
ASP: Arbitrary Segment Patterns
Transferring complex data from seven-segment displays using smart-
phone camera technology.
Master’s thesis in Computer Science – algorithms, languages and logic

Filip Levenstam & Jean-Philippe Green

Department of Computer Science
Chalmers University of Technology
Gothenburg, Sweden 2015

Master’s thesis 2015

ASP: Arbitrary Segment Patterns

Transferring complex data from seven-segment displays using
smartphone camera technology.

FILIP LEVENSTAM
JEAN-PHILIPPE GREEN

Department of Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden 2015

ASP: Arbitrary Segment Patterns
Transferring complex data from seven-segment displays using smartphone camera
technology.
FILIP LEVENSTAM
JEAN-PHILIPPE GREEN

© FILIP LEVENSTAM, JEAN-PHILIPPE GREEN, 2015.

Supervisor: Henrik Fagrell, Diadrom Holding AB
Supervisor: Fredrik Kahl, Signals and Systems
Examiner: Graham Kemp, Computer Science and Engineering

Master’s Thesis 2015
Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Generated picture of a seven-segment display showing a random code

Typeset in LATEX
Gothenburg, Sweden 2015

iv

Abstract
7-segment displays are often used in industry for displaying limited information
about the current state. In this thesis we investigate the possibility to transfer
more content rich data using our proposed Arbitrary Segment Patterns scanned by
a smartphone. It is a concept of allowing the displays to use the segments and dots
of the display as bits representing the message. Further more this includes display-
ing the messages in sequences allowing for even more information. Five different
algorithms for interpreting the patterns are evaluated where three are based on line
detections and two on shape detection. They are analyzed from the aspects of both
performance and correctness using 7-segment displays of the types LED with red
diodes and reflective LCD. The result is that the most promising approach is to use
shape detection allowing for sending patterns with a speed of more than two pat-
terns each second. This frame rate allows for sending 70 bits of information during
a period of 5 seconds on a machine with displays of two digits. This is a significant
increase of information.

Keywords: Computer vision, Image analysis, Seven-segment, Display, Bar-code,
Diagnostics, Data, Communication

v

s

Acknowledgements
We want to thank the company Diadrom which supported us by offering us access
to the hardware required for this thesis along with a workplace. A special thanks to
the supervisor, Henrik Fagrell, for aid given throughout the project.
We also want to thank Fredrik Kahl for agreeing to become the supervisor from
Chalmers university of technology and for help given in the area of image analysis.
A last thank to ESAB for offering us a field study for studying machines of interest
for this thesis.

Jean-Philippe Green
Filip Levenstam

Gothenburg, December 2015

vii

Contents

List of Figures xiii

List of Tables xv

List of Definitions xvii

1 Introduction 1
1.1 Background . 1
1.2 Segment displays . 1
1.3 Purpose . 3
1.4 Contribution . 3
1.5 Problem formulation . 3
1.6 Delimitations . 3

2 Research area and related work 5
2.1 Barcodes . 5
2.2 OCR of seven-segment displays . 5

3 Optics 7
3.1 Pixel . 7

3.1.1 RGB . 7
3.1.2 Raw . 8

3.2 Properties of the camera . 8
3.2.1 Exposure . 8
3.2.2 Automatic exposure . 9
3.2.3 Exposure compensation . 9
3.2.4 Overexposure and underexposure 9

3.3 Properties of displays . 10
3.3.1 LCD-display . 10
3.3.2 LED-display . 11

4 Image analysis and computer vision 13
4.1 OpenCV . 13
4.2 Pinhole camera model . 13
4.3 Homography . 15
4.4 Canny and Deriche edge detector . 16

4.4.1 Smoothing of image . 17

ix

Contents

4.4.2 Finding intensity gradient . 17
4.4.2.1 Roberts . 17
4.4.2.2 Prewitt and Sobel 18

4.4.3 Non-maximum suppression 18
4.4.4 Double threshold . 18
4.4.5 Suppress weak edges . 19

4.5 Threshold . 19
4.6 Adaptive threshold . 20
4.7 Finding contours . 21
4.8 Image moments . 21

4.8.1 Scale and translation invariant moments 21
4.8.2 Rotation invariant moments 22
4.8.3 Comparing rotation invariant moments 22
4.8.4 Conic fitting . 22

4.9 Hough transform . 23
4.9.1 Classical Hough transform . 23
4.9.2 Probabilistic Hough transform 23
4.9.3 Progressive probabilistic Hough transform 24
4.9.4 Other variations of Hough transform 24

5 Android 27
5.1 Development for Android devices . 27
5.2 OpenCV in Android . 27
5.3 The Android camera . 28

5.3.1 Camera API 2 . 28
5.3.2 Capturing a display . 28

6 Development and verification 31
6.1 Materials . 31
6.2 Generating synthetic test cases . 31
6.3 Lab environment . 32

7 Communication and representation of data 35
7.1 Bit significance . 35
7.2 Calibration bits . 37
7.3 Dynamic sequencing . 37

7.3.1 Bit significance using dynamic sequencing 37
7.3.2 Calculating the number of frame bits 39

8 Algorithms for reading ASP-displays 41
8.1 Evaluated algorithms . 41
8.2 Processing . 42
8.3 Finding a pattern . 43

8.3.1 Match pattern . 43
8.3.2 Match shapes . 45
8.3.3 Ellipse fitting . 46

8.4 Finding image characteristics . 47

x

Contents

8.5 Creating an image of one channel . 48
8.5.1 Find color . 48

9 Results and discussion 51
9.1 Data amount and throughput . 51
9.2 Statistics . 53

9.2.1 Discussion - Method 1 - Match pattern 53
9.2.2 Discussion - Method 2 - Match shapes 54

9.3 Choice of algorithm and parameters 56

10 Conclusion 57
10.1 Conclusion of result . 57
10.2 Future work . 58

Bibliography 59

xi

Contents

xii

List of Figures

1.1 Ambiguity arising from seven segment displays 1
1.2 The different states the seven bars of a unit may represent. 2
1.3 Different kinds of segments displays. 2

3.1 RGB color space box . 7
3.2 The check pattern used by the Bayer filter 8
3.3 Rolling shutter illustration . 9
3.4 Illustration of the different layers within a LCD-display. 10

4.1 Pinhole projection in 2D . 14
4.2 Illustration of homography . 16
4.3 The effect of applying threshold using the different operations in

OpenCV. 19
4.4 A comparison of the different threshold algorithms. 20
4.5 The contour B is contour A’s child. 21
4.6 Explanation of polar coordinates . 24

5.1 Comparison between using native OpenCV and Java OpenCV. It
illustrates how calling two OpenCV functions sequentially would be
handled for each method. 28

5.2 LED-display captured by camera . 29

6.1 Example of a generated display using our image generating software . 32
6.2 Generated display on top of IRL image 33

7.1 Bit significances in a unit. 35
7.2 Bit significances of a 3x2 display. 36
7.3 Bit significances of a 3x2 display with bit 16 unused. 36
7.4 Calibration bits in a 3x2 display. 38

8.1 Flowchart of different possible paths for a seven-segment display de-
tection algorithm . 42

8.2 Illustration of how to represent a line 44
8.3 Illustration of how the segments in one direction are estimated, red

lines, given the identified lines, blue lines. 45
8.4 Illustration of an algorithm using Adaptive Threshold, Hough Line

transform, the Match-Pattern algorithm an processing. 46
8.5 Unique segment shapes. 47

xiii

List of Figures

8.6 Applying our find-color function on an image of a red LED display . 49
8.7 The result when analysing the colors of two displays seen from three

perspectives of the RGB cube. Foreground color is plotted in blue
and background color in red. 50

9.1 The parameters of the adaptive threshold highly depends on the en-
vironmental properties. 52

9.2 The dot and a segment are merged together creating a different shape. 55
9.3 The photo is taken in a light room causing some structures in the

wooden desk to be enhanced rather than filtered out. 55
9.4 The segments are neither on or off making it hard to determine an

actual state. 56
9.5 One of the segments found is actually noise, thus the pattern is not

correctly identified. 56

xiv

List of Tables

9.1 Comparing performance and correctness of algorithm when using dif-
ferent edge detection algorithms on LED 53

9.2 Comparing performance and correctness of algorithm when using dif-
ferent edge detection algorithms on LCD 53

9.3 Comparing performance and correctness of algorithm when using dif-
ferent edge detection algorithms on nonsense images 54

xv

List of Tables

xvi

List of Definitions

ASP
Arbitrary Segment Patterns, the technology presented in this thesis for trans-
ferring information from a seven segment display to a smartphone.

ASP-bit
One bar or dot in a seven-segment unit.

ASP-pattern
A possible state for a seven-segment display.

ASP-display
A display which follows the proposed ASP protocol

Calibration bit
An ASP-bit reserved for calibration rather than representing any information.
These are always lit.

Sequence bit
An ASP-bit reserved for sequence number rather than the actual data.

Seven-segment unit
7 bars, and one dot. Each of which can be either on or off. These segments
are ordered as an 8 with a dot.

Protocol
A set of rules defining how two entities may communicate.

Run time
The total time a machine has been running.

Seven-segment display
A display device capable of showing seven-segment units.

xvii

List of Definitions

xviii

1
Introduction

This chapter gives a brief overview of the area of the project, further explaining
general concepts along with the purpose and delimitations.

1.1 Background
Seven-segment displays are widely used within a variety of products, such as alarm
clocks, microwave ovens, and automated drills. The technology is limited com-
pared to other technologies based on pixel graphics, for example dot matrices, or
video displays. On the other hand, the technology is cheap and flexible enough for
representing some characters, especially digits. However, it is sometimes used for
representing the hexadecimal characters but it then requires a use of both upper
and lower case characters since for example it otherwise would be impossible to
distinguish an uppercase B from an 8, see figure 1.1.

Figure 1.1: How both uppercase B and 8 is represented using a seven-segment
character.

However, there are several reasons for seven segment displays to still be used in
many products. It is a cheap technology and the interesting information during
normal working condition can often be represented using digits only. However, in
some cases, a user would benefit from the possibility of being able to extract more
sophisticated information. For example, as an error appears a user may be interested
in data such as the status of the machine. In this case the seven-segment display
becomes a bottleneck, while the machine does have the interesting information it
cannot transfer this information in an easy manner to the user.

1.2 Segment displays
Each digit in a 7-segment pattern consists of 7 bars ordered as an 8, see figure 1.1.
There is also, in general, a dot belonging to each unit. However, through personal

1

1. Introduction

observations we conclude that the dot sometimes is missing from the last digit of each
row, this is particularly true for displays based on LCD-technology. The number
of different patterns possible to represent, if all units have a dot, is thereby 28×d

where d is the number of digits. If however the last units in each row is missing the
dot the number of combinations are given by 2r×(8×c−1) where r is the number of
rows and c the number of columns. The number of patterns possible to represent
using one digit excluding the dot is therefore 27 = 128, see figure 1.2. As seen in
figure 1.3, there are also other variations of segment displays such as the 9-segment,
14-segment, and 16-segments. While these allow for even more possible states, they
are not as common as the tradition 7-segment display.

