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Metabolic factors related to the development of allergy

A metabolomic analysis on metabolic profiles of children and their parents, venous
and arterial umbilical cord blood and allergy development

OLLE HARTVIGSSON

Department of Biology and Biotechnology

Chalmers University of Technology

Abstract

Allergy is an increasing problem in the western world affecting up to 25% of the
population, leading to a decreased quality of life for the individuals and increased
medical costs for society. Allergy is a complex disease and all the factors involved in
the development of the disease are not yet established. The aim of this project was
to identify differences in metabolic patterns in maternal and umbilical cord blood
in relation to allergy development at one year of age. A second aim was to analyse
differences in the metabolome between mothers, fathers and their newborn children
and to investigate differences in metabolites in the childrens’ arterial and venous
umbilical cord blood. The project was performed on data from 52 families partici-
pating in the NICE-cohort using multi- and univariate statistical tools.

Using multivariate modelling it was not possible to detect global differences between
allergic and non-allergic children, possibly due to only seven out of the 52 children
included developing allergy by the age of one year. Univariate models which exam-
ined each metabolite separately found several metabolites, mainly amino acids and
monosaccharides, differed significantly between allergic and non-allergic children.

When comparing samples from mothers, fathers and children it was found that moth-
ers generally had higher amounts of a-tocopherol and fatty acids (mainly oleic-,
linoleic- and linolenic acid) compared to paternal and infant samples, while in-
fant samples contained high amounts of amino acids (mainly, glycylvaline, lysine,
phenyalanine and tryptophan). The comparison between metabolic pattern in ar-
terial and venous cord blood found that arterial blood contained more mono- and
disaccharides (mainly deoxy galactose, glucose, sorbose and galactose) while venous
blood contained more organic acids (including a-ketoglutaric acid and glutamic
acid).

Due to the low number of allergic children in this ongoing, no conclusions could
be drawn about a specific metabolic pattern in relation to allergy. Hence, larger
studies are needed to investigate the metabolic relationship to allergy development.
Differences between mothers and newborns reflects differences in their catabolic/an-
abolic states. Arterial and venous differences may indicate what substrates are being
preferentially used by the newborn baby.

Keywords: Metabolomics, allergy, infants, family, umbilical cord, plasma, GC-

MS/MS.
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1

Introduction

Allergic disorders such as atopic dermatitis (eczema), atopic rhinitis (hay fever),
allergic asthma and food allergies are amongst the most common diseases in the
western world affecting up to 25% of the population [1]. An increasing number of
people are hospitalized due to allergic reactions, affecting both the person getting
hospitalized and the society due to increased medical costs [2]. It is known that
heredity has an influence on the development, but environmental factors such as
older siblings and pets has an impact on the risk to develop the disease as well [3].
It remains unknown why these factors would lead to an increase in allergy, and deep
understanding for triggers for allergy, or why some people become allergic but not
others. A recent study in mice has shown that the immune system might be stimu-
lated already in wutero through microbial antigens from the mother, possibly carried
by antibodies, to the foetus [4]. This disputes the previous belief of the sterile womb
hypothesis, which states that the intrauterine environment is sterile and that the
immune system and thereby allergy development begins in the neonatal stages of
life. The potential involvement of the maternal microbiome also opens up many
questions and possible solutions for reduction of allergy risk in the future. Studying
the flow of metabolites from the mothers to their children in relation to allergy could
give an inkling to both if bacterial metabolites are transported to the foetus, but
also how other molecules could potentially affect allergy development.

A metabolite is usually defined as an organic molecule involved in a metabolic path-
way with a molecular weight of less than 2000 Da [5]. Metabolite concentrations in
humans are a result of an interaction between genetic and environmental factors as
well as food intake and medication [6] [7]. Metabolomics is a relatively new area of
science which aims to identify and quantify the metabolites in a given sample. This
is usually done using analytical techniques such as gas chromatography (GC), liquid
chromatography (LC), nuclear magnetic resonance (NMR) and mass spectrometry
(MS) in combination with extensive data analysis. The kind of sample used for a
metabolomic analysis can vary, it can be everything from single cell organisms to
blood, urine, faeces or tissue samples.

This project aims to identify key metabolites and metabolite patterns in newborn
infants involved in allergy development at one year of age. As a secondary aim,
metabolic differences between mothers, fathers and newborn infants along with dif-
ferences between venous and arterial umbilical cord blood plasma will also be de-
termined. The samples used in this thesis work are from families in the Nutritional
impact on Immunological maturation during Childhood in relation to the Environ-
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ment (NICE) study.
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Theory

2.1 Umbilical cord blood

To transport nutrients to the foetus, the mothers’ body delivers blood to the pla-
centa. The parts of the umbilical cord that are in contact with the placenta are
dispersed as chorionic villi [8]. The maternal blood lies in a pool around these villi
(Figure 2.1). Molecules are then transported to the bloodstream of the foetus, both
through passive and active transport [9]. The blood moving from the mother to the
baby is transported via the umbilical cord vein while the blood that goes from the
baby back to the mother is transported through the umbilical artery. Both polyun-
saturated fatty acids (PUFAs) and most amino acids appears to be transported
over the placenta through active transport [9] [10]. There seems to be a priority
in the transportation of PUFAs, where docosahexaenoic acid (DHA) takes prece-
dence followed by arachidonic acid, a-linolenic acid and linoleic acid [11]. Oleic acid
however, appears to be transported through passive diffusion. The anionic amino
acids glutamate and aspartate are not actively transported across the placenta, it is
suggested that glutamate is instead converted from glutamine in the foetal liver [10].
As of now, there is little known about the metabolic relationship between arterial
and venous umbilical cord blood. A study conducted in 2016 by Koh et al. studied
differences in catecholamines, glucose, lactate and blood gases [12] in 57 children
delivered via elective cesarean section. They found that glucose levels were higher
in the venous cord blood while lactate concentrations were higher in the arterial

cord blood.

2.2 Metabolic differences between parents and in-
fant

There has been several studies that has looked into metabolite relationships be-
tween mothers and the newborn infant [14] [15] [16]. Most of these studies looked
into specific metabolites that were relevant to their research question, but few anal-
ysed the whole metabolome. Few if any of these studies included the father in the
investigation. Studies has shown that mothers has higher concentrations of linoleic
acid, a-linolenic acid [17] and bisphenol A [18]-, while docosapentaenoic acid (DPA),
DHA [17] and Vitamin D [19] concentrations were higher in cord blood. A study
conducted in 1967 showed that all amino acids were higher in concentrations in ve-
nous cord blood compared to their respective mothers (almost every one statistically

3
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Figure 2.1: How blood is transported from the placenta to the umbilical cord. [13]

significant) [20].

2.3 Mechanisms in allergic diseases

Sensitization is a necessary prerequisite for an allergic reaction. Sensitization occurs
in some individuals when an antigen (usually a protein) is introduced to the body
[21]. Dendritic cells envelop the antigen and present it to ThO cells which in turn
stimulate the production of Th2 cells in atopic individuals. This process prompts
B cells to start producing antigen specific Immunoglobulin E (IgE) antibodies. The
IgE antibodies, although shortlived by themselves can bind to mast cells which are
present in tissue and remain there for months. Why most people develop a tolerance
to these antigens and others go through the sensitization process is not yet known
[22].

When a sensitized individual is exposed to the antigen again, the IgE antibody
binds to an epitope on the allergen which starts a chain reaction leading to vesi-
cles in the mast cells releasing histamine and other pro-inflammatory compounds
[21]. These mediate an increased permeability and attract cells and blood plasma
into the tissue, ending in an inflammation at the site [21] [22]. Symptoms from an
allergic reaction are commonly eczema, wheezing, hay fever and red and itching eyes.

The hygiene hypothesis states that the increased focus on cleanliness and avoidance
of dirt, often with the goal of avoiding disease, is the main reason as to why western
countries have seen an increase in allergy development, and is one of the most
accepted theories today [23], and that early exposure to dirt may be protective due
to providing stimulus for the immune system, which otherwise may get overactive.
There are several indications that early exposure to microorganisms has a protective
effect on allergy development [24] and several studies have shown that gut microbiota
also plays a critical role in the development of allergic diseases [25] [26] [27]. Until
recently it was assumed that the womb was a sterile environment and therefore

4
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unlikely to play a role in immune development - with immune protection in newborns
being conferred by the immunoglobulin rich breast milk produced by mothers during
the first few days post birth. Recent studies have questioned the sterile womb
hypothesis by finding evidence of microbes both in the placenta and meconium
[28] [29], meaning that bacterial colonization and thereby protection against allergy
could be initiated already in utero.

2.4 Algorithms

2.4.1 Principal Component Analysis

The Principal Component Analysis (PCA) is an unsupervised method, meaning that
no information about different groups is included in the analysis [30]. It works by
reducing the dimensionality of the data by using covariances between the different
variables to express them in fewer dimension while still retaining as much of the vari-
ance as possible [30]. In a PCA scores plot, the first component of a PCA attempts
to explain as much of the variance as possible, while the following ones explains as
much of the variance that previous components has not yet explained while being
orthogonal to all the previous components.

When interpreting a PCA, scores (representing observations) and loadings (repre-
senting variables) are usually observed [31]. The scores show where the observations
end up in the remodelled space which is made up from the components. The loadings
show how the variables affect the observations. Scores and loadings which occupy
the same area are usually closely correlated with each other. Conversely, scores and
loadings which are on opposite sides are usually inversely correlated. A PCA offers
no statistical value, but it is a useful tool to get an overview of the data, as well as
for outlier identification.

2.4.2 Partial Least Squares regression and discriminant anal-
ysis

Partial Least Squares (PLS) regression is a combination of principal component
regression (regression based on PCA) and ordinary least squares (OLS) regression
[32]. The principal component regression aims to maximize the variance of the given
data set X, while OLS aims to correlate a linear combination of X to the response
variable Y. By using a combination of these two, a good prediction could be made
that takes the structure of the data into account more than OLS.

Partial least squares discriminant analysis (PLS-DA) is a modification of the PLS,
which is often used for classification problems (when the response variable is in
form of groups), unlike the PLS regression, which is more suitable for a continuous
response vector [33]. Similarly to PCA, scores and loadings are given as an easy way
to interpret the results from the analysis [32]. However, these are not computed in
the same way as in a PCA. The PLS-DA aims to classify the given data, by utilizing
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a training set to build a mathematical model. The model is then able to take new
data and classify it based on the values on the input variables.

2.4.3 Random Forest

Random Forest (RF) is an ensemble algorithm frequently used for both classification
and regression analysis [34]. It is a tweak of a method called bootstrap aggregation
ensemble which is based on bootstrapping, which in turn is in essence a way to esti-
mate a mean value. Bootstrapping works by inflating the sample size by randomly
sampling a value, with redraw, from the data set many times, dividing them into
subsamples and then take the mean of each subsample and averaging them together.
The result from this procedure is a mean value that is less prone to bias from errors
in the measurement. Bootstrap aggregation is a combination of a high variance
decision tree classifier and bootstrapping where many random subsamples of the
data are each subjected to the decision tree algorithm and then a majority vote
(for classification) is cast or an average (for regression) is done from all the calcula-
tions ending in a result with less variance. The bootstrap aggregation reduces the
variance significantly, but depending on the structure of the data, this may not be
enough. Random forest imposes a condition to the bootstrap aggregation procedure
which makes the different subsamples less correlated and thus further reducing the
variance for the final result.

2.4.4 ANOVA decomposition

ANOVA decomposition is a way to remove variance in the data obtained from other
sources other than that of the study question [35]. By analysing the variance for a
factor, two matrices are given as a response, one which contains the variance for the
factor, and one residual containing information not described by the variance of the
factor (equation 2.1). By using the residual matrix, the variance from the selected
factor will no longer affect the analysis. This procedure can be done in several
steps (equation 2.2), using the residual matrix from the preceding decomposition to
remove the influence of factors unrelated to the analysis.

ANOVA1

Xinitial Xvariance + Xresiduall (21)

ANOVA2
S

Xresiduall Xvam'anceZ + XresidualQ (22)

2.4.5 Multilevel analysis

A multilevel analysis is the multivariate version of a paired t-test. It was originally
designed to be used in cross-over intervention studies [36], but can also be applied
to cases where samples are dependent and only small differences are expected. The
analysis is conducted by subtracting the values from the "before treatment" with
the values corresponding to the same person from the "after treatment" (equation
2.3) creating a new matrix with the intra-person difference [37]. Another matrix
is conducted by multiplying the first matrix with -1, effectively creating a matrix

6
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with "after treatment" minus "before treatment" and then a final matrix is created
by concatenating both matrices into one (equation 2.4). A'Y vector is created by
assigning the first half of the final matrix a 1, and the second half -1 which thereby
enables classification algorithms to separate the two groups.

Xbefore treatment — Xafter treatment — Xdifference (23)
Xaiff
X i ;= 1 erence 24
fina [_Xdifference ( )

2.4.6 The MUVR package

The MUVR package is an R package developed by Carl Brunius (Division of Food
and Nutrition Science, Chalmers; freely available at https://gitlab.com/CarlBrunius/
MUVR) which features repeated double cross-validation [38] for both PLS and RF
algorithms, along with an unbiased variable selection. The package offers four dif-
ferent fitness metrics (which parameters the model should try to optimize), Root
Mean Squared Error of Prediction (RMSEP), Area Under the Receiver Operating
Characteristic (AUROC), number of misclassifications (MISS) and Balanced Error
Rate (BER). MUVR also supports multilevel analysis and comes with an option
to include ID. The ID can be used so that samples from the same individual, or
samples that are suspected to be similar (such as family relations) will not be used
to model each other, but will be taken out of the training model simultaneously.
The variable selection is based on Variable Importance in Projection (VIP) values,
which is calculated by how much the metabolite helps in the prediction averaged
over the user defined amount of repetitions. Another feature of the algorithm is
that each calculation gives three different models, referred to as 'min’, 'mid’, and
'max’. The max model is representative of the optimal model using the given fitness
metric, while the min model is decided by being within 5% of the optimal setting,
with as few variables left in the model as possible with the imposed constraint. The
mid model is then calculated by the geometric mean of the first two.


https://gitlab.com/CarlBrunius/MUVR
https://gitlab.com/CarlBrunius/MUVR

2. Theory
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Methods

3.1 Sample treatment and analysis

Families with planned births between March 2015 and February 2018 at Sunderby
hospital in the northern part of Sweden were invited in pregnancy weeks 18-19 to
participate in the NICE-study. From the approximately 600 families that accepted,
52 families were selected for metabolomics analysis based on availability of a com-
plete set of blood samples taken at delivery (samples from the mother, father and
umbilical cord venous, arterial and mixed blood). All samples were usually cen-
trifuged, separated and aliquoted within 12 hours. However, due to weekends and
holidays, some samples were stored in a -4 °C freezer for 12-65 hours. At a later
stage, the samples were transported on dry ice to Chalmers University of Technology
in Gothenburg and stored at -80 °C before analysis by gas chromatography-tandem
mass spectrometry (GC-MS/MS). Before analysis, samples were randomised in order
to minimise the effect of analytical batch and the possibility of bias due to the date of
sample collection. Family groups (mother, father and baby) were randomised across
four analytical batches, and the run order of samples from each family group (blood
plasma from mother and father, and umbilical cord arterial, venous and mixed blood
plasma) were randomised within each family group. In addition, a quality control
sample (made by pooling aliquotes from all plasma samples) was injected between
every 10 samples.

GC-MS/MS metabolomics was carried out using a Shimadzu TQ8030 GC-MS/MS
(Shimadzu Europa GmbH, Duisberg, Germany) using a combined scanning multiple
reaction monitoring (MRM) method [39]. This method performs both mass spectral
scanning of all compounds leaving the GC column, detecting the fragmentation of
each compound, as wel as MRM. MRM is when the mass detector selects one mass
fragment ion and then further fragments it to detect a second fragment, usually
resulting in detection that is highly sensitive due to low background interference.
Scanning and MRM detection of up to four compounds at a time is performed in a
loop taking approximately 200 ms, allowing at least 10 detection points per peak.
GC-MS/MS data acquisition was performed prior to this thesis work.

After the GC-MS/MS analysis was performed, metabolite identification was done us-
ing the software Metabolite Detector [40] which deconvolutes all GC-MS peaks based
on correlations between different masses and expected peak shape and tentatively
identifies compounds based on retention index and matching against a mass spec-

9



3. Methods

tral library. The targeted data was processed using a script developed by Jonsson
et al. [41] which deconvolutes specific peaks in a library developed by the Swedish
Metabolomics Centre in Umea, based on retention index, mass spectral matching
and peak shape of fragment ions specific for individual compounds. Both methods
give relative metabolite concentrations between each sample for each metabolite.
Further, MRM data were integrated using GCMS Solutions software (Shimadzu
Europa GmbH).

3.2 Allergy diagnosis

Of the 52 families, five did not have any allergy record (did not show up to the
diagnosis occasion), one was removed due to incomplete data, which left 46 families.
Of these 46, four were diagnosed with asthma, one with eczema, one with asthma
and eczema and one with food allergy for a total of 7 allergic children. The diagnoses
were conducted by Dr. Anna Sandin at Sunderbyn hospital in Norrbotten County.
Food allergy was diagnosed by provocation at the hospital. Atopic dermatitis was
diagnosed according to criteria developed by Williams et al. 1994 [42] [43] [44].
Asthma was diagnosed by the children having at least one of the following symptoms:
wheeze between infections, persistent wheeze for at least 4 weeks, wheeze during
infection simultaneously with another allergic disease or three wheeze periods in
connection to infectious diseases.

3.3 Analysis in SIMCA

At the start of this project, SIMCA was used for multivariate statistical analysis.
Although SIMCA has a wide range of suitable tools, its use was discontinued due to
insufficient validation mechanisms, as well as a lack of an unbiased variable selection
approach.

As mass spectrometes have relatively high inter-sample variability due to subtle
differences in sample preparation, lab conditions and the condition of the instrument,
a proportion of the variation in the data will be due to analytical variation rather
than biological variation. Correction for inter- and intra-batch variation is necessary.
This was done through normalization vectors obtained using SIMCA (V 14.1)[45]
by making a PCA on the internal standards, obtaining the eigenvalues for the first
component (resulting in normalisation vectors for each injected sample) and then
dividing all samples by the normalization vectors.

In SIMCA, PCA, Orthogonal-PLS (OPLS) and OPLS-DA was used to check for
differences in metabolome between family members as well as trying to differenti-
ate allergic from non allergic children. The OPLS and OPLS-DA was performed,
and stepwise elimination of insignificant metabolites were removed (decided by VIP
confidence interval range being both higher and lower than 0). It was later realized
that this would cause overfitting, and SIMCA was replaced by R along with suitable

10



3. Methods

packages mentioned in section 3.5. Only those results obtained from the R routines
will be presented in this thesis.

3.4 Second pre-treatment

To be able to move from SIMCA to R, some additional pre-treatment had to be done.
All the chromatograms from the targeted analysis was visually examined, and those
deemed unfit were removed from the data. Two examples of chromatograms where
one was kept and one removed from the analysis is shown in Figure 3.1. Metabolites
used for internal standards were removed from the dataset, along with EDTA, as
this was used as an anti-coagulant in some, but not all tubes. As several metabolites
were found in two or more of the untargeted, targeted and MRM scans, the repli-
cate metabolites were removed from the less sensitive/robust analysis (MRM was
considered most sensitive, followed by targeted while untargeted was considered to
be least sensitive). The data cleanup was done at this point due to variables being
easier to remove post analysis in SIMCA, while in R it was deemed faster to do
before analysis.

a) . Miz 132 b) Mz 313
x10 Unimodal Threshold = 0,875 Unimodal Threshold = 0.575
18 AN 14000;

3 = ; - = —
2230 2235 2240 2245 2250 2255 2260 2265 2640 2650 2660

B 60 -. 2680
Figure 3.1: Shows two example chromatograms. Chromatogram A corresponds to
octadecanoic acid-TMS, and was kept in the analysis. Chromatogram B corresponds
to Cytidine-4TMS, which was not kept due to its appearance being questionable to
actually represent an accurate measurement.

The data was then loaded into R [46] and as 0.137% of the data points were missing
an imputation was made to get an estimation of the missing values, using the miss-
Forest algorithm [47] [48]. Unlike SIMCA, the algorithms used in R are not able to
cope with missing values, and an imputation was deemed the most suitable way of
dealing with these as the amount of missing points was relatively small. Following
the imputation, a PCA was made to check for any outliers and obvious trends. One
outlier was found, it was removed and a new PCA model was determined.

Before starting with the allergy analysis, any families which lacked allergy data
(subjects not attending follow up allergy diagnosis visits) were removed from the
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data set. These families were included in the family metabolomics investigations.

3.5 Analysis in R

After the clean-up steps analysis began by comparing the samples from the moth-
ers, fathers and the three different kinds of umbilical cord samples to find out what
differed between them. The five samples were then compared against each other
using rdCV-PLS-DA and rdCV-RF algorithms with fitness metric set to MISS. 100
permutation tests for each analysis where the dependent variable (mother, father,
venous, arterial and mixed) were randomized before putting them through the same
algorithms as before. The permutation tests were done to ensure that the results
are not due to overfitting. Welch’s t-tests were determined for all calculations com-
paring the fitness metric values from the real calculation to the fitness metric values
of the permutations. If the null hypothesis (i.e. the fitness metric values are the
same) was rejected using o = 0.05 the test was considered significant.

There was no clear separation between arterial and venous umbilical cord samples, so
a multilevel analysis was performed. An effect matrix was constructed according to
equations 2.3 and 2.4. Where X is a matrix consisting of all relative metabolite con-
centrations for each child. The effect matrix was then run through rdCV-PLS-DA
and rdCV-RF algorithms, with fitness metric set to MISS, along with permutation
tests where the class of the observations in the effect matrix was randomized to 1
or -1.

As all participating families had five different kinds of samples, an ANOVA decom-
position was made on the data before running it through both the rdCV-PLS and
rdCV-RF algorithms again. This was done to see if the differences between the
group were mainly due differences between groups or if the changes would persist
when checking between the same family members. This makes it possible to check for
intra-family differences, by removing variance caused by differences between families.

After the families without any allergy data were removed from the set, PLS-DA
and RF was performed on each sample type individually. As the outlier removed
from the PCA was a father which had an allergic child, only six samples were part
of the allergy group when the fathers’ metabolome was included in the comparison
of allergic and non-allergic children. These analyses were conducted with balanced
error rate as fitness. Balanced error rate is a fitness metric that is defined in equation
3.1.

BER=§*

1 Wrong predictions in group 1~ Wrong predictions ingroup 2 (3.1)
Total predictions in group 1 Total predictions in group 2 '

This is necessary as the groups were skewed in their distribution (7 allergic and 39
healthy). When using misclassifications as fitness, all models reported 7 misclassifi-
cation, where none was considered to be allergic.
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All code used to produce the results can be found in Appendix B.
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4

Results

Figure 4.1a shows the first two components (out of five) of the PCA that was done on
the data. An outlier can be observed at the bottom left corner of the plot, by having
scores in the first component almost 5 times lower (-150 compared to -30) compared
to the second lowest sample. This outlier was removed and a second PCA was
made (Figure 4.1b). In both Figure 4.1a and Figure 4.1b the points are plotted for
different family members (squares representing mothers, circles representing fathers
and triangles representing any sample from the umbilical cord).

