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Abstract

This thesis involves optimization of optimal control problems using collocation
methods in Wolfram SystemModeler and Mathematica. Three optimization solvers
are evaluated and compared: FindMinimum in Mathematica, IPOPT and KNI-
TRO. They are evaluated by letting them solve optimal control problems with
use of the numerical method direct collocation. Two test problems are used; they
represent a batch reactor and a free floating robot. An interface between IPOPT
and Mathematica is created.
Direct collocation is based on discretizing the state and control variables of the
optimal control problem with use of collocation points. In this thesis three nu-
merical methods are used to approximate the derivatives of the state variables
in the optimal control problem. The three methods are Euler method, backward
differentiation method and the use of Lagrange basis polynomials. The results are
obtained by investigating the optimal trajectories of the variables, the optimal cost
function, the number of iterations and the total time spent during optimization.
The conclusion is that FindMinimum is not as good as the other two solvers. It
performs worst in all studied aspects. The main reason is that it does not have a
good algorithm to solve constrained optimization problems. IPOPT and KNITRO
are equally good with respect to number of iterations and optimal results, but in
the timing aspect is IPOPT slower because of slow function evaluations.
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1
Introduction

The background, purpose and problem formulation of the thesis is described in this
section. The method is outlined and an explanation of the creation of an interface
from Mathematica to the optimization solver IPOPT. The utilized software and
different optimization solvers are also presented.

1.1 Background

Wolfram SystemModeler is a software for modeling and simulation which easily
connects with Wolfram Mathematica for an integrated workflow. Wolfram Sys-
temModeler is created by the company Wolfram MathCore. The company has a
need to enlarge the software by integration of optimization in Wolfram System-
Modeler. This is because optimization of dynamic models is often used in various
applications for example in optimal control and design optimization.

1.2 Purpose

The thesis involves optimization with focus on collocation methods for optimal
control problems in Wolfram SystemModeler and Mathematica. It involves com-
parison and evaluation of three optimization solvers for specified optimization
problems. The optimization solvers used here are the function FindMinimum in
Mathematica and the two solvers IPOPT and KNITRO which are software for
solving large optimization problems. Using IPOPT required the development of
an interface from Mathematica. Evaluation is performed by studying different
test problems and comparing performance, accuracy and precision in the different
solvers.
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CHAPTER 1. INTRODUCTION

1.3 Problem analysis

The following tasks are to be fulfilled:

• Create an interface from Mathematica to the optimization solver IPOPT
using Wolfram LibraryLink and MathLink, powerful ways to connect external
code to Mathematica.

• Evaluate the optimization solvers FindMinimum, IPOPT and KNITRO by
implementing and solving optimization problems.

1.4 Method

The work of the thesis can be divided into literature studies, learning the software,
implementation and evaluation. Literature studies begin and proceed during the
whole time since it is important to study the area and see the different algorithms
of the solvers. These studies are mainly through printed literature and on web
pages belonging to the developers of the different solvers. The software which
are used in the thesis are Wolfram SystemModeler and Mathematica and knowl-
edge in them are important since the major part of the work is performed with
them. Implementation of the solvers is the major part of the work, it will involve
some modeling in Wolfram SystemModeler to create the examples which should be
used to evaluate the different solvers. But the emphasis is on the integration with
Mathematica, involving implementation of the solvers, creation of interface to the
solver IPOPT and evaluation of all solvers. The evaluation is performed by evalu-
ating the different solvers on test problems created in Wolfram SystemModeler by
comparing performance, accuracy and precision.

1.4.1 Implementation of interface from Mathematica to
IPOPT

To use the optimization solver IPOPT in Mathematica an interface has to be cre-
ated since the IPOPT code is written in C++. There are predefined interfaces for
C, C++ and Fortran which can be used to easily define the problem formulation. In
this thesis the problem is formulated in Mathematica and by using LibraryLink and
MathLink the formulation is linked to the predefined interface for C. LibraryLink
and MathLink provide the possibility to link external code with Mathematica in
an efficient way with respect to speed and memory. IPOPT implements an interior
point line search method and it requires the cost function, constraints, gradient of
the cost function, Jacobian of the constraints and the Hessian of the Lagrangian
function. These functions are defined and calculated in Mathematica and then
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CHAPTER 1. INTRODUCTION

linked with MathLink to the problem formulation in C. A C compiler is needed;
Microsoft Visual Studio 9.0 (2008) is used in this thesis.

1.5 Software

Different software are applied for different purposes including software for model-
ing and computation of the test problems and implementation of the collocation
methods. Three optimization solvers are evaluated on the specified optimal control
problems.

1.5.1 Modeling and computational software

Two software for modeling and computation are utilized and they are Wolfram
SystemModeler and Mathematica. The test problems that are used for evaluation
of the optimization solvers are implemented in Wolfram SystemModeler. The mod-
els are imported into Mathematica where the collocation method is implemented
to solve the optimal control problem associated with the test problems.

Wolfram SystemModeler

Wolfram SystemModeler is a physical modeling and simulation tool developed by
the company Wolfram MathCore. It is based on the free object-oriented modeling
language Modelica and connects easily with Mathematica. Realistic models can
be built with predefined standard Modelica components from a large library. Nu-
merical experiments can then be performed on the model to evaluate and optimize
it if desired [1].

Mathematica

Mathematica is a computational software program provided by the company Wol-
fram Research. It contains all elements of a project; calculations, visualizations,
data storage and documentation together in one program. It is split in two parts;
the kernel which interprets expressions and return result expressions and the front
end which provides a graphical user interface allowing creation and editing of the
program code together with the results including graphs, text and tables for ex-
ample [2].

1.5.2 Optimization solvers

Three different optimization solvers are evaluated: IPOPT, KNITRO and the
function FindMinimum in Mathematica.
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CHAPTER 1. INTRODUCTION

IPOPT

IPOPT, short for Interior Point Optimizer, is a software package which is available
online for usage [3]. It is distributed by COIN-OR, short for Computational In-
frastructure for Operations Research, a project initiated to help the development
of open source software [4]. The original was developed by Andreas Wächter un-
der his supervisor Lorenz T. Biegler at the Chemical Engineering Department of
Carnegie Mellon University during a dissertation research. IPOPT is written in
the language C++, but it can also be used to generate a library which can be
linked to the problem formulation [3].

