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Abstract

The purpose of this thesis has been to analyze the potential of improved fuel econ-
omy of a mild-hybrid long-haul truck by use of preview-based energy-management
control algorithms. Information regarding the road topography ahead of the vehicle
enables improvement of the control of the energy distribution between the internal
combustion engine and the electric motor for hybrid vehicles.

Three predictive energy management strategies have been developed. The func-
tionality of these predictive energy management strategies were compared to the
non-predictive energy management strategy used by Volvo powertrain in the mild-
hybrid long-haul-truck project. The development of the predictive energy manage-
ment strategies were performed inside the Global Simulations Platform (GSP), a
simulation platform based on MATLAB/Simulink and used for full-vehicle simula-
tions within the Volvo Group.

The potential to save fuel by predictive control mainly depends on the topography
of the road. The mild hybrid only charges the battery by brake power recuperation,
which means that the hybrid system is not used when the road is flat and no braking
occurs. On hilly roads, non-predictive control can lead to saturations of the battery
of the hybrid system. By knowing the present level of state-of-charge in the battery
and the amount of recuperable energy ahead of the truck, the battery capacity
can be used more efficiently. Our vehicle simulations showed that the predictive
strategies can reduce the saturation of the battery by 50 % and give fuel savings
of up to 0.2 percent on the Bor̊as-Landvetter-Bor̊as drive-cycle, compared to the
non-predictive strategy used. The amount of fuel that can be saved on a certain
drive-cycle depends on the size of the electric motor and the battery capacity of the
hybrid system.

Keywords: Hybrid Electric Vehicle HEV, Hybrid system, Diesel-electric hybrid,
Electric machine EM, Regenerative, Recuperation,Fuel consumption, Prediction,
Energy Management, Powertrain control, Equivalent Energy Management Strategy
ECMS, State Of Charge SoC.
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1 Introduction

One of the most important problems today is the steadily deteriorating world cli-
mate. This deterioration is a result of a large, and still increasing, energy usage
which is mostly based on non-renewable energy resources such as oil, coal and other
fossil fuels [12], [20]. In 2007 it was estimated that fossil fuels amounted to an 86.4
percent share of the total primary energy consumption in the world [42]. Fossil fuels
come from resources that have arisen by anaerobic decomposition of buried dead
coal-based organisms, such as dead plants and animals. This process is slow and the
age for most of the fossil fuels is typically millions of years but can also exceed 650
million years [36].

Energy is retrieved from the fossil fuel by oxidation as a result from burning. During
such oxidation green house gases, primarily carbon dioxide, are produced. About
21.3 gigatonnes of carbon dioxide is produced each year by burning fossil fuel, but
it is estimated that natural processes only can absorb half of that amount, leading
to a net increase of carbon dioxide in the atmosphere [33]. This net-increase of
green-house gases in the atmosphere is said to be the cause of the global warming
[34, 39, 1, 35, 41].

There are several reasons to reduce the usage of fossil fuels and replace them with
alternative sustainable energy resources or to find technologies with increased energy
efficiency. One of these reasons is to reduce the anthropogenic climate impact which
was mentioned earlier1 [25]. Another reason is that reserves of fossil fuel are being
depleted at a much higher rate than new ones are being made as a result of the high
energy consumption and the long process-time of the anaerobic decomposition.

When it comes to diesel engine exhaust another concern is the emission of diesel
particulate matter (DPM), which is also referred to as diesel exhaust particles (DEP).
These particles are so called ultrafine particles (UFP) which are in the nano-scale
range of less than 100 nanometers and pose a health risk while they can penetrate
deep into the lungs [10]. These particles are not easily removed from the body and
can give rise to lung diseases and various inflammatory symptoms [6, 22, 30]. The
rough surface of these particles makes it easy for other toxins in the environment
to bind to them, making the risk even higher [31, 26]. In 2001 the mortality of
the German population (82 million people) was at least 14400 because of diesel
soot exposure [46, 47]. Fueled by the increasing fossil fuel usage and the rise of
new nano-materials which range in the UFP-scale there has been an increasing
concern about UFPs and how to regulate the emissions of these particles even more
[45, 7, 8, 9, 44, 21].

One promising technology for reducing the fuel consumption in vehicles is the hybrid
technology. A hybrid vehicle needs to have at least two power sources, usually a

1Anthropogenic climate change refers to the production of greenhouse gases emitted by human

activity.
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fossil fuel-based energy source and an electric- or kinetic energy source, which fuel
the prime mover/movers of the vehicle.

A hybrid electric vehicle (HEV) combines conventional internal combustion engine
(ICE) propulsion together with an electric propulsion system, usually an electric
motor (EM). An HEV has both a fossil fuel-based energy source and an electric
storage system (ESS), usually a battery or supercapacitor [23]. The main purpose
of this combination is either to save fuel or to get better performance, compared
to a conventional vehicle. By using regenerative braking the kinetic energy of the
vehicle that otherwise would disappear as heat in the brakes while braking can be
regenerated, or recuperated, into the battery. The recuperated energy can later be
used to drive the EM in order to either propel the whole vehicle by itself, or to
support the ICE [19].

The first gasoline-electric hybrid automobile in the world was developed already in
1900 when Ferdinand Porsche developed the Lohner-Porsche Mixte Hybrid [?, ?].
Due to different factors the interest for HEVs was low for a long time since then.
It was not until the mid 1980s that the interests for these kinds of systems grew
and since the start of year 2000 there has been more of an explosion around the
development of these kind of systems. The fuel savings within an HEV emerge from
two main reasons [40]:

1. An HEV can recuperate some of the kinetic energy while braking and store it
for later use.

2. Optimal operating points within the electric motor and especially the ICE can
be reached by combining the power from both of the propulsion systems.

The amount of fuel that can be saved depends on the size of the EM and the
battery capacity, the road dynamics and the control algorithm used for the energy
management within the hybrid system.

A common classification that is made on the HEVs is how the power is supplied to
the powertrain. There are three main types for the power supply within an HEV,
and these are the series hybrid vehicle, the parallel hybrid vehicle, and the combined

hybrid vehicle. In case of the parallel HEVs a classification regarding the amount of
hybridization is made as well and the two main classifications are the mild parallel

hybrid and the full parallel hybrid, where the mild parallel vehicle has a power output
from the EM that is not sufficient to drive the whole vehicle on its own. In case of
the full hybrid the vehicle can be propelled by either the EM or the ICE alone.

The Volvo Group Corporation has been using hybrid technologies in shuttle buses
and waste disposal units. The group is now developing a hybrid system for long haul
trucks as well. These trucks usually hold constant speed for long distances with-
out braking so there will be much less recuperation phases involved and therefore
the impact of using hybrid technology can be assumed to be less on such vehicles.
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Nevertheless these vehicles usually carry heavy cargoes and drive for very long dis-
tances which lead to high total fuel consumption rates. For a haulage contractor
company with many such vehicles even a small decrease in fuel consumption would
lead to high economical savings. Until the date of writing the Volvo Group has use
non-predictive strategies to control the hybrid system. These strategies depend on
present, or past, information about the vehicle and the road environment.

The Volvo Group has developed a system, ADAS RP, which finds the position of the
truck by using various positioning systems and an onboard map and then calculates
the probability for which routes the driver is most likely to drive up to a certain
distance ahead of the present position. The Volvo Group is now testing which kind
of technologies that may use this information within their trucks. After good initial
results from the long haul HEV project they decided to investigate if the HEV control
system could be further enhanced by using the prediction. The prediction consists
of data regarding the road topography and set-speed up to a certain distance ahead
of the truck, called the e-Horizon length. Within this thesis two distinct e-Horizon
lengths of 3- and 6 kilometers were used.

The main benefit of using data that shows not only the present road conditions,
but also road conditions ahead of the vehicle, is that the control of the interaction
between the ICE and EM can be further enhanced. While the energy level in the
ESS directly depends on the usage of the EM it will also be possible to enhance
the usage of the ESS. In this work three different strategies were developed which
use prediction-based optimization techniques to control the hybrid system. These
strategies were the Predictive Reference Signal Generator (pRSG) [3] which was
based on linear programming, the Telemetry Equivalent Consumption Management

Strategy (T-ECMS) [2, 40], and the Constrained T-ECMS (CT-ECMS). The main
objective was to see if the fuel consumption of a long haul HEV could be further
decreased by using prediction. The purpose of the three methods was to lower the
fuel consumption basically in two steps:

1. By decreasing losses between the ICE, the EM and the battery.

2. By enhancing the use of the battery. This is usually done by avoiding satura-
tions of the battery.

One thing that all of the three prediction based algorithms have in common is the
Equivalent Consumption Management Strategy (ECMS) [23], [3], which corresponds
to the first item above. This strategy is also used by the present controller that is
already available within Volvo hybrid trucks. The improvement of using prediction
comes therefore from item two above, that is, by enhancing the usage of the bat-
tery. The three different prediction based strategies differ in how they avoid these
saturations. All results were tested against the results from both a conventional,
non-hybrid, truck as well as against the present non-predictive control strategy. In-
terestingly, one of the simplest predictive algorithms was also the one that was most
efficient in lowering the fuel consumption for the routes used within this work.
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1.1 Objective

The objective of this masters thesis is to develop, and to study the impact of, energy
management strategies within a parallel diesel-electric mild hybrid long haul truck
that use predicted data up to a given distance ahead of the truck. The aim is to
further optimize the torque-split between the ICE and the EM, which is controlled
by the engine electric control unit (EECU), in such a way that the fuel consumption
is reduced. This is done by improving the usage of the electric storage system (ESS)
in such a way that the saturations at the upper boundary of the State of Charge
(SoC) window are minimized.

The development is carried out in the MATLAB R©/Simulink R©environment and the
Global Simulation Platform (GSP). The simulation results of the energy manage-
ment strategies are validated and a robustness test is performed. An extended study
of how the performance and drivability of the truck are affected by the prediction-
based energy management systems is done. Simulation results will be tested against
both a conventional non-hybrid truck and against a hybrid truck using an existing
energy management strategy that is not based on future road data.

1.2 Outline

In chapter one the objectives and background of this thesis are given. This chapter
explains why the subject is of importance and summarizes the whole thesis and the
main results. Chapter two presents the technical notations used. Chapter three
presents the force equations that are affecting the vehicle and an overview of the
simulation platform and the technology used for prediction is given. Chapter four
presents the vehicle used within the simulation environment and explains the com-
ponents involved in the hybrid system and how the power-flow can be modeled.
Chapter five presents the underlying optimization algorithm that is used for both
the predictive and non-predictive energy management systems. This optimization
algorithm is used to calculate the optimal control signal for given operating points.
Chapter six presents the existing, non-predictive, energy management strategy that
has been developed by Volvo and is used at present time. Chapter seven gives a pre-
sentation and the theoretical background of the three predictive energy management
strategies that were developed within this master thesis. This chapter is in large
based on the theories given in chapter three and five. In chapter eight the results and
analysis of the predictive energy management strategies is given and benchmarked
against the results from the existing non-predictive energy management strategy
that is already in use and that was explained in chapter six. In chapter nine the
results from chapter eight are analyzed and followed by a discussion. In chapter ten
guidelines are given for areas in which further studies or work can be carried out in
order to improve the fuel efficiency of the truck even more.