Initial PCA plot with outlier PCA plot over initial data
a) b)

20

10

PC2 [R2X=0.0757)
-10
|
PC2 [R2X=0.0758)

-40
]
[FUR TR

o
I I I

-150 -100 -50

=30 20
PC1 (R2X=0222) PC1 (R2X=0.141)

Figure 4.1: Figure 4.1a shows the first two components of the initial PCA plot

before outlier removal. Figure 4.1b shows the first two components of the PCA after

the outlier has been removed. Mothers are represented as squares, fathers as circles
and samples from the umbilical cord are represented as triangles.

There appears to be a trend in the second component in Figure 4.1b where the um-
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4. Results

bilical cord samples have lower scores than that of the mothers and fathers. This is
an indication that there are some significant metabolic differences between parents
and the children. However, as mentioned in section 2.4.1 a PCA is not a statistical
method, and no conclusions should be drawn from this.

The same PCA was also labelled for the four different batches. No pattern could
be observed relating to batch, which is a good indication that the batch correction
procedure was successful.

4.1 Difference between mothers fathers and new-
born infants

4.1.1 Mothers compared to umbilical cord samples

The comparison between mothers and umbilical cord samples gives an indication
on the relative flow of metabolites between mother and baby at birth. Table 4.1
includes the number of misclassifications, AUROC values, p-values (obtained with
Welch’s t-tests) and number of metabolites for each model for the samples from the
mothers compared to the different umbilical cord samples. The number of misclas-
sifications and AUROC values are indications of how strong a multivariate model is.
AUROC is a value between 0 and 1 and the closer to one a model is, the more accu-
rate. The p-values are obtained from number of misclassifications from the actual
model, when compared to the number of misclassifications from the permutations
tests. The number of metabolites in the min and max model represents how many
metabolites are needed to properly model the data and how many metabolites have
an influence on the model respectively.

16



4. Results

Table 4.1: Shows the number of misclassifications, AUROC values, p-values and
number of metabolites for each model in the comparisons between mothers and
umbilical cord samples.

Mothers compared to Arterial umbilical cord samples

Model: PLS min PLS mid PLS max RF min RF mid RF max
Misclassifications 1 1 1 1 1 1
AUROC 1.0 1.0 1.0 1.0 1.0 1.0
p-value <107° <107° <107 <1075 <107° <107°
Number of
Metabolites 3 42 522 8 47 273
Mothers compared to Venous umbilical cord samples
Misclassifications 2 1 0 1 1 0
AUROC 1.0 1.0 1.0 1.0 1.0 1.0
p-value <107° <107° <107° <107° <107° <107°
Number of
Metabolites 5 48 517 23 104 473
Mothers compared to Mixed umbilical cord samples
Misclassifications 1 1 1 0 0 0
AUROC 1.0 1.0 1.0 1.0 1.0 1.0
p-value <107° <107° <107° <10® <107 <107
Number of
Metabolites 11 74 505 2 33 543

In Figure 4.2 boxplots of six of the most influential metabolites in the models from
the comparison between mothers and arterial umbilical cord samples are shown.
Similar metabolites and concentrations were shown to separate mixed and venous
samples from the mother as well. The amino acids glycylvaline, lysine and pheny-
lalanine are significantly higher in the arterial umbilical cord samples than of that in
the mothers. Fructose 1,6 disphosphate, octadecadienoic acid and a-tocopherol are
higher in the mother. Further metabolites with high influence on the venous and
arterial comparisons were abscisic acid, octadecatrienoic acid and octadecenoic acid
which were higher in mothers and tryptophan, which were higher in the children.
For the comparison between mixed umbilical cord and mothers the concentrations of
ethanolamine, 1,5 diaminopentane and ornithine were higher in the mixed samples
and had a high influence on the separation between the two groups. Boxplots for
analyses comparing samples from the mothers to venous and mixed umbilical cord
samples can be seen in Figures A.1 and A.2 in Appendix A.
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Figure 4.2: Boxplots of six of the most influential metabolites in all models for the
comparison between mothers and arterial umbilical cord blood.

4.1.2 Fathers compared to umbilical cord samples

Table 4.2 shows the number of misclassifications, AUROC values, p-values from the
permutation analysis and number of metabolites for each model when comparing
samples from the fathers to the different kinds of umbilical cord samples.
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Table 4.2: Shows the number of misclassifications, AUROC values, p-values and
number of metabolites for each model in the comparisons between fathers and um-
bilical cord samples.

Fathers compared to Arterial umbilical cord samples

Model: PLS min PLS mid PLS max RF min RF mid RF max
Misclassifications 1 1 1 2 1 1
AUROC 1.0 0.99 0.99 1.0 1.0 1.0
p-value <107° <107° <107 <1075 <107° <107°
Number of
Metabolites 4 12 37 3 8 25
Fathers compared to Venous umbilical cord samples
Misclassifications 3 2 2 2 2 1
AUROC 1.0 0.98 0.98 1.0 1.0 1.0
p-value <107° <107° <107° <107° <107° <107°
Number of
Metabolites 7 29 130 3 11 36
Fathers compared to Mixed umbilical cord samples
Misclassifications 3 2 1 1 1 1
AUROC 0.99 0.99 0.99 1.0 1.0 1.0
p-value <107° <107° <107° <10® <107 <107
Number of
Metabolites 0 37 241 2 7 21

In Figure 4.3 boxplots of six of the most influential metabolites in the models from
the comparison between fathers and venous umbilical cord samples are shown. Sim-
ilar metabolites were shown to separate mixed and arterial samples from the sam-
ples from the fathers. Phosphoric acid, phosphate fragment, pyruvic acid. Nico-
tinic acid and malic acid were all higher in concentration in the venous samples in
comparison to the samples from the fathers. Further metabolites with high influ-
ence on the arterial comparisons were melatonin, tryptophan, N-acetyl glucoseamine
~v-glutamylphenylalanine. In the venous samples, allothreonine, myo-inosito and
scyllo-inositol had higher concentrations while for the mixed, the concentrations of
N-acetyl mannoseamine and aconitic acid were higher compared to the fathers. Box-
plots for analyses comparing samples from the fathers to venous and mixed umbilical
cord samples can be seen in Figures A.3 and A.4 in Appendix A.
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Figure 4.3: Boxplots of six of the most influential metabolites in all models for the
comparison between fathers and venous umbilical cord blood.

4.1.3 Mothers compared to Fathers

In Table 4.3 the number of misclassifications, AUROC values, p-values and number
of metabolites for each of the models in the comparison between mothers and fathers
are shown.

Figure 4.4 shows boxplots of six of the most influential metabolites in the com-
parison between mothers and fathers. Higher concentrations of all of the most
influential metabolites in these analyses were found in the mothers. In addition to
the metabolites seen in Figure 4.4, glyceric acid 2-phosphate, melatonin, fructose
1,6-disphosphate, aconitic acid , 5-hydroxy tryptophan and citric acid also had a
high impact on the models.

20



4. Results

Table 4.3: Shows the number of misclassifications, AUROC values along with p-
values from permutation tests and number of metabolites for each of the models in
the analysis comparing samples from the mothers to samples from the fathers.

Mathers Fathers

Mathers Fathers

Mathers

Model: PLS min PLS mid PLS max RF min RF mid RF max
Misclassifications 2 2 2 3 3
AUROC 0.991 0.998 0.992 0.996 0.997 0.998
p-value <107° <107° <107° <107° <107° <107°
Number of
. 12 62 330 99 222 497
metabolites
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Figure 4.4: Boxplots of six of the most influential metabolites in all models for the
comparison between mothers and fathers.

21



4. Results

4.1.4 Newborn venous blood plasma compared to Newborn
arterial blood plasma

Table 4.4 shows the number of misclassifications, AUROC values, p-values and num-
ber of metabolites in each of the models for the multilevel analyses of arterial and
venous arterial umbilical cord blood.

Table 4.4: Shows the number of misclassifications along with p-values from per-
mutation tests and number of metabolites for each of the models in the multilevel
analysis comparing arterial and venous umbilical cord samples.

Model: PLS min PLS mid PLS max RF min RF mid RF max
Misclassifications 30 28 28 26 27 26
AUROC 0.801 0.797 0.770 0.818 0.822 0.820
p-value 0.013 0.0068 0.0060 0.0079  0.011 0.0078
Number of 54 74 101 12 12 15
metabolites

Figure 4.5 shows six of the most influential metabolites in the multilevel analysis
comparing venous and arterial umbilical cord samples. In addition to the metabolites
shown in the boxplots, deoxygalactose, mannose, deoxyglucose, mannitol, idose, hy-
poxanthine, keto-deoxygluconate and an unknown metabolite with index "M000000
A181005-101.xxx NA 1792 PRED VAR5 ALK NA" were all found to have higher
concentrations in the arterial umbilical cord blood and a significant impact on the
model. Homocysteine was also found to affect the separation and its concentration
was found to be higher in the venous cord blood.
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Figure 4.5: Boxplots of six of the most influential metabolites in all models for
the comparison between arterial and venous umbilical cord samples. p-values are
obtained from paired t-tests.

4.1.5 ANOVA decomposition on all samples

Table 4.5 shows number of misclassifications together with p-values and number of
metabolites for each of the models done on the ANOVA decomposed data. Figure
4.6 shows the predictions for the mid models of both random forest and PLS-DA
calculations. The plots show that neither model can separate arterial and venous
umbilical cord samples.
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4. Results

Table 4.5: Shows the number of misclassifications values along with p-values and
number of metabolites for each of the models in the analysis of the ANOVA decom-
posed data comparing all sample types.

Model: PLS min PLS mid PLS max RF min RF mid RF max
Misclassifications 35 36 37 32 32 31
p-value <107° <107° <107° <107 <107  <107°
Number of 32 63 123 32 01 261
metabolites
ANOVA decomposed RF prediction FLS on ANOVA decomposed data
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Figure 4.6: Shows RF predictions (a) and PLS predictions (b) for comparison
between all samples using ANOVA decomposed data.

24



Relative concentration

Relative concentration

4. Results

Figure 4.7 shows four of the most influential metabolites from the ANOVA decom-
posed models. In addition to these four metabolites, phosphoric acid, urea, aspartic
acid, oxalic acid, 1,5-anhydro D-glucitol, a-tocopherol, N-acetyl ornithine, glycylva-
line and an unknown metabolite named Unknown.sst.cgl.101 also had a high impact

on the separation of the classes.
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Figure 4.7: Boxplots of four of the most influential metabolites in all models for
the comparison between all samples using ANOVA decomposed data.
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4.2 Allergy

Neither of the models tested for allergy yielded any significance from the permuta-
tions tests (lowest p-value = 0.2). As all the different models were inadequate, no
predictions of allergy development can be made from the multivariate models.

4.2.1 Mothers - Allergy

Multivariate models are based on the overall patterns in the data, and the lack of
a significant model for both multivariate approaches indicates that there is no clear
overall pattern in relation to allergy. However there were some significant metabo-
lites between the mothers of allergic children and non-allergic children based on
univariate statistical models. Figure 4.8 shows the six most significant metabolites
that were found in the analysis for the mothers metabolome in relation to allergy.
In addition to the metabolites in the figure, glutaric acid (higher in mothers with
allergic children) and maltitol (higher in mothers with non-allergic children) were
also found to have a significant difference between allergic and non-allergic children.
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Figure 4.8: Boxplots of the six most significant metabolites in all models for the
comparison of samples from mothers with allergic and non-allergic children.
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4.2.2 Fathers - Allergy

Similarly to the allergy analyses using the samples from the mothers, both models
were found to be inaccurate, but three significant metabolites could still be identified
using the variables obtained from the models. The three significant metabolites can
be found in Figure 4.9.
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Figure 4.9: Boxplots the three significant metabolites in all models for the com-
parison of samples from fathers with allergic children and non allergic children.
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4.2.3 Umbilical cord samples - Allergy

Neither of the models comparing arterial, venous or mixed umbilical cord blood
samples for allergic compared to non-allergic children were significant based on the
permutation tests.

When using univariate modelling of individual metabolites, 8 differed in arterial
blood, the six most significant of these are plotted in Figure 4.10. In addition to
these six, succinic acid and salicin were significantly higher in the non-allergic chil-
dren. No metabolites in the models for the venous cord blood differed. In mixed
umbilical cord blood, sarcosine was higher in non-allergic children (Figure 4.11) with
no other differences observed. The models for the arterial samples gave 8 significant
metabolites, the six most significant of these are plotted in Figure 4.10. In addition
to these six, Succinic acid and Salicin were significantly higher in the non-allergic
children.
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Figure 4.10: Boxplots of the six most significant metabolites in all models for the
comparison between allergic and non-allergic children using arterial umbilical cord
samples.
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Figure 4.11: Boxplot of the only significant metabolite over all models for the
comparison between allergic and non-allergic children using mixed umbilical cord

samples.
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Discussion

5.1 Difference between mothers, fathers and new-
born infants

All the models comparing samples from mothers and fathers with umbilical cord
samples shows p-values lower than 107 indicating that all the models are robust
and not overfitted, which is otherwise a problem with multivariate models. All
models in the comparison between mother and umbilical cord samples are able to
well predict the corresponding classes with 0-1 misclassifications and they all have
AUROC values very close to 1. When comparing the fathers to the umbilical cord
samples, all models show between 1 and 3 misclassifications and AUROC values
close to 1. Thus, models based on metabolomics were able to robustly distinguish
between mothers, fathers and umbilical cord blood. This is not surprising given the
very different conditions the blood samples were collected (mothers during birth,
umbilical cord samples immediately post-birth, and fathers at some point in the
days before or after the mothers gave birth. Many studies have described differ-
ences in the blood plasma metabolome between men and women [49] [50], though
none to our knowledge have described the relationship between the metabolome of
mother, father and baby.

A major challenge in this type of work is to unravel the differences between parents
and children from inter-individual variation, which is often extremely large. The
results from the ANOVA decomposition clearly shows that there are a lot of differ-
ences between the individuals, and that the differences between children is larger
than the differences in venous and arterial cord blood for the same infant. This sug-
gests that while there may be differences between arterial and venous cord blood,
these differences are mainly determined by differences between individual babies or
families rather than consistent biological differences that are inherent to venous and
arterial cord blood.

The concentrations of several amino acids were higher in the children in comparison
to the mothers. While the concentrations of several unsaturated fatty acids and a-
tocopherol were higher in the mothers. This corresponds well with previous research
that has been done where the concentrations of linoleic acid and a-linolenic acid were
found in higher concentrations in the mothers and amino acids were found in higher
concentrations in the infants [17] [20]. The higher amino acid concentrations in the
umbilical cord blood samples may indicate that the child is in an anabolic state, syn-
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thesizing a lot of proteins. The higher concentrations of a-tocopherol in the mothers
can most likely be explained by the higher concentrations of unsaturated fatty acid.
Endogenously a-tocopherol is part of the antioxidant system to prevent unsaturated
fatty acids from undergoing lipid peroxidation. As linoleic acid and linolenic acid
are both actively transported over the placenta in an order of preference, the high
concentrations of these in the mothers could indicate that proteins responsible for
the transport are occupied with other fatty acids such as DHA[11]. Lipophilic com-
pounds are also often transported together, so an overall higher lipid content in
mothers may also lead to higher relative concentrations of a-tocopherol. Another
reason for the high concentrations of the fatty acids could be that the mothers are
in a catabolic state, and are utilizing the fatty acids for catabolism as giving birth
to a baby involves massive energy expenditure.

The models comparing mothers to fathers appears to be of substantial significance
as well, with p-values below 107° for every model, with 2 and 3 misclassifications
for all of the models. The metabolites with highest influence on this model are
all higher in the mothers than that of the fathers. The same trend was found in
the comparison between children and fathers. This might be due to the fact that
the fathers are not put through the same amount of physical stress as the mothers
delivering a baby, or the children, being born. When the body is exposed to stress,
it is feasible that compounds related to the stress are more likely to be needed in
higher concentrations than that of a person in or close to homeostasis.

5.2 Venous compared to arterial umbilical cord
blood

The models in the multilevel analysis (multivariate equivalent to paired t-tests) were
all significant, although not as strong as the models comparing the different family
members to each other. The number of misclassifications in a multilevel analysis
might be misleading, as every person has two points. In Table 4.4 26-30 misclassi-
fications in the model represents 13-15 childrens’ venous and arterial samples being
misclassified as the other. Interestingly, the arterial umbilical cord blood samples
appears to have higher concentrations of monosaccharides compared to the venous,
suggesting a relative outflow of monosaccharides from the infant to the mother.
Metabolically this may be due to mothers using up all their glycogen deposits dur-
ing labour and the birthing process, so that they are relatively depleted compared
to the baby. This hypothesis could also explain why the mothers are so high in
unsaturated fatty acids. As the glucose levels in the mothers are depleted, fatty
acid catabolism is initiated by splitting triglycerides into free fatty acids and glyc-
erol [51]. As the difference of saturated fatty acids were not as significant, it could
be possible that there is some kind of priority in the fatty acid catabolism that is
utilizing the unsaturated fatty acids secondarily to the saturated ones, thus leaving
higher levels of unsaturated fatty acids in the blood. Another interesting finding
in this analysis was the presence of keto-deoxygluconate and its apparent higher
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concentration in the arterial cord blood. Keto-deoxygluconate is of microbial origin,
and is not synthesized by humans [52]. While the biological relevance of a higher
amount of keto-deoxygluconate in arterial blood compared to maternal blood is un-
clear, it does demonstrate that there is transfer of metabolites of microbial origin
between the maternal and foetal blood supply.

5.3 Allergy

Despite using balanced error rate as fitness, the models were not able to predict al-
lergy development very well. The main reason for this is that the number of children
who have developed allergy during the follow-up period is low, meaning that any
model is poorly powered, especially considering the variation due to both sampling
and inter-individual differences. This is further confounded by the seven children
who did develop allergy having different kinds of allergic diseases, and could there-
fore have different metabolic patterns depending on what kind of symptom they
are displaying. Due to the low number of allergic children, it was meaningless to
attempt separate analyses based on the different types of allergies.

Another potential reason could be that allergy does not have that much of a corre-
lation to the in utero conditions and the mothers gut microbiome and diet, however
this would require data both from the mothers diets as well as data from the gut mi-
crobiome of the children to say. That some metabolites that were highly significant
were still found throughout the analyses makes this a bit less likely to be the case.
It is however important to stress that these investigations are highly preliminary,
and that a much larger study is needed to draw any definite conclusions about the
metabolic relationship of allergic diseases.

The metabolites that were found to be significant from the univariate testing sug-
gests that there might be some kind of influence working for allergy development
already in utero. Specifically it seems that there are both saccharides and amino
acid related compounds that has an effect. Sorbose and deoxyglucose were found
to have an increased concentration in the arterial umbilical cord samples of the
non-allergic children. Isoleucine was also found in higher concentrations in the non-
allergic childrens arterial samples while sarcosine (glycine derivative) was found to be
significantly higher in the mixed umbilical cord samples of the non-allergic children.
Aminobutyric acid, more commonly known as GABA, was also found in signifi-
cantly higher concentrations in the non-allergic childrens’ arterial samples. This is
a surprising finding as GABA is an inhibitory neurotransmitter and has been sus-
pected of being a signalling substance in asthma [53]. Isoleucine is a branch chained
amino acid, which in previous studies has been associated with type 2 diabetes [54].
Branch chained amino acids are also connected to increased protein synthesis via
stimulation of insulin in adults. Homocysteine, higher in mothers with non-allergic
children, is often associated to bad health as high concentrations has been observed
to have a connection to cardiovascular disease, diabetes and cancer development
[55]. In this study homocysteine concentrations in the mothers appears to lower the
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risk for allergy development, indicating that having sufficiently high concentrations
in the blood could be promoting health in some regards as well.

Although several metabolites were significant in the allergy investigations, only a
handful of them would still be significant if a Bonferroni correction would be applied,
and therefore caution about interpreting these data is needed before confirmation
in follow up work.

5.4 Strengths and limitations

The largest limitation with this study is the sample size, based on a convenience
sampling of available samples. More samples will be available as the NICE-cohort is
completed, with over 500 children included. While not all will have suitable blood
samples for the comparison of parents and children, there will be an oppotunity to
increase the statistical power. Further, this study has only accounted for children
who were diagnosed with allergy at one year of age. Childhood allergies develop over
time and it is likely that more children in this sample will develop allergy by the
time of the next follow-up at four years of age. Another way could be to artificially
increase the number of observations in the allergic group, by bootstrapping up the
sample size that have been used in this study. This would lead to both groups being
more evenly distributed, and using number of misclassifications would give better
predictions as it would not be beneficial for the model to group all allergic children
with the non-allergic ones. Although it would make the algorithms work better,
bootstrapping one of the groups would introduce additional bias to the models, as
all the new samples are still dependent on the seven samples that are already in the
model. In short, there is no good substitute for adequate statistical power.

A strength of this study is that the fathers has been included in the investigations.
Fathers are rarely included in studies regarding infant health even though they could
potentially have a large impact on the child. The use of unbiased feature reduction
and two different types of multivariate modelling is also a strength as the chance
for false positive results (i.e. due to random chance) is reduced compared to many
‘conventional” approaches for multivariate modelling of metabolomics data. Another
good thing is that more than one kind of algorithm has been applied to the data,
leading to results that occur from both models are more statistically sound than if
only one would have been used.

5.5 Future prospects

In addition to increasing the sample size it would be of interest to identify all the
unknown metabolites that have been found to be of significance to get a better
view of the complete picture. In all metabolomics studies using untargeted detec-
tion methods, a large number of metabolites remain unidentified due to no good
matches with existing mass spectral libraries, and in future studies these unknown
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metabolites should be monitored and if they do prove to be important, more efforts
should be made to identify them. To further investigate what occurs in the child
during pregnancy, it would be of interest to check in animal models if there are
significant differences in metabolites pre-birth and post-birth, to see how much the
birth affects the metabolome. Without this, it is hard to get a good view on what
metabolic pathways are active during the development of the foetus. It would also
be of interest to investigate several stages of the pregnancy, as the child has different
needs in different development stages, there could potentially be a lot of information
to be gained about allergy if blood could be sampled from the foetus during different
stages of its intrauterine development. As this kind of sampling is potentially lethal
to the foetus, mice models could be used to give an idea on how the metabolome is
altered during the different stages.

In relation to studying factors that contribute to the development of allergy it is
necessary to account for suggested risk factors such as diet and gut microbiota. As
these types of data also include a high number of variables, different data analysis
modelling will be required compared to what has been performed here.
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Conclusion

There are significant metabolic differences between mothers, fathers and their chil-
dren. The discrepancies mainly consist of higher levels of unsaturated fatty acids in
mothers, higher concentrations of amino acids in children and the fathers generally
having less of these groups in their respective comparison. The difference between
venous and arterial cord blood can mainly be attributed to monosaccharides and
amino acids. It seems probable that during childbirth, the mother expends most of
her energy reserves, leading to higher concentrations of unsaturated fatty acids in
her blood as both glucose and saturated fatty acids are converted into energy. This
is further supported by the low glucose levels in the venous cord blood compared to
the arterial. The higher amount of amino acids in the infants might be related to
the newborns being in an anabolic state, where they are trying to synthesize a lot
of proteins to be able to grow.