IPOPT is designed to find local solutions of large nonlinear optimization prob-
lems of the form

minimize
x∈Rn

f(x)

subject to gL ≤ g(x) ≤ gU

xL ≤ x ≤ xU

(1.1)

where f(x) : Rn → R is the cost function, xL and xU are possible lower and upper
bounds on the state variable x ∈ Rn. g(x) : Rn → Rm is the general nonlinear
constraint function with lower and upper bounds gL and gU . Both functions f(x)
and g(x) can be linear or nonlinear, convex or non-convex but should always be
twice differentiable. The solver implements an interior point line search filter
method that tries to find a local solution of the formulated optimization problem
with associated constraints [3]. The mathematical details of the algorithm are
presented in [5].

KNITRO

KNITRO, short for Nonlinear Interior point Trust Region Optimization (silent K),
is a solver for nonlinear optimization problems produced by the company Ziena
Optimization, Inc. It is designed for large problems and is highly regarded for its
robustness and efficiency [6]. KNITRO runs as a solver in Mathematica with the
application package KNITRO for Mathematica.

KNITRO solves optimization problems of the form (1.1). The functions f(x)
and g(x) are assumed to be smooth. The solver implements three state-of-the-art
interior-point and active-set methods for solving problems. The algorithms are the
interior/direct algorithm, the interior/CG algorithm and the active set algorithm.
This provides three different algorithms with different behaviors on the nonlinear
optimization problems [7].
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CHAPTER 1. INTRODUCTION

FindMinimum

FindMinimum is a function for solving optimization problems in Mathematica. It
tries to find a local minimum numerically, so it does not guarantee a global min-
imum. It is defined for both unconstrained and constrained optimization. There
are a number of methods available for unconstrained optimization but only one for
constrained optimization. The method used for optimization with constraints is
the interior point algorithm which requires first and second derivatives of the cost
function and the constraints [8].
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2
Theory

The theory of this thesis is described in this section. It consists of the method
direct collocation, the description of optimal control and model predictive con-
trol together with different discretization and approximation schemes of ordinary
differential equations.

2.1 Dynamic control systems

A dynamic control system is described by its input, state and output variables
together with the system equations describing the systems behavior. The input
variable is called the control variable and the output variable is often used for feed-
back. External signals and influences such as disturbances, noises and time delays
can also affect the system behavior [9]. Dynamic systems can be described in differ-
ent ways depending on the differential equation that best represents the dynamics
of the system. Most often are ordinary differential equations used and they can be
in either explicit form ẋ(t) = f(x(t),u(t),t) or implicit form f(x(t),ẋ(t),u(t),t) = 0
where t represents time, x(t) the state variable and u(t) the control variable. The
systems are mostly autonomous and t does not appear explicitly in the equa-
tions [10].

2.2 Model predictive control

Model predictive control descends from optimal control and the concept is de-
scribed as using a dynamic model to forecast various system behaviors. The fore-
cast is optimized to obtain the best choice at the present time based on some
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CHAPTER 2. THEORY

demands and restrictions [11]. A future behavior of the state variable x(t) is opti-
mized by computing and manipulating a control variable u(t). The optimization
is performed within a limited time horizon by giving new information at the start
of the horizon. The idea can be explained with a simple example in planning ac-
tivities. Planning the working tasks in a specific plant is performed for the next 10
hours, but the plan is only implemented during the first hour. Thereafter the plan-
ning for the next 10 hours is repeated for every new hour based on how many tasks
are fulfilled so far. A predetermined criterion is used to decide which plan is the
best. How well and how fast the tasks are performed is based on how much effort
the staff put in, how well they work together and if some machinery breaks down,
these are the control variables. There are also limitations such as work hours, skills
in engineering and available staff. This repeated planning is performed until all
tasks are fulfilled [12].

2.3 Optimal control

There are different ways to meet the control objectives connected to control de-
signs. Optimal control which is of interest here is one of the most used methods.
Optimal control means to minimize or maximize a given cost function, defining
the performance index of the model, within an optimization window connected to
the studied problem or model [9]. It involves continuous functions such as x(t)
and u(t) together with differential equations describing the paths of the variables.
Optimal control can be seen as an infinite extension of nonlinear programming
problems, which is characterized by a finite set of variables x and constraints c [13].

There are many applications of optimal control in both off-line and on-line set-
tings. Off-line settings involve finding optimal trajectories for the transition be-
tween stationary operating conditions in a system. These can then be applied as a
reference during manual control or as a target in automatic control together with
feedback. On-line optimal control is most often performed in the form of model
predictive control. The general problem in optimal control with the cost function
J(x(t),u(t),t) over the time interval [t0,tf ] has the following form

minimize
u(t) t∈[t0,tf ]

J(x(t),u(t),t)

subject to x(t0) = x0

xL ≤ x(t) ≤ xU

gL ≤ g(x(t),u(t),t) ≤ gU

f(x(t),ẋ(t),u(t),t) = 0

(2.1)
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CHAPTER 2. THEORY

where the constraints are the initial constraints, the bounds of the variables, the
path constraints and the nonlinear dynamic model description. The inequality
signs can be replaced by equality signs and there are often more than one con-
straint describing the dynamic system.

The cost function in optimal control problems can often be divided into two parts

J(x(t),u(t),t) = φ(x(t0),u(t0),t0,x(tf ),u(tf ),tf ) +

tf∫
t0

L(x(t),u(t),t) dt

where φ is called the Mayer term and L is called the Lagrange integrand [14].

There are two major parts when solving an optimal control problem. They are the
method for solving the optimization problem and the method for numerically solv-
ing the differential equations defining the system [13]. The optimization solvers
mentioned in Section 1.5.2 are the methods used for solving the optimization prob-
lem. Various methods that solve the differential equations are discussed later in
Section 2.4 and 2.6.

2.4 Indirect/Direct methods

There are two main types of numerical methods that solve optimal control prob-
lems, indirect methods and direct methods. Calculus of variations is used in in-
direct methods to determine the first-order optimality conditions of the optimal
control problem of interest. This kind of method leads to a multiple-point bound-
ary value problem which is solved to determine possible optimal trajectories called
extremals. These extremals are then studied further to find out if they are a
minimum or maximum. As the name suggests indirect methods solves the prob-
lem indirectly by transforming the problem into a boundary value problem. This
means that the optimal solution is found by solving a system of differential equa-
tions. When applying direct methods are the state and control variable of the
optimal control problem discretized in some manner. Both the state and control
variable can be discretized or only one of them. The problem is then transcribed
into a nonlinear optimization problem. There are many different optimization tech-
niques to solve these kinds of nonlinear problems. The optimal solution is found
by changing an infinite-dimensional optimal problem into a finite-dimensional one.
The most common direct methods are single shooting, collocation and multiple
shooting and the relation between the methods is presented in Figure 2.1 [15].
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CHAPTER 2. THEORY

Optimal Control Problems

Direct methods Indirect methods

Multiple shootingSingle shooting Collocation

Figure 2.1: Flow chart describing the different methods that solve optimal control
problems.

