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Abstract

Barium zirconate (BaZrO3) is a promising candidate as proton conducting electrolyte to
be be used in fuel cells. Despite extensive investigations the basic structure of BaZrO3

as a function of temperature is not fully understood. It is related to possible instabilities
in the cubic system that may show up in the local and/or global ordering of the material
as a function of temperature.

In this study three different types of simple models for barium zirconate are created,
one giving rise to an ordinary cubic structure, one giving rise to distortion and one
intermediate on the limit between the two others. All three models are based on a
pair potential taking three types of interaction into account, Pauli repulsion, van der
Waals interaction and Coulomb interaction. Static and dynamic properties obtained
from computer simulations of the three models are presented to illustrate the different
behaviours.

The stability of the models are investigated by calculating phonon spectra. Molecular
dynamics are used to study the time evolution of the system. The oxygen atoms for the
model giving rise to distortion are found to move a lot more compared to the other two
models due to the potential being softer around the ideal cubic perovskite. The obtained
radial distribution function indicate that the distortions are not found for temperatures
above 300 K, meaning a phase transition happens. Furthermore for large systems the
formation of clusters of different distortions are observed.

Using the type of simple models created one could in an easy way compare experimental
results with computer simulations to get a better understanding of instabilities in
perovskites in general and barium zirconate in particular.

Keywords: Barium zirconate, Perovskite structure, Molecular dynamics, Model
potentials
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1

Introduction

The last couple of years there has been an increasing awareness of the effect humanity has
on the nature and climate. The will to replace fossil fuels with green energy alternatives
has led to an increasing interest in fuel cells. There are many different types of fuel cells
but they all consist of an anode, a cathode and an electrolyte. One promising electrolyte
for the proton conducting fuel cell is barium zirconate (BaZrO3).

Although a lot of research about BaZrO3 has been done the basic structure of the
material as a function of temperature is not fully understood. It is related to possible
instabilities in the cubic system that may show up in the local and/or global ordering of
the material as function of temperature.

1.1 Purpose and limitations

The intention of this study was to find three different types of simple potentials describing
barium zirconate (BaZrO3), one giving rise to an ordinary cubic structure, one giving
rise to distortion and one intermediate on the limit between the two others. In order to
distinguish them from each other in an easy way they are called model A (stable), model
B (intermediate) and model C (unstable) throughout the report.

To test if the models give rise to distortion phonon spectra were calculated based on the
simple potentials. Molecular dynamics simulations were then performed in order to study
both static and dynamic properties of the models as a function of temperature.

The aim of this project is to do qualitative rather than quantitative research. There
is thus no intention to make exact predictions about the properties of barium
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CHAPTER 1. INTRODUCTION

zirconate. The whole study is carried out using computer simulations, no experimental
measurements are done.

1.2 Thesis outline

This thesis contains seven chapters. The chapter following the introduction, Barium
zirconate, is a more in depth introduction to the material barium zirconate (BaZrO3)
and the structural family of perovskites which BaZrO3 is part of. Some properties of the
perovskite structure and BaZrO3 are described and in the final section of the chapter a
brief review about previous research on the subject is given.

The third chapter consists of a collection of the basic theory used in the thesis. It is
written in a detached way to make it easy to use as a reference when reading the other
parts of the report. Examples of theory that is described in this chapter is pair potential
(3.2) and mean square displacement (3.5).

In the fourth chapter, Computational methods, the practical details about the model
used and how the simulations were done is described. This chapter includes a section
about molecular dynamics (4.2) and sections about software that was used (4.4 and 4.5).
An example of code that was used can be found in appendix A.

In chapter 5 the obtained results are presented. Chapter 6 contains a discussion of the
obtained results and an outlook on possible future studies and finally chapter 7 is a
conclusion of the thesis.
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2

Barium zirconate

In this chapter the material studied in this project, barium zirconate (BaZrO3), is
presented in more detail. In section 2.1 a brief description of the structural family of
perovskites, which BaZrO3 is part of, is made. The last part of this chapter, section 2.2, is
a brief review of some results obtained in previous studies about barium zirconate.

2.1 Perovskites

A material is said to have a perovskite structure if it has the same crystal structure as
the mineral perovskite, i.e calcium titanate or calcium titanium oxide (CaTiO3). The
general chemical formula for a perovskite structure can be written as ABX3 where A
and B represent cations of different sizes, the A atoms being larger, and X is an anion.
In the ideal cubic structure each B cation is surrounded by an octahedron of the anions
X with the A cation located in the middle of the cube created by eight octahedrons.
An illustration of this can be seen in figure 2.1. As seen the perovskite structure is in
principle a superposition of a bcc lattice and an fcc lattice.

Most materials with the perovskite structure are distorted in some way, so also the
mineral perovskite itself. As an estimate of the tendency for distortion to occur in a
perovskite the Goldschmidt tolerance factor has been introduced. To classify different
kinds of distortions the so called Glazer notation is often used.

2.1.1 Tolerance factor

As mentioned the general chemical formula for a perovskite structure can be written as
ABX3. For a cubic system the lattice constant is given by (2.1).
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CHAPTER 2. BARIUM ZIRCONATE

Figure 2.1: +Fixa egen bild+ The structure of barium zirconate (BaZrO3) with a zirconium
atom surrounded by an octahedron of oxygen atoms.

a =
√

2(rA + rX) = 2(rB + rX) (2.1)

where rA, rB and rX are ionic radii. The Goldschmidt tolerance factor, t, is the ratio
between the two expressions for a and is defined according to equation (2.2). It is used
to predict lattice distortions in perovskite structures [1].

t =
rA + rX√
2(rB + rX)

(2.2)

An ideal cubic perovskite corresponds to t = 1. If either the B ion is too large or the A
ion too small t becomes less than unity and the lattice distorts by the BX6 octahedra
tilting in order to fill space. For t larger than one hexagonal variants of the perovskite
structure are stable. In reality perovskites are not perfectly ionic and since the tolerance
factor is based on the ionic radius it should thus only be used as an rough estimate.

2.1.2 Glazer notation

To construct a general classification describing the tilt of the BX6 octahedron in a
perovskite structure one can consider all tilts as combinations of component tilts about
the three tetrad axes. The final tilt arrangement will then depend on the order in which
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2.2. PREVIOUS STUDIES

the tilt operations are carried out. For small angles however this dependence will only
be of second order.

For small angles of tilt the component tilts can be taken to be about the pseudocubic
axes prior to tilting. The magnitude of each component tilt can then be described by
a set of three letters which refer to the axes in the order [100], [010], [001], and which
in the general case of unequal tilts are denoted abc [2]. This way of describing tilts was
originally developed by Glazer and is often referred to as Glazer’s notation or as in this
report Glazer notation [3].

In Glazer notation equality of tilts is denoted by repeating the same letter, e.g. aac
means equal tilt about [100] and [010] with a different tilt about [001] and aaa indicates
that the tilt about all three axes are equal in magnitude.

When a single octahedron in a perovskite structure is tilted the neighbouring octahedron
will also have to tilt in order to not completely deform the original structure. This is
due to the fact that each oxygen atom in an octahedra is also part of a neighbouring
octahedra. One thus has that for any tilt axis successive octahedra in directions
perpendicular to it will have opposite tilt about that axis. Successive octahedra along
an axis can however have either the same or the opposite sense of tilt. In order to
the describe this the Glazer notation also includes superscripts +, - or 0 for each letter
indicating whether successive octahedra along an axis have the same tilt, opposite tilt
or no tilt about that axis.

Using the Glazer notation then for example the tilt a−a−a− indicates an equal tilt about
each of the three axes corresponding to a rotation vector ~ω = (±1,±1,±1). The three
minuses in the notation indicate that the tilt is alternating in all three directions. This
means that the octahedrons in neighbouring cells to one with rotation vector ~ω will have
a distortion corresponding to a rotation vector −~ω while the next nearest neighbours
will have the same rotation vector and so on.