W
iki

pe
di

a
Pu

bl
ic

Do
m

ain
us

er
:M

at
th

ias
pa

ul

Figure 1.2: The different states the seven bars of a unit may represent. 1

W
iki

pe
di

a
z us

er
:E

rro
ra

ge

Figure 1.3: Different kinds of segments displays. From the right the 7-segment,
9-segment, 14-segment, and 16-segment display. 2

1Url: https://commons.wikimedia.org/wiki/File:7-segment.svg, [Online; accessed 30-
November-2015]

2Url: https://commons.wikimedia.org/wiki/File:Common_segment_displays.svg, [On-
line; accessed 30-November-2015]

2

https://commons.wikimedia.org/wiki/File:7-segment.svg
https://commons.wikimedia.org/wiki/File:Common_segment_displays.svg

1. Introduction

1.3 Purpose
Our aim with this master thesis is to investigate how one could transfer more in-
formation from a machine to a user without adding additional components to the
machine. More specifically, we want investigate the possibilities of introducing a
smartphone to interpret more complex seven-segment patterns using the smart-
phone’s camera as only input. Hence, within this project we assume 7-segment
displays where it is possible to control each segment individually.

1.4 Contribution
Previous work has been done in the area of barcode scanning and optical character
recognition of seven segment displays, both explained in chapter 2. Our contribution
is to merge these two concepts, in order to allow usage of seven segment displays
to transmit more than just hexadecimal characters. We also introduce the concept
of dynamic sequencing, which allows an increase of the data throughput in one-way
communications and can thus be used in a broader context.

1.5 Problem formulation
The problem this master thesis aims to answer is the following:
How can one maximize the data throughput, read optically, from a 7-segment display
to a modern smartphone as conveniently while not constraining the environmental
settings?
That is, a user should be able to scan seven segment patterns using only a smart-
phone camera during normal working conditions in a as convenient way as possible.
By normal working conditions and convenience, we mean the following:

• Display type independence: There should be few constraints on which kind
of displays are supported, including both LCD- and LED-displays of different
colors.

• Noise insensitivity: The solution should allow a large amount of background
noise, meaning that the display should be readable regardless of the environ-
ment. This include support for different lighting conditions.

• Rotation, scale and perspective invariance: The user should be able to
hold the smartphone with any rotation. It should be possible to scan from
different point of views, given a reasonable distance and angle. The camera
properties, such as its maximum resolution and angle of view, should have
minimal impact.

1.6 Delimitations
While the project aims to transfer information from a machine to a smartphone, we
will not set up any in-use machine for transferring this information. Instead a lab
environment will be created for this purpose.

3

1. Introduction

4

2
Research area and related work

The problem in this thesis relates mainly to computer vision[1], which itself touches
many other areas, such as image analysis[2], image processing[3], and pattern recognition[4].
Some methods of computer vision focus on extracting information from codes, while
others on recognizing more complex objects such as human faces. While this project
aims to extract information from codes, there might be a need to use technichs
to extract more complex objects due to the different colors and shapes different
seven-segment displays might have.

2.1 Barcodes
A barcode is a representation of data created for interpretation by a machine
with some kind of optical scanner, such as a camera. Common methods include
1-dimensional barcodes, such as EAN-8[5], which are widely used for identifying
products in stores.
However, since these are 1-dimensional, the amount of data that can be represented
is highly limited. With the introduction of smartphones that include high definition
cameras, 2-dimensional barcodes with more data capacity have become more com-
mon in order to allow users to quickly access information. QR-codes[6] is one such
representation that has become popular, probably because of its quickly-readable
and error-proof design.
In addition to 2-dimensional barcodes, there also exist 3-dimensional bar codes,
where the third dimension is represented by different colors. Langlotz et al. goes
further than that, and propose a 4-dimensional barcode, where the fourth dimension
is represented by time.[7] Instead of simply using one static barcode, an animated
GIF showing different sequences of 3-dimensional barcodes loops on a display, giving
the possibility to transmit more data without requiring higher camera resolution.
Similar techniques are considered within this thesis.

2.2 OCR of seven-segment displays
More specific work for our problem has been done in the area of optical character
recognition (OCR)[8] on seven-segment displays to read hexadeximal digits[9, 10,
11, 12]. One project of special interest is the open source software Seven Segment
Optical Character recognition (SSOCR) [13], as it also has working code. However,
this software differs quite a lot from what we want to achieve, as it does not handle
noise in the background very well. Even if it is possible to manually crop and rotate

5

2. Research area and related work

the image in SSOCR, it cannot find the display automatically. This is a feature
which is important when using a smartphone.
Another major drawback of SSOCR is that the algorithm is specifically designed for
reading digits from a displays with only one row. It will first segment the digits by
traversing from left to right, and then analyze which segments are lit in each digit
by looking at very few pixels. Using this algorithm, a seven segment unit with no
active segments would be ignored. However, in our case, detection of inactive units
is needed, because only zeros in a unit may represent important data too.

6

3
Optics

This section explains important fundamentals in the area of optics needed for this
project. Since this project’s aim is to process optically read displays, it is important
to understand how optics work and how smartphone cameras interpret different
lights.

3.1 Pixel
In electronics, images are usually represented by a two dimensional array of pixels.
Each pixel may have different representations depending on the color model. In this
section, different, common pixel representations and color models will be presented.

3.1.1 RGB
In the RGB model, each pixel is represented by three channels: red, green and blue.
This model is widely used in screens and electronics since the human eye has three
different types of cone cells, each one of them being specifically sensitive to one of
these colors.
RGB is an additive model, meaning that combining these colors results in a white
light, and using none results in the color black. Nearly all colors that can be per-
ceived by the human eye can be represented in RGB. When storing RGB data
digitally, the number of bits used to represent each pixel is called the color depth.

W
iki

pe
di

a
c

b
a

3.
0

us
er

:s
ha

rk
D

Figure 3.1: A box representation of an RGB color space. 1

1Url: https://commons.wikimedia.org/wiki/File:RGB_Cube_Show_lowgamma_cutout_b.
png, [Online; accessed 30-November-2015]

7

https://commons.wikimedia.org/wiki/File:RGB_Cube_Show_lowgamma_cutout_b.png
https://commons.wikimedia.org/wiki/File:RGB_Cube_Show_lowgamma_cutout_b.png

3. Optics

3.1.2 Raw
An image which contains unprocessed data from the image sensor is said to use
the RAW-format. The exact representation of this may differ from one device to
another, depending on the filter in front of the image sensor. A common filter is the
Bayer filter which is an RGB-filter, where out of four pixels, one is used for red, one
for blue, and two for green as shown in figure 3.2.

Figure 3.2: The check pattern used by the Bayer filter

3.2 Properties of the camera
There are different types of cameras, for example there are both analog and digi-
tal cameras. This project focuses on digital cameras which in turn can be divided
into cameras based on the technology of complementary metal oxide semiconductor
(CMOS) respectively charge-coupled device (CCD). There are advantages of both
technologies, while the CMOS-sensor are cheaper the CCD can offer higher quality
photos. However, recent years development of the CMOS-technology has signifi-
cantly increased the possibilities of taking high quality photos using CMOS-sensor
which is why their market share has greatly increased. Beside the cost, CMOS has
other advantages such as the speed. A higher frame per second (FPS) allows for
video capturing but also for features such as auto-focus. These advantages has led
to an decay in the market share for the CCD-sensor which in recent years mainly is
used in the Premium models where very high quality but also manual control over
focus is desired. Another drawback with the CMOS technology is the phenomenon
of rolling shutter. That is, if a camera takes a photo of something that is rapidly
changing, the CMOS based cameras, because it has no mechanical shutter, can take
photos where not all pixels are captured in an instant, see figure 3.3.

3.2.1 Exposure
There are many variables that affect the exposure of the camera, for instance the lens
aperture and the shutter speed. In digital cameras, a signal gain on the sensor may
directly affect the exposure value. Digital cameras come with a decided exposure
index (EI) rating (also called ISO-setting) that relates the produced sRGB image
files to what would be produced with an analog camera film.

8

3. Optics

W
iki

pe
di

a
c
b

a
3.

0
us

er
:J

on
en

Figure 3.3: Photo of a helicopter where the phenomenon of rolling shutter is seen.
1

3.2.2 Automatic exposure

Many systems offer the usage of automatic exposure (AE) that calculates and adjusts
exposure settings in a way that makes the overall exposure acceptable. It usually
looks at the image mid-tone and changes the exposure settings thereafter.

3.2.3 Exposure compensation

Sometimes, the user may want to bias the AE system in one way or another, such
that it is either more or less sensitive to light. The reason for this is usually that
AE-systems may misbehave in certain conditions. For example, when there is much
light from one particular area in the image, AE systems tend to dim the whole
image. This may not be the intended behavior, as it may dim more important parts
of the image.

3.2.4 Overexposure and underexposure

A photo can be described as overexposed if important bright details of the photo
are washed out, or even completely white. This happens when too much light
is captured. The opposite to this is when a photo is underexposed, that is too
little light is captured. Instead this causes shadows to darken and sometimes being
completely black.

1Url: https://commons.wikimedia.org/wiki/File:Jamtlands_Flyg_EC120B_Colibri.JPG,
[Online; accessed 30-November-2015]

9

https://commons.wikimedia.org/wiki/File:Jamtlands_Flyg_EC120B_Colibri.JPG

3. Optics

3.3 Properties of displays
It is important that the product should be able to read displays with different prop-
erties. There are different kinds of displays used within the industry for representing
seven segment characters. This section explains the technology behind the LCD and
LED displays.

W
iki

pe
di

a
c
b

a
3.

0
us

er
:E

d
g2

s
Figure 3.4: Illustration of the different layers within a LCD-display. 1

1. Polarizing filter to polarize entering light.
2. Glass with positive electrodes formed as seven-segment digits.
3. Twisted nematic liquid crystal.
4. Glass with negative electrode film, used for establishing the electrical field to

layer 2.
5. Polarizing filter to either block or pass light.
6. Reflective surface to reflect light or the light source itself.

3.3.1 LCD-display
Liquid crystal displays (LCD) are based on the technology of using a matter within
the state of being a liquid crystal, a phase between the solid and the liquid state.
More specifically the substance also is nematic, meaning that the molecules have no
positional order regarding each other but still tend to point in the same direction.
The particular sort of matter used for LCD-displays are the twisted nematics. It
is called so because of the property that the molecules are naturally twisted and
therefore have the property that the polarization of any light passing through the

1Url: https://commons.wikimedia.org/wiki/File:LCD_layers.svg, [Online; accessed 30-
November-2015]

10

https://commons.wikimedia.org/wiki/File:LCD_layers.svg

3. Optics

matter will be shifted. However, as the liquid crystals are under the influence of an
electrical field, the molecules are untwisted and the shifting of the polarization is
reduced. Therefore, by sending polarized light through the liquid crystals, one can
regulate the outgoing polarization of the light by using an electrical field. This allows
for filtering the outgoing light so that only light of a certain polarization will pass
through. However, the liquid crystals cannot be used for modifying or controlling
the wave length of the light. Thus, it is impossible to change any colors using the
properties of the liquid crystals. Instead, it is common to divide each pixel into
three components, each with a filter of the colors; green, blue, or red to allow for
colored screens. An LCD-display may have a backlight as light source but can also
depend on the light within the room for displaying the content. The display is not
a Lambertian surface meaning that the angle from where the display is seen from
influences on what is observed.[14]. Figure 3.4 explains the different layers within
the LCD model further.