The method of single shooting relies on four steps. The first step is to guess
the initial conditions of the optimal control problem and the second step is to
propagate the differential equations from t0 to tf with the guessed initial conditions.
This is called to ”shoot” which gives the method its name. The third step is to
evaluate the error at tf and the fourth is to try to adjust the control variables to
satisfy the constraints better, that is to repeat step one to three. The problem
with this method is that small changes in the initial conditions can lead to large
changes in the final conditions. Multiple shooting reduce the sensitivity in the
initial conditions by dividing the problem into smaller steps. This increases the
size of the problem but also the accuracy. Multiple shooting is also called parallel
shooting due to the possibility of using a parallel processor for each step. However
the most used method is collocation and it is described in more detail in the next
section [13].

2.5 Collocation

Collocation is a method for solving differential equations, both ordinary and par-
tial, and integral equations. The idea is to pick a space of finite dimension consist-
ing of candidate solutions, often polynomials, and choosing a number of so called
collocation points in the domain. The solution to select is the one that satisfies
the given equation at the collocation points [14].

There are three different schemes for deciding the collocation points which are
the most common ones. The three methods are the Gauss method, the Radau
method and the Lobatto method. In the Gauss method neither of the two end-
points of the element is used as collocations point. In the Radau method at most
one of the endpoints is used as a collocation point and in the Lobatto method both
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CHAPTER 2. THEORY

of them are used as collocation points [15].

2.5.1 Direct collocation

Direct collocation is the most powerful method for solving general optimal control
problems. The method approximates both the state and control variable with dis-
cretization using collocation points [15].

The time interval [t0,tf ] is divided and discretized into n elements by

ti = t0 +
i−1∑
k=0

hk

where i ∈ [1, . . . ,n−1], tn = tf and hk is the length of element k. A large number of
elements leads to greater size of the optimization problem but also higher accuracy.
nc collocation points τj are introduced in each of the n elements which gives the
following time discretization

ti,j = t0 +

(
i−1∑
k=0

hk + τjhi

)

where τj ∈ [0,1], i ∈ [1, . . . ,n], j ∈ [1, . . . ,nc] and element i is represented by the
time points ti−1 at the beginning and ti at the end. Inside the elements are both
the state and control variable approximated with so called collocation polynomials.
The approximated state and control variable in element i is denoted by xi and ui
respectively. They are formed by selecting a number of collocation points, for
simplicity they are all the same for every element. Figure 2.2 presents the idea
of the discretization scheme as an example with three collocation points in each
element i. The collocation polynomials are created by using the chosen numerical
method to solve the ordinary differential equation. The different methods are
explained in more detail in Section 2.6.

10
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element i

t

x(t)

ti
ti,2 ti,3ti,1

ti+1

xi,1
xi,2

xi,3

Figure 2.2: Presenting the collocation points in each element and the value of
the state variable at the corresponding point. The figure is an example with three
collocation points in each element.

The collocation points can be chosen differently and the three most common meth-
ods are mentioned earlier; Gauss, Radau and Lobatto. They have different numer-
ical properties concerning stability and convergence.

Direct methods change infinite dimensional optimal control problems into finite
dimensional. The optimization problem with infinite dimension in (2.1) is trans-
formed into a finite dimensional problem with use of the constructed collocation
polynomials. The cost function J(x(t),u(t),t) are transformed by using a change
of variable into

J(x(t),u(t),t) ≈ φ(x1,0,u1,0,t0,xn,nc ,un,nc ,tf )+

+
n∑

i=1

hi(tf − t0) 1∫
0

Li(xi(τ),ui(τ),τ) dτ

 = J̃(Z)

where ti,k denote collocation point k in element i and Li(xi(τ),ui(τ),τ) is the La-
grange integrand in element i. Z is the new optimization variable containing all
values of both the state and control variable at the collocation points and t0 and
tf if they are free. The integrand in J̃(Z) is in this thesis approximated in differ-
ent ways according to which method is used for solving the ordinary differential
equation. The different approximations are described later.
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The constraints corresponding to the nonlinear dynamic model description is only
enforced at the collocation points and at t0 after the transformation. The same
holds for the path constraints. This implies that the transformed problem is sparse.
It means that many elements of the constraints and mainly the Jacobian and the
Hessian of the constraints are zero. Sparse optimization problems are possible to
solve even though the problems are large. After the change into a finite dimen-
sional problem with use of collocation points the formulation of the optimization
problem is

minimize
Z

J̃(Z) (2.2a)

subject to x1,0 = x0 (2.2b)

xm,nc = xm+1,0 (2.2c)

xL ≤ xi,k ≤ xU (2.2d)

gL ≤ g(xi,k,ui,k,ti,k) ≤ gU (2.2e)

f(xi,k,ẋi,k,ui,k,ti,k) = 0 (2.2f)

∀(i,k) ∈ {(1,0)} ∪ ([1, . . . ,n]× [1, . . . , nc]) (2.2g)

∀m ∈ [1, . . . ,n− 1]. (2.2h)

The constraints (2.2b), (2.2d), (2.2e) and (2.2f) follows directly from only enforcing
the initial constraints, the bounds of the variables, the path constraints and the
system dynamics at the collocation points instead of over the whole time interval.
Constraint (2.2c) is added to get continuity for the state variable [14] [16].

2.6 Numerical methods

Different numerical methods can be used to solve the ordinary differential equation
defining the system. Euler method, backward differentiation methods and using
Lagrange basis polynomials to approximate the variables are used in this thesis.

2.6.1 Euler method

The Euler method is an explicit one-step method of first order. It means that one
collocation point is used which is easily applied together with the Radau method.
The method is also named forward Euler since it evaluates in the starting point of
each step. The derivative of the state variable is approximated by [13]

ẋi ≈
xi+1 − xi

hi

12



CHAPTER 2. THEORY

where hi is the length between xi and xi+1. The lengths of the elements are often
equal, meaning hi = h =

tf−t0
n

. In this context it represents the length of each ele-
ment, since it uses only one collocation point in each element. This method is the
most basic explicit method for solving ordinary differential equations numerically.