2.2 Previous studies

Due to its special properties and many applications in modern technology the family of
perovskite structures has been subject for numerous studies. Despite the many studies of
barium zirconate, often including dopants, the detailed features of both the short-range
and long-range crystal structure are yet to be fully explained.

In a study published 1995 Zhong and Vanderbilt obtained the stiffness kR of R-point
antiferrodistortive (AFD) phonon mode, i.e. alternating distortions in all directions,
and the tolerance factor t for eight perovskites [4]. This result is reproduced in table
2.1.

From the table Zhong and Vanderbilt conclude that BaTiO3 and KNbO3 are clearly
stable with respect to AFD distortion which is consistent with experiments. The last
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CHAPTER 2. BARIUM ZIRCONATE

Table 2.1: Stiffness kR of R-point AFD phonon mode (in Hartree) and tolerance factor t
for several perovskite compounds obtained in a previous study [4].

kR t kR t

BaTiO3 0.295 1.07 SrTiO3 -0.042 1.01

KNbO3 0.242 1.06 NaNbO3 -0.133 0.97

BaZrO3 -0.021 1.01 PbZrO3 -0.324 0.97

PbTiO3 -0.037 1.03 CaTiO3 -0.375 0.97

three compunds in the table, CaTiO3, PbZrO3 and NaNbO3, were found to have a
strong AFD instability. For SrTiO3, PbTiO3 and BaZrO3 calculations show a weak
AFD instability. Both SrTiO3 and PbTiO3 have been observed to have weak phase
transitions at T = 105 K and T = 180 K respectively while it is stated that BaZrO3

is observed to remain cubic down to T = 0. To explain the behaviour of BaZrO3 it
is suggested that the weak instability found in the calculations could be suppressed by
quantum zero-point fluctuations.

In many studies the phonon spectrum for barium zirconate has been calculated using
density functional theory (DFT) [5] [6] [7]. Using local-density approximation (LDA)
the results have shown that BaZrO3 is unstable. An example of this is reproduced in
figure 2.2 where imaginary modes (illustrated as negative) indicate that the structure is
unstable. In some DFT calculations using generalized gradient approximation (GGA)
the undistorted perovskite structure is however found to be stable as seen in figure 2.3.
To obtain this spectrum PBE, a version of GGA, was used and the difference compared
to figure 2.2 is quite clear, especially at the R-point where there are unstable modes only
in the latter case.

The studies based on first-principles calculations are as seen not unequivocal. This is
also the case for experimental research, the picture is not entirely clear for barium
zirconate. In an article by Akbarzadeh et al. published 2005 experimental results
validating the cubic perovskite structure for BaZrO3 down to T = 2 K are presented
[7]. It is concluded that there is no long-range-order phase transition. However on the
basis of first-principles calculations (phonon spectrum obtained with DFT) it is suggested
that the experimentally observed dielectric anomalies at the lowest temperatures (about
15 K) might arise from local rotation of the oxygen octahedra. Anomalies at somewhat
higher temperatures (about 50 K) are instead proposed to be caused by defects in the
material, like oxygen vacancies, and/or unavoidable impurity ions, like Fe3+.

In an experimental study by Giannici et al. published 2011 measurements at 25 K was
performed for both undoped BaZrO3 and yttrium-doped BaZrO3 [8]. In the article it is
stated that there is no doubt about BaZrO3 being a cubic perovskite on a long-range scale
while there are indications that some local distortions occur. Due to thermal parameters
indicating a larger distortion than expected for a cubic perovskite incoherent and/or
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Figure 2.2: Phonon spectrum for barium zirconate (BaZrO3) obtained using DFT with
LDA. This spectrum is, with permission, reproduced from data obtained by Erik Jedvik
++ev cite++

transient local deviations from the cubic symmetry is proposed. For yttrium-doped
BaZrO3 obtained results are suggested to arise from tilting of theYO6 octahedra.

Research combining first principle calculations (phonon spectrum obtained with DFT)
and experimental measurements were published by Lebedev and Sluchinskaya in an
article 2013 [5]. For T = 300 K results have been obtained that indicate rotational
vibrations of the oxygen octahedra. Based on the theoretical calculations it is proposed
that the absence of the long-range order in BaZrO3 at low temperatures is due to a
structural glass state being formed upon cooling. Phases with different octahedral
rotations at different points of the sample then altogether give rise to the absence of
long-range order. Lebedev and Sluchinskaya also support this hypothesis with their
calculations that show a relatively small energy difference between different tilts of the
oxygen octahedra.

In an article published in March 2014 Yang et al. presents results from an experimental
study of the high pressure behaviour of BaZrO3 at room temperature [9]. A phase
transition from cubic phase to tetragonal phase were found to take place at 17.2 GPa.
This is suggested to arise from the rotational instability of the oxygen octahedra in
accordance with the unstable phonon modes.
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Figure 2.3: Phonon spectrum for barium zirconate (BaZrO3) obtained using DFT with
GGA. This spectrum is, with permission, reproduced from data obtained by Erik Jedvik
++ev cite++

To sum it all up previous studies are consistent in the sense that more studies are needed
in order to get a satisfactory understanding of the short-range and long-range crystal
structure of barium zirconate.
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3

Theory

In this chapter some of the basic theory used in the study is presented. It is written in
a detached way for ease of reading. The experienced reader can skim through it while it
will be useful for the novice reader to read the whole chapter more carefully. Regardless
of previous knowledge this section will hopefully be a practical reference when reading
later parts of the thesis

For a more thorough description of the subjects treated in this chapter refer to the sources
cited or to a textbook in the field of condensed matter physics such as Introduction To
Solid State Physics by Charles Kittel.

3.1 Phonons

For a periodic system the phonon frequencies for a wave vector k are given by the
eigenvalues of the Dynamical matrix D defined as

Dsα,tβ(k) =
1√

MsMt

∑
i

Φisα,jtβexp[ik · (Rj + τ t −Ri − τ s)] (3.1)

where α and β are Cartesian directions, s and t are atoms, M is mass for an atom, i and
j are primitive cells, R are vectors connecting primitive cells, τ are vectors which define
the atomic positions in the cells and Φisα,jtβ is the so called force-constant matrix.

The force-constant matrix, Φisα,jtβ, is defined as the second derivative of energy with
respect to displacements of atoms from their equilibrium positions, i.e.

Φisα,jtβ =
∂2U

∂uisα∂ujtβ
(3.2)
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CHAPTER 3. THEORY

where u is a displacement vector of atom s, in cell i (or atom t in cell j).

Using the definition of the Dynamical matrix (3.1) and assuming that the motion of
the ions are sinusoidal in time one could deduce an eigenvalue equation for the angular
frequency given by equation (3.3) [10]

D(k) · u = ω2u (3.3)

where u is the eigenvector. The displacement of an atom s in a primitive cell i in
direction α is denoted Sisα and given by equation (3.4).

Sisα =
1√
Ms

usαeik·Ri (3.4)

where usα is the element of u representing the direction α for atom s. Negative
eigenvalues of the dynamical matrix, corresponding to imaginary phonon frequencies,
suggests that the system is unstable with respect to moving the atoms according to
equation (3.4) [5].

In this study the so-called small displacement method is used to obtain the phonon
spectrum. With this method the force-constant matrix is, based on equation (3.2),
calculated as minus the numerical derivative of the forces induced by displacing once at
a time all the atoms of the lattice along the three Cartesian components [11].

3.2 Pair potential

There are many different kind of models for studying materials in computer simulations.
In general however a system consisting of N atoms can be described by a potential
depending on the position of each individual atom

V = V (r1,r2,...,rN−1,rN ) (3.5)

In this study a so called pair potential has been used for all the simulations. A pair
potential, where one assumes that all interatomic interactions are pairwise additive, is
the simplest form of potential. The total potential energy for a system consisting of N
atoms is then given by

V =

N∑
i=1

N∑
j>i

vij(rij) (3.6)

where vij is the interaction energy between atom i and atom j and rij = |ri − rj| is the
distance between those atoms.

