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WHY HAVE ¥0U CHOSEN WE

Why have You chosen me,

Out of millions Your child to be?
You Know all the wrong that I have done.
Oh how could You pardon me,
Forgive my iniquities,

To save me give Jesus Your son.

But Lord help me be,
What You want me to be.
Your Word I will strive to obey.
My life I now give, for You I will live,
And walk by Your side all the way.

I am amazed to Rnow,

That a God so great could love me so,
Is willing and wanting to bless.
His love is so wonderful,

His mercy so bountiful,

I can’t understand it I confess.

Because everything is from Him, to Him and for Him only.



Abstract

A new method is introduced for performing reagesiestion for chemical library design
based on topological (2D) pharmacophore fingerpri@ptimal reagent selection is achieved
by optimising the Shannon entropy of the 2D phawphore distribution for the reagent set.
The method, termed ProSAR, is therefore expecteshtionerate compounds that could serve
as a good starting point for deriving a structucvity relationship (SAR) in combinatorial
library design. The main goal for current studyoalidate this methodology by applying it
on several library design examples where the acatovapounds were already known and
comparing the performance of ProSAR libraries withndom libraries and traditional
diversity based libraries. The results show thadSRAR libraries generally have better
pharmacophore coverage than libraries coming friimaradesign strategies. The effectiveness
of generating active compounds for the designedrybis also evaluated by first doing a
similarity search against GVKBio database withdityrcompounds as query structures, then
comparing the number of retrieved active compoufwisdifferent libraries. The results
demonstrate that in most of cases, ProSAR librae#seve more active compounds than
other libraries. The ProSAR strategy is furtheramqed to include product property profiles
for aqueous solubility, hERG risk assessment etcdhé optimisation process so that the
reagent pharmacophore diversity and the productpgrty profile are optimised
simultaneously via a genetic algorithm. The valwhatstudy results show that by using the
ProSAR methodology, the designed libraries caneaghgood pharmacophore coverage and

product property profile simultaneously.



Table of Contents

N = I ¥ 2 O S i
TABLE OF CONTENTS ..ottt bbbttt bbbt i
LIST OF FIGURES. ..ottt sttt st sttt eseenesbessessenseneenensennennensens iv
IS IO ] 17N = I SRS %
CHAPTER 1. PROJECT BACK GROUND.......cccctiiriiieieieesese ettt 1
1.1  Combinatorial ChEMISIIY ......c.ccviiiiiiieess e et e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e 1
1.2 Combinatorial Library DeSign Srat@gi€sS ......ccuuueuurrriiiiiieeeiiiiiiiiee e e e e e e emenee e e 2
1.2.1 Focused LiDrary DESIQN ........uuuuuuuuuueueiimmmeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeseneeneeeeeeees 3
1.2.2 Targeted Library DeSign.........ccooiiiiii e 3
1.2.3  Diversity LiDrary DESIGN ........uuueiiiieeeaiimmm e e e e e eesmnee e e e 3
1.2.4 Reagent-based Library DeSIgN ...........uuuuueeemmemriiiiiieeieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 4
1.2.5 Product-based Library DeSIQN...........c..c e e eeveeeeeeeeeeeesveesseasesassresrsesreeeeeeeees 4
1.3 MOIECUIAT DIVEISILY ... ccci i i i i i ee e e e s n s 5
1.3.1  MOIECUIAT DESCIIPION ... ettt e ettt ettt ettt e e et ee e eeeeeeaaaaaaaeeens 5
1.3.1.1 Daylight FINQeIPrint ......ccooiiiiiiiiiiiee et 7
T I @ D o I T =T o | 8
1.3.1.3 Pharmacophore FINgerprint ..........c.uuveiiiicccmeiteeeeee e 8
1.3.2 Weighting SCheme .......ooiiiii e 9
1.3.3  Similarity COEffiCIENT.........cevviieiiiiieieeeee e 9
1.3.3.1 Tanimoto CoeffiCIENt...........uuiiiiiiiieii i) 01
1.4 Chemical Structure REPreSENTALION ......... oo errrereeeeeiiiiiiireeee e e e e e seeeees s 11
L4.1 SMILES ...ttt et e e e e e e e 11
1.4.1.1 SMILES Specification RUIES.................. e veevveeniiiniiiiiiiiineeeanns 11
O O Ot A 0] 0 OO RERRR 12
O 0 2 = o ] g o R 12
1.4.1.1.3 BranCRES .....ccciiiiiiiiiiiiiiiieeee ettt 12
1.4.1.1.4 CyCliC SIIUCLUIES ......oviiiiiiieeeeeeiiiee e e 13
1.4.1.1.5 Disconnected StrUCLUIES ..........uuuurrumuimmaaaaaaaeeaeeeeaeeeaeeeaeenn 13
L1.4.2  SIMARTS Lottt e e e e e e s et e e e e e s sennr e e e e e e e e aan 14
1.4.2.1 ALOMIC PrMITIVES ...oeiiiiiiiiiiiiii ettt ee e 14
1.4.2.2 Bond PrimMItIVES .....ccooiiiiiieeeeeeeeee e 15
1.5 Structure and Activity RelationShip .......coovcccee oo 15
1.6 Aims and Objectives for the Project.......cccccceeeiiiiiiii e 16
CHAPTER 22 MATERIALSAND METHODS ..o 17
P2 R = (o 15 A |V =11 0 To o [o] [0 |V RSP PPPPPP 17
2.1.1 Identification and Encoding of the Pharmacophorg&iprint .............ccoevveveeeeeee. 17
2.1.2 Optimisation in Pharmacophore Space for ProSAR.............cccooiiiiiiiiiiiieeennns 18
2.1.3 Optimisation of the Pharmacophore Entropy and tbeaky Property Profile........ 19
2.1.4 Diversity Based Library Design Strategy.........ccccceeviiiiiiiiiceeeeeee 20
2.2 LIDrary EXQMPIES ... e 20
2.3 Reagent Preparation............cooo oo 23
2.4  Computational ProCEAUIE ..........cooviiiiii ettt e e e e e e e e e e 24
2.4.1 ProSAR LiDrary DESIQN .......ccoviiiiiiiiiiiei e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneseneeeneeees 24
2.4.2 Random LiDrary DESIGN ..........uuuuuuuuuuuiunaaaaaeeeeeeeeeeeeeeeeeeeeeeeeeeeeseessseesnesenennneeeees 25



2.4.3 Diversity Library DESIgN........cocoiiiiiiiii e e e et e et eeeee e 25

2.4.4 Preparation of Validation Set............oooiiiiiieiiiiii e 25

245 SIMIANTY SEAICK ....oviiiiiiiii e 26
CHAPTER 3: RESULTSAND DISCUSSIONS......cco ettt 27
3.1 Comparison of Pharmacophore Coverage for Diffekédsrary Design Strategies............... 27
3.2 Comparison of Retrieved Active Compounds for DigfetrLibrary Design Strategies......... 32
3.3 Extension of ProSAR to Include Property Profile iBygation.............cccccvvvvvevivnniinnnnnn. 34
CHAPTER 4: CONCLUSIONS ... .ottt sttt st 36
2 =T I @ 1] AN o S 37
APPENDIX B ..ottt bbb bbbttt ne bbbt n e eneas 46
APPENDIX € ..ottt bbbttt b e bbbt h bbbttt neeneas 51
APPENDIX D ..ottt sttt tesae st e e eneeseeseesessensesse s e e eneeneenenseeaententenaeneenens 54
APPENDIX E ..ottt sttt b ettt bbbt b e e 57



Figure 1.1:

Figure 1.2:

Figure 1.3:

Figure 1.4:

Figure 1.5:

Figure 1.6:

Figure 1.7:

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:
Figure 2.9:
Figure 2.10:
Figure 2.11:
Figure 2.12:

Figure 3.1:

Figure 3.2:

Figure 3.3:

Figure 3.4:

List of Figures

Reaction scheme showing the reaction of compounglitA compound B to

form compound AB. This method is the traditionahthesis in which only one
compound can be made at @ time. ....... oo 1
Reaction scheme showing the combinatorial chemigincept. It can be seen

that from m range of analogues A’s and n rangenalagues B’s a total of
(mxn) possible compounds can be synthesized Bte.ti..........ccccooiiiiiiiiiinininennnn. 2
Some examples of molecular descriptors and theissdication calculated

from 1D, 2D and 3D molecular structure [24]. ..oeeeeeeeiiiieieieee e 6.
Identification of pharmacophore and its fingerprigach feature in a molecule

is identified first. After that, string of bins generated based on it. Features
that are absent and present are denoted with @,aedpectively. ...........ccceeeeeeenn. 9
lllustration of braches in SMILES representation. the first row, graph
representations of molecules are shown, followed itsy corresponding
SMILES notation in the second row (Adapted from Iyt Theory Manual

/22 ) SRR 13
Deriving SMILES notation for a cyclic structure fnoa cyclohexane (Taken
from Daylight Theory Manual [28]).........uuesummmmreeeeeereeeeeeereeeeeeeeeeseerrenrirnnnrreee.
Example of representing a disconnected structusdium phenoxide (Taken

from Daylight Theory Manual [28])...........esmmmmeeeeeereeeeeeeeeieeiieeeiieeeeeeeieeeeeeeeeees 13
Identification and encoding of a reagent pharmaoopfingerprint. ..................... 18
Combinatorial library example for 1D_Lib1......ccoumiiiiiii e, 20
Reaction scheme for ID_LiDL........cooioiiiiiicceemmr e e e veeennees 21
Combinatorial library example for 2D _LibL......cccouuniiiiiiiiiiii e, 21
Reaction scheme for 2D_LiDL........cooiiiiiiicceemme e e e eeaeeennees 21
Combinatorial library example for 2D_Lib2.......ccc.uiiiiiii e, 22
Reaction scheme for 2D_LiD2...........oviiiiiceeeemii e 22
Combinatorial library example for 2D _Lib3......ccouniiiiiiiiiic e, 22
Reaction scheme for 2D_LiD3........uuieiiii e 22
Combinatorial library example for 2D_Lib4 ..o, 23
Reaction scheme for 2D_LiD4...........vviiiiceeeeeii e 23