Using this method, or any other forward method, implies that the system dy-
namics cannot be imposed at the end of the time interval. Since Euler method is
a one-step method it means that the ordinary differential equation describing the
system is not imposed at the last collocation point.

The integral in the cost function has to be approximated since the problem is
discretized and when using Euler method in this thesis is the integral approxi-
mated with the trapezoidal rule. It approximates the integral by

b∫
a

f(x)dx ≈ (b− a)
f(a) + f(b)

2
.

Given the form of the integral in the cost function the approximation is

1∫
0

Li(xi(τ),ui(τ),τ)dτ ≈ L(xi−1,1,ui−1,1,τ1) + L(xi,1,ui,1,τ1)

2

because in the Euler method there is only one collocation point τ1 in each element
and the integral is therefore approximated by the values of the cost function at
each collocation point.

2.6.2 Lagrange basis polynomials

Lagrange interpolation polynomials can be used as candidate solutions with the
collocation points as interpolation points. The state variables have to be continu-
ous at the element boundaries and therefore an extra interpolation point is added
at the start of each element denoted by τi,0 := 0. The Lagrange basis polynomials
are given by

˜̀
k(τ) =

∏
l∈[0,...,nc]\{k}

τ − τl
τk − τl

where k ∈ [0, . . . , nc]

`k(τ) =
∏

l∈[1,...,nc]\{k}

τ − τl
τk − τl

where k ∈ [1, . . . , nc].

The polynomials are the same for all elements because the choice of the collocation
points τj in each element are the same. The Lagrange basis polynomials have the

13
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property

`k(τj) =

{
1 if j = k

0 if j 6= k.

The collocation polynomials for the state and control variable are given by

xi(τ) =
nc∑
k=0

xi,k ˜̀
k(τ)

ui(τ) =
nc∑
k=1

ui,k`k(τ)

where xi,k = xi(τk) and the same for ui,k for i ∈ [1, . . . ,n]. To approximate
the derivative of the state variable ẋ in each collocation point ti,j the collocation
polynomial ẋi is differentiated with respect to time. The chain rule gives the result

ẋi,j = ẋi(τj) =
1

hi(tf − t0)

nc∑
k=0

xi,k
˙̀̃
k(τj)

where hi is the length of element i. With this method is all hi of equal length and

normalized to hi = 1
n
, which implies

n−1∑
i=0

hi = 1.

An extra constraint

u1,0 −
nc∑
k=1

u1,k`k(0) = 0 (2.3)

is added to the optimization problem (2.2) as an extrapolation constraint. It is
required since the initial value for the control variable is not given by the initial
equation or the dynamic equations describing the system. It is therefore given by
the collocation polynomial u1,k(τ) instead, so u1,0 is given by the extra constraint
(2.3).

The integral in the cost function can be simplified by the following

1∫
0

Li(xi(τ),ui(τ),τ) dτ ≈
nc∑
k=1

ωkLi(xi,k,ui,k,τk)

where ωk =
1∫
0

`k(τ)dτ are quadrature weights which gives the best approxima-

tion for this interpolation. The approximated cost function with Lagrange basis
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polynomials is therefore

J(x(t),u(t),t) ≈ φ(x1,0,u1,0,t0,xn,nc ,un,nc ,tf )+
n∑

i=1

(
hi(tf − t0)

nc∑
k=1

ωkLi(xi,k,ui,k,τk)

)

[14] [16].

2.6.3 Backward differentiation methods (BDF)

The backward differentiation methods are implicit methods for solving differential
equations. They are multi-step methods where the method of first order is the
backward Euler. The formulas for the methods of order 1-6 are

BDF 1 ẋi ≈ xi−xi−1

hi

BDF 2 ẋi ≈
xi− 4

3
xi−1+

1
3
xi−2

2
3
hi

BDF 3 ẋi ≈
xi− 18

11
xi−1+

9
11

xi−2− 2
11

xi−3
6
11

hi

BDF 4 ẋi ≈
xi− 48

25
xi−1+

36
25

xi−2− 16
25

xi−3+
3
25

xi−4
12
25

hi

BDF 5 ẋi ≈
xi− 300

137
xi−1+

300
137

xi−2− 200
137

xi−3+
75
137

xi−4− 12
137

xi−5
60
137

hi

BDF 6 ẋi ≈
xi− 360

147
xi−1+

450
147

xi−2− 400
147

xi−3+
225
147

xi−4− 72
147

xi−5+
10
147

xi−6
60
147

hi

In this context is hi the distance between the collocation points, which means
hi =

tf−t0
n·nc

. For order higher than 6 the methods are not zero-stable and therefore
not usable for numerical approximation of derivatives [17].

To impose the system dynamics over all collocation points is important. The
ordinary differential equation is therefore approximated with BDF 1 in the second
collocation point, BDF 2 in the third collocation point and so on up to the BDF
of the chosen order. Figure 2.3 presents the idea of using BDF of lower order at
the beginning of the time horizon to impose the system dynamics over the whole
time horizon.
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1 2i = 0 3 4

BDF 1

BDF 3

BDF 2

BDF 3

Figure 2.3: Describing the idea of BDF of lower order at the beginning of the time
interval, in this figure the order of the method is chosen to be 3.

Approximating the integral when using the backward differentiation method is
performed with the composite rule

b∫
a

f(x)dx ≈ b− a
n

(
f(a)

2
+

n−1∑
k=1

(
f

(
a+ k

b− a
n

))
+
f(b)

2

)
.

Applying this on the integrand in the cost function gives the following approxima-
tion

1∫
0

Li(xi(τ),ui(τ),τ)dτ ≈

≈ 1

nc

(
L(xi−1,nc ,ui−1,nc ,τ0)

2
+

nc−1∑
k=1

L(xi,k,ui,k,τi,k) +
L(xi,nc ,ui,nc ,τnc)

2

)
.
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3
Test problems

The optimization solvers FindMinimum, IPOPT and KNITRO are evaluated with
two test problems: a batch reactor and a free floating robot. The test problems
themselves are not studied in detail, they are just used to evaluate the optimization
solvers.

