
 

Department of Computer Science and Engineering 
CHALMERS UNIVERSITY OF TECHNOLOGY 
UNIVERSITY OF GOTHENBURG 
Göteborg, Sweden,  September 2009 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Validation Study on an Information Driven Library 
Design Strategy  
 
 
 
Master of Science Thesis in the International Master's Degree 
Programme in Bioinformatics 
 
 
 
 
 

Sabbath Marchend 
 



 
The Author grants to Chalmers University of Technology and University of 
Gothenburg the non-exclusive right to publish the Work electronically and in a non-
commercial purpose make it accessible on the Internet.  
The Author warrants that he/she is the author to the Work, and warrants that the Work 
does not contain text, pictures or other material that violates copyright law.  
 
The Author shall, when transferring the rights of the Work to a third party (for 
example a publisher or a company), acknowledge the third party about this agreement. 
If the Author has signed a copyright agreement with a third party regarding the Work, 
the Author warrants hereby that he/she has obtained any necessary permission from 
this third party to let Chalmers University of Technology and University of 
Gothenburg  store the Work electronically and make it accessible on the Internet. 
 
 
 
 
Validation Study on an Information Driven Library Design Strategy  
 
 
Sabbath Marchend 
 
 
© Sabbath Marchend, September 2009. 
 
 
Examiner: Graham J. L. Kemp, Ph. D 
 
Department of Computer Science and Engineering 
Chalmers University of Technology 
SE-412 96 Göteborg 
Sweden 
Telephone + 46 (0)31-772 1000 
 
 
 
Cover: Illustration of combinatorial library design (Adapted from [24]) 
 
 
 
Department of Computer Science and Engineering 
Göteborg, Sweden September 2009 
 



Thesis for the Degree of Master of Science in Bioinformatics 

 
 

Validation Study on  
an Information Driven  

Library Design Strategy 
 
 
 
 

Sabbath Marchend 
 

 

 
Supervisor:  Hongming Chen,  Ph.D 
Computat ional  Chemist ry,  DECS Global  Compound Sciences 
Ast raZeneca,  R&D 
Mölndal ,  Sweden 
 
Examiner:  Graham J . L.  Kemp,  Ph.D 
Associate Professor ,  Department  of  Computer  Sc ience and Engineer ing 
Chalmers Universi ty o f  Technology 
Göteborg,  Sweden 

 
 

 
CHALMERS | UNIVERSITY OF GOTHENBURG 

 

 

 

International Master’s Programme in Bioinformatics 
Chalmers University of Technology and University of Gothenburg 

Göteborg, Sweden 
December, 2008 



Acknowledgements 

 
 
Thanks to God, a loving Father, for His endless love and help that I can finish this thesis in 
time. This thesis is one of the requirements to get a degree in International Master’s 
Programme in Bioinformatics, Chalmers University of Technology, Sweden. 
 
I would like to thank my supervisor, Hongming Chen Ph. D, for giving me the chance to carry 
out a thesis work at AstraZeneca and his endless support and encouragement throughout the 
completion of the thesis. Without his support, this thesis would not be completed. I also want 
to acknowledge Dr. Graham J. L. Kemp as my examiner for giving valuable discussions 
during the thesis writing. His supports inspired me a lot during the time. 
 
I would like to thank Professor Olle Nerman as the programme director of the International 
Master’s program in Bioinformatics and all the teachers at Chalmers University of 
Technology and The University of Göteborg. Thanks for the number of interesting courses 
and seminars. 
 
A pleasant working environment had been occurred during the six months of thesis work at 
AstraZeneca. It won’t be happened if not because of my friendly colleagues at Computational 
Chemistry, DECS Global Compound Sciences, AstraZeneca R&D Mölndal, Sweden. Special 
thanks goes to Niklas Blomberg, “Thanks for proofreading the thesis” and to Steffan S., 
Engkvist, O., and Börjesson, U., “Thanks for the scientific discussions and technical helps 
during the time”. 
 
For the last two years of my study, I have been blessed that I have such a lovely place to live. 
It happened not only because of the nice place, but also because of the warm and kind 
environment. Therefore, I want to thank my entire Indonesian friends in Sweden for providing 
a wonderful environment to live. You are like a second family for me. 
 
Constant appreciation is given to my colleagues. Thanks for the nice environment we had 
during our study at CHALMERS. To my friends : Mari Chikvaidze and Santosh Dahgam, 
“Thanks for the discussion and friendship we had during our study”. 
 
I am more than thankful to both of my parents and all of the family members. Thanks for your 
given supports, love and care during my study in Sweden. Your love and kindness are like 
candles that give me lights in walking through the world. 
 
Once more, I want to acknowledge all the people that contributed to this thesis. Without your 
supports, this thesis would not be possible. In the end, I would like to dedicate this thesis as a 
contribution to science and people throughout the readers. 
 

Sabbath Marchend 

 



 
 
 
 
The fear of the LORD is the beginning 
of knowledge, but fools despise 
wisdom and discipline.  
Proverbs 1 : 7 
 
 
For wisdom will enter your heart, and 
knowledge will be pleasant to your 
soul. Discretion will protect you, and 
understanding will guard you.  
Proverbs 2 : 10-11 
 
 
The fear of the LORD teaches a man 
wisdom, and humility comes before 
honor. 
Proverbs 15 : 33 
 
 
Don’t seek justifications on all things. 
Wisdom don’t come from a 
justification of the incapable, but 
rather from talking less and doing 
more.  
USFT 
 
 
 
 

 
 
 

WHY HAVE YOU CHOSEN MEWHY HAVE YOU CHOSEN MEWHY HAVE YOU CHOSEN MEWHY HAVE YOU CHOSEN ME    
 
 

Why have You chosen me, 

Out of millions Your child to be? 

You know all the wrong that I have done. 

Oh how could You pardon me, 

Forgive my iniquities, 

To save me give Jesus Your son. 

 

But Lord help me be, 

What You want me to be. 

Your Word I will strive to obey. 

My life I now give, for You I will live, 

And walk by Your side all the way. 

 

I am amazed to know, 

That a God so great could love me so, 

Is willing and wanting to bless. 

His love is so wonderful, 

His mercy so bountiful, 

I can’t understand it I confess. 

 

 

 

 

Because everything is from Him, to Him and for Him only. 

 

 



 

 i 

Abstract 
 
 

A new method is introduced for performing reagent selection for chemical library design 

based on topological (2D) pharmacophore fingerprints. Optimal reagent selection is achieved 

by optimising the Shannon entropy of the 2D pharmacophore distribution for the reagent set. 

The method, termed ProSAR, is therefore expected to enumerate compounds that could serve 

as a good starting point for deriving a structure activity relationship (SAR) in combinatorial 

library design. The main goal for current study is to validate this methodology by applying it 

on several library design examples where the active compounds were already known and 

comparing the performance of ProSAR libraries with random libraries and traditional 

diversity based libraries. The results show that ProSAR libraries generally have better 

pharmacophore coverage than libraries coming from other design strategies. The effectiveness 

of generating active compounds for the designed library is also evaluated by first doing a 

similarity search against GVKBio database with library compounds as query structures, then 

comparing the number of retrieved active compounds for different libraries. The results 

demonstrate that in most of cases, ProSAR libraries retrieve more active compounds than 

other libraries. The ProSAR strategy is further expanded to include product property profiles 

for aqueous solubility, hERG risk assessment etc. in the optimisation process so that the 

reagent pharmacophore diversity and the product property profile are optimised 

simultaneously via a genetic algorithm. The validation study results show that by using the 

ProSAR methodology, the designed libraries can achieve good pharmacophore coverage and 

product property profile simultaneously. 
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Chapter 1  

1 Project Background 

1.1 Combinatorial Chemistry 

In the past, the approach of making compounds was the traditional synthetic approach 

where compounds were made one by one by reacting a particular reaction at a time. This 

approach is time consuming and inefficient since only one compound can be made from a 

particular reaction. For example, compound A which reacted with compound B will give a 

product AB as shown in Figure 1.1. However, during the early 1990s this paradigm of 

chemical synthesis had been changed completely [1-3]. It changed from the old fashioned 

traditional synthesis to a modern method where a huge amount of compounds can be made at 

the same time. This new methodology is known as the combinatorial chemistry. 

ABA  +  B  

Figure 1.1: Reaction scheme showing the reaction of compound A with compound B to 
form compound AB. This method is the traditional synthesis in which only one 
compound can be made at a time. 

 Combinatorial chemistry had been developed in industry in early 1990s, but its origin 

can be traced back as early as 1960s when a research group from Rockefeller University [4-7] 

started the investigation of solid-stated synthesis of peptides. During their investigation, it 

was realized that synthesizing peptides were difficult and time consuming. So they proposed 

an approach of synthesizing peptides in a more efficient way by having peptides assembly 

attached to a solid support. Their method was then developed further by Geysen et al. [8] in 

which arrays of peptides was synthesized on pin-shaped solid supports in the 1980s. Since 

then the idea of combinatorial chemistry has become popular. 
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 The concept of combinatorial chemistry is the parallel synthesis of compounds from a 

large range of analog reagents under the same reaction conditions and the same reaction 

vessels [3]. This can be described as follow. For two sets range of analog reagents [A1, A2, 

A3, … , Am] and [B1, B2, B3, … , Bn], the total combination when both analog reagents are 

reacted will be the products of m×n compounds. By performing all these combination at the 

same time, it is possible to speed up the process of compounds production since numerous 

compounds can be made in a time. Figure 1.2 shows the illustration of combinatorial 

chemistry concept. 

A1

A2

A3

.

.

.

Am

B1

B2

B3

.

.

.

Bn

+

A1B1

A1B2

A1B3

.

.

.