In order to get meaningful results using a pair potential the atoms in the system to
be studied should not share any electrons. This is the case for e.g. noble gases and
ionic systems (like BaZrO3) and in those cases a pair potential could be favorable due

10



3.3. EWALD SUMMATION

to its simplicity. For more complicated systems one will need more complicated models
to get any useful results. A widely used method is density functional theory (DFT)
which often computes very accurate results. DFT is however very computationally
expensive compared to using a simple pair potential. This means that with a pair
potential simulations consisting of millions of atoms can be performed which simply is
not possible with DFT.

3.2.1 Buckingham potential and Coulomb interaction

In this study three types of interaction were taken into account, Pauli repulsion, van
der Waals interaction and Coulomb interaction. The Buckingham potential, given
by equation (3.7), were used to describe the Pauli repulsion and the van der Waals
interaction.

U buck(rij) = Aije
−rij/ρij − Cij

r6ij
(3.7)

In the equation rij is the distance between atom i and j. The parameters Aij , ρij and
Cij are empirically adapted based on the system to be studied. In principle one could use
parameters suitable for each separate pair but in order to fit with experimental data for
the whole system small adjustments are often necessary. Adding Coulombs law to the
Buckingham potential the total interaction energy between two atoms becomes

U(rij) = Aije
−rij/ρij − Cij

r6ij
+
qiqj
rij

(3.8)

where qi is the charge of atom i.

3.3 Ewald summation

The first two terms in the pair potential given by equation (3.8) are short ranged, i.e.
they decay rapidly as rij grows, and are therefore negligible for large rij . The Coulombic
term however is long ranged and can not be neglected for large rij . For a large number
of charged particles this term becomes computationally expensive due to the amount of
pairs i,j that contributes to the energy.

Ewald summation is a way to handle the Coulombic interaction in a computationally
efficient way when the number of charged particle is large [12]. The basic idea of the
method is to divide the summation of interaction energies into a summation in real space
and a summation in reciprocal space (Fourier space). The resulting expression for the

11



CHAPTER 3. THEORY

Coulomb interaction is given by

UEwald =
1

2

∑
i

Ureal(ri) + Ureciprocal(ri)− Uself (ri)

=
1

2

∑
n

′
N∑
i=1

N∑
j=1

qiqj
erfc(α|rj − ri + n|)
|rj − ri + n|

+
2π

L3

∑
k 6=0

N∑
i=1

N∑
j=1

qiqjexp[ik · (rj − ri)]
exp(−|k|

2

4α2 )

|k|2

− α

π1/2

N∑
i

q2i

(3.9)

where the prime in the sum over n implies i 6= j when n = 0, n = (ix,iy,iz)L with
iα = 0,± 1,± 2... , k are lattice vectors in reciprocal space, ri is the position of particle
i, qi is the charge of particle i and N are the number of atoms. The parameter α is an
arbitrary parameter which governs the relative convergence rates of the two main series.
The last summation in equation (3.9) is a self-correction term.

The advantage with this approach is that the energy can be calculated accurately by
including relatively few of the terms in the summations in equation (3.9). This is due to
the fact that the sum in real space and the one in reciprocal space fall off rapidly with
increasing |rj − ri| and |k| respectively.

3.4 Radial distribution function

The radial distribution function g(r) describes how, on average, the distances between
atoms in a system are distributed. g(r) contains information about the crystal structure
and can be obtained from for example neutron scattering or x-ray scattering experiments
[10] [13].

The average number of atoms inside a shell of width δr at distance r from a fixed atom
is denoted n(r). This is averaged by using all atoms as the fixed point and calculating
n(r) for each one of them. The number density N

V times the shell volume 4πr2δr is the
number of atoms inside the shell expected if the atoms were uniformly distributed. The
ratio between n(r) and the expected number of atoms is called the radial distribution
function g(r) and is hence given by

g(r) =
V

N4πr2δr
〈n(r)〉 (3.10)

where 〈...〉 denotes an ensemble average.
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3.5. MEAN SQUARE DISPLACEMENT

For an ideal crystal g(r) contains infinitely high peaks at certain characteristic distances
depending on the crystal structure. For an ideal gas where atoms are moving around
randomly, by construction, g(r) ≈ 1 is expected.

3.5 Mean square displacement

The mean square displacement, MSD, describes the diffusion of atoms in a system and
is defined as

MSD(t) =
1

N

N∑
i=1

〈|ri(t)− ri(0)|2〉 (3.11)

where 〈...〉 denotes an ensemble average and ri(t) is the position of atom i at time t.

For gases and liquids the MSD will grow as a function of time and can be used to
calculate the diffusion constant D according to

D = lim
t→∞

1

6t
MSD(t) (3.12)

For solids however the MSD goes towards a constant value as t increases due to atoms not
moving freely in the system but fluctuating around their lattice position. This constant
value will be called MSD∞ for the rest of the report and is computationally computed
as

MSD∞ =
1

Nt −Nτ

Nt∑
n=Nτ

MSD(n · dt) (3.13)

where Nt is the total number of timesteps and dt is the timestep. The correlation time
is defined as τ = Nτ · dt and is the time it takes for the system to become uncorrelated
i.e the time it takes for the system to “forget” its initial state.

3.6 Harmonic oscillator

In this section the harmonic oscillator in three dimensions is reviewed in order to be able
to compare the obtained MSD(t) and MSD∞ in this study with results from a known
system.

The harmonic oscillator in three dimension can be seen as a three independent one
dimensional oscillators. The equation of motion for a harmonic oscillator in 1D is
described by

mẍ(t) = −kx(t) (3.14)
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where k is a force constant. Assuming x(0) = 0 the solution is then given by

x(t) = A sin(ωt) (3.15)

where A is the amplitude and ω =
√

k
m is the angular frequency of the oscillation.

The period time is tp = 2π
ω . The mean square displacement is calculated according to

equation (3.11) as

MSD(t) =
1

tp

∫ tp

0
(x(t+ s)− x(t))2ds = A2(1− cos(ωt)) (3.16)

and then MSD∞, according to equation (3.13) can be calculated as

MSD∞ = lim
tp→∞

1

tp

∫ tp

0
MSD(t) = A2 (3.17)

The total energy of the system is given by

U =
1

2
kA2 =

1

2
kMSD∞ =

1

2
kBT (3.18)

where the equipartition theorem has been used for the last equality.

For a three dimensional harmonic oscillator there is three degrees of freedom, the energy
is therefore three times as big and thus the following relation is obtained

MSD∞ =
3kb
mω2

T (3.19)

where MSD∞ now is calculated in three dimensions.

3.7 Intermediate scattering function

Often in crystal-scattering-experiments spatial correlations, such as g(r), are not directly
obtained but instead correlation functions in reciprocal space are the ones measured. One
such function is the intermediate scattering function which can be measured by neutron
spin echo spectroscopy.

The intermediate scattering function F (k,t) is defined as

F (k,t) =
1

N

N∑
n=1

N∑
m=1

〈eik·(rn(t)−rm(0))〉 (3.20)

where k is a reciprocal vector. The self part of F (k,t), when n=m, is called the
self-intermediate scattering function and defined as

14



3.7. INTERMEDIATE SCATTERING FUNCTION

Fs(k,t) =
1

N

N∑
n=1

〈
eik·(rn(t)−rn(0))

〉
(3.21)

Fs(k,t) will be unity for t = 0 , and as t grows Fs(k,t) will decreases due to |rn(t)−rn(0)|
growing. It is possible to average Fs(k,t) over the direction of k and thus obtain Fs(k,t)
with k = |k|.