3.3.2 LED-display
Light-emitting diodes are displays that use diodes to emit light. Diodes are the
simplest forms of semiconductors, and allows current to traverse in only one direction
[15].
To make this work, a bad conductor material - usually aluminum-gallium-arsenide
- is used which is then doped. Doping is done to make a material more conductive,
and can be achieved in two ways: a) adding free electrons (resulting in an N-type
material); and b) creating holes where electrons can go (resulting in a P-type mate-
rial). Diodes use both methods of doping; one on each side of the conductor. This
results in the interesting property of only being able to pass current in one direction.
When current flows through a diode, electrons drop from a higher orbital to a lower
one, resulting in released energy in form of photons, thus emitting light. However,
all light is not visible to the human eye, so if the light should be seen by humans,
the drop must happen from a distance that releases the amount of energy needed
to be in the human visible spectrum. This is the case of LED-displays.

11

3. Optics

12

4
Image analysis and computer

vision

This section explains attributes of images and relevant algorithms for image analysis
and computer vision.

4.1 OpenCV
OpenCV is an open source software library originally developed by Intel. It is
written in the programming languages C++ and C but has wrappers for working
in other languages such as Java or Python. It provides tools for image and video
processing, machine learning, and computer vision. [16]
Images are represented using 2 dimensional matrices where each cell may contain
an arbitrary number of channels and the values can be represented using signed
integers, unsigned integers or floating numbers of different sizes. Besides provid-
ing a representation of matrices it also provides several common operations and
transformations on these.

4.2 Pinhole camera model
In computer vision, the camera is usually modeled after the so called pinhole camera
model [17]. This model is a mathematical description of the relationship between
objects in 3D space and the projected image on a plane. However, it ignores the
common effect of lens distortion since its effects are usually negligible and requires
much more mathematical effort. Instead, the focus lies on how light works when
passing an ideal pinhole camera.
A pinhole camera is ideally a light-proof box with an infinitely small aperture called
a pinhole, which, unlike modern cameras, does not have a lens. When light goes
through the hole, it is projected on a plane, and the image is rotated 180◦.
We can model the pinhole as lying at the origin in a three-dimensional space with
the axes (X, Y, Z). Z points outwards from the camera towards the outer world.
The image is projected on an image plane which is placed at (x, y, −f)∀x, y, where
f is called the focal length.
Using this, it is now possible to calculate how a point P with coordinates (xp, yp, zp)
in the 3D world is projected on the image plane on a point Q with coordinates
(xq, yq, −f), where f is already given.

13

4. Image analysis and computer vision

By ignoring the X axis and using the knowledge of triangle similarity as illustrated
in figure 4.1, we see that the following holds:

−yq

f
= yp

zp

⇒ yq = −f

zp

yp.

Figure 4.1: Example of a pinhole projection when looking at the direction of X

In the same manner, by instead ignoring the Y axis, we can also get the following:

−xq

f
= xp

zp

⇒ xq = −f

zp

xp.

Thus, we have the following: (
xq

yq

)
= −f

zp

(
xp

yp

)
.

Now, the image is rotated 180◦. In order to adjust the image, we simply negate the
expression, resulting in the following expression:(

xq

yq

)
= f

zp

(
xp

yp

)
.

For reasons that will later be obvious, we will instead use homogeneous coordinates
in our expression. This is done by adding a third dimension which will be static
and introducing the notion of equality up to scaling, denoted as ∼, in the following
manner: xq

yq

1

 = f

zp

xp

yp
zp

f

 ∼

xp

yp
zp

f

 .

The symbol ∼ is thus used to signal that any scalar is ignored. Similarly, by ex-
pressing the 3D coordinates in homogeneous coordinates, we get

14

4. Image analysis and computer vision

xq

yq

1

 ∼

xp

yp
zp

f

1

 =

1 0 0 0
0 1 0 0
0 0 1

f
0

xp

yp

zp

1

 ∼

f 0 0 0
0 f 0 0
0 0 1 0

xp

yp

zp

1

 .

Thus, we have
q ∼ Cp

where q =

xq

yq

1

, C =

f 0 0 0
0 f 0 0
0 0 1 0

, and p =

xp

yp

zp

1

.

C is called the camera matrix, or the camera parameters. In our case, we assumed
that the pinhole was positioned at the origin facing in the direction of the Z-axis,
which leads us to this rather simple model of C. If we however take more variables
into account, such as the position and rotation of the camera axes in the real world
coordinate space, as well as the position and skew of the projected image, we get a
more complicated matrix. This matrix may be decomposed into two matrices, such
that C = A[R|t], in the following manner:

A =

fx 0 cx

0 fy cy

0 0 1

 , [R|t] =

r11 r12 r13 t1
r21 r22 r23 t2
r11 r32 r33 t3

.

R is the rotation matrix, which describes the rotation of the camera, and t is the
transformation vector which describes the position of the camera. (fx, fy) are the
focal lengths in proportion to the pixel density and (cx, cy) are the image center
coordinates.

4.3 Homography
Using the pinhole camera model, a homography is the relationship of a planar surface
projected using two different camera parameters. This implies that the knowledge
of a homography gives the possibility to redraw the image as if it was taken from
another angle.[18]
A homography is usually represented as a 3x3 projection matrix, H, describing how
to translate points of an image taken from one perspective, to another. Thus, if we
have a homogeneous image point of a plane from one viewpoint, a = (ax ay 1)T, it
can be translated to a homogeneous point b = (bx by 1)T in another viewpoint if its
homography Hab is known, using the following formula:

b ∼ Haba.

Which may be written out as
bx

by

1

 ∼

b1
b2
b3

 =

h11 h12 h13
h21 h22 h23
h31 h32 h33

ax

ay

1

 .

15

4. Image analysis and computer vision

Thus we have the following equations:

bx = b1

b3
,

by = b2

b3

where
b1 = h11ax + h12ay + h13,

b2 = h21ax + h22ay + h23,

b3 = h31ax + h32ay + h33.

In order estimate the eight degrees of freedom of Hab eight such equations are re-
quired. Thus, we need four corresponding points to calculate Hab. [17]

Figure 4.2: A point on a plane being projected on two different cameras can be
translated using homography

4.4 Canny and Deriche edge detector
According to John F. Canny these are the requirements on an optimal edge detection
algorithm. [19]

• Detection Quality - All existing edges should be marked and all marked edges
should be correct.

• Accuracy - A marked edge should be as close as possible to the real edge.

16

4. Image analysis and computer vision

• Unambiguity - An actual edge should only be marked once.
Both Canny and Deriche Edge detectors are designed to fulfil these requirements.
The algorithms are similar to each other and can be divided into the same five
steps.[19, 20]

4.4.1 Smoothing of image
The first step is to make the image smoother and also remove some noise. The
Canny Edge detector uses a Gaussian filter for this purpose. The equation for a
Gaussian kernel of size (2k + 1) ∗ (2k + 1) is given by:

Hij = 1
2πσ2 exp(−(i − k − 1)2 + (j − k − 1)2

2σ2).

It is important to notice that the size of the kernel will be of significance for per-
formance. Choosing a large kernel slows down the algorithm and decreases the
sensitivity to noise.
However, instead the Deriche edge detector uses an infinite impulse response(IIR)-
filter of the form:

f(x) = S

ω
exp(−α|x|)sin(ωx).

The filter is most effective as ω approaches 0 resulting in the form:

f(x) = S exp(−α|x|).

A higher α results in better localization but worse detection rate for the edge.

4.4.2 Finding intensity gradient
An edge detection operator is used for finding the first derivative in the horizontal
Gx and vertical Gy direction. These values can be used for calculating the gradient,
the edge strength, and direction of the pixels.

G =
√

G2
x + G2

y,

Θ = arctan 2(Gy, Gx).

The direction of the gradient is then rounded to either 0◦, 45◦, 90◦, or 135◦. There
are several edge detection operators that can be used for finding these derivatives.
Here are the Sobel, Prewitt and Roberts operators explained, see [21].

4.4.2.1 Roberts

The algorithm was defined to satisfy the following properties; the resulting lines
should be well-defined, there should be as little noise in the background as possible,
and the intensity of the edges should correspond to what a human perceives. The
following equations was proposed by Roberts:

yi,j = √
xi,j,

17

4. Image analysis and computer vision

zi,j =
√

(yi,j − yi+1,j+1)2 + ((yi+1,j − yi,j+1)2.

where x is the initial intensity value z is the resulting derivative. Thus we have Gx

and Gy using

Gx =
(

1 0
0 −1

)
∗ I,

Gy =
(

0 1
−1 0

)
∗ I

where I is the source image.

4.4.2.2 Prewitt and Sobel
Both the Prewitt and Sobel operators are used to find the gradient of the image
intensity. That is, the direction of the largest possible increase from light to dark
how fast it changes. These values are used to determine how suddenly the image
changes and thereby how likely it is that the current position is an edge and in
that case the direction of the edge. The difference between the Prewitt and Sobel
operators is that different matrices are used when calculating the resulting gradient.
The following matrices are used for Prewit:

Kx =

−1 0 1
−1 0 1
−1 0 1

 , Ky =

−1 −1 −1
0 0 0
1 1 1

 .

And these are the matrices for Sobel:

Kx =

−1 0 1
−2 0 2
−1 0 1

 , Ky =

−1 −2 −1
0 0 0
1 2 1

 .

Hence, we have Gx = Kx ∗ I and Gy = Ky ∗ I where I is the source image.

4.4.3 Non-maximum suppression
The extracted edges are still blurry so to make the edges thinner the technique of
non-maximum suppression is used. It compares the strength of an edge pixel with
the pixels on both sides in the gradient direction. If the strength of the current pixel
is lower than a compared pixel it is suppressed, otherwise it is kept.

4.4.4 Double threshold
While the edges of the image should be quite accurate there may still be some
falsely identified edges caused by noise. These are removed by first first defining
two threshold values, the high threshold and the low threshold. Each edge pixel
is then compared to these values and if it is stronger than the high threshold it is
considered a strong edge. If the pixel strength is in between the two threshold values
it is considered a weak edge. If the strength is below the low threshold it is removed
as an edge pixel.

18

4. Image analysis and computer vision

4.4.5 Suppress weak edges
The final step in the algorithm is to suppress all weak edges that still exist because
of noise. This is done by comparing all weak edge pixels with the neighboring pixels.
If any neighbor is considered a strong pixel it will be considered part of an edge,
otherwise it will be removed.

4.5 Threshold

Figure 4.3: The effect of applying threshold using the different operations in
OpenCV.

Applying threshold to an single channel image returns an image where any pixel is
compared to a given threshold value. Depending on if the pixel value is higher or
lower than the threshold, different functions are applied to the pixel. The threshold
algorithm existing in OpenCV, see section 4.1, takes a source and destination image,
a threshold value, a max value, and a threshold operation. The result of the different
operations can be seen in figure 4.3, and the equations for them are as follows.

Binary threshold

dst(x, y) =

maxVal if src(x, y) > threshold
0 otherwise

Inverted binary threshold

dst(x, y) =

0 if src(x, y) > threshold
maxVal otherwise

Truncate

dst(x, y) =

maxVal if src(x, y) > threshold
src(x,y)×maxVal

threshold otherwise

19

4. Image analysis and computer vision

Threshold to zero

dst(x, y) =

src(x, y) if src(x, y) > threshold
0 otherwise

Inverted threshold to zero

dst(x, y) =

0 if src(x, y) > threshold
src(x, y) otherwise

4.6 Adaptive threshold

Figure 4.4: A comparison of the different threshold algorithms.