AmBn  

Figure 1.2: Reaction scheme showing the combinatorial chemistry concept. It can be seen 
that from m range of analogues A’s and n range of analogues B’s a total of 
(m×n) possible compounds can be synthesized at a time. 

The key advantage of combinatorial chemistry is the massive production of 

compounds. When it is combined with robotics and high throughput screening (HTS) 

technology, hundreds or even thousands of compounds can be made and screened in a 

relatively short time [9]. This may lead to a rapid discovery of bioactive compounds and an 

increased chance of identifying lead compounds in the drug discovery process. This powerful 

method of combinatorial chemistry has dramatically changed drug discovery paradigm of 

pharmaceutical industries [10-13]. 

1.2 Combinatorial Library Design Strategies 

Combinatorial library design plays an important role in the discovery of new drugs. It 

has become the common approach to progress hits into potential lead compounds after active 

compounds are identified in the early phase. By applying combinatorial library design, 

hundreds of compounds can be synthesized to explore the chemical space around the scaffold 

of the identified lead compound. For a specific chemical scaffold, millions products could be 

easily enumerated. But to physically synthesize and purify all possible compounds from such 

reaction is almost impossible since the number of compounds that chemist can afford to 

process is very limited [14]. Therefore, how to select a subset of reagents to make a smaller 
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scale of library is very important. This library sub-setting method is called the combinatorial 

library design strategy. Library design strategies can be classified into focused library design, 

targeted library design and diversity library design [15]. It can also be divided into reagent-

based library design and product-based library design based on the way compounds are being 

selected [16]. 

1.2.1 Focused Library Design 

A focused library is built from a lead molecule and aim for a particular target [15]. 

This library is designed to occupy certain chemical space around the target of interest. It has a 

large amount of information regarding the molecular design such as core structure and 

pharmacophoric elements and can be constructed in two different ways depending what is 

known about the target. For example, when the three-dimensional structure of a target is 

known, a library can be constructed to screen out molecules that can not fit into the active site 

of a particular target. On the other hand, if an active compound is known, a library could be 

enumerated to contain molecules that are similar to the known actives or a library could be 

designed to contain molecules that are predicted to be active and have a SAR [17]. 

1.2.2 Targeted Library Design 

A targeted library is designed for finding lead compounds against a specific target 

class. This kind of library design is a broader version of a focused library in a sense that it 

comprises compounds which are supposed to be active against several proteins/receptors 

which belong to same target class. Some common target classes are G-protein-couple-

receptors (GPCR), kinases, ion-channels, proteases, etc. For these targets classes, the library 

is designed by taking account on information like important components of the structural 

space, privilege fragments or pharmacophoric elements of the chosen target family from all 

available literatures [15]. 

1.2.3 Diversity Library Design 

A diversity library (or usually known as primary screening library) is a compound 

collection used for screening to find new leads or novel scaffolds. Diversity library design is 

suitable to be used when almost nothing about the target is known or when no information is 

available about what kind of molecules will interact with what target [15]. This library design 

could produce a library having large structural diversity. On the other hand, some physico-

chemical property filters could be applied to filter out all molecules which don’t satisfy with 
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properties of being a “good drug” such as the properties suggested by Lipinski’s “rule of 5” 

[18]. 

1.2.4 Reagent-based Library Design 

Reagent-based library design is a way of sub-setting library directly from the reagent 

pool itself rather than from the products constructed by those reagents. For example, for a 

reaction involving aldehydes and amines, if there are 2000 molecules available for each type 

of reagents, in total, there will be 4×106 of possible products (2000×2000) enumerated from 

this combinatorial synthesis. Given the aim of library design is to build a set of 104 products. 

In the reagent-based design, sub-setting is independently done to the reagent pools. So, for 

this case, the procedure is to select 100 aldehyde reagents from 2000 available aldehydes and 

then repeating the same procedure for the amines. By doing this, 200 reagents (100 for 

aldehydes and 100 for amines) are picked out from the total of 4000 reagents (2000 from 

aldehydes and 2000 from amines); and obviously it is quicker than directly selecting 104 

subset out of 4×106 products. 

Reagent-based design has been used by chemist for many years. Its practical usage 

and efficiency have been the reasons why this method is favored compared to product-based 

design. Nevertheless, there is a limitation to this method. The natural properties of the 

products enumerated are sometimes not manifested even after they have been considered at 

the reagents level [16, 19]. Sometimes the properties of the product can be very different from 

the properties of their corresponding building blocks. For example, in constructing a library 

we may take into considerations all the “drug-likeness” properties on a building block of a 

molecule; however, the resulting library might not contain products which have the expected 

“drug-like” properties. However in the other hand, it is also possible to have a building block 

which is considered to be unsuitable when taken individually, but when it is combined with 

other reagents, it may result in products that have the “drug-like” properties. 

1.2.5 Product-based Library Design 

If a reagent-based library design generates a library by selecting molecules directly 

from the reagent sets, a product-based library design does the opposite way. It generates a 

library from the products rather than from the reagents. A product-based library design 

involves more complicated optimisation procedure compared to reagent-based library design. 

In product-based library design, a library is constructed first from all available reagents and 

then the optimal combinatorial subset is selected from the product pool. In this way, the 
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combinatorial characteristic of the sub-library is retained through combinatorial boundary, 

whereas diversity evaluations, focusing or other criteria are performed on the product side. 

 Gillet et al. [16, 20] investigated the diversity of products obtained from three 

different approaches. They compared the diversity of libraries from reagent-based design, 

product-based design and random design. It was shown that among these three different 

approaches, product-based library design gave higher diversity than the reagent-based design 

and both of these libraries are more diverse than the random library design. However, despite 

the fact that product-based library design gives the highest diversity, there lies an additional 

problem. The subset of product molecules chosen as the most diverse set probably can not be 

made from a simple combinatorial reaction of the reagents and will involve more reagents. 

Adding constraints on reagent matrix can overcome this problem. 

1.3 Molecular Diversity 

The main goal of combinatorial library design is to select a subset of compounds from 

a given library that is diverse as possible. A lot of interest has been shown in molecular 

diversity analysis by using different descriptors [21, 22]. The rationale lies on the assumption 

that maximizing diversity would result in a maximal coverage of bioactivity space, hence, 

maximizing the chance of finding new lead compounds. Diversity selection usually uses the 

similarity property concept, which means structurally similar compounds are likely to have 

similar properties [23]. This concept assumes that compounds which are structurally similar 

to a known biologically active compound are likely to exhibit the same activity. 

 There are three main components that are usually involved in measuring molecular 

similarity or diversity. They are the structural descriptors, which are used to describe the 

molecules; the weighting scheme, which is used to differentiate more important 

characteristics from less important characteristics of molecule; and the similarity coefficient, 

which is used to quantify the degree of similarity between pairs of molecules. Some 

introductions are given on these three components as follow. 

1.3.1 Molecular Descriptor 

The choice of descriptor is important because diversity or similarity measurement 

depends largely on it, since descriptor is needed to compare and assess molecules 

quantitatively. Before the comparison can start, the molecules needed to be converted first 

into other representation that could be easily measured. This could be achieved by converting 

the molecules into numbers, array of numbers or a vector of bit strings. Molecular descriptors 
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can be categorized into two broad classes: the whole molecular entity and the molecular parts. 

The first category is the whole molecular entity where a descriptor represents some physical 

property of the whole molecule. Some descriptors that can fall into this category are the clogP 

(a measurement of lipophilicity), CMR (calculated molar refractivity, a measure of size), 

several type of topological indices (for example those representing molecular shape of 

molecular connectivity) and functional group counts. This type of descriptor is usually in the 

form of one-dimension (1D) representation. The benefits of using this type of descriptor are 

the easiness of calculation and the additional properties information related to small 

molecule-macromolecule interaction. However, one disadvantage that could happen is that 

information regarding specific molecular features such as atom type, bond type, and 

connectivity is lost. 

The other category of descriptor is called molecular parts. It separates molecules into 

parts that are considered to be structurally important and describes those parts numerically. In 

this way, atom types, bond types, and connectivity information can all be encoded easily. This 

category can be further classified into two-dimension (2D) descriptor and three-dimension 

(3D) descriptor which encode two and three dimensional properties of a molecule, 

respectively. An example of several descriptors used which are based on molecular structure 

is shown in Figure 1.3. 

 

 

Figure 1.3: Some examples of molecular descriptors and their classification calculated from 
1D, 2D and 3D molecular structure [24]. 
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 A fingerprint is a representation of a molecule in an abstractive way regarding its 

structural features. A fingerprint can be used to quantify the similarity of two molecules on 

one hand and also be used to eliminate molecules which are not similar to query structure on 

the other hand. There are several commonly used fingerprint methods, these include the 

MACCS structural fragment keys (MDL software) [25] and Unity [26] or Daylight fingerprint 

[27]. MACCS keys have been used as molecular descriptor for substructure searching. It 

describes molecules by assigning numbers in bit strings such as zero and one to represent the 

absence and presence of particular fragments of molecules. However, it is only able to 

describe small substructures but not the large scale ones. 

The Unity and Daylight fingerprint are quite different from MACCS structural keys 

although they were built on the same principle concept of structural keys. The fingerprint was 

built to overcome the lack of generality of the MACCS structural keys. Instead of using the 

presence or the absence of fragments from a predefined fragment library, it uses the presence 

or the absence of a set of two to seven atom patterns in the molecules as a template to create a 

bit string. This makes the generated patterns dynamic and various depending on the individual 

molecule. The advantages of this fingerprinting method are avoiding missing features in the 

predefined structural keys and providing a more general and precise description of individual 

molecule since it is based on all possible atomic patterns (from two to seven atoms) of the 

molecules. However, the dimensionality of the constructed fingerprint could raise a problem 

when it is too high, especially when dealing with highly complex molecules. 