2 Notation

Abbreviations

ADAS-RP Advanced Driver Assistance System Research Platform
BLB Bor̊as-Landvetter-Bor̊as drive cycle
CT-ECMS Constrained Telemetry equivalent Consumption management strategy
DOF Degree of Freedom
e-Horizon Electronic horizon
EAUX Electric Auxiliaries
ECMS Equivalent consumption management strategy
ECU Electronic Control Unit
EECU Engine Electronic Control Unit
EM Electric motor
ESS Electric Storage System
GBX Gearbox
ICE Internal combustion engine
HEV Hybrid Electric Vehicle
MAUX Mechanical Auxiliaries
PL Paris-Lille drive cycle
pRSG Predictive reference signal generator
SoC State of Charge
sx135 Frankfurt-Koblenz drive cycle
T-ECMS Telemetric equivalent Consumption management strategy

Capital Letters

TDem Torque demanded at the wheels (Nm)
TEM Torque delivered from or to the EM (Nm)
TICE Torque delivered from the ICE (Nm)
Ttot Total torque delivered from both ICE and EM (Nm)

Small Letters

m̂f Fuel mass flow
vset Set speed (km/h)
sdis Upper value of the equivalence factor
schg Lower value of the equivalence factor
SoC Present SoC reference value (%)

∆ ˆSoC Predicted slope reference value (%)

5



3 Background

In this chapter some background theory will be presented that is essential for the
understanding of the later chapters. At first the mathematics of how to model
the forces acting on the vehicle will be given. These calculations will be used when
predicting the forces that will be acting on the truck for the prediction based control
algorithms given in chapter 7. This will be followed by an introduction to the
simulation environment that is used at Volvo, the drive cycles used within this
thesis work and the technology behind the predictive data.

3.1 Modeling the Dynamics of the Vehicle

To make predictive hybrid energy management systems a model of the truck is
needed which describes the dynamics of the vehicle when in movement. The model
can be used to calculate, as well as to predict1, the most significant forces acting on
the truck and the vehicle speed.

Figure 3.1. Figure of the main forces affecting the truck.

Five forces are considered in the truck model. The first one is the propelling force,
which is the force delivered by the propulsion systems. Then there are three resis-
tive forces that are counteracting the movement of the vehicle, and these are; the
air resistance force, the resistive force between the wheels and the road and the in-
ternal friction forces within the truck that arise due to rotating parts in the engine.
The last force is the gravitational force which counteracts the vehicle movement in
upward slopes and accelerates the vehicle in downward slopes. With these forces
the following balance equation based on Newton’s second law [17] is derived,

1Given that future data, such as road topography, is given.

6
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ma = Fprop − (Fair + Froll + Fgrav + Ffric), (3.1)

where Fair is the air resistance force, Froll is the rolling resistance force which arises
from the friction between the wheels and the road, Ffric is the internal friction, Fprop

the propelling force from the vehicle powertrain and Fgrav is the gravitational force
[19], [3].

The air resistance-force which affects the truck chassis when it moves trough the
air-medium is modeled by taking the aerodynamic coefficient, c, times the square of
the trucks velocity v,

Fair = cairv
2. (3.2)

.

Here c contains the two parameters, air density ρ and the frontal area A of the truck
[3]. The coefficient c is assumed to be constant in order to simplify the behavior of
the air resistance force. Since the vehicle speed is squared, the speed has a major
impact on the air-resistance force.

The equation for the rolling resistance can be expressed as [19],

Froll = crollmg cos(φ) ≈ crollmg, (3.3)

where croll is the rolling friction constant, m is the vehicle mass, g is the gravitational
constant and φ is the present road gradient [rad]. The road gradient is here assumed
to be small so that an approximation that the cosine term equals one can be done
and thus be removed from the equation above. Due to this approximation Froll

becomes constant having only the vehicle mass, m, and the friction constant, croll,
as parameter values.

The gravitational force can be expressed as,

Fgrav = mg sin(φ) ≈ mgφ. (3.4)

.

As stated above the road gradient is considered to be small, and thus the equation
(3.4) can be linearized by substituting the sine term with its argument φ [17], making
Fgrav proportional to the road gradient angle.

The last term in equation (3.1) is the internal friction force, Ffric, arising from
rotating parts in engine. The equation for Ffric is given by

Ffric =
Tfricηwheel

rwheel

, (3.5)
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where Tfric is the friction load torque that counteracts the propelling output torque,
ηwheel is the efficiency from wheel to engine, i.e. the powertrain, and rwheel is the
radius of the wheel. ηwheel and rwheel is considered to be constant which makes the
friction force directly proportional to the friction torque [19].

While driving on a downward slope the Fgrav term will change sign due to a change
from a positive to a negative road angle, which leads to a gravitational pull and an
acceleration of the vehicle. The steeper the road angle is the more the vehicle will
be accelerated due to the gravitational force and at a certain angle the gravitational
pull will overcome the resistive forces counter acting the movement of the truck.
Due to this acceleration braking has to occur in order to keep the set-speed of the
vehicle. By using the electric generator to brake the vehicle some of the braking
energy can be recuperated. Conventional friction brakes will be used to further slow
down the vehicle if the power needed to brake the vehicle to the set-speed exceeds
the maximum power of the generator.

3.2 Global Simulation Plattform and VSim+

Within Volvo a simulation tool for offline simulations inside Matlab and Simulink is
used called the Global Simulation Platform (GSP). GSP contains a model of a truck
which consists of different subsystems such as battery packs, ICEs, EMs and several
other systems that are present in real trucks. There is also a model of a driver, which
is modeled as a PID-regulator and a road environment used to simulate different
roads, speeds etcetera. A conventional non-hybrid truck is also included which can
be used as a reference tool for benchmarking different results from the hybrid trucks,
such as fuel consumption and various performance improvements. The simulation
platform was earlier called VSim+ but is now called GSP, even if the name VSim+
is still in use at Volvo.

3.3 Drive cycles

When measuring fuel consumption and pollutant emissions from vehicles, standard-
ized test cycles may be used. These test cycles are pre-defined cycles with stan-
dardized speed- and elevation profiles which makes it possible to compare different
vehicles, or vehicle configurations, on the same basis [19]. In the simulation soft-
ware, such as the GSP platform environment used by Volvo, road maps are widely
used. These are mappings of different road intervals which contains set-speeds and
topography information about the specific road cycles. The data for the maps used
in this thesis comes from real routes where an actual truck has gathered the data
by using Global Positioning System (GPS), dead reckoning and gyro sensors [24].
The maps are also used to extract future-road data a certain distance ahead of the
truck. This is done by choosing all the data from the present position of the truck
until the desired position ahead of the truck.
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Figure 3.2. The simulation platform. The figure shows the topmost level of
the simulation platform, which consists of a truck chassis model, a driver model
and the road environment (drive cycle). These models are built up by several
subsystems.

Three such drive-cycles were used for simulations and testing of the predictive energy
management algorithms. These routes were the ones between Bor̊as-Landvetter-
Bor̊as in Sweden, Paris- Lille in France and Frankfurt-Koblenz in Germany. Abbre-
viations were used in order to shorten the names of the routes, which can be found
in figure 3.3.

Figure 3.3. Abbreviations for the three drive-cycles.

The drive-cycles are given as matrices within GSP, where each column is a function
of the distance and represents a certain data, e.g. the set-speed. The resolution of
the data is segments of about 60 meters for Bor̊as-Landvetter-Bor̊as and Paris-Lille
and about 500 meters for the Franfurt-Koblenz drive-cycle.

The road environment has a big impact on the fuel consumption of the vehicle,
where roads with many steep hills lead to higher average fuel consumption. But
the road environment also affects the efficiency of the hybrid system. If the drive-
cycle contains many steep hills, the speed of the vehicle will increase while rolling
down the hills because of the gravitational pull. The vehicle then has to decelerate
by using its brakes in order to hold the set-speed and while doing so recuperation
may be used. Therefore a hybrid system will be more beneficial on hillier roads,
since the percentage in fuel savings compared to a conventional truck will increase .
How hilly a certain route is may be defined by the average road gradient factor. A
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high average road gradient factor states that the route is hilly and a relatively low
value states that the route is flat. It has however been shown by Volvo that this
correlation between fuel-savings and increasing average road gradient has a limit for
a given hybrid system [5]. If the road is too hilly the hybrid system gets saturated
and the rest of the energy will therefore disappear as heat in the brakes.

Further information about the drive cycles can be found in Appendix D.

Figure 3.4. A road-map example. The figure shows a few data points taken
from a road map. The columns, read from left to right, give the distance from
the starting position, the speed that has to be hold and the altitude of the road
in meters above sea level, respectively.

3.4 e-Horizon and estimation of future road data

The ADAS RP (Advanced Driver Assistance System Research Platform) developed
by Navteq can provide information of upcoming road events when it has access to
the position of the vehicle. The position of the vehicle comes from a combination
of the three positioning methods described in section 3.3 and an onboard map.
The ADAS RP is able to calculate the probability for which routes the driver will
drive within a certain distance ahead of the vehicle. The combination of routes
that give the highest probability will be used as an electronic preview horizon, the
e-Horizon. The data for upcoming events within the preview horizon comes from
a map-database, similar to the road-maps described earlier. The prediction-based
energy management strategies will be based on such data. The distance of the
preview horizon will be referred to as the e-Horizon length within this thesis.



4 The hybrid truck model

This chapter presents the concept of the hybrid technology used for the truck and the
key components within that technology. The chapter rounds up with a description
of the truck model at a component level and the power flows in the powertrain.

4.1 Parallel hybrid

Hybrid vehicles can be classified according to the way they supply power to the
powertrain and there are three main types; the series hybrid, the parallel hybrid
and the combined hybrid. The truck that was used for simulations is a parallel
diesel-electric hybrid. There will be some comparisons made between the series-
and the parallel hybrid and the interested reader can find more information about
the series hybrid in Appendix E.

In a parallel hybrid the ICE and the EM are both connected to the same drive shaft
and can simultaneously transmit power to drive the wheels. Parallel HEVs can be
classified according to the degrees of hybridization they belong to, where the two
most common types are the mild hybrid vehicle and the full-hybrid vehicle. The
mild hybrid (see figure 4.1) vehicle is a vehicle that cannot drive on electricity alone
because the power output of the electric propulsion system is too small to propel
the vehicle on its own. It is only supposed to contribute with some of the power
needed for the propulsion, e.g. for keeping the ICE at some optimal operating point.
In this case the ICE can either operate alone on the drive shaft or operate together
with the EM, but the electric motor can never operate on its own. The combined
power of the ICE and the electric motor will be the propulsive power of the vehicle.
A full hybrid vehicle is a vehicle that can run on electricity- or the engine alone, or
a combination of these two. A full hybrid vehicle usually requires a large battery
pack.

The fact that there are many possibilities on how to combine the power from the
ICE and the electric motor adds another degree of freedom (DOF) in order to meet
the power demands of the vehicle [40]. The control of the power split between
the different propulsion systems within an HEV is often referred to as supervisory

control or energy-management. There are mainly two different ways to control an
HEV. One is heuristic- or rule based control in which every action is predefined, but
there are also more dynamic types of control [40].