Although there were some metabolites that were related to allergy at 1 year of
age, larger sample sizes are needed, especially to enable differentiation between the
different kinds of allergic diseases. This work shows that metabolomics may be a
promising approach to study metabolic risk-factors for allergy development.
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Code

#All code for Difference between mother father child.

#loading data and sorting them to matrices

data <— read.csv2(file="data_to_be used3.csv",
stringsAsFactors = F)

cmeta=c (1:12)

meta <— data[,cmeta]

Y <— data[,6]

X <~ data[,—1:—12]

sum(is .na(X)) #194 missing values

dim(X) #shows dimension of X

194/(255%553) #number of missing values divided by dim(X)
#0.00137574 —> 0,137574 % missing values

#load packages
library (missForest)
library (StatTools)
library (MUVR)
library (doParallel)

#Impute missing values
XNAremoved <— missForest (X, maxiter = 10)

#PCA plots
par (mfrow=c (1,2)) #makes plots side by side

#make first PCA
pcVarl=summary(pcadata)$importance [2,] #get R2X values for
component.

xlab=paste('PC’ 1,7 (R2X=",signif(pcVarl[1],3),’) ,sep="") #

defines X label name

ylab=paste( 'PC’ ,2,’ (R2X=",signif(pcVarl [2],3),") ,sep="") #

defines Y label name

v



B. Code

plot (pcadata$x[,c(1,2)],main="1Initial PCA plot, with outlier"
,col=1,xlab=xlab | ylab=ylab ,pch=meta$Family_member—1) #

plots PCA components 1 and 2

legend ( "bottomright ' ,col=1,legend=levels (factor (meta$Family__
member) ) ,pch=c (0,1,2)) #adds legend box to PCA plot

abline (h=0,1ty=2) #Adds horizontal line at 0

abline (v=0,1ty=2) #Adds vertical line at 0

mtext(c("a)","b)"), at=c(—170, 90))

#remowval of outlier

Xnew=XNAremoved$ximp|—which.min(pcadata$x|,1]) ,]

Ynew=Y[—which . min(pcadata$x[,1]) ]

metanew=meta|—which . min(pcadata$x[,1]) ,]

#Make second PCA

pcVar=summary (pcadatanew )$importance [2 ] #get R2X wvalues for
second plot

xlab=paste ('PC’ ,1,’ (R2X=",signif (pcVar[1],3),’) ,sep="") #
defines X label name

ylab=paste( 'PC’ ,2, 7 (R2X=",signif (pcVar[2],3),’)  ,sep="") #
defines Y label name

plot (pcadatanew$x[,c(1,2)],main="PCA plot over  initial data"
,col=meta$Family member, xlab=xlab , ylab=ylab ,pch=16) #
Plots PCA components 1 and 2

legend ( "bottomright ' ,col=c(1,2,3) ,legend=c(’Mothers’, ’
Fathers’, ’'Children’) ,pch=c(16)) #adds legend box to PCA
plot

abline (h=0,1ty=2) #adds horizontal line at 0

abline (v=0,1ty=2) #adds wvertical line at 0

#Make second PCA again checking for Batch

pcVar=summary (pcadatanew )$importance [2 ] #get R2X wvalues for
second plot

xlab=paste ('PC’ ,1,’ (R2X=",signif (pcVar[1],3),’) ,sep="") #
defines X label name

ylab=paste('PC’ ,2, 7 (R2X=",signif (pcVar[2],3),’)  ,sep="") #
defines Y label name

plot (pcadatanew$x[,c(1,2)],main="PCA plot over  initial data"
,col=1,xlab=xlab ,ylab=ylab ,pch=meta$Batch) #Plots PCA
components 1 and 2

legend ( "bottomright ' ,col=1,legend=levels (factor (metanew$
Batch)) ,pch=c(1,2,3,4)) #adds legend box to PCA plot

abline (h=0,1ty=2) #adds horizontal line at 0

abline (v=0,l1ty=2) #adds wvertical line at 0

#sorting data to 1—2—38
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Children<— c()
Mother <— c ()
Father <— c()
for (i in 1l:length(metanew$Family member)){

if (metanew$Family member|i]==3){
Children <— append(Children, i)

} else if(metanew$Family member[i]==2){
Father <— append(Father, 1)

} else if(metanew$Family member|i]|==1){

Mother <— append(Mother, i)

}
}

Y diff3=metanew$Family_member [ Children |
Ydiff2=metanew$Family_member | Father |
Ydiffl=metanew$Family_member | Mother |
Xdiff3=Xnew [ Children , |
Xdiff2=Xnew [ Father ||

X diff1=Xnew|[Mother ]
metadiff3=metanew [ Children , |
metadiff2=metanew [ Father , ]|
metadiffl=metanew [ Mother , |

Yaller3=metanew$any_ allergies [Children |
Yaller2=metanew$any_allergies [Father]
Yaller l=metanew$any_allergies [ Mother|

#Separating data into venous arterial and mized
Arterial <— c()
Venous <— c()
Mixed <— c()
for (i in 1l:length(Ydiff3)) {
if (metadiff3$Sample[i] ="A"){
Arterial <— append(Arterial , 1)
} else if (metadiff3$Sample[i] ="V"){
Venous <— append (Venous, i)
} else if (metadiff3$Sample[i] ="M"){
Mixed <— append (Mixed, i)
h
¥

XdiffA <— Xdiff3 [Arterial ,]
XdiffV <— Xdiff3 [Venous, |
XdiffM <— Xdiff3 [Mixed , |
YdiffA <— Ydiff3[Arterial]
YdiffV <— Ydiff3 [Venous|
YdiffM <— Ydiff3 [Mixed]
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metadiffA <— metadiff3 [ Arterial ,]
metadiffV <— metadiff3 [Venous, |
metadiffM <— metadiff3 [ Mixed ]

YallerA <— Yaller3[Arterial |
YallerV <— Yaller3[Venous]
YallerM <— Yaller3 [Mixed ]

#Starting actual calculations.

nPerm=100 #100 for real investigation and 25 for "quick'
analysis

varratio=0.9 #0.9 for real investigations and 0.75 for
quick" analysis

nCore=detectCores ()—1 #creates a variable with amount of
cores —1 to be used to parallel computing

#1v2

"

Xdiff12 <— rbind (Xdiffl , Xdiff2)

Ydiffl2 <— c(Ydiffl, Ydiff2)

metadiff12 <— rbind(metadiffl , metadiff2)

permFitnessdiffl2min=numeric(nPerm)

permFitnessdiffl2mid=numeric(nPerm)
permFitnessdiffl2max=numeric(nPerm)

cl=makeCluster (nCore)

registerDoParallel (cl)

Modeldiff12=MUVR(X=Xdiff12 , Y=Ydiff12, varRatio = varratio ,
ID=metadiff12$Family_number, nRep=2%*nCore, nOuter=5,
method="PLS’, DA=T)

for (p in 1:nPerm) {
cat (’\nPermutation’,p, ’of

Yperm=sample ( Ydiff12)

permModeldiff12=MUVR(X=Xdiff12 , Y=Yperm, varRatio=varratio
, ID=metadiff12$Family number, nRep=2%nCore, nOuter=5,
method="PLS’, DA=T)

permFitnessdiffl12min [p|=permModeldiff12$miss [1]

permFitnessdiffl12mid [p]=permModeldiff12$miss 2]

permFitnessdiffl12max [p]=permModeldiff12$miss 3]

}

stopCluster(cl)

)

, nPerm)

ARF1-2
permFitnessdiffRF12min=numeric(nPerm)
permFitnessdiffRF12mid=numeric(nPerm)
permFitnessdiffRF12max=numeric (nPerm)
cl=makeCluster (nCore)
registerDoParallel (cl)
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ModeldiffRF12=MUVR(X=Xdiff12 ,Y=as.character (Ydiff12),
varRatio = varratio, ID=metadiff12$Family_number, nRep=2x
nCore, nOuter=5method="RF’, fitness = "MISS")

for (p in 1:nPerm) {

cat(’\nPermutation’ ,p, "of
Yperm=sample ( Ydiff12)
permModeldiff12=MUVR(X=Xdiff12 , Y=as.character(Yperm) ,
varRatio=varratio , ID=metadiffl128Family _number, nRep=2x
nCore, nOuter=5,method="RF’, fitness = "MISS")
permFitnessdiffRF12min [p|]=permModeldiff12$miss [1]
permFitnessdiffRF12mid [p]=permModeldiff12$miss [2]
permFitnessdiffRF12max [p]=permModeldiff12$miss [3]

}

stopCluster(cl)

)

, nPerm)

#RF V—1

XdiffV1 <— rbind (XdiffV , Xdiffl)

YdiffVl <— c(YdiffV, Ydiffl)

metadiffV1l <— rbind (metadiffV, metadiffl)

permFitnessdiffRFV1min=numeric (nPerm)

permFitnessdiffRFV1mid=numeric (nPerm)
permFitnessdiffRFV1max=numeric(nPerm)

cl=makeCluster (nCore)

registerDoParallel (cl)

ModeldiffRFV1=MUVR(X=XdiffV1 ,Y=as.character ( YdiffV1)
varRatio = varratio, ID=metadiffV1$Family_number, nRep=2x
nCore, nOuter=5 method="RF’ fitness = '"MISS")

for (p in 1:nPerm) {

cat (’\nPermutation’,p, ’of

Yperm=sample ( YdiffV1)

permModeldiff VI=MUVR(X=XdiffV1, Y=as.character (Yperm)
varRatio=varratio , ID=metadiffV1$Family number, nRep=2x
nCore, nOuter=5,method="RF’, fitness = "MISS")

permFitnessdiffRFV1min [p|=permModeldiffV1$miss [1]

permFitnessdiffRFV1mid [p|]=permModeldiffV1$miss [2]

permFitnessdiffRFVIimax [p|]=permModeldiffV1$miss [3]

}

stopCluster(cl)

)

, nPerm)

APLS v—1
permFitnessdiffV1min=numeric(nPerm)
permFitnessdiffV1mid=numeric(nPerm)
permFitnessdiffVlmax=numeric(nPerm)
cl=makeCluster (nCore)
registerDoParallel (cl)
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ModeldiffVI=MUVR(X=XdiffV1, Y=YdiffV1l, varRatio = varratio ,
ID=metadiffV1$Family number, nRep=2%*nCore, nOuter=5,
method="PLS’, DA=T)

for (p in 1:nPerm) {
cat(’\nPermutation’ ,p, "of

Yperm=sample ( YdiffV1)
permModeldiffV1=MUVR(X=XdiffV1, Y=Yperm, varRatio=varratio
, ID=metadiffV1$Family number, nRep=2*nCore, nOuter=5,
method="PLS’, DA=T)
permFitnessdiffVlimin [p]=permModeldiffV1$miss 1]
permFitnessdiffV1imid [p]=permModeldiffV1$miss 2]
permFitnessdiffV1imax [p]=permModeldiffV1$miss [3]

}

stopCluster(cl)

)

, nPerm)

#REF V-2

XdiffV2 <— rbind (XdiffV, Xdiff2)

YdiffV2 <— c(YdiffV, Ydiff2)

metadiffV2 <— rbind (metadiffV, metadiff2)

permFitnessdiffRFV2min=numeric (nPerm)

permFitnessdiffRFV2mid=numeric (nPerm)
permFitnessdiffRFV2max=numeric (nPerm)

cl=makeCluster (nCore)

registerDoParallel (cl)

ModeldiffRFV2=MUVR(X=XdiffV2 ,Y=as.character ( YdiffV2)
varRatio = varratio, ID=metadiffV2$Family_number, nRep=2x
nCore, nOuter=5method="RF’, fitness="MISS’)

for (p in 1:nPerm) {

cat (’\nPermutation’ ,p, ’of

Yperm=sample ( YdiffV2)

permModeldiffVI=MUVR(X=XdiffV2, Y=as.character (Yperm) ,
varRatio=varratio , ID=metadiffV2$Family number, nRep=2x
nCore, nOuter=5,method="RF’, fitness="MISS")

permFitnessdiffRFV2min [p|=permModeldiffV2$miss [1]

permFitnessdiffRFV2mid [p|=permModeldiffV2$miss [2]

permFitnessdiffRFV2max [p|]=permModeldiffV28miss [3]

}

stopCluster(cl)

)

, nPerm)

APLS v—2
permFitnessdiffV2min=numeric(nPerm)
permFitnessdiffV2mid=numeric(nPerm)
permFitnessdiffV2max=numeric(nPerm)
cl=makeCluster (nCore)
registerDoParallel (cl)
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ModeldiffV2=MUVR(X=XdiffV2 , Y=YdiffV2, varRatio = varratio ,
ID=metadiffV2$Family number, nRep=2*nCore, nOuter=5,
method="PLS’, DA=T)

for (p in 1:nPerm) {
cat(’\nPermutation’ ,p, "of

Yperm=sample ( YdiffV2)

permModeldiffV2=MUVR(X=XdiffV2, Y=Yperm, varRatio=varratio
, ID=metadiffV2$Family _number, nRep=2*nCore, nOuter=5,
method="PLS’, DA=T)

permFitnessdiffV2min [p|]=permModeldiffV2$miss [1]

permFitnessdiffV2mid [p]=permModeldiffV2$miss [2]

permFitnessdiffV2max [p]=permModeldiffV2$miss [3]

}

stopCluster(cl)

)

, nPerm)

#RE M-1

XdiffM1 <— rbind (XdiffM, Xdiffl)

YdiffM1 <— c(YdiffM, Ydiffl)

metadiffM1 <— rbind(metadiffM , metadiffl)

permFitnessdiffRFM1min=numeric (nPerm)

permFitnessdiff RFM1mid=numeric (nPerm)

permFitnessdiffRFM1max=numeric (nPerm)

cl=makeCluster (nCore)

registerDoParallel (cl)

ModeldiffRFM1=MUVR(X=XdiffM1 ,Y=as.character ( YdiffM1) ,
varRatio = varratio, ID=metadiffM1$Family_number, nRep=2x
nCore, nOuter=5method="RF’, fitness = "MISS")

for (p in 1:nPerm) {

cat(’\nPermutation’ ,p, "of

Yperm=sample ( YdiffM1)

permModeldiffM 1=MUVR(X=XdiffM1, Y=as.character (Yperm),
varRatio=varratio , ID=metadiffM1$Family number, nRep=2x
nCore, nOuter=5,method="RF’, fitness = "MISS")

permFitnessdiffRFMImin [p]=permModeldiffM1$miss 1]

permFitnessdiff RFM1mid [p]=permModeldiffM1$miss [2]

permFitnessdiffRFM1max [p]=permModeldiffM1$miss [3]

}

stopCluster(cl)

)

, nPerm)

APLS M-1
permFitnessdiffM1min=numeric(nPerm)
permFitnessdiffM1mid=numeric(nPerm)
permFitnessdiffM lmax=numeric(nPerm)
cl=makeCluster (nCore)
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registerDoParallel (cl)

ModeldiffM 1=MUVR(X=XdiffM1, Y=YdiffM1, varRatio = varratio ,
[ID=metadiffM1$Family_number, nRep=2xnCore, nOuter=5,
method="PLS’, DA=T)

for (p in 1:nPerm) {
cat (’\nPermutation’ ,p, "of

Yperm=sample ( YdiffM1)

permModeldiffM 1=MUVR(X=XdiffM1, Y=Yperm, varRatio=varratio
, ID=metadiffM1$Family number, nRep=2*nCore, nOuter=5,
method="PLS’, DA=T)

permFitnessdiffMImin [p]=permModeldiffM1$miss [1]

permFitnessdiffM1mid [p]=permModeldiffM1$miss [2]

permFitnessdiffMImax [p]=permModeldiffM1$miss [3]

}

stopCluster(cl)

)

, nPerm)

ARF M-2

XdiffM2 <— rbind (XdiffM, Xdiff2)

YdiffM2 <— c(YdiffM, Ydiff2)

metadiffM2 <— rbind(metadiffM , metadiff2)

permFitnessdiff RFM2min=numeric (nPerm)

permFitnessdiff RFM2mid=numeric (nPerm)

permFitnessdiffRFM2max=numeric (nPerm)

cl=makeCluster (nCore)

registerDoParallel (cl)

ModeldiffRFM2=MUVR(X=XdiffM2 ,Y=as . character ( YdiffM2) ,
varRatio = varratio, ID=metadiffM2$Family_number, nRep=2x
nCore, nOuter=5,method="RF’, fitness = "MISS’)

for (p in 1:nPerm) {

cat(’\nPermutation’ ,p, "of

Yperm=sample ( YdiffM2)

permModeldiff M2=MUVR(X=XdiffM2, Y=as.character (Yperm),
varRatio=varratio , ID=metadiffM2$Family number, nRep=2x
nCore, nOuter=5,method="RF’, fitness = "MISS’)

permFitnessdiff RFM2min [p]=permModeldiffM2$miss [1]

permFitnessdiffRFM2mid [p]=permModeldiffM2$miss [2]

permFitnessdiffRFM2max [p]=permModeldiffM2$miss [3]

}

stopCluster(cl)

)

, nPerm)

#PLS M-2

permFitnessdiffM2min=numeric(nPerm)
permFitnessdiffM2mid=numeric(nPerm)
permFitnessdiffM2max=numeric(nPerm)
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cl=makeCluster (nCore)

registerDoParallel (cl)

ModeldiffM2=MUVR(X=XdiffM2 , Y=YdiffM2, varRatio = varratio ,
ID=metadiffM2$Family number, nRep=2xnCore, nOuter=5,
method="PLS’, DA=T)

for (p in 1:nPerm) {

cat (’\nPermutation’ ,p, ' of

Yperm=sample ( YdiffM2)

permModeldiffM2=MUVR(X=XdiffM2 , Y=Yperm, varRatio=varratio
, ID=metadiffM2$Family number, nRep=2*nCore, nOuter=5,
method="PLS’, DA=T)

permFitnessdiffM2min [p]=permModeldiffM2$miss [1]

permFitnessdiffM2mid [p]=permModeldiffM2$miss [2]

permFitnessdiffM2max [p]=permModeldiffM2$miss [3]

}

stopCluster(cl)

", nPerm)

#REF A—1

XdiffAl <— rbind (XdiffA , Xdiffl)

YdiffAl <— c(YdiffA, Ydiffl)

metadiffAl <— rbind(metadiffA, metadiffl)

permFitnessdiffRFAlmin=numeric (nPerm)

permFitnessdiffRFAlmid=numeric (nPerm)
permFitnessdiffRFAlmax=numeric (nPerm)

cl=makeCluster (nCore)

registerDoParallel (cl)

ModeldiffRFA1=MUVR(X=XdiffAl ,Y=as.character ( YdiffAl),
varRatio = varratio, ID=metadiffA1$Family_number, nRep=2x
nCore, nOuter=5method="RF’, fitness = "MISS’)

for (p in 1:nPerm) {

cat (’\nPermutation’ ,p, "of

Yperm=sample ( YdiffAl)

permModeldiffA1=MUVR(X=XdiffAl, Y=as.character(Yperm),
varRatio=varratio , ID=metadiffA1$Family number, nRep=2x
nCore, nOuter=5method="RF’, fitness = "MISS’)

permFitnessdiffRFAlmin [p]=permModeldiffA1$miss [1]

permFitnessdiffRFA1mid [p]=permModeldiffA1$miss [2]

permFitnessdiff RFAlmax [p]=permModeldiffA1$miss [3]

}

stopCluster(cl)

b

, nPerm)

#PLS A—1
permFitnessdiffAlmin=numeric(nPerm)
permFitnessdiffAlmid=numeric(nPerm)
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permFitnessdiffAlmax=numeric(nPerm)

cl=makeCluster (nCore)

registerDoParallel (cl)

Modeldiff A 1=MUVR(X=XdiffAl, Y=YdiffAl, varRatio = varratio ,
ID=metadiffA1$Family_number, nRep=2%*nCore, nOuter=5,
method="PLS’, DA=T)

for (p in 1:nPerm) {
cat (’\nPermutation’ ,p, ’of ’, nPerm)

Yperm=sample ( YdiffAl)

permModeldiffA1=MUVR(X=XdiffAl, Y=Yperm, varRatio=varratio
, ID=metadiffA1$Family number, nRep=2%nCore, nOuter=>5,
method="PLS’, DA=T)

permFitnessdiffAlmin [p]=permModeldiffA1$miss [1]

permFitnessdiffAlmid [p]=permModeldiffA1$miss [2]

permFitnessdiffAlmax [p]=permModeldiffA1$miss [3]

}

stopCluster(cl)

JRF A2

XdiffA2 <— rbind (XdiffA, Xdiff2)

YdiffA2 <— c(YdiffA, Ydiff2)

metadiffA2 <— rbind (metadiffA, metadiff2)

permFitnessdiffRFA2min=numeric (nPerm)

permFitnessdiffRFA2mid=numeric (nPerm)
permFitnessdiffRFA2max=numeric (nPerm)

cl=makeCluster (nCore)

registerDoParallel (cl)

ModeldiffRFA2=MUVR(X=XdiffA2 ,Y=as.character ( YdiffA2)
varRatio = varratio, ID=metadiffA28Family_number, nRep=2x
nCore, nOuter=5 method="RF’, fitness="MISS")

for (p in 1:nPerm) {

cat (’\nPermutation’ ,p, ’of

Yperm=sample ( YdiffA2)

permModeldiffA2=MUVR(X=XdiffA2 , Y=as.character (Yperm) ,
varRatio=varratio , ID=metadiffA28Family number, nRep=2x
nCore, nOuter=5 method="RF’, fitness="MISS’)

permFitnessdiffRFA2min [p]=permModeldiffA28miss [1]

permFitnessdiffRFA2mid [p|=permModeldiffA2$miss [2]

permFitnessdiffRFA2max [p]=permModeldiffA28miss [3]

}

stopCluster(cl)

", nPerm)

#PLS A2
permFitnessdiffA2min=numeric(nPerm)
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permFitnessdiffA2mid=numeric(nPerm)

permFitnessdiffA2max=numeric(nPerm)

cl=makeCluster (nCore)

registerDoParallel (cl)

ModeldiffA2=MUVR(X=XdiffA2 , Y=YdiffA2, varRatio = varratio ,
ID=metadiffA2$Family_number, nRep=2%*nCore, nOuter=5,
method="PLS’, DA=T)

for (p in 1:nPerm) {
cat (’\nPermutation’,p, "of >, nPerm)

Yperm=sample ( YdiffA2)

permModeldiffA2=MUVR(X=XdiffA2, Y=Yperm, varRatio=varratio
, ID=metadiffA28Family number, nRep=2%nCore, nOuter=5,
method="PLS’, DA=T)

permFitnessdiffA2min [p|=permModeldiffA2$miss [1]

permFitnessdiffA2mid [p]=permModeldiffA28miss 2]

permFitnessdiffA2max [p]=permModeldiffA2$miss [3]

}

stopCluster(cl)

#Fvaluate models

#Modeldiff12

#checking fitness parameters
ModeldiffRF12$auc
Modeldiffl128$auc
ModeldiffRF12$miss
Modeldiff12$miss