Combinatorial library example taking into accouriieth pharmacophore
entropy and property pProfile..........oooo oo

Comparison of pharmacophore coverage in 1D_Libfatip example taken

from Appendix A and Appendix B. (a) 5-pharmacophtyges fingerprint (b)
6-pharmacophore types fINGEIrPrint. ..........ceecceeeeiiiiiiriiiiiei e 28
Comparison of pharmacophore (5 pharmacophore typedrage of designed
libraries in 2D_Lib1 example on (a) R1 reagen)sRB reagents...........cccccevveeeen.. 31
Comparison of pharmacophore (5 pharmacophore typegrage in 2D heat
maps for 2D_Libl examples. (a) PSAR library comganéth validation set.
(b) Random library compared with validation set) @iversity library
compared with validation set.............ccooo e
Similarity search examples. The molecules on lefhch side are retrieved
active compounds and the molecules on right hatelasie query molecules



Table 1.1:
Table 1.2:

Table 2.1:
Table 2.2:

Table 3.1:
Table 3.2:
Table 3.3:
Table 3.4:

List of Tables

SMARTS Atomic Primitives (Taken from Daylight Thgavlanual [28]).............. 14
SMARTS Bond Primitives (Taken from Daylight Thedwanual [28]) ................. 15
Reagents used in all library examples ..., 24
The number of retrieved active compounds from GMK8atabase ...................... 25
Shannon entropy values (SE) of selected reagemtsdtl library examples........... 29
The number of retrieved active compounds from GMK8atabase ...................... 32
Results for the GA optimized libraries using 5 phacophore types..................... 34
Results for the GA optimized libraries using 6 phacophore types............ccc....... 35



Chapter 1

Project Background

1.1 Combinatorial Chemistry

In the past, the approach of making compounds &g aditional synthetic approach
where compounds were made one by one by reactpgtecular reaction at a time. This
approach is time consuming and inefficient sinc @me compound can be made from a
particular reaction. For example, compound A whieacted with compound B will give a
product AB as shown in Figure 1.1. However, durthg early 1990s this paradigm of
chemical synthesis had been changed completely. [k-8hanged from the old fashioned
traditional synthesis to a modern method wherege lamount of compounds can be made at

the same time. This new methodology is known asonebinatorial chemistry.

A+B — AB

Figure 1.1: Reaction scheme showing the reaction of compounditA compound B to
form compound AB. This method is the traditionahthesis in which only one
compound can be made at a time.

Combinatorial chemistry had been developed instgun early 1990s, but its origin
can be traced back as early as 1960s when a reggaigp from Rockefeller University [4-7]
started the investigation of solid-stated synthes$ipeptides. During their investigation, it
was realized that synthesizing peptides were diffiand time consuming. So they proposed
an approach of synthesizing peptides in a moreieffi way by having peptides assembly
attached to a solid support. Their method was tteareloped further by Geysexn al. [8] in
which arrays of peptides was synthesized on pipethasolid supports in the 1980s. Since

then the idea of combinatorial chemistry has becpamular.



The concept of combinatorial chemistry is the palraynthesis of compounds from a
large range of analog reagents under the sameiaeamnditions and the same reaction
vessels [3]. This can be described as follow. Bar $ets range of analog reagents, [A,,
As ..., Ay and [B, By, Bs, ..., B], the total combination when both analog reagangs
reacted will be the products of mxn compounds. Bgfqzming all these combination at the
same time, it is possible to speed up the prockssmpounds production since numerous
compounds can be made in a time. Figure 1.2 shbwsillustration of combinatorial

chemistry concept.

Al Bl AlBl

A, B, A.B,

A, B, AB,
+ .

Am Bn AmBn

Figure 1.2: Reaction scheme showing the combinatorial chemistncept. It can be seen
that from m range of analogues A’'s and n rangenaflagues B’s a total of
(mxn) possible compounds can be synthesized atea ti

The key advantage of combinatorial chemistry is thassive production of
compounds. When it is combined with robotics andhhthroughput screening (HTS)
technology, hundreds or even thousands of compouadsbe made and screened in a
relatively short time [9]. This may lead to a rapidcovery of bioactive compounds and an
increased chance of identifying lead compoundseéndrug discovery process. This powerful
method of combinatorial chemistry has dramaticalianged drug discovery paradigm of

pharmaceutical industries [10-13].

1.2 Combinatorial Library Design Strategies

Combinatorial library design plays an importaneral the discovery of new drugs. It
has become the common approach to progress hatpdténtial lead compounds after active
compounds are identified in the early phase. Bylydpgp combinatorial library design,
hundreds of compounds can be synthesized to exihlerehemical space around the scaffold
of the identified lead compound. For a specificroloal scaffold, millions products could be
easily enumerated. But to physically synthesize @urify all possible compounds from such
reaction is almost impossible since the number ahpounds that chemist can afford to

process is very limited [14]. Therefore, how toestla subset of reagents to make a smaller



scale of library is very important. This librarylssetting method is called the combinatorial
library design strategy. Library design strategias be classified into focused library design,
targeted library design and diversity library desj@5]. It can also be divided into reagent-
based library design and product-based librarygmelsased on the way compounds are being
selected [16].

1.2.1 Focused Library Design

A focused library is built from a lead molecule aamich for a particular target [15].
This library is designed to occupy certain chemsgrice around the target of interest. It has a
large amount of information regarding the moleculi®sign such as core structure and
pharmacophoric elements and can be constructeddrdifferent ways depending what is
known about the target. For example, when the tinmensional structure of a target is
known, a library can be constructed to screen alécules that can not fit into the active site
of a particular target. On the other hand, if ativaccompound is known, a library could be
enumerated to contain molecules that are simildh@oknown actives or a library could be

designed to contain molecules that are predictdxt tactive and have a SAR [17].

1.2.2 Targeted Library Design

A targeted library is designed for finding lead @munds against a specific target
class. This kind of library design is a broadersi@r of a focused library in a sense that it
comprises compounds which are supposed to be aageenst several proteins/receptors
which belong to same target class. Some commorettasigsses are G-protein-couple-
receptors (GPCR), kinases, ion-channels, proteasesk-or these targets classes, the library
is designed by taking account on information likgportant components of the structural
space, privilege fragments or pharmacophoric elésnehthe chosen target family from alll

available literatures [15].

1.2.3 Diversity Library Design

A diversity library (or usually known as primaryreening library) is a compound
collection used for screening to find new leadsi@vel scaffolds. Diversity library design is
suitable to be used when almost nothing aboutdtget is known or when no information is
available about what kind of molecules will intdragth what target [15]. This library design
could produce a library having large structuraledsity. On the other hand, some physico-

chemical property filters could be applied to filmut all molecules which don't satisfy with



properties of being a “good drug” such as the pigse suggested by Lipinski's “rule of 5”
[18].

1.2.4 Reagent-based Library Design

Reagent-based library design is a way of sub-gglitimary directly from the reagent
pool itself rather than from the products constdcby those reagents. For example, for a
reaction involving aldehydes and amines, if theee2000 molecules available for each type
of reagents, in total, there will be 4¥16F possible products (2000x2000) enumerated from
this combinatorial synthesis. Given the aim ofdityrdesign is to build a set of iproducts.
In the reagent-based design, sub-setting is inakgpely done to the reagent pools. So, for
this case, the procedure is to select 100 aldetsatgents from 2000 available aldehydes and
then repeating the same procedure for the amingsddihg this, 200 reagents (100 for
aldehydes and 100 for amines) are picked out frioentotal of 4000 reagents (2000 from
aldehydes and 2000 from amines); and obviouslg iguicker than directly selecting 1.0
subset out of 4xP@roducts.

Reagent-based design has been used by chemistafor years. Its practical usage
and efficiency have been the reasons why this rdehéavored compared to product-based
design. Nevertheless, there is a limitation to tmisthod. The natural properties of the
products enumerated are sometimes not manifest after they have been considered at
the reagents level [16, 19]. Sometimes the progeedf the product can be very different from
the properties of their corresponding building B&cFor example, in constructing a library
we may take into considerations all the “drug-li&ssi’ properties on a building block of a
molecule; however, the resulting library might gontain products which have the expected
“drug-like” properties. However in the other haitds also possible to have a building block
which is considered to be unsuitable when takeivighgally, but when it is combined with

other reagents, it may result in products that hage'drug-like” properties.

1.2.5 Product-based Library Design

If a reagent-based library design generates aryidvg selecting molecules directly
from the reagent sets, a product-based librarygdedoes the opposite way. It generates a
library from the products rather than from the e¥#lg. A product-based library design
involves more complicated optimisation procedurmgared to reagent-based library design.
In product-based library design, a library is camgied first from all available reagents and

then the optimal combinatorial subset is selectedhfthe product pool. In this way, the



combinatorial characteristic of the sub-libraryrétained through combinatorial boundary,

whereas diversity evaluations, focusing or othéega are performed on the product side.

Gillet et al. [16, 20] investigated the diversity of productstadbed from three
different approaches. They compared the diverdit{ibvaries from reagent-based design,
product-based design and random design. It was rsttbat among these three different
approaches, product-based library design gave hitjliersity than the reagent-based design
and both of these libraries are more diverse thamandom library design. However, despite
the fact that product-based library design givestghest diversity, there lies an additional
problem. The subset of product molecules choseheasost diverse set probably can not be
made from a simple combinatorial reaction of thegemts and will involve more reagents.

Adding constraints on reagent matrix can overcdmgegdroblem.