There is a strong correlation between the self-intermediate scattering function and the
mean square displacement. Assuming atoms fluctuate around their equilibrium position
independently the following relation can be found

Fs(k,t) = 1− 1

6
MSD(t)|k|2 (3.22)

For the full derivation of this expression refer to Introduction to Solid State Physics by
Charles Kittel [13].
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Computational methods

This project was carried out by running computer simulations. Phonon spectra was
calculated using Pysic (Pythonic simulatin code), an object based calculator for atomistic
many-body interactions [14]. Molecular dynamics simulations was performed using
LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) on the computer
cluster Beda at Chalmers Centre for Computational Science and Engineering (C3SE)
provided by the Swedish National Infrastructure for Computing (SNIC). Some analysis
of the output from LAMMPS was done using MATLAB and the python-distutils program
dynsf. All figures was created with MATLAB.

In the following sections the computational methods are described in more detail.

4.1 Modelling BaZrO3

As mentioned in the introduction the intention of this study was to find three different
types of simple models for barium zirconate, one giving rise to an ordinary cubic
structure, one giving rise to distortion and one intermediate on the limit between the two
others. In order to distinguish them from each other in an easy way they are called model
A (stable), model B (intermediate) and model C (unstable) throughout the report.

For simplicity a pair potential, described in section 3.2, was used for the models. In
previous studies it has been shown that it is sufficient to take three types of interactions
into account, Pauli repulsion, van der Waals interaction and Coulomb interaction [15].
The Buckingham potential were used to describe the Pauli repulsion and the van der
Waals interaction, adding Coulombs law one arrives at

17
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Table 4.1: Parameters in the Buckingham potential which previous studies have shown to
be suitable for BaZrO3 [15] [16]. These parameters were chosen as the ordinary potential
(model A) since they give rise to no distortion.

Interaction A(eV) ρ(Å) C(eVÅ
6
)

Ba2+ – Ba2+ 0.000 0.0000 0.000

Ba2+ – Zr4+ 0.000 0.0000 0.000

Ba2+ – O2− 931.700 0.3949 0.000

Zr4+ – Zr4+ 0.000 0.0000 0.000

Zr4+ – O2− 985.869 0.3760 0.000

O2− — O2− 22764.300 0.1490 27.890

U(rij) = Aije
−rij/ρij − Cij

r6ij
+
qiqj
rij

(4.1)

Equation (4.1) is the form used to obtain all the three models with different properties,
i.e. the difference lies in the parameters. As a starting point the parameters given in
table 4.1 were used. These parameters have been found to be suitable values in previous
studies of BaZrO3 [15] [16]. In this project they were found to not give rise to distortion
and were thus chosen as one of the three models, called model A.

As mentioned in chapter 2 a rough estimate of the stability of a perovskite structure is
given by the Goldschmidt tolerance factor t. The tolerance factor t is defined by equation
(4.2) where rA, rB are ionic radii for the cations respectively and rX are the ionic radius
for the anion. An undistorted perovskite ideally corresponds to t = 1 while lower values
make distortion of the oxygen octahedra plausible.

t =
rA + rX√
2(rB + rX)

(4.2)

To obtain a model that gives rise to distortion of the oxygen octahedra, starting from
the stable model A , the obvious method is thus to try to increase rB + rX , in this case
rZr + rO, or decrease rA + rX , in this case rBa + rO, or to do a combination of both.
Since rBa+rO is coupled to the parameter ρBaO and rZr+rO is coupled to the parameter
ρZrO these were the parameters that were adjusted in order to decrease the tolerance
factor and hence the stability of the perovskite structure. By studying the properties of
the resulting potential when varying ρBaO and ρZrO two additional models with desired
properties were obtained and chosen as model B and C. The parameters for all three
models are given in table 4.2.

The first two terms in the pair potential given by equation (4.1) are short ranged, i.e.
they decay rapidly as rij grows, and are therefore negligible for large rij . This means

18



4.1. MODELLING BAZRO3

Table 4.2: The sets of parameter used in the Buckingham potential (first two terms of
equation (4.1)) for the three types of potentials that were used. For all three cases ABaO =

931.700 eV, AZrO = 985.869 eV, AOO = 22764.300 eV and COO = 27.890 eVÅ
6

were used
with Aij = 0 and Cij = 0 for the remaining interaction. Model A do not give rise to
distortion, model C give rise to significant distortion while model B is intermediate and give
rise to a small distortion.

Model ρBaO (Å) ρZrO (Å)

A 0.3949 0.3760

B 0.384 0.387

C 0.3820 0.3885

that a cut off rcut can be used to reduce the computation time. The Coulombic term
however is long ranged and can not be neglected for large rij . For a large number of
charged particles this term becomes computationally expensive due to the amount of
pairs i,j that contributes to the energy and therefore Ewald summation was used to
speed up the simulations.

In a previous study where the parameters for model A was used, rcut = 6.0 Å was chosen
[16]. The potential energy per atom as a function of lattice constant a using rcut = 6.0 Å
is illustrated in figure 4.1 (left). As seen there is a clear jump in potential energy at about
a = 4.24 Å. This is explained by the fact that the distance between two atoms of the
same type in next nearest unit cells is

√
2a which becomes larger than rcut for a = 4.24 Å.

The lattice constant for model A is 4.188 Å however for a non-zero temperature atoms
will move around and therefore the discontinuity may give rise to strange features. Also
for model B and C as will be shown later the lattice constant will be slightly larger than
4.24 Å which is why for all three models rcut = 12.0 Å, seen in figure 4.1 (right), was
used.

Since the three models are relatively simple molecular dynamics simulations could be
performed to study properties of the models.
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Figure 4.1: Energy per atom as a function of the lattice parameter, a, for the ideal cubic
perovskite structure using model A with rcut = 6.0 Å (left) and rcut = 12.0 Å (right).

4.2 Molecular dynamics

Molecular dynamics is a classical method used to study the time evolution of
many-particle systems using computer simulations. The method is classical in the sense
that quantum effects are omitted and hence only classical mechanics are considered for
the interactions of the particles to be studied. In general molecular dynamics is thus
more suitable for heavy elements than for light elements such as hydrogen where quantum
effects are important [17]. A brief description of the method follows below.

Consider N particles in a system where the interactions are described through an
interatomic potential U , for example as the one given by equation (4.1). The forces
acting on each particle is then given by

Fi = −∇iU(r1,...,rN ) (4.3)

where ri is the position of particle i. The basic idea is, given some initial conditions
(r1(0),...,rN (0),v1(0),...,vN (0)) at t = 0, then to for each particle numerically solve
Newton’s equation of motion (4.4)

mir̈i = Fi (4.4)

where r̈i is the acceleration and mi is the mass of particle i.

The trajectory of the particles, (r1(t),...,rN (t),v1(t),...,vN (t)), are obtained and are used
to determine physical quantities. The Ergodic hypothesis, which states that an ensemble
average is equivalent to a time average, is assumed to be true in order to compute
ensemble averages. In this study the MD simulations were carried out in the NVT
ensemble, meaning N ,V and T were kept constant.
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4.3. TIME AVERAGING

In order to run molecular dynamics at a constant temperature a thermostat is used
meaning the equations of motion are modified in such a way that the velocities are
rescaled to satisfy the equipartition theorem

T =
2

dNkB

N∑
i=1

1

2
miv

2
i (4.5)

where kB is the Boltzmann constant and d the dimension of the system. In this study
the Nose-Hoover thermostat built into LAMMPS was used, a more detailed description
can be found at the web page of the LAMMPS project [18].

The simulation box is a cuboid with dimensions Lx,Ly and Lz. For a bulk system periodic
boundary conditions are often used in order to neglect boundary effects, which was the
case in this study. This mean that the system is surrounded by replicas of itself. In
order to avoid artificial behaviour such as particles interacting with itself or interacting
with two images of the same atom the minimum image criterion states that Lα

2 > rcut
must be satisfied for α = x,y,z [19].

4.3 Time averaging

As mentioned the Ergodic hypothesis is assumed to be true, i.e. ensemble averages can
be calculated by calculating time averages.

Static quantities defined by an ensemble or time average, such as the radial distribution
function, is computed as

〈A〉 =
1

Nt

Nt∑
n=1

A(n · dt) (4.6)

where A is a static quantity and Nt is the number of timesteps. This is straightforward
to calculate from the trajectories of particles, (r1(t),...,rN (t),v1(t),...,vN (t)).