#checking significance with permutation analysis
pPerm (Modeldiff12$miss[1], permFitnessdiffl2min)
pPerm(Modeldiff12$miss [2], permFitnessdiffl2mid)
pPerm(Modeldiff128miss [3], permFitnessdiffl2max)

pPerm ( ModeldiffRF128$miss[1], permFitnessdiffRF12min)
pPerm (ModeldiffRF128miss [2], permFitnessdiffRF12mid)
pPerm ( ModeldiffRF128miss [3], permFitnessdiffRF12max)

#saving metabolite information to variables
minl2=getVIP (Modeldiff12 , model="min ")
mid12=getVIP (Modeldiff12 , model="mid ")
max12=getVIP ( Modeldiff12 , model="max")

minRF12=getVIP (ModeldiffRF12 , model="min ")
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midRF12=getVIP (ModeldiffRF12, model="mid ")
maxRF12=get VIP (ModeldiffRF12, model="max")

#checking length of matrices

nrow (minl2)

nrow (mid12)

nrow (max12)

head (minl2,10)

head (mid12,10)

head (max12,10)

#saving table information

t12=cbind . data.frame(head (minl2$name, 10), head(minl28$rank,
10), head(midl2$name, 10), head(midl2$rank, 10), head(
max12$name, 10), head(max12$rank, 10))

#checking length of matrices

nrow (minRF12)

nrow (midRF12)

nrow (maxRF12)

head (minRF12,10)

head (midRF12,10)

head (maxRF12,10)

#saving table information

t12RF=cbind . data . frame (head (minRF12$name, 10), head (minRF12$
rank, 10), head(midRF12$name, 10), head(midRF12$rank, 10)
, head (maxRF12$name, 10), head(maxRF12$rank, 10))

write.table(t12, "PLStablel2', sep=";", row.names=F, quote=F
)

write.table(t12RF, "RFtablel2"', sep=";", row.names=F, quote=
F)

#checking which of the top 10 metabolite concentrations are
highest in which sample type

#PLS-DA

mean ( Xdiff1$Phosphoric_acid__3TMS )—mean( Xdiff2$Phosphoric__
acid__3TMS )

mean ( Xdiff1 $PYRUVIC_ACID MEOX TMS 1 M. z89 )—mean( Xdiff2$
PYRUVIC_ACID .MEOX TMS 1 M. z89)

mean ( Xdiff1 $PHOSPHATE . FRAGMENT __ 1 M. 2299 )—mean( Xdiff2$
PHOSPHATE.FRAGMENT __ 1 M. z299)

mean ( Xdiff1 $NICOTINIC_ACID.TMS __ 1)—mean( Xdiff2$NICOTINIC__
ACID.TMS __ 1)

mean ( X diff1$GAMMA. GLUTAMYLPHENYLALANINE N N O O.TMS ___ 1)—
mean ( X diff2 $GAMMA. GLUTAMYLPHENYLALANINE._ N N O O.TMS 1)

mean( Xdiff1$ISOCITRIC_ACID.4TMS 1 M. z245)—mean( Xdiff2$
ISOCITRIC_ACID.4TMS 1 M. z245)
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mean( Xdiff1$Cic.aconitic_acid)—mean( Xdiff28Cic.aconitic_acid
)

mean( Xdiff1$Tryptophan__ 5. hydroxy._ 3TMS BP)-mean( Xdiff2$
Tryptophan__ 5.hydroxy.__ 3TMS _BP)

mean( Xdiff1 $FRUCTOSE. 1_6.DISPHOSPHATE.MEOX_7TMS 2 2)—mean(
Xdiff2$FRUCTOSE. 1__6.DISPHOSPHATE .MEOX_7TMS 2 2)

mean( Xdiff1$Melatonin__ 2TMS )—mean( Xdiff2$Melatonin__ 2TMS )

#Plotting RF metabolites that are not in PLS-DA model
mean ( Xdiff1 $GLYCERIC_ACID.2.PHOSPHATE.4TMS 3 M. z315)—mean

(Xdiff28GLYCERIC_ACID. 2 .PHOSPHATE.4TMS 3 M. z315)
#t—tests for boxplot metabolites
.test (Xdiff128Phosphoric_acid__ 3TMS ~Ydiff12)
ctest (Xdiff12$PYRUVIC_ACID .MEOX TMS 1 M. z89~Ydiff12)
.test (Xdiff12$PHOSPHATE . FRAGMENT __ 1 M. z299~Ydiff12)
ctest (Xdiff128$NICOTINIC_ACID.TMS __ 1~Ydiff12)
ctest (Xdiff12$GAMMA. GLUTAMYLPHENYLATANINE_ N N O O.TMS 1~
Ydiff12)
t.test (Xdiff128ISOCITRIC_ACID.4TMS 1 M. z245~Ydiff12)

=+ o+ o+ ot

#create boxplots for wunivariate analysis

par (mfrow=c(2,3))

boxplot ( Xdiff12$Phosphoric_acid__ 3TMS ~Ydiff12, main="
Phosphoric /Acid’, xaxt="n’, ylab=’Relative concentration’
)

legend ("topright", legend="a’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Mothers’, ’'Fathers’))

boxplot ( Xdiff12$PYRUVIC ACID .MEOX TMS 1 M. z89~Ydiff12 ,
main="Pyruvic Acid’, xaxt="n’, ylab="Relative,
concentration’)

legend ("topright", legend='b’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Mothers’, ’'Fathers’))

boxplot ( Xdiff12$PHOSPHATE . FRAGMENT 1 M. 7299~Ydiff12 , main
="Phosphate fragment’, xaxt='n’, ylab=’Relative,
concentration’)

legend ("topright", legend="c’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Mothers’, ’'Fathers’))

boxplot ( Xdiff12$NICOTINIC_ACID.TMS __ 1~Ydiff12 , main=’
Nicotinic, Acid’, xaxt="n’, ylab="Relative concentration’)

legend ("topright", legend=’'d’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Mothers’, ’'Fathers’))

boxplot ( Xdiff12$GAMMA. GLUTAMYLPHENYLALANINE _N N O O.TMS 1
~Ydiff12 , main=expression(bold (paste(gamma, '—
Glutamylphenylalanine’, sep=","))), xaxt="n’, ylab=’
Relative concentration’)
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legend ("topright", legend="e’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Mothers’, ’'Fathers’))

boxplot ( Xdiff12$ISOCITRIC_ACID.4TMS 1 M. z245~Ydiff12 ,
main="Isocitric Acid’, xaxt="n’, ylab="Relative
concentration ’)

legend ("topright", legend="f’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Mothers’, ’'Fathers’))

#A—1

#checking fitness parameters
ModeldiffRFA1$auc
ModeldiffAl1$auc

Modeldiff RFA1$miss
ModeldiffA1$miss

#checking p—wvalues for permutations tests

pPerm (ModeldiffAl1$auc[1,2], permFitnessdiffAlmin)
pPerm(ModeldiffA18auc[2,2], permFitnessdiffAlmid)
pPerm ( ModeldiffA18auc[3,2], permFitnessdiffAlmax)
pPerm (ModeldiffRFA18auc|1,2], permFitnessdiff RFAlmin)
pPerm ( ModeldiffRFA1$auc[2,2], permFitnessdiffRFAlmid)
pPerm (ModeldiffRFA18auc[3,2], permFitnessdiffRFAlmax)

#saving variables by VIP score for table plotting
minRFAl=get VIP (ModeldiffRFA1, model="min")
midRFAl=getVIP (ModeldiffRFA1, model="mid")
maxRFAl=getVIP (ModeldiffRFA1, model="max’)

minAl=getVIP ( ModeldiffAl , model="min ")
midAl=getVIP (ModeldiffAl, model="mid ")
maxAl=getVIP (ModeldiffAl , model="max")

#checking number of metabolites for each model and saving
variables for plotting tables

nrow (minAl)

nrow (midAl)

nrow (maxAl)

#Note — fix latex appendix tables. See if boxplots need
configuration as well

tAl=cbind .data.frame(c(head (minAl$name, 10), rep(NA,7)), c(
head (minAl$rank, 10),rep(NA,7)), head(midAl$name, 10),
head (midAl$rank, 10), head(maxAl$name, 10), head(maxAl$
rank, 10))

minAl

midAl
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maxAl

nrow (minRFA1)

nrow (midRFA1)

nrow (maxRFAL)

tA1RF=cbind . data.frame(c(head (minRFAl$name, 10),rep(NA,5)),
c(head (minRFA18rank, 10),rep(NA,5)), c(head(midRFAl$name,

10), rep(NA,3)), c(head(midRFA18rank, 10), rep(NA,3)),

head (maxRFA1$name, 10), head (maxRFAl$rank, 10))

minRFA1

midRFA1

head (maxRFA1,10)

#writing tables to csv files

write.table(tAl, "PLStableAl', sep=";", row.names=F, quote=F
)

write.table (tA1RF, "RFtableAl"', sep=";", row.names=F, quote=
F)

#checking which of the top 10 metabolite concentrations are
highest in which sample type

#PLS-DA

mean ( XdiffASGLYCYLVALINE.4TMS 1 M. 7174 )—mean( Xdiff1$
GLYCYLVALINE.4TMS __1__M.z174)

mean ( Xdiff ASFRUCTOSE. 1__6 .DISPHOSPHATE .MEOX_7TMS 2 2)—mean(
Xdiff1 $FRUCTOSE. 1_ 6.DISPHOSPHATE . MEOX _7TMS 2 2)

mean ( XdiffA$alpha. Tocopherol )—mean( Xdiffl$alpha . Tocopherol)

mean ( Xdiff ASPHENYLALANINE N O.TMS 1 M. z218)-mean( Xdiff1$
PHENYLALANINE N O.TMS 1. M. 7218)

mean ( XdiffASTRYPTOPHAN N N O.TMS 2 M. 7202 )—mean( Xdiff1$
TRYPTOPHAN N N O.TMS 2 M. z202)

mean ( Xdiff ASOCTADECADIENOIC ACID 9 12._7Z 7Z TMS 1 M.z337
)—mean( Xdiff1 $OCTADECADIENOIC_ ACID _9 12._ 7Z 72 ' TMS 1 M
.2337)

mean ( XdiffASLYSINE N N O.TMS 3 1 M. 2200 )—mean( Xdiff1$
LYSINE N N O.TMS 3 1 M. z200)

mean ( XdiffASOCTADECATRIENOIC_ ACID 6 9 12. Z Z 72 TMS 1 M

2120 )—mean( X diff1 SOCTADECATRIENOIC_ ACID 6 9 12._7Z 7Z 7 .

TMS 1 M.z120)

mean ( XdiffA$ABSCISIC_ACID .MEOX 2TMS 2 2)—mean( Xdiff1$
ABSCISIC_ACID .MEOX 2TMS 2 2)

mean ( XdiffA$SABSCISIC_ACID.MEOX 2TMS 1 1)—mean( Xdiff1$
ABSCISIC_ACID .MEOX 2TMS 1 1)

#metabolites found in RF models that are not in PLS-DA

mean ( Xdiff ASOCTADECENOIC_ACID 9. E .TMS 1_ M. z137)—mean(
Xdiff1 $OCTADECENOIC ACID 9. E .TMS 1. M.z137)
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#t—tests for boxplot metabolites

t.test (XdiffAI$GLYCYLVALINE.4TMS 1 M.z174~YdiffA1l)

t.test (XdiffA1$FRUCTOSE. 1__6.DISPHOSPHATE .MEOX 7TMS 2 2~
YdiffAl)

t.test (XdiffAl$alpha. Tocopherol~YdiffAl)

ctest (XdiffAISLYSINE N N O.TMS 3 1 M.z200~YdiffA1l)

t.test (XdiffA1$SOCTADECADIENOIC ACID 9 12. 7 7Z . TMS 1 M.
z337~YdiffAl)

t.test (XdiffAISPHENYLALANINE N O.TMS 1 M.z218~YdiffAl)

-+

#create boxplots for wunivariate visualization

par (mfrow=c(2,3))

boxplot ( XdiffAI$GLYCYLVALINE.4TMS 1 M. z174~YdiffAl, main=
"Glycylvaline’, xaxt="n’, ylab=’Relative ,concentration’)

legend ("topright", legend="a’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c( ' Mothers’, ’"Arterial’))

boxplot ( Xdiff A1$FRUCTOSE.1_ 6.DISPHOSPHATE .MEOX 7TMS 2 2~
YdiffAl, main="Fructose 1,6 ,disphosphate’, xaxt='n’, ylab
=’Relative concentration’)

legend ("topright", legend='b’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c( ' Mothers’, ’"Arterial’))

boxplot ( XdiffAl1$alpha. Tocopherol~YdiffAl, main=expression (
bold (paste(alpha, ’—=Tocopherol’, sep=""))), xaxt="n’, ylab
=’Relative concentration’)

legend ("topright", legend="c’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Mothers’, "Arterial’))

boxplot ( XdiffA1ISLYSINE N N O.TMS 3 1 M.z200~YdiffAl, main
=’Lysine’, xaxt="n’, ylab=’"Relative  concentration’)

legend ("topright", legend="'d’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Mothers’, "Arterial’))

boxplot ( Xdiff A1$OCTADECADIENOIC ACID 9 12._Z 7Z .TMS 1 M.
z337~YdiffAl, main="Octadecadienoic Acid’, xaxt='n’, ylab
=’Relative concentration’)

legend ("topright", legend=’e’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Mothers’, "Arterial’))

boxplot ( XdiffAT$PHENYLALANINE N O.TMS 1 M. z218~YdiffA1l,
main="Phenylalanine’, xaxt="n’, ylab="Relative,,
concentration’)

legend ("topright", legend="f’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Mothers’, "Arterial’))

HA—2
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#checking fitness parameters
ModeldiffRFA2$auc
ModeldiffA28%auc
ModeldiffRFA2$miss
ModeldiffA28$miss

#checking p values with the help of permutations tests
pPerm (ModeldiffRFA28auc|[1,2], permFitnessdiffRFA2min)
pPerm ( ModeldiffRFA28auc[2,2], permFitnessdiffRFA2mid)
pPerm ( ModeldiffRFA28auc[3,2], permFitnessdiffRFA2max)

pPerm (ModeldiffA28auc[1,2], permFitnessdiffA2min)
pPerm(ModeldiffA28auc[2,2], permFitnessdiffA2mid)
pPerm( ModeldiffA28auc[3,2], permFitnessdiffA2max)

#saving metabolites sorted by VIP to be able to plot tables
minRFA2=get VIP (ModeldiffRFA2 , model="min ")

midRFA2=getVIP (ModeldiffRFA2 , model="mid ")

maxRFA2=getVIP (ModeldiffRFA2 , model="max ")

minA2=getVIP (ModeldiffA2 , model="min ")

midA2=getVIP (ModeldiffA2 , model="mid ")

maxA2=get VIP (ModeldiffA2 , model="max")

#checking number of metabolites for each model and saving
information for tables.

nrow (minA2) #checking length of matriz

nrow (midA2)

nrow (maxA?2)

tA2=cbind .data.frame(c(head (minA2$name, 10), rep(NA,7)), c(
head (minA2$rank, 10),rep(NA,7)), head(midA28$name, 10),
head (midA28rank, 10), head(maxA2$name, 10), head (maxA2$
rank, 10))

minA2$name

nrow (minRFA2)

nrow (midRFA2)

nrow (maxRFA2)

tA2RF=cbind . data . frame(c(head (minRFA2$name, 10), NA), c(head
(minRFA28rank, 10), NA), c(head (midRFA2$name, 10), NA), c
(head (midRFA2$rank, 10), NA), head(maxRFA2$name, 10),
head (maxRFA2$rank, 10))

minRFA2

midRFA2

head (maxRFA2,10)

#saving tables as .csv files

write.table(tA2, "PLStableA2' 6 sep=";", row.names=F, quote=F

)
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write.table (tA2RF, "RFtableA2"', sep=";", row.names=F, quote=
F)

#checking which of the top 10 metabolite concentrations are
highest in which sample type

#PLS5-DA

mean ( XdiffA$Phosphoric_acid___3TMS)—mean( Xdiff2$Phosphoric__
acid___3TMS)

mean ( Xdiff A $SPHOSPHATE . FRAGMENT 1. M. z299 )—mean( Xdiff2$
PHOSPHATE .FRAGMENT __ 1. M. z299)

mean ( Xdiff ASNICOTINIC_ACID.TMS __ 1)—mean( Xdiff2$NICOTINIC__
ACID. TMS 1)

mean ( XdiffA$Melatonin__ 2TMS)—mean( Xdiff2$Melatonin

mean ( XdiffASISOCITRIC_ACID.4TMS 1 M. z245)—mean( Xdiff2$
ISOCITRIC_ACID.4TMS __1__M. z245)

mean ( XdiffASMALIC_ACID.3TMS 1 M. 7233 )—mean( Xdiff2 $MALIC _
ACID.3TMS 1 M. z233)

mean ( XdiffASTRYPTOPHAN N N O.TMS 2 M. 7202 )—mean( Xdiff2$

TRYPTOPHAN N N O.TMS 2 M. z202)

mean ( XdiffA$PYRUVIC_ACID.MEOX TMS 1 M. 289 )—mean( Xdiff2$
PYRUVIC_ACID .MEOX TMS 1 M. z89)

mean ( XdiffA$Tryptophan__5.hydroxy.__ 3TMS BP)—mean( Xdiff2$
Tryptophan__ 5. hydroxy._ 3TMS BP)

mean ( Xdiff A $SN.ACETYL _GLUCOSAMINE.MEOX N O O O O.TMS 1 2

2TMS)

mean ( XdiffA$CYSTEINE N O S.TMS 1 M.z219)-mean( Xdiff2$
CYSTEINE N O S.TMS 1 M.z219)

TMS 1 2 M.z218)

#metabolites in RF model not in PLS model
mean ( Xdiff A SGAMMA. GLUTAMYLPHENYLALANINE _N N O O.TMS 1 )—
mean ( X diff2 $GAMMA. GLUTAMYLPHENYLALANINE N N O O.TMS 1

)
mean ( Xdiff ASN.ACETYL_GLUCOSAMINE.MEOX N O O O O.TMS 1 2 M

TMS 1 2 M.z218 )

#t—tests for boxplot metabolites

.test (XdiffA28Phosphoric_acid__ 3TMS ~YdiffA2)

.test (XdiffA2$PHOSPHATE . FRAGMENT __ 1 M. z299~YdiffA2)
ctest (XdiffA28NICOTINIC_ACID.TMS __ 1~YdiffA2)

.test (XdiffA2$Melatonin__ 2TMS ~YdiffA2)

(
(

.test (XdiffA2$ISOCITRIC_ACID.4TMS 1 M.z245~YdiffA2)
.test ( XdiffA28MALIC_ACID.3TMS 1. M.z233~YdiffA2)

+ o+ o+ ot ot
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#creating boxplots
par (mfrow=c(2,3))
boxplot ( XdiffA2$Phosphoric_acid__ 3TMS ~YdiffA2, main="

Phosphroic, /Acid’, xaxt="n’, ylab=’Relative concentration’
)
legend ("topright", legend="a’, bty="n’, cex=1.5)
axis(side=1, at=c(1,2), labels=c(’Fathers’, "Arterial’))

boxplot ( Xdiff A2$PHOSPHATE . FRAGMENT 1 M. z299~YdiffA2 , main
="Phosphate fragment’, xaxt='n’, ylab=’Relative,
concentration ’)

legend ("topright", legend='b’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Fathers’, "Arterial’))

boxplot ( XdiffA28$NICOTINIC_ACID.TMS __ 1~YdiffA2, main=’
Nicotinic, Acid’, xaxt="n’, ylab="Relative concentration’)

legend ("topright", legend="c’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Fathers’, "Arterial’))

boxplot (XdiffA28Melatonin__ 2TMS ~YdiffA2, main="Melatonin’,
xaxt="n’, ylab=’Relative concentration’)

legend ("topright"', legend="d’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Fathers’, "Arterial’))

boxplot ( XdiffA2$ISOCITRIC_ACID.4TMS 1 M. z245~YdiffA2 |
main="Isocitric Acid’, xaxt="n’, ylab=’Relative,
concentration )

legend ("topright"', legend="e’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Fathers’, "Arterial’))

boxplot ( XdiffA2$MALIC_ACID.3TMS __ 1 M. z233~YdiffA2, main=’
Malic Acid’, xaxt="n’, ylab="Relative concentration’)

legend ("topright", legend="f’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’'Fathers’, "Arterial’))

#V—1

ModeldiffRFV18$auc

ModeldiffV18$auc

ModeldiffRFV1$miss

ModeldiffV1$miss

pPerm (ModeldiffRFV18auc[1,2], permFitnessdiffRFVI1min)
pPerm ( ModeldiffRFV18auc[2,2], permFitnessdiffRFV1mid)
pPerm (ModeldiffRFV18auc [3,2], permFitnessdiffRFV1max)

pPerm ( ModeldiffV18auc[1,2], permFitnessdiffVIimin)
pPerm (ModeldiffV1$auc|2,2], permFitnessdiffV1mid)
pPerm (ModeldiffV1$auc[3,2], permFitnessdiffVlimax)

minRFV1=get VIP (ModeldiffRFV1, model="min")
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midRFV1=getVIP (ModeldiffRFV1, model="mid ")
maxRFVi=getVIP (ModeldiffRFV1, model="max")

minV1=getVIP (ModeldiffV1, model="min ")
midV1=getVIP (ModeldiffV1, model="mid ")
maxV1=getVIP (ModeldiffV1 , model="max")

nrow (minV1) #checking length of matriz

nrow (midV1)

nrow (maxV1)

tVl=cbind .data.frame(c(head (minV1$name, 10), rep(NA,5)), c(
head (minV1$rank, 10),rep(NA,5)), head(midV1$name, 10),
head (midV18rank, 10), head(maxV1$name, 10), head(maxV1$
rank, 10))

minV1$name

nrow (minRFV1)

nrow (midRFV1)

nrow (maxRFV1)

tVIRF=cbind .data.frame(c(head (minRFV1$name, 10), rep(NA,5)),

c(head (minRFV1$rank, 10), rep(NA,5)), c(head(midRFV1$

name, 10), rep(NA,2)), c(head(midRFVI$rank, 10), rep(NA
,2)), head(maxRFVI$name, 10), head(maxRFVI$rank, 10))

head (minRFV1,10)

head (midRFV1,10)

head (maxRFV1,10)

write.table (tV1, "PLStableV1', sep=";", row.names=F, quote=F
)

write.table (tVIRF, "RFtableV1', sep=";", row.names=F, quote=
F)

#checking which of the top 10 metabolite concentrations are
highest in which sample type