Adaptive threshold is a threshold algorithm which depends on the neighboring pixels
for calculating the result for each pixel. This makes it especially useful on images
where some regions of an image are in a shadow while other areas are not. In
addition, it can be used as an edge detector since it is sensitive for derivatives of
pixel values. The OpenCV, see section 4.1, implementation of adaptive threshold
requires, apart from the source and destination image; a block size, the size of
the area to consider around each pixel, an adaptive method and a constant which
is the value to be subtracted from, depending on the adaptive method, the mean
or weighted sum calculated. The adaptive method decides whether the algorithm
should use a mean or a weighted sum of the neighboring pixels where the weights
are a Gaussian window. The results of the different adaptive threshold, along with
a simple threshold, can be seen in figure 4.4.

20

4. Image analysis and computer vision

4.7 Finding contours
One can get information about the topological structure using border following
algorithms as proposed by Satoshi Suzuki et al [22]. This gives as a result a tree
of contours with knowledge about the parents and the children of each contour. As
seen in figure 4.5, a contour is a parent if it surrounds other contours, the children.
A second algorithm is also proposed which only yields the contours of the outermost
borders.

Figure 4.5: The contour B is contour A’s child.

4.8 Image moments
Image moments are values that calculated by some function of the weighted averages
of pixel intensities, meaning that they can express some general properties of the
image. Raw image moments Mij of a grayscale image are defined by the following
formula

Mij =
∑

x

∑
y

xiyjI(x, y).

Where I(x,y) is the intensity of the pixel located at (x,y). Using this, we can
calculate the sum of gray level using M00 and the image’s centroid as (x̄, ȳ) =
(M10/M00, M01/M00).

4.8.1 Scale and translation invariant moments
Image moments that are invariant to both translation and scale can be defined using
the following formula

21

4. Image analysis and computer vision

ηij = µij

µ
(1+(i+j)/2)
00

, i + j ≥ 2

where the central moments, µij are defined by

µij =
∑

x

∑
y

(x − x̄)i(y − ȳ)jI(x, y).

4.8.2 Rotation invariant moments
A commonly used set of rotation invariant moments were proposed by Ming-Kuei
Hu in 1962 [23].

I1 =η20 + η02,

I2 =(η20 − η02)2 + 4η2
11,

I3 =(η30 − 3η12)2 + (3η21 − η03)2,

I4 =(η30 + η12)2 + (η21 + η03)2,

I5 =(η30 − 3η12)(η30 + η12)[(η30 + η12)2 − 3(η21 + η03)2]+
(3η21 − η03)(η21 + η03)[3(η30 + η12)2 − (η21 + η03)2],

I6 =(η20 − η02)[(η30 + η12)2 − (η21 + η03)2] + 4η11(η30 + η12)(η21 + η03),
I7 =(3η21 − η03)(η30 + η12)[(η30 + η12)2 − 3(η21 + η03)2]−

(η30 − 3η12)(η21 + η03)[3(η30 + η12)2 − (η21 + η03)2].

These are also scale and translation invariant, as well as the last one being skew
invariant.

4.8.3 Comparing rotation invariant moments
The rotation invariant moments can be used to calculate the resemblance of two
images. In particular, OpenCV offers three different methods for calculating the
resemblance ∆ of two contours A and B yielded by the algorithm described in
section 4.7. The methods are the following [24]:

∆1(A, B) =
∑

i=1..7

∣∣∣∣∣ 1
mA

i

− 1
mB

i

∣∣∣∣∣ ,
∆2(A, B) =

∑
i=1..7

∣∣∣mA
i − mB

i

∣∣∣ ,
∆3(A, B) = max

i=1..7

∣∣∣∣∣ 1
mA

i

− 1
mB

i

∣∣∣∣∣.
4.8.4 Conic fitting
Fitting of conic sections can be done by finding the value on
a = [Axx Axy Ayy Ax Ay A0] for which the function
ϵ2(a) = ∑n

i=1 δ(C(a), xi) attains its global minimum, where

22

4. Image analysis and computer vision

• C(a) is a family of curves, defined by {x|F (a; x) = 0}
with F (a; x) = [x2 xy y2 x y 1] · a

• xi refers to a point (xi, yi) with 1 ≤ i ≤ n
• δ(C(a), xi) measures the distance of a point xi from the curve C(a).

There exist different proposals for the function δ. OpenCV uses the algorithm
LIN[25], where the δ-function is F (a, xi)2 under the constraint that ||a||2 = 1.

4.9 Hough transform
The Hough transform is an algorithm for detecting features. The classical Hough
transform was initially limited for detecting lines but the Hough transform has
extended to also handle other shapes such as circles and ellipses. The classical
Hough transform for detecting lines will first be explained in order to explain some
variations of it.

4.9.1 Classical Hough transform
Lines in the Hough transform may be represented in different ways. The slope-
intercept representation, defined as follows, is simple and intuitive:

y = kx + m

where (x,y) are coordinates, k is the slope, and m is the interception of the line with
the y-axis.
However, this representation cannot define a straight vertical line. Therefore, most
modern implementation of the Hough transform use a normal representation in polar
coordinates. In this representation, a line is defined by its normal that goes through
the origin. The normal is defined by (ρ, θ), where ρ is the distance from the origin,
and θ is the angle from the x-axis, as pictured in figure 4.6. Thus, given (ρ, θ), the
line can be defined by

ρ = x cos θ + y sin θ.

The classical Hough transform will, for each pixel (x, y) in a set, give one vote for
each line that can possibly go through it and add it in a so-called accumulator. It will
then use a threshold that determines how many votes a line needs to be considered
as a line in this image.
Usually, Hough transform takes a binary image as input, where one color represents
the pixels that should be tested. Often, it is used on a picture where edge detection
has been made. In some cases, such as in the case of the library OpenCV, further
explained in section 4.1, a grayscale image is given as input. In that case, non-zero
pixels will be used.

4.9.2 Probabilistic Hough transform
Of course, the classical Hough transform may give performance issues on large pic-
tures. Kiryati et. al [26] proposes that only a fraction of all edge points are taken
into consideration, and shows that this doesn’t usually lead to considerable problems

23

4. Image analysis and computer vision

Figure 4.6: A line, described with its normal with polar coordinates, that goes
through a point (marked as a ’+’)

in the correctness of the solution. In fact, experiments with fractions as low as 2%
has been shown successful.

4.9.3 Progressive probabilistic Hough transform
As noted by Matas et al.[27], the derived formulas of the probabilistic Hough trans-
form require previous knowledge of the number of points belonging to the line.
However, this is rare in practise. Instead, a progressive method to determine the
poll size is proposed.
The first step in the algorithm is to look at one random edge point and update
the votes for the lines that can possibly go through it. Out of these lines, the line
with the highest number of votes is checked against a certain threshold. Unless the
number of votes for this line is higher than the threshold, the algorithm goes back to
the first step, choosing another random point. Otherwise, it checks for the longest
continuous segment (or a segment with no more gaps than in a given threshold).
All the points in this segment are removed from the input image and their votes
are removed. If the line is longer than a given minimum length, it is added to the
output list. This algorithm loops until all input edges have been removed.

4.9.4 Other variations of Hough transform
There exist variations of the Hough transform that can be used for analytically
defined shapes, such as circles and ellipses. What differs them from the other Hough
transforms are the parameters. For instance, a circle can be defined by the three
parameters (x, y, r), where x and y represent the position of the circle’s center and
r its radius.

24

4. Image analysis and computer vision

For non-analytically defined shapes, such as hand-drawn shapes, parameters de-
scribing the reference origin, the orientation, the scale factors are used. These are
looked up in a table which has been created in advance.

25

4. Image analysis and computer vision

26

5
Android

Android is an operating system currently developed by Google for mobile devices
such as smartphones or tablets. It is based on a Linux kernel and is primarily
designed for devices using touch, such as swiping or taping, as input method [28].
It has currently the largest installed base of all operating system [29].

5.1 Development for Android devices
Android offers an application programming interface (API) and a software develop-
ment kit (SDK) for application development [30]. The API is designed for Java, but
other languages can be used. Code written using the Android API is compiled and
then executed through a virtual machine which is officially Android Runtime (ART)
as of Android 5.0. It is also possible to write code without using the Android API
in other languages such as C and C++ by using the Native Development Toolkit
(NDK) [31]. However, some parts of the application need to be written using the
Android API and each call to the NDK through the Java Native Interface (JNI)
requires overhead,so in most cases there will be no speed improvements using the
NDK [32].
The Android API includes a camera API and thread handling.

5.2 OpenCV in Android
When developing software that uses OpenCV in Android, the code can be written
using either the Java API or the NDK.
When using the Java API, the OpenCV library has to either be loaded at runtime,
or a connection has to be established with the OpenCV Manager app which may
already have loaded the library. OpenCV Manager is available on Google Play and
keeps the library updated while minimizing the size of applications that make use
of OpenCV by sharing the data through inter-process communication (ipc).
If using the NDK, one can develop the algorithms in C++ and then export the
functions as a library which then can be loaded at runtime by the Android app.
This minimizes the number of JNI-calls needed, especially if multiple sequential
calls are made for accessing data in OpenCV matrices, since every access call to
matrices requires overhead. This is illustrated in figure 5.1.
It is possible to load matrices into primitive java arrays and store them back into
OpenCV matrices, thus minimizing the overhead while still using the Java API.

27

5. Android

However, this is under documented and type unsafe, and empirically we have found
the type conversion to be inconsistent.

Android application

JNI-wrapper
OpenCV
Function

JNI-wrapper
OpenCV
Function

(a) Two JNI calls are needed
when using OpenCV through An-
droid’s Java API

Android application

JNI-wrapper
OpenCV
Function

OpenCV
Function

(b) One JNI call is needed when
using OpenCV through Android’s
NDK

Figure 5.1: Comparison between using native OpenCV and Java OpenCV. It
illustrates how calling two OpenCV functions sequentially would be handled for
each method.

5.3 The Android camera
This section explains how an Android device can be configured for dealing with the
challenges that can arise within the area of this project.

5.3.1 Camera API 2
In order to access the camera of an Android device using Camera API 2 one first
needs to create a session. It is important to consider that opening a session takes
time and thus it is recommended to only close a session if the camera should not
be used in a relatively long time. In order to actually take a photo different capture
requests may be sent to the session. These capture requests can be configured using
capture requests builders. The different possible settings depend on the camera
hardware level of the device. There are three different hardware levels offering
different amounts of properties to modify, LEGACY, LIMITED, and FULL where
LEGACY is the most limited.

5.3.2 Capturing a display
The properties of the displays have significant effect on how to take a photo of
it. While LCD often is reflective, see section 3.3.1, and thus only reflect the lights
within the room, the LED displays are always emitting light. Taking a photo of a
LED may therefore cause distortions to the photo turning the segments into white
color while the color of the LED rather colors the area surrounding the segments as
seen in figure 5.2. Avoiding this can be done by decreasing the exposure index or
exposure time and thus, capture less light. Another benefit that arises from doing
so is that the surroundings also darkens, resulting in less noise from other object
within the photo. However, Android devices do not always offer the possibility to
manually adjust these settings. Often these settings are automatically configured.