1.3 Molecular Diversity

The main goal of combinatorial library design issidect a subset of compounds from
a given library that is diverse as possible. A dbtinterest has been shown in molecular
diversity analysis by using different descriptd24,[22]. The rationale lies on the assumption
that maximizing diversity would result in a maxinadverage of bioactivity space, hence,
maximizing the chance of finding new lead compourizigersity selection usually uses the
similarity property concept, which means structiyraimilar compounds are likely to have
similar properties [23]. This concept assumes taapounds which are structurally similar

to a known biologically active compound are likedyexhibit the same activity.

There are three main components that are usualyvied in measuring molecular
similarity or diversity. They are the structuralsdeptors, which are used to describe the
molecules; the weighting scheme, which is used tfferdntiate more important
characteristics from less important characterigticeolecule; and the similarity coefficient,
which is used to quantify the degree of similaritgtween pairs of molecules. Some

introductions are given on these three componentsliaw.

1.3.1 Molecular Descriptor

The choice of descriptor is important because dityeror similarity measurement
depends largely on it, since descriptor is neededcampare and assess molecules
guantitatively. Before the comparison can stam, folecules needed to be converted first
into other representation that could be easily megs This could be achieved by converting

the molecules into numbers, array of numbers aciov of bit strings. Molecular descriptors



can be categorized into two broad classes: theenolecular entity and the molecular parts.
The first category is the whole molecular entityerndna descriptor represents some physical
property of the whole molecule. Some descriptoas ¢lan fall into this category are the clogP
(a measurement of lipophilicity), CMR (calculatedlar refractivity, a measure of size),
several type of topological indices (for exampl®sd representing molecular shape of
molecular connectivity) and functional group courikis type of descriptor is usually in the
form of one-dimension (1D) representation. The Benef using this type of descriptor are
the easiness of calculation and the additional em@s information related to small
molecule-macromolecule interaction. However, orgadvantage that could happen is that
information regarding specific molecular featurascls as atom type, bond type, and
connectivity is lost.

The other category of descriptor is called molecphats. It separates molecules into
parts that are considered to be structurally ingwdrand describes those parts numerically. In
this way, atom types, bond types, and connectirnftyrmation can all be encoded easily. This
category can be further classified into two-dimens(2D) descriptor and three-dimension
(3D) descriptor which encode two and three dimeraioproperties of a molecule,
respectively. An example of several descriptorsiushkich are based on molecular structure
is shown in Figure 1.3.

Typical Representation  Typical Descriptors

1D C8H10N503 Molecular weight
Atom counts
2D Q Fragment counts
HNJKF/~,> Topolog[c_al indices
H2N,J~\~N,L~ { L P Connectivity
"0
3D Molecular surface

Molecular volume
Interaction energies

Figure 1.3: Some examples of molecular descriptors and thagsdication calculated from
1D, 2D and 3D molecular structure [24].



A fingerprint is a representation of a moleculeamm abstractive way regarding its
structural features. A fingerprint can be used uardify the similarity of two molecules on
one hand and also be used to eliminate molecul@&hvaine not similar to query structure on
the other handThere are several commonly used fingerprint methtiisse include the
MACCS structural fragment keys (MDL software) [2B]d Unity [26] or Daylight fingerprint
[27]. MACCS keys have been used as molecular g#scrior substructure searching. It
describes molecules by assigning numbers in hitggrsuch as zero and one to represent the
absence and presence of particular fragments oéaul@ds. However, it is only able to

describe small substructures but not the large soads.

The Unity and Daylight fingerprint are quite diféet from MACCS structural keys
although they were built on the same principle emphof structural keys. The fingerprint was
built to overcome the lack of generality of the MBS structural keys. Instead of using the
presence or the absence of fragments from a predefragment library, it uses the presence
or the absence of a set of two to seven atom patterthe molecules as a template to create a
bit string. This makes the generated patterns dimand various depending on the individual
molecule. The advantages of this fingerprintinghodtare avoiding missing features in the
predefined structural keys and providing a moreegainand precise description of individual
molecule since it is based on all possible atonaitepns (from two to seven atoms) of the
molecules. However, the dimensionality of the carcded fingerprint could raise a problem

when it is too high, especially when dealing withhty complex molecules.
1.3.1.1 Daylight Fingerprint

The Daylight fingerprint of a molecule is generatadfirst examining the molecule
and generating the following patterns: a patterneich atom, a pattern for two neighboring
atoms with one bond length, a pattern for threghtmring atoms with two bonds length, a
pattern of four neighboring atoms with three bolafgyth and continuing up to eight atoms
with seven bonds length [28]. For example, the mdke AB=CD would generate the

following patterns:

0-bond paths: A B C
1-bond paths: AB B=C CD
2-bond paths: AB=C B=CD

3-bond paths: AB=CD

Then each pattern is used as a seed to generat@opsendom number (hashed) and
give output as a set of bits (typically 4 or 5 hper pattern). The bits for each pattern are
combined to form fingerprint. These fingerprinte aearranged to have a fixed size (the size

is large enough to represent any normal small natd¢@nd then folded by using logical OR



to increase the information density. So each bit Daylight fingerprint doesn’t correspond to
a particular substructure like a MACCS structurey kloes. In general a Daylight fingerprint

has much higher bit density and hence gives greéeriminating power
1.3.1.2 FOYFI Fingerprint

The FOYFI fingerprint is an AstraZeneca in-houseetleped fingerprint. The FOYFI
[29] fingerprint is generated in a very similar way the Daylight fingerprint. The
methodology is implemented as follows: All possipghs in a molecule are first enumerated
up to a predefined length (number of bonds). Atamforimation (e.g. type, charge,
hybridization etc.) is recorded and recursively ated via integer hashes. After that, the
resulting large integer is iteratively divided bgderprint length, and the remainder is used to
set the corresponding bit. Usually several bitssatefor a given path, and consequently there

is no direct correspondence between a specifarfaitan atom or substructure.
1.3.1.3 Pharmacophore Fingerprint

One of the descriptors commonly used is the phasptaare fingerprint [30, 31].
This type of descriptor is built on the basis ofeyal interactions observed in molecules such
as hydrogen bonding, ionic charge interaction ardidphobic interaction. A pharmacophore
is a functional group in a small molecule or ligamdich makes interaction with a specific
target receptor. This interaction is usually thdughbe responsible for a pharmacological
action of the corresponding molecule. Pharmacoptirgerprinting is a technique of
encoding molecules into string of bins that repnes¢he molecular interactions in terms of
chemical features. These features are relativeaalbidiary in a sense that no strict rule is
available for this, thus enabling a flexible choiok features depending on the need. In
general, these features can be consisting of hgdrdiond donor (HD), hydrogen bond
acceptor (HA), positive charge center (POS), negatharge center (NEG) and lipophilic
groups (LIP). This kind of pharmacophore employdifierent types of chemical feature that
can be expanded further into 6 by separating tephilic groups (LIP) into two distinct
types which are the aliphatic and aromatic lipdphigroups. Other expansion of
pharmacophore features is also possible, depenttiagkind of interaction observed or
required in a particular molecule. Figure 1.4 shdhs pharmacophore concept used as

descriptor.



hydrogen bond acceptor hydrogen bond donor

N negative charge center
NH
lipophylic aromatic 2
\ r‘ OH
@)

H,C

1
0101111000001111212...

lipophilic aliphatic

Figure 1.4: Identification of pharmacophore and its fingerpridach feature in a molecule is
identified first. After that, string of bins is gerated based on it. Features that
are absent and present are denoted with 0O anddeatevely.

1.3.2 Weighting Scheme

The second main component in determining similasftynolecules is the weighting
scheme. This component assigns the degree of iemmartof the various characteristics of the
descriptor. There are some publications [32, 33} tleported how the weighting scheme
affects the utility of molecular measure. Howevemlecular descriptors and similarity

coefficients are far more common in the literatilnv@n weighting scheme.

1.3.3 Similarity Coefficient

For comparing similarity between a pair of molesulea numerical measure is
needed. This measure (known as similarity coeffijiewill provides a quantitative

assessment of the degree of structural similagtwben a pair of molecules.

Generally, similarity coefficients can be differeéd into two main groups. The first
group is the measure of distance and the secong gsothe measure of direct similarity.
These two groups are complementary to each othéinel measure of distance, the value of 0
would be given to molecules that are identical e/l the direct similarity, a maximum value
is given to identical ones. These values can bevahye ranging from 0 to anything, but for

convenience that range could be normalized to #Hiceat ranging from O to 1.

Similarity coefficients are usually calculated tine following way. Consider the
molecules to be compared had been encoded usiagcaiftor. This descriptor converts the
molecules into a set of numbers representing staiictural attributes. Led be a molecule

which can be described by means of a vecipodh attributes (Equation 1.1) such that
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XA:{XlA’XZA’XSA""’XjA""’ Xon} (1.1)

where X, is the value of th@" attributes of molecul@. The values of these attributes may be
real numbers over any range or discrete values asitiinary, indicating the absent or present
of some particular features of the molecule. Ifapjnnumbers were used, an entry of 0 in the
attributes would mean the absence of the parti¢a&ure on the molecules while an entry of
1 would mean the opposite. Once the molecules baga represented into vectors, similarity
coefficients that quantify similarity between malées are calculated by measuring distance

of those respective vectors.