#PLS-DA

mean ( XdiffV$alpha . Tocopherol )—mean( Xdiffl1$alpha.Tocopherol)

mean ( Xdiff VSGLYCYLVALINE.4TMS 1 M. z174 )—mean( Xdiff1$
GLYCYLVALINE.4TMS __1__M.z174)

mean ( XdiffVSFRUCTOSE. 1_ 6.DISPHOSPHATE .MEOX _7TMS 2 2)—mean(
Xdiff1$FRUCTOSE. 1__6.DISPHOSPHATE .MEOX _7TMS 2 2)

mean ( Xdiff VSLYSINE N N OO TMS 3 1 M. z200)—mean( Xdiff1$
LYSINE N N O.TMS 3 1 M. z200)

mean ( XdiffVSOCTADECADIENOIC_ACID 9 12._7Z 7Z .TMS 1 M.z337
)—mean( Xdiff1 $OCTADECADIENOIC_ ACID _9 12._ 7Z 7 . TMS 1 M
.2337)

mean ( XdiffVSTRYPTOPHAN N N O.TMS 2 M. 2202 )—mean( Xdiff1$
TRYPTOPHAN N N O.TMS 2 M. z202)

mean ( Xdiff VSOCTADECENOIC_ACID__9._ E .TMS __1__M.z137)—mean(
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Xdiff1$OCTADECENOIC_ ACID 9. E .TMS 1 M.z137)

mean ( XdiffVSOCTADECENOIC ACID_.9. 7 .TMS 1 M. z124)—mean(
Xdiff1 SOCTADECENOIC_ACID _.9._7Z .TMS 1 M.z124)

mean ( XdiffV$ABSCISIC_ACID.MEOX_2TMS 1 1)-mean( Xdiff1$
ABSCISIC_ACID .MEOX 2TMS 1 1)

mean ( XdiffVSABSCISIC_ACID .MEOX 2TMS 2 2)—mean( Xdiff1$
ABSCISIC_ACID .MEOX 2TMS 2 2)

mean ( Xdiff VSOCTADECATRIENOIC_ ACID__6 9 12. Z Z 72 .TMS 1 M
.2120 )—mean( X diff1 $OCTADECATRIENOIC ACID 6 9 12. Z 7 7 .
TMS 1 M.z120)

#metabolites found in RF models that are not in PLS-DA
mean ( XdiffVSN.ACETYL GLUCOSAMINE.MEOX N O O O O.TMS 1 M

.2218 )—mean( X diff1$N.ACETYL GLUCOSAMINE.MEOX N O O O O.
TMS 1 2 M.z218)

#t—tests for boxplot metabolites

t.test (Xdiff VISGLYCYLVALINE. 4TMS 1 M.z174~YdiffV1)

t.test (Xdiff VISLYSINE N N O.TMS 3 1 M.z200~YdiffV1l)

t.test (XdiffV1$alpha. Tocopherol~YdiffVl)

t.test (Xdiff VISFRUCTOSE. 1_ 6.DISPHOSPHATE .MEOX 7TMS 2 2~
Ydiffv1)

t.test (Xdiff VISOCTADECADIENOIC ACID 9 12. 7 7Z . TMS 1 M.
2337~YdiffV1)

t.test (Xdiff VI$ABSCISIC_ACID .MEOX 2TMS 1 1~YdiffVvl)

#Create boxplots

par (mfrow=c(2,3))

boxplot ( Xdiff VISGLYCYLVALINE.4TMS 1 M. z174~YdiffV1 , main=
"Glycylvaline’ |, xaxt="n’, ylab=’Relative ,concentration’)

legend ("topright", legend="a’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Mothers’, ’Venous’))

boxplot (Xdiff VISLYSINE N N O.TMS 3 1 M.z200~YdiffV1l, main
=’Lysine’, xaxt="n’, ylab="Relative, concentration’)

legend ("topright", legend='b’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Venous’, 'Mothers’))

boxplot (XdiffV1i$alpha. Tocopherol~YdiffV1l, main=expression (
bold (paste (alpha, '—=Tocopherol’, sep=""))), xaxt="n’, ylab
=’Relative  concentration’)

legend ("topright", legend="c’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Mothers’, 'Venous’))

boxplot ( Xdiff VI$FRUCTOSE. 1__6.DISPHOSPHATE .MEOX 7TMS 2 2~
YdiffV1, main="Fructose 1,6 disphosphate’, xaxt="n’, ylab
=’'Relative concentration’)

legend ("topright", legend='d’, bty="n’, cex=1.5)
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axis(side=1, at=c(1,2), labels=c(’Mothers’, ’Venous’))
boxplot ( Xdiff VI$OCTADECADIENOIC ACID 9 12._ Z 7Z .TMS 1 M.
z337~YdiffV1, main="Octadecadienoic Acid’, xaxt='n’, ylab
=’'Relative concentration’)
legend ("topright", legend=’e’, bty="n’, cex=1.5)
axis(side=1, at=c(1,2), labels=c(’Mothers’, ’Venous’))
boxplot ( Xdiff VI$ABSCISIC_ACID .MEOX 2TMS 1 1~YdiffV1, main=
"Abscisic Acid’, xaxt="n’, ylab="Relative concentration’)
legend ("topright", legend="f’, bty="n’, cex=1.5)
axis(side=1, at=c(1,2), labels=c(’Mothers’, 'Venous’))

A2
ModeldiffRFV28$auc
ModeldiffV2$auc
ModeldiffRFV28$miss
ModeldiffV2$miss

pPerm (ModeldiffRFV28$auc[1,2], permFitnessdiffRFV2min)
pPerm ( ModeldiffRFV28$auc[2,2], permFitnessdiffRFV2mid)
pPerm (ModeldiffRFV28$auc[3,2], permFitnessdiffRFV2max)

pPerm ( ModeldiffV28auc[1,2], permFitnessdiffV2min)
pPerm (ModeldiffV2$auc|2,2], permFitnessdiffV2mid)
pPerm (ModeldiffV2$auc[3,2], permFitnessdiffV2max)

minRFV2=get VIP (ModeldiffRFV2, model="min")
midRFV2=getVIP (ModeldiffRFV2, model="mid")
maxRFV2=getVIP (ModeldiffRFV2, model="max")

minV2=getVIP (ModeldiffV2 , model="min ")
midV2=getVIP (ModeldiffV2 , model="mid ")
maxV2=get VIP (ModeldiffV2 , model="max")

nrow (minV2) #checking length of matriz

nrow (midV2)

nrow (maxV2)

tV2=cbind .data.frame(c(head (minV2$name, 10), rep(NA,5)), c(
head (minV28rank, 10),rep(NA,5)), head(midV2$name, 10),
head (midV28rank, 10), head(maxV2$name, 10), head(maxV2$
rank, 10))

minV2$name

nrow (minRFV?2)

nrow (midRFV?2)

nrow (maxRFV2)
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tV2RF=cbind . data.frame(c(head (minRFV2$name, 10), NA), c(head
(minRFV28rank, 10), NA), c(head (midRFV2$name, 10), NA), c

(head (midRFV2$rank, 10), NA), head(maxRFV2$name, 10),
head (maxRFV2$rank, 10))

minRFV?2

midRFV2

head (maxRFV2,10)

write.table(tV2, "PLStableV2' 6 sep=";", row.names=F, quote=F
)

write . table (tV2RF, "RFtableV2', sep=";", row.names=F, quote=
F)

#checking which of the top 10 metabolite concentrations are
highest in which sample type

#PLS—DA

mean ( XdiffV$Phosphoric_acid___3TMS)—mean( Xdiff2$Phosphoric__
acid___3TMS)

mean ( XdiffVSPHOSPHATE . FRAGMENT 1 M. z299 )—mean( Xdiff2$
PHOSPHATE.FRAGMENT __ 1 M. z299)

mean ( XdiffVSPYRUVIC_ACID MEOX TMS 1 M. z89 )—mean( Xdiff2$
PYRUVIC_ACID .MEOX TMS 1 M. z89)

mean ( Xdiff VSNICOTINIC_ACID.TMS _ 1)—mean( Xdiff2$NICOTINIC__
ACID. TMS 1)

mean ( Xdiff VSISOCITRIC_ACID.4TMS 1 M. 7245 )—mean( Xdiff2$
ISOCITRIC_ACID.4TMS 1 M. z245)

mean ( XdiffVSMALIC ACID.3TMS 1 M. 7233 )—mean( Xdiff2 $MALIC _
ACID.3TMS 1 M.z233)

mean ( Xdiff VSTRYPTOPHAN N N O.TMS 2 M. 2202 )—mean( Xdiff2$

TRYPTOPHAN N N O.TMS 2 _M.z202)
mean ( Xdiff VSALLOTHREONINE N_O_O.TMS 1__M.z133)—mean( Xdiff2
$SALLOTHREONINE N O O.TMS 1. M.z133)

mean ( XdiffVSN.ACETYL _GLUCOSAMINE.MEOX N O O O O.TMS 1 2

TMS 1 2 M.z218)

mean ( XdiffV8alpha. Tocopherol )—mean( Xdiff2$alpha. Tocopherol)

#RF metabolites mot top 10 in PLS-DA

mean ( XdiffV$GAMMA. GLUTAMYLPHENYLALANINE N N O O.TMS __ 1)—
mean ( X diff2 $CAMMA. GLUTAMYLPHENYLALANNE N N O O.TMS 1)

mean ( XdiffV8myo. Inositol )—mean( Xdiff2$myo. Inositol)

mean ( Xdiff VSINOSITOL _scyllo.6TMS 1 M. z432)—mean( Xdiff2$
INOSITOL___scyllo.6TMS 1 M.z432)

mean ( XdiffV$X1_5.ANHYDRO.D.GLUCITOL.4TMS 1 M. 7259 )—mean(
Xdiff2$X1_5.ANHYDRO.D.GLUCITOL. 4TMS 1. M.z259)
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#t—tests for boxplot metabolites

.test (XdiffV28Phosphoric_acid__ 3TMS ~YdiffVv2)
.test ( Xdiff V2SPHOSPHATE.FRAGMENT 1 M. z299~YdiffV2)
ctest (Xdiff V2$PYRUVIC_ACID .MEOX TMS 1 M. z89~YdiffV2)
ctest (Xdiff V2ENICOTINIC_ACID.TMS __ 1~YdiffV2)

ctest (Xdiff V2$ISOCITRIC_ACID.4TMS 1. M. z245~YdiffV2)
(

ctest (Xdiff V2$MALIC_ACID. 3TMS 1. M.z233~Ydiffv2)

[l S S i

#creating boxplots

par (mfrow=c(2,3))

boxplot (XdiffV2$Phosphoric_acid__3TMS ~YdiffV2, main=’
Phosphoric, Acid’, xaxt="n’, ylab=’Relative  concentration’
)

legend ("topright", legend="a’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Fathers’, 'Venous’))

boxplot ( Xdiff V2$PHOSPHATE . FRAGMENT 1 M. 7299~YdiffV2, main
="Phosphate  fragment ’, xaxt="n’, ylab="Relative,
concentration’)

legend ("topright", legend='b’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Fathers’, 'Venous’))

boxplot ( Xdiff V2$PYRUVIC_ACID MEOX TMS 1 M. z89~YdiffV2
main="Pyruvic Acid’, xaxt="n’, ylab="Relative,,
concentration’)

legend ("topright", legend="c’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Fathers’, 'Venous’))

boxplot ( Xdiff V2$NICOTINIC_ACID.TMS __ 1~YdiffV2, main="’
Nicotinic Acid’, xaxt='n’, ylab=’Relative concentration’)

legend ("topright', legend="d’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Fathers’, "Venous’))

boxplot ( Xdiff V2$ISOCITRIC_ACID.4TMS 1 M. z245~YdiffV2 |
main="Isocitric Acid’, xaxt="n’, ylab=’Relative,,
concentration )

legend ("topright', legend="e’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Fathers’, 'Venous’))

boxplot ( Xdiff V2$MALIC_ACID.3TMS __ 1 M. z233~YdiffV2, main=’
Malic,;Acid’, xaxt="n’, ylab="Relative concentration’)

legend ("topright", legend="f’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Fathers’, 'Venous’))

AV 1

ModeldiffRFM1$auc

ModeldiffM1$auc

ModeldiffRFM1$miss

ModeldiffM1$miss
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pPerm (ModeldiffRFM18auc[1,2], permFitnessdiffREMImin)
pPerm (ModeldiffRFM18auc[2,2], permFitnessdiffREFMImid)
pPerm (ModeldiffRFM18$auc[3,2], permFitnessdiff RFM1lmax)

pPerm ( ModeldiffM18$auc[1,2], permFitnessdiffM1lmin)
pPerm (ModeldiffM1$auc|2,2], permFitnessdiffM1mid)
pPerm (ModeldiffM18$auc[3,2], permFitnessdiffM1lmax)

minRFM1=getVIP (ModeldiffRFM1, model="min ")
midRFMI1=getVIP (ModeldiffRFM1, model="mid ")
maxRFM1=getVIP (ModeldiffRFM1, model="max")

minM1=get VIP (ModeldiffM1, model="min")
midM1=get VIP ( ModeldiffM1 , model="mid ")
maxM1=getVIP (ModeldiffM1, model="max")

nrow (minM1) #checking length of matriz

nrow (midM1)

nrow (maxM1)

tMl=cbind . data . frame (head (minM1$name, 10), head (minM1$rank,
10), head (midM1$name, 10), head (midM1$rank, 10), head(
maxM1$name, 10), head(maxMI1$rank, 10))

minM1$name

nrow (minRFM1)

nrow (midRFM1)

nrow (maxRFMI )

tMIRF=cbind . data . frame (head (minRFM1$name, 10), head (minRFM1$
rank, 10), head(midRFM1$name, 10), head (midRFMl1$rank, 10)
, head (maxRFM1$name, 10), head(maxRFMl$rank, 10))

minRFM1

head (midRFM1,10)

head (maxRFM1, 10)

write.table (tM1, "PLStableM1', sep=";", row.names=F, quote=F
)

write.table (tM1RF, "RFtableM1', sep=";", row.names=F, quote=
F)

#checking which of the top 10 metabolite concentrations are
highest in which sample type

#PLS-DA

mean ( Xdiff MSGLYCYLVALINE.4TMS 1 M. z174 )—mean( Xdiff1$
GLYCYLVALINE.4TMS __1__M.z174)

mean ( XdiffM$ETHANOLAMINE N N O.TMS 2 M. 7174 )—mean( Xdiff1$

ETHANOLAMINE N N O.TMS 2 M.z174)
mean ( Xdiff MSLYSINE N N O.TMS 3 1__M.z200)—mean( Xdiff1$
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LYSINE N N O.TMS 3 1__M.z200)
mean ( Xdiff MSLYSINE N N N O.TMS 2 1. M.z317)—mean( Xdiff1$

LYSINE N N N O.TMS 2 1. M.z317)

mean ( Xdiff M$GLYCINE_ N N O.TMS 1__M. 7248 )—mean( Xdiff1$
GLYCINE N N O.TMS 1__M.z248)

mean ( XdiffM $SPHENYLALANINE N _O.TMS 1__M.7z218)—mean( Xdiff1$
PHENYLALANINE N O.TMS 1. M. z218)
mean ( XdiffM$X1 5.DIAMINOPENTANE N N N N.TMS 2 M.z100)—

mean ( Xdiff1$X1 5.DIAMINOPENTANE N N N N.TMS 2 M.z100)

mean ( Xdiff MSTRYPTOPHAN N N O.TMS 2 M. 2202 )—mean( Xdiff1$

TRYPTOPHAN N N O.TMS 2 M. z202)
mean ( XdiffM$alpha . Tocopherol )—mean( Xdiffl1$alpha . Tocopherol)
mean ( Xdiff MSORNITHINE N N N O.TMS 2 1. M.z216 )—mean( Xdiffl

$ORNITHINE N N N O.TMS 2 1. M.z216)

#RF metabolites mot present in top 10 PLS-DA
mean ( XdiffM$N.ACETYL_GLUCOSAMINE.MEOX N O O O O.TMS 1 M

.2218 )—mean( X diff1$N.ACETYL GLUCOSAMINE.MEOX N O O O O.
TMS 1 2 M.z218)

mean ( Xdiff M SOCTADECENOIC_ACID__9._E .TMS 1__M.z137)—mean(
Xdiff1 $OCTADECENOIC ACID 9. E .TMS 1 M.z137)
mean ( Xdiff M SOCTADECADIENOIC_ACID 9 12._7Z 7 .TMS 1 M.z337

)—mean( X diff1 SOCTADECADIENOIC ACID__ 9 12. 7 7 .TMS_ 1 M
.2337)

#t—tests for boxplot metabolites
ctest (XdiffM1$GLYCYLVALINE. 4TMS 1 M. z174~YdiffM1)
ctest (XdiffM1SETHANOLAMINE N N O.TMS 2 M. z174~YdiffM1)
ctest (XdiffMISLYSINE N N O.TMS 3 1 M. z200~YdiffM1)
ctest (XAiffMISLYSINE N N N O.TMS 2 1 M.z317~YdiffM1)

(

(

ctest (XdiffM1SGLYCINE N N _O.TMS 1__M.z248~YdiffM1)

[l i N N

ctest (XdiffM1$PHENYLALANINE N O.TMS 1 M. z218~YdiffM1)

#creating boxplots

par (mfrow=c(2,3))

boxplot ( XdiffM1$GLYCYLVALINE.4TMS 1 M. z174~YdiffM1, main=
"Glycylvaline’ | xaxt="n’, ylab=’Relative ,concentration’)

legend ("topright"', legend="a’, bty='n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Mothers’, "Mixed’))

boxplot ( XdiffM1$SETHANOLAMINE N N O.TMS 2 M. z174~YdiffM1 ,
main="Ethanolamine’, xaxt="n’, ylab="Relative,
concentration’)

legend ("topright', legend='b’, bty='n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Mothers’, "Mixed’))

boxplot ( XdiffMISLYSINE N N O.TMS 3 1 M. z200~YdiffM1, main
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=’'Lysine TMS 3’, xaxt="n’, ylab="Relative concentration’)
legend ("topright", legend="c’, bty="n’, cex=1.5)
axis(side=1, at=c(1,2), labels=c(’ Mothers’, "Mixed’))
boxplot ( XdiffMISLYSINE N N N O.TMS 2 1 M.z317~YdiffM1 ,
main="Lysine TMS 2’ , xaxt="n’, ylab=’Relative,,
concentration’)
legend ("topright", legend="d’, bty="n’, cex=1.5)
axis(side=1, at=c(1,2), labels=c(’ Mothers’, "Mixed’))
boxplot ( XdiffM1SGLYCINE N N O.TMS 1 M. z248~YdiffM1, main=
"Glycine’, xaxt="n’, ylab=’Relative  concentration’)
legend ("topright", legend="e’, bty="n’, cex=1.5)
axis(side=1, at=c(1,2), labels=c(’Mothers’, 'Mixed’))
boxplot ( XdiffM1$PHENYLALANINE N O.TMS 1 M. z218~YdiffM1 ,
main="Phenylalanine’, xaxt="n’, ylab="Relative,,
concentration’)
legend ("topright", legend="f’, bty="n’, cex=1.5)
axis(side=1, at=c(1,2), labels=c(’Mothers’, 'Mixed’))

V-2
ModeldiffRFM28$auc
ModeldiffM2$auc
Modeldiff RFM28$miss
ModeldiffM2$miss

pPerm (ModeldiffRFM28$auc[1,2], permFitnessdiffREM2min)
pPerm (ModeldiffRFM28auc[2,2], permFitnessdiffREFM2mid)
pPerm (ModeldiffRFM28$auc [3,2], permFitnessdiffRFM2max)

pPerm ( ModeldiffM28$auc[1,2], permFitnessdiffM2min)
pPerm ( ModeldiffM28$auc[2,2], permFitnessdiffM2mid)
pPerm (ModeldiffM2$auc[3,2], permFitnessdiffM2max)

minRFM2=getVIP (ModeldiffRFM2 , model="min ")
midREM2=getVIP (ModeldiffRFM2, model="mid ")
maxRFM2=getVIP (ModeldiffRFM2, model="max ")

minM2=get VIP ( ModeldiffM2 , model="min ")
midM2=get VIP (ModeldiffM2 , model="mid ")
maxM2=getVIP (ModeldiffM2 , model="max")

nrow (minM2) #checking length of matriz

nrow (midM2)

nrow (maxM?2)

tM2=cbind . data . frame(c(head (minM2$name, 10), rep(NA,4)), c(
head (minM2$rank, 10),rep(NA,4)), head(midM2$name, 10),
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head (midM28rank, 10), head(maxM2$name, 10), head (maxM2$
rank, 10))

minM2$name

nrow (minRFM2)

nrow (midRFM?2)

nrow (maxRFM2)

tM2RF=cbind . data . frame(c(head (minRFM2$name, 10), rep(NA,8)),
c(head (minRFM2$rank, 10), rep(NA,8)), c(head(midRFM2$
name, 10), rep(NA,3)), c(head(midRFM2$rank, 10), rep(NA
,3)), head(maxRFM2$name, 10), head (maxRFM2$rank, 10))

minRFM?2

midRFM2

head (maxRFM2, 10)

write.table (tM2, "PLStableM2', sep=";", row.names=F, quote=F
)

write . table (tM2RF, "RFtableM2' 6 sep=";", row.names=F, quote=
F)

#checking which of the top 10 metabolite concentrations are
highest in which sample type

#PLS—DA

mean ( XdiffMSISOCITRIC_ACID.4TMS 1 M. z245 )—mean( Xdiff2$
ISOCITRIC_ACID.4TMS 1 M. z245)

mean ( XdiffM$Phosphoric_acid___3TMS)—mean( Xdiff2$Phosphoric__
acid___3TMS)

mean ( Xdiff M $PHOSPHATE .FRAGMENT __ 1 M. 2299 )—mean( Xdiff2$
PHOSPHATE.FRAGMENT ___ 1. M. z299)

mean ( XdiffM$PYRUVIC_ACID .MEOX TMS 1. M. z89 )—mean( Xdiff2$
PYRUVIC_ACID.MEOX TMS 1 M. z89)

mean ( XdiffM$N. ACETYL MANNOSAMINE. MEOX N O O O O.TMS 1 1. M

TMS 11 M.2319)
mean ( XdiffM$GAMMA. GLUTAMYLPHENYLALANINE_ N N O O.TMS __ 1)—
mean ( X diff2 $GAMMA. GLUTAMYLPHENYLALANINE_ N N O O.TMS 1)
mean ( XdiffM$TRYPTOPHAN N N O.TMS 2 M. 2202 )—mean( Xdiff2$

TRYPTOPHAN N N O.TMS 2 M. z202)

mean(Xdiff M$LYSINE N N N O.TMS 2 1 M. 2317 )-mean( Xdiff2$
LYSINE N NN O.TMS 2 1 M.2z317)

mean ( XdiffM$N . ACETYL GLUCOSAMINE.MEOX N O O O O.TMS 1 2 M
.2218 )—mean( X diff2$N.ACETYL GLUCOSAMINE.MEOX N O O O O.
TMS 12 M.z218)

mean ( XdiffM$Cic.aconitic_acid)—mean( Xdiff28Cic.aconitic_acid
)

mean ( XdiffM$NICOTINIC_ACID.TMS _ 1)—mean( Xdiff2$NICOTINIC _
ACID.TMS 1)

mean ( XdiffM$GLYCYLVALINE. 4TMS 1__M.z174)—mean( Xdiff2$
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GLYCYLVALINE. 4TMS 1. M.z174)

#RF metabolites that were not in PLS-DA top 10s

.2191 )—mean( X diff2 $N.ACETYL GLUCOSAMINE.MEOX N O O O O.
TMS 2 1 M.z191)