3.1 Batch reactor

The first test problem is a chemical reactor. The model is to maximize the yield
of x2(t) after one hour by manipulating the reaction temperature u(t) within the
time interval [0,1]. The problem formulation of the initial value problem is

minimize
u(t) t∈[0,1]

J(x(t),u(t),t) = −x2(1)

subject to x1(0) = 1

x2(0) = 0

0 ≤ x1(t) ≤ 1

0 ≤ x2(t) ≤ 1

0 ≤ u(t) ≤ 5

ẋ1(t) = −
(
u(t) +

u2(t)

2

)
x1(t)

ẋ2(t) = u(t)x1(t)

(3.1)

The test problem is taken from [10] [18].
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3.2 Free floating robot

The second test problem describes a free floating robot. The problem formulation
of the boundary value problem is

minimize
u(t) t∈[0,5]

J(x(t),u(t),t) =
1

2

5∫
0

4∑
i=1

u2i dt

subject to ẋ1 = x2

ẋ2 =
(u1 + u3)c5 − (u2 + u4)s5

M
ẋ3 = x4

ẋ4 =
(u1 + u3)s5 + (u2 + u4)c5

M
ẋ5 = x6

ẋ6 =
(u1 + u3)D − (u2 + u4)Le

In
xi(0) = 0 1 ≤ i ≤ 6

xi(5) = 0 i ∈ [2,4,5,6]

xi(5) = 4 i ∈ [1,3]

(3.2)

where s5 = sin(x5), c5 = cos(x5), M = 10, Le = 5, D = 5 and In = 12 [19].
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4
Comparison of the solvers

The results are obtained by evaluating the optimization solvers with the test prob-
lems and the different numerical methods for solving the ordinary differential equa-
tions characterizing the system. The number of collocation points in each element
and number of discretization elements are also varied to obtain values of them
that give good results in most cases. The Radau collocation scheme with the
right endpoint of the element as collocation point is used to obtain the results.
Both FindMinimum and IPOPT require an initial starting point and in this thesis
is 0 provided as a starting value for all variables. KNITRO computes an initial
point based on the feasible set. To compare the different solvers and methods the
following statistics are used

Total time The total time in seconds spent during the whole optimization process

Iterations The number of iterations needed by the optimization solver to solve
the problem

The obtained results are also compared, such as the cost function and the optimal
trajectories of the state and control variables.

4.1 Size of the problems

The number of variables and constraints define the size of the optimal control
problem. Applying direct collocation leads to a finite dimensional problem which is
larger with respect to number of variables and constraints than the original problem
but sparse. The new optimization variable Z created after the transformation
consists of nZ = Ns · n · nc + (n · nc + 1)Nc variables, where Ns and Nc are the
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number of state and control variables in the original problem. The number of
constraints depends on the numerical method used to approximate the system
equations. The number of constraints for the different methods are presented in
Table 4.1.

Lagrange basis polynomials ncons(n · nc + 1) +Nc +Ns(n− 1) +Nb

Euler method ncons · n · nc +Nb

Backward differentiation methods ncons(n · nc + 1− nc) + ncons(nc − 1) +Nb

Table 4.1: Number of constraints in optimal control problems after applying direct
collocation using the three numerical methods.

If the solver FindMinimum is used Ns + Nc constraints have to be added since
it takes the bounds of the variables as constraints while IPOPT and KNITRO
are given the bounds as a separate option. ncons is the number of constraints in
the original problem and Nb is the number of boundary conditions. Both IPOPT
and KNITRO make use of the transformed problems sparsity and keep track of
the number of nonzero elements in the Jacobian and Hessian which increases their
speed when solving large problems.

4.2 Accuracy and precision for the optimization

solvers

There are different options for the optimization solvers. No changes in the standard
options are made when comparing the optimization solvers to each other. There
are different options for the three solvers which make it hard to obtain exactly the
same accuracy and precision for all three and that is the reason for keeping the
standard settings. It is still important to know the difference between them to
fairly compare the solvers to each other.

FindMinimum offers the possibility to choose accuracy and precision by fulfilling
the following two inequalities ||xk−x∗|| ≤ max(10−a,10−p||xk||) and∇f(xk) ≤ 10−a

where a represents accuracy and p precision. By default is the working precision
for FindMinimum defined such that numbers contain just fewer than 16 digits,
exactly 53 bits, and the accuracy and precision is defined to be half of the working
precision.

KNITRO has several requirements to fulfill to terminate the optimization pro-
cess, one is that the two following inequalities should be fulfilled
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εfeas ≤ max(τ1 · tolfeas,tolfeas,abs)

εopt ≤ max(τ2 · tolopt,tolopt,abs)

where εfeas is the feasibility error, εopt is the optimality error, tolfeas and tolopt the
final relative stopping tolerance for the feasibility/optimality error and tolfeas,abs
and tolopt,abs the final absolute stopping tolerance for the feasibility/optimality
error. τ1 and τ2 are given by

τ1 = max(1,(cLi − ci(x0)),(ci(x0)− cUi ),(bLj − x0j),(x0j − bUj ))

τ2 = max(1,||∇f(xk)||∞)

where x0 is the initial point, cLi and cUi are the lower and upper bounds for the
constraints and bLj and bUj are lower and upper bounds for the variables. If these
two constraints are fulfilled the termination stops. The default values for tolfeas
and tolopt is 10−6 while tolfeas,abs and tolopt,abs by default are 0. The process also
terminates if the relative change in all components of the solution point estimate
is less than xtol which by default is 10−15.

IPOPT has also several tolerance demands to obtain a successful termination of
the optimization algorithm. The algorithm terminates if the (scaled) optimality
error is less than the default value 10−8 and it also terminates if the maximum
norm of the (unscaled) constraint violation is less than the default value 0.0001.

The KNITRO solver scales both the cost function and the constraints if neces-
sary. IPOPT has by default a gradient-based scaling which means that it scales
the problem so that maximum of the gradient at the starting point is 100 and the
same value for the minimum of the gradient is 10−8. This default option can cause
problem for example when the value of some constraints are high and some are
low.

4.3 Batch reactor

The results of the optimal control problem corresponding to a batch reactor are
presented in Figure 4.1. The results are presented as the trajectories of the state
and control variables.
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(a) Trajectories of the state variables
x1 and x2.
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(b) Trajectory of the control variable u

Figure 4.1: Trajectories of the state and control variables obtained with KNITRO
and Lagrange basis polynomials with n = 20 and nc = 5.