There are several ways to measure the similarigyisiance coefficient of molecular
descriptor vectors, including Euclidean distancamifhing distance [34], Soergel distance
[35] and Tanimoto coefficient [35]. Among thoseg ttwo most popular measures are the
Euclidean distance and the Tanimoto coefficientweler, Tanimoto coefficient is more
popular than Euclidean distance for comparing tvinitt@ry molecules. Euclidean distance is
better only for “relative” distance comparison (i.the distance of molecules to the same
target) but for “absolute” comparison (comparisoetween two independent pairs of

molecules), Tanimoto coefficient performs better.
1.3.3.1 Tanimoto Coefficient

Tanimoto coefficient (also known as Jaccard coffit) is computed as the number
of attributes shared by two objects divided byttital number of their attributes. For the case
of comparing molecule A and B, Tanimoto coefficieah be calculated as follow: Let “a“ be
the number of present features in molecule A; “b"the number of present features in
molecule B; and “c” be the number of present fesguin both molecule A and B. The

Tanimoto coefficient is expressed as:

c

TanimOtQ’B = m

(1.2)

Tanimoto coefficient is a straightforward calcidatof similarity measurement, as it
is adjusted to account the number of attributes thight be in common relative to the
number attributes that are in common. As seen fegmation 1.2, Tanimoto coefficient of 1
indicates identical molecule, while Tanimoto cosént of O indicates that two molecules

have nothing in common.
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1.4 Chemical Structure Representation

Several methods have been introduced to reprdasestiucture of a molecule. These
methods can be divided into two main groups cangistoordinate-based and graph-based.
The coordinate-based is known as the connectida veltile the graph-based is known as the

line notations.

Coordinate-based representation has several cheassics in the way it is built. It
requires the x, y, z coordinate of the moleculenglwith the formal charges and the bond
information between each atom. This informatiorpig together into one or more tables.
After that, the tables are constructed uniquelyhgy can provide sufficient information for a
molecule to be characterized. Some examples ofdowie-based representation are the
MDL “MOL” File (or called as SD file) which is del@ped by MDL Inc, MOL2 file format
which is developed by Tripos Inc., MAE file formahich is developed by Schrodinger and

other formats.

Graph-based representation describes molecules laseatoms and their bonds
connection. It is constructed to cover all inforioat regarding atoms and bonds in a
molecule. It is constructed by first converting aletule into its atom type, and then adding
the connection and branching information betweemdbd atoms. By doing this, a string of
characters is assigned to denote a molecule. Thst mommonly used graph-based
representation is the Simplified Molecular Inpun&iEntry System (SMILES) [28] which
was developed by Daylight, Inc.

141 SMILES

SMILES is a notation used for representing a mdéou a chemical reaction. It is a
graph-based representation which can provide a&datah of information covering atom
elements, atom connectivities and bond types irokecale along with other information like
chirality, ionization state etc. Compared to a dimate-based representation, SMILES
notation is more compact and efficient. A typicMISES string can take up to 70% less
space than a coordinate-based representation. Howtee information stored in a SMILES

string can be as much as the coordinate basedsespation except for 3D coordinates.
1411 SMILES Specification Rules

SMILES notation can be considered as a notatiochefmical language since it has
rules with several vocabularies and grammars. Rol&MILES are designed to regulate an

interpretation of a graphical representation ofadetule in a standard way. There are several



12

terms used in SMILES. SMILES which denotes infoinratabout chirality of a molecule is
called “isomeric SMILES” while those that are noé a&alled “generic SMILES”. SMILES
representation of a molecule can exist in sevarations. However, they are all valid as long
as they follow the rules in SMILES. SMILES notatiahich is unique to a specific molecule
is called “unique SMILES".

The rules in SMILES usually regulate the atoms &ahds specification of a
molecule. However, there are also rules for brasctieg closures, and disconnections. Other
typical rules of SMILES are the way of how it shdblde written. For example, SMILES
notation should consist of a series of charactétsowt spaces. The next one, hydrogen atoms
may be omitted or included and aromatic structuney be specified directly or in Kekulé

form. There are five generic SMILES encoding rutaese are described briefly here.
14111 Atoms

There are two different ways of representing atems SMILES notation. First,
atoms that are categorized as metal elements shsuldritten in square brackets [ ], for
example [Ag] for elemental silver and [K] for elental potassium. Atoms that are nhon metal
elements such as B, C, N, O, P, S, F, Cl, Br, az&hlbe written without brackets as long as
they are in the lowest normal valence. If not, tsbguld be written inside the brackets, and
any hydrogens attached to them should also bedadlu.ower case characters should also be
used for atoms that are in the aromatic ring, whib@ aromatic atoms are represented by
capital letters. For example aromatic carbon shdddwritten as “c” and aliphatic carbon
should be written as “C” instead. Atoms that arthimformal charges should be written in the
brackets with the symbols + or — followed by aniaml digit, for example positive charged

aliphatic N atom can be written as [N+].
14112 Bonds

Bonds in SMILES notation are represented by sewsmabols. Character -, =, and #
are used for denoting single, double and tripledspnespectively; while character “” is used
for aromatic bond. However, normally single andnaaitic bond are omitted in the SMILES

notation for simplicity.
14.1.1.3 Branches

Branches are described in SMILES notation usingeniéesis. This is done by
putting the branches in a parenthesis and mergimdeft side of the parenthesis to the node.

Figure 1.5 illustrates the application of brancimeSMILES.
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CHy
CHy |
| CH; © CH, CHs
CH, ol |
HyC—CH—C—0H CH; CH;—CH;

HyC—CH,—N—CH,—CH, |
HyC=CH—CH—CH—CH;—CH,—CH;,

CCN(CC)CC CC(C)C(=0)0 C=CC(CCC)C(C(C)C)cce

Triethylamine I sobutyric acid 3-propyl-4-isopropyl-1-heptene

Figure 1.5: lllustration of braches in SMILES representation. the first row, graph
representations of molecules are shown, followedtdogorresponding SMILES
notation in the second row (Adapted from Daylighe®ry Manual [28]).

14.1.1.4 Cyclic Structures

Cyclic structures can be represented in SMILES tiootaby breaking one of the
bonds in the ring and translating it into a linaatation. Once a bond is broken, a number is
assigned to the beginning and ending atoms ofttbiatl to mark the broken bond positions.
By doing in this way, it is able to find out whic@toms are actually connected by a ring
closure just by looking and matching the numbet tbdows an atom. Figure 1.6 shows the

illustration by using cyclohexane as an example.

CH, C C
H.C~  CH o e c” R“cl

| | = | | = | = cicccect
HiC CH C c C 1

“cns” ““xc,#’ ‘Racxf

Figure 1.6: Deriving SMILES notation for a cyclic structure fnoa cyclohexane (Taken
from Daylight Theory Manual [28]).

1.4.1.1.5 Disconnected Structures

To display a disconnected structures in a SMILE®&tan, a “.” (period) is needed.
This period can be place anywhere on the notat®riong as it is between individual
structures. Regarding the placement of these iddali structures, there is no order of how

they should be put. An example of this can be ge&igure 1.7.

[Ha+] . [O-]clccoccl
Ha* 07 or
cloc{[0O=]. [Ha+])cccl

Figure 1.7: Example of representing a disconnected structusodium phenoxide (Taken
from Daylight Theory Manual [28]).
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142 SMARTS

In chemical searching, sometimes we are only istecein some particular sub-
structure of a molecule rather than the whole stnec For example, we are interested in
identifying all the molecules that have a phendissiicture in a database. In order to do this
we need a pattern to easily identify a phenol dulegire in a molecule and SMARTS [28] is

a “language” that can help in doing this. SMARTSais extension form of the SMILES

language. This means SMILES rules are generalljieapin SMARTS except for some

additional symbols of atoms, bonds and logical afer These additional rules make

SMARTS notation becomes more general than a SMIh&Stion.

1.4.2.1 Atomic Primitives

SMARTS has additional symbols beyond the onesdhatused in SMILES. These

symbols describe atomic properties such as atoynibal, charge and isotopic information.
The following Table 1.1 lists all the atomic primés used in SMARTS.

Table 1.1: SMARTS Atomic Primitives (Taken from Daylight Thedvlanual [28])

Symboal Symbol Name | Atomic Property Requirements Default
* Wildcard any atom (no default)
A Aromatic aromatic (no default)
A Aliphatic aliphatic (no default)
D<n> |Degree <n> explicit connections exactly one
H<n> |total-H-count <n> attached hydrogens exaatly o
h<n> implicit-H-count | <n> implicit hydrogens at kaone
R<n> |ring membership in <n> SSSR rings any ringrato
r<n> ring size in smallest SSSR ring of size famy ring atom
v<n> |Valence total bond order <n> exactly one
X<n> [Connectivity <n> total connections exactly one
X<n> |ring connectivity| <n> total ring connections t least one
-<n> |negative charge| -<n> charge -1 charge (2,igtc)
+<n> |positive charge | +<n> formal charge +1 chatgei$ +2, etc)
#n atomic number | atomic number <n> (no default)
@ Chirality anticlockwise anticlockwise, defaulass
Q@ Chirality clockwise clockwise, default class
@<c><n> | Chirality chiral class <c> chirality <n> o(default)
@<c><n>?chiral or unspec | Chirality <c><n> or unspecified o @efault)
<n> atomic mass Explicit atomic mass Unspecifiedsna
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1.4.2.2 Bond Primitives

Several symbols are also introduced in SMARTS findeand characterise bonds in
a substructure searching. These symbols mostlth&resame as in SMILES notation. For
example, the symbol -, =, # and : have the samanimgan SMARTS and SMILES. Table
1.2 lists all the bond symbols used in SMARTS litkir corresponding meaning.

Table 1.2: SMARTS Bond Primitives (Taken from Daylight Thedwanual [28])

Symboal Atomic Property Requirements
- single bond (aliphatic)
/ directional bond "up"
\ directional bond "down"

1? directional bond "up or unspecified"

\? directional bond "down or unspecified"
= double bond

# triple bond

; aromatic bond

~ any bond (wildcard)

@ any ring bond

1.5 Structureand Activity Relationship

Structure and activity relationship (SAR) is thepagach of investigating the
relationship between activity of a particular compd with its molecular structure. This
approach is usually conducted by medicinal chemisise the bioactivity data from a
particular compound is known. The exploration is&ldy altering some chemical groups in
the compound and observing the biological respaftbat modification. Sometimes, small
chemical modification can significantly alter théolbgical response. In contrast, large
modifications (which makes it structurally diffetefnrom origin) can result in having similar
activity [36].