28

5. Android

As of devices of API level 21 or above, the camera 2 API indeed supports modifying
these parameters but in order to do so the device itself must also have support for
it. Unfortunately the device used in this project was of hardware level LEGACY,
as described in 5.3.1, and is thereby only backward compatible, not offering these
features. However, these devices still support a feature of locking the automatic
exposure settings. While the camera automatically adjusts the exposure according
to the amount of light in the room it is possible to, at a given time, specify that no
matter how the lights in the room changes, keep the exposure steady. By making
use of these features it is possible to let the user of the android device manually set
exposure by holding the camera close to a lit segment, an always lit calibration bit
for example, locks the exposure and then afterwards, as the exposure time is steady,
start capturing patterns. The result is that the segments now indeed is colored and
the surrounding area is darkened.

Figure 5.2: How LED displays are captured by a camera. The actual segments
are white rather than red while the red color instead distorts the surrounding area.

29

5. Android

30

6
Development and verification

This chapter explains the materials used during the project. Further, it describes
the lab environment and development tools.

6.1 Materials
The product has been developed in Java using the software library OpenCV and
is targeted for an Android of API 22. The lab environment was created using an
Arduino and seven segment displays of the types; 1) LCD and 2) LED with red
diodes. The Android device used within the project is a Sony Xperia Z3, API 22.

6.2 Generating synthetic test cases
In order to be able to test our algorithms, we first decided to create a synthetic
lab environment that generates pictures of seven segment displays. This software
was mainly developed in Haskell [33] using JuicyPixels [34], with some additions
of 3Drotate [35], a script that uses ImageMagick [36], and some direct calls to Im-
ageMagick scripts. The seven segment display generator supports creating displays
with different colors, shapes, rotations, angles and lights. After generating a display
with random configurations, it is put on an image provided by the user in a specified
directory. It does this for all pictures in the directory.
The first part, which is developed in Haskell using JuicyPixels, is used to create flat
and clear displays. It has configurations for the following parts:

• Segment width and length
• Margin between segments
• Dot radius and position
• Background color
• Active foreground color (when segment/dot is lit)
• Inactive foreground color (when segment/dot is unlit)
• Filter. These can be defined by Haskell functions. A brightness filter is pro-

vided which puts gradient light on a display.
An example output of this part is shown in figure 6.1
The 3Drotate part rotates the image in an arbitrary way, applies Gaussian blur to
it, and puts it on an image. An example output of this is shown in figure 6.2
The intention of this software was not to prove that our solution works in real life,
but rather to easily enable us to investigate the properties of the patterns. In real

31

6. Development and verification

Figure 6.1: Example of a generated display using our image generating software

life, many other factors may cause the algorithm to fail, such as more complex
lightning, lens distortion and bad camera lens focus.

6.3 Lab environment
The lab environment was built using an Arduino Mega 2560 and seven-segment
displays of the following types.

• A reflective LCD display capable of displaying 4 units in a row where the last
unit in the row lacks decimal point.

• Two red LED display of two units in a row each. Together, these displays
allowed for the dimension 1x4 or 2x2. The units are slightly tilted.

The Arduino was programmed to represent a given number. It automatically divides
the message according to the dimension and adds the calibration and sequence bits
as descried in chapter 7. Afterwards, it continuously repeats sending the sequences,
2 each second, using either the LCD-, or the LED-displays. It never terminates
unless power is turned off. The environment allows for testing the performance of
the product as well as how it handles with different settings:

• Red LED displays and reflective LCD displays.
• Patterns of the maximum dimension of either 2x2 or 1x4.
• Messages divided into sequences.

32

6. Development and verification

Figure 6.2: Result of applying Gaussian blur and rotating the generated display,
and putting it on an image

33

6. Development and verification

34

7
Communication and

representation of data

A primary task within the project is defining a protocol allowing machines to display
information using seven-segment patterns. These patterns may be decoded using a
smartphone that runs our suggested app. This protocol should allow for transmitting
information of different contents. We want the protocol to be as portable as possible.
This means, more specifically, that it should be possible to scan patterns with an
arbitrary number of seven segment units aligned in rows and colums, and that there
should be as little restriction as possible on the amount of transmittable data.

7.1 Bit significance
In order to use ASP patterns as a bit representation it is important that the sig-
nificance of different segments within that pattern is agreed upon. This protocol
defines a standard to ensure both parties know how to represent any data.
A seven segment unit is one entity of a seven segment display that contains 7 bars
and one decimal point. Given that all bits within a unit are used, the significance
of each bit (b) is pictured in figure 7.1.

Figure 7.1: Bit significances in a unit. 1

if a display consists of many units without any unused bits that are aligned in r
rows and c columns, the significance of a unit column (i) and row (j) is given by

1Image derived from: https://commons.wikimedia.org/wiki/File:7_segment_display_
labeled.svg, [Online; accessed 30-November-2015]

35

https://commons.wikimedia.org/wiki/File:7_segment_display_labeled.svg
https://commons.wikimedia.org/wiki/File:7_segment_display_labeled.svg

7. Communication and representation of data

the following formula:
(i · r + j) · 8.

Where the i and j are zero-indexed, thus giving them the following range:

0 ≤ i < r,

0 ≤ j < c.

The actual significance of a bit is given by adding the significance of the unit with
significance of that bit within the unit, resulting in the following formula:

(i · r + j) · 8 + b.

Figure 7.2 shows the bit significances of a display with r = 2 and c = 3

Figure 7.2: Bit significances of a 3x2 display.

If a bit is unused, the significance of the bits with higher significance are decreases
by 1 as seen in figure 7.3.

Figure 7.3: Bit significances of a 3x2 display with bit 16 unused.

36

7. Communication and representation of data

7.2 Calibration bits
In order to identify a seven segment display as well as extract some information
about the image itself, some bits are always lit and considered unused in the data
transmission. These bits are called calibration bit. There are two requirements when
choosing which bits that should be calibration bits.

• They should provide information about the region of interest. In other words,
it should be possible from the calibration bits to identify the outer layer of
segments.

• They should provide a mechanism for identifying the correct rotation of the
display.

Satisfying the first requirement was done by simply choosing corner segments. Ex-
tending these segment will mark the region of interest. However, the last digits of
each row may still have dots that will be outside this frame. Either one can decide
not to use these dots in the encoding of information, or one can choose to add a
border to the identified frame to make sure the dots are included even if outside
the frame. The result of ignoring the dots is that each frame can contain less infor-
mation and thus we chose to add a border when cropping the image to include any
outlying dots.
In order to satisfy the second requirement, that it should be possible to determine
the correct rotation, we simply used a dot as an extra calibration bit. A dot can
only be positioned correctly with respect to any other segments if the image itself
is rotated correctly.
In conclusion, the segments that are set as calibration bits and are thus unused in
the transmission of the message are 0, 5, 7, (8 · r − 5), and (8 · r · (c − 1) + 1) where
r is the number of rows and c the number of columns. For example, with r=2 and
c=3, we get that the calibration bits are 0, 5, 7, 11, and 33. This is shown in figure
7.4, together with an illustration of why these calibration bits have been used so
that it includes a frame of the whole display.

7.3 Dynamic sequencing
In order to allow for more information, ASP uses message sequencing. This means
that long messages can be split up into multiple frames and sent one after another,
in sequences, using a decided frame rate. The proposed frame rate is set to 500ms,
which is discussed in chapter 10.

7.3.1 Bit significance using dynamic sequencing
In order to allow the user to start scanning whenever it wants, ASP repeats the
process after it has reached the last frame. For this to be feasible, some indication
about which frame it is showing is necessary. The proposed solution in ASP is to
use frame index bits, which are bits that are unused in terms of transmitting data,
but include an index number. The frame index bits are put on the bits with lowest
significance. The bits are unused in that they are not used in the decoded message,

37

7. Communication and representation of data

Figure 7.4: Calibration bits shown in red on a 3x2 display. By extracting the outer
lines from the calibration bits, a region of interest can be found (dashed lines). In
order for the right-most dots to be included, a margin needs to be applied (full
lines). Bit 7 was chosen in order to know the direction of the picture.

but the index shown by the frame index bits if (used as unsigned integers) also
changes the significance of the resting bits by the following formula:

sf · if + b.

Where sf is the number of used bits in a frame and b is the significance if the index
bits were simply unused. An illustration where the calibration bits are unused and
the number of frame index bits is set to 1 is shown in figure 7.5

(a) if = 0 (b) if = 1

Figure 7.5: Bit significance of two consecutive frames in a 3x2 display when the
number of bits used for sequencing is 1 and all other bits but the calibration bits
are used, giving sf the value 42. The used frame index bit is outlined in blue, filled
in red when it is lit

How many bits that are used as frame bits depends on the length of the message,

38

7. Communication and representation of data

for which the necessary calculations are described the next section. This means that
the sender (the ASP-display) and the receiver (the smartphone app) must know the
length of the message, or at least on the number of frames to be used.

7.3.2 Calculating the number of frame bits
Dynamic sequencing is used to divide a message m represented as a bit array of size
sm into multiple, smaller frames. It does this by reserving some bits that are going
to be used for indexing. The relationship between the number of sequences ns that
are needed and the number of bits used for indexing nb is given by the following
formula:

nb = ⌈log2(ns)⌉.

When sending a message on a display with size sd given by the number of segments
and decimal points excluding the calibration bits, the number of sequences ns that
will be needed can be calculated as follows:

min
ns∈Z+

ns st. (sd − nb)ns ≥ ms.

Note that the number of sequences ns cannot be solved if the number of bits reserved
for sequencing nb is greater or equal to the display size sd. Thus, that message is
too large for sequencing according to that frame size.
As mentioned before, these bits will be reserved in the beginning of each frame.
Hence, the frame size sf , used for each sequence of m can be calculated by sf =
sd − nb. The message will be partitioned so that each part will be of size sf . Any
unused bits within the last frame will be zero. Thus it is necessary that both the
encoder and the decoder using this protocol knows the message length.

39

7. Communication and representation of data

40

8
Algorithms for reading

ASP-displays

There are different algorithms that may be used for reading ASP-displays. These
algorithms can be divided into different steps that can be combined in different
ways. These algorithms are evaluated in the next chapter but an overview together
with explanations over the steps are given in this chapter.

8.1 Evaluated algorithms
As seen in figure 8.1 there are different approaches suitable for reading and pro-
cessing scans of seven-segment displays. However, any combination is not possible
since some approaches during one phase may depend on a certain method in the
preceding step. Therefore, in order to fully understand the different approaches a
brief explanation of the different evaluated algorithms is hereby given.

Method 1
This method is based on using the algorithm Match Pattern, see section 8.3.1, for
finding the display in an image. The algorithm depends on using Hough line trans-
form for finding lines in the image.

Method 1A In order to create a one channel image a simple conversion from color
to gray scale is used. Adaptive threshold is then used for marking the edges.

Method 1B As with method 1A a simple color conversion are used for gray scaling.
However, in order to mark the edges Canny edge detector is used.

Method 1C This approach differs from the previous methods by using the algo-
rithm Find color, see section 8.5.1, for creating a gray scaled image. Canny edge
detector is the applied for marking edges.

Method 2
This algorithm is instead based on the algorithm Match Shapes, see section 8.3.2, for
finding the display. The algorithm does not require edges being marked but requires
adaptive threshold for finding the characteristics of the image.

41

8. Algorithms for reading ASP-displays

Method 2A Simple color conversion is used for gray scaling the image.

Method 2B Find color is used for the gray scaling.