4.3.1 Euler method

The results from the Euler method are obtained for n = 10, 20, 40, 80, 160 dis-
cretization elements. The number of iterations and the total time used during the
optimization process is presented in Figure 4.2 and Figure 4.3. These results are
obtained by solving optimal control problems with 31 variables and 20 constraints
when n = 10 and 481 variables and 320 constraints when n = 160. There are
no results for FindMinimum with n = 160 because the solver presents bad results
already for n = 80 where the trajectories of the variables flatten out after t = 0.5
instead of decreasing respectively increasing for x1 and x2.

Elements
n=10 n=20 n=40 n=80 n=160

0

100

200

300

400

500

Iterations

FindMinimum

KNITRO

IPOPT

Figure 4.2: Number of iterations using Euler method with n = 10, 20, 40, 80, 160
and the three optimization solvers.
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Figure 4.3: Total time spent during optimization with Euler method for n =
10, 20, 40, 80, 160 and the three optimization solvers.

FindMinimum presents a large number of iterations for every n and it stops at 500
iterations because it is the maximum number of iterations by default in FindMini-
mum. IPOPT uses about twice as many iterations as KNITRO but both use fewer
than FindMinimum. With respect to time FindMinimum is presenting the longest
times compared to the other two solvers. But there is also a significant difference
between IPOPT and KNITRO. IPOPT takes more time than KNITRO. One thing
to point out is the CPU time IPOPT spends in function evaluations which is pre-
sented in Table 4.2. It can be compared to the time in seconds KNITRO spends
in function evaluations. There is a difference between CPU time and elapsed time
but it still indicates the difference in time between IPOPT and KNITRO in the
sense that function evaluations takes longer time for IPOPT.

n = 10 n = 20 n = 40 n = 80 n = 160

IPOPT 0.304 1.009 4.780 25.63 184.9

KNITRO 0.043 0.014 0.013 0.03 0.05

Table 4.2: The total CPU time in seconds spent by IPOPT in function evalua-
tions with the Euler method and the total time in seconds spent by KNITRO in
evaluations with the Euler method.

The optimized values of the cost function is presented in Table 4.3. It shows that
KNITRO and IPOPT finds the same optimal solution for each n. It also verifies
the fact that FindMinimum obtains a bad result for n = 80.
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n = 10 n = 20 n = 40 n = 80 n = 160

IPOPT -0.6055 -0.5902 -0.5808 -0.5771 -0.5753

KNITRO -0.6055 -0.5902 -0.5808 -0.5771 -0.5753

FindMinimum -0.5927 -0.5858 -0.5813 -0.4694

Table 4.3: The optimal values of the cost function using the three optimization
solvers with the Euler method for various number of discretization elements.

4.3.2 Backward differentiation methods

The results obtained by using the backward differentiation methods are derived
by varying order of the method and number of discretization elements. Two set of
results are presented. The first result is obtained with order 4 and n = 10, 15, 20
discretization elements. It corresponds to problems with between 121 and 241
variables together with between 80 and 160 constraints. The number of iterations
and the time spent during the optimization is presented in Figure 4.4 and Figure
4.5.
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Figure 4.4: Number of iterations using BDF 4 with n = 10, 15, 20 and the three
optimization solvers.
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Figure 4.5: Total time spent during optimization with BDF 4 for n = 10, 15, 20
and the three optimization solvers.

FindMinimum presents a large number of iterations with this method too, and
as with the Euler method it stops at 500 iterations since that is the maximum
number. KNITRO and IPOPT present similar number of iterations but with
KNITRO slightly fewer. FindMinimum spends the largest amount of time and
KNITRO spends least time during the process. IPOPT and KNITRO provide
the same optimal value of the cost function, while FindMinimum presents slightly
different values compared to the other two.

The second set of results are obtained with 20 discretization elements and nc =
1, 2, 3, 4, 5, 6 as the order of the backward differentiation method. These results
correspond to problems consisting of between 61 and 361 variables together with
between 40 and 240 constraints. Figure 4.6 and Figure 4.7 present the number of
iterations used and the total time spent during the optimization.
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Figure 4.6: Number of iterations using BDF with n = 20, nc = 1, 2, 3, 4, 5, 6 and
the three optimization solvers.
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Figure 4.7: Total time spent during optimization with BDF for n = 20, nc =
1, 2, 3, 4, 5, 6 and the three optimization solvers.

FindMinimum use its maximum number of iterations for all choices of nc, while
IPOPT use about twice as many as KNITRO. FindMinimum also spends more
time than IPOPT and KNITRO do in all results. In the timing aspect IPOPT
takes longer time than KNITRO, which spends least time in all cases. KNITRO
and IPOPT find the same optimal values of the cost function and FindMinimum
presents slightly different values. It also shows that for nc = 5 and 6 the trajectories
start to oscillate when using FindMinimum.

4.3.3 Lagrange basis polynomials

The presented results obtained by using Lagrange basis polynomials are produced
in two different ways. The first set is obtained with n = 20 discretization elements
and varying number of collocation points. In this set of results are the problems
consisting of 121 variables and 121 constraints at minimum and 361 variables and
281 constraints at maximum. The second set is obtained with nc = 5 and varying
the number of discretization elements. The second set consists of between 76 and
301 variables and between 61 and 241 constraints. The results produced with
n = 20 are presented in Figure 4.8 and Figure 4.9, which represents the number
of iterations and the total time spent during the optimization process. No result
was obtained for n = 20 and nc = 2 with IPOPT because the optimization failed
in that case.
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Figure 4.8: Number of iterations using Lagrange basis polynomials with n = 20,
nc = 2, 3, 4, 5, 6 and the three optimization solvers.
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Figure 4.9: Total time spent during optimization with Lagrange basis polynomials
for n = 20, nc = 2, 3, 4, 5, 6 and the three optimization solvers.

As with the previously used methods FindMinimum needs its maximum number
of iterations during the optimization. The other two solvers need less iterations,
where KNITRO presents the lowest number. For nc = 2 all optimization solvers
presents wrong results, not the optimal value of the cost function. For low values
of nc FindMinimum presents the right optimized trajectories of x1 and x2 but the
trajectory of the control variable u is different compared to the other results. But
for higher values of nc the correct optimized trajectories are obtained. FindMini-
mum takes the longest time during the optimization process with IPOPT taking
a little less time. KNITRO is the fastest solver and takes just a small amount of
time for all choices of nc. In Table 4.4 is the optimal values of the cost function
presented. It states the fact that for nc = 2 none of the solvers provides the correct
result.
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nc = 2 nc = 3 nc = 4 nc = 5 nc = 6

IPOPT -0.0284 -0.5726 -0.5732 -0.5735 -0.5735

KNITRO -0.1317 -0.5735 -0.5735 -0.5735 -0.5735

FindMinimum -23.74 -0.5226 -0.5731 -0.5697 -0.5688

Table 4.4: The optimal values of the cost function using the three optimization
solvers with Lagrange basis polynomials for n = 20 and various number of collocation
points.