To compute dynamical properties defined by an ensemble or time average, such as the
mean square displacement (MSD), equation (4.6) should however not be used. Instead
moving averaging must be used and for example for the MSD for one particle one
gets

MSD(n · dt) =
1

Nt − n

Nt−n∑
m=1

|r((n+m) · dt)− r(m · t)|2 (4.7)

This means that the reference point t = 0 is shifted in order to compute the
average.
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4.4 LAMMPS

In this study the molecular dynamics simulations were carried out in the
program LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator), a
freely-available open-source code. According to the website of the project “LAMMPS
is a classical molecular dynamics code that models an ensemble of particles in a liquid,
solid, or gaseous state. It can model atomic, polymeric, biological, metallic, granular,
and coarse-grained systems using a variety of force fields and boundary conditions.“
[18].

LAMMPS has a number of different integrators, in this study the built in Velocity Verlet
algorithm was used to numerically integrate the equations of motion. In addition the
program has a lot of built in methods and features, but could also be extended if needed,
making it possible to customise simulations. Due to LAMMPS being designed for parallel
computing it is also well suited for being used on cluster-computers which were the case
in this project.

Even though LAMMPS is a convenient tool for molecular dynamics simulations it can
not perform sophisticated analyses or any visualisation of simulations. To do this the
atomic trajectories are written as output data from LAMMPS and can then be processed
by other softwares such as MATLAB and dynsf.

4.5 Dynsf

Dynsf is a python-distutils program for calculating the (partial) dynamical structure
factor from a molecular dynamics simulation trajectory [20]. The program also calculates
other crystal properties such as the intermediate scattering function. Since one type of
input file that can be read by dynsf is LAMMPS-style trajectory output files the program
was used to analyse the molecular dynamics simulations.

4.6 Simulation details

In this section the computational details of the simulations are provided. All molecular
dynamics simulations were ran in the NVT ensemble, meaning the number of particles,
temperature and volume were kept constant. For the molecular dynamics simulations
a timestep of dt = 0.002 ps was chosen. The system was always initialized to a cubic
perovskite structure. Before LAMMPS started to write output data the simulation was
run for 200 000 timesteps, i.e. 400 ps, in order to equilibrate the system.

The radial cutoff for the potential was chosen, as described in section Modelling BaZrO3,
to be rcut = 12.0 Å. In order to fulfill the criteria rcut <

Li
2 , where i = x,y,z, the

dimension of the system is always Lx = Ly = Lz = 6 unless else is specified. The
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parameters for the ewald summation are automatically chosen in LAMMPS given a
relative force accuracy which was set to 10−5 for all simulations.
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5

Results

As mentioned in the introduction the intention of this study was to find three different
types of simple potentials for barium zirconate, one giving rise to an ordinary cubic
structure, one giving rise to distortion and one intermediate on the limit between the
two others. Starting with the pair potential given by equation (3.8) three sets of
parameters that meets this condition were obtained. For easy reference these parameters
are presented in table 5.1 as model A (stable), model B (intermediate) and model C
(unstable).

In the following sections results obtained for the three models are presented. Section 5.1
contains the lattice constants. In section 5.2 phonon spectra are presented together with
a description of unstable modes found. The next section, 5.3, contains an investigation
of the energy change when the atoms are moved along the unstable modes. All these are
properties obtained from static calculations.

Table 5.1: The sets of parameter used in the Buckingham potential (equation (3.7)) for
the three types of potentials that were used. For all three cases ABaO = 931.700 eV, AZrO =

985.869 eV, AOO = 22764.300 eV and COO = 27.890 eVÅ
6

were used with Aij = 0 and
Cij = 0 for the remaining interaction. Model A do not give rise to distortion, model C give
rise to significant distortion while model B is intermediate and give rise to a small distortion.
For a description of how these parameter were chosen see section 4.1.

Model ρBaO (Å) ρZrO (Å)

A 0.3949 0.3760

B 0.384 0.387

C 0.3820 0.3885
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Results from the molecular dynamics simulations are first presented in section 5.4 where
the radial distribution function is investigated. Section 5.5 contains an analysis of the
mean square displacement and in section 5.6 the self-intermediate scattering function is
presented. Finally, in section 5.7, some results obtained using relatively large simulation
volumes are presented.

5.1 Lattice constant

The energy of the undistorted perovskite structure as a function of lattice constant a
for model A is presented in figure 5.1. The minimum is found at a = 4.188 Å which is
in agreement with the result obtained by Stokes and Islam [15]. The same method is
applied to model B and model C for which the lattice constant found is a = 4.247 Å and
a = 4.254 Å respectively. These are the lattice constants used in the rest of the study,
for convenience they are listed together in table 5.2.
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Figure 5.1: Energy per atom as a function of the lattice parameter, a, for the ideal cubic
perovskite structure using model A.
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5.2. PHONON SPECTRUM

Table 5.2: The lattice parameters obtained for the three models when the crystals are
forced to be in an undistorted perovskite structure.

Model Lattice parameter a (Å)

A 4.188

B 4.247

C 4.254

5.2 Phonon spectrum

In figure 5.2 the phonon spectrum obtained with the parameters for model A is
illustrated. As seen there are no imaginary eigenfrequencies for these parameters and
hence the energy is (at least locally) minimized for the undistorted perovskite structure.
This means that the structure will be stable in time and no tilt will appear.
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Figure 5.2: Phonon spectrum obtained using model A.

Figure 5.3 illustrates the phonon spectrum obtained with the Buckingham parameters
for model C. The eigenfrequencies are clearly imaginary (illustrated as negative) at the
M-point and the R-point. This indicates that the undistorted perovskite structure is not
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stable in time and some kind of distortion will appear.
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Figure 5.3: Phonon spectrum obtained using model C.

By studying the phonon spectrum for model C, illustrated in figure 5.3, in more detail
one can note that there are three imaginary eigenfrequencies for the R-point and one for
the M-point. The eigenmodes, u, corresponding to these eigenfrequencies are presented
in table 5.3. The reason for the movement of barium and zirconium being omitted in
table 5.3 is that they make only small movements compared with the oxygen atoms. One
thus have that the four unstable modes corresponds to distortion of the oxygen atoms
with the barium and zirconium atoms being approximatively fixed.

More precisely the obtained unstable modes corresponds to a rotation of the oxygen
atoms in the unit cell around the zirconium atom together with a small increase
in the distance between zirconium and oxygen atoms. Investigating the modes the
corresponding Glazer notations for the four tilts are obtained to be a−b−b−, a0b−b−,
a−a−a− and a0a0c+ respectively, these are listed together with the associated modes in
table 5.3.
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Table 5.3: The unstable modes for model C together with the corresponding Glazer
notation. The values are dimensionless constants indicating only the direction of the modes.

R-point M-point

a−b−b− a0b−b− a−a−a− a0a0c+

O1 O2 O3 O1 O2 O3 O1 O2 O3 O1 O2 O3

x 0.5 0 -0.5 1 0 1 -1 0 1 0 0 -1

y 1 0.5 0 0 -1 0 1 -1 0 0 1 0

z 0 -0.5 -1 0 -1 0 0 1 -1 0 0 0

5.3 Distortion energy

To investigate the unstable modes the oxygen atoms are moved along the four modes in
table 5.3 according to

r = rideal + dua (5.1)

where u is a mode, rideal are the ideal cubic positions and d is a displacement factor.
The energy as a function of d relative to the energy of the original perovskite structure
(d = 0) can be seen in figures 5.4, 5.5 and 5.6 for model A, B and C respectively.

As expected from the phonon spectrum (figure 5.2), for model A the energy grows as a
function of d. For model B however, small energy minima are found for the three R-point
modes indicating that the system is not stable in the ideal cubic structure. The lowest
energy of the three is for a−a−a− with a displacement factor of about d = 0.009. For
model C the a−a−a− mode has the lowest minimum energy of the four unstable modes
at about −1.5 meV for d = 0.030.