The exploration of SAR is an important task in mel chemistry and drug design.
SAR analysis provides a basis for chemical optitiozeof hits or leads and the identification
of novel active compound. However, it is also régdrithat SAR characteristics often highly

dependent on the types of molecules under inveitiga

Sometimes, the molecules under investigation ddwive a large coverage of
chemical variation. This sometimes could lead thffecult situation on deriving a SAR. This
situation, however, could be solved if the molesulader investigation have a large coverage

of chemical variations. One way to do this is byking the set of molecules to be as diverse



16

as possible. Since a SAR analysis is usually dgnaddifying the substituent (R) group of a
molecule, it will be better if the variation is faged on the substituent group level rather in
the whole molecular level. Therefore, in this partar problem, a diversity selection on the
reagent level is more appropriate. A diverse sielecof reagents will lead to a higher

variation of the substituent group, thus, enabiling be better in deriving a SAR.

1.6 Aimsand Objectivesfor the Project

Combinatorial chemistry is now established as a gvw tool available to the
medicinal chemist in the pursuit of new drug caatkg. It provides a way to generate very
large numbers of compounds in a relatively shortogeof time (compared to traditional
synthesis of molecules). However this aspect oflipatorial chemistry in itself presents a
problem. A balance needs to be struck between makwerything possible and the
constraints of economics, logistics and time. lheotwords, there is a strong need to do
combinatorial library design to synthesize smalimber of compounds from the vast
compound pool of those that could possibly be matte. art and science of computational
library design has been reviewed extensively [3[-8hemical diversity [40-42] is often
used as an optimisation function for library desigither on the reagent side [43, 44] or on
the product side [16, 19]. Such library designtstyges are often very efficient at selecting
diverse compounds, but one drawback is that whenldisigned libraries are tested in assays,
sometimes it can be hard to derive a clear strecaativity relationship (SAR) from the
experimental results since the selected buildimghd could have little or no relationship to

one another.

A new library design strategy, which called as P1#8945], has been developed in
AstraZeneca to address this issue for designimgrlds, which are helpful to derive an SAR
after the screening. The goal for this projectdscarry out validation study for the new
methodology. ProSAR method has been applied taakMerature examples to validate the

ProSAR concept.



Chapter 2

Materials and Methods

2.1 ProSAR M ethodology

2.1.1 ldentification and Encoding of the Phar macophore Finger print

A two-point pharmacophore is designed to encode rdagent pharmacophore
information. The fingerprint consists of two kinds information; one part is the
pharmacophore type of the reagent and the otherigpéne topological distance (i.e. bond
distance) between the single pharmacophore eleamehthe attachment atom of the reagent
(as shown in Figure 2.1). Five standard pharmaaeptypes are used here: hydrogen bond
donor (HD), hydrogen bond acceptor (HA), positivege center (POS), negative charge
center (NEG) and lipophilic groups (LIP). Pharmdumes are defined via a set of SMARTS
[28] patterns. In order to keep the reagent conigyldaw and avoid adding too long side
chains to the scaffold, the bond distance betwheretich pharmacophore element and the
attachment atom of the reagent is limited to 6 sofithe total number of HD, HA, POS and
NEG functional groups on a reagent was restriocbedat more than 2 to further reduce the
complexity on pharmacophore elements. The total bmimof unique two-point
pharmacophores in a reagent is therefore 30 (5r@)aa30-bin pharmacophore fingerprint
can therefore be constructed, in which each biersdb a specific two-point pharmacophore.
The value in each bin is the frequency of the d$meg@harmacophore in the reagent
corresponding to that bin. Figure 2.1 shows an @@rmf such a pharmacophore fingerprint
for an amine reagent. The pharmacophore fingerioonstructed in such an order that the
first 6 bins represent for HA pharmacophore elepnten followed by 6 HD bins, 6 LIP bins,
6 POS bins and with 6 NEG bins at the end.

17
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The lipophilic groups can be further divided intormatic and nonaromatic lipophilic
groups, and thus a 6-pharmacophore-type fingerpdah be obtained. In the 6-
pharmacophore-type fingerprint, the pharmacophioigefprint length will be 36 bins (6x6)
and the order of pharmacophore element is keptsttnee as the 5 pharmacophore type

fingerprint.

attachment point

) /

000000‘000000‘111000‘000010‘000010
HA HD LIP POS NEG

Figure 2.1: Identification and encoding of a reagent pharmaoopfingerprint.

2.1.2 Optimisation in Phar macophore Space for ProSAR

The main goal of new library design strategy isearch for a set of reagents which
cover the pharmacophore space optimally, while ikgethe pharmacophore distribution as
even as possible. Shannon entropy [46] was usedlwid characterise the variation of
descriptor space [47], so it was used here to septethe distribution of selected reagent

subset based on the “pharmacophore fingerprinteSpabe SE is defined as:

SE= _Z p; log, p, (2.1)

wherep; is the probability of having a certain pharmacaghia the whole reagent sep, is

— Ci
b, = /Zci 22)

where ¢, is the population of pharmacophare the whole reagent set. Shannon entropy is

calculated as:

chosen as the fitness function for optimisationgrAater Shannon entropy value means that
the pharmacophores for the selected reagent sishsadre evenly distributed over the 30
bins. Hence, during the course of optimisation,ed af reagent compounds is sought to

maximise the Shannon entropy.
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A “greedy” search algorithm [48] was used as thengpation engine to search for
an optimal reagent subset. This was done by a“firsedy”-build up of the subset until the
desired number of compounds is selected, followed becond phase that re-evaluates each
of the selected compounds in the subset to sebdftar choice is available. The second stage

continues until no improvement in the subset isjbs.

2.1.3 Optimisation of the Phar macophore Entropy and the Library
Property Profile

Physico-chemical properties are an important aspeatonsider in library design
strategy. For example during lead optimisation etgghemists always try to not synthesize
compounds with poor solubility or high hERG riskor@putational models for predicting
solubility and hERG binding have been reported 34p-and in many library design papers
[52, 53] these physico-chemical properties weresriakito account in the library design
strategy as multiple constraint for optimisatiom & more realistic library design strategy
would therefore be to extend the “ProSAR” concepther to include the library property
profile. In order to calculate the properties diogary, a full enumeration has been done and
the properties are calculated at the product IeMeAstraZeneca, a set of stringent property
criteria has been established for checking compawntidction enhancement libraries [54].
Here in this study, the compound novelty (compangith in-house/external compounds to
check if the compound is novel), agueous solubiptedicted hERG liability and an in-house
lead profile score [55, 56] are calculated as camepts of compounds property profile. All

properties were calculated by in-house predictomtst

An in-house library design tool GALOP has been tgyed at AstraZeneca. This
uses a genetic algorithm (GA) optimisation methodptimise the reagent pharmacophore
entropy and product properties simultaneously. fithess function that the GA uses consists
of two terms, one term represents the pharmacofBloamnon entropy for the reagents and
the other term refers to the product propertiese Titmess function formula is shown in

Equation 2.3:

Score=w,F + wez SE (2.3)
]

Here, F means fraction of “good” compounds in tleighed library ancSEi refers to the

Shannon entropy for reagent gef\ compound is regarded as “good” only if it mealisthe

specified property criteriaw, and w, are weighting factors for property and entropy

respectively.
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2.1.4 Diversity Based Library Design Strategy

To provide a basis for evaluating the ProSAR metteodtructural diversity based
library design strategy was implemented in GALOR® #ed out in this study. The fitness

function for diversity optimisation is shown in Eajion 2.4:

2225
Score=1- "=t n(n—1) (2.4)

Here, S, refer to the Tanimoto similarity index between remig andj. So the average

pairwise Tanimoto similarity for reagents will bemmised during the optimisation.

2.2 Library Examples

For this validation work, five examples of chemisalaffold were used. They were
taken from several publications from year 1992@672[57-61]. In these examples, one is for
one dimension (1D) combinatorial library design atldthe other 4 examples are for two
dimensions (2D). 1D and 2D combinatorial libraryside correspond to one and two

substitution group attached to the scaffold, rethpely.

For 1D combinatorial library design, a scaffoldrfr Adolor [57] was used as an
example. This example is named as 1D_Lib1 in thaskwit has the following structure in
Figure 2.2 and the corresponding reaction scherskawn in Figure 2.3. Aldehyde was used

as a reagent for library enumeration.

Figure 2.2: Combinatorial library example for 1D_Lib1l
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ZT
2
[as

H.C 1. Aldehyde (R1)
—_— 3 H.C

2. TFA/ CH,Cl,

HN (0]

Figure 2.3: Reaction scheme for 1D_Lib1

As examples for 2D library design, several scaffolkere taken from the literature
[58-61]. These examples are named 2D_Lib1, 2D _L262,Lib3 and 2D_Lib4 respectively.
Figure 2.4 and Figure 2.5 show the scaffold andtima scheme of 2D_Libl. Aliphatic

bromides were used as reagents for library enuroarat

N
OH o
° o Zremcco,ome O 0
J 3. NaOH, H,0, EtOH H,C J
0 OH 5 o\

Figure 2.5: Reaction scheme for 2D_Lib1

The scaffold for 2D_Lib2 is shown is Figure 2.6daits corresponding reaction
scheme is shown in Figure 2.7. In this example nangicids and aliphatic bromides were

used as reagents.
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Figure 2.6: Combinatorial library example for 2D_Lib2

4%/R1
1. Amino acid (R1) —N

2. Aliphatic bromide (R2)

Figure 2.7: Reaction scheme for 2D_Lib2

Amine and alcohol were used as reagents in the geaof 2D_Lib3. The 2D_Lib3

scaffold and reaction scheme are shown in Fig@@2d Figure 2.9 respectively.