The second set of results is presented in Figure 4.10 and Figure 4.11. The number
of discretization elements is n = 5, 10, 20 and number of collocation points are
fixed at nc = 5.
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Figure 4.10: Number of iterations using Lagrange basis polynomials with nc = 5,
n = 5, 10, 20 and the three optimization solvers.
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Figure 4.11: Total time spent during optimization with Lagrange basis polynomials
for nc = 5, n = 5, 10, 20 and the three optimization solvers.
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FindMinimum uses 500 iterations for all derived results and KNITRO and IPOPT
use less, with KNITRO about half of the number IPOPT needs. The optimization
is fast using KNITRO and slower using IPOPT and FindMinimum. All three
solvers present good result in those cases, just some oscillations in the trajectory
of u for FindMinimum. Only small differences between the optimal values of the
cost function separates them.

4.4 Free floating robot

The trajectories corresponding to the optimal solution of the test problem with
a free floating robot are presented in Figure 4.12. The result represents the six
state variables and the four control variables. The beginning of the trajectories
corresponding to the control variables in Figure 4.12 presents how the use of BDF
with lower order in the beginning of the time interval affects the result. BDF 4 is
applied and it leads to four directional changes.
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(e) Trajectories of the control variables
u3 and u4.

Figure 4.12: Trajectories of the state and control variables obtained with KNITRO
and backward differentiation methods using n = 10 and nc = 4.

The difference in number of discretization elements and number of collocation
points in each element is noticeable. Figure 4.13 shows how different the trajec-
tories for the state variables x5 and x6 can behave. The trajectories are obtained
with FindMinimum and Lagrange basis polynomials for n = 5, nc = 3 and n = 20,
nc = 5 where the latter corresponds to the smooth curves. This difference shows
that more discretization elements often results in more continuous trajectories.
This is true at least up to a certain level and afterwards it can start to oscillate
instead.
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Figure 4.13: Trajectories of the state variables x5 and x6 for different number of
discretization elements and collocation points presenting the possible differences.

4.4.1 Euler method

The results derived with the Euler method for the three solvers are produced with
n = 10, 20, 40, 80, 160 discretization elements. This corresponds to problems with
104 variables and 66 constraints for n = 10 and 1604 variables and 966 constraints
for n = 160. No results were obtained for KNITRO with n = 160 because the
optimization could not terminate due to unavailable memory on the computer.
Number of iterations during the optimization process is presented in Figure 4.14
and the total time spent during optimization is presented in Figure 4.15.
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Figure 4.14: Number of iterations using Euler method with n = 10, 20, 40, 80, 160
and the three optimization solvers.
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Figure 4.15: Total time spent during optimization with Euler method for n =
10, 20, 40, 80, 160 and the three optimization solvers.

FindMinimum presents the highest number of iterations for all n but the difference
is not that big as in the first test problem. Both IPOPT and KNITRO present
about the same number for all n while FindMinimum varies more. IPOPT spends
most time during optimization compared to the other two but as in the previous
test problem IPOPT spends much more time in function evaluations than the other
two. FindMinimum is the solver that spends the lowest amount of time for n = 80
and 160. All three optimization solvers obtain the same optimal value of the cost
function for each result. In Table 4.5 are the optimal values of the cost function
presented.

n = 10 n = 20 n = 40 n = 80 n = 160

Optimal value 317.1 340.9 359.2 370.7 377.1

Table 4.5: The optimal values of the cost function with Euler method and various
number of discretization elements.

4.4.2 Backward differentiation methods

The results obtained using the backward differentiation methods are produced
with different number of discretization elements and order of the method. Two
different set of results are presented. They are obtained by either fixing the order to
4 and varying the discretization elements or by fixate the number of discretization
elements to 10 and varying the order. In the first set of results with order 4 are
the number of variables between 404 and 804 while the number of constraints is
between 246 and 486. The number of iterations and time spent during the process
for order 4 is presented in Figure 4.16 and Figure 4.17.
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Figure 4.16: Number of iterations using BDF 4 with n = 10, 15, 20 and the three
optimization solvers.
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Figure 4.17: Total time spent during optimization with BDF 4 for n = 10, 15, 20
and the three optimization solvers.

The number of iterations vary for FindMinimum and for IPOPT and KNITRO the
number is approximately the same for all n. But for all three solvers is the number
of iterations at an acceptable level except for FindMinimum with n = 15. Also
in the time aspect FindMinimum varies while IPOPT and KNITRO spend more
time the bigger problem. IPOPT spends more time than the other two for higher
n which derives from the higher amount of time it spends in function evaluations
compared to FindMinimum and KNITRO. The same value of the cost function is
obtained by the solvers for each set of results. Studying Table 4.6 a comparison
between how much time IPOPT and KNITRO spends in function evaluations can
be made. It is the CPU time IPOPT spends in function evaluations and the
elapsed time KNITRO spends in evaluations which are represented. Even though
the distinction between CPU time and elapsed time the difference is significant:
IPOPT spends much more time in function evaluations than KNITRO.
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n = 10 n = 15 n = 20

IPOPT 45.59 137.7 305.4

KNITRO 0.106 0.138 0.359

Table 4.6: The total CPU time in seconds spent by IPOPT in function evaluations
with BDF 4 and the total time in seconds spent by KNITRO in evaluations with
BDF 4.

Figure 4.18 and Figure 4.19 presents the result when the number of discretization
elements is fixed to 10 and the order of the method is varied. In this case are the
number of variables between 104 and 604 with the number of constraints between
66 and 366.
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Figure 4.18: Number of iterations using BDF with n = 10, nc = 1, 2, 3, 4, 5, 6 and
the three optimization solvers.
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Figure 4.19: Total time spent during optimization with BDF for n = 10, nc =
1, 2, 3, 4, 5,6 and the three optimization solvers.

The number of iterations needed by both KNITRO and FindMinimum vary more
than it does for IPOPT. IPOPT keeps a constant level around 10 iterations. Find-
Minimum needs many iterations for nc = 6 but the result is still the same. KNI-
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TRO spends a low amount of time in the optimizations compared to the other
two. IPOPT is slowest except for nc = 6 when FindMinimum takes the longest
time. Still IPOPT depends heavily on the time spent in function evaluations. The
solvers obtain the same optimal value of the cost function for all nc.

