size, Cs =
√
µ/ρ = 1 m/s, is the shear wave speed and ∆t is the time increment.

The time increment will thus only depend on the element size: ∆t < L. Rayleigh wave speed can then be
approximated as shear wave speed and the equation still holds. In our model we used the time-dependent
solver in order to see the effects of Rayleigh wave propagation. The simulation ended at 10s with a time-step of
0.1s which was chosen to be less than that corresponding to the element size, see Figure 5.3, and sufficiently
small, balancing accuracy against computing time. By using smaller time-stepping we get better accuracy in
the results, but the computation speed may be slow.

5.2.3 Simulation results

In addition to introducing the cloak, we decouple the pipeline further by allowing it to slide without friction
on the cloaking layer.

In the simulations, the combined effect of the sliding BC and the cloak is to decrease the amplitude of the
movement of the pipeline induced by the incident Rayleigh wave by at least five orders of magnitude.

In Figure 5.4 we see two snapshots as the (transient) Rayleigh wave impinges on the pipeline from the left
in the picture.

Figure 5.4: Snapshots of transient Rayleigh wave incident upon an un-cloaked, welded, and a cloaked, sliding,
pipeline, respectively. (Note that the scale of the displacement is immensely exaggerated, since we are actually
in the linear regime.) The approximate path followed by the pipeline in the uncloaked case is indicated by an
ellipse.

In both cases the cylindrical pipeline rotates on a roughly elliptical path, counterclockwise, but the amplitude
in the cloaked, sliding, case is so small that it cannot be discerned at this scale. From an animation of the
movement, we find [7] that when the Rayleigh wave enters the cloaking layer, it essentially ‘dives’ under the
pipeline and resurfaces behind the pipeline. In this way the cloak protects the pipeline from potential damage.
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Figure 5.5: Movement of pipeline in welded contact with homogenous material

Figure 5.6: Movement of pipeline rolling on a micropolar cloak

Comparing the movements in the two cases, see Figure 5.5 and 5.6, we see that the cloak in conjunction
with rolling (or sliding) boundary conditions decreases the induced oscillation of the pipeline with many orders
of magnitude! Already the use of rolling contact in fact brings a considerable decrease of the induced movement.
Notable is that the Rayleigh wave movement is eliptical and so is the movement of the pipeline. The difference
is that the eliptical path taken by the pipeline is slightly rotated to the right compared to the Rayleigh wave
motion. The reason for this effect is because of scattering, when the Rayleigh wave reaches the near side of the
pipe a reflection occurs. Because of the reflection, the force on the far side is lower than the force on the near
side, therefore the pipe generates a tilted eliptical rotation as can be seen.
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6 Discussion
During the thesis a number of complications have been dealt with and solved in order to make us of the

model described in Chapter 2-3. Because there are immense amount of possible transformations to transform
the coordinates of a homogenous material on to a anisotropic (cloaking) material, a suitable transformation
was therefore used as described in Chapter 5. Other diffeomorphism have not been tested, but there are future
possibilities.

In order to simulate the different cases discussed, COMSOL MultiphysicsTM was chosen as the main software
to use. The reason is that there are articles/papers published covering the same inverse problem area as
considered in the thesis with good results, using the chosen software, COMSOL MultiphysicsTM[7]. In order to
get an understanding of the software and how to implement the case of interest in the thesis, simulations from
an already published article [7] were reconstructed. During the reconstruction it was noted that the original
Structural Mechanics module in COMSOL MultiphysicsTM did not support the non-symmetric elasticity tensor
C (the anti-symmetry of the 12 and 21 components of the tensor). To overcome this obstacle it was made clear
that COMSOL MultiphysicsTM is based on weak-form formulation and therefore could be modified to suite the
problem on hand, see Chapter 4 for further details.

There are at least two different approaches when it comes to homogenization of different materials; first-
order and second-order computational homogenization. However, in their standard format these techniques
require that the elasticity tensor C is symmetric. The material model considered in the thesis is based on the
constitutive equations of micro-polar material which require that the elasticity tensor is non-minor symmetric
in order to have the cloaking abilities. This is why first- and second-order computational homogenization
schemes are not directly applicable and other homogenization techniques need to be investigated. In order to
obtain improved results of the reconstruction some potential error sources were covered. Firstly, we had the
modifications made to the software in order to implement the non-symmetric elasticity tensor. To guarantee
that the modifications were made correct a comparison to the already existing results [7] was done. For the case
in the thesis, a different transformation from the one in the mentioned article was used, and further confirmed
working as the one from the article.

Furthermore, the finite element mesh size could be seen as an error source. The mesh should be ”fine”
enough to cover the effects of the Rayleigh wave and ”course” enough to be effective and fast when running
the simulation. Calculation of the velocity of the Rayleigh wave was done in Chapter 5 and thereafter a
suitable time-step could be chosen based on the time step formula in the same chapter. When it comes to the
transformation from a homogeneous material into an anisotropic material, the calculations where confirmed
analytically by the use of Mathematica. Finally, there are a set of approximations made in the model. In
order to model the rigid body, the density should be infinitely small while the Lamé parameters should be
infinitely large. This is of course not possible to implement into the software and the parameters were set much
smaller/larger than the surrounding material. The components of the elasticity tensor of the cloaking material,
anisotropic material, should also be infinitely small/large and were set to be much smaller/larger than the
surrounding isotropic material.

The results obtained from this thesis touches upon sustainable development in the way that it takes material
aspects for different areas into consideration. For instance, if the described cloaking material is developed and
manufactured in the future, then the possibility of prolonging infrastructural life can be a possibility. The
prolongation will be obtained by protection of the specific infrastructure from potentially harmful, seismic
waves and vibrations that can cause destruction otherwise.

22



7 Conclusions
Summing up, it can be concluded that elastodynamic cloaking from Rayleigh waves is theoretically possible,

using a certain limiting type of such materials. However, this should come as no great surprise, as it has
already been shown that cloaking against bulk waves is possible in that manner. In fact, the Rayleigh wave
at a horizontal plane may be represented as a linear combination of such waves, albeit with imaginary wave
numbers in the vertical direction. COMSOL MultiphysicsTM proved to be useful, after some modification, to
perform the modeling of this type of cloak.

Future work may involve development of different homogenization techniques in order to model the
substructure of the micro-polar material, which returns the desired cloaking properties on the macroscale.
A study of several alternative approaches to minimize movements induced by elastic surface waves may be
involved by using other material models, e.g. fiber-reinforced materials, porous medium. Finally, it is of interest
to see if the material can be constructed and tested in real-life.
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