- % O

R2

R1

Figure 2.8: Combinatorial library example for 2D_Lib3

OH
|iilllM R1
1. Alcohol (R1) O
_——
[¢] 2. Amine (R2)
O,

0
SCH, R2

Figure 2.9: Reaction scheme for 2D_Lib3
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In 2D_Lib4, one set of aldehydes and one set ai ablorides were used in the
reaction. The scaffold and reaction scheme for 2B4 lare shown in Figure 2.10 and Figure
2.11.

\

Figure 2.10:Combinatorial library example for 2D_Lib4

2T

1. Aldehyde (R1)
2. Piperidine

e} >
3. Acid chloride (R2)  ro

R1

Figure 2.11:Reaction scheme for 2D_Lib4

A hypothetical library example is used to demorstthe effectiveness of the design
strategy that takes both reagent pharmacophorepgn@ind library property profile into

account. This library has the reaction scheme shovgure 2.12.

1. R1-Br v

NH 2. HCl N R2
—_—
oH 3 NHR2R3 N
R3
o o)

Figure 2.12:Combinatorial library example taking into accoumtgh pharmacophore entropy

and property profile

2.3 Reagent Preparation

The reagents for all the above library examplesewetrieved from the ACD
database [62]. Before the library enumeration wasied out, a filtering procedure was

applied to exclude several unwanted reagents. Ttegirfg procedure was done by first
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removing the salts and duplicates, followed by gsin in-house program AZFParser [63] to
exclude some compounds that have unwanted chefeatakes. Unwanted chemical features
which are defined in the AstraZeneca in-house clmdpAZFILTERS [64] list were used to
filter out reagents. In this work, for all combiogtl library examples, the reagent sets were
used are aldehyde, aliphatic bromide, amino adidhal, primary amine and acid chloride.
After the filtering procedure, the numbers of ahgents used for these combinatorial library

designs are shown in Table 2.1.

Table 2.1: Reagents used in all library examples

Library Name Reagent Used

1D Libl Aldehyde 2012

2D _Libl Aliphatic bromide 1105
Aliphatic bromide 1105

2D_Lib2 Amino acid 741
Aliphatic bromide 1105

2D_Lib3 Alcohol 588
Primary amine 1062

2D_Lib4 Aldehyde 2012
Acid Chloride 717

2.4 Computational Procedure

In 1D library design, 40 reagents were selected dach method, resulting 40
compound containing combinatorial libraries in eanbthod. For 2D library design, 20
reagents were selected from each type of reagens goving a 20x20 combinatorial library

in each of the methods.

2.4.1 ProSAR Library Design

The “ProSAR” library design strategy is to selectremgent set that can cover
pharmacophore space as much as possible while rigeghe pharmacophore elements
distribution as even as possible. Reagent pharnhaceingerprints were generated in a two-
step procedure. First, two-point pharmacophoresveeeated by an in-house tool TRUST
[29]. A shell script was thereafter used to creéagereagent pharmacophore fingerprints based
on the TRUST output. The “greedy” search algoritwas implemented in Python [65] to
calculate and optimise reagent pharmacophore gntfyee to the deterministic nature of the
“greedy” search algorithm, for each library desigkample that has been described, one

PSAR library was generated.
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2.4.2 Random Library Design

Random library design strategy is used for comparidhis strategy is to randomly
pick up reagents from the reagent pool to enuméditatey. For each library design example,

10 random libraries were generated to get statistieaningful results.

2.4.3 Diversity Library Design

As another way of designing library, diversity béidbrary design strategy is used. It
selects reagents which has minimum average ensehamienoto similarity (i.e. maximal
Tanimoto dissimilarity, shown in Equation 2.4). TB& based library design tool GALOP is
used for reagent selection. For each library examPALOP was run 10 times to enumerate

10 different diversity based libraries for compans

2.4.4 Preparation of Validation Set

For each library example, a set of true active caumpls are extracted from GVKBIo
database [66] (a comprehensive collection of actiompounds published in a variety of
journals and patents) by searching for active camgs that have the same scaffold. Those
true active compounds are used as validation sde Shain groups for those active
compounds are extracted by using the AstraZenebalse program “Scaffrtab” and then
TRUST is used to generate a pharmacophore fingeerfmi the extracted side chain groups.
These generated pharmacophore fingerprints repréiserpharmacophore space for active
compounds and are thereafter compared with then@taphore fingerprint of reagents
selected from different library design strategi€able 2.2 shows the number of retrieved

active compounds from GVKBio database for eaclatijpexample.

Table 2.2: The number of retrieved active compounds from GuK&atabase

Library Number of Retrieved
Example Active Compounds
1D _Libl 113

2D Libl 83

2D Lib2 52

2D Lib3 128

2D Lib4 280
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245 Similarity Search

As a part of performance comparison, compounds Eoaomerated libraries are used
as query structure and similarity searches agdh4KBio database are done to retrieve
active compounds which have the same scaffold. &pngdthis, the number of retrieved
active compounds can be regarded as a measurefribeteffectiveness of generating active
compounds for different libraries. The in-houseustural fingerprint FOYFI is used for

calculating Tanimoto similarity of two compoundsnimoto similarity cut-off is set at 0.85.



Chapter 3

Results and Discussions

3.1 Comparison of Phar macophore Coverage for Different
Library Design Strategies

Altogether 5 library examples were selected fraierditure and used as test cases to
show how the PSAR method works in practice. Forlibdibrary example, 40 reagents were
selected to enumerate libraries and for all theeroD library examples, several 20x20
libraries were enumerated. Besides using ProSAResly to select reagents, random library
design and structural diversity library design sohevere used to compare their performance
in pharmacophore coverage. For each example, fdiks were generated for random design
and structural diversity library design and dué¢hi® deterministic nature of the greedy search
algorithm only one PSAR library was enumerated.

The comparison of pharmacophore coverage of 5 pdwyphore type and 6
pharmacophore type ProSAR libraries with librafiesn other design strategies are shown in
Appendix A and Appendix B respectively. In the phacophore distribution plots of all five
examples, ProSAR selected reagents clearly havet rmgen distribution on the
pharmacophore bins. In 1D _Libl example (as showFRigure 3.1a and Figure 3.1b), the
pharmacophore corresponding to bin number 5 isingss both random and diversity
selection but the PSAR selection contains the paeophore. Other missing pharmacophores
in both random and diversity selection but not 8AR are observed in bin number 21, 22,
24, 25, 27, 28 and 29 for the five pharmacophoit adfditional bin number 34 for the six
pharmacophore type. The random and diversity liksan the above example contain a lot of
reagents with pharmacophoric features corresportditins 14 to 17. These bins correspond
to lipophilic group in the reagents. The frequentyhese bins has been dramatically reduced
in the PSAR library. In return, the PSAR methodlide to select bins number 20 to 29 (the

positive and negative charge centres respectivibly) are rarely selected by random and
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diversity selection. The PSAR library doesn’t camtains such as 1, 7, 12, 19, 26, 30, 35 and
36, because the full reagent set doesn’t have eayents with these pharmacophores. This

result shows that PSAR selection performs muchebétt covering pharmacophore space
compared to the other two methods.

1D_Lib1 Aldehyde Reagent Fingerprint Distribution
5-Pharmacophore
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Figure 3.1: Comparison of pharmacophore coverage in 1D_Libdatibexample taken from
Appendix A and Appendix B. (a) 5-pharmacophore syfi@mgerprint (b) 6-
pharmacophore types fingerprint.
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This can also be seen from the Table 3.1, whereettiopy values for ProSAR
libraries, random libraries and diversity librariase given. As seen from this table, PSAR
reagent sets always have higher entropy valuesréegent set which are selected by using
other methods. For example in 1D_Lib1 case, the &ntropy for five pharmacophore type
PSAR selection is 4.46, random selection is 3.@ldiversity selection is 3.25. Based on the
entropy definition (Equation 2.1, 2.2), the largke entropy values is, the more even the

distribution on pharmacophore bins is.

Table 3.1: Shannon entropy values (SE) of selected reagemtsdtl library examples

Library Example Pharm. b \sAR  Random® Diversity® Actives’  Full®
Types
5 Pharms 4.46 3.00 3.25 3.19 3.10
1D_Lib1 R1
6 Pharms 4.65 3.31 3.52 3.66 3.39
5 Pharms 4.60 2.89 3.17 2.69 3.18
R1
6 Pharms 4.69 3.24 3.40 3.22 3.50
2D Libl
5 Pharms 4.60 3.03 3.21 2.38 3.18
R2
6 Pharms 4.69 3.37 3.42 2.86 3.50
5 Pharms 4.62 2.84 3.62 3.40 3.18
R1
6 Pharms 4,71 3.11 3.62 3.87 3.43
2D _Lib2
5 Pharms 4.60 2.97 3.25 3.55 3.18
R2
6 Pharms 4.69 3.26 3.49 3.78 3.50
5 Pharms 417 2.88 3.17 2.65 3.02
R1
6 Pharms 4.32 3.17 3.37 2.97 3.31
2D_Lib3
5 Pharms 4.32 3.09 3.24 3.05 3.26
R2
6 Pharms 4,52 3.32 3.39 3.42 3.50
5 Pharms 4.46 2.95 3.15 3.26 3.10
R1
6 Pharms 4.65 3.29 3.41 3.61 3.39
2D Lib4
5 Pharms 4.04 2.51 2.94 3.51 2.63
R2
6 Pharms 4.24 2.91 3.26 3.82 3.04

Note: a) Refers to the types of pharmacophoréhésmpacophore and 6 pharmacophore).
b) Averaged values for 10 libraries.
¢) The corresponding SE values of the R-reagent fte active compounds.
d) The corresponding SE values of the R-reagent fte full reagent set.
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Pharmacophores for PSAR libraries, random libraaied diversity libraries are also
compared with those of real active compounds. Ecohdibrary example, active compounds
for those libraries can be found in GVKBIio datalsalsg using the library scaffold as search
gueries. R1, R2 reagents (only R1 reagent in caB dibrary) could then be extracted from
active compounds and encoded into pharmacophagerfinint. Some of the reagents in the
validation set have bond distance longer than 6wed¥er, when the pharmacophore
fingerprints were generated, only pharmacophore® @pbonds distance from the attachment
point were considered. Pharmacophores further dhagay 6 bonds were ignored. This is due
to the limitation used in pharmacophore encodinac@dure to keep molecules complexity
below a certain level and to avoid too long sidaics. The pharmacophore distributions of
active compounds are incorporated into the figuresppendix A and Appendix B.