#t—tests for boxplot metabolites

ctest (XdiffM2$Phosphoric_acid___3TMS ~YdiffM2)

ctest (XdiffM2$PHOSPHATE . FRAGMENT ___ 1 M. z299~YdiffM2)

ctest (XdiffM2$ISOCITRIC_ACID.4TMS 1. M. z245~YdiffM2)

ctest (XdiffM2$PYRUVIC_ACID .MEOX TMS 1. M. z89~YdiffM2)
ctest (XdiffM2$N.ACETYL MANNOSAMINE. MEOX N O O O O.TMS 1__ 1

=+ o+ o+ ot

M. 2319~YdiffM2)
t . test (XdiffM2$CAMMA. GLUTAMYLPHENYLALANINE N N O O.TMS 1~
YdiffM2)

#create boxplots

par (mfrow=c(2,3))

boxplot (XdiffM2$Phosphoric_acid__3TMS ~YdiffM2, main="’
Phosphoric ;Acid’, xaxt="n’, ylab=’"Relative  concentration’
)

legend ("topright', legend="a’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Fathers’, "Mixed’))

boxplot ( XdiffM2$PHOSPHATE . FRAGMENT __ 1 M. 7299~YdiffM2, main
="Phosphate fragment’, xaxt="n’, ylab=’Relative,,
concentration )

legend ("topright"', legend='b’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Fathers’, "Mixed’))

boxplot ( XdiffM2$ISOCITRIC_ACID.4TMS __ 1 M. z245~YdiffM2 |
main="Isocitric Acid’, xaxt="n’, ylab=’Relative,
concentration )

legend ("topright"', legend="c’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Fathers’, "Mixed’))

boxplot ( XdiffM2$PYRUVIC_ACID .MEOX TMS 1 M. z89~YdiffM2 ,
main="Pyruvic Acid’, xaxt="n’, ylab=’"Relative,
concentration )

legend ("topright", legend="'d’, bty='n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Fathers’, "Mixed’))

boxplot ( XdiffM2$N.ACETYL MANNOSAMINE.MEOX N O O O O.TMS 1__
1 M.z319~YdiffM2, main="N-Acetyl Mannosamine’, xaxt='n’,

ylab="Relative concentration’)

legend ("topright', legend="e’, bty='n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Fathers’, "Mixed’))

boxplot ( XdiffM2$GAMMA. GLUTAMYLPHENYTLALANINE N N O O.TMS 1
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9

~YdiffM2, main=expression(bold (paste (gamma, '—
Glutamylphenylalanine ’))), xaxt="n’, ylab=’Relative
concentration’)
legend ("topright", legend="f’, bty="n’, cex=1.5)
axis(side=1, at=c(1,2), labels=c(’Fathers’, "Mixed’))

#ANOVA decomposition

#start off by making sure only whole families are in the
data

nrow ( Xdiffl)

nrow ( Xdiff2)

nrow ( XdiffA)

nrow ( XdiffV)

nrow ( XdiffM )

metadiffl$Family _number

metadiff2$Family_number

metadiffA$Family_number

metadiffV$Family number

metadiffM$Family number

#All identical except for number 31 which is not in
metadiff?2 due to earlier outlier remowval

#Removing 31 from every matriz.
metaAD]l <— metadiffl[—31,]
XAD1 <— Xdiffl[—-31,]

metaADA <— metadiffA[—31,]
XADA <— XdiffA[—31,]

metaADV <— metadiffV|[—31]
XADV <— XdiffV[—-31,]

metaADM <— metadiffM[—31,]
XADM <— XdiffM[—31]

metaAD2 <— metadiff2
XAD2 <— Xdiff2

#rename A, M and V to numbers
metaAD1$Sample [ 1:nrow (metaAD1)]|=1
metaAD2$Sample [ 1:nrow (metaAD2)|=2
metaADA$Sample [ 1 : nrow (metaADA) |=3
( )]=4

)]=5

metaADV$Sample [ 1: nrow (metaADV
metaADM$ Sample [ 1 : nrow (metaADM
#Merge matrices in same order
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XAD <— as.matrix(rbind (XAD1, XAD2, XADA, XADV, XADM) )

metaAD <— rbind (metaAD1, metaAD2, metaADA, metaADV, metaADM)

levels=metaAD[,c(5,2,4)] #defines the levels for which ANOVA
decomposition will be made (Batch, Family number, Sample

)

str(levels) #check if everything is in order
#Do AnDec analysis with proper permutations

#PLS

XAnDec=AnDec (XAD, levels, scale=’yes’

XDecdata=XAnDec$factorMatrix [[length (
residuals

)
levels)|]+XAnDec$

permFitnessADmin=numeric (nPerm)

permFitnessADmid=numeric (nPerm)

permFitnessADmax=numeric (nPerm)

cl=makeCluster (nCore)

registerDoParallel (cl)

ADMUVRmodeEMUVR(X=XDecdata , Y=metaAD$Sample, ID=metaAD$
Family_number, fitness="MISS’, nRep=20, nOuter=6,
varRatio=0.9, method="PLS’, DA=T)

for (p in 1:nPerm) {

cat(’\nPermutation’,p, "of ', nPerm)

Yperm=sample (metaAD$Sample)

permModel AD=MUVR(X=XDecdata, Y=Yperm, varRatio=0.9, ID=
metaAD$Family number, fitness="MISS’, nRep=20, nOuter
=6, method="PLS’, DA=T)

permFitnessADmin [p]=permModelAD$miss [1]

permFitnessADmid [ p]=permModelAD$miss [2]

permFitnessADmax [ p]=permModelAD$miss | 3]

}

stopCluster(cl)

#RF

permFitnessADRFmin=numeric (nPerm)

permFitnessADRFmid=numeric (nPerm)

permFitnessADRFmax=numeric (nPerm)

cl=makeCluster (nCore)

registerDoParallel (cl)

ADMUVRRFmodeEMUVR(X=XDecdata , Y=metaAD$Sample, varRatio
=0.9, ID=metaAD$Family number, fitness="MISS’, nRep=20,
nOuter=6, method="RF")

for (p in 1:nPerm) {

cat(’\nPermutation’,p, "of ', nPerm)
Yperm=sample (metaAD$Sample)
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permModel ADRF=MUVR(X=XDecdata, Y=Yperm, varRatio=0.9, ID=
metaAD$Family number, fitness='MISS’, nRep=20, nOuter
=6, method="RF")
permFitnessADRFmin [ p]=permModelADRF$miss 1]
permFitnessADRFmid [ p]=permModelADRF$miss 2]
permFitnessADRFmax [ p]=permModel ADRF$miss [ 3]
}

stopCluster(cl)

plotPerm (ADMUVRmodel$ miss [1], permFitnessADmin)
plotPerm (ADMUVRmodel$ miss [2] , permFitnessADmid)
plotPerm (ADMUVRmodel$ miss [3] , permFitnessADmax)

plotPerm (ADMUVRRFmodel$ miss [1], permFitnessADRFmin)
plotPerm (ADMUVRRFmodel$ miss [2] , permFitnessADRFmid)
plotPerm (ADMUVRRFmodel$ miss [3], permFitnessADRFmax)

nrow ( get VIP (ADMUVRmodel, model="min "))
nrow ( get VIP (ADMUVRmodel, model="mid "))
nrow ( get VIP (ADMUVRmodel, model="max "))

nrow ( get VIP (ADMUVRRFmodel, model="min "))
nrow ( get VIP (ADMUVRRFmodel, model="mid "))
nrow ( get VIP (ADMUVRRFmodel, model="max "))

minAN=get VIP (ADMUVRmodel, model="min ")
midAN=get VIP (ADMUVRmodel, model="mid ")
maxAN=getVIP (ADMUVRmodel, model="max ")

minANRF=get VIP (ADMUVRRFmodel, model="min ")
midANRF=getVIP (ADMUVRRFmodel, model="mid ")
maxANRF=getVIP (ADMUVRRFmodel, model="max ")

tAN=cbind . data.frame(head (minAN$name, 10), head (minAN$rank,
10) , head (midAN$name, 10), head (midAN$rank, 10), head(
maxAN$name, 10), head (maxAN$rank, 10))

tANRF=cbind . data.frame (head (minANRF$name, 10),head (minANRF$
rank, 10), head (midANRF$name, 10), head (midANRF$rank, 10)
, head (maxANRF$name, 10), head (maxANRF$rank, 10))

write.table (tAN, "PLStableAN', sep=";", row.names=F, quote=F
)

write.table (tANRF, "RFtableAN'", sep=";", row.names=F, quote=
F)

#create boxplots for ANOVA decompositioned calculations
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XADd=as . data . frame (XAD) #making XAD into data frame to call
on columns using $

par (mfrow=c(2,2))

boxplot (XADd$PHOSPHATE . FRAGMENT __ 1 M. z299~metaAD$Sample ,
main="Phosphate fragment’ , xaxt="n’, ylab=’Relative,
concentration’)

legend ("topright", legend="a’, bty="n’, cex=1.0)

axis(side=1, at=c(1,2,3,4,5), labels=c('Mo’, 'F’, A", 'V’

"Mi’))
boxplot (XADd$ABSCISIC_ACID .MEOX 2TMS 2 2~metaAD$Sample ,
main="Abscisic Acid’, xaxt="n’, ylab="Relative,

concentration’)

legend ("topright', legend='b’, bty="n’, cex=1.0)

axis(side=1, at=c(1,2,3,4,5), labels=c('Mo’, 'F’, A", 'V’
Mi*))

boxplot (XADd$FRUCTOSE. 1__6.DISPHOSPHATE .MEOX _7TMS 2 2~
metaAD$Sample, main=’Fructose 1,6—disphosphate’, xaxt='n’
, ylab="Relative  concentration’)

legend ("topright"', legend="c’, bty="n’, cex=1.0)

axis(side=1, at=c(1,2,3,4,5), labels=c('Mo’, '"F’, A’ 'V’

"Mi’))
boxplot (XADd$ Putrescine_ N.acetyl.__2TMS ~metaAD$Sample ,
main="Putrescine’, xaxt="n’, ylab=’Relative_ concentration

)
legend ("topright", legend='d’, bty="n’, cex=1.0)
axis(side=1, at=c(1,2,3,4,5), labels=c('Mo’, 'F’, ’A’ 'V’
Mi))

ML analysis of venous and arterial
XAVEMEXADAXADV #creating effect matriz

permFitnessAVEMmin=numeric (nPerm)
permFitnessAVEMmid=numeric (nPerm)
permFitnessAVEMmax=numeric (nPerm)
cl=makeCluster (nCore)
registerDoParallel (cl)
XmodelAVEM=MUVR(X=XAVEM, MI=TRUE, nRep=6,nOuter=>5,varRatio
=0.9,method="PLS’, fitness="MISS’, DA=T)
for (p in 1:nPerm) {
cat(’\nPermutation’,p, "of’, nPerm)
Yperm=sample(c(—1,1), size=nrow(XAVEM), replace=TRUE)
permModel AVEM=MUVR(X=XAVEM, MI=TRUE, Y=Yperm, varRatio=0.9,
nRep=6, nOuter=5, method="PLS’, DA=T, fitness="MISS’)
permFitnessAVEMmin [ p]=permModelAVEM$miss [1]
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permFitnessAVEMmid [ p]=permModelAVEM$ miss [2]
permFitnessAVEMmax [ p]=permModel AVEM$ miss [ 3]
}

stopCluster(cl)

permFitnessAVEMRFmin=numeric (nPerm)
permFitnessAVEMRFmid=numeric (nPerm)
permFitnessAVEMRFmax=numeric (nPerm)
cl=makeCluster (nCore)
registerDoParallel (cl)
Xmode] AVEMRF=MUVR(X=XAVEM, MI=TRUE, nRep=6,nOuter=>5,varRatio
=0.9,method="RF’, fitness="MISS")
for (p in 1:nPerm) {
cat(’\nPermutation’,p, "of ', nPerm)
Yperm=sample(c(—1,1), size=nrow(XAVEM) 6 replace=TRUE)
permModel AVEMRF=MUVR(X=XAVEM, Y=Yperm ,MI=TRUE, varRatio
=0.9, nRep=6, nOuter=5, method="RF’, fitness="MISS’)
permFitnessAVEMRFmin [ p]=permModel AVEMRF$miss [1]
permFitnessAVEMRFmid | p]=permModelAVEMRF$miss | 2]
permFitnessAVEMRFmax | p]=permModelAVEMRF$miss | 3]
}

stopCluster(cl)

#evaluate models

Xmode] AVEMRF$ miss

XmodelAVEMS$ miss

XmodelAVEMRF$auc

Xmodel AVEMS$ auc

plotPerm (XmodelAVEMRF$miss [1], permFitnessAVEMRFmin )
plotPerm (XmodelAVEMRF$miss [2] , permFitnessAVEMRFmid )
plotPerm (XmodelAVEMRF$miss [3], permFitnessAVEMRFmax )
plotPerm (XmodelAVEMS$miss [1] , permFitnessAVEMmin )
plotPerm (XmodelAVEMS$miss [2] , permFitnessAVEMmid )
plotPerm (XmodelAVEMS$miss [3] , permFitnessAVEMmax )

minAVEMRF=get VIP (Xmode] AVEMRF, model="min ")
midAVEMRF=get VIP (XmodelAVEMRF, model="mid ")
maxAVEMRF=get VIP (XmodelAVEMRF, model="max ")
minAVEM=get VIP (XmodelAVEM, model="min ")
midAVEM=get VIP (XmodelAVEM, model="mid ")
maxAVEM=get VIP (XmodelAVEM, model="max")

tAVEM=cbind . data . frame (head (minAVEMS$name, 10), head (mnAVEMS$
rank, 10), head (midAVEM$name, 10), head (midAVEM$rank, 10)
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, head (maxAVEM$name, 10), head (maxAVEM$rank, 10))

tAVEMRF=cbind . data . frame (head (mnAVEMRF$name, 10), head(
minAVEMRF$rank, 10), head (midAVEMRF$name, 10), head(
midAVEMRF$rank, 10), head (maxAVEMRF$name, 10), head(
maxAVEMRF$rank , 10))

write . table (tAVEM, 'PLStableAVEM", sep=";", row.names=F,
quote=F)

write.table (tAVEMRF, 'RFtableAVEM' 6 sep=";", row.names=F,
quote=F")

nrow (mnAVEMRF)
nrow (midAVEMRF)
nrow (maxAVEMRF)
nrow (minAVEM)

nrow (midAVEM)

nrow (maxAVEM)

head (minAVEMRF,10)
head (midAVEMRF,10)
head (maxAVEMRF, 10)
head (mnAVEM, 10)
head (midAVEM, 10)
head (maxAVEM, 10)

AXAVEM is A=V, positive values —> higher in A, negative
values —> higher in V

mean (XAVEMS$alpha . ketoglutaric_acid)

mean (XAVEMSALPHA . KETOGLUTARIC_ACID .MEOX 2TMS 1 M. z198)

XAVEM$X2 .DEOXY.GLUCOSE.MEOX_4TMS 2 )

XAVEMSMO000000_A181005.101.xxx NA 1792 PRED VAR5 ALK NA)

XAVEMSHYPOXANTHINE. 2TMS 1. M. z280)

mean (XAVEM$X2 . DEOXY . GALACTOSE.MEOX_4TMS 2 2)

mean (XAVEMSGLUCOSE.MEOX_5TMS 1 1)

H

mean (XAVEM$SORBOSE .MEOX_5TMS 1 2)

mean

mean (XAVEMSGALACTOSE . MEOX_5TMS 1 1)

mean (XAVEMSGALACTOSE.MEOX_5TMS 2 1 M. z291)

mean (XAVEMSKDG_1__1MeOX_4TMS)

XAVEM$ Idose_ IMEOX ___ 5TMS _MP)

XAVEM$X2 .DEOXY.GALACTOSE.MEOX 4TMS 1 2 M. z143)

XAVEMSMANNOSE. MEOX 5TMS 1. 1)

XAVEMSMANNITOL. 6TMS 1)

mean(XAVEM$HOMOCYSTE]NE NOSTMS 2 M.z246)

#making paired t—tests for EM

t.test (XADASalpha . ketoglutaric_acid, XADV$alpha.ketoglutaric
_acid, paired = TRUE, alternative="two.sided’) #p=7.7e—07

fEi

(
(
(
(
(
E
(XAVEMSL__._ . Glutamic_acid)
(
(
(
(
(
(
ean (
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t. test (XADA$X2.DEOXY.GALACTOSE.MEOX 4TMS 2 2, XADV$X2.
DEOXY.GALACTOSE.MEOX _4TMS 2 2, paired = TRUE,
alternative="two.sided’) #p=1.1e—05

t. test (XADASGLUCOSE.MEOX 5TMS 1___ 1, XADVS$GLUCOSE.MEOX 5TMS
1 1, paired = TRUE, alternative="two.sided’) #p=0.00033

t . test (XADASSORBOSE.MEOX 5TMS 1 2, XADV$SORBOSE.MEOX 5TMS
12, paired = TRUE, alternative='two.sided’) #p=0.00093

t.test (XADASL ._ . Glutamic_acid , XADVSL_._.Glutamic_acid ,
paired = TRUE, alternative="two.sided’) #p=0.00037

t. test (XADASGALACTOSE.MEOX 5TMS 1__ 1, XADVSGALACTOSE.MEOX 5
TMS 1 1, paired = TRUE, alternative="two.sided’) #p
=0.00034

#create boxplots for A=V

XADAV=rbind (XADA, XADV)

metaADAV=rbind (metaADA, metaADV)

par (mfrow=c(2,3))

boxplot (XADAV$alpha . ketoglutaric_acid~metaADAV$Sample , main=
expression (bold (paste(alpha, '—Ketoglutaric, ,Acid’, sep=","’
))), xaxt="n’, ylab="Relative  concentration’)

legend ("topright', legend="a’, bty='n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Arterial’, 'Venous’))

boxplot (XADAV$X2.DEOXY.GALACTOSE.MEOX_4TMS 2 2~metaADAV$
Sample, main='Deoxy—galactose’, xaxt="n’, ylab=’Relative,,
concentration )

legend ("topright", legend="b’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Arterial’, 'Venous’))

boxplot (XADAVSGLUCOSE.MEOX _5TMS 1. 1~metaADAV$Sample , main=
"Glucose’, xaxt="n’, ylab=’Relative  concentration’)

legend ("topright", legend="c’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Arterial’, ’Venous’))

boxplot (XADAVSSORBOSE .MEOX_5TMS 1. 2~metaADAV$Sample, main=
"Sorbose’, xaxt="n’, ylab="Relative concentration’)

legend ("topright", legend=’'d’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Arterial’, 'Venous’))

boxplot (XADAVSL . . Glutamic_acid~metaADAV$Sample , main="1—
Glutamic, Acid’, xaxt="n’, ylab=’Relative  concentration’)

legend ("topright"', legend="e’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Arterial’, 'Venous’))

boxplot (XADAVSGALACTOSE.MEOX _5TMS 1__ 1~metaADAV$Sample ,
main="Galactose’, xaxt="n’, ylab="Relative concentration’
)

legend ("topright"', legend="f’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’Arterial’, 'Venous’))
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#PLS and RF on allergy
##Using data from Difference_mother_father _infant

nPerm=100 #100 for real investigation and 25 for "quick'
analysis

varratio=0.9 #0.9 for real investigations and 0.75 for '
quick " analysis

nCore=detectCores ()—1

Xaller123 <— rbind (Xdiffl , Xdiff2 , XdiffA, XdiffV, XdiffM)

Yaller123 <— c(Yallerl, Yaller2, YallerA, YallerV, YallerM)

metaaller123 <— rbind(metadiffl , metadiff2 , metadiffA |
metadiffV , metadiffM)

#remowval of samples without allergy data

allergy_unavailiblel <— c()
for (i in 1l:length(Yallerl)){
if (is.na(Yallerl[i])){
allergy_unavailiblel <— append(allergy_unavailiblel , i)
¥

}
Xallerl<— Xdiffl[—allergy_unavailiblel ,]

Yallerl<— Yallerl[—allergy_unavailiblel |
metaallerl<— metadiffl[—allergy_unavailiblel ,]

allergy_unavailible2 <— c()
for (i in 1l:length(Yaller2))({
if (is.na(Yaller2[i])){
allergy_unavailible2 <— append(allergy_unavailible2 , i)
}

}
Xaller2<— Xdiff2[—allergy_unavailible2 ,]

Yaller2<— Yaller2[—allergy_unavailible2 |
metaaller2<— metadiff2[—allergy_unavailible2 ||

allergy_unavailibleA <— c()
for (i in 1l:length(YallerA))({
if (is.na(YallerA[i])){
allergy_unavailibleA <— append(allergy_unavailibleA | i)
}

}
XallerA<— XdiffA[—allergy_unavailibleA ||
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YallerA<— YallerA[—allergy_unavailibleA |
metaallerA<— metadiffA[—allergy_unavailibleA |]

allergy_unavailibleV <— c()
for (i in 1l:length(YallerV)){
if (is.na(YallerV[i])){
allergy_unavailibleV <— append(allergy_unavailibleV , i)
}

}
XallerV<— XdiffV[—allergy_unavailibleV ]

YallerV<— YallerV][—allergy_unavailibleV ]
metaallerV<— metadiffV[—allergy_unavailibleV |]

allergy_unavailibleM <— c()
for (i in 1l:length(YallerM))({
if (is.na(YallerM[i])){
allergy_unavailibleM <— append(allergy_unavailibleM ; i)
}

}
XallerM<— XdiffM[—allergy_unavailibleM ||

YallerM<— YallerM[—allergy_unavailibleM |
metaallerM<— metadiffM[—allergy_unavailibleM ||

#lvallergy

cl=makeCluster (nCore)
registerDoParallel (cl)
permFitnessallerPLS1min=numeric(nPerm)
permFitnessallerPLS1mid=numeric (nPerm)
permFitnessallerPLS1max=numeric(nPerm)
ModelallerPLS1=MUVR(X=Xallerl ;Y=Yallerl ,varRatio = varratio ,
nRep=20, nOuter=5,method="PLS’, fitness="MISS’, DA=T)
for (p in 1:nPerm) {
cat (’\nPermutation’ ,p, ’of
Yperm=sample( Yallerl)
permModelallerPLS1=MUVR(X=Xallerl , Y=Yperm, varRatio=
varratio , ID=metaallerl $Family_number, nRep=20, nOuter
=5,method="PLS’, DA=T, fitness="MISS’)
permFitnessallerPLS1min [p]=permModelallerPLS1$miss [1]
permFitnessallerPLS1mid [p|]=permModelallerPLS1$miss [2]
permFitnessallerPLSImax [p]=permModelallerPLS18$miss [3]

}

stopCluster (cl)

", nPerm)

cl=makeCluster (nCore)
registerDoParallel (cl)
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permFitnessalleraucl min=numeric(nPerm)
permFitnessallerauclmid=numeric (nPerm)
permFitnessallerauclmax=numeric(nPerm)
Modelallerauc1=MUVR(X=Xaller1 ;Y=Yallerl ,varRatio = varratio ,
nRep=20, nOuter=5,method="PLS’, fitness="AUROC’, DA=T)
for (p in 1:nPerm) {
cat (’\nPermutation’ ,p, ' of
Yperm=sample( Yallerl)
permModelallerauc1=MUVR(X=Xallerl , Y=Yperm, varRatio=
varratio , nRep=20, nOuter=5 method="PLS’, fitness=’
AUROC’ , DA=T)
permFitnessallerauclmin [p]=permModelalleraucl$auc|1 ,2]
permFitnessallerauclmid [p]=permModelalleraucl$auc|[2 ,2]
permFitnessallerauclmax [p]=permModelalleraucl$auc |3 ,2]