The advantage of a parallel hybrid over a series hybrid system is that the parallel
hybrid only needs two machines, one engine and one EM. The disadvantage is that
a clutch is needed because the engine is linked to the powertrain. Nevertheless, the
mild hybrid system will also have recuperative abilities so that some of the energies
that otherwise would be lost during driving can be recuperated.

11
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Figure 4.1. Full parallel hybrid configuration. B: battery, E: engine, M: motor,
P: power converter, T: transmission (including clutch and gears), V: axles and
vehicle. Bold lines: mechanical link, solid lines: electrical link.

Figure 4.2. Mild parallel hybrid configuration. B: battery, E: engine, M: motor,
P: power converter, T: transmission (including clutch and gears), V: axles and
vehicle. Bold lines: mechanical link, solid lines: electrical link.

4.2 Electric storage system

The electric storage system (ESS) is usually a Li-ion or NiMH based battery or a
super capacitor. These electric storage devices are bi-directional which means that
they can be charged and discharged while the vehicle is driving [28]. Even the most
advanced batteries available at present time can only store a fraction of the energy
per unit weight compared to gasoline, as can be seen in figure 4.3. Therefore it is
yet not possible to have the same performance on vehicles running on a pure electric
propulsion. In the sequel the battery together with its converter will be declared as
ESS.

An important factor of the battery is the state of charge (SoC) which states the
current charge of the battery. If SoC is 100 percent the battery is fully charged
and if it is zero percent then the battery is completely discharged. The lifetime of
a battery is closely connected to the depth of decharge (DoD) and it is generally
not good to fully deplete or fully recharge a battery since this will decrease the
battery lifetime [19]. To enhance the lifetime of a battery only a fraction of its full
capacity is therefore used. This fraction, or interval, is called the State of Charge

window (SoC-window) and is bounded by an upper and lower SoC limit. In figure
4.4 this window has been highlighted between 30- and 60 percent SoC-value, since
that is the SoC-window in use by Volvo and that will also be used within this thesis.
What decides the size on the SoC-window depends heavily on the battery and its
application.Figure 4.4 shows the SoC value on the y-axis as a percent of battery
charge.

The state variable, SoC, cannot be directly measured but can instead be estimated
based on the energy flow within the battery, if the initial condition is known [19].
When recuperating, a formula for the SoC-change based on the ratio between the
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Figure 4.3. Energy density of different on-board energy storage sources. The
blue bars indicate the actual chemical energy available and the orange bars rep-
resent the energy that will be available at the wheels when energy losses from the
combustion and the powertrain are considered.

Figure 4.4. Illustration of the state of charge and the definition of state of charge
window.

recuperation energy and the nominal battery charge level can be derived as [3]

∆SoC =
Erecup

Enom

. (4.1)

4.3 Internal Combustion Engine

The internal combustion engine (ICE) in the truck is a 460 horsepower Volvo diesel
engine with a maximum output torque of 2700 [Nm]. This is the main power unit in
the powertrain, converting chemical energy from a fuel/air mixture into mechanical
power in the driveline. Inside of GSP the ICE is approximated by motor maps.
This approximation, or model, is a two-dimensional matrix that specifies the fuel-
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Figure 4.5. SoC-level example for the BLB drive-cycle. This is an illustration of
how the SoC changes within the ESS throughout the drive-cycle. These kind of
plots give a good overview of how the energy within the ESS is used and will be
used in the sequel of this paper to compare and analyze results from the different
energy management strategies.

mass flow, m̂f [kgh−1], as a function of the operating points, which are defined
by the engine speed, ω [rad/s], and the engine torque, TICE [Nm] (see figure 4.6).
The data in the motor-map is gathered by measuring the corresponding outputs
for certain inputs (operating points) in test benches. All outputs are measured at
steady-state conditions. The resolution of the measured points can be increased by
linear interpolation.

Figure 4.6. An ICE motor-map example from GSP. The left-most column and
the upper-most row together define the desired operating point, declaring the
demanded output-torque, T , and engine speed, ω, respectively. The output is
given as the fuel-mass flow rate, m̂f .

The produced chemical power for a certain operating point can be found by using
the following formula:

Pf (t, u(t)) = HLHV · m̂f (t, u(t)), (4.2)

where Pf (t, u(t)) = HLHV ·m̂f (t, u(t)) is the fuel power input to the ICE with HLHV
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[J/mg] being the lower heating value of the fuel. The variable u(t) is the control
signal.

4.4 Electric motor

The electric motor (EM) is the secondary power source in the powertrain of the
truck. The EM produces mechanical power by converting electric energy from the
ESS, leading to a discharge of the battery. When the vehicle is braking the EM
acts as a generator and recharges the battery by recuperation. The EM is modeled
with motor-maps, similarly to the ones used for the ICE, but instead of having the
fuel-mass flow as output, the efficiency values of the EM are given at each operating
point (see figure 4.7).

Figure 4.7. An EM motor-map example. The left-most column and the upper-
most row together define the desired operating point, declaring the demanded
output-torque, T , and engine speed, ω, respectively. The output is given as the
efficiency of the EM, ηEM , at that operating point.

4.5 Engine Electronic Control Unit

The powertrain is controlled by different Electric Control Units (ECU’s) and they
all use the CAN-bus to communicate. The Engine Electronic Control Unit (EECU)
controls the operation of the engine as well as how the torque distribution in the
powertrain is split between the EM and the ICE.

4.6 The truck model

The truck is a diesel-electric driven mild parallel hybrid truck. Two ESS-packages
of different capacities and two EMs with different power-outputs were chosen from
within GSP to model different hybrid systems in the truck. Combining the ESS-
packages and EMs gave four different hybrid set-ups. Figure 4.8 gives the data for
the EMs and ESS that were used and it also gives the mass of the truck. Figure
4.9 shows the schematic over the important systems within the truck model. The
schematic consists of the electric storage system (ESS)- which in this case is a
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Figure 4.8. Different parameters that were used in simulations of the truck. The
mass was hold constant.

battery, the EM, the ICE, the clutch, the mechanical auxiliaries (MAUX) and the
electric auxiliries (EAUX) of the long haul truck. The electric- and mechanical
auxiliaries are external systems that drain a constant of 1,1 [kW] of electric energy
and 2 [kW] mechanical energy. The energy for the EAUX is fed from the ESS as
long as it is not depleted.

The EM is mounted directly on the driveshaft between the clutch and the gearbox
and can be used for both propulsion and as a generator, eliminating the need for a
separate generator. It is possible to feed the EM directly from the ICE and thus use
it as a fuel-driven generator in order to charge the battery. Doing so the efficiency
will approximately be ηFuelCharge = ηICE · ηEM · ηESS which is an under average
efficiency and will lead to high energy losses, therefore this function is never used in
normal conditions. Nevertheless the ICE will start to feed the generator in order to
produce electric power if the battery has reached the lower boundary of the SoC-
window and recuperation (braking) is not occurring. This is done in order to deliver
the needed energy for the EAUX within the truck and it is a build-in algorithm
within GSP.

Figure 4.9. Schematic of the truck model.

The ICE and EM are modeled just by the motor-maps that were introduced in
sections 4.3-4.4. The gearbox was not included in the model. This simplification
would not affect the results significantly while the gear is mostly hold constant and
shifted very seldom for the long haul trucks used within the simulations. However
there were some efficiency losses, ηGBX , in the gearbox which were included in the
calculations.
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4.7 Torque distribution

The performance of a hybrid system depends heavily on how the energy is distributed
between the ICE and EM. In some situations it may be favorable to take all the
power from the ICE and none from the EM, for example when the ESS is low on
SoC. Doing so would mean that the truck is operated as a conventional vehicle. On
the other hand if the ESS is high in SoC it may be favorable to use the EM as
much as possible and the ICE as little as possible in order to save fuel and lower the
emissions. The laws of how the energy-flow from the ICE and the EM are controlled
will be called energy management strategies in the sequel. Within GSP the energy-
flow at the powertrain is controlled by how the torque is split between the ICE and
the EM. In case of the real Volvo truck and the model within GSP, this function is
software-based and located in the EECU. As stated in the beginning of this paper
the objective is to find prediction based energy management strategies with an aim
at lowering the fuel consumption.

At every given time there will be a torque demand, TDEM , at the wheels of the
vehicle which has to be met in order to hold the set-speed of the truck. This
demand depends on the set-speed itself, the mass of the truck, the external forces
acting on the vehicle and the topology of the road. How these external forces and
road topology are affecting the vehicle can be calculated with the equations given
in section 3.1. While both the ICE and the EM are acting on the same driveshaft,
their combined power has to fulfill TDEM

1, that is

TDEM = TICE + TEM , (4.3)

By rewriting 4.3 into a power-term it is possible to make a power-flow description
of the powertrain,

PTot = Pf (t, u(t)) · ηICE − PMAUX + PESS(t, SoC, u(t)) · ηEM − PEAUX , (4.4)

where PESS(t, SoC, u(t)) = U · I(t, u(t)) is the power-output from the ESS being
a function of the voltage, U , and current, I(t, u(t)), output. PEAUX is a constant
power-supply to the electric auxiliaries and PMAUX is a constant power-supply to
the mechanical auxiliaries. The control variable u(t) is in this case chosen to be
the torque-output from the EM, TEM . The parameters ηICE, ηEM and ηESS are the
efficiency values for the ICE, the EM and the ESS respectively.

The ESS is one of the most advanced models within GSP and the efficiency value,
ηESS, is not constant but depends mostly on the power input- and output of the

1If this constraint cannot be fulfilled, for example due to a TDEM which is higher than the

torque that the ICE and the EM can deliver, it will cause a speed-decrease of the vehicle and the

set-speed cannot be hold.



18 Chapter 4 truck

battery2. By making a least-squares approximation of the power-losses from the
ESS as a function of the current-flow a mathematical expression was obtained for
ηESS. While the torque-output from the EM, TEM , is the control signal and can
be chosen freely3, and the torque-demand at the wheels, TDEM is given at every
time-step, only the torque-output from the ICE has to be calculated. This can be
done by rewriting equation (4.3) into:

TICE = TDEM − TEM . (4.5)

2The efficiency, ηESS , also changes depending on if the ESS is being charged or de-charged.
3As long as it is kept within the fulfills the maximum and minimum torque outputs from the

EM.



5 Optimization

Optimization is the act of choosing the best possible solution for a given problem
where usually one or several constraints have to be satisfied as well. The optimization
method used for the energy management strategies within this thesis are based on
optimal control theory, which will be explained next.

5.1 Optimal control

The optimal control problem deals with one or more control laws that tries to
optimize (minimize or maximize) a certain criteria called the cost function1 while
at the same time satisfying some physical constraints [32]. The cost function is a
function of the states for the plant. When one talks about optimal control it is
usually a set of differential functions describing the paths of the control variables
that minimize the cost function [48].

A general performance index including various minimization or maximization ele-
ments, such as pollutant emissions or drivability measures2 [19], has the following
form

J =

∫ tf

t0

Pfdt =

∫ tf

t0

L(t, x(t), u(t))dt, (5.1)

where L(t,x(t),u(t)) is the cost function which includes all the elements that need to
be optimized, t stands for time, x(t) is the state variable and u(t) is the continuous
control signal.