1.3.1.1 Daylight Fingerprint 

The Daylight fingerprint of a molecule is generated by first examining the molecule 

and generating the following patterns: a pattern for each atom, a pattern for two neighboring 

atoms with one bond length, a pattern for three neighboring atoms with two bonds length, a 

pattern of four neighboring atoms with three bonds length and continuing up to eight atoms 

with seven bonds length [28]. For example, the molecule AB=CD would generate the 

following patterns: 

 0-bond paths:  A   B   C 
 1-bond paths:  AB   B=C   CD 
 2-bond paths:  AB=C   B=CD 
 3-bond paths:  AB=CD 

Then each pattern is used as a seed to generate pseudo random number (hashed) and 

give output as a set of bits (typically 4 or 5 bits per pattern). The bits for each pattern are 

combined to form fingerprint. These fingerprints are rearranged to have a fixed size (the size 

is large enough to represent any normal small molecule) and then folded by using logical OR 
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to increase the information density. So each bit in a Daylight fingerprint doesn’t correspond to 

a particular substructure like a MACCS structural key does. In general a Daylight fingerprint 

has much higher bit density and hence gives greater discriminating power 

1.3.1.2 FOYFI Fingerprint 

The FOYFI fingerprint is an AstraZeneca in-house developed fingerprint. The FOYFI 

[29] fingerprint is generated in a very similar way to the Daylight fingerprint. The 

methodology is implemented as follows: All possible paths in a molecule are first enumerated 

up to a predefined length (number of bonds). Atom information (e.g. type, charge, 

hybridization etc.) is recorded and recursively updated via integer hashes. After that, the 

resulting large integer is iteratively divided by fingerprint length, and the remainder is used to 

set the corresponding bit. Usually several bits are set for a given path, and consequently there 

is no direct correspondence between a specific bit and an atom or substructure. 

1.3.1.3 Pharmacophore Fingerprint 

One of the descriptors commonly used is the pharmacophore fingerprint [30, 31]. 

This type of descriptor is built on the basis of several interactions observed in molecules such 

as hydrogen bonding, ionic charge interaction and hydrophobic interaction. A pharmacophore 

is a functional group in a small molecule or ligand which makes interaction with a specific 

target receptor. This interaction is usually thought to be responsible for a pharmacological 

action of the corresponding molecule. Pharmacophore fingerprinting is a technique of 

encoding molecules into string of bins that represents the molecular interactions in terms of 

chemical features. These features are relative and arbitrary in a sense that no strict rule is 

available for this, thus enabling a flexible choice of features depending on the need. In 

general, these features can be consisting of hydrogen bond donor (HD), hydrogen bond 

acceptor (HA), positive charge center (POS), negative charge center (NEG) and lipophilic 

groups (LIP). This kind of pharmacophore employs 5 different types of chemical feature that 

can be expanded further into 6 by separating the lipophilic groups (LIP) into two distinct 

types which are the aliphatic and aromatic lipophilic groups. Other expansion of 

pharmacophore features is also possible, depending the kind of interaction observed or 

required in a particular molecule. Figure 1.4 shows the pharmacophore concept used as 

descriptor. 
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Figure 1.4: Identification of pharmacophore and its fingerprint. Each feature in a molecule is 
identified first. After that, string of bins is generated based on it. Features that 
are absent and present are denoted with 0 and 1, respectively. 

1.3.2 Weighting Scheme 

The second main component in determining similarity of molecules is the weighting 

scheme. This component assigns the degree of importance of the various characteristics of the 

descriptor. There are some publications [32, 33] that reported how the weighting scheme 

affects the utility of molecular measure. However, molecular descriptors and similarity 

coefficients are far more common in the literature than weighting scheme. 

1.3.3 Similarity Coefficient 

For comparing similarity between a pair of molecules, a numerical measure is 

needed. This measure (known as similarity coefficient) will provides a quantitative 

assessment of the degree of structural similarity between a pair of molecules.  

Generally, similarity coefficients can be differentiated into two main groups. The first 

group is the measure of distance and the second group is the measure of direct similarity. 

These two groups are complementary to each other. In the measure of distance, the value of 0 

would be given to molecules that are identical while in the direct similarity, a maximum value 

is given to identical ones. These values can be any value ranging from 0 to anything, but for 

convenience that range could be normalized to a coefficient ranging from 0 to 1. 

 Similarity coefficients are usually calculated in the following way. Consider the 

molecules to be compared had been encoded using a descriptor. This descriptor converts the 

molecules into a set of numbers representing their structural attributes. Let A be a molecule 

which can be described by means of a vector XA of n attributes (Equation 1.1) such that 
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where XjA is the value of the j th attributes of molecule A. The values of these attributes may be 

real numbers over any range or discrete values such as binary, indicating the absent or present 

of some particular features of the molecule. If binary numbers were used, an entry of 0 in the 

attributes would mean the absence of the particular feature on the molecules while an entry of 

1 would mean the opposite. Once the molecules have been represented into vectors, similarity 

coefficients that quantify similarity between molecules are calculated by measuring distance 

of those respective vectors. 

There are several ways to measure the similarity or distance coefficient of molecular 

descriptor vectors, including Euclidean distance, Hamming distance [34], Soergel distance 

[35] and Tanimoto coefficient [35]. Among those, the two most popular measures are the 

Euclidean distance and the Tanimoto coefficient. However, Tanimoto coefficient is more 

popular than Euclidean distance for comparing two arbitrary molecules. Euclidean distance is 

better only for “relative” distance comparison (i.e., the distance of molecules to the same 

target) but for “absolute” comparison (comparison between two independent pairs of 

molecules), Tanimoto coefficient performs better. 

1.3.3.1 Tanimoto Coefficient 

Tanimoto coefficient (also known as Jaccard coefficient) is computed as the number 

of attributes shared by two objects divided by the total number of their attributes. For the case 

of comparing molecule A and B, Tanimoto coefficient can be calculated as follow: Let “a“ be 

the number of present features in molecule A; “b” be the number of present features in 

molecule B; and “c” be the number of present features in both molecule A and B. The 

Tanimoto coefficient is expressed as: 

 )(, cba

c
Tanimoto BA −+

=  (1.2) 

 Tanimoto coefficient is a straightforward calculation of similarity measurement, as it 

is adjusted to account the number of attributes that might be in common relative to the 

number attributes that are in common. As seen from Equation 1.2, Tanimoto coefficient of 1 

indicates identical molecule, while Tanimoto coefficient of 0 indicates that two molecules 

have nothing in common. 
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1.4 Chemical Structure Representation 

Several methods have been introduced to represent the structure of a molecule. These 

methods can be divided into two main groups consisting coordinate-based and graph-based. 

The coordinate-based is known as the connection table while the graph-based is known as the 

line notations.  

Coordinate-based representation has several characteristics in the way it is built. It 

requires the x, y, z coordinate of the molecule along with the formal charges and the bond 

information between each atom. This information is put together into one or more tables. 

After that, the tables are constructed uniquely so they can provide sufficient information for a 

molecule to be characterized. Some examples of coordinate-based representation are the 

MDL “MOL” File (or called as SD file) which is developed by MDL Inc, MOL2 file format 

which is developed by Tripos Inc., MAE file format which is developed by Schrödinger and 

other formats. 

Graph-based representation describes molecules based on atoms and their bonds 

connection. It is constructed to cover all information regarding atoms and bonds in a 

molecule. It is constructed by first converting a molecule into its atom type, and then adding 

the connection and branching information between bonded atoms. By doing this, a string of 

characters is assigned to denote a molecule. The most commonly used graph-based 

representation is the Simplified Molecular Input Line Entry System (SMILES) [28] which 

was developed by Daylight, Inc. 

1.4.1 SMILES 

SMILES is a notation used for representing a molecule or a chemical reaction. It is a 

graph-based representation which can provide a collection of information covering atom 

elements, atom connectivities and bond types in a molecule along with other information like 

chirality, ionization state etc. Compared to a coordinate-based representation, SMILES 

notation is more compact and efficient. A typical SMILES string can take up to 70% less 

space than a coordinate-based representation. However, the information stored in a SMILES 

string can be as much as the coordinate based representation except for 3D coordinates. 

1.4.1.1 SMILES Specification Rules 

SMILES notation can be considered as a notation of chemical language since it has 

rules with several vocabularies and grammars. Rules in SMILES are designed to regulate an 

interpretation of a graphical representation of a molecule in a standard way. There are several 
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terms used in SMILES. SMILES which denotes information about chirality of a molecule is 

called “isomeric SMILES” while those that are not are called “generic SMILES”. SMILES 

representation of a molecule can exist in several notations. However, they are all valid as long 

as they follow the rules in SMILES. SMILES notation which is unique to a specific molecule 

is called “unique SMILES”. 

The rules in SMILES usually regulate the atoms and bonds specification of a 

molecule. However, there are also rules for branches, ring closures, and disconnections. Other 

typical rules of SMILES are the way of how it should be written. For example, SMILES 

notation should consist of a series of characters without spaces. The next one, hydrogen atoms 

may be omitted or included and aromatic structures may be specified directly or in Kekulé 

form. There are five generic SMILES encoding rules, these are described briefly here. 

1.4.1.1.1 Atoms 

There are two different ways of representing atoms in a SMILES notation. First, 

atoms that are categorized as metal elements should be written in square brackets [ ], for 

example [Ag] for elemental silver and [K] for elemental potassium. Atoms that are non metal 

elements such as B, C, N, O, P, S, F, Cl, Br, and I can be written without brackets as long as 

they are in the lowest normal valence. If not, they should be written inside the brackets, and 

any hydrogens attached to them should also be included. Lower case characters should also be 

used for atoms that are in the aromatic ring, while non aromatic atoms are represented by 

capital letters. For example aromatic carbon should be written as “c” and aliphatic carbon 

should be written as “C” instead. Atoms that are in the formal charges should be written in the 

brackets with the symbols + or – followed by an optional digit, for example positive charged 

aliphatic N atom can be written as [N+]. 