}

stopCluster(cl)

Y

, nPerm)

cl=makeCluster (nCore)
registerDoParallel (cl)
permFitnessallerRMS1min=numeric (nPerm)
permFitnessallerRMS1mid=numeric (nPerm)
permFitnessallerRMSImax=numeric (nPerm)
ModelallerRMS1=MUVR(X=Xaller1l ,Y=Yallerl ,varRatio = varratio ,
nRep=20, nOuter=5,method="PLS’, fitness="RMSEP’)
for (p in 1:nPerm) {
cat(’\nPermutation’,p, "of ’, nPerm)
Yperm=sample( Yallerl)
permModelallerRMS1=MUVR(X=Xallerl , Y=Yperm, varRatio=
varratio, nRep=20, nOuter=5,method="PLS’, fitness=’
RMSEP " )
permFitnessallerRMS1min [p]=permModelallerRMS1$fitMetric$Q2
[1]
permFitnessallerRMS1mid [p]=permModelallerRMS1$fitMetric$Q2
[2]
permFitnessallerRMSImax [p|]=permModelallerRMS18$fitMetric$Q2

[3]
}
stopCluster(cl)

cl=makeCluster (nCore)

registerDoParallel (cl)

permFitnessallerBER Imin=numeric (nPerm)

permFitnessallerBER1mid=numeric (nPerm)

permFitnessallerBERImax=numeric (nPerm)

ModelallerBER1=MUVR(X=Xallerl ,Y=Yallerl ,varRatio = varratio ,
nRep=20, nOuter=5,method="PLS’, fitness="BER’, DA=T)
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for (p in 1:nPerm) {

cat (’\nPermutation’ ,p, " of

Yperm=sample( Yallerl)

permModelallerBER1=MUVR(X=Xallerl , Y=Yperm, varRatio=
varratio , nRep=20, nOuter=5,method="PLS’, fitness='BER’
, DA=T)

permFitnessallerBERImin [p]=permModelallerBER1$miss [1]

permFitnessallerBER1mid [p]=permModelallerBER1$miss [2]

permFitnessallerBER1max [p]=permModelallerBER1$miss [3]

}

stopCluster(cl)

", nPerm)

cl=makeCluster (nCore)

registerDoParallel (cl)

permFitnessallerRF1min=numeric(nPerm)

permFitnessallerRF1mid=numeric(nPerm)
permFitnessallerRF1max=numeric(nPerm)

ModelallerRF 1=MUVR(X=Xallerl ,Y=as.character( Yallerl),
varRatio = varratio, nRep=20, nOuter=5,method="RF’,
fitness="MISS")

for (p in 1:nPerm) {

cat(’\nPermutation’,p, "of ', nPerm)

Yperm=sample( Yallerl)

permModelallerRF1=MUVR(X=Xaller1l , Y=as.character (Yperm) ,
varRatio=varratio, nRep=20, nOuter=5,method="RF’ ,
fitness="MISS ")

permFitnessallerRF1min [p]=permModelallerRF1$miss [1]

permFitnessallerRF1mid [p|]=permModelallerRF1$miss [2]

permFitnessallerRF1max [p]=permModelallerRF1$miss [3]

}

stopCluster(cl)

cl=makeCluster (nCore)
registerDoParallel (cl)
permFitnessallerRFBERImin=numeric (nPerm)
permFitnessallerRFBER1mid=numeric (nPerm)
permFitnessallerRFBER1max=numeric (nPerm)
ModelallerRFBER1=MUVR(X=Xaller1 ,Y=as.character( Yallerl),
varRatio = varratio, nRep=20, nOuter=5,method="RF’,
fitness="BER’)
for (p in 1:nPerm) {
cat(’\nPermutation’,p, "of
Yperm=sample( Yallerl)

", nPerm)
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permModelallerRFBER1=MUVR(X=Xallerl , Y=as.character (Yperm)
, varRatio=varratio, nRep=20, nOuter=>5,method="RF’ |
fitness='BER")
permFitnessallerRFBER1min [p|=permModelallerRFBER1$miss [1]
permFitnessallerRFBER1mid [p]=permModelallerRFBER1$miss [2]
permFitnessallerRFBER1max [p]=permModelallerRFBER1$miss [3]
}

stopCluster(cl)

#2vallergy
cl=makeCluster (nCore)
registerDoParallel (cl)
permFitnessallerPLS2min=numeric (nPerm)
permFitnessallerPLS2mid=numeric(nPerm)
permFitnessallerPLS2max=numeric (nPerm)
ModelallerPLS2=MUVR(X=Xaller2 ,Y=Yaller2 ,varRatio = varratio ,
nRep=20, nOuter=5,method="PLS’, fitness="BER’, DA=T)
for (p in 1:nPerm) {
cat(’\nPermutation’ ,p, "of
Yperm=sample( Yaller2)
permModelallerPLS2=MUVR(X=Xaller2 , Y=Yperm, varRatio=
varratio , nRep=20, nOuter=5,method="PLS’, fitness='BER’
. DA=T)
permFitnessallerPLS2min [p]=permModelallerPLS28miss [1]
permFitnessallerPLS2mid [p]=permModelallerPLS28miss [2]
permFitnessallerPLS2max [p]=permModelallerPLS28miss [3]

}

stopCluster(cl)

)

, nPerm)

cl=makeCluster (nCore)
registerDoParallel (cl)
permFitnessallerRF2min=numeric (nPerm)
permFitnessallerRF2mid=numeric(nPerm)
permFitnessallerRF2max=numeric (nPerm)
ModelallerRF2=MUVR(X=Xaller2 ,Y=as.character ( Yaller2),
varRatio = varratio, nRep=20, nOuter=5,method="RF’,
fitness="BER")
for (p in 1:nPerm) {
cat(’\nPermutation’,p, "of’, nPerm)
Yperm=sample( Yaller2)
permModelallerRF2=MUVR(X=Xaller2 , Y=as.character (Yperm) ,
varRatio=varratio, nRep=20, nOuter=5,method="RF ",
fitness="BER’)
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permFitnessallerRF2min [p]=permModelallerRF2$miss [1]
permFitnessallerRF2mid [p]=permModelallerRF2$miss [2]
permFitnessallerRF2max [p]=permModelallerRF2$miss [3]

}

stopCluster(cl)

#Awvallergy

cl=makeCluster (nCore)
registerDoParallel (cl)
permFitnessallerPLSAmin=numeric (nPerm)
permFitnessallerPLSAmid=numeric (nPerm)
permFitnessallerPLSAmax=numeric (nPerm)
ModelallerPLSA=MUVR(X=Xaller A ;Y=YallerA ,varRatio = varratio ,
nRep=20, nOuter=5,method="PLS’, fitness='BER’, DA=T)
for (p in 1:nPerm) {
cat(’\nPermutation’ ,p, "of
Yperm=sample ( YallerA)
permModelallerPLSA=MUVR(X=XallerA , Y=Yperm, varRatio=
varratio , nRep=20, nOuter=5,method="PLS’ |, fitness="BER
" DA=T)
permFitnessallerPLSAmin [p|]=permModelallerPLSA$miss [1]
permFitnessallerPLSAmid [p]=permModelallerPLSA$miss [2]
permFitnessallerPLSAmax [p]=permModelallerPLSA$miss [3]
}

stopCluster(cl)

)

, nPerm)

cl=makeCluster (nCore)
registerDoParallel (cl)
permFitnessallerRF Amin=numeric (nPerm)
permFitnessallerRFAmid=numeric (nPerm)
permFitnessallerRF Amax=numeric (nPerm)
ModelallerRFA=MUVR(X=Xaller A ,Y=as.character ( YallerA) ,
varRatio = varratio, nRep=20, nOuter=5,method="RF’ ,
fitness="BER")
for (p in 1:nPerm) {
cat(’\nPermutation’,p, "of ', nPerm)
Yperm=sample ( YallerA)
permModelallerRFA=MUVR(X=XallerA , Y=as.character (Yperm) ,
varRatio=varratio , nRep=20, nOuter=5,method="RF’
fitness='BER")
permFitnessallerRFAmin [p|]=permModelallerRFA$miss [1]
permFitnessallerRFAmid [p|=permModelallerRFAS$miss [2]

Y
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permFitnessallerRFAmax [p]=permModelallerRFA$miss [3]

}

stopCluster(cl)

#Vwvallergy

cl=makeCluster (nCore)
registerDoParallel (cl)
permFitnessallerPLSVmin=numeric (nPerm)
permFitnessallerPLSVmid=numeric (nPerm)
permFitnessallerPLSVmax=numeric (nPerm)
ModelallerPLSV=MUVR(X=XallerV ;Y=YallerV ,varRatio = varratio ,
nRep=20, nOuter=5,method="PLS’, fitness='BER’, DA=T)
for (p in 1:nPerm) {
cat(’\nPermutation’ ,p, "of
Yperm=sample ( YallerV)
permModelallerPLSV=MUVR(X=XallerV , Y=Yperm, varRatio=
varratio , nRep=20, nOuter=5,method="PLS’, fitness='BER’
, DA=T)
permFitnessallerPLSVmin [p|=permModelallerPLSV$miss [1]
permFitnessallerPLSVmid [p]=permModelallerPLSV$miss [2]
permFitnessallerPLSVmax [p]=permModelallerPLSV8$miss [3]

}

stopCluster (cl)

", nPerm)

cl=makeCluster (nCore)
registerDoParallel (cl)
permFitnessallerRFVmin=numeric (nPerm)
permFitnessallerRFVmid=numeric (nPerm)
permFitnessallerRFVmax=numeric (nPerm)
ModelallerRFV=MUVR(X=XallerV ,Y=as.character (YallerV)
varRatio = varratio, nRep=20, nOuter=5,method="RF’,
fitness="BER’)
for (p in 1:nPerm) {
cat (’\nPermutation’,p, ’of ’, nPerm)
Yperm=sample ( YallerV)
permModelallerRFV=MUVR(X=XallerV ; Y=as.character (Yperm) ,
varRatio=varratio, nRep=20, nOuter=5,method="RF’,
fitness="BER")
permFitnessallerRFVmin [p]=permModelallerRFV8$miss [1]
permFitnessallerRFVmid [p]=permModelallerRFV$miss [2]
permFitnessallerRFVmax [p]=permModelallerREV$miss [3]
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}

stopCluster(cl)

#Mwvallergy
cl=makeCluster (nCore)
registerDoParallel (cl)
permFitnessallerPLSMmin=numeric (nPerm)
permFitnessallerPLSMmid=numeric (nPerm)
permFitnessallerPLSMmax=numeric (nPerm)
ModelallerPLSM=MUVR(X=XallerM ,Y=YallerM , varRatio = varratio ,
nRep=20, nOuter=5,method="PLS’, fitness='BER’, DA=T)
for (p in 1:nPerm) {
cat(’\nPermutation’ ,p, "of
Yperm=sample ( YallerM)
permModelallerPLSM=MUVR(X=XallerM , Y=Yperm, varRatio=
varratio , nRep=20, nOuter=5,method="PLS’, fitness='BER’
, DA=T)
permFitnessallerPLSMmin [p]=permModelallerPLSM$miss [1]
permFitnessallerPLSMmid [p]=permModelallerPLSM$miss [2]
permFitnessallerPLSMmax [p]=permModelallerPLSM$miss [3]
¥

stopCluster(cl)

)

, nPerm)

cl=makeCluster (nCore)
registerDoParallel (cl)
permFitnessallerRFMmin=numeric (nPerm)
permFitnessallerRFMmid=numeric (nPerm)
permFitnessallerRFMmax=numeric (nPerm)
ModelallerRFM=MUVR(X=XallerM ,Y=as . character ( YallerM ) ,
varRatio = varratio, nRep=20, nOuter=5,method="RF’ ,
fitness="BER’)
for (p in 1:nPerm) {
cat (’\nPermutation’,p, ’of
Yperm=sample ( YallerM)
permModelallerRFM=MUVR(X=XallerM , Y=as.character (Yperm) ,
varRatio=varratio, nRep=20, nOuter=5,method="RF ",
fitness='BER")
permFitnessallerRFMmin [p]=permModelallerRFM$miss [1]
permFitnessallerRFMmid [p]=permModelallerRFM$miss [2]
permFitnessallerRFMmax [p]=permModelallerRFM$miss [3]

}

stopCluster(cl)

)

, nPerm)
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#Fvalute models

# 1 — allergy

ModelallerPLS18$auc

ModelallerPLS1$nComp

ModelallerPLS1$miss

ModelallerBER18$auc

ModelallerBER1$ncomp

ModelallerBER1$miss

ModelallerRF1$miss

ModelallerRF18$auc

ModelallerRFBER1$miss

ModelallerRFBER1$auc

ModelallerRF18yPred$min

#check for gaussian shape of permutations

plotPerm (ModelallerBER1$miss [1], permFitnessallerBER1min)
plotPerm (ModelallerBER1$miss [2], permFitnessallerBERImid)
plotPerm (ModelallerBER1$miss [3], permFitnessallerBERImax)
plotPerm (ModelallerRFBER18miss [1], permFitnessallerRFBER1min

)

plotPerm (ModelallerRFBER1$miss [2], permFitnessallerREFBER1mid
)

plotPerm (ModelallerRFBER18miss [3], permFitnessallerRFBER1max
)

#store metabolites to wvariables
PLSallerlmin=getVIP (ModelallerPLS1, model="min")
PLSallerlmid=getVIP (ModelallerPLS1 , model="mid ")
PLSallerlmax=getVIP (ModelallerPLS1, model="max ")
RFallerlmin=getVIP (ModelallerRF1, model="min")
RFallerlmid=getVIP (ModelallerRF1, model="mid")
RFallerlmax=getVIP (ModelallerRF1, model="max")

#check number of metabolites in each model
nrow ( PLSallerlmin)
nrow ( PLSallerlmid)
nrow ( PLSallerlmax)
nrow ( RFallerlmin)
nrow ( RFallerlmid)
nrow ( RFallerlmax)

head (PLSallerlmin ,10)
head (PLSallerlmid ,10)
head (PLSallerlmax ,10)
RFallerlmin
RFallerlmid
RFallerlmax
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#store top 10 metabolites for each model to for table

taller1PLS=cbind.data.frame(head (PLSallerlmin$name, 10),
head (PLSallerlmin$rank, 10), head(PLSallerlmid$name, 10),
head (PLSallerlmid$rank, 10), head(PLSallerlmax$name, 10)
, head (PLSallerlmax$rank, 10))

taller1RF=cbind . data.frame(c(head (RFallerlmin$name, 10),0),
c(head(RFallerlmin$rank, 10),0), c(head(RFallerlmid$name,
10),0), c(head(RFallerlmid$rank, 10),0), head(
RFallerlmax$name, 10), head(RFallerlmax$rank, 10))

write . table(taller1PLS, "PLStableallerl", sep=";", row.names
=F, quote=F)

write.table(tallerlRF , "RFtableallerl", sep=";", row.names=F
, quote=F)

#check mean values to see if concentration higher in
allergic or mon—allergic

#creating two mew matrices containing data on allergic and
non—allergic respectively

Moaller=which(metaallerl$any allergies==1)

XMoaller=Xallerl [ Moaller ,]

Xmonoaller=Xallerl[—Moaller |

#substracting aller from noaller

mean ( Xmonoaller$GLUTARIC_ACID.2TMS 1 M. z261 )—mean(
XMoaller$GLUTARIC_ACID.2TMS 1. M. z261)

mean ( Xmonoaller $§GLYCERIC_ACID.3TMS __ 3)—mean( XMoaller$
GLYCERIC_ACID.3TMS__3)

mean ( XmonoallerSHOMOCYSTEINE_N O S.TMS 2 M. 7246 )—mean(

XMoallerSHOMOCYSTEINE_ N O S.TMS 2 M. 7z246)

mean ( Xmonoaller§Calystegine_B2 4TMS )—mean( XMoaller$
Calystegine_B2 4TMS )

mean ( Xmonoaller$Unknown. sst . cgl.023)—mean( XMoaller$Unknown .
sst.cgl.023)

mean ( Xmonoaller$Nivalenol__ 4TMS )—mean(XMoaller§ Nivalenol 4
TMS )

mean ( Xmonoaller §GLUTAMIC_ ACID N O O.TMS 1 M. 7247 )—mean (
XMoaller$GLUTAMIC ACID N O O.TMS 1 M. z247)

mean ( Xmonoaller STURANOSE MEOX 8TMS 1 1 M. z307 )—mean (
XMoaller STURANOSE MEOX 8TMS 11 M. z307)

mean ( Xmonoaller 5GAMMA. GLUTAMYLPHENYLALANINE_ N O O.TMS 1
M. z230 )—mean ( XMoaller $GAMMA. GLUTAMYLPHENYLALANINE _ N O O.
TMS 1 M.2z230)

mean ( Xmonoaller SMALTITOL.9TMS ___ 1)—mean( XMoaller SMALTITOL. 9
™S 1)

mean ( Xmonoaller $N.ACETYL, MANNOSAMINE.MEOX N O O O O.TMS
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1__M.z149 )—mean( XMoaller $N.ACETYL. MANNOSAMINE.MEOX N O O _
0 O.TMS 2 1 M. z149)

mean ( XmonoallerSMELIBIOSE .MEOX 8TMS 1 1)—mean( XMoaller$
MELIBIOSE .MEOX 8TMS 1 1)

mean ( Xmonoaller$M000000_A192008.101.xxx NA 1918 52 PRED VAR5
_ALK NA)—mean( XMoaller$M000000_A192008.101.xxx_NA 1918 52
_PRED VAR5 ALK NA)

mean( Xmonoaller$M000000_A311004.101.xxx_NA 3093_84 PRED VAR5
_ALK NA)—mean( XMoaller$M000000_A311004.101.xxx _NA 3093_84
_PRED VAR5 ALK NA)

mean ( Xmonoaller$M000000_A338003.101.xxx NA 3372 53 PRED VAR5
_ ALK NA)—mean( XMoaller$M000000_A338003.101.xxx NA 3372 53
_PRED VAR5 ALK NA)

#l—tests for RF metabolites
_ M.z149~metaallerl1$any allergies , alternative='two.sided
Y #p = 0.1787
t.test (Xaller1 $MELIBIOSE . MEOX 8TMS 1 l~metaallerl$any
allergies , alternative="two.sided’) #p = 0.1717
t.test (Xaller1$M000000_A192008.101.xxx NA 1918 52 PRED VAR5
ALK NA~metaallerl$any allergies , alternative="two.sided ")
#p = 0.0284/
t.test (Xaller1$M000000_A311004.101.xxx NA 3093_84 PRED VAR5 _
ALK NA~metaallerl$any allergies , alternative="two.sided ")
#p = 0.003852
t.test (Xaller1$M000000_A338003.101.xxx NA 3372_53 PRED VAR5
ALK NA~metaallerl$any allergies , alternative="two.sided’)
#p = 0.002143

#t—tests for PLS-DA metabolites

t.test (Xaller1$GLUTARIC ACID.2TMS 1 M.z261~metaaller1$any
_allergies , alternative="two.sided’) #p = 0.02009

t.test (Xaller1 $GLYCERIC_ACID.3TMS _ 3~metaallerl$any
allergies , alternative="two.sided’) #p = 0.1898

t.test (Xaller1$SHOMOCYSTEINE_N O S.TMS 2 M. 7246~
metaallerl$any allergies , alternative="two.sided’) #p =
0.006478

t.test (Xaller1$Calystegine B2 4TMS ~metaallerl$any
allergies , alternative='two.sided’) # = 0.218

t.test (Xaller1$Unknown. sst.cgl.023~metaallerl$any allergies ,

alternative="two.sided’) #p = 0.3821

t.test (Xaller1$Nivalenol 4TMS ~metaallerl$any allergies ,

alternative="two.sided’) #p = 0.2084

t.test (Xaller 1 SGLUTAMIC_ACID_N O _O.TMS 1. M.z247~
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metaallerl$any allergies , alternative="two.sided’) #p =
0.0050153

t.test (Xaller1 $TURANOSE MEOX 8TMS 1. 1 M.z307~metaallerl$
any_ allergies , alternative="two.sided’) #p = 0.002177

t.test (Xaller1 $GAMMA. GLUTAMYLPHENYLATANINE N O O.TMS __ 1 M
.z230~metaallerl$any allergies , alternative="two.sided ")
#p = 0.3801

t.test (Xaller1SMALTITOL.9TMS __ 1~metaallerl1$any allergies |,

alternative="two.sided’) #p = 0.02877

#plotting 6 of 8§ significant metabolites

par (mfrow=c(2,3))

boxplot ( Xaller1 $M000000_A192008.101.xxx NA 1918 52 PRED VAR5
_ALK NA~metaallerl$any allergies , main="A192008", xaxt='n
’, ylab="Relative  concentration’)

legend ("topright", legend="a’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c( 'non—allergic’, ’allergic’)
)

boxplot ( Xaller1 $M000000_A311004.101.xxx_NA 3093 _84 PRED VAR5
_ALK NA~metaallerl$any allergies , main="A311004", xaxt='n
", ylab="Relative concentration’)

legend("topright', legend='b’, bty='n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’non—allergic’, ’allergic’)
)

boxplot ( Xaller1$M000000_A338003.101.xxx_NA 337253 PRED VAR5
_ALK NA~metaallerl$any allergies , main="A338003", xaxt='n
", ylab="Relative concentration’)

legend ("topright"', legend="c’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’non—allergic’, ’allergic’)
)

boxplot ( Xaller1 $GLUTAMIC_ACID N O O.TMS 1 M.z247~
metaallerl$any allergies , main='Glutamic, Acid’, xaxt='n’,

ylab="Relative concentration’)
legend ("topright"', legend="d’, bty='n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’non—allergic’, ’allergic’)
)

boxplot ( Xaller 1 $TURANOSE MEOX 8TMS 1 1 M.z307~metaallerl$
any allergies , main="Turanose’, xaxt="n’, ylab="Relative

concentration’)
legend ("topright", legend=’e’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’non—allergic’, ’allergic’)
)

boxplot ( Xaller I$HOMOCYSTEINE._ N O S.TMS 2 M. 7246~
metaallerl$any allergies , main="Homocysteine’, xaxt='n’,

ylab="Relative concentration’)
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legend ("topright", legend="f’, bty="n’, cex=1.5)
axis(side=1, at=c(1,2), labels=c( 'non—allergic’, ’allergic’)

)

#2 — allergy
ModelallerPLS28$auc

ModelallerPLS2$nComp
ModelallerPLS2$miss
ModelallerRF2$miss
ModelallerRF2$auc

PLSaller2min=getVIP (ModelallerPLS2 , model="min ")
PLSaller2mid=getVIP (ModelallerPLS2 , model="mid ")
PLSaller2max=getVIP (ModelallerPLS2 , model="max ")
RFaller2min=getVIP (ModelallerRF2 , model="min")
RFaller2mid=getVIP (ModelallerRF2 , model="mid ")
RFaller2max=getVIP (ModelallerRF2 , model="max")