Input image

Single-channel conversion

Finding image characteristics

Finding pattern

Processing

Find color Grayscaling

Canny Adaptive threshold

Ellipse fittingMatch pattern Match shapes

Figure 8.1: Flowchart of different possible paths for a seven-segment display de-
tection algorithm. Lighter blue boxes means that one of the darker blue boxes in
them may be used. Dashed lines and boxes represent untested steps and paths in
our results. Each step is further explained in this chapter.

8.2 Processing
The final processing takes a single-channel image of a display with a straight, front-
up perspective, and analyzes which segments are lit. Lit segments should be high-
lighted with a non-zero value, while the rest should be set to zero. This thesis
proposes no more than one algorithm for this step because of its simplicity. The
algorithm looks at specified pixels and determines if the segments are lit or not. If
the calibration bits are unlit, the algorithm rotates the image 90◦ or 180◦ depending
on previous knowledge. This is repeated until all combinations are tried or a pattern
is found.

42

8. Algorithms for reading ASP-displays

8.3 Finding a pattern
The algorithms described in this section take lines found in an image to determine
where the pattern is. As the four corners are found the next step is to perform a
quadrilateral crop to extract the identified frame to a perfect rectangle suitable for
interpretation. As mentioned in 7.2, it is important to add a border to the identified
frame in order to avoid ignoring any dots outside the frame. As the lines surrounding
the pattern are found it is possible find the four corners, (x, y) of the pattern by
calculate the following simultaneous equations for each intersecting line:y = k0 · x + m0

y = k1 · x + m1
⇒ x = m1 − m0

k0 − k1
.

In the event of a completely vertical line, the corresponding k is ∞. Thus, the
equation cannot be solved. However, since the x-coordinate then is fixed it is possible
to just calculate y using y = k × x + m using the k and m of the other line.

8.3.1 Match pattern
Match Pattern is a classifying algorithm that finds a seven segment pattern from
lines represented as (x0, y0, x1, y1) where (x0, y0) represents the beginning of the line
and (x1, y1) represents the end. These lines were detected by using the progressive
probabilistic Hough line transform as described in section 4.9.3 since it is considered
both faster and more accurate than the other implementations. As lines are inserted
the algorithm translates them into polar coordinates where θ is the angle of the line
and ρ is the smallest distance from the line to the center of the image, see figure
8.2. Theta is orthogonal to the angle of the line, thus we have the following:

∆x = x1 − x0,

∆y = y1 − y0,

θ = 90◦ + arctan ∆y

∆x
.

Calculating ρ is now done by first calculating the center, (xc, yc), the angle pointing
to that center, α, and the distance, d from the origin to that point, d;

xc = x0 + ∆x

2
,

yc = y0 + ∆y

2
,

α = arctan(yc, xc),

d =
√

y2
c + x2

c .

Note that arctan with two arguments is used for having it defined 360◦. Using these
values it is now possible to calculate ρ,

ρ = d × cos(θ − α).

43

8. Algorithms for reading ASP-displays

Figure 8.2: Illustration of how to represent a line

These lines are then categorized into separate classes after their corresponding theta.
As all lines found are inserted the algorithm enters a voting procedure for each class.
During this procedure it takes two lines inserted and calculates the point where
they would intersect and the distance from each other. Given θ1, ρ1, θ2 and ρ2 the
intersection, (θ, ρ), can be calculated as follows:

t =
√

ρ2
1 + ρ2

2 − 2ρ1ρ2 cos(θ1 − θ2),

θ = arccos(ρ2 sin θ1 − ρ1 sin θ2)
t

,

ρ = t

sin(θ1 − θ2)
.

Using this information along with the dimension of the display one can assume
which of the lines in the pattern that the two selected may correspond to. With
this information the algorithm then creates a representation of where all segments
in the given direction may be, see figure 8.3. All detected lines in that direction
are then used to up- or down-vote that assumption. If, Hough Lines Transform has
been used to find the lines there will often be a detected line on both sides of each
segment. If, in that case, there are two lines up-voting an assumption for a line, it
is weighted as 2 votes while if only 1 line up-voted the assumption it is weighted as
1. If a line exists in the pattern that is positioned further away from an assumed
line than the threshold given it down-votes the assumption.

44

8. Algorithms for reading ASP-displays

Figure 8.3: Illustration of how the segments in one direction are estimated, red
lines, given the identified lines, blue lines.

The assumptions are then sorted after the number of votes. As this voting procedure
is done for all classes it combines the result for any two different classes in order to
create a grid. Any combination where it is clear that the two assumptions cannot
be valid together, for example if the two assumptions are of different scales or that
the angle difference is to small, are filtered out. Finally the grid with the highest
number of votes are returned, see figure 8.4.

8.3.2 Match shapes
This algorithm needs as input a binary image where segments are of one color and
the display background of another. The adaptive threshold algorithm described in
section 4.6 is used with a relatively big kernel size for this purpose. The algorithm
then uses this image to find contours using the algorithm explained in section 4.7
removing the ones that are not within a given size range, and then compares the
contours to other contours (called shapes, see figure 8.5) in a dataset using one of the
three comparison methods explained in section 4.8.3. The dataset consists of shapes
that describes different combinations of segments since segments can sometimes
merge after doing an adaptive threshold binarization. The closest match is used as
long as it is close enough (using some threshold) and if either both have children or
none does.
Some noise is to be expected, so we want to find a suitable middle point and only
include the contours within a certain radius of this point. The middle point is
chosen using the following voting procedure: For each match, its middle point gets

45

8. Algorithms for reading ASP-displays

Figure 8.4: The top left image is the result after applying adaptive threshold.
The top rights shows the lines detected by Hough Line transform. The bottom left
image shows the up-voted grid using the Match Pattern algorithm. The last image
illustrates the scanning procedure returning the result.

the number of segments it represents as number of votes. Then, for each point, the
voting-weighted average is calculated and the image’s middle point is chosen. For
instance, imagine a situation with three merged segments located at (x0, y0) and one
lone segment at (x1, y1). The three merged segments will most likely be matched
with a shape which is known to represent three segments and the lone segment with
a shape which is known to represent one segment. Therefore, the image’s middle
point will become ((3x0 + x1)/4, (3y0 + y1)/4).
Finally, a rotated rectangle with a minimum area enclosing the contours is found
and rotated to a straight state.

8.3.3 Ellipse fitting
Segments of seven segment displays have shapes that somewhat resembles ellipses.
Using optimized algorithms for finding ellipses instead of general shapes could there-
fore be beneficial for the performance of the final algorithm.
Initially the algorithm finds contours in an image using the contour finding algorithm
explained in section 4.7 and then fits ellipses to them using the algorithm explained
in section 4.8.4. It then filters these ellipses by only taking those that has the form
of a segment, which is defined as having a height-width ratio within a certain range
and a height of a certain range. The range of the height is set with knowledge of the
camera properties (such as its resolution and angle of view) and the requirements
(maximum distance between the camera and display) in mind. Outliers are then
removed by selecting a averaged middle point of all the ellipses and selecting only
those within a certain radius of that point.
The found ellipses could then be used to either extract lines by taking the widest

46

8. Algorithms for reading ASP-displays

Figure 8.5: Unique segment shapes for the LCD Display. Shapes with children are
marked in red and those with no children are marked in blue.

parts of the ellipses and sending them to a pattern finding algorithm as described in
section 8.3, or to enclose a rotated rectangle around the ellipses in the same manner
as described in section 8.3.2 in order to send it directly to the processing algorithm.

8.4 Finding image characteristics
It important to create a binary image representing characteristics of an image rather
than the image itself. These characteristics may be edges, or more specifically the
difference in color rather than the actual color. This section will explain the different
algorithms tested and compared within the project.

Canny edge detector
The Canny Edge algorithm, as described in section 4.4, is an algorithm specified on
finding edges and may therefore be used to find the sides of the segments.

Adaptive threshold
Adaptive thresholding, see section 4.6, is another candidate algorithm for finding the
characteristics that has been compared. It can either be used with a relatively small
kernel to find edges, or with larger kernels to make whole segments in displays having

47

8. Algorithms for reading ASP-displays

the same color. Smaller kernels are more appropriate if the result is sent to a line
detection algorithm, while larger kernels are more appropriate for shape-matching
algorithms.

8.5 Creating an image of one channel

The previously mentioned algorithms requires an 8 bit single-channel image to pro-
cess. However, this image can be derived using different methods.

Grayscaling

A simple and fast way to convert a color picture into gray scale is to sum each
channel with some ratio. In OpenCV and in this project, the following formula is
used: S = 0.299R + 0.5870G + 0.1140B [16], where R,G and B represent the red,
green and blue channels respectively, and S represents the final intensity.

8.5.1 Find color

Instead of a plain conversion from a color image into gray scale, another conversion
technique which filters colors and thereby also removes noise is investigated in this
thesis. This is done by specifying a trinarization function f : Z3

256 → Z3 on colors
for each type of display. The function is applied for each pixel in a 3-channel image
and results in three different colors:

• 0, foreground: The color of the segments
• 1, background: The color of the area surrounding the segments
• 2, undefined: Color that is neither the foreground or the background

Doing this conversion may be beneficial for both the edge detection algorithms and
the shape finding algorithm. However, a disadvantage of doing so is that it adds
requirements on knowledge about the colors of the display being scanned. Beside
being impractical for the user to specify what kind of display is being scanned, it
also requires specifying definitions of the colors for each different kind of display.
A Matlab script was defined that takes samples from the background and foreground,
analyzes them and illustrates the colors found in 3D or more specifically RGB-space,
see figure 8.7. Using these plots, geometrical surfaces were defined for deciding
whether a certain color belongs to foreground, background or undefined.
The following equation is proposed for describing the red LED display used in this
study. However, in the case of the reflective LCD we found that it is impossible
to define a clear distinction between the foreground and the background. This is
because the reflective display reflects the light in the room making it very sensitive
for noise such as shadows.

48

8. Algorithms for reading ASP-displays

fRED_LED(r, g, b) =

foreground if r ̸= 0
∧ b < r2

400 + 400 + g
2 + 40

∧ b > r2

600 + g
2 − 60

∧ g < r2

255
∧ g > 4000

r
− 30

background if r = 0
∨ g < 4000

r
− 70

∧ b < r2

400 + g
2 + 40

∧ b > r2

600 + g
2 − 20

∧ g < r + 10
undefined otherwise

An example of applying fRED_LED on an image of a red LED display is shown in
figure 8.6

Figure 8.6: Left: An image of a red LED display. Right: Applying fRED_LED on
each pixel of the image. Foreground is colored as white, background as black and
undefined as gray

49

8. Algorithms for reading ASP-displays

(a) Red LED
X-axis: Red, Y-axis: Green

(b) Reflective LCD
X-axis: Red, Y-axis: Green

(c) Red LED
X-axis: Red, Y-axis: Blue

(d) Reflective LCD
X-axis: Red, Y-axis: Blue

(e) Red LED
X-axis: Green, Y-axis: Blue

(f) Reflective LCD
X-axis: Green, Y-axis: Blue

Figure 8.7: The result when analysing the colors of two displays seen from three
perspectives of the RGB cube. Foreground color is plotted in blue and background
color in red.

50

9
Results and discussion

In this chapter, we evaluate how much data the proposed system is capable of
transmitting. We first give a general overview of how the ASP protocol and its pa-
rameters affect the throughput, then we compare the proposed ASP-display reading
algorithms in term of speed and correctness, and finally we motivate our choice of
algorithm and parameters accordingly. As seen in figure 9.1, the choice of the pa-
rameters highly depends on the environmental properties. However, we chose values
for the parameters in the algorithms that gave the best result. That is, in order of
decreasing priority, the following:

• No or very few incorrectly identified patterns.
• As many correct identified patterns as possible.
• A high frame rate.