1.4.1.1.2 Bonds 

Bonds in SMILES notation are represented by several symbols. Character -, =, and # 

are used for denoting single, double and triple bonds, respectively; while character “:” is used 

for aromatic bond. However, normally single and aromatic bond are omitted in the SMILES 

notation for simplicity. 

1.4.1.1.3 Branches 

Branches are described in SMILES notation using parenthesis. This is done by 

putting the branches in a parenthesis and merging the left side of the parenthesis to the node. 

Figure 1.5 illustrates the application of branches in SMILES. 



 13

 
 

 

CCN(CC)CC CC(C)C(=O)O C=CC(CCC)C(C(C)C)CCC 

Triethylamine Isobutyric acid 3-propyl-4-isopropyl-1-heptene 

Figure 1.5: Illustration of braches in SMILES representation. In the first row, graph 
representations of molecules are shown, followed by its corresponding SMILES 
notation in the second row (Adapted from Daylight Theory Manual [28]).  

1.4.1.1.4 Cyclic Structures 

Cyclic structures can be represented in SMILES notation by breaking one of the 

bonds in the ring and translating it into a linear notation. Once a bond is broken, a number is 

assigned to the beginning and ending atoms of that bond to mark the broken bond positions. 

By doing in this way, it is able to find out which atoms are actually connected by a ring 

closure just by looking and matching the number that follows an atom. Figure 1.6 shows the 

illustration by using cyclohexane as an example. 

 

Figure 1.6: Deriving SMILES notation for a cyclic structure from a cyclohexane (Taken 
from Daylight Theory Manual [28]). 

1.4.1.1.5 Disconnected Structures 

To display a disconnected structures in a SMILES notation, a “.” (period) is needed. 

This period can be place anywhere on the notation as long as it is between individual 

structures. Regarding the placement of these individual structures, there is no order of how 

they should be put. An example of this can be seen in Figure 1.7. 

 

Figure 1.7: Example of representing a disconnected structure in sodium phenoxide (Taken 
from Daylight Theory Manual [28]). 
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1.4.2 SMARTS 

In chemical searching, sometimes we are only interested in some particular sub-

structure of a molecule rather than the whole structure. For example, we are interested in 

identifying all the molecules that have a phenol substructure in a database. In order to do this 

we need a pattern to easily identify a phenol sub-structure in a molecule and SMARTS [28] is 

a “language” that can help in doing this. SMARTS is an extension form of the SMILES 

language. This means SMILES rules are generally applied in SMARTS except for some 

additional symbols of atoms, bonds and logical operator. These additional rules make 

SMARTS notation becomes more general than a SMILES notation. 

1.4.2.1 Atomic Primitives 

SMARTS has additional symbols beyond the ones that are used in SMILES. These 

symbols describe atomic properties such as atomic symbol, charge and isotopic information. 

The following Table 1.1 lists all the atomic primitives used in SMARTS. 

Table 1.1: SMARTS Atomic Primitives (Taken from Daylight Theory Manual [28]) 

Symbol Symbol Name Atomic Property Requirements Default 
* Wildcard any atom (no default) 

A Aromatic aromatic (no default) 

A Aliphatic aliphatic  (no default) 

D<n> Degree <n> explicit connections exactly one 
H<n> total-H-count <n> attached hydrogens exactly one 

h<n> implicit-H-count <n> implicit hydrogens at least one 

R<n> ring membership in <n> SSSR rings any ring atom 

r<n> ring size in smallest SSSR ring of size <n> any ring atom 

v<n> Valence total bond order <n>  exactly one 

X<n> Connectivity <n> total connections exactly one 

x<n> ring connectivity <n> total ring connections at least one 

- <n> negative charge -<n> charge -1 charge (-- is -2, etc) 

+<n> positive charge +<n> formal charge +1 charge (++ is +2, etc) 

#n atomic number atomic number <n> (no default) 

@ Chirality anticlockwise anticlockwise, default class 

@@ Chirality clockwise clockwise, default class 

@<c><n> Chirality chiral class <c> chirality <n> (no default) 

@<c><n>? chiral or unspec Chirality <c><n> or unspecified (no default) 

<n> atomic mass Explicit atomic mass Unspecified mass 
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1.4.2.2 Bond Primitives 

Several symbols are also introduced in SMARTS to define and characterise bonds in 

a substructure searching. These symbols mostly are the same as in SMILES notation. For 

example, the symbol -, =, # and : have the same meaning in SMARTS and SMILES. Table 

1.2 lists all the bond symbols used in SMARTS with their corresponding meaning. 

Table 1.2: SMARTS Bond Primitives (Taken from Daylight Theory Manual [28]) 

Symbol Atomic Property Requirements 
- single bond (aliphatic) 

/ directional bond "up" 

\ directional bond "down" 

/? directional bond "up or unspecified" 
\? directional bond "down or unspecified" 

= double bond 

# triple bond 

: aromatic bond 
~ any bond (wildcard) 

@ any ring bond 

1.5 Structure and Activity Relationship 

Structure and activity relationship (SAR) is the approach of investigating the 

relationship between activity of a particular compound with its molecular structure. This 

approach is usually conducted by medicinal chemists once the bioactivity data from a 

particular compound is known. The exploration is done by altering some chemical groups in 

the compound and observing the biological response of that modification. Sometimes, small 

chemical modification can significantly alter the biological response. In contrast, large 

modifications (which makes it structurally different from origin) can result in having similar 

activity [36]. 

 The exploration of SAR is an important task in medicinal chemistry and drug design. 

SAR analysis provides a basis for chemical optimization of hits or leads and the identification 

of novel active compound. However, it is also reported that SAR characteristics often highly 

dependent on the types of molecules under investigation.  

Sometimes, the molecules under investigation don’t have a large coverage of 

chemical variation. This sometimes could lead to a difficult situation on deriving a SAR. This 

situation, however, could be solved if the molecules under investigation have a large coverage 

of chemical variations. One way to do this is by making the set of molecules to be as diverse 
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as possible. Since a SAR analysis is usually done by modifying the substituent (R) group of a 

molecule, it will be better if the variation is focused on the substituent group level rather in 

the whole molecular level. Therefore, in this particular problem, a diversity selection on the 

reagent level is more appropriate. A diverse selection of reagents will lead to a higher 

variation of the substituent group, thus, enabling it to be better in deriving a SAR. 

1.6 Aims and Objectives for the Project 

Combinatorial chemistry is now established as a powerful tool available to the 

medicinal chemist in the pursuit of new drug candidates. It provides a way to generate very 

large numbers of compounds in a relatively short period of time (compared to traditional 

synthesis of molecules). However this aspect of combinatorial chemistry in itself presents a 

problem. A balance needs to be struck between making everything possible and the 

constraints of economics, logistics and time. In other words, there is a strong need to do 

combinatorial library design to synthesize small number of compounds from the vast 

compound pool of those that could possibly be made. The art and science of computational 

library design has been reviewed extensively [37-39]. Chemical diversity [40-42] is often 

used as an optimisation function for library design, either on the reagent side [43, 44] or on 

the product side [16, 19]. Such library design strategies are often very efficient at selecting 

diverse compounds, but one drawback is that when the designed libraries are tested in assays, 

sometimes it can be hard to derive a clear structure activity relationship (SAR) from the 

experimental results since the selected building blocks could have little or no relationship to 

one another.  

A new library design strategy, which called as ProSAR [45], has been developed in 

AstraZeneca to address this issue for designing libraries, which are helpful to derive an SAR 

after the screening. The goal for this project is to carry out validation study for the new 

methodology. ProSAR method has been applied to several literature examples to validate the 

ProSAR concept. 
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Chapter 2  

2 Materials and Methods 

2.1 ProSAR Methodology 

2.1.1 Identification and Encoding of the Pharmacophore Fingerprint 

A two-point pharmacophore is designed to encode the reagent pharmacophore 

information. The fingerprint consists of two kinds of information; one part is the 

pharmacophore type of the reagent and the other part is the topological distance (i.e. bond 

distance) between the single pharmacophore element and the attachment atom of the reagent 

(as shown in Figure 2.1). Five standard pharmacophore types are used here: hydrogen bond 

donor (HD), hydrogen bond acceptor (HA), positive charge center (POS), negative charge 

center (NEG) and lipophilic groups (LIP). Pharmacophores are defined via a set of SMARTS 

[28] patterns. In order to keep the reagent complexity low and avoid adding too long side 

chains to the scaffold, the bond distance between the each pharmacophore element and the 

attachment atom of the reagent is limited to 6 bonds. The total number of HD, HA, POS and 

NEG functional groups on a reagent was restricted to no more than 2 to further reduce the 

complexity on pharmacophore elements. The total number of unique two-point 

pharmacophores in a reagent is therefore 30 (5×6) and a 30-bin pharmacophore fingerprint 

can therefore be constructed, in which each bin refers to a specific two-point pharmacophore. 

The value in each bin is the frequency of the specific pharmacophore in the reagent 

corresponding to that bin. Figure 2.1 shows an example of such a pharmacophore fingerprint 

for an amine reagent. The pharmacophore fingerprint is constructed in such an order that the 

first 6 bins represent for HA pharmacophore element, then followed by 6 HD bins, 6 LIP bins, 

6 POS bins and with 6 NEG bins at the end. 
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The lipophilic groups can be further divided into aromatic and nonaromatic lipophilic 

groups, and thus a 6-pharmacophore-type fingerprint can be obtained. In the 6-

pharmacophore-type fingerprint, the pharmacophore fingerprint length will be 36 bins (6×6) 

and the order of pharmacophore element is kept the same as the 5 pharmacophore type 

fingerprint. 