In figure 5.7 the movements of the oxygen atoms for the a−a−a− tilt in a perovskite
structure is illustrated. Studying the structure the distortion is quite intuitive since the
change of parameters compared to model A in principle corresponds to an increased
radius for zirconium atoms and a decreased radius for barium atoms. The oxygen atoms
is thus “pushed” out from its location in between two zirconium atoms toward one of the
neighbouring barium atoms.

One can note that in figure 5.7 the three lower left oxygen atoms makes a movement
around the zirconium atom at the lower left corner corresponding to a rotation vector
~ω = (−1, − 1,1) if the coordinate system are taken to be right-handed with the three
oxygen atoms being situated in positive directions relative to the zirconium atom. This
property of equal tilt about each of the three axes, together with the alternating rotation
vector (±~ω) in each direction, is what defines a−a−a−.
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Figure 5.4: Energy per atom as a function of displacement factor d using model A for the
four unstable modes described in table 5.3.
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Figure 5.5: Energy per atom as a function of displacement factor d using model B for the
four unstable modes described in table 5.3.
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Figure 5.6: Energy per atom as a function of displacement factor d using model C for the
four unstable modes described in table 5.3.

Figure 5.7: Schematic representation of the displacements of oxygen atoms for the a−a−a−

rotation, where the arrows indicate the components of the movement for each atom. With
the red circles being the oxygen atoms, blue being zirconium atoms and green barium atoms.
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5.4 Radial distribution function

The ground state structure, i.e the structure with lowest energy, can be found using
simulated annealing meaning starting the simulation at a high temperature and then
gradually lowering it towards zero. From section 5.2 and 5.3 one have a good idea about
the ground state structures for the models. For model A the ideal cubic perovskite
structure is guessed to have the minimum energy while for model B and model C the
a−a−a− structure seems to be the ground state.

The energy of the systems as a function of temperature as it approaches zero can be seen
in figure 5.8. The dashed lines shows the energy of the minima in figures 5.4 5.5 and
5.6. As the temperature goes towards zero the energy of all three systems approaches
their respective dashed line. This indicates that the undistorted cubic structure is in
fact stable for model A while for model B and C the a−a−a− structure is the ground
state.
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Figure 5.8: Energy as a function of temperature during simulated annealing for all three
models. The dashed lines indicate the expected energies at T = 0 K.

To do further investigation the radial distribution function, g(r), is computed for the
oxygen atoms. The reason for excluding the other atoms is that they are, as mentioned,
approximatively fix and hence the distortion is coupled to the oxygen atoms. Therefore
both the temperature dependence and the different behaviours of the three models will
be easy to distinguish in the radial distribution function for the oxygen atoms.
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5.4. RADIAL DISTRIBUTION FUNCTION

The expected ground state structures can be validated by comparing the radial
distribution function, g(r), after running simulated annealing with the corresponding
expected g(r) for the ground state structure. This comparison can be seen in figures
5.9, 5.10 and 5.11 for model A, B, and C respectively. The expected g(r) for each model
is obtained from a static computation with the atoms manually placed in the expected
structure.
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Figure 5.9: Radial distribution function g(r) for model A after running simulated
annealing. The dashed lines show where there would exists infinitely high peaks for the
expected ground state structure, i.e. the undistorted cubic perovskite structure.

The computed g(r) matches the expected g(r) very well for all three models validating
that the ground state for model A in fact is the ideal cubic structure while for model B
and C the ground state is the a−a−a− structure.

The energy minimum for model B seen in figure 5.5 is only about −0.02 meV per atom.
As seen in figure 5.10 when T → 0 K the system does end up in the a−a−a− structure,
but when the temperature is increased the kinetic energy of the atoms will become
larger than 0.02 meV meaning the structure will look more like an ideal cubic structure.
This effect can be seen in figure 5.12 where g(r) is shown for all three potentials at
T = 100 K.

All peaks in figure 5.12 are smoothen out compared to the g(r) obtained by simulated
annealing due to larger thermal fluctuations. The peaks for model B are noticeable lower
compared to the ones for model A, due to the fact that model B is softer around the ideal
cubic structure. The peaks for model C, as seen in figure 5.11, have also been smoothen
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Figure 5.10: Radial distribution function g(r) for model B after running simulated
annealing. The dashed lines show where there would exists infinitely high peaks for the
expected ground state structure, i.e. the a−a−a− structure.

out into a few wide ones. There is still however signs of the a−a−a− structure, most
clearly seen from the double peaks where the other potentials have only one.

For T = 300 K even model C shows cubic behaviour as is seen in figure 5.13. This
shows that for large enough temperatures the energy barriers seen in figures 5.5 and
5.6 are negligible and the systems looks similar to model A. The temperature for which
this transition in behaviour happens is strongly correlated with the height of the energy
barrier.
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Figure 5.11: Radial distribution function g(r) for model C after running simulated
annealing. The dashed lines show where there would exists infinitely high peaks for the
expected ground state structure, i.e. the a−a−a− structure.
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Figure 5.12: Radial distribution function g(r) for all three model potentials at T = 100 K.
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Figure 5.13: Radial distribution function g(r) for all three model potentials at T = 300 K.
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5.5 Mean square displacement

To further investigate the movement of the oxygen atoms, and how it differ between the
three models, the mean square displacement of the oxygen atoms is studied.

In order to compute MSD∞ according to equation (3.13) the correlation time, τ , must
first be determined. In figure 5.14 the MSD(t) is illustrated for the three models at
T = 130 K. The indicated τ shows a time for which all three plateaued. For simplicity
this value will be used as correlation length for all three potentials for all temperatures.
For low temperatures τ will become large because it will take longer time for the system
to “forget” its initial state when the thermal fluctuations are small. It is also clear that
τ is much larger for model C compared to the other two models. These problems will
be discussed more later on.
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Figure 5.14: Mean square displacement as a function of time for the three potentials at
T = 130 K. The dashed line represent the correlation time τ for which the MSD for all three
models have reached an equilibrium value.

The MSD∞ is computed for many different temperatures and the result is presented in
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figure 5.15. For model A the MSD∞ grows linearly with temperature consistent with the
behaviour of the harmonic oscillator. Using equation (3.19) the frequency is calculated
to f = 6.76 THz. This is in the range of the frequencies obtained in the phonon spectrum
calculation (figure 5.2) and one can conclude that the oxygen atoms have the behaviour
of a harmonic oscillator for model A.

The MSD∞ for model C have a plateau for temperatures in the range of 60 K K to 200 K.
The plateau comes from the fact that there is eight different orientations of the a−a−a−

structure (~ω = (±1,±1,±1)). If the simulation is run long enough the probability of
finding the system in any of the eight degenerated minima is uniform and approximately
1
8 independently of the initial state. Assuming at t = 0 the system is oriented as ~ω1, this
means that the MSD∞ will approximately approach the following constant

MSD∞ →
1

8

8∑
i=1

d(~ωi,~ω1)
2 (5.2)

where d(~ωi,~ω1) is the distance between the oxygen atoms located in the a−a−a−

structure oriented as ~ωi and ~ω1. This constant value is calculated without regard to
the contribution from small thermal fluctuations around the minima. For model C this
value is computed to be about 0.066 Å

2
which matches well with the plateau seen in figure

5.15. After the plateau at about 300 K the MSD∞ starts to grow linear with temperature
indicating a harmonic oscillator behaviour. Just like for the radial distribution function
for model C at higher temperatures the system seems to behave as a perfect cubic
perovskite.

For model B no plateau can be seen, the calculated value using equation (5.2) is 0.0067 Å
2

which is too small to be seen. However investigating lower temperatures a plateau is

found at about 0.0067 Å
2

as seen in figure 5.16. Note in this figure that the MSD∞ for
model C shows no signs of plateau value and instead behaves similarly to model A.