9.1 Data amount and throughput
The amount of data that can be sent each sequence depends on the number of units in
the pattern. However, no matter the dimensions of the pattern there is always 5 bits
reserved for calibration. In addition, with an increasing number of sequences more
bits must be reserved for denoting what sequence is currently sent. This number
increases logarithmically to the number of sequences. The data throughput also
depends on how many patterns that can be interpreted each second. The maximum
data that can be sent if not considering the time it will take can be calculated by
reserving all bits but one as sequence bits. Thus, we have

2nb−5−1 × 1

where nb is the number of segments and dots. However, having this many bits as
sequence bits also results in sending only one bit at a time. Therefore we have
assumed that we cannot expect the user to wait for longer than 5 seconds to get
the complete message. Hence, the maximum number of sequence bits that can be
reserved can be calculated by

smax = log2(
5
fr

)

where fr is the frame rate and smax is the maximum amount of sequence bits that
may be used. The maximum amount of data can therefore be calculated using

2smax(nb − 5 − smax).

51

9. Results and discussion

(a) LED display in different lights.

(b) C = -2

(c) C = -20

Figure 9.1: The parameters of the adaptive threshold highly depends on the envi-
ronmental properties.

However, the maximum data throughput happens when only sending one message
and therefore not using any bits at all as sequence bits. Of course, this requires that
the message cannot be of more bits than the number of bits in the pattern excluding
the calibration bits.

52

9. Results and discussion

9.2 Statistics
In this section, the different algorithms are compared with each other. Both cor-
rectness as well as speed are tested. The testing set consists of a total of 208
images where 57 of them includes a LCD-display and 50 a red LED-display and 101
non-sense images. Images has been chosen based on interesting properties worth
investigating such as different angles and distances.
The different algorithms were compared with each other to estimate the potential of
each approach. The test result can be found in the following tables and the results
are also discussed in the following sections. During the testing the parameters
were optimized for having as few incorrect interpreted images as possible. Thus,
the algorithm is considered better if it rejects an image completely than falsely
interpret it. Since falsely identified and interpreted patterns are considered a major
drawback, additional testing was done using nonsense images containing no seven-
segment displays at all.

Method Corr. Incorr. Undef. Avg (ms) Worst case (ms)

1A 10 4 36 103 507
1B 21 4 15 49 371
1C 8 2 40 41 277
2A 39 0 11 67 380
2B 12 6 32 60 312

Table 9.1: Comparing performance and correctness of algorithm when using dif-
ferent edge detection algorithms on LED

Method Corr. Incorr. Undef. Avg (ms) Worst case (ms)

2A 12 3 42 296 959

Table 9.2: Comparing performance and correctness of algorithm when using dif-
ferent edge detection algorithms on LCD

9.2.1 Discussion - Method 1 - Match pattern
The algorithm was not tested on LCD displays since the edges of the segments are
much weaker than many other edges found in the image. Thus, any parameter
during the edge detection that identifies the segment will also identify very much
noise. Also the result for LED displays was unsatisfactory as seen in table 9.1.
However the study showed several reasons for why these algorithms did not perform
well. Firstly, the distance between each segment is about equal to the distance
between the units in the display. This means that the grid created by the algorithm
consists of perfect squares and that this, in turn, results in the algorithm displacing

53

9. Results and discussion

Method Corr. Incorr. Avg (ms) Worst case (ms)

1A 97 4 305 1035
1B 80 21 509 2129
1C 101 0 14 128
2A 94 7 241 1136
2B 101 0 25 87

Table 9.3: Comparing performance and correctness of algorithm when using dif-
ferent edge detection algorithms on nonsense images

the grid if any outlying edges were not detected. A possible improvement for this
could be to let more than one up-voted grid to the processing phase. This would
however also result in a higher average and worst time. Another major drawback
of the algorithm is that lines vary a lot in length. In order to detect the lines when
scanning the segment from a distance it is necessary to allow for short lines. This
however increases the possibility to also to find lines in the noise of the image.

Method 1A - Using Adaptive threshold As seen in 9.1, using adaptive for
detecting edges was not beneficial. A main cause is that adaptive threshold may
mark edges with a varying width. This causes Hough Line Transform to be able to
draw lines in more directions than supposed, especially when allowing short lines.
However it did reject almost all nonsense images.

Method 1B - Using Canny Edge Detector Canny Edge detector, in contrary,
always marks edges using a width of one pixel. This caused the lines detected by
the Hough Line Transform to indeed get the correct direction, thus the results are
much better. However, it was a worse algorithm when it comes to rejecting false
images, it does identify more edges in these images since it does not as effectively
reduce larger areas of somewhat the same brightness of color.

Method 1C - Using Canny Edge Detector after Find Color Using the color
filter did not increase the number of interpreted pattern, neither did it increase the
percentage that are correctly identified. However, by filtering the color the noise
was heavily reduced, thus none of the nonsense images was accepted. It had also a
positive effect on performance.

9.2.2 Discussion - Method 2 - Match shapes
During the scanning of LED it was noticed that there were three different causes for
not successfully scan a pattern. Most of the rejects happened because the light from
a dot and a segment was merged together, see figure 9.2. This issue can however
be solved by introducing the shapes where this phenomenon has happened to the
training set. Beside this issue, it also failed once when the photo was shot in a
bright environment. The pattern of the wooden desktop was rather enhanced when

54

9. Results and discussion

Figure 9.2: The dot and a segment are merged together creating a different shape.

adaptive threshold was applied, resulting in a false identification of a segment, see
9.3. The last issue causing the algorithm to fail identifying the pattern happened
because some of the segments were currently changing state. Some of the segments
was neither on nor off, see 9.4 causing adaptive threshold to create a cracked pattern.

Method 2A - Without Find Color It is rather stable when scanning LED
displays, see table 9.1. It correctly identifies around 80% of given images. Those
not interpreted are also rejected which is better than a false identification. However,
it does not perform as well when it comes to LCD displays, see 9.2, and 7 of the
nonsense images are also falsely interpreted, see 9.3.

Method 2B - With Find Color Using find color was not beneficial for the
interpretation of patterns. Preprocessing the images using Find Color also resulted
in the segments fading away when adaptive threshold was applied. However, it
increased the overall performance and it also improved the ability to reject nonsense
images. However, even if the result was not correctly interpreted it was noticed that
the region of interest in noisy environment was better positioned.

Figure 9.3: The photo is taken in a light room causing some structures in the
wooden desk to be enhanced rather than filtered out.

In the event of interpreting patterns displayed on an LCD display, it was found that
the algorithm does not perform as well. Worth to notice is that the environment
where the photos have been shot contains a lot of noise as seen in figure 9.5. In
order to improve this algorithm it is worth to consider implementing more filters

55

9. Results and discussion

Figure 9.4: The segments are neither on or off making it hard to determine an
actual state.

for filtering out noise that looks like segments. As the figure shows the detected
rectangle has a very large width compared to the height why it should be possible
to only allow rectangles of possible proportion given the dimension of the display.

Figure 9.5: One of the segments found is actually noise, thus the pattern is not
correctly identified.

9.3 Choice of algorithm and parameters
In this section the results are discussed and an algorithm is proposed. The result
showed that the algorithm that performed best is Match Shapes. To add a margin
to the time it takes to interpret the pattern we decided to choose a frame rate of 2
frames per second. Thus, this results in a maximum of 10 frames. The maximum
number of bits possible to send can therefore be calculated by using the following
formula:

10(nb − 5 − 4))

and the maximum data throughput, sending only one frame, is given by:

2(nb − 5)

where nb is the number of bits, dots and segments, in the pattern.

56

10
Conclusion

We have created a set of methods for reading seven segment displays optically and
a protocol for maximized throughput using several proposed techniques, including a
minimum set of calibration bits, bit mapping and dynamic sequencing. The methods
were compared for both time and correctness. This chapter summarizes the result
from the previous chapters, concluding what algorithms and settings that are most
suitable for use in a final system. This chapter also discusses what improvements
that should be considered for any future work.

10.1 Conclusion of result

From our point of view, the most important aspect of an ASP reader is to have as
high a ratio of correctly interpreted pattern as possible. However, the time is also
important and especially if the worst case scenario varies a lot from the average
time. This is because it would be an issue since the frame rate of the machine
is static. However this issue can always be solved by rejecting images if a certain
time has been exceeded. However, if the amount of rejected images is too high the
application would be very infeasible to use.
Another interesting conclusion is that having Find Color for gray scaling, and
thereby introducing more processing in an early stage, increases the overall perfor-
mance. However it did not increase the amount of successfully interpreted patterns.
However we believe this could be improved. Anyway, adding Find color to the
algorithm also demands that color settings are predefined when scanning.
Method 2 has the most promising correctness ratio, and is the only method which
is usable on LCD displays. It has a worst case time of 380ms on a PC, which is why
we propose a frame rate of 500ms in the dynamic sequencing part of the protocol.
This allows for some margin when using the algorithm on a smartphone. It could
be possible to change this in the future if it is deemed necessary, but it is not our
estimation that this is the case in the industry. The messages that might be needed
would probably fit in under four sequences on a display that contains two units,
thus the time it would take to scan, assuming the scanning works flawlessly, would
be two seconds. This, we believe, is an acceptable waiting time in an industrial
context.

57

10. Conclusion

10.2 Future work
In this section it is discussed how it is possible to improve the application and
algorithms further. We will also discuss what requirements need to be fulfilled in
order to actually implement the technology in the industry.

Software updates on machines This project has been focused on developing an
algorithm required for implementing the functionality of interpreting seven-segment
displays as bit-patterns rather than digits using an android smartphone. In order to
use this technology it is required that any machine that should be capable generating
these patterns have appropriate software for doing so.

Handling of information The application itself may be extended in order to redi-
rect any user to, for example, a website presenting information about, for instance,
an error code found within a message. Also, if a message contains information such
as an identifier to a serial or product number, the databases needs to be imple-
mented.

Different settings for different devices The device used within the project
lacked a lot of capabilities to manually configure the camera even though the Camera
API 2 of device has support for more features. When using other devices, one has
greater potential to configure the camera without the requirement for the manual
calibration of the camera described in 5.3.2. Depending on the device the application
is installed on, it is possible to offer different manual and automatic settings. It is
also possible to implement functionality so that devices using the Camera API 1
can use the application.

Adding support for redundancy or parity control There has been not any
focus to implement any functionality for an error-correction mechanism or parity
checking. While error-correction may be difficult because the limited number of bits,
parity checking of both each pattern and the whole message can be implemented to
increase the reliability.

Porting algorithms to native code In order to increase the performance of
the application it is possible to port the algorithm to native code, C++. Using
Java for the GUI only and perform only one JNI when calling the image processing
algorithm would significantly increase the performance.

58

Bibliography

[1] “Computer vision.” http://en.wikipedia.org/w/index.php?title=
Computer_vision. [Online; accessed 29-April-2015].

[2] “Image analysis.” http://en.wikipedia.org/w/index.php?title=Image_
analysis. [Online; accessed 29-April-2015].

[3] “Image processing.” http://en.wikipedia.org/w/index.php?title=Image_
processing. [Online; accessed 29-April-2015].