O

OH

O

NH2

Xe

OH

O

NH2

0 0 0 0 0 0   0 0 0 0 0 0   1 1 1 0 0 0   0 0 0 0 1 0   0 0 0 0 1 0

HA HD LIP POS NEG

attachment point

 

Figure 2.1: Identification and encoding of a reagent pharmacophore fingerprint. 

2.1.2 Optimisation in Pharmacophore Space for ProSAR 

The main goal of new library design strategy is to search for a set of  reagents which 

cover the pharmacophore space optimally, while keeping the pharmacophore distribution as 

even as possible. Shannon entropy [46] was used widely to characterise the variation of 

descriptor space [47], so it was used here to represent the distribution of selected reagent 

subset based on the “pharmacophore fingerprint space”. The SE is defined as: 

 ∑−=
i

ii ppSE 2log  (2.1) 

 where ip  is the probability of having a certain pharmacophore in the whole reagent set. ip  is 

calculated as: 

 
∑

=
i

i

i
i c

cp  (2.2) 

where ic  is the population of pharmacophore i in the whole reagent set. Shannon entropy is 

chosen as the fitness function for optimisation. A greater Shannon entropy value means that 

the pharmacophores for the selected reagent subset is more evenly distributed over the 30 

bins. Hence, during the course of optimisation, a set of reagent compounds is sought to 

maximise the Shannon entropy. 
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A “greedy” search algorithm [48] was used as the optimisation engine to search for 

an optimal reagent subset. This was done by a first “greedy”-build up of the subset until the 

desired number of compounds is selected, followed by a second phase that re-evaluates each 

of the selected compounds in the subset to see if a better choice is available. The second stage 

continues until no improvement in the subset is possible. 

2.1.3 Optimisation of the Pharmacophore Entropy and the Library 
Property Profile 

Physico-chemical properties are an important aspect to consider in library design 

strategy. For example during lead optimisation stage, Chemists always try to not synthesize 

compounds with poor solubility or high hERG risk. Computational models for predicting 

solubility and hERG binding have been reported [49-51] and in many library design papers 

[52, 53] these physico-chemical properties were taken into account in the library design 

strategy as multiple constraint for optimisation. So a more realistic library design strategy 

would therefore be to extend the “ProSAR” concept further to include the library property 

profile. In order to calculate the properties of a library, a full enumeration has been done and 

the properties are calculated at the product level. At AstraZeneca, a set of stringent property 

criteria has been established for checking compound collection enhancement libraries [54]. 

Here in this study, the compound novelty (compared with in-house/external compounds to 

check if the compound is novel), aqueous solubility, predicted hERG liability and an in-house 

lead profile score [55, 56] are calculated as components of compounds property profile. All 

properties were calculated by in-house prediction tools.  

An in-house library design tool GALOP has been developed at AstraZeneca. This 

uses a genetic algorithm (GA) optimisation method to optimise the reagent pharmacophore 

entropy and product properties simultaneously. The fitness function that the GA uses consists 

of two terms, one term represents the pharmacophore Shannon entropy for the reagents and 

the other term refers to the product properties. The fitness function formula is shown in 

Equation 2.3: 

 ∑+=
j

jep SEwFwScore  (2.3) 

Here, F means fraction of “good” compounds in the designed library and jSE  refers to the 

Shannon entropy for reagent set j. A compound is regarded as “good” only if it meets all the 

specified property criteria. pw  and ew  are weighting factors for property and entropy 

respectively. 
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2.1.4 Diversity Based Library Design Strategy 

To provide a basis for evaluating the ProSAR method, a structural diversity based 

library design strategy was implemented in GALOP and tried out in this study. The fitness 

function for diversity optimisation is shown in Equation 2.4: 
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Here, ijS refer to the Tanimoto similarity index between reagent i and j. So the average 

pairwise Tanimoto similarity for reagents will be minimised during the optimisation. 

2.2 Library Examples 

For this validation work, five examples of chemical scaffold were used. They were 

taken from several publications from year 1992 to 2007 [57-61]. In these examples, one is for 

one dimension (1D) combinatorial library design and all the other 4 examples are for two 

dimensions (2D). 1D and 2D combinatorial library design correspond to one and two 

substitution group attached to the scaffold, respectively. 

 For 1D combinatorial library design, a scaffold from Adolor [57] was used as an 

example. This example is named as 1D_Lib1 in this work. It has the following structure in 

Figure 2.2 and the corresponding reaction scheme is shown in Figure 2.3. Aldehyde was used 

as a reagent for library enumeration. 

 

Figure 2.2: Combinatorial library example for 1D_Lib1 
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Figure 2.3: Reaction scheme for 1D_Lib1 

As examples for 2D library design, several scaffolds were taken from the literature 

[58-61]. These examples are named 2D_Lib1, 2D_Lib2, 2D_Lib3 and 2D_Lib4 respectively. 

Figure 2.4 and Figure 2.5 show the scaffold and reaction scheme of 2D_Lib1. Aliphatic 

bromides were used as reagents for library enumeration.  

 

Figure 2.4:  Combinatorial library example for 2D_Lib1 
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Figure 2.5: Reaction scheme for 2D_Lib1 

 The scaffold for 2D_Lib2 is shown is Figure 2.6 and its corresponding reaction 

scheme is shown in Figure 2.7. In this example, amino acids and aliphatic bromides were 

used as reagents. 
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Figure 2.6: Combinatorial library example for 2D_Lib2 
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Figure 2.7: Reaction scheme for 2D_Lib2 

Amine and alcohol were used as reagents in the example of 2D_Lib3. The 2D_Lib3 

scaffold and reaction scheme are shown in Figure 2.8 and Figure 2.9 respectively. 

 

Figure 2.8: Combinatorial library example for 2D_Lib3 
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Figure 2.9: Reaction scheme for 2D_Lib3 
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In 2D_Lib4, one set of aldehydes and one set of acid chlorides were used in the 

reaction. The scaffold and reaction scheme for 2D_Lib4 are shown in Figure 2.10 and Figure 

2.11. 

 

Figure 2.10: Combinatorial library example for 2D_Lib4 
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Figure 2.11: Reaction scheme for 2D_Lib4 

 

A hypothetical library example is used to demonstrate the effectiveness of the design 

strategy that takes both reagent pharmacophore entropy and library property profile into 

account. This library has the reaction scheme shown in Figure 2.12. 
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Figure 2.12: Combinatorial library example taking into accounts both pharmacophore entropy 

and property profile 

 

2.3 Reagent Preparation 

 The reagents for all the above library examples were retrieved from the ACD 

database [62]. Before the library enumeration was carried out, a filtering procedure was 

applied to exclude several unwanted reagents. The filtering procedure was done by first 



 24

removing the salts and duplicates, followed by using an in-house program AZFParser [63] to 

exclude some compounds that have unwanted chemical features. Unwanted chemical features 

which are defined in the AstraZeneca in-house compiled AZFILTERS [64] list were used to 

filter out reagents. In this work, for all combinatorial library examples, the reagent sets were 

used are aldehyde, aliphatic bromide, amino acid, alcohol, primary amine and acid chloride. 

After the filtering procedure, the numbers of all reagents used for these combinatorial library 

designs are shown in Table 2.1. 

Table 2.1: Reagents used in all library examples 

Library Name Reagent Used 

1D_Lib1 Aldehyde 2012 
Aliphatic bromide 1105 2D_Lib1 
Aliphatic bromide 1105 
Amino acid 741 2D_Lib2 
Aliphatic bromide 1105 
Alcohol 588 2D_Lib3 
Primary amine 1062 
Aldehyde 2012 2D_Lib4 

Acid Chloride 717 

2.4 Computational Procedure 

In 1D library design, 40 reagents were selected for each method, resulting 40 

compound containing combinatorial libraries in each method. For 2D library design, 20 

reagents were selected from each type of reagent pools giving a 20×20 combinatorial library 

in each of the methods.  

2.4.1 ProSAR Library Design 

The “ProSAR” library design strategy is to select a reagent set that can cover 

pharmacophore space as much as possible while keeping the pharmacophore elements 

distribution as even as possible. Reagent pharmacophore fingerprints were generated in a two-

step procedure. First, two-point pharmacophores were created by an in-house tool TRUST 

[29]. A shell script was thereafter used to create the reagent pharmacophore fingerprints based 

on the TRUST output. The “greedy” search algorithm was implemented in Python [65] to 

calculate and optimise reagent pharmacophore entropy. Due to the deterministic nature of the 

“greedy” search algorithm, for each library design example that has been described, one 

PSAR library was generated. 
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2.4.2 Random Library Design 

Random library design strategy is used for comparison. This strategy is to randomly 

pick up reagents from the reagent pool to enumerate library. For each library design example, 

10 random libraries were generated to get statistical meaningful results. 

2.4.3 Diversity Library Design 

As another way of designing library, diversity based library design strategy is used. It 

selects reagents which has minimum average ensemble Tanimoto similarity (i.e. maximal 

Tanimoto dissimilarity, shown in Equation 2.4). The GA based library design tool GALOP is 

used for reagent selection. For each library example, GALOP was run 10 times to enumerate 

10 different diversity based libraries for comparison.  

2.4.4 Preparation of Validation Set 

For each library example, a set of true active compounds are extracted from GVKBio 

database [66] (a comprehensive collection of active compounds published in a variety of 

journals and patents) by searching for active compounds that have the same scaffold. Those 

true active compounds are used as validation set. Side chain groups for those active 

compounds are extracted by using the AstraZeneca in-house program “Scaffrtab” and then 

TRUST is used to generate a pharmacophore fingerprint for the extracted side chain groups. 