To better understand the low temperature behaviour of the MSD∞ the standard
deviation of the MSD(t) for t > τ is computed and can be seen in figure 5.17. For model
A and B the standard deviation indicates that the MSD(t) have reached an equilibrium
value. The large values of the standard deviation for models C at temperatures around
50 K to 150 K indicates that for these temperatures τ was too small. This means
that the system, due to its relatively high energy barrier at about 1.5 meV, does not
change between the different a−a−a− states enough during the simulation to make the
distribution uniform. The condition for equation (5.2) is thus not satisfied.

Even for small temperatures such as 5 K model B reaches its plateau. This is due to
the fact that its energy barrier between different a−a−a− states is only about 0.02 meV
(as seen in figure 5.5) which is still small compared to the kinetic energy atoms have at
T = 5 K. This explains why the relaxation time for model B compared to model C is on
a different timescale, as seen in figure 5.14.

For the temperatures below 50 K the standard deviation is small for model C because
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Figure 5.15: MSD∞ as a function of temperature for the three models.

the system have never jumped to a different a−a−a− state as can be seen by the low
value of the MSD∞ in figure 5.16. Even for low temperatures if the total simulation time
and τ are large enough the MSD∞ for model C is expected to reach the plateau.

For T = 60 K the MSD∞ for model C did not reach its equilibrium value, as seen in
figure 5.15. If the simulation is ran much longer, as seen in figure 5.18, the MSD(t) does

reach the expected value of about 0.066 Å
2
.
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Figure 5.16: MSD∞ as a function of low temperatures for the three models.
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Figure 5.17: Standard deviation of MSD(t) as a function of temperature for the three
models.
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Figure 5.18: Mean square displacement, MSD(t), as a function of time for all three models
at T = 60 K.
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5.6 Self-intermediate scattering function

Neither the radial distribution function nor the mean square displacement can be directly
measured in experiments but must instead be calculated from other quantities. One
such quantity is the self-intermediate scattering function which is highly correlated to
the mean square displacement as is discussed in the theory chapter (section 3.7).

The self-intermediate scattering function Fs(k,t) for oxygen atom is computed. It is
illustrated in figure 5.19 for model A, B and C at temperature 130 K for roughly the
same k-value. In the previous section it was shown that the mean square displacement
for model A behaves very similar to a harmonic oscillator with frequency f = 6.76 THz.
Studying figure 5.19 the oscillation for model A has a period time of about 0.16 ps
corresponding to f = 6.25 THz.
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Figure 5.19: Self-intermediate scattering function Fs(k,t) as a function of time for all three
models at T = 130 K and roughly the same k value.

On a longer timescale the Fs(k,t) is expected, like the MSD(t), to relax towards a finite
value. This is seen in figure 5.20 for a temperature of 130 K. This is very similar to
the mean square displacement in figure 5.14. Model C relaxes, as discussed in previous
section, on completely different timescale compared to model A and B.
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Figure 5.20: Self-intermediate scattering function Fs(k,t) as a function of time for all three
models at T = 130 K and roughly the same k value.

5.7 Local ordering

To investigate local ordering and eventual formation of regions with different distortions
simulations are performed for a significantly larger system size using model C. Ideally
one would like to simulate a huge system but that would mean an immense amount
of computation time, hence a trade-off between size and time is necessary. To get a
relatively short computation time while still allowing different regions to occur a system
of size 6x6x30 unit cells is first used. The advantage of using an elongated system is that
the formation of different phases happens easier due to less interface energy.

If the atoms positions are averaged over a small period of time the thermal fluctuations
will be neglected and it is possible to determine the “true” positions of the atoms. Doing
this for the oxygen atoms in a unit cell it can then be identified to be in the a−a−a−

structure oriented with a certain rotation vector ~ω. The identification process used
for each unit cell is based on the angles of the displacement from the ideal perovskite
structure for the oxygen atoms. For the results presented in this section simulations
at low temperatures were used due to that the system may jump frequently between
different a−a−a− phase for high temperatures. This would ruin the time averaging of
the oxygen atoms positions.

For T = 0 K the whole system is expected to be in the same a−a−a− phase. This is simply
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due to the energy being lowest for this configuration and entropy having no impact.
However as the temperature is increased formation of different a−a−a− phases may occur
due to entropy contribution to the free energy. This is seen in figure 5.21 for T = 70 K
where each unit cell is color coded depending on its state. It is clear that two regions
have been formed, one denoted with rotation vector ~ω = (1,1,1) and the other with
~ω = (1,1,− 1). The same system is shown 20 ps later which indicates that the boundary
between the two phases is moving around. Note that the rotation vector is alternating in
all directions for each region and hence the region denoted ~ω = (1,1,1) also consist of unit
cells with rotation vector ~ω = (−1,− 1,− 1). Similarly the region denoted ~ω = (1,1,− 1)
also consists of cells with opposite rotation vector, i.e. ~ω = (−1,− 1,1).

For T = 70 K almost all unit cells was identified to be in a a−a−a− state. The same
system can be seen for T = 120 K in figure 5.22. Here a lot more unidentified unit cells
are seen, especially at the boundary between the two phases.

As expected the boundary between the regions are created so that the interface area is as
small as possible. In order to understand these interfaces for a cubic system a simulation
was run for 16x16x16 unit cells at T = 30 K. The result is shown in figure 5.23. This
time four different a−a−a− phases are obtained, forming flat interfaces between each
other. The formation of flat interfaces indicates that these have lower energy compared
to curved interfaces.

The flat interfaces are partly formed due to the simulation dimension being even so
that a “perfect” a−a−a− structure can be formed. In figure 5.24 a system of dimension
17x17x17 is seen for T = 30 K. Here all the eight different a−a−a− phases are shown
by different colors. As mentioned the rotation vector is alternating in all directions for
a a−a−a− distortion and hence in reality there are only four different types of phases.
The regions with the same pair of rotation vectors are however displaced in such a way
that if they had been in contact the interface would contain two successive unit cells
with exactly the same rotation vector. That will not make one single a−a−a− region
and hence these type of clusters are denoted as different phases.

An odd dimension size causes the flat regions such as those in figure 5.23 to become
frustrated and therefore instead more sphere like regions are formed in figure 5.24. There
is also no interfaces between the different a−a−a− states. The white part of the figure
illustrates those unit cells that could not be identified as any of the eight a−a−a− phases.
A preliminary study indicates that these white regions, that creates a bridge between
the a−a−a− phases, consists of some of the other rotations with unstable modes, mainly
a0b− b−. This is due to the fact that all unstable modes are fairly close in energy and
thus for larger system this kind of “glass” state may be found.

For the cubic system of size 16x16x16 in figure 5.23 only interfaces along the [100]
directions have been formed. This is true for all simulations ran with an even sized
system which may indicate that interfaces along other directions corresponds to a higher
interface energy. The four-way intersections seen in figure 5.23 also indicates that the
diagonal opposite phases may have a large interface energy compared to the other two
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Figure 5.21: Each unit cell color coded according to which a−a−a− phase it is in for a
system of 6x6x30 unit cells at T = 70 K using model C. The bottom figure shows the same
system as the top but 20 ps later in the simulation.

phases.
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Figure 5.22: Each unit cell color coded according to which a−a−a− phase it is in for a
system of 6x6x30 unit cells at T = 120 K using model C.

Figure 5.23: A system of size 16x16x16 showing regions with different a−a−a− phases
T = 30 K.
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Figure 5.24: A system of size 17x17x17 showing many regions with different a−a−a−

phases for T = 30 K .
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6

Discussion

In this study three different types of simple model potentials were found, one giving
rise to an ordinary cubic structure, one giving rise to distortion and one intermediate
on the limit between the two others. Although the models in this study are for barium
zirconate (BaZrO3) the principles are general and can easily be applied to whatever
perovskite being of interest. Since the difference between the potentials for the three
models lies in the parameters of the Buckingham potential one could in principle tune in
the desired property for the model. This could be useful for perovskites in general and
for perovskites known to be on the limit between stability and distortion, like barium
zirconate, in particular. Using this kind of simple models physical quantities can be
calculated and compared with experimental results to get an idea of whether a perovskite
shows distortive behaviour or not.