Another way of comparing pharmacophore coveragkbaodries is to compare the
pharmacophores of enumerated libraries with thataifve compounds. The comparison
figures are shown in Appendix C (5 pharmacophope tiingerprint) and Appendix D (6
pharmacophore type fingerprint). There are fouoilpresent in those figures, which are
green, yellow, red and grey. Those colored celsesent the pharmacophore comparisons
between a particular enumerated library and thelatdn set (active compounds). Green
cells represent pharmacophores that are presebbtim an enumerated library and the
validation set. Yellow cells represent pharmacophathat are present in an enumerated
library but not in the validation set, while redesrare not present in a designed library but are
present in the validation set. In addition, pharophores that are both absent in a library
design and the validation set are colored by gregrefore in those figures, more green cells
and fewer red cells in a library design represéetser performance of a library in covering
pharmacophore space, compared to the validatiorHsetever, it is also interesting to take
note of the yellow cells. These yellow bins are pharmacophore cells that do not exist in
the validation set but appeared in library desighjch correspond to some additional
pharmacophores covered by designed library. Scethieow cells are also an indicator of
potential pharmacophore coverage of a designedriibin contrast, grey bins can turn into
red bins if more active compounds were availableaiidation set. Hence, green and yellow
cells are positive indicators of pharmacophore caye in a library design while red and grey
bins are negative ones. As shown in figures in Appes C and D, in all demonstrated
examples, PSAR libraries show better coverage nmgeof number of green cells and red
cells. For example for the R1-reagent selectio2bn Lib1l case (shown in figure 3.2), the
PSAR selected R1 reagents have O red cells andetn gells in terms of 5 pharmacophore
type fingerprint and randomly selected reagenteehawed cells and 6 green cells, while
diversity ones have 4 red cells and 8 green detlsR2 reagents, PSAR selected R2 reagents

have 0 red cells and 9 green cells, randomly ssdexdagents have 2 red cells and 7 green
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cells, while diversity ones have 2 red cells angr€en cells. This means that PSAR library
miss fewer pharmacophores that appeared in actwgpeunds and cover more potential

pharmacophores compared with random library anerdlity library.

HH‘HH Random
| B [ NN EEEEE  m -
HH HH‘ Diversity
@
”“”"”“_jm Random
HHH.HH‘ Diversity
()

Figure 3.2: Comparison of pharmacophore (5 pharmacophore tgpeg¢rage of designed
libraries in 2D_Lib1 example on (a) R1 reagen)sRP reagents.
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Figure 3.3: Comparison of pharmacophore (5 pharmacophore tgpeg¢rage in 2D heat
maps for 2D_Lib1 examples. (a) PSAR library comgaréth validation set. (b)
Random library compared with validation set. (cyésity library compared
with validation set.
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For two dimensional (2D) libraries, 2D heat map$ d# used to represent the
pharmacophore coverage for R1 and R2 reagentsifferet libraries. These are shown in
Appendix E. Here the same color scheme is used.s@h®e trend can be seen that PSAR
libraries tend to cover more pharmacophores thaerdibraries in all the test cases. For
example in 2D_Lib1 case, in the five pharmacophgpe heat map (shown in figure 3.3),
PSAR library has 0 red cell and 108 green cellsdoan library has 66 red cells and 42 green
cells, while diversity library has 60 red cells afi@ green cells. This analysis shows that
PSAR libraries cover most of the pharmacophoreschvldre present among the active

compounds.

3.2 Comparison of Retrieved Active Compounds for
Different Library Design Strategies

Table 3.2: The number of retrieved active compounds from GuUK&atabase

Library Number of Retrieved Active Compoundsfor Different Libraries
Example

xamp PSAR (5pharm.) PSAR (6 pharm.) Random? Diversity®
1D _Libl 8 10 4.5 2.4
2D_Libl 68 21 40.9 26
2D_Lib2 4 11 7.3 0.5
2D_Lib3 8 18 10.5 1.6
2D_Lib4 4 20 14.4 14

Note: a) Averaged value from 10 runs

So far the performance on pharmacophore coveragelifierence library design
strategies has been compared; it would be intagestd compare how many active
compounds exist in libraries which are designed usng different design strategies.
Although real biological activity data is not awdile for the compounds in the designed
libraries, an estimation of the likelihood of olptiaig actives from the libraries could be made
by a similarity search against the GVKBio databagth a high similarity cut-off (i.e.
assessing the effectiveness of the libraries foegding leads). It is normally assumed that
similar compounds have higher probability of havéigilar bioactivity than dissimilar ones
(the similar property principle) [23] and a highrieval rate from the GVKBIio database could
be taken as an indication that active moleculepmasent in the library. Compounds in all the
designed libraries were therefore used as queungtates for a similarity search against the

entire GVKBIo database to check how many activegmmds which have the same scaffold
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could be retrieved from the GVKBIio database at\emgisimilarity cut-off. In this study, a
Tanimoto similarity of 0.85 was used as similaityt-off and the similarity was calculated
based on AstraZeneca in-house FOYFI fingerprintow® et al. [21, 67] reported that if a
molecule has a Tanimoto similarity, based on Uffibgerprint, of > 0.85 to an active
compound, then the molecule has an 80% chancesalf theing active in the same assay.
Others [22, 42, 68] have reported that compounggba Tanimoto similarity 0.85 usually
share similar biological activities. Although thiengarity cut-off is not transferable between
datasets [29] and fingerprint types, the similadty-off value of 0.85 for FOYFI fingerprint

works well to identify similar compounds in our ex@nce [69].

Similarity = 0.87

Figure 3.4: Similarity search examples. The molecules on laftchside are retrieved active
compounds and the molecules on right hand sidgueey molecules

The numbers of retrieved active compounds for #ish cases are shown in Table 3.2.
The results show that, in most of cases, PSAR dedidibraries retrieve most active
compounds and this indicates that PSAR designeglydtas greater potential to find active
compounds than other design strategies. GenerafihaBmacophore type PSAR libraries
perform better than the 5 pharmacophore type P3#Rries. This is probably due to the fact
that the lipophilic atoms are separated into alighand aromatic parts in 6 pharmacophore
type fingerprint and therefore can make a morenuad distribution among aliphatic groups
and aromatic rings than with 5 pharmacophore timgefprint. For example, in the 2D_Lib4,
the active compounds in Figure 3.4 aren'’t retrielbbgdds pharmacophore fingerprint based
PSAR library but are retrieved by 6 pharmacophdangefrprint based PSAR library. The

guery compound is on the right hand side in Figdireand it has an aromatic indole ring
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which contributes to the high similarity indexeg fibe retrieved active compounds. The

indole ring containing reagents are not selectethin5 pharmacophore type based PSAR

library.

3.3 Extension of ProSAR to Include Property Profile
Optimisation

In the examples that are shown so far, only reagleatmacophore space diversity is
considered in the library design and compound mloyshemical properties aren’t taken into
consideration. This is somehow unrealistic in atustrial setting. There are some properties
that need to be taken into account when designilitgary. First, the agueous solubility is a
crucial property for a compound and should be aw®rsid during library design since it is
desirable to synthesis highly soluble compoundsofdly, risk assessment needs to be done
to make sure only non-toxic compounds are synthdsiFor example, hERG [70] risk
assessment is very important. Therefore, the PS#dRegy needs to be further extended to
include the compound property profile into the optation process. To solve these
problems, an in-house genetic algorithm optimiz&.GP was used specifically to design
compound libraries with multiple constraints. GALQ@Rogram is capable to optimise the
reagent matrix with both reagent based constréiingsreagent pharmacophore coverage) and

product based constraint (product property profile)

Table 3.3: Results for the GA optimized libraries using 5 phacophore types

Per cent of Shannon . . Covered
. . d tro Diversity bins
Libraries goo d entropy
compoun RL R2 R1 R2 Rl R2
(%)

PSAR + Property 99 3.79 364 069 0.67 17 16
Diversity + Property 99 274 268 0.78 0.79 9 11
Property 100 214 256 0.62 0.68 8 12
Random 38 249 275 0.74 0.70 9 13
Full library 40 283 295 074 073 21 20

As shown in Equation 2.3, both pharmacophore eptraypd compound property
profile were included in the GA fitness functionadgd on experience, when a weight ratio
(we/wp) equal to 2.0 is applied, a reasonable and bathtibeary can be obtained. In the
algorithm implementation, several properties wayasaered: (1) novelty check (B) silico
predicted solubility (3)n silico predicted hERG liability (4) in-house lead-likeiteria. A
“good compound” has to pass all these four critéflds extended library design strategy is

applied in a hypothetical example as seen in Figut@. This library synthesis consists of
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two reaction steps, first aliphatic bromide (R1agents were added to a scaffold and the
product then reacted with amine (R2) reagents tonfa two dimensional combinatorial
library. For comparison, other libraries are alsmeyated. They are a random library, a
diversity combined with property optimization libyaand an property optimised only library.
For the diversity driven library design, the divirsis characterized by the Tanimoto
dissimilarity of the reagents based on the in-hde@¥FI fingerprint. The results are shown

in Table 3.3. This optimization was based on 5 pia@ophore fingerprints.