The objective of this thesis work is to find energy management strategies that opti-
mize the torque-split between the internal combustion engine and the electric motor
in such a way that the fuel consumption is minimized. The main task of these strate-
gies is not to minimize the fuel mass-flow rate at each instant of time, but rather
to minimize the total fuel-consumption along a given route. The energy manage-
ment system can be formulated as a convex constrained optimization problem over
the route, having the TEM as control signal, u(t). If the torque and speed requests
trajectory at the powertrain are perfectly known over a time interval [t0, tf ] of the
route, a deterministic energy management problem can be derived [23],

J =

∫ tf

t0

HLHV · m̂f (t, SoC, u(t))dt. (5.2)

1Cost functions can also be referred to as performance indexes in the literature.
2How crucial these elements are for the optimal solution may be defined by introducing weighting

factors for each elements.

19
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where u(t) is the control signal which is calculated from the present torque and
speed requests at the powertrain and is subject to constraints due to the limitations
of the hybrid system components.

Within a hybrid electric vehicle the solution for (5.2) would be to only use electric
energy, while such a solution gives a minimum amount of fuel mass consumption.
A pure electric drive is possible if three criteria are fulfilled

1. The battery capacity is large enough to deliver energy during the whole driving
cycle.

2. The regenerative energy that is available during the cycle is enough to ensure
that the battery is not completely discharged until the end of the mission.

3. The electric drive system is powerful enough to ensure that the demanded
power during the cycle will always be met.

As mentioned in section 4.2 even the most powerful batteries available at present
time are still ineffective in storing energy per unit weight compared to the energy
content of fossil based fuels and a pure electric drive would not fullfill the duty cycle
of a long haul truck. To prohibit pure electric solutions equation (5.2) is subject to
the following final battery level and component constraints:

dSoC

dt
= f(t, SoC, u(t)), (5.3)

SoC(tf ) = SoC(t0), (5.4)

SoCmin ≤ SoC(t) ≤ SoCmax, (5.5)

u(t) ∈ Γ. (5.6)

Constraint (5.5) puts a requirement on the system that the final charge has to be
the same as the initial charge. Equation (5.6) requires the control signal u(t) to be
in an admissible set of control inputs. In (5.2) SoC is defined as

˙SoC = −ηESS · PESS, (5.7)

where PESS is the power output from the ESS, ηESS being the efficiency of the ESS.
Equation (5.7) is subject to the following two cases:

• discharge; PESS > 0, ηESS > 1

• charge; PESS < 0, ηESS < 1.

The constraints (5.4-5.6) prohibit the solution of (5.2) to be pure electric.
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5.2 Equivalent Consumption Minimization Strategy

The equivalent consumption minimization strategy (ECMS) has been shown to be an
effective method of making optimal energy management strategies in the causal case
when preview information is not available [13, 16]. The ECMS approach introduces
an equivalence factor, s(t), into the cost function (5.2), which transforms electric
energy into equivalent fuel energy [4, 37]. This equivalence factor is the core of
the ECMS algorithm [14]. The ECMS approach is also called a cost-based strategy,
real-time control strategy, or online optimization strategy [19].

By using the maximum principle [15, 43, 38, 29] the following Hamiltonian can be
derived that gives the optimal path along the solution for (5.2):

H(SoC(t), u(t), s(t), t) = Pf − s · PESS · ηESS, (5.8)

with

PESS =
PEM

ηEM

, (5.9)

where ηICE, ηEM and ηESS are the efficiencies for the ICE, the EM and the ESS
respectively. Pf is the fuel power given in (4.2) and PEM is the power output from
the EM. Equation is subject to the following two cases:

• traction; ηEM < 1, PESS > 0

• charge; ηEM > 1, PESS < 0.

The equivalence factor, s(t), which corresponds to the adjoint state in classical
optimization theory [40, 19], is described by the Euler-Lagrange equation

ṡ = −
∂H(SoC(t), u(t), s(t), t)

∂SoC
. (5.10)

In the ECMS algorithm an approximation is made that the dependency on the SoC
can be disregarded. This approximation holds since only larger deviations of the
SoC may cause variations on the internal battery parameters. The approximation is
however not valid for e.g. hydraulic hybrids [11] or HEVs with super capacitors [15,
23]. With the SoC dependency disregarded the adjoint state will be approximately
constant along the optimal path [40, 23], that is

ṡ = −
∂H(u(t), s(t), t)

∂SoC
≈ 0. (5.11)
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The optimal control signal3, u∗(t) is then found by minimizing equation (5.8)

u∗(t) = argmin
u(t)

{
PICE

ηICE

− s · PEM ·
ηESS

ηEM

}. (5.12)

This equation is subject to the following constraints

TICE + TEM = TDEM , (5.13)

TICE,min ≤ TICE ≤ TICE,max, (5.14)

TEM.min ≤ TEM ≤ TEM,max. (5.15)

The ECMS approach requires a good model for the power-flow in the powertrain.
The equations given in section 3.1 and 4.7 were used for modeling the powertrain
and the demanded power from the various components.

The equivalence factor s can be seen as a trade off or as a cost off using electric
energy relative to using chemical energy stored in fossil fuels [3]. This implies that
a low value of the equivalence factor will make the cost of using electric energy low
relative to using chemical energy and the solution of (5.12) would be to demand
more torque from the electric motor and less from the internal combustion engine.
If the value of the equivalence factor is high the solution would tend to demand less
torque from the electric motor and more from the internal combustion engine. There
exists a certain threshold value for the equivalence factor after which torque is being
demanded also from the ICE as a solution for (5.12). This value is approximately

sbalance =
ηEM

ηICE

, (5.16)

where ηEM is the efficiency of the electric motor and ηICE is the efficiency of the
internal combustion engine.

As long as the value of the equivalence factor is below the value given by (5.16) the
solution of (5.12) would be to always use as much torque as possible from the EM
and the rest from the ICE in order to fulfill (5.13). When the equivalence factor
reaches this certain balance value the torque demand from the EM will decrease as
the equivalence factor increases. When the equivalence factor reaches a high-enough
value the solution of (5.12) will instead be to demand maximum torque output from
the ICE and no torque from the EM.

3Since the approximation has been made that the adjoint state is constant, the optimal solution

can be found by the minimization of a function instead of an integral.
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Figure 5.1. Graphical view of the ECMS look-up table. The graph shows the
optimal EM torques, T̃EM , for a range of torque demands, TDEM , and equivalence
factors. The engine speed, ω, is in this case 1200 rpm.

All solutions for (5.12) can be computed off-line for a combination of all the al-
lowed values for the operating points (TDEM and engine speed) and the range of
equivalence factors that have been chosen. The solutions can then be stored in a
three-dimensional look-up table to reduce on-line calculation time. The inputs of
the table are TDEM , ω, s and the output is T̃EM , the optimal torque output from the
EM for a given demanded operating point (see figure 5.1). The equivalence factor
can therefore be used to control the usage of the EM and also the torque-split within
the hybrid powertrain.

The question then arises of how to chose the best possible equivalence factor, s.
Since the objective of this thesis is to reduce the fuel consumption of the vehicle the
equivalence factor should be chosen in such a way that the overall fuel consumption
on a route is lowered. Chapter 6 will describe how the equivalence factor is calculated
in the present, non-predictive, energy management strategy used by Volvo. Chapter
7 will present the prediction based methods to calculate the equivalence factor that
were developed within this thesis.



6 The non-predictive energy management

strategy

The present energy management strategy in use by Volvo is non-predictive and
does not use any information about future road environments. In this strategy
the equivalence factor, s, that was introduced in section 5.2 is purely based on the
present SoC-level within the ESS. This strategy will be used as a reference for how
well the predictive energy management strategies given in chapter 7 performed. This
chapter will introduce the functionality of this non-predictive method to calculate
the equivalence factor, and the main parameters describing it will be given.

6.1 Non-predictive equivalence factor

The present energy management strategy uses a set of predefined values for the
equivalence factor for every possible SoC-value. The idea is that the equivalence
factor is high when the SoC-level in the ESS is very low, leading to an energy usage
that is costly relative to fuel energy. And if the SoC-level within the ESS is very
high the equivalence factor is set to a low value making the use of electric energy
”cheap” relatively to fuel energy so that the EM is used more in order to assist the
ICE. Between these two borders the weight factor is set to the balancing value given
by equation (5.16). An example of this function can be found in Figure 6.1.
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Figure 6.1. Illustration of the equivalence factor function. The SoC-window is
on the x-axis while the equivalence values are presented on the y-axis.

Since the equivalence factor is set to the balancing value (5.16), which is a relatively
low value, throughout most of the SoC-window the EM will be used frequently which
leads to a fast depletion of the electric energy within the ESS. This phenomenon
can be seen in Figure 6.2 which shows the resulting SoC-curve when using the non-

24
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predictive strategy for the BLB drive cycle. In this picture it is clear that the
energy within the ESS (the SoC-value) decreases very fast. This strategy is effective
in the non-predictive case since there is no knowledge of when the next recuperation
phase may occur. Therefore the energy is used up as fast as possible in order to
make room for possible upcoming recuperation. The disadvantage of such a strategy
is that the electric energy is not preserved and used when it is most optimal, for
example from a fuel saving perspective. It will also lead to frequent saturations at
the lower boundary of the SoC-window and the ICE will therefore feed the generator
in order to feed the EAUX, as explained in section 4.6.
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Illustration of non−predictive ECMS on Borås−Landvetter−Borås drivecycle

Figure 6.2. SoC-curve for the BLB drive cycle using the non-predictive energy
management system. The strategy is to deplete the ESS from energy as fast as
possible to avoid an under-used hybrid system.

The values for the equivalence function from Figure 6.1 are defined by a set of
functions, these are

Rta = −
π

RtSoC,upper −RtSoC,lower

(6.1)

Rtb =
π

2−Rta ·RtSoC,lower

(6.2)

Rtk = −
KpSOCRef · cos(Rta ·RtSOCRef +Rtb)

2

Rta
(6.3)

Rtm = RtWeightRef −Rtk · tan(Rta ·RtSOCRef +Rtb) (6.4)

where Rta determines the width of the function to match the SoC window (30%−
60%), Rtb determines were on the SoC-window (x-axis) the center of the equivalence
factor function should be positioned, Rtk decides the horizontal angle of the function
and Rtm determines its vertical position. The interesting parameters in equations
(6.1) - (6.4) above are, RtSOCRef , KpSOCRef and RtWeightRef . A short description
for these parameters is given in the list below:

• RtSOCRef decides the longitudal position1 .

1Absolute center will be established between a value of 0 to 100.
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• KpSOCRef decides the slope of the curve near min and max of the SoC window.

• RtWeightRef decides the balance value mentioned above.

Figure 6.3. Illustration for the effect of manipulating the RtSOCRef parameter.
Changing this parameter will make the transition between the balance value and
the end values smoother.

Figure 6.4. Illustrates the effect of manipulating the KpSOCRef parameter.
It is seen that the gradient of the balance value is changed when altering this
parameter.