These generated pharmacophore fingerprints represent the pharmacophore space for active 

compounds and are thereafter compared with the pharmacophore fingerprint of reagents 

selected from different library design strategies. Table 2.2 shows the number of retrieved 

active compounds from GVKBio database for each library example. 

Table 2.2: The number of retrieved active compounds from GVKBio database 

Library 
Example 

Number of Retrieved 
Active Compounds 

1D_Lib1 113 
2D_Lib1 83 
2D_Lib2 52 
2D_Lib3 128 
2D_Lib4 280 
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2.4.5 Similarity Search 

As a part of performance comparison, compounds from enumerated libraries are used 

as query structure and similarity searches against GVKBio database are done to retrieve 

active compounds which have the same scaffold. By doing this, the number of retrieved 

active compounds can be regarded as a measurement of the effectiveness of generating active 

compounds for different libraries. The in-house structural fingerprint FOYFI is used for 

calculating Tanimoto similarity of two compounds. Tanimoto similarity cut-off is set at 0.85.
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Chapter 3 

3 Results and Discussions 

3.1 Comparison of Pharmacophore Coverage for Different 
Library Design Strategies 

Altogether 5 library examples were selected from literature and used as test cases to 

show how the PSAR method works in practice. For the 1D library example, 40 reagents were 

selected to enumerate libraries and for all the other 2D library examples, several 20×20 

libraries were enumerated. Besides using ProSAR strategy to select reagents, random library 

design and structural diversity library design scheme were used to compare their performance 

in pharmacophore coverage. For each example, 10 libraries were generated for random design 

and structural diversity library design and due to the deterministic nature of the greedy search 

algorithm only one PSAR library was enumerated. 

The comparison of pharmacophore coverage of 5 pharmacophore type and 6 

pharmacophore type ProSAR libraries with libraries from other design strategies are shown in 

Appendix A and Appendix B respectively. In the pharmacophore distribution plots of all five 

examples, ProSAR selected reagents clearly have most even distribution on the 

pharmacophore bins. In 1D_Lib1 example (as shown in Figure 3.1a and Figure 3.1b), the 

pharmacophore corresponding to bin number 5 is missing in both random and diversity 

selection but the PSAR selection contains the pharmacophore. Other missing pharmacophores 

in both random and diversity selection but not in PSAR are observed in bin number 21, 22, 

24, 25, 27, 28 and 29 for the five pharmacophore and additional bin number 34 for the six 

pharmacophore type. The random and diversity libraries in the above example contain a lot of 

reagents with pharmacophoric features corresponding to bins 14 to 17. These bins correspond 

to lipophilic group in the reagents. The frequency of these bins has been dramatically reduced 

in the PSAR library. In return, the PSAR method is able to select bins number 20 to 29 (the 

positive and negative charge centres respectively) that are rarely selected by random and 
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diversity selection. The PSAR library doesn’t contain bins such as 1, 7, 12, 19, 26, 30, 35 and 

36, because the full reagent set doesn’t have any reagents with these pharmacophores. This 

result shows that PSAR selection performs much better in covering pharmacophore space 

compared to the other two methods. 
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1D_Lib1 Aldehyde Reagent Fingerprint Distribution
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Figure 3.1: Comparison of pharmacophore coverage in 1D_Lib1 library example taken from 
Appendix A and Appendix B. (a) 5-pharmacophore types fingerprint (b) 6-
pharmacophore types fingerprint. 
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This can also be seen from the Table 3.1, where the entropy values for ProSAR 

libraries, random libraries and diversity libraries are given. As seen from this table, PSAR 

reagent sets always have higher entropy values than reagent set which are selected by using 

other methods. For example in 1D_Lib1 case, the total entropy for five pharmacophore type 

PSAR selection is 4.46, random selection is 3.01 and diversity selection is 3.25. Based on the 

entropy definition (Equation 2.1, 2.2), the larger the entropy values is, the more even the 

distribution on pharmacophore bins is. 

 

Table 3.1: Shannon entropy values (SE) of selected reagents from all library examples 

Library Example Pharm. 
Typesa ProSAR Randomb Diversityb Activesc Fulld 

5 Pharms 4.46 3.00 3.25 3.19 3.10 
1D_Lib1 R1 

6 Pharms 4.65 3.31 3.52 3.66 3.39 

5 Pharms 4.60 2.89 3.17 2.69 3.18 
R1 

6 Pharms 4.69 3.24 3.40 3.22 3.50 

5 Pharms 4.60 3.03 3.21 2.38 3.18 
2D_Lib1 

R2 
6 Pharms 4.69 3.37 3.42 2.86 3.50 

5 Pharms 4.62 2.84 3.62 3.40 3.18 
R1 

6 Pharms 4.71 3.11 3.62 3.87 3.43 

5 Pharms 4.60 2.97 3.25 3.55 3.18 
2D_Lib2 

R2 
6 Pharms 4.69 3.26 3.49 3.78 3.50 

5 Pharms 4.17 2.88 3.17 2.65 3.02 
R1 

6 Pharms 4.32 3.17 3.37 2.97 3.31 

5 Pharms 4.32 3.09 3.24 3.05 3.26 
2D_Lib3 

R2 
6 Pharms 4.52 3.32 3.39 3.42 3.50 

5 Pharms 4.46 2.95 3.15 3.26 3.10 
R1 

6 Pharms 4.65 3.29 3.41 3.61 3.39 

5 Pharms 4.04 2.51 2.94 3.51 2.63 
2D_Lib4 

R2 
6 Pharms 4.24 2.91 3.26 3.82 3.04 

Note:  a) Refers to the types of pharmacophore (5 pharmacophore and 6 pharmacophore). 
 b) Averaged values for 10 libraries.  

c) The corresponding SE values of the R-reagent from the active compounds. 
d) The corresponding SE values of the R-reagent from the full reagent set. 
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Pharmacophores for PSAR libraries, random libraries and diversity libraries are also 

compared with those of real active compounds. For each library example, active compounds 

for those libraries can be found in GVKBio databases by using the library scaffold as search 

queries. R1, R2 reagents (only R1 reagent in case of 1D library) could then be extracted from 

active compounds and encoded into pharmacophore fingerprint. Some of the reagents in the 

validation set have bond distance longer than 6. However, when the pharmacophore 

fingerprints were generated, only pharmacophores up to 6 bonds distance from the attachment 

point were considered. Pharmacophores further away than 6 bonds were ignored. This is due 

to the limitation used in pharmacophore encoding procedure to keep molecules complexity 

below a certain level and to avoid too long side chains. The pharmacophore distributions of 

active compounds are incorporated into the figures in Appendix A and Appendix B. 

Another way of comparing pharmacophore coverage of libraries is to compare the 

pharmacophores of enumerated libraries with that of active compounds. The comparison 

figures are shown in Appendix C (5 pharmacophore type fingerprint) and Appendix D (6 

pharmacophore type fingerprint). There are four colors present in those figures, which are 

green, yellow, red and grey. Those colored cells represent the pharmacophore comparisons 

between a particular enumerated library and the validation set (active compounds). Green 

cells represent pharmacophores that are present in both an enumerated library and the 

validation set. Yellow cells represent pharmacophores that are present in an enumerated 

library but not in the validation set, while red ones are not present in a designed library but are 

present in the validation set. In addition, pharmacophores that are both absent in a library 

design and the validation set are colored by grey. Therefore in those figures, more green cells 

and fewer red cells in a library design represents better performance of a library in covering 

pharmacophore space, compared to the validation set. However, it is also interesting to take 

note of the yellow cells. These yellow bins are the pharmacophore cells that do not exist in 

the validation set but appeared in library design, which correspond to some additional 

pharmacophores covered by designed library. So those yellow cells are also an indicator of 

potential pharmacophore coverage of a designed library. In contrast, grey bins can turn into 

red bins if more active compounds were available in validation set. Hence, green and yellow 

cells are positive indicators of pharmacophore coverage in a library design while red and grey 

bins are negative ones. As shown in figures in Appendices C and D, in all demonstrated 

examples, PSAR libraries show better coverage in terms of number of green cells and red 

cells. For example for the R1-reagent selection in 2D_Lib1 case (shown in figure 3.2), the 

PSAR selected R1 reagents have 0 red cells and 12 green cells in terms of 5 pharmacophore 

type fingerprint and randomly selected reagents have 6 red cells and 6 green cells, while 

diversity ones have 4 red cells and 8 green cells. For R2 reagents, PSAR selected R2 reagents 

have 0 red cells and 9 green cells, randomly selected reagents have 2 red cells and 7 green 
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cells, while diversity ones have 2 red cells and 6 green cells. This means that PSAR library 

miss fewer pharmacophores that appeared in active compounds and cover more potential 

pharmacophores compared with random library and diversity library.  
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Diversity 

(a) 

 
PSAR 

 
Random 
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Figure 3.2: Comparison of pharmacophore (5 pharmacophore type) coverage of designed 
libraries in 2D_Lib1 example on (a)  R1 reagents (b) R2 reagents.  

 

  

(a) (b) 

 

(c) 

Figure 3.3: Comparison of pharmacophore (5 pharmacophore type) coverage in 2D heat 
maps for 2D_Lib1 examples. (a) PSAR library compared with validation set. (b) 
Random library compared with validation set. (c) Diversity library compared 
with validation set.  
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For two dimensional (2D) libraries, 2D heat maps can be used to represent the 

pharmacophore coverage for R1 and R2 reagents for different libraries. These are shown in 

Appendix E. Here the same color scheme is used. The same trend can be seen that PSAR 

libraries tend to cover more pharmacophores than other libraries in all the test cases. For 

example in 2D_Lib1 case, in the five pharmacophore type heat map (shown in figure 3.3), 

PSAR library has 0 red cell and 108 green cells, random library has 66 red cells and 42 green 

cells, while diversity library has 60 red cells and 48 green cells. This analysis shows that 

PSAR libraries cover most of the pharmacophores which are present among the active 

compounds. 