4.4.3 Lagrange basis polynomials

When Lagrange basis polynomials are used during optimization of the free floating
robot problem it does not provide many good results. First of all it takes long
time, so the studied results are obtained with the combinations of n = 5, 10, 15
and nc = 2, 3, 4. FindMinimum provides results for all combinations but the wrong
values. It does not find the correct optimal solution in any case. KNITRO fails
to obtain results in all cases except for n = 10 and nc = 3, in that case the
result is correct but not with smooth trajectories. The optimization fails due
to different reasons. The KNITRO solver leaves a message during failure. The
reasons for failure are maximum number of iterations reached, converged to an
infeasible point and the solver could not improve on current infeasible estimate.
IPOPT is the solver that provides most correct optimizations even though it does
not succeed in all cases. For nc = 2 it fails for all choices of n because it converges
to a point of local infeasibility. For nc = 3 it provides good optimization results
in all cases. For nc = 4 IPOPT only solves the problem to an acceptable level. It
means that it does not fulfill the desired tolerance, only the acceptable tolerance
which is lower than the desired.
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5
Discussion

The discussion consists of analysis regarding the time the optimization solvers
spend during the optimization process and the iterations needed to obtain a re-
sult. Comparison of the numerical methods used to approximate the derivative
of the state variable and a comparison of the three optimization solvers ends the
discussion.

5.1 Timing aspect

FindMinimum has much better performance for unconstrained optimization than
for constrained optimization. When constrained optimization problems are about
to be solved with FindMinimum, it uses an implementation of an interior point
method which is quite slow compared to the other two optimization solvers.

KNITRO spends the most time in construction of sparse partial derivative ob-
jects in Mathematica, numerical evaluation of functions and their derivatives in
Mathematica and optimization calculations in KNITRO.

IPOPT is used by an interface from Mathematica to its interface in C and by
callbacks to Mathematica to calculate the functions such as the cost function, con-
straints and their derivatives in each iteration. This implies that the time IPOPT
takes to optimize the problem is heavily dependent on how fast these calculations
are and how fast the result can be transferred from Mathematica to IPOPT.

All of these aspects should be taken into account when discussing the total time
spent by the optimization solvers to solve the optimal control problems. With
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few exceptions FindMinimum is the solver which takes most time during the opti-
mization process. This is an expected result since FindMinimum does not handle
constrained optimization that well. KNITRO is the fastest solver of the three
in all presented results. The difference in time is large for larger problems and
for smaller problems the difference between the three is small. IPOPT spends
more time than KNITRO but mostly less time than FindMinimum. As mentioned
IPOPT relies heavily on the implementation of the interface. The interface deals
with sending information and handles the function evaluations which are the major
time consumers in the optimization. IPOPT would perform much better if the link
between Mathematica and IPOPT’s C interface was faster and if the calculations
were faster. It is definitely an improvement possibility and need of further work.

5.2 Number of iterations

The maximum number of iterations in FindMinimum is 500 and this number is
reached in all results obtained with the batch reactor problem. In the free floating
robot problem FindMinimum use most iterations in almost all cases and the num-
ber definitely vary more due to the size of the problem, while KNITRO and IPOPT
use about the same number of iterations in all results. IPOPT use less iterations
than KNITRO in the free floating robot problem and the other way around in the
problem with the batch reactor. The number of iterations should be low if the
optimization algorithm is good, otherwise it will lead to long optimization times.

5.3 Comparing the numerical methods

Lagrange basis polynomials presents good or decent results in the batch reactor
problem using between three and six collocation points inside each element. Using
two collocation points does not provide good results. The best results are provided
with four or five collocation points. The number of discretization elements should
not be too few which makes the trajectories non-smooth but also not too many
which instead cause the trajectories to oscillate. In the test problem with the
free floating robot optimization with Lagrange basis polynomials does not provide
many good results. It mainly fails or presents wrong results. Overall is Lagrange
basis polynomials therefore not a numerical method to recommend in this aspect.

Euler method is the most basic numerical method used. Despite this it presents
good result, but not the best. The results are sufficiently good in both test prob-
lems which make it a useful numerical method even though it is a basic method.
The more discretization elements used the better result in general.
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Backward differentiation methods present good or descent results in all cases for
both test problems. There is no big difference between the results depending on
which order or number of discretization elements that is used. But BDF of order
three and four present good results in both examples which make BDF 3 and BDF
4 methods to recommend. The results tend to be a little bit better with a higher
number of discretization elements.

5.4 Comparing the optimization solvers

A comparison of the three optimization solvers is made concerning the total time
spent during optimization, how many iterations are needed during the process and
how correct the optimal trajectories and cost function are. FindMinimum is an
optimization solver provided by Mathematica which does not have any good al-
gorithms for solving constrained optimization. Also it does not take the sparsity
of the problem into consideration which both IPOPT and KNITRO do. This fact
made FindMinimum the solver with least expectations on beforehand. Despite
this it presents the correct optimized values in most cases even though IPOPT
and KNITRO were better. In the aspect of time and number of iterations it also
presents the worst numbers. It varies in aspect of time and iterations, instead
of increasing with increasing size of the problem. This makes it unreliable and
therefore not the optimization solver to recommend in this case.

The comparison between IPOPT and KNITRO is more interesting. As mentioned
throughout the thesis IPOPT is implemented with an interface from Mathematica
to IPOPT’s interface. The interface does not transfer information and calculate
function evaluations as fast as desired. This fact makes IPOPT slower than KNI-
TRO in aspect of function evaluations and results in more time spent in total than
KNITRO. There is definitely more work to be done in the creation of the interface
to make IPOPT competitive in aspect of time. Both solvers are similar in num-
ber of iterations used, sometimes IPOPT uses more and vice versa. Both solvers
present good results over all and there is no big difference between the two accord-
ing to optimal results. The only thing is that KNITRO fails in more cases than
IPOPT and cannot terminate the optimization process due to unavailable memory,
the iteration limit is reached or that it converges to an infeasible point. To sepa-
rate the two solvers apart more test problems are needed and more test statistics
should be provided. The main conclusion is that both IPOPT and KNITRO per-
form better than FindMinimum in all aspects; time, number of iterations, optimal
trajectories and cost function. FindMinimum needs a better implementation of
the algorithm solving constrained optimization to be competitive.
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