Figure 6.5. Illustrates the effect of manipulating the RtWeightRef parameter.
This decides the level of the balance value and simulations shows that it has a
more substansial effect on the fuel consumption than the other two parameters
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In Figures 6.3 - 6.5 examples are illustrated of how the equivalence factor function
is changed when altering the different parameters. These parameters can be tuned
in for optimal performance in different hybrid set-ups and drive-cycles. Having so
many parameters leads to many simulations to be run before a good solution is
found. That may be possible to do in a simulation environment but in reality it is
not feasible. The tuned parameters will also be highly dependent on the actual truck
with its hybrid set-up and the drive-cycle, making this strategy less robust. This
makes this non-predictive weight function a far from optimal way of implementing
the ECMS. In the next chapter a predictive approach to this problem will be made
that is shown to be a better solution to the ECMS problem.



7 Predictive energy management

This chapter will present the predictive energy management strategies that were
outlined within this master-thesis. Given that future road data is known, such as
the topography of the road and the set-speed ahead of the vehicle, the forces that
will be affecting the truck and the power that has to be delivered to the wheels of
the truck in order to hold the set-speed ahead can be calculated in advance by the
equations given in section 3.1. That leads to new opportunities on how to decide
the equivalence factor in an optimal manner to further improve the control of the
torque-split between the ICE and EM. As explained in chapter 1 the improvement of
the torque-split is done in two steps. The first step is to deploy the ECMS-strategy
outlined in section 5.2 which minimizes efficiency losses of the ICE and the EM, and
the second step is by improving the usage of the ESS so that saturations of it are
avoided1.

It is most critical to prohibit saturations at the upper boundary of the SoC-window,
since that leads to a maximum charged battery which then inhibits further recuper-
ation. By using prediction it is possible to detect such problems in advance and the
equivalence factor (5.11) can be controlled so that the electric energy flow is con-
trolled to avoid such saturations, for example by using up enough of electric energy
from the ESS just before recuperation takes place so that there will be sufficient
re-chargeable capacity left in the ESS. The problem of reaching the lower boundary
of the SoC-window is not as grave while there will still be much capacity left for
further recuperation inside the battery. The disadvantage of being at the lower side
of the boundary, which is the same as having an energy-depleted battery, is that
there will not be any energy left to feed the EAUX of the vehicle. If there is not
a recuperation-phase at the same time, or just after, as the battery is depleted the
energy for the EAUX will be taken from chemical fuel. The ICE will then be feeding
the EM in reverse, and take the role of a generator, in order to deliver electric energy
to the EAUX, as explained in section 4.6. This operation has to be avoided as much
as possible since it will lead to high efficiency losses.

7.1 Introductory theory

This section gives the theory of how to predict future forces that will be acting on
the vehicle. These predictions will then be used by all the prediction-based energy
management systems to calculate how much energy that is available within the
e-Horizon.

1Both the predictive and non-predictive strategies use the ECMS-strategy to minimize the

combined efficiency losses between the ICE, the EM and the ESS. Therefore most of the benefits

of using predictive strategies over non-predictive strategies will come from an improvement of the

ESS usage.

28
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7.1.1 Predicted recuperation

Using the equations derived in section 3.1 and the preview data for the road topog-
raphy the forces acting on the vehicle while at a downward slope can be predicted.
When the vehicle reaches a downward slope it will start accelerating due to the
gravitational pull. It is assumed that the cruise control is activated which will make
the vehicle start braking in order to hold the set-speed. The brake force that can
be recuperated into the ESS can then be formulated as

Fi,lim = max

{
Fi,

PGENmax

v̄iηrecup

}
, (7.1)

where i represents the i:th recuperation interval, Fi,lim is the limited recuperation
force due to physical limitations in the hybrid system components. Fi is the un-
limited force acting at the vehicle, PGENmax is the maximum power input for the
generator (maximum recuperable power), vi is the vehicle speed and ηrecup is the
efficiency from the wheels to the ESS (including the power-losses within the ESS
itself). Saturations within the hybrid system mainly depends on the vehicle speed,
the length of the slope, the angle of the slope and on the vehicle mass since these
factors affect the braking force.

The recuperable energy is derived as [3]

Ei,recup = Fi,lim ·∆s · ηrecup, (7.2)

where ∆s is the recuperation distance (length of the downslope) at which the force
affects the vehicle.

7.1.2 Overspeed

It is asumed that the driver has the cruise control activated, which is trying to keep
the set-speed for the vehicle. When the vehicle starts accelerating in a downward
slope due to the gravitational pull the cruise control does however not start braking
the vehicle until a certain upper speed-limit above the set-speed has been met. The
value at which the actual speed can differ from the set-speed before the cruise control
starts braking is called the over-speed and is usually 5 [km/h], see Figure 7.1.

This has to be considered in the calculation of the recuperation energy since the
recuperation takes place first when the braking speed has been reached and the
brakes become active. Since the cruise control does not start braking instantly
when the vehicle starts accelerating energy that could be recuperated goes lost, and
this energy loss is quite substantial. To predict the over-speed it is assumed that the
acceleration is constant over a road interval. This assumption is based on the fact
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Figure 7.1. Over-speed example. The set-speed (lower line, upper graph) is
constant on 85 km/h while the actual speed goes up to 90 km/h. Braking(lower
graph, green line) does not occur until the actual speed has reached the set-speed
plus the over-speed value at 90 km/h.
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Figure 7.2. Illustrates for the effects of over-speed versus recuperation. It is seen
that recuperation is not happening (red line) unless the actual speed has reached
90 [km/h].

that the rate at which the slope changes is considered to be very small. Equation
(7.3) below shows the updated speed as a function of present speed and the distance
traveled.

v =
√
a ·∆s+ v20, (7.3)

where a is the vehicle acceleration, ∆s is the length of the road interval and v0 is the
delivery speed at the beginning of the downward slope. Based on the assumption
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that the road gradient is held constant during the road interval ∆s one can calculate
the speed at the end of each interval using equation (7.3). This knowledge is used to
delay the actual recuperation until the speed plus the over-speed has been reached
so that the starting point of the recuperation phase is more correct.

7.2 Predictive Reference Signal Generator

One of the prediction based energy management strategies that were outlined within
this thesis is the Predictive Reference Signal Generator (pRSG). This chapter will
present the theory of that strategy and conclude with some results.

7.2.1 Introduction to the pRSG strategy
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Figure 7.3. Illustration of the idea behind knowledge of future information about
the road topography. In figure the position point is the truck current position
and the longitudinal line is the end of the e-horizon interval.

The main idea with the pRSG strategy is to construct a reference trajectory for the
SoC-value throughout the e-Horizon. This reference should then be the optimal path
for using the energy within the ESS having the SoC-window borders as constraints.
The reference trajectory tends to discharge the ESS at the slowest possible rate,
while still making room for the upcoming recuperation energy within the e-Horizon.
This is done by making a SoC-trajectory that discharges the ESS with the same
amount of energy that will be recuperated in the next recuperation phase. This
requires that the position at the upcoming top of a hill, that is, the point after
which recuperation soon will start occurring, is known, which is illustrated in Figure
7.3. By knowing the point on top of the hill the electric motor can then be used
optimally, consuming only so much energy that can be recuperated until the end
of the e-horizon (longitudinal line). If this information do not exist it will most
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likely result in a poor energy management since the battery can be half-full or even
completely charged when the top point is reached and thus result in energy losses.

The SoC-reference trajectory is based on the following criteria [3]:

• The signal has to be kept inside the interval SoCmin ≤ SoC ≤ SoCmax (see
Figure 7.4)

• The rate of change should be minimized with an appropriate optimization
algorithm.

A P-controller is then used to make the actual SoC follow the reference trajectory.

7.3 Constructing the Reference Trajectory

This section will explain how the reference trajectory was calculated and introduce
the optimization algorithm that was used.

7.3.1 Segments

To begin constructing the reference signal for the e-Horizon, the data will be divided
into ordered segments. These segments will be labeled fixed segments if the segment
represents a recuperation phase (downward slope) or free segments if the segment is
not representing a recuperation phase. The reason for why the segments are called
fixed and free is that when recuperation occurs the algorithm is to recuperate as
much energy as possible and the energy flow within the ESS cannot be controlled. If
recuperation is not occurring the energy flow within the ESS is free to be controlled
by the energy management systems. The dynamic model derived in section 3.1
combined with the conclusions made in subsections 7.1.1 and 7.1.2 are used to
predict when the truck will be recuperating energy. The information about where
the fix segment starts, the length and the effect on the Soc level is then stored in a
matrix,

FIXi = [si,∆si,∆SoCi] (7.4)

where i is the fixed segment number within the present e-Horizon, si is the start
of the fixed segment number i, ∆si is the fixed segment length and ∆SoCi is the
change in SoC. This is illustrated in Figure 7.4.

Since SoC0, si, ∆si and ∆SoCi are known in the FIX-matrix the problem is to
decide what values SoCi, SoCi+1,...,SoCi+N should have so that the ESS is being
used optimally. In other words how can one optimize the trajectory based on the
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knowledge of the present position and the information held in the FIX-matrix to
minimize the fuel consumption. This is done by using linear programming which
is a fast and powerfull algorithm to optimize linear problems. This algorithm will
be presented in the next subsection but first some important assumptions are being
made about the synthesis of the reference signal [27]:

• Fixed segments are always recuperation intervals where ∆x > 0.

• The trajectory always starts in a free segment.

• There can never be two consecutive segments of the same type after each other.

The first assumption says that boosting (TGB > max(TICE)) is not allowed since
it is not considered in this text. The second assumption comes from the fact that
if the vehicle is in a fixed segment the optimization does not start until the end of
this phase according to the definition of fixed and free segments, thus only the free
segments are considered as starts for the calculations. The third assumption is how
the trajectory is being made [3].

Figure 7.4. Synthesis of the reference signal. SoC0 is the present SoC level
at present position. From this position an optimization of every free segment is
made based on the information of ∆SoC in the fixed segments matrix FIX. The
area between SoCmin and SoCmax is the SoC window. The unknowned variabel
is SoCi which is decided with the estimate ∆ ˆSoC i. ∆ ˆSoC i is basically the slope
of the free segment trajectory

Linear Programming

The amount of current drawn from the battery has negative effect on the bat-
tery lifetime[3]. Thus an optimization can be constructed based on minimizing the
electric current drawn from the battery. Minimizing the current is the same as
minimizing the slope of the SoC-trajectory according to
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dSoC

dt
= −

Ibatt
Q0

, (7.5)

where Ibatt is the current drawn from the battery and Q0 is the nominal charge of
the battery. By using the relation from the equation above a minimizing criteria
can be derived for every free segment i.

min
SoC

{ N∑

i=1

∆ ˆSoC i

∆ŝi

}
= min

SoC

{ N∑

i=1

SoCi − (SoCi−1 +∆SoCi−1)

∆ŝi

}
= · · · (7.6)

= min
SoC

{ N∑

i=1

SoCi − SoCi−1

∆ŝi

}
−

N∑

i=1

∆ ˆSoC i−1

∆ŝi

where SoC represent the value which is unknown (refer to figure 7.4), ∆ ˆSoC i =
SoCi − (SoCi−1 +∆SoCi−1) is the estimate of the SoC change of the free segment
and ∆ŝi = si−(si−1+∆si−1) is the free segment length2. ∆SoC is constant so it can
be removed from the equation since it does not affect the minimization. Therefore
equation (7.7) becomes

min
SoC

{N−1∑

i=1

(
1

∆ŝi
+

1

∆ŝi+1

)
SoCi +

SoCN

∆ŝN

}
= min

SoC

{N−1∑

i=1

ciSoCi + cNSoCN

}
(7.7)

where ci =

(
1

∆ŝi
+

1

∆ŝi+1

)
for i = 1, 2, ..., N − 1 and cN =

1

∆ŝN
.