3.2 Comparison of Retrieved Active Compounds for 
Different Library Design Strategies 

Table 3.2: The number of retrieved active compounds from GVKBio database 

Number of Retrieved Active Compounds for Different Libraries 
Library 
Example 

PSAR ( 5 pharm.) PSAR (6 pharm.) Randoma Diversitya 

1D_Lib1 8 10 4.5 2.4 

2D_Lib1 68 21 40.9 26 

2D_Lib2 4 11 7.3 0.5 

2D_Lib3 8 18 10.5 1.6 

2D_Lib4 4 20 14.4 1.4 

 
Note: a) Averaged value from 10 runs 

 

So far the performance on pharmacophore coverage for difference library design 

strategies has been compared; it would be interesting to compare how many active 

compounds exist in libraries which are designed by using different design strategies. 

Although real biological activity data is not available for the compounds in the designed 

libraries, an estimation of the likelihood of obtaining actives from the libraries could be made 

by a similarity search against the GVKBio database with a high similarity cut-off (i.e. 

assessing the effectiveness of the libraries for generating leads). It is normally assumed that 

similar compounds have higher probability of having similar bioactivity than dissimilar ones 

(the similar property principle) [23] and a high retrieval rate from the GVKBio database could 

be taken as an indication that active molecules are present in the library. Compounds in all the 

designed libraries were therefore used as query structures for a similarity search against the 

entire GVKBio database to check how many active compounds which have the same scaffold 
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could be retrieved from the GVKBio database at a given similarity cut-off. In this study, a 

Tanimoto similarity of 0.85 was used as similarity cut-off and the similarity was calculated 

based on AstraZeneca in-house FOYFI fingerprint.  Brown et al. [21, 67] reported that if a 

molecule has a Tanimoto similarity, based on Unity fingerprint, of ≥ 0.85 to an active 

compound, then the molecule has an 80% chance of itself being active in the same assay. 

Others [22, 42, 68] have reported that compounds having a Tanimoto similarity ≥ 0.85 usually 

share similar biological activities. Although the similarity cut-off is not transferable between 

datasets [29] and fingerprint types, the similarity cut-off value of 0.85 for FOYFI fingerprint 

works well to identify similar compounds in our experience [69]. 
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Figure 3.4: Similarity search examples. The molecules on left hand side are retrieved active 
compounds and the molecules on right hand side are query molecules 

 
The numbers of retrieved active compounds for all 5 test cases are shown in Table 3.2. 

The results show that, in most of cases, PSAR designed libraries retrieve most active 

compounds and this indicates that PSAR design strategy has greater potential to find active 

compounds than other design strategies. Generally 6 pharmacophore type PSAR libraries 

perform better than the 5 pharmacophore type PSAR libraries. This is probably due to the fact 

that the lipophilic atoms are separated into aliphatic and aromatic parts in 6 pharmacophore 

type fingerprint and therefore can make a more balanced distribution among aliphatic groups 

and aromatic rings than with 5 pharmacophore type fingerprint. For example, in the 2D_Lib4, 

the active compounds in Figure 3.4 aren’t retrieved by 5 pharmacophore fingerprint based 

PSAR library but are retrieved by 6 pharmacophore fingerprint based PSAR library. The 

query compound is on the right hand side in Figure 3.4 and it has an aromatic indole ring 
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which contributes to the high similarity indexes for the retrieved active compounds. The 

indole ring containing reagents are not selected in the 5 pharmacophore type based PSAR 

library.  

 

3.3 Extension of ProSAR to Include Property Profile 
Optimisation  

In the examples that are shown so far, only reagent pharmacophore space diversity is 

considered in the library design and compound physico-chemical properties aren’t taken into 

consideration. This is somehow unrealistic in an industrial setting. There are some properties 

that need to be taken into account when designing a library. First, the aqueous solubility is a 

crucial property for a compound and should be considered during library design since it is 

desirable to synthesis highly soluble compounds. Secondly, risk assessment needs to be done 

to make sure only non-toxic compounds are synthesized. For example, hERG [70] risk 

assessment is very important. Therefore, the PSAR strategy needs to be further extended to 

include the compound property profile into the optimization process. To solve these 

problems, an in-house genetic algorithm optimizer GALOP was used specifically to design 

compound libraries with multiple constraints. GALOP program is capable to optimise the 

reagent matrix with both reagent based constraints (the reagent pharmacophore coverage) and 

product based constraint (product property profile). 

Table 3.3: Results for the GA optimized libraries using 5 pharmacophore types 

Shannon 
entropy Diversity Covered 

bins Libraries 

Percent of 
good 

compound 
(%) R1 R2 R1 R2 R1 R2 

PSAR + Property 99 3.79 3.64 0.69 0.67 17 16 

Diversity + Property 99 2.74 2.68 0.78 0.79 9 11 

Property 100 2.14 2.56 0.62 0.68 8 12 

Random 38 2.49 2.75 0.74 0.70 9 13 

Full library 40 2.83 2.95 0.74 0.73 21 20 

 

As shown in Equation 2.3, both pharmacophore entropy and compound property 

profile were included in the GA fitness function. Based on experience, when a weight ratio 

(we/wp) equal to 2.0 is applied, a reasonable and balanced library can be obtained. In the 

algorithm implementation, several properties were considered: (1) novelty check (2) in silico 

predicted solubility (3) in silico predicted hERG liability (4) in-house lead-like criteria. A 

“good compound” has to pass all these four criteria. This extended library design strategy is 

applied in a hypothetical example as seen in Figure 2.12. This library synthesis consists of 



 35

two reaction steps, first aliphatic bromide (R1) reagents were added to a scaffold and the 

product then reacted with amine (R2) reagents to form a two dimensional combinatorial 

library. For comparison, other libraries are also generated. They are a random library, a 

diversity combined with property optimization library and an property optimised only library. 

For the diversity driven library design, the diversity is characterized by the Tanimoto 

dissimilarity of the reagents based on the in-house FOYFI fingerprint. The results are shown 

in Table 3.3. This optimization was based on 5 pharmacophore fingerprints. 

Table 3.4: Results for the GA optimized libraries using 6 pharmacophore types 

Shannon 
entropy Diversity Covered 

bins Libraries 

Percent of 
good 

compound 
(%) R1 R2 R1 R2 R1 R2 

PSAR + Property 99 3.87 3.72 0.72 0.69 18 17 

Diversity + Property 99 3.14 2.97 0.78 0.79 12 13 

Property 100 2.80 2.58 0.58 0.67 9 13 

Random 38 2.87 2.58 0.65 0.63 11 13 

Full library 40 3.20 3.11 0.74 0.73 25 23 

 

PSAR combined with property calculation optimized library has the best reagent 

entropy among all four libraries and has a high percentage of good compounds (99%). 

Diversity combining property optimized library has the best reagent diversity and its 

percentage of good compounds is also high (99%). For the library which is optimized by the 

property only, the entropy and diversity values are worse than the others. As a baseline, the 

fully enumerated library only has 40% good compounds in total and medium entropy and 

diversity values. Random library has medium entropy and diversity values and contains only 

38% good compounds. As expected, PSAR library covers most number of pharmacophore 

bins on both R1 and R2 substituent. Another GA optimization is also done by using six 

pharmacophore fingerprints. The result is shown in Table 3.4 and the same pattern is 

observed. PSAR combined with property optimization performs best in entropy value and has 

a high percentage of good compounds (99%) compared to others. Regarding the compound 

properties for these design libraries, since the property control is included in GA optimization, 

all three optimized libraries have high percentage of good compounds. The percentage of 

good compounds in PSAR combined with property optimized library and diversity combined 

with optimized library are 99% and 100% which is comparable with that of the property 

optimized only library. These results show that by using the extended PSAR strategy, libraries 

which have both good pharmacophore coverage and good property profile can be obtained. 
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Chapter 4 

4 Conclusions 
 

Case studies were carried out to validate the “ProSAR” (PSAR) methodology, an 

AstraZeneca in-house developed library design strategy. “ProSAR” method is capable to 

design combinatorial library which has optimal coverage and even distribution of the 

pharmacophore elements among the reagents by encoding the pharmacophore element on 

reagents into fingerprint and further optimising the Shannon entropy of pharmacophore 

fingerprint distribution. This methodology was applied on five different library design 

examples and the results show that most of the pharmacophore features that appear in active 

compounds could be covered by the PSAR derived library. Furthermore in those examples, 

PSAR libraries include more compounds which are structurally similar to true active 

compounds than random libraries and diversity libraries which are optimised by average 

ensemble Tanimoto similarity. The PSAR strategy can be further expanded to include 

compound properties to design a library which has not only good pharmacophore coverage of 

side chains but also desirable physico-chemical properties by using a GA optimisation 

method. This extended PSAR strategy was tried out on an illustrative test case, in which the 

aim was to design a 400 compound two-dimensional combinatorial library. The PSAR 

libraries were contrasted with libraries constructed by other design strategies such as diversity 

(characterised by the average ensemble Tanimoto similarity in this study) driven and property 

driven library design. The results demonstrate that “ProSAR” designed libraries are clearly 

superior in covering pharmacophore space and create more even distribution of the side chain 

pharmacophore elements than other methods, while at the same time a good compound 

property profiles are obtained. 
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Appendix A 

Comparisons of Pharmacophore Distribution Based on 5 Pharmacophore Type 
Fingerprint. 
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Figure A-1: Pharmacophore fingerprint distribution of R1-reagents in 1D_Lib1 library 
example. 
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2D_Lib1 Aliphatic Bromide (R1) Reagent Fingerprint Distribution
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5-Pharmacophore