[4] “Pattern recognition.” http://en.wikipedia.org/w/index.php?title=
Pattern_recognition. [Online; accessed 4-May-2015].

[5] “EAN-13 and EAN-8.” http://www.gs1.se/en/Standards/Capture/
ean-13-and-ean-8/. [Online; accessed 07-October-2015].

[6] qrcode.com, “Seven-segment display.” http://www.qrcode.com/en/. [Online;
accessed 08-October-2015].

[7] T. Langlotz and O. Bimber, “Unsynchronized 4D Barcodes,” in Advances in
Visual Computing (Bebis, George and Boyle, Richard and Parvin, Bahram and
Koracin, Darko and Paragios, Nikos and Tanveer, Syeda-Mahmood and Ju, Tao
and Liu, Zicheng and Coquillart, Sabine and Cruz-Neira, Carolina and Müller,
Torsten and Malzbender, Tom, ed.), vol. 4841 of Lecture Notes in Computer
Science, pp. 363–374, Springer Berlin Heidelberg, 2007.

[8] “Optical character recognition.” http://en.wikipedia.org/wiki/Optical_
character_recognition. [Online; accessed 08-October-2015].

[9] I. Bonačić, T. Herman, T. Krznar, E. Mangićm, G. Molnar, and M. Čupić,
“Optical Character Recognition of Seven–segment Display Digits Using Neu-
ral Networks,” 2009. http://morgoth.zemris.fer.hr/people/Marko.Cupic/
files/2009-SP-MIPRO.pdf. [Online; accessed 30-November-2015].

[10] E. Vázquez-Fernández, A. Dacal-Nieto, H. González-Jorge, F. Martín,
A. Formella, and V. Alvarez-Valado, “A machine vision system for the calibra-
tion of digital thermometers,” Measurement Science and Technology, vol. 20,
no. 6, p. 065106, 2009.

[11] R. Ghugardare, S. Narote, P. Mukherji, and P. Kulkarni, “Optical character
recognition system for seven segment display images of measuring instruments,”
TENCON 2009 - 2009 IEEE Region 10 Conference, pp. 1–6, Jan 2009.

[12] E. M. Ivan Timofeev, Ilya Paramonov, “Measurement Data Recognition from
Seven-Segment Indicator by Mobile Device,” Proceedings of 15th Conference of
Open Innovations Association FRUCT .

[13] E. Auerswald, “Seven Segment Optical Character Recognition - sscor,” 2004.
[14] J. Tyson, “How LCDs Work.” http://electronics.howstuffworks.com/

lcd.htm, July 2000. [Online; accessed 22-June-2015].

59

http://en.wikipedia.org/w/index.php?title=Computer_vision
http://en.wikipedia.org/w/index.php?title=Computer_vision
http://en.wikipedia.org/w/index.php?title=Image_analysis
http://en.wikipedia.org/w/index.php?title=Image_analysis
http://en.wikipedia.org/w/index.php?title=Image_processing
http://en.wikipedia.org/w/index.php?title=Image_processing
http://en.wikipedia.org/w/index.php?title=Pattern_recognition
http://en.wikipedia.org/w/index.php?title=Pattern_recognition
http://www.gs1.se/en/Standards/Capture/ean-13-and-ean-8/
http://www.gs1.se/en/Standards/Capture/ean-13-and-ean-8/
http://www.qrcode.com/en/
http://en.wikipedia.org/wiki/Optical_character_recognition
http://en.wikipedia.org/wiki/Optical_character_recognition
http://morgoth.zemris.fer.hr/people/Marko.Cupic/files/2009-SP-MIPRO.pdf
http://morgoth.zemris.fer.hr/people/Marko.Cupic/files/2009-SP-MIPRO.pdf
http://electronics.howstuffworks.com/lcd.htm
http://electronics.howstuffworks.com/lcd.htm

Bibliography

[15] T. Harris and W. Fenlon, “How Light Emitting Diodes Work.” http://
electronics.howstuffworks.com/led.htm, January 2002. [Online; accessed
22-June-2015].

[16] G. R. Bradski and A. Kaehler, Learning OpenCV. O’Reilly, 2004.
[17] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision.

West Nyack, NY, USA: Cambridge University Press, 2004.
[18] L. Zeinik-Manor and M. Irani, “Multiview constraints on homographies,” Pat-

tern Analysis and Machine Intelligence, IEEE Transactions on, vol. 24, pp. 214–
223, Feb 2002.

[19] S. Pande, V. S. Bhadouria, and D. Ghoshal, “A Study on Edge Marking Scheme
of Various Standard Edge Detectors,” International Journal of Computer Ap-
plications, vol. 44, no. 9, pp. 33 – 37, 2012.

[20] R. Deriche, “Using Canny’s criteria to derive a recursively implemented optimal
edge detector,” International Journal of Computer Vision, vol. 1, no. 2, pp. 167–
187, 1987.

[21] A. K. Cherri and M. A. Karim, “Optical symbolic substitution: edge detection
using Prewitt, Sobel, and Roberts operators,” Appl. Opt., vol. 28, pp. 4644–
4648, Nov 1989.

[22] S. Suzuki and K. Abe, “Topological structural analysis of digitized binary im-
ages by border following,” Computer Vision, Graphics, and Image Processing,
vol. 30, no. 1, pp. 32 – 46, 1985.

[23] E. M. Saad, M. M. Hadhoud, M. I. Dessouky, M. E. Elhalawany, and A. M.
Abbas, “Fusion of Zernike moments and Fourier-Mellin transform for invariant
image resolution,” Optical Engineering, vol. 47, no. 1, p. 17002, 2008.

[24] “OpenCV matchShapes function.” http://docs.opencv.org/modules/
imgproc/doc/structural_analysis_and_shape_descriptors.html?
highlight=findcontours#double%20matchShapes%28InputArray%
20contour1,%20InputArray%20contour2,%20int%20method,%20double%
20parameter%29. [Online; accessed 08-10-2015].

[25] A. Fitzgibbon and R. B. Fisher, “A Buyer’s Guide to Conic Fitting,” in British
Machine Vision Conference, pp. 513–522, 1995.

[26] N. Kiryati, Y. Eldar, and A. Bruckstein, “A probabilistic Hough transform,”
Pattern Recognition, vol. 24, no. 4, pp. 303 – 316, 1991.

[27] C. Galamhos, J. Matas, and J. Kittler, “Progressive probabilistic Hough trans-
form for line detection,” in Computer Vision and Pattern Recognition, 1999.
IEEE Computer Society Conference on., vol. 1, pp. –560 Vol. 1, 1999.

[28] S. Allen, V. Graupera, and L. Lundrigan, “Android,” in Pro Smartphone Cross-
Platform Development, pp. 35–50, Apress, 2010.

[29] F. Manjoo, “A Murky Road Ahead for Android, Despite Market Domi-
nance.” http://www.nytimes.com/2015/05/28/technology/personaltech/
a-murky-road-ahead-for-android-despite-market-dominance.html,
May 2015. [Online; accessed 22-June-2015].

[30] O. Cinar, Android Quick APIs Reference. Berkeley, CA: Apress, 2015.
[31] F. Liu, Android native development kit cookbook. Birmingham: Packt Publish-

ing, 2013.

60

http://electronics.howstuffworks.com/led.htm
http://electronics.howstuffworks.com/led.htm
http://docs.opencv.org/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=findcontours#double%20matchShapes%28InputArray%20contour1,%20InputArray%20contour2,%20int%20method,%20double%20parameter%29
http://docs.opencv.org/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=findcontours#double%20matchShapes%28InputArray%20contour1,%20InputArray%20contour2,%20int%20method,%20double%20parameter%29
http://docs.opencv.org/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=findcontours#double%20matchShapes%28InputArray%20contour1,%20InputArray%20contour2,%20int%20method,%20double%20parameter%29
http://docs.opencv.org/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=findcontours#double%20matchShapes%28InputArray%20contour1,%20InputArray%20contour2,%20int%20method,%20double%20parameter%29
http://docs.opencv.org/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=findcontours#double%20matchShapes%28InputArray%20contour1,%20InputArray%20contour2,%20int%20method,%20double%20parameter%29
http://www.nytimes.com/2015/05/28/technology/personaltech/a-murky-road-ahead-for-android-despite-market-dom inance.html
http://www.nytimes.com/2015/05/28/technology/personaltech/a-murky-road-ahead-for-android-despite-market-dom inance.html

Bibliography

[32] N. A. Halli, H.-P. Charles, and J.-F. Mehaut, “Performance comparison between
Java and JNI for optimal implementation of computational micro-kernels,”
2014. http://arxiv.org/pdf/1412.6765v1. [Online; accessed 30-November-
2015].

[33] “Haskell.” https://www.haskell.org/. [Online; accessed 8-October-2015].
[34] V. Berthoux, “Juicy Pixels.” https://github.com/Twinside/Juicy.Pixels,

2015. [Online; accessed 1-July-2015].
[35] F. Weinhaus, “3D Rotate.” http://www.fmwconcepts.com/imagemagick/

3Drotate/index.php, 2014. [Online; accessed 1-July-2015].
[36] “Image Magick.” https://www.imagemagick.org/. [Online; accessed 31-July-

2015].

61

http://arxiv.org/pdf/1412.6765v1
https://www.haskell.org/
https://github.com/Twinside/Juicy.Pixels
http://www.fmwconcepts.com/imagemagick/3Drotate/index.php
http://www.fmwconcepts.com/imagemagick/3Drotate/index.php
https://www.imagemagick.org/

Bibliography

62

	List of Figures
	List of Tables
	List of Definitions
	Introduction
	Background
	Segment displays
	Purpose
	Contribution
	Problem formulation
	Delimitations

	Research area and related work
	Barcodes
	OCR of seven-segment displays

	Optics
	Pixel
	RGB
	Raw

	Properties of the camera
	Exposure
	Automatic exposure
	Exposure compensation
	Overexposure and underexposure

	Properties of displays
	LCD-display
	LED-display

	Image analysis and computer vision
	OpenCV
	Pinhole camera model
	Homography
	Canny and Deriche edge detector
	Smoothing of image
	Finding intensity gradient
	Roberts
	Prewitt and Sobel

	Non-maximum suppression
	Double threshold
	Suppress weak edges

	Threshold
	Adaptive threshold
	Finding contours
	Image moments
	Scale and translation invariant moments
	Rotation invariant moments
	Comparing rotation invariant moments
	Conic fitting

	Hough transform
	Classical Hough transform
	Probabilistic Hough transform
	Progressive probabilistic Hough transform
	Other variations of Hough transform

	Android
	Development for Android devices
	OpenCV in Android
	The Android camera
	Camera API 2
	Capturing a display

	Development and verification
	Materials
	Generating synthetic test cases
	Lab environment

	Communication and representation of data
	Bit significance
	Calibration bits
	Dynamic sequencing
	Bit significance using dynamic sequencing
	Calculating the number of frame bits

	Algorithms for reading ASP-displays
	Evaluated algorithms
	Processing
	Finding a pattern
	Match pattern
	Match shapes
	Ellipse fitting

	Finding image characteristics
	Creating an image of one channel
	Find color

	Results and discussion
	Data amount and throughput
	Statistics
	Discussion - Method 1 - Match pattern
	Discussion - Method 2 - Match shapes

	Choice of algorithm and parameters

	Conclusion
	Conclusion of result
	Future work

	Bibliography