Since the SoC-window boundary must never be violated, constraints with ”slack”
variables are introduced

−SoCi − εi ≤ −SoCmin (7.8)

SoCi − εi ≤ SoCmax −∆SoCi

The slack variables exist to make the solution feasible since at some point in time
recuperation energy that corresponds to more SoC-change than the window allows
can occur. The problem can then be formulated as

2In case where there is only a free segment in e-horizon this length will become the e-horizon

length.
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min
x

∑

i

cixi (7.9)

subject to Ax ≤ b

where x = (SoC1SoC2 · · ·SoCNε1ε2 · · · εN).

This problem formulation is in canonical form and can easily be solved with linear
programming. When the linear programming algorithm is implemented the problem
becomes to implement the pRSG strategy and combine it with the existing ECMS.

7.3.2 Implementating the pRSG

The pRSG is implemented in the GSP vehicle model as shown in the figure 7.5 below

Figure 7.5. Illustration of the implementation of pRSG-ECMS. In this case
the P-controller is included inside the ECMS-block. The x-signal is the SoC-
trajectory with which the P-controller calculates an equivalence factor which,
together with the present torque demand and the engine speed, will be the input
to the ECMS algorithm.

The pRSG block together with the ECMS block builds the predictive energy man-

agement strategy and is thus called pRSG-ECMS in figure 7.5. The reference signal,
SoCref , is constructed from the e-Horizon data and the FIX-matrix together with
linear programming, which has been discussed in sub-chapters 7.3.1 and 7.3.1. The
implemented pRSG-ECMS is working in two modes:

• when there is no recuperation in sight (mode 1).

• when there is a recuperation phase in sight (mode 2).

When no fixed segments exist within the e-Horizon there will not be any calculations
made for the optimal SoC-values since there is no information about the recuperable
energy. Instead the reference signal will decay as the EAUX consume power. Mode
1 is illustrated in Figure 7.6, where the reference is kept at a constant slope until
recuperation is visible in the e-Horizon.
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When there are recuperation phases in the e-Horizon calculations for an optimal
trajectory is done by using either linear programming or by just using mode 1.
Mode 1 will be used if the optimal value is above the present SoC-value since it
is prohibited to steer the reference signal upward which is the same as using the
combustion engine as a generator to recharge the ESS. An illustration of this can be
seen in Figure 7.7. It is seen that the reference signal drops down to an optimal, or
near optimal, value based on the amount of recuperable energy within the e-Horizon.
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Figure 7.6. This is a figure that illustrates mode 1.
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Figure 7.7. This is a figure that illustrates mode 2 (recuperation mode) with
constant slope (mode 1). It is seen in figure that when the SoCref -value(blue line)
is above the SoC-value the slope is in mode 1 as long as there are no recuperation
detected in e-horizon

Mode 1 and mode 2 are based on the informtion within the e-Horizon and synthesize
the SoC-trajectory, SoCref , by alternation. The reference signal and the present
SoC-value are then used as inputs to the P-controller within the ECMS block where
the corresponding equivalence factor (5.11) that was presented in section 5.2 is
calculated. This equivalence factor controls the EM in such a way that the right
amount of energy is used from the ESS in order to follow the SoC-trajectory.

The P-controller is defined as:

s = s0 + k ·
(SoCref (t)− SoC(t))2q−1

QnomV (t)
, (7.10)
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where k is a proportional gain, s0 is the balance factor and q is a SoC penalty
factor that is penalizing large SoC deviations. The balance factor s0 is used as an
equivalence factor when there is no control error, i.e. when the actual SoC-value is
the same as the reference signal, SoCref .

The parameters in the supervisor have different optimal values depending on the
drive-cycle and the hybrid set-up of the truck. The parameters for the P-controller
have been tuned for different drive-cycles so that the optimal parameter combination
is used for each given cycle. The result from these simulations is presented in
Appendix C.

7.4 Telemetry Equivalent Consumption Minimiza-

tion Strategy

One variant of the ECMS-algorithm that evaluates the equivalence factor with re-
spect to past, present and especially future driving conditions is the Telemetry ECMS

(T-ECMS) algorithm [40]. The T-ECMS algorithm calculates the equivalence factor
online by using information about the present SoC-value of the ESS, the sum of en-
ergies that is needed to drive the vehicle at the set-speeds within the e-Horizon, and
the total amount of recuperable energy available within the e-Horizon. With this
information a probability-factor, p(t), is calculated which weights the equivalence
factor between two boundary values, Sdis and Schg, where Sdis is the upper boundary
and Schg is the lower boundary for the equivalence factor.

The probability factor is formulated as

p(t) =
Sdis

Sdis + Schg

+
Ee(t)− Λ(Em(t))

Em(t)

√
Sdis + Schg

Sdis + Schg

, (7.11)

where Ee(t) is the present amount of available energy within the ESS and Em(t)
is the total mechanical energy that needs to be delivered to the wheels within the
e-Horizon. The parameter Λ is the ratio between the energy that is available for
recuperation, Erecup and the mechanical energy that has to be delivered to the
wheels, Em(t), within the e-Horizon, i.e.

Λ =
Erecup

Em(t)
. (7.12)

The equivalence factor is formulated as

s(t) = p(t)Sdis + (1− p(t))Schg. (7.13)
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The energy that is available for recuperation is estimated by using the e-Horizon
data presented in section 3.4 and equations provided in section 3.1. Figure 7.8 shows
an example of how the equivalence factor is adjusted between two boundary values
depending on the distribution of energies and the SoC-level of the ESS.
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Figure 7.8. Example of how the equivalence factor is adjusted by the T-ECMS
strategy. In the top-most graph the blue line represents the energy that is needed
to contribute to the wheels (Em(t)) and the green line represents the amount of
recuperable energy. The middle graph shows the SoC-curve for the specific drive
cycle and the bottom graph shows the resulting equivalence factor. These results
are from a simulation on the BLB drive-cycle with a 120 kW EM and 0.6 kWh
ESS.

The T-ECMS algorithm offers a simple yet fast algorithm for predictive energy
management operations that can compute the equivalence factor (5.11) online and
there is no need to store pre-calculated values in look-up tables (except for the
ECMS look-up table with the solutions for equation (5.12)).

The disadvantage of this algorithm is that the two boundary parameters Sdis and
Schg have to be tuned in. These tunings are made for a certain vehicle configu-
ration and drive-cycle and such tunings can give robustness problems where Sdis

and/or Schg can change for changed vehicle configurations or road conditions. Ro-
bustness problems and results from the tunings will be further discussed in chapter
8. Another disadvantage is that the T-ECMS algorithm is not taking the SoC-
window constraints into consideration, which the pRSG-algorithm does. Instead it
is assumed that these constraints are indirectly included in the T-ECMS algorithm
when the optimal values of Sdis and Schg are found, since the most fuel-efficient re-
sults usually come from parameters that are efficient at avoiding saturations of the
battery. This may be seen by the graphs in Figures 7.9 - 7.11. These figures show
how the SoC-curve for the BLB drive-cycle differed depending on the choice of Sdis

and Schg parameters.
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Figure 7.9 shows the SoC-curve when too low values of the Sdis and Schg parameters
are used. This leads to a low resulting equivalence factor leading to a frequent
usage of the EM and the energy within the ESS will be used up quickly. In this
case the SoC is often saturated at the lower boundary of the SoC-window and even
reaches below the 30%-level which results in that the ICE has to feed the generator
(EM) in order to produce enough energy for the EAUX, as explained in section 4.6.
Figure 7.10 shows a SoC-curve given by the optimal parameters that were found by
tuning. In this graph the SoC saturates at the lower and the upper boundary of the
SoC-window at very few instances. Figure 7.11 shows the resulting SoC-curve by
using too high values for Sdis and Schg. In this case the equivalence-factor will in
average be relatively high which leads to an underused hybrid system. The energy
in the ESS will be used very slowly which leads to many saturations at the upper
boundary of the SoC-window.
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Figure 7.9. Resulting SoC-curve for low values of Sdis and Schg. The curve
reaches the upper boundary of the SoC-window 4 % of the time and the lower
boundary 46 % of the time. These results are from a simulation on the BLB
drive-cycle with a 120 kW EM and 0.6 kWh ESS.

7.5 Constrained T-ECMS

The Constrained T-ECMS (CT-ECMS) algorithm extends the T-ECMS strategy by
using the constraints of the ESS that the pRSG strategy delivers. The CT-ECMS
algorithm is simply to run both the pRSG- and the T-ECMS strategy and choose
the strategy that outputs the lowest equivalence factor at the moment. By doing so,
the upper boundary of the SoC-window will not be violated. This may be explained
by that if a lower equivalence factor than the pRSG strategy outputs is used more
electric energy will be used up from the ESS which takes the actual SoC-value move
away from the upper boundary even more, but the lower boundary may still be
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Figure 7.10. Resulting SoC-curve for an optimal choice of the Sdis and Schg

values. The curve reaches the upper boundary of the SoC-window 6 % of the time
and the lower boundary 20 % of the time. These results are from a simulation
on the BLB drive-cycle with a 120 kW EM and 0.6 kWh ESS.
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Figure 7.11. Resulting SoC-curve for high values of Sdis and Schg. The curve
reaches the upper boundary of the SoC-window 19.14 % of the time and the
lower boundary 0 % of the time. These results are from a simulation on the BLB
drive-cycle with a 120 kW EM and 0.6 kWh ESS.

violated (see Figure 7.5). Violations of the lower boundary are not considered as
a critical problem, while only violations of the upper boundary lead to losses of
recuperable energy, as mentioned in the introduction of this chapter.
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Using both the pRSG- and the T-ECMS strategy together would leads to four
parameters that have to be tuned in for every drive cycle and hybrid set-up. These
are the equivalence boundary values Sdis Schg used within the T-ECMS algorithm
and the proportional gain, k, and the balancing value, s0, used for the P-controller
within the pRSG algorithm. This leads to an exponential increase in the amount of
available combinations between the parameters and the amount of simulations that
have to be run, and would therefore not be practically feasible.

To solve this problem the pRSG-block was modified so that instead of having SoC
as a function of distance as an output, the output was converted to electric current,
I, as a function of time. I is the electric current that has to be drained from the
EM in order to follow the calculated SoC-trajectory. When the current is known
the desired torque output from the EM can easily be calculated by the equality
TEM = I ·U , where U is the ESS voltage and is approximated to be constant. After
this modification only the two T-ECMS parameters, sdis and schg, have to be tuned
in.