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Pharmacophore fingerprint

lo
g

 (C
o

u
n

t o
f b

in
s 

+ 
1)

PSAR - Scaled

RANDOM - Scaled

DIVERSE - Scaled

ACTIVES - Scaled

FULL REAGENT - Scaled

 
(b) 

 
Figure A-2: Pharmacophore fingerprint distribution of R1-reagents (a) and R2-reagent (b) in 
2D_Lib1 library example.  
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2D_Lib2 Amino Acid (R1) Reagent Fingerprint Distribution
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Figure A-3: Pharmacophore fingerprint distribution of R1-reagents (a) and R2-reagent (b) in 
2D_Lib2 library example.  
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2D_Lib3 Alcohol (R1) Reagent Fingerprint Distribution
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Figure A-4: Pharmacophore fingerprint distribution of R1-reagents (a) and R2-reagent (b) in 
2D_Lib3 library example.  
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2D_Lib4 Aldehyde (R1) Reagent Fingerprint Distribution
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2D_Lib4 Acid Chloride (R2) Reagent Fingerprint Distribution
5-Pharmacophore
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Figure A-5: Pharmacophore fingerprint distribution of R1-reagents (a) and R2-reagent (b) in 
2D_Lib4 library example.  
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Appendix B 

Comparisons of Pharmacophore Distribution Based on 6 Pharmacophore Type 
Fingerprint. 
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Figure B-1: Pharmacophore fingerprint distribution of R1-reagents used in 1D_Lib1 library 
example.  
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2D_Lib1 Aliphatic Bromide (R1) Reagent Fingerprint Distribution
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Figure B-2: Pharmacophore fingerprint distribution of R1-reagents (a) and R2-reagent (b) in 
2D_Lib1 library example.  
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2D_Lib2 Amino Acid (R1) Reagent Fingerprint Distribution
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Figure B-3: Pharmacophore fingerprint distribution of R1-reagents (a) and R2-reagent (b) in 
2D_Lib2 library example.  
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2D_Lib3 Alcohol (R1) Reagent Fingerprint Distribution
6-Pharmacophore
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Figure B-4: Pharmacophore fingerprint distribution of R1-reagents (a) and R2-reagent (b) in 
2D_Lib3 library example.  
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2D_Lib4 Aldehyde (R1) Reagent Fingerprint Distribution
6-Pharmacophore
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2D_Lib4 Acid Chloride (R2) Reagent Fingerprint Distribution
6-Pharmacophore
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Figure B-5: Pharmacophore fingerprint distribution of R1-reagents (a) and R2-reagent (b) in 
2D_Lib4 library example.  
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Appendix C 

Comparison of Pharmacophore Coverage for Different Library Design 
Strategies by using 5 Pharmacophore Type Fingerprints 
 
 

 

 

 
 
Figure C-1: Pharmacophore coverage comparison for R1-reagent among ProSAR (top), 
random (middle) and diversity (bottom) library in 1D_Lib1 library example. Green colour 
represents bins that are both covered in the library design and active compounds; yellow 
colour represents bins that are present in the library design but not in active compounds; red 
colour represents bins that are absent in library design but present in active compounds while 
grey colour are for bins that are both absent in the library design and active compounds.  
 
 
 

 

 
Figure C-2: Pharmacophore coverage comparison for R1-reagent among ProSAR (top), 
random (middle) and diversity (bottom) library in 2D_Lib1 library example. Colour scheme is 
the same with Figure C-1. 
 
 
 

 

 

 
Figure C-3: Pharmacophore coverage comparison for R2-reagent among ProSAR (top), 
random (middle) and diversity (bottom) library in 2D_Lib1 library example. Colour scheme is 
the same with Figure C-1. 
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Figure C-4: Pharmacophore coverage comparison for R1-reagent among ProSAR (top), 
random (middle) and diversity (bottom) library in 2D_Lib2 library example. Colour scheme is 
the same with Figure C-1. 
 
 
 

 

 

 
Figure C-5: Pharmacophore coverage comparison for R2-reagent among ProSAR (top), 
random (middle) and diversity (bottom) library in 2D_Lib2 library example. Colour scheme is 
the same with Figure C-1. 
 
 
 

 

 

 
Figure C-6: Pharmacophore coverage comparison for R1-reagent among ProSAR (top), 
random (middle) and diversity (bottom) library in 2D_Lib3 library example. Colour scheme is 
the same with Figure C-1. 
 
 
 

 

 

 
Figure C-7: Pharmacophore coverage comparison for R2-reagent between ProSAR (top), 
random (middle) and diversity (bottom) library in 2D_Lib3 library example. Colour scheme is 
the same with Figure C-1. 
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Figure C-8: Pharmacophore coverage comparison for R1-reagent between ProSAR (top), 
random (middle) and diversity (bottom) library in 2D_Lib4 library example. Colour scheme is 
the same with Figure C-1. 
 
 
 

 

 

 
Figure C-9: Pharmacophore coverage comparison for R2-reagent between ProSAR (top), 
random (middle) and diversity (bottom) library in 2D_Lib4 library example. Colour scheme is 
the same with Figure C-1. 
 



 54

Appendix D 

Comparison of Pharmacophore Coverage for Different Library Design 
Strategies by using 6 Pharmacophore Type Fingerprints 
 
 

 

 

 
Figure D-1: Pharmacophore coverage comparison for R1-reagent among ProSAR (top), 
random (middle) and diversity (bottom) library in 1D_Lib1 library example. Colour scheme is 
the same with Figure C-1.  
 
 
 

 

 

 
Figure D-2: Pharmacophore coverage comparison for R1-reagent between ProSAR (top), 
random (middle) and diversity (bottom) library in 2D_Lib1 library example. Colour scheme is 
the same with Figure C-1.  
 
 
 

 

 

 
Figure D-3: Pharmacophore coverage comparison for R2-reagent between ProSAR (top), 
random (middle) and diversity (bottom) library in 2D_Lib1 library example. Colour scheme is 
the same with Figure C-1.  
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Figure D-4: Pharmacophore coverage comparison for R1-reagent between ProSAR (top), 
random (middle) and diversity (bottom) library in 2D_Lib2 library example. Colour scheme is 
the same with Figure C-1. 
 
 
 

 

 

 
Figure D-5: Pharmacophore coverage comparison for R2-reagent between ProSAR (top), 
random (middle) and diversity (bottom) library in 2D_Lib2 library example. Colour scheme is 
the same with Figure C-1.  
 
 
 

 

 

 
Figure D-6: Pharmacophore coverage comparison for R1-reagent between ProSAR (top), 
random (middle) and diversity (bottom) library in 2D_Lib3 library example. Colour scheme is 
the same with Figure C-1.  
 
 
 

 

 

 
Figure D-7: Pharmacophore coverage comparison for R2-reagent between ProSAR (top), 
random (middle) and diversity (bottom) library in 2D_Lib3 library example. Colour scheme is 
the same with Figure C-1.  
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Figure D-8: Pharmacophore coverage comparison for R1-reagent between ProSAR (top), 
random (middle) and diversity (bottom) library in 2D_Lib4 library example. Colour scheme is 
the same with Figure C-1. 
 
 
 

 

 

 
 
Figure D-9: Pharmacophore coverage comparison for R2-reagent between ProSAR (top), 
random (middle) and diversity (bottom) library in 2D_Lib4 library example. Colour scheme is 
the same with Figure C-1.  
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Appendix E 

Comparison of Pharmacophore Coverage for Different Library Design 
Strategies in 2D Heat Map 
 

   
(a) PSAR vs. Actives (2D_Lib1) 

 

   
(b) RANDOM vs. Active (2D_Lib1) 

 

   
(c) DIVERSITY vs. Active (2D_Lib1) 

 
Figure E-1: Pharmacophore coverage comparison among ProSAR (a) random (b) and 
diversity (c) library in 2D_Lib1 library example. The maps on the left side are using the 5-
pharmacophore type fingerprint and the ones on the right side are using the 6-pharmacophore 
type fingerprint. Color scheme is the same with Figure C-1. 
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(a) PSAR vs. Active (2D_Lib2) 
 

   
(b) RANDOM vs. Active (2D_Lib2) 
 

   
(c) DIVERSITY vs. Active (2D_Lib2) 
 
 
Figure E-2: Pharmacophore coverage comparison among ProSAR (a) random (b) and 
diversity (c) library in 2D_Lib2 library example. The maps on the left side are using the 5-
pharmacophore type fingerprint and the ones on the right side are using the 6-pharmacophore 
type fingerprint. Color scheme is the same with Figure C-1. 
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(a) PSAR vs. Active (2D_Lib3) 
 

   
 
(b) RANDOM vs. Active (2D_Lib3) 
 

   
(c) DIVERSITY vs. Active (2D_Lib3) 
 
 
Figure E-3: Pharmacophore coverage comparison among ProSAR (a) random (b) and 
diversity (c) library in 2D_Lib3 library example. The maps on the left side are using the 5-
pharmacophore type fingerprint and the ones on the right side are using the 6-pharmacophore 
type fingerprint. Color scheme is the same with Figure C-1. 
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(a) PSAR vs. Active (2D_Lib4) 
 
 

   
(b) RANDOM vs. Active (2D_Lib4) 
 

   
(c) DIVERSITY vs. Active (2D_Lib4) 
 
 
Figure E-4: Pharmacophore coverage comparison among ProSAR (a) random (b) and 
diversity (c) library in 2D_Lib4 library example. The maps on the left side are using the 5-
pharmacophore type fingerprint and the ones on the right side are using the 6-pharmacophore 
type fingerprint. Color scheme is the same with Figure C-1. 
 