Running simulated annealing down to T = 0 K for all three models the expected ground
state structures from the phonon calculations are found as seen in figure 5.8. However
when molecular dynamics are run for T = 300 K very similar structures are obtained
seen in figure 5.13. This means that the system for model B and C is not fixed in the
a−a−a− ground state but instead freely moves between all the eight degenerated a−a−a−

structures and thus causing the time averaged g(r) to look similar to model A.

From the MSD(t) in figure 5.14 its clear that model C behaves differently than the other
two models for T = 130 K due to the high energy barrier between the eight energy
minima. In figure 5.15 the temperature dependence of the MSD∞ is seen. For model C
abnormally high values are found for low temperatures due to the jumping between the
different groundstate structures.

For larger system at low temperatures regions of different a−a−a− phases are formed.
This is caused by thermal fluctuations and the energy cost to change all unit cells to the
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same phase. It takes a very long time for low temperatures to sample many different
configurations which is why for each simulation different looking regions can be expected.
As seen in figure 5.23 the four-way intersections indicate that interface energy between
phases can vary. When a system of odd dimension (17x17x17) was used regions of
different phases and shapes were formed seen in figure 5.24. Other distortions besides
a−a−a− were also found and this sort of glass state is observed as discussed by Lebedev
[5].

The identification of different a−a−a− phases used to investigate the large systems and
formation of clusters is not in any way exact. The thermal fluctuation in fact makes it
impossible to retrieve any sensible results if one is to characterize the individual cells at a
specific time in an exact manner. To get around this the method used in this project was
in principle to take short time averages of the positions and then determine the rotation
vector ~ω by checking the angles for the displacements of the oxygen atoms.

For perovskites known to have a relatively stable ideal perovskite structure the instability
introduced by a change in ionic radii is still of interest. This is due to the interest in
introducing dopants in perovskites to improve electrical properties, barium zirconate is
for example often doped with yttrium to improve the proton conductivity. There could
also be other defects in the material giving rise to distortion like for example oxygen
vacancies.

Obviously one can study defects by performing a simulation with some atoms replaced
with the specific defects. If the aim however is to just get a rough estimate of the possible
distortion introduced by different defects it could be practical to apply the same method
as was used in this study, i.e. change the ionic radii. Performing an experiment where the
proportion of yttrium is increased from zero in barium zirconate it will not be surprising
if the behaviour of the system makes a transition from that of model A to that of model
C via model B.

In this study the distortion has been introduced in barium zirconate by changing
parameters in a way that in principle corresponds to an increased radius for zirconium
atoms and a decreased radius for barium atoms. The oxygen atoms is thus “pushed”
out from its location in between two zirconium atoms toward one of the neighbouring
barium atoms. With this in mind one can expect that distortion might also happen
if the pressure is increased enough. In fact, as mentioned in section 2.2, in a recent
experimental study a phase transition from cubic phase to tetragonal phase were found
to take place at 17.2 GPa for barium zirconate [9].

The idea of the oxygen atoms being pushed out from its original position is also
interesting in the context of density functional theory calculations. Using local-density
approximation (LDA) the lattice constant is usually underestimated, i.e. the atoms
are packed more tightly together than in the real structure. With generalized gradient
approximation (GGA) the lattice constant is instead in general overestimated and the
atoms are thus less densely packed. With this in mind one can suspect that LDA will
more likely cause an oxygen instability compared with GGA. As mentioned in section
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2.2 there is in fact different results for barium zirconate, LDA indicates instability while
GGA calculations have found the ordinary perovskite structure to be stable. This is of
course not just a matter of whether LDA or GGA is used but primarily depends on the
material studied. Only for compounds on the limit between instability and stability, like
barium zirconate, can one expect the significant difference in phonon spectra obtained
with LDA compared to GGA.

Although it is useful due to its simplicity the three models in this thesis will, as
mentioned, not be the best starting point if the intention is to make exact prediction
about the properties of barium zirconate. For example the pair potential does not take
into account directions of bonds, i.e. covalent bonds. In reality the atoms are also not
perfectly ionic which for the pair potential partially can be taken into account by using
real numbers for the ion charge.

Throughout this study the molecular dynamics was run in the NVT ensemble. The
advantage of this ensemble is that it simplifies comparing the results of different models
and temperatures due to the lattice constant being fixed. However in reality the material
undergoes a thermal expansion meaning the lattice constant increases with temperature.
There might also be a tendency for a distorted structure to decreases its lattice constant
due to the structure being more closely packed. Furthermore a distorted structure may
give rise to a rectangular cuboid system instead of maintaining the cubic structure.

A preliminary study using the NPT ensemble at zero pressure indicates that the lattice
constant for model C does infact decreases with about 0.04 Å for 0 K. There was no
indication of rectangular cuboid being formed which is probably due to the fact that
the ground state a−a−a− is a symmetric distortion. For example for the unsymmetrical
distortion a0a0c+ the lattice constant may be different for the x, y and z directions
respectively.

To fully explain the detailed features of both the short-range and long-range crystal
structure in barium zirconate more studies are needed. Experimental research that could
be compared with results obtained using computational modelling would be beneficial
to further understand the material. For example one could perform total scattering
techniques to investigate the local structure and inelastic neutron scattering to study
dynamics on a local scale. In such a context the model potentials of this study could be
used for comparison.

A development of the models in this study where yttrium can be include would be very
interesting in order to understand the local ordering happening for Yttrium (Y) doped
BaZrO3. The locally increased ionic radii of part of the cations, due to Y being larger
than Zr, may give rise to local or even global distortions. This could be studied for
different concentrations of Y. Because barium zirconate is on the verge of stability it
could also be interesting to introduce defects like oxygen vacancies in the material to
understand their impact on the stability of the structure.
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7

Conclusions

In this study three different types of simple models for barium zirconate (BaZrO3) are
found, one giving rise to an ordinary cubic structure, one giving rise to distortion and
one intermediate on the limit between the two others. The stability of the models were
investigated by calculating phonon spectra. Molecular dynamics were then used to study
the time evolution of the system. The oxygen atoms for the model C were found to move
a lot more compared to the other two models due to the potential being softer around
the ideal cubic perovskite. The obtained radial distribution function indicates that the
distortions are not found for temperatures above 300 K, meaning a phase transition have
happend. Furthermore for large systems the formation of clusters of different distortions
are observed.
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A

Code example

To illustrate the kind of code used to obtain the results in the thesis a short example
is included in this appendix. In case of further interest feel free to contact any of the
authors.

A.1 LAMMPS example

Below a short LAMMPS script used to calculate the radial distribution function is
presented. It consist of three main parts, reading the input file containing all information
of the atoms, defining the potential wanted and lastly specifying the settings for
molecular dynamics.

# ---------- Initialize Simulation ---------------------

clear

units metal

boundary p p p

atom_style full

# ---------- Create Atoms ---------------------

read_data ${name}_input.pos

# ---------- Define Interatomic Potential ---------------------

pair_style buck/coul/long ${Rcut}

pair_modify table 0

kspace_style ewald 1.0e-5
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pair_coeff * * 0.0 0.1 0.0

pair_coeff 1 2 931.700 ${rho12} 0.0

pair_coeff 2 2 22764.300 0.1490 27.890

pair_coeff 2 3 985.869 ${rho23} 0.0

# ---------- Define Settings ---------------------

compute myRDF all rdf ${Nbins} 2 2

# ---------- Run MD ---------------------

reset_timestep 0

thermo 100

thermo_style custom step temp press lx

velocity all create $T 28459 rot yes dist gaussian mom yes

fix 1 all nvt temp $T $T 1

#Find equilibrium

timestep ${dt}

run ${tEq}

#Compute RDF

thermo 100

thermo_style custom step temp press lx

reset_timestep 0

fix 2 all ave/time ${Nevery} ${Nrepeat} ${tRun} &

c_myRDF file RDF${name}.dat mode vector

run ${tRun}
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