Figure 7.12. The blue line (a) represents the actual SoC-level. The red line
(b) represents the resulting SoC-trajectory is an equivalence factor that is higher
than the pRSG-strategy outputs is used. The yellow line (d) is the SoC-trajectory
achieved by using the equivalence factor from the pRSG strategy. The grren line
(c) is a resulting SoC-trajectory if a lower equivalence factor than the pRSG
outputs is used.



8 Results

In this chapter the results for the three different predictive energy management
strategies that were developed within this thesis will be presented. Focus will be
laid on the hybrid configuration that uses the 120 [kW] electric motor and a battery
capacity of 1.35 [kWh], since this configuration has the highest degree of hybridiza-
tion. If nothing else is mentioned the values from the graphs and tables will be
results from this hybrid set-up. For more detailed results, and results from other
drive-cycles, see Appendix A. All results are taken from simulations within GSP.

8.1 Fuel consumption

Fuel savings of up to 3,98 % can be achived by the hybrid set-ups used in this work,
relative to a conventional truck (Figure 8.1). Figure 8.2 shows the amount of fuel
that is saved by using predictive energy management systems compared to the non-
predictive energy management system. From these simulation results fuel savings
of up to 0.28 % can be achieved by implementing prediction to the control system.
An e-Horizon length of 3 kilometers was used for these simulations.

Figure 8.1. Amount of fuel that is saved by using hybrid systems on the different
drive-cycles. The rows give the amount of fuel that is saved in percent by using the
different energy management systems relative to the conventional truck, where
the upper row is the non-predictive energy management strategy already in use by
Volvo and the three lower rows are the predictive energy management strategies.

8.2 Tunable parameters

In this section the optimal values for the tunable parameters for the T-ECMS strat-
egy and the pRSG strategy will be presented. These parameters are the upper
boundary, Sdis, and the lower boundary, Schg, for the equivalence factor within the
T-ECMS strategy, and the balance factor, s0, and the proportional gain factor, k,
for the P-regulator within the pRSG strategy. The optimal values are given in table
8.2. How these values were found is explained in Appendix C.

42
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Figure 8.2. The bars indicate the amount of fuel that can be saved by using
predictive energy management strategies, compared to the non-predictive strat-
egy. All values yield for the hybrid configuration with a 120 kW motor and a
1.35 kWh battery capacity.

Figure 8.3. Optimal tunable parameters for the hybrid set-up with a 120 kW
and 1.35 kWh battery capacity.

8.3 Drivability

Drivability defines the empirical experience of how an actual real-life vehicle feels like
to drive, for example concerning the smoothness of the drive and pedal response.
Estimating drivability factors from software simulations can be accomplished in
many different ways, but none of them is comprehensive [18]. In this section an
attempt will be made in trying to answer how the predictive torque-split control
affects the drivability.
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Different parameters related to drivability, may be estimated depending on the re-
quired accuracy of the drivability estimation. A criterion for these parameters is that
they can be calculated from the GSP simulation results. All values will be compared
to both the non-predictive energy management strategy and the conventional truck.
Three such parameters were selected and used for the vehicle drivability approxima-
tion; speed difference from the set-speed, average vehicle speed and the number of
gearshifts during a drive-cycle.

First, a calculation for the percentage of which the actual speed differed from the
set-speed was made. A tolerance value was used for how much speed difference that
was acceptable. The tolerance value was set to be the same as in [18], which is 3
[km/h]. Only speeds differences than were lower than the set-speed were considered.
The calculations would thus show how often the actual speed of the vehicle was
below the set-speed by at least 3 [km/h]. This difference mainly arises as the vehicle
accelerates, which is why this parameter also can be used to describe the acceleration
performance of the truck. The difference in vehicle speed, vdiff , was calculated as

vdiff = vset − vact (8.1)

were vset is the set speed of the road and vact is the actual speed of the vehicle. The
acceleration in the beginning of the drive-cycle was not included in these calculations.
That kind of accelerations are usually given in the vehicle data sheets as the time it
takes for the vehicle to accelerate from 0 [km/h] up to 100 [km/h]. These calculations
will instead show the overall acceleration performance while the vehicle is utilized.
The percentage of which the speed differed at least 3 [km/h] from the set-speed
was then calculated in Matlab. Figure 8.4 lists the results from these calculations
for the different road cycles. There will not be any significant deviations from the
set-speed since the EECU always tries to fulfill the constraint (4.3). However there
may be instances when the constraint cannot be fulfilled. This speed-loss can result
from two factors: as a transient from the driver which is modeled as a PI-regulator
and/or when the torque demand on the wheels exceeds the maximum torque-output
available from the vehicle (see Figure 8.6). In case of the transient the set-speed
will be achieved after the settling time but in case when the maximal torque-output
from the vehicle is not enough the speed-difference will remain as long as the torque
demand cannot be met. The correlation between uphills and speed-loss becomes
especially clear in figure 8.5 where a comparison is made between the vdiff and the
average road gradient.

The second drivability investigation concerns the average speed, which is defined as

vavg =
Distancecycle
T imecycle

(8.2)

This parameter shows if the predictive energy management strategies have some
influence on the time it takes to drive through the given drive-cycle. One way to
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Figure 8.4. Amount of time the actual speed is at least 3 [km/h] below the
set-speed.

decrease the fuel consumption would be to decrease the speed of the vehicle which
in equation (3.2) would lead to less air resistance force acting on the chassis of the
truck and therefore also less fuel consumption. This is however unwanted since it
leads to longer traveling times, therefore the average speed has to be held as close
as possible to the set-speed. Figure 8.7 lists the results from the average speed for
different hybrid set-ups and road cycles. What is interesting is that the average
speed of the hybrid truck is higher than the conventional truck, regardless of which
energy management strategy is used. This may be explained by the extra power-
output delivered to the powertrain from the EM which gives a higher combined
torque-output in phases that require more torque than the ICE can deliver. It is
obvious that the average speed of a whole drive-cycle depends very much on the
ability of the vehicle to hold the set-speed, that is, to have a minimum of vdiff .

The predictive energy management strategies did not affect the amount of gearshifts
at all.
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Figure 8.5. Percentual difference with at least 3 [km/h] beneath the set-speed
and average road gradient. It can be seen that the average road gradient has a
big influence on the amount of time that the vehicle spends at lower speeds than
the set-speed.
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Figure 8.6. Example of speed-loss at uphills. When the truck starts driving at
steep uphills it is affected by a speed-loss.

Figure 8.7. The set-speed and the average speeds achieved by the trucks for the
different drive-cycles. The hybrid trucks have a hybrid set-up with a 1.35 [kW]
battery and a 120 [kW] EM.

8.4 Effects from changes in the e-Horizon length

This section aims at giving the reader an overview of the possible benefits of ex-
tending the preview horizon. Simulations were done where the preview horizon was
extended from 3 kilometers to 6 kilometers. In case of the T-ECMS strategy the
improvement differences on the fuel consumption were small enough to be neglected
since they could be results from errors in the parameter tuning. It was however
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noticed that the optimal values of the Sdis and Schg parameters changed. In case
of the pRSG strategy there were improvements when the preview horizon was ex-
tended. The optimal values of the gain- and balancing factor changed and had to
be re-tuned. Figure 8.8 shows the improvement in fuel economy in percent for the
pRSG strategy.

Figure 8.8. Fuel savings using the pRSG strategy with two different preview
lengths. Comparisons are relative to the non-predictive algorithm.



9 Discussion

In this chapter the results from the previous chapter will be discussed and analyzed.

9.1 Fuel consumption

Figure 9.1. Average road gradients and achieved fuel savings on different drive-
cycles. Comparisons are made on the conventional truck.

Simulations indicate that it is possible to improve the fuel economy for a mild hybrid
long haul truck with the predictive control algorithms developed within this thesis
work. The amount of fuel that can be saved depends on different factors, such as
maximum output power from the electric motor, battery capacity, e-Horizon scope,
and the average road gradient. The average road gradient has most influence on the
fuel economy, where a high road gradient leads to more recuperation and thus more
fuel savings. The average road gradients for the three drive-cycles and the amount of
fuel that was saved on each drive-cycle are given in Figure 9.1. Drive cycle sx135 had
the highest average road gradient but surprisingly the amount of fuel that is saved is
not as high as for the BLB drive-cycle which has a lower average road gradient. Of
the configurable factors that can be influenced on the power-output from the electric
motor has slightly more impact on the fuel economy than the battery capacity has,
as can be seen in Figure 9.2. An electric motor with higher power-output will give
more recuperation 1.

In the simulations carried out the less advanced T-ECMS strategy behaved better
than the more advanced pRSG strategy, from a fuel-consumption point of view.

9.2 Parameters

Both the T-ECMS strategy and the pRSG strategy are using parameters that have
to be tuned for all the different hybrid set-ups and also for the different drive-
cycles, respectively. For more information about how the tuning was carried out
and the results for the optimal parameters, see Appendix C. The sensitiveness to

1This statement is based on the battery capacities and the electric motor sizes that has been

defined for this thesis work.
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Figure 9.2. The left-most bar indicate the amount of fuel that is saved when the
electric motor is held constant and the ESS capacity is changed. The right-most
bar indicate how the fuel economy is affected by changing the maximum input
and output power from the EM. All values are taken for the BLB drive-cycle and
the comparisons are made with a conventional truck.

changes in drive-cycles is seen as more important than the sensitiveness to changes
in hybrid set-ups within the truck. This is because the hybrid set-up will be held
constant for a given truck while the driving environment will be changing2. A
robustness analysis was done by taking the combination of parameters that gave
the lowest total fuel consumption for the three drive-cycles for a certain hybrid set-
up. This combination of parameters can be seen as the best average parameters for
drive-cycles with different average road gradients. Figure 9.3 show the amount of
fuel that is saved using the optimal parameters for the drive-cycles and using the
average parameters, respectively. Also with these average parameters there was an
improvement compared to the non-predictive case.

9.3 Horizon change

When the horizon length was extended to 6 kilometers there were no improvements
in the fuel economy for the T-ECMS strategy. The upper boundary, Sdis, and lower
boundary, Schg, for the equivalence factor where however changed with the preview
horizon length. In case of the pRSG strategy there were minor improvements in
the fuel economy when the preview horizon was extended from 3 kilometers to
6 kilometers. These improvements are due to the fact that there will be more
information about the future road topography with an extended horizon and the
pRSG strategy can compute a better SoC-reference curve using this information.
When the horizon length was changed there was a minor change to the optimal
gain parameter, k, and the balancing factor, s0. Figure 9.4 shows a comparison on

2If a truck is driving a certain route frequently the tunable parameters may be optimized for

that given route.



50 Chapter 9 Discussion

Figure 9.3. Fuel savings when using optimal and average tunable parameters.
All values are taken from a hybrid set-up with a 120 kW motor and a 1.35 kWh
battery capacity. Comparisons are made on the non-predictive energy manage-
ment strategy.

how much fuel that is saved with the different preview horizons, compared to the
non-predictive strategy.

Figure 9.4. The bars indicate the amount of fuel that is saved compared to the
non-predictive strategy by using the pRSG strategy with preview horizons of 3
kilometers and 6 kilometers. A preview horizon of 6 kilometers give better results
on all three drive-cycles.