Table 3.4: Results for the GA optimized libraries using 6 phacophore types

Per cent of Shannon N Covered
A good entropy Diversity bins
Libraries
compound
(%) R1 R2 R1 R2 R1 R2

PSAR + Property 99 3.87 372 072 069 18 17
Diversity + Property 99 314 297 078 079 12 13
Property 100 280 258 058 0.67 9 13
Random 38 287 258 065 063 11 13
Full library 40 320 311 074 073 25 23

PSAR combined with property calculation optimizélordry has the best reagent
entropy among all four libraries and has a highceetage of good compounds (99%).
Diversity combining property optimized library hdke best reagent diversity and its
percentage of good compounds is also high (99%)tHeolibrary which is optimized by the
property only, the entropy and diversity values woese than the others. As a baseline, the
fully enumerated library only has 40% good compauirdtotal and medium entropy and
diversity values. Random library has medium entrapg diversity values and contains only
38% good compounds. As expected, PSAR library sowewsst number of pharmacophore
bins on both R1 and R2 substituent. Another GAroggtion is also done by using six
pharmacophore fingerprints. The result is shownTable 3.4 and the same pattern is
observed. PSAR combined with property optimizapenforms best in entropy value and has
a high percentage of good compounds (99%) comparethers. Regarding the compound
properties for these design libraries, since tlopgrty control is included in GA optimization,
all three optimized libraries have high percentafjlggood compounds. The percentage of
good compounds in PSAR combined with property ogeuch library and diversity combined
with optimized library are 99% and 100% which isnparable with that of the property
optimized only library. These results show thatking the extended PSAR strategy, libraries

which have both good pharmacophore coverage andl graperty profile can be obtained.



Chapter 4
Conclusions

Case studies were carried out to validate the “RRIS(PSAR) methodology, an
AstraZeneca in-house developed library design egjyat“ProSAR” method is capable to
design combinatorial library which has optimal acmge and even distribution of the
pharmacophore elements among the reagents by agctut pharmacophore element on
reagents into fingerprint and further optimising t8hannon entropy of pharmacophore
fingerprint distribution. This methodology was dpdl on five different library design
examples and the results show that most of themwophore features that appear in active
compounds could be covered by the PSAR derivedrijbr-urthermore in those examples,
PSAR libraries include more compounds which areicttirally similar to true active
compounds than random libraries and diversity fibeawhich are optimised by average
ensemble Tanimoto similarity. The PSAR strategy tenfurther expanded to include
compound properties to design a library which hatsonly good pharmacophore coverage of
side chains but also desirable physico-chemicapgnes by using a GA optimisation
method. This extended PSAR strategy was tried owdroillustrative test case, in which the
aim was to design a 400 compound two-dimensionahbooatorial library. The PSAR
libraries were contrasted with libraries constrddg other design strategies such as diversity
(characterised by the average ensemble Tanimoitsiyin this study) driven and property
driven library design. The results demonstrate tRadSAR” designed libraries are clearly
superior in covering pharmacophore space and cneatte even distribution of the side chain
pharmacophore elements than other methods, whiltheatsame time a good compound

property profiles are obtained.
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Appendix A

Comparisons of Phar macophore Distribution Based on 5 Phar macophore Type

Fingerprint.
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Figure A-1: Pharmacophore fingerprint distributmfrR1-reagents in 1D_Lib1 library

example.
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Figure A-2: Pharmacophore fingerprint distributmrR1-reagents (a) and R2-reagent (b) in
2D _Lib1 library example.
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2D_Lib2 Amino Acid (R1) Reagent Fingerprint Distribution
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Figure A-3: Pharmacophore fingerprint distributmffR1-reagents (a) and R2-reagent (b) in
2D _Lib2 library example.
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Figure A-4: Pharmacophore fingerprint distributmffR1-reagents (a) and R2-reagent (b) in
2D_Lib3 library example.
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Figure A-5: Pharmacophore fingerprint distributmffR1-reagents (a) and R2-reagent (b) in
2D_Lib4 library example.
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Appendix B

Comparisons of Phar macophore Distribution Based on 6 Phar macophore Type
Fingerprint.
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example.
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Figure B-2: Pharmacophore fingerprint distributadrR1-reagents (a) and R2-reagent (b) in
2D _Lib1 library example.
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Figure B-3: Pharmacophore fingerprint distributadrR1-reagents (a) and R2-reagent (b) in
2D _Lib2 library example.
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Figure B-4: Pharmacophore fingerprint distributadrR1-reagents (a) and R2-reagent (b) in
2D_Lib3 library example.
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Figure B-5: Pharmacophore fingerprint distributairR1-reagents (a) and R2-reagent (b) in
2D_Lib4 library example.
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Appendix C

Comparison of Phar macophore Coverage for Different Library Design
Strategies by using 5 Phar macophore Type Fingerprints
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Figure C-1: Pharmacophore coverage comparison fbreBgent among ProSAR (top),
random (middle) and diversity (bottom) library i 1Lib1 library example. Green colour
represents bins that are both covered in the libd&sign and active compounds; yellow
colour represents bins that are present in tharljbdesign but not in active compounds; red
colour represents bins that are absent in librasigh but present in active compounds while
grey colour are for bins that are both absenténlitbrary design and active compounds.
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Figure C-2: Pharmacophore coverage comparison fbreBRgent among ProSAR (top),
random (middle) and diversity (bottom) library iD 2_ib1 library example. Colour scheme is
the same with Figure C-1.
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Figure C-3: Pharmacophore coverage comparison fbreBgent among ProSAR (top),
random (middle) and diversity (bottom) library iD 2Lib1 library example. Colour scheme is
the same with Figure C-1.
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Figure C-4: Pharmacophore coverage comparison foreRgent among ProSAR (top),
random (middle) and diversity (bottom) library iB 2_ib2 library example. Colour scheme is
the same with Figure C-1.

Figure C-5: Pharmacophore coverage comparison fbreRgent among ProSAR (top),
random (middle) and diversity (bottom) library iB 2_ib2 library example. Colour scheme is
the same with Figure C-1.
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Figure C-6: Pharmacophore coverage comparison fbreBgent among ProSAR (top),
random (middle) and diversity (bottom) library iD 2_ib3 library example. Colour scheme is
the same with Figure C-1.
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Figure C-8: Pharmacophore coverage comparison foreRgent between ProSAR (top),
random (middle) and diversity (bottom) library iB 2_ib4 library example. Colour scheme is
the same with Figure C-1.
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Figure C-9: Pharmacophore coverage comparison freRgent between ProSAR (top),
random (middle) and diversity (bottom) library iD 2_ib4 library example. Colour scheme is
the same with Figure C-1.
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Appendix D

Comparison of Phar macophore Coverage for Different Library Design
Strategies by using 6 Phar macophore Type Fingerprints

Figure D-1: Pharmacophore coverage comparison tbrrelagent among ProSAR (top),
random (middle) and diversity (bottom) library iD 1Lib1 library example. Colour scheme is
the same with Figure C-1.
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Figure D-2: Pharmacophore coverage comparison foreBgent between ProSAR (top),
random (middle) and diversity (bottom) library iD 2Lib1 library example. Colour scheme is
the same with Figure C-1.
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Figure D-3: Pharmacophore coverage comparison freRgent between ProSAR (top),
random (middle) and diversity (bottom) library iD 2_ib1 library example. Colour scheme is
the same with Figure C-1.
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Figure D-4: Pharmacophore coverage comparison foreBgent between ProSAR (top),
random (middle) and diversity (bottom) library iB 2_ib2 library example. Colour scheme is
the same with Figure C-1.

Figure D-5: Pharmacophore coverage comparison fbreBgent between ProSAR (top),
random (middle) and diversity (bottom) library iB 2_ib2 library example. Colour scheme is
the same with Figure C-1.
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Figure D-6: Pharmacophore coverage comparison foreRgent between ProSAR (top),
random (middle) and diversity (bottom) library iB 2.ib3 library example. Colour scheme is
the same with Figure C-1.

Figure D-7: Pharmacophore coverage comparison fbreRgent between ProSAR (top),
random (middle) and diversity (bottom) library iD 2Lib3 library example. Colour scheme is
the same with Figure C-1.
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Figure D-8: Pharmacophore coverage comparison foreBgent between ProSAR (top),
random (middle) and diversity (bottom) library iD 2ib4 library example. Colour scheme is
the same with Figure C-1.

Figure D-9: Pharmacophore coverage comparison fbreRgent between ProSAR (top),
random (middle) and diversity (bottom) library iB 2_ib4 library example. Colour scheme is
the same with Figure C-1.
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Appendix E

Comparison of Phar macophore Coverage for Different Library Design
Strategiesin 2D Heat Map
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Figure E-1: Pharmacophore coverage comparison anRm&AR (a) random (b) and

diversity (c) library in 2D_Lib1 library example h€ maps on the left side are using the 5-
pharmacophore type fingerprint and the ones omitfin¢ side are using the 6-pharmacophore

type fingerprint. Color scheme is the same withuFegC-1.
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Figure E-2: Pharmacophore coverage comparison anfm@AR (a) random (b) and
diversity (c) library in 2D_Lib2 library example h& maps on the left side are using the 5-
pharmacophore type fingerprint and the ones omigjint side are using the 6-pharmacophore
type fingerprint. Color scheme is the same withuFegC-1.
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(a) PSAR vs. Active (2D_Lib3)

(b) RANDOM vs. Active (2D_Lib3)

Figure E-3: Pharmacophore coverage comparison ankRm@AR (a) random (b) and
diversity (c) library in 2D_Lib3 library example h& maps on the left side are using the 5-
pharmacophore type fingerprint and the ones omigjint side are using the 6-pharmacophore
type fingerprint. Color scheme is the same withuFegC-1.
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(b) RANDOM vs. Active (2D_Lib4)
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(c) DIVERSITY vs. Active (2D_Lib4)

Figure E-4: Pharmacophore coverage comparison anfm@AR (a) random (b) and
diversity (c) library in 2D_Lib4 library example h& maps on the left side are using the 5-
pharmacophore type fingerprint and the ones omigjint side are using the 6-pharmacophore
type fingerprint. Color scheme is the same withuFégC-1.