10 Future work

The time constraints of this thesis project naturally limits the number of investiga-
tions that can be done on how to improve the fuel efficiency of the long haul truck. A
few methods will be described below that could possibly improve the fuel efficiency
even more. Also a short analysis of why these methods are believed to improve the
fuel efficiency will be given.

First of all it may be wise to test the efficiency of the predictive EMS in reducing fuel
consumption against the most fuel efficient predictive strategy that is possible to
get, one that gives a global minimum in fuel consumption. Such an optimal strategy
can be obtained by dynamical programming. That kind of test would show how well
the energy management strategies really perform and how much the torque-split can
be further enhanced.

The prediction based strategies could also be further enhanced by implementing
algorithms that include various vehicle stops and speed-decreases in the optimization
process. The strategies presented in this paper cannot handle this in an optimal
manner. If these strategies are to be implemented in a real vehicle it may also be
wise to implement algorithms that can handle speed-decreases due to for example
hard turns in the road. The drive cycles within GSP do not include turns and the
routes are therefore approximated as straight roads. Including vehicle stops and
speed-decreases would give a more fair value of the recuperable energy within the
e-Horizon which would lead to a better optimization process.

A strategy which could further improve the fuel efficiency of the truck is to combine
ZeroPedal with the predictive EMS. ZeroPedal is a strategy already in use by many
Volvo trucks where the fuel injection to the engine is stopped in downhill slopes.
Since the gravity pulls the truck down the slope the engine is cranked by the mo-
mentum of the vehicle. The benefit of using ZeroPedal is that no fuel is consumed.
The disadvantage is that the inner engine friction causes a small retarding force
leading to a waste of energy. When used with predictive EMS, ZeroPedal could be
deployed when the battery or the EM is saturated, i.e. when the vehicle is in a very
long or very steep downhill.

Another possible strategy is to combine the predictive EMS with EcoRoll. EcoRoll
is a function developed by Volvo which reminds of ZeroPedal but in which the
gear is shifted to neutral. Shifting the gear to neutral decouples the engine from the
powertrain which reduces the retarding force considerably. The lower retarding force
allows the vehicle to better convert the potential energy into kinetic energy making
the vehicle roll further after the downhill. The disadvantage of this function is that
that since the engine is decoupled from the powertrain it has to be maintained at idle
speed which consumes a small amount of fuel. This function may be implemented
together with the predictive EMS for the same reasons as for the ZeroPedal function
described above.
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Appendix A

Fuel consumption Results

app:appfuel

In this chapter detailed results of the fuel consumptions from all the drive-cycles
and the different hybrid set-ups will be presented. Many of the simulation-values are
confidential within the Volvo Group and the results will therefore be given as change
in percent with respect to either a conventional truck or the non-predictive hybrid
truck. The performance of a conventional truck has the same advantage for all of the
drive-cycles and therefore gives a good benchmark of how well the predictive energy
management strategies behave, from a fuel consumption point of view. The gain-
and balance factor of the non-predictive algorithm presented in chapter 6 has been
tuned in such a way that they behave better on some of the drive-cycles. Therefore
the comparison between the non-predictive and the predictive energy management
strategies only gives information of how much fuel that can further be saved by using
prediction.

Figure A.1. Fuel savings achieved by using the pRSG strategy compared to a
conventional truck and a hybrid truck using the present non-predictive energy
management strategy.
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Figure A.2. Fuel savings achieved by using the T-ECMS strategy compared to
a conventional truck and a hybrid truck using the present non-predictive energy
management strategy.

Figure A.3. Fuel savings achieved by using the CT-ECMS strategy compared to
a conventional truck and a hybrid truck using the present non-predictive energy
management strategy.



Appendix B

Change in the average vehicle speed

app:appavgspeed

Figure B.1 shows the set-speed and the average speed obtained by the different
truck for different drive-cycles. For the PL and BLB drive-cycles the obtained
average speed is is lower than the set-speed for all the trucks, but the performance
is improved when using hybrid systems. It does not seem like predictive energy
management strategies has a benefit over non-predictive strategies in this case.

Figure B.1. Average speeds for for a conventional truck and trucks using the
different energy management strategies. The four different row-sections define
the degree of hybridization where the row-section from top to bottom represents
the following; 60 kW EM and 0.6 kWh ESS, 120 kW EM and 0.6 kWh ESS, 60
kW EM and 1.35 kWh ESS, 120 kW EM and 1.35 kWh ESS.
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Appendix C

Tuning of the T-ECMS and pRSG
parameters

app:tuning
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Figure C.1. A tuning example. The blue line is the total fuel consumption
for the BLB drive cycle using a 1.35 kWH battery and 120 kW EM. The line
was built up by 96 different parameter combinations between Sdis and Schg. The
red ellipse represents a local minimum around which further and more narrow
tunings were made with a smaller step-size, ∆. The red line represents the fuel
consumption for the conventional vehicle and the green line represents the fuel
consumption resulted from the non-predictive hybrid truck.

The T-ECMS strategy and the pRSG strategy use parameters that have to be tuned
in to some optimal value for a given hybrid set-up and drive-cycle. These parameters
are the two boundary parameters, Sdis and Schg, for the T-ECMS strategy and the
balancing factor and gain, b and k, for the P-regulator within the pRSG strategy.

The tuning process is quite simple. First a range of increasing values is chosen for
the parameters, (Sdis = [sd0, sdf ], Schg = [sc0, scf ] and b = [b0, bf ], k = [k0, kf ]),
where the increment in each set depends on a predefined step-size (∆Sdis, ∆Schg

etcetera). Then simulations are run for every combination of Sdis and Schg for
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the T-ECMS algorithm and k and b for the pRSG algorithm. By comparing the
simulation results for all the combinations the combination that gave the best results
for a certain data can be chosen. Due to the objective of this thesis, to investigate
if better fuel economy can be achieved by using predictive energy management,
the combination that gave the lowest fuel consumption where chosen. Figure C.1
shows a tuning example from the BLB drive cycle. The blue line represents the
total fuel consumption as a function of the parameter combinations. In this case a
total of 96 combinations between Sdis and Schg were used and therefore the same
amount of simulations had to be run. The red ellipse represents a local minimum
in fuel consumption. Around all these local minima further tunings were done with
a smaller step-size, ∆. The smaller step-size was only used on the Sdis parameter
while narrower tunings of Schg were not made.

Both the T-ECMS strategy and the pRSG strategy have two parameters each that
have to be tuned. If the amount of values within the range of these two param-
eters are the same, that is if size([sd0, sdf ]) = size([sc0, scf ]) and size([b0, bf ]) =
size([k0, kf ]), the amount of combinations will be square the amount of values within
the range. The optimal parameter values can be found in figure C.2 and C.3.

Figure C.2. Optimal parameters for the T-ECMS strategy.

C.0.1 Defining the range of the parameters

It is important to choose the step-size and range of the parameters wisely before
the tuning is begun, while the amount of simulations increases drastically with the
increasing amount of values in the range and possible combinations between them.
In case of the T-ECMS algorithm the range was set to lie around the balancing value
of the equivalence factor given in equation 5.16. Values of Sdis or Schg that are too
far from the balancing value of the equivalence factor will result in poor behavior of
the torque-split control within the EECU. If the parameter values are much lower
than the balance factor given in equation 5.16 then also the resulting equivalence
factor will have low values which means that the cost of using electric energy is low
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Figure C.3. Optimal parameters for the pRSG strategy.

and the optimal control law from equation 5.12 will be to distribute full torque from
the EM at all times. This strategy will just use the stored electric energy as fast as
possible and will not take benefit from any predictive information, as can be seen
in figure C.4. If on the other hand the values for Sdis and Schg are much higher
than the balance factor the resulting equivalence factor will also have a high value
which will result in a control law that neglects the use of electric energy leading to
an underused hybrid system, which can be seen in figure C.5.
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Figure C.4. SoC-curve over the BLB drive-cycle with the T-ECMS strategy.
Parameters are much lower than the balancing factor of the equivalence factor.
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Figure C.5. SoC-curve over the BLB drive-cycle with the T-ECMS strategy.
Parameters are much higher than the balancing factor of the equivalence factor.
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Drive cycles

app:drivecycles

Three drive cycles where chosen for simulations. One important factor for these drive
cycles is the average road gradient which describes how hilly each drive cycle is on
average. The higher the road gradient, the hillier the road. In previous simulations
at Volvo it has been shown that there is a correlation between the average road
gradient and the fuel saving for an HEV and that the correlation is not linear due to
saturations in the hybrid systems. The hybrid system can only recuperate a given
maximal amount of energy due to the power-flow limitations within the generator
and the EES. For low average gradients the battery never gets fully charged and the
hybrid system is underused, and for high average gradients the brake-power may
exceed the power intake of the generator or the ESS may get fully charged and
saturated. The three drive cycles where chosen to represent a variety of average
road gradients. Below follows some information about these drive cycles.

Bor̊as-Landvetter-Bor̊as (BLB) Predominately flat, 0 stops, target speed 90 km/h
Average gradient: 1.23 % Length 87 km

Paris-Lille (PL) Flat, 0 stops, target speed 90 km/h Average gradient: 0.78 %
Length 29 km

Frankfurt-Koblenz (SX135) Hilly, 0 stops, target speed 85 km/h Average gradient:
1.44 % Length 210 km

65



66 Appendix D

0 1 2 3 4 5 6 7 8 9

x 10
4

20

40

60

80

100

120

140

160

Distance [m]

A
lti

tu
de

 [m
]

0 1 2 3 4 5 6 7 8 9

x 10
4

0

20

40

60

80

100

Distance [m]

S
et

−
sp

ee
d 

[m
]

Figure D.1. Altitude and set-speed for the Bor̊as-Landvetter-Bor̊as (BLB) drive
cycle.
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Figure D.2. Altitude and set-speed for the Paris-Lille (PL) drive cycle.
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Figure D.3. Altitude and set-speed for the Frankfurt-Koblenz (sx135) drive cycle.
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Appendix E

Series hybrid

sec:serieshybrid

In a series hybrid electric vehicle the EM delivers all the energy to the wheels,
and thus alone propels the vehicle. The electric energy needed can come from a
battery, an engine-propelled generator or both. Engine-propelled generators are
used because driving on only electric energy is not sufficient when longer driving
distances are desired. This is due to the much smaller efficiency of batteries as
energy storage devices compared to fuel based energy storages, as can bee seen in
figure 4.2. The energy output from the engine is then not related to the energy
demand of the vehicle and therefore the engine can be run at an optimal operating
point at all times when recharging the battery [19]. The electric motor has to be
designed so that it can meet the power demands of the vehicle.

The energy produced by the engine-generator pair can directly be used by the electric
motor or be saved in the battery for later use. During regeneration the traction
motor is used as a generator. Schematic of the series hybrid configuration is given
in figure E.

The advantage of a series hybrid is that the transmission does not need a clutch
because the engine is disengaged from the powertrain. The disadvantage is that the
series hybrid needs three machines; one engine, one electric motor and one generator.
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Figure E.1. Basic series hybrid configuration. B: battery, E: engine, G: genera-
tor, M: motor, P: power converter, T: transmission (including clutch and gears),
V: axles and vehicle. Bold lines: mechanical link, solid lines: electrical link.