#check number of metabolites in each model
nrow ( PLSaller2min)
nrow ( PLSaller2mid)
nrow ( PLSaller2max)
nrow ( RFaller2min)
nrow ( RFaller2mid)
nrow ( RFaller2max)
RFaller2min
RFaller2mid
RFaller2max

head (PLSaller2min ,10)
head (PLSaller2mid ,10)
head (PLSaller2max,10)

taller2PLS=cbind .data.frame(head (PLSaller2min$name, 10),
head (PLSaller2min$rank, 10), head(PLSaller2mid$name, 10),
head (PLSaller2mid$rank, 10), head(PLSaller2max$name, 10)
, head (PLSaller2max$rank, 10))

taller2RF=cbind .data.frame(head (RFaller2min$name, 10), head(
RFaller2min$rank, 10), head(RFaller2mid$name, 10), head(
RFaller2mid$rank, 10), head (RFaller2max$name, 10), head(
RFaller2max$rank, 10))

write.table(taller2PLS, "PLStablealler2"' 6 sep=";"', row.names
=F, quote=F)

LIII



B. Code

write.table(taller2RF , "RFtablealler2", sep=";", row.names=F
, quote=F)

#check mean values to see if allergic or non allergic
children have highest concentration of metabolite

Faaller=which(metaaller2$any allergies==1)

XFaaller=Xaller2 [ Faaller ]|

Xfanoaller=Xaller2[—Faaller ||

mean ( Xfanoaller$Tryptamine__ 5. methoxy.__ 2TMS MP)—mean(
XFaaller$Tryptamine__ 5. methoxy.__ 2TMS MP)

mean( Xfanoaller INDOLE. 3. ACETIC_ACID.2TMS___1)—mean( XFaaller
$INDOLE. 3. ACETIC_ACID.2TMS 1)

mean( Xfanoaller $GLUCO.GULO.HEPTOSE. MEOX 6TMS 1 1 M.z333)—
mean ( X Faaller $GLUCO.GULO.HEPTOSE.MEOX 6TMS 11 M. z333)

mean ( Xfanoaller $§M000000_A147005.101.xxx NA 1462 03 PRED VAR5
_ ALK NA)—mean( XFaaller $M000000_A147005.101.xxx _NA 1462 03
_PRED VAR5 ALK NA)

mean( Xfanoaller SMELIBIOSE .MEOX 8TMS 1 1)—mean( XFaaller$
MELIBIOSE .MEOX 8TMS 1 1)

mean ( Xfanoaller $§M000000_A348003.101.xxx NA 3477 _88 PRED VAR5
_ ALK NA)—mean( XFaaller $M000000_A348003.101.xxx _NA 3477 88
_PRED VAR5 ALK NA)

mean( Xfanoaller$X2. AMINOBUTYRIC ACID O N.TMS _ 2)—mean(
XFaaller $X2. AMINOBUTYRIC_ACID _O N.TMS __ 2)

mean ( Xfanoaller $§M000000_A192017.101.xxx NA 1916_51_PRED VAR5
_ALK NA)—mean( XFaaller $M000000_A192017.101.xxx NA 1916_51
_PRED VAR5 ALK NA)

mean( Xfanoaller$M000000_A355001.101.xxx_NA 3550_16_PRED VAR5
_ALK NA)—mean( XFaaller $M000000_A355001.101.xxx_NA 3550_16
_PRED VAR5 ALK NA)

mean ( Xfanoaller SMETHIONINE_ N O.TMS 1 M. z176 )—mean(
XFaaller$SMETHIONINE__ N O.TMS 1 M.z176)

mean ( Xfanoaller $§M000000_A171005.101.xxx NA 1692 54 PRED VAR5H
_ALK_NA)—mean( XFaaller$M000000_A171005.101.xxx NA 1692 54
_PRED VAR5 ALK NA)

mean( Xfanoaller$DL. Serine )—mean( XFaaller$DL. Serine)

mean ( Xfanoaller $X3 4 .DIHYDROXYPHENYLACETIC ACID.3TMS 3 M.
7281 )—mean( XFaaller $X3 4 .DIHYDROXYPHENYLACETIC ACID.3TMS
3 M.z281)

mean ( Xfanoaller SOCTADECENOIC_ACID_.9._7Z TMS 1 __M.z124)—
mean ( XFaaller SOCTADECENOIC_ACID_.9._ 7 TMS _1__M.z124)

mean ( Xfanoaller SOCTADECATRIENOIC ACID 6 9 12._ Z 7Z 7 .TMS
1__M.z120)—mean( XFaaller SOCTADECATRIENOIC ACID _6_9 12. 7
77 TMS 1 M.z120)

mean( Xfanoaller$Phenylacetaldehyde_ IMEOX BP)—mean(XFaaller
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$Phenylacetaldehyde__ IMEOX BP)

#t—tests for RF metabolites

t.test (Xaller2$Tryptamine__ 5. methoxy.__ 2TMS MP~metaaller2$
any allergies , alternative="two.sided’) #p = 2.98%x107—5

t.test (Xaller2$INDOLE.3.ACETIC_ACID.2TMS __ 1~metaaller2$any
allergies , alternative="two.sided’) #p = 0.0860

t.test ( Xaller2$GLUCO.GULO.HEPTOSE. MEOX 6TMS 1 1 M.z333~
metaaller28any allergies , alternative="two.sided’) # p =
0.4155

t.test (Xaller2$M000000_A147005.101.xxx NA 1462_03_PRED VAR5
ALK NA~metaaller28any allergies , alternative="two.sided ")
4 p = 0.2575

t.test (Xaller2$MELIBIOSE.MEOX 8TMS 1 l~metaaller2$any
allergies , alternative="two.sided’) # p = 0.01899

#t—tests for PLS-DA metabolites
t.test (Xaller2$M000000_A348003.101.xxx NA 3477 88 PRED VAR5
ALK NA~metaaller28any allergies , alternative="two.sided’)
sy = 0.3247
t.test (Xaller2$X2. AMINOBUTYRIC_ACID O N.TMS __ 2~metaaller2$
any_allergies , alternative="two.sided’) #p = 0.0630/
t.test (Xaller2$M000000_A192017.101.xxx NA 1916_51_PRED VAR5
ALK NA~metaaller28any allergies , alternative="two.sided’)
Ay =0.3787
t.test (Xaller2$M000000_A355001.101.xxx NA 3550_16_PRED VAR5
ALK NA~metaaller28any allergies , alternative="two.sided ")
#p =0.3959
t.test (Xaller2$METHIONINE_ N O.TMS 1 M. z176~metaaller2$
any allergies , alternative="two.sided’) #p = 0.2019
t.test (Xaller2$M000000_A171005.101.xxx NA 1692_54 PRED VAR5
ALK NA~metaaller28any allergies , alternative="two.sided ")
#p =0.3781
t.test (Xaller2$8DL. Serine~metaaller2$any allergies ,
alternative="two.sided’) #p = 0.08956
t.test (Xaller2$X3 4 .DIHYDROXYPHENYLACETIC ACID.3TMS 3 M.
z281~metaaller28any allergies , alternative="two.sided’) #
p = 0.04533
t.test (Xaller2$OCTADECENOIC ACID _.9._7Z TMS 1 M.zl124~
metaaller28any allergies , alternative="two.sided’) #p =
0.3081
t.test (Xaller2$OCTADECATRIENOIC ACID 6 9 12._ Z 7Z 7 TMS 1
_ M.z120~metaaller28any allergies , alternative='two.sided
Y #p o= 0.2737
t.test (Xaller2$Phenylacetaldehyde IMEOX BP~metaaller2$any

allergies , alternative="two.sided’) #p = 0.05777
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#boxplots of significant metabolites

par (mfrow=c(2,2))

boxplot ( Xaller2$Tryptamine 5. methoxy._ 2TMS MP~metaaller2$
any_allergies , main="5—Methoxytryptamine’, xaxt='n’, ylab
='Relative concentration’)

legend ("topright", legend="a’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c( 'non—allergic’, ’allergic’)
)

boxplot ( Xaller2 $MELIBIOSE .MEOX 8TMS 1 l~metaaller2$any
allergies , main="Melibiose’, xaxt="n’, ylab="Relative

concentration’)

legend ("topright"', legend='b’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’non—allergic’, ’allergic’)
)

boxplot ( Xaller2$X3 4.DIHYDROXYPHENYLACETIC ACID.3TMS 3 M.
z281~metaaller2$any allergies , main=’3,4—
Dihydrophenylacetic,,acid ’, xaxt="n’, ylab="Relative,
concentration’)

legend ("topright", legend="c’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’non—allergic’, ’allergic’)

)

par (mfrow=c(1,2))

size <— sapply (1l:length(ModelallerRF28yPred[,2]), function(i
) { sum(ModelallerRF28yPred[,2]==ModelallerRF2$yPred [ ,2]]
i] & Yaller2=VYaller2[i]) })

plot (Yaller2 , ModelallerRF28yPred[,2], main="RF allergy,
predictions for Fathers"', cex.main=0.57, cex=size , pch
=1, xlab="Allergy status’, ylab=’Predicted allergy’)

legend ("topleft", legend=c('2 Fathers", "3, Mixed"), cex
=0.85, bty='n")

axis(1l, at=c(2,3))

mtext(c("a)","b)"), at=c(1.9, 3.5))

plot (ModelallerPLS28Fit$plsFitMid$variates$X[,1],
ModelallerPLS28Fit$plsFitMid$variates$X[,2], col=Yaller2
+1, pch=16, xlab="Component 1", ylab="Component 2")

legend("topleft", legend=c( 'non—allergic’, ’allergic’), col=
unique( YallerA+1),pch=16 ,bty="n")

title (main="PLS-DA of samples from Father — allergy", cex.
main=1)
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#A — allergy
ModelallerPLSA$miss
ModelallerPLSA$auc
ModelallerRFA$miss
ModelallerRFA$auc
permFitnessallerRF Amid

PLSallerAmin=getVIP (ModelallerPLSA , model="min ")
PLSallerAmid=getVIP (ModelallerPLSA , model="mid ")
PLSallerAmax=getVIP (ModelallerPLSA , model="max ")
RFallerAmin=getVIP (ModelallerRFA , model="min")
RFallerAmid=getVIP (ModelallerRFA , model="mid ")
RFallerAmax=getVIP (ModelallerRFA , model="max ")

#check number of metabolites in each model
nrow (PLSallerAmin)
nrow ( PLSallerAmid)
nrow ( PLSallerAmax)
nrow ( RFallerAmin)
nrow (RFallerAmid)
nrow (RFallerAmax)
RFallerAmin
RFallerAmid
RFallerAmax

head (PLSallerAmin ,10)
head (PLSallerAmid ,10)
head (PLSallerAmax,10)

tallerAPLS=cbind . data.frame (head (PLSallerAmin$name, 10),
head (PLSallerAmin$rank, 10), head(PLSallerAmid$name, 10),
head (PLSallerAmid$rank, 10), head(PLSallerAmax$name, 10)
, head (PLSallerAmax$rank, 10))

tallerARF=cbind . data.frame(head (RFallerAmin$name, 10), head(
RFallerAmin8$rank, 10), head(RFallerAmid$name, 10), head(
RFallerAmid8$rank, 10), head(RFallerAmax$name, 10), head(
RFallerAmax$rank, 10))

write.table(tallerAPLS, "PLStableallerA" 6 sep=";"', row.names
=F, quote=F)

write . table(tallerARF , "RFtableallerA" 6 sep=";"', row.names=F
, quote=F)

#check mean values to see if allergic or non allergic
children have highest concentration of metabolite
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Aaller=which(metaallerA$any allergies==1)
XAaller=XallerA [ Aaller |, |
XAnoaller=XallerA[—Aaller ]

mean ( X Anoaller$M000000_A131008.101.xxx NA 1306_75_TRUE VAR5 _
ALK NA)—mean( X Aaller$M000000_A131008.101.xxx NA 1306_75__
TRUE VAR5 ALK NA)

mean( XAnoaller$SORBOSE.MFOX 5TMS 2. 1 M. 7306 )—mean( XAaller
$SORBOSE.MEOX_5TMS 2 1 M. 2306)

mean ( X Anoaller $ISOLEUCINE_ N O.TMS___ 2)—mean( XAaller$
ISOLEUCINE_ N O.TMS __ 2)

mean( XAnoaller$§Threose_ IMEOX  3TMS _BP)-mean( XAaller$
Threose IMEOX ___ 3TMS__BP)

mean( XAnoaller$No _match._262_30_QCL NICE Batchl_Rerun__
05052017_6_228)—mean( XAaller$No_match._262_30_QC1 _NICE __
Batchl_Rerun_05052017_6_228)

mean( XAnoaller§Ferulic_acid___cis.__ 2TMS )—mean( XAaller$
Ferulic_acid___cis.__ 2TMS )

mean( X Anoaller$SALICIN.5TMS 1. M. z272)—mean( XAaller$
SALICIN.5TMS 1 M.z272)

mean ( X Anoaller $SUCCINIC_ACID 2TMS 1. M. z151 )—mean( XAaller$
SUCCINIC_ACID_2TMS 1. M. z151)

mean( XAnoaller$§Glucose___2.amino.2.deoxy.___4TMS MP)—mean(
XAaller$Glucose__ 2.amino.2.deoxy.__ 4TMS MP)

mean ( X Anoaller $X2.DEOXY.GLUCOSE . MEOX _4TMS __ 2)—mean( X Aaller$
X2.DEOXY.GLUCOSE.MEOX_4TMS __ 2)

mean ( X Anoaller$X4. AMINOBUTYRIC_ACID N N O.TMS __ 1)—mean(
XAaller$X4. AMINOBUTYRIC_ ACID N N O.TMS 1)

mean( XAnoaller§Progesterone__11beta. hydroxy._ 2MFEOX 1TMS
BP)—mean( XAaller§Progesterone___11beta.hydroxy.__ 2MEOX 1
TMS _BP)

#t—tests of RF metabolites
t.test (XallerASMO000000_A131008.101.xxx NA 1306_75 TRUE VAR5
ALK NA~metaallerA$any allergies , alternative="two.sided’)
#p = 0.007551
t.test (XallerA$SORBOSE.MEOX 5TMS 2 1 M. z306~metaallerA$

any_allergies , alternative="two.sided’) #p = 0.0002498
#t—tests of PLS-DA metabolites

t.test (XallerA$M000000_A371001.101.xxx NA 3717_2 PRED VAR5
ALK NA~metaallerA$any allergies , alternative="two.sided ")
sy = 0.129
t.test (XallerA$ISOLEUCINE _N O.TMS __ 2~metaaller ASany
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allergies , alternative="two.sided’) # = 0.008397

t.test (XallerA$M000000_A308005.101.xxx NA 3079_45 PRED VAR5
ALK NA~metaallerA$any allergies , alternative="two.sided’)
#p = 0.01723

t.test (XallerA$Threose  IMEOX _ 3TMS BP~metaaller AS$any
allergies , alternative="two.sided’) #p = 0.02202

t.test (XallerA$No match._262_30_QC1 NICE Batchl_Rerun__
05052017_6_228~metaallerA$any allergies , alternative='two
.sided”) #p = 0.3269

t.test (XallerA$Ferulic_acid__ cis.__ 2TMS ~metaallerA$any
allergies , alternative="two.sided’) #p = 0.3649

t.test (XallerA$SALICIN.5TMS 1. M.z272~metaaller A$any
allergies , alternative="two.sided’) #p = 0.028/8

t.test (XallerASSUCCINIC_ACID 2TMS 1 M.zl51~metaaller A $any
_allergies , alternative="two.sided’) #p = 0.03979

t.test (XallerA$Glucose _ 2.amino.2.deoxy . 4TMS MP~
metaallerA$any allergies , alternative="two.sided’) #p =
0.06911

t.test (Xaller A$X2.DEOXY.GLUCOSE.MEOX 4TMS  2~metaaller A $any
_allergies , alternative="two.sided’) #p = 0.007593

t.test (XallerA$X4. AMINOBUTYRIC ACID N N O.TMS __ 1~
metaallerA$any allergies , alternative="two.sided’) #p =
0.002942

t.test (XallerA$Progesterone__ llbeta.hydroxy. 2MEOX 1TMS
BP~metaallerA$any allergies , alternative="two.sided’) #p
= 0.07646

#boxplots of 6 significant metabolites (out of 8)

par (mfrow=c(2,3))

boxplot ( Xaller A$M000000_A131008.101.xxx NA 1306_75 TRUE VAR5
_ALK NA~metaallerA$any allergies , main="A131008", xaxt='n
", ylab="Relative concentration’)

legend ("topright", legend="a’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c( 'non—allergic’, ’allergic’)
)

boxplot ( Xaller A$SORBOSE.MEOX _5TMS 2 1 M.z306~metaallerA$
any_allergies , main="Sorbose’, xaxt="n’, ylab="Relative,

concentration’)
legend ("topright", legend='b’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’non—allergic’, ’allergic’)
)
boxplot ( Xaller ASISOLEUCINE _N O.TMS __ 2~metaallerA$any

allergies , main="Isoleucine’, xaxt="n’, ylab="Relative
concentration )
legend ("topright', legend="c’, bty="n’, cex=1.5)

)

axis(side=1, at=c(1,2), labels=c(’non—allergic’, ’allergic’)
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)
boxplot ( Xaller ASM000000_A308005.101.xxx_NA 3079_45 PRED VAR5

_ALK NA~metaallerA$Sany allergies , main="A308005", xaxt='n
’, ylab="Relative  concentration’)
legend ("topright", legend=’'d’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’non—allergic’, ’allergic’)
)

boxplot ( Xaller A $X2.DEOXY.GLUCOSE.MEOX _4TMS __ 2~metaallerA$
any_allergies , main="Deoxyglucose’, xaxt="n’, ylab=’

Relative concentration’)
legend ("topright", legend="e’, bty="n’, cex=1.5)

axis(side=1, at=c(1,2), labels=c(’non—allergic’, ’allergic’)
)

boxplot ( Xaller A$X4. AMINOBUTYRIC ACID N N O.TMS 1~
metaallerA$any allergies , main="Aminobutyric acid’, xaxt=

) J

n’, ylab="Relative concentration’)
legend ("topright", legend="f’, bty="n’, cex=1.5)
axis(side=1, at=c(1,2), labels=c( 'non—allergic’, ’allergic’)

)

plot (ModelallerPLSA$Fit$plsFitMid$variates$X[,1],
ModelallerPLSAS$Fit$plsFitMid$variates$X[,2], col=YallerA
+1, pch=16, xlab="Component,, 1", ylab=’Component, 2”)

legend ("topleft", legend=c( ’non—allergic’, “allergic’), col=
unique ( YallerA+1),pch=16 ,bty="n")

title (main="PLS-DA jof samples from Arterial — allergy", cex.
main=1)

pPerm (ModelallerPLSAS$auc[2,2], permFitnessallerPLSAmid)

#V — allergy
ModelallerPLSV$miss
ModelallerPLSV$auc
ModelallerRFV$miss
ModelallerRFV$auc
permFitnessallerRFVmid

PLSallerVmin=getVIP (ModelallerPLSV , model="min ")
PLSallerVmid=getVIP (ModelallerPLSV , model="mid ")
PLSallerVmax=getVIP (ModelallerPLSV , model="max ")
RFallerVmin=getVIP (ModelallerRFV , model="min ")
RFallerVmid=getVIP (ModelallerRFV , model="mid ")
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RFallerVmax=getVIP (ModelallerRFV , model="max ")

#check number of metabolites in each model
nrow ( PLSallerVmin)
nrow (PLSallerVmid)
nrow ( PLSallerVmax)
nrow ( RFallerVmin)
nrow ( RFallerVmid)
nrow ( RFallerVmax)
RFallerVmin
RFallerVmid
RFallerVmax

head (PLSallerVmin ,10)
head (PLSallerVmid ,10)
head (PLSallerVmax ,10)

tallerVPLS=cbind . data.frame (head (PLSallerVmin$name, 10),
head (PLSallerVmin$rank, 10), head(PLSallerVmid$name, 10),
head (PLSallerVmid$rank, 10), head(PLSallerVmax$name, 10)
, head (PLSallerVmax$rank, 10))

tallerVRF=cbind . data.frame (head (RFallerVmin$name, 10), head(
RFallerVmin8$rank, 10), head(RFallerVmid$name, 10), head(
RFallerVmid8$rank, 10), head(RFallerVmax$name, 10), head(
RFallerVmax$rank, 10))

write . table (tallerVPLS , "PLStableallerV"' K6 sep=";"', row.names
=F, quote=F)

write.table(tallerVRF , "RFtableallerV" 6 sep=";", row.names=F
, quote=F)

#check mean values to see if allergic or non allergic
children have highest concentration of metabolite

Valler=which (metaallerV8any allergies==1)

XValler=XallerV [ Valler .|

XVnoaller=XallerV[—Valler ]

mean ( X Vnoaller SMALTOSE.MEOX 8TMS 1 1 M.z217)—mean( XValler
SMALTOSE.MEOX STMS 1 1 M.2217)

mean ( X Vnoaller$M000000_A275014.101.xxx NA 2740_81_PRED VAR5 _
ALK NA)—mean( XValler $M000000_A275014.101.xxx _NA 2740_81__
PRED VAR5 ALK NA)

mean( XVnoaller§Nonacosane__n)—mean(XValler§Nonacosane__n)

mean ( X Vnoaller §GLYCOLIC_ACID.2TMS 1 M. z66 )—mean( XValler$
GLYCOLIC_ACID.2TMS __ 1 M. z66)
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mean( XVnoaller§Cholesterol .5beta_6beta. epoxide__ 1TMS )—mean(
XValler$Cholesterol .5beta_6Gbeta.epoxide_ 1TMS )

mean( XVnoaller$Phenylpyruvic_acid__ IMEOX _ 1TMS MP)—mean (
XValler$Phenylpyruvic_acid___ IMEOX __ 1TMS _MP)

mean ( X Vnoaller$M000000_A148003.101.xxx NA 1464_64 PRED VAR5
ALK NA)—mean( XValler $M000000_A148003.101.xxx NA 146464
PRED VAR5 ALK NA)

mean( XVnoaller$M000000_A196022.101.xxx NA 1959 _01_PRED VAR5
ALK NA)—mean( XValler $M000000_A196022.101.xxx_NA 1959_01__
PRED_VAR5 ALK NA)

mean( XVnoaller$X1 2 3.Propanetriol___1._4.hydroxy.3.
methoxyphenyl . 4TMS )—mean(XValler$X1 2 3.Propanetriol _
_1._4.hydroxy.3.methoxyphenyl . 4TMS )

mean( X Vnoaller$M000000_A322001.101.xxx NA 3204_72 PRED VAR5
ALK NA)—mean( XValler $M000000_A322001.101.xxx _NA 3204_72__
PRED VAR5 ALK NA)

mean ( X Vnoaller$Unknown. bth.pae.013)—mean( XValler$Unknown. bth
.pae.013)

mean ( X Vnoaller SMALTOTRIOSE . MEOX_11TMS 2 2 M. 7361 )—mean(

XValler SMALTOTRIOSE .MEOX_11TMS 2 2 _M.z361)

#t—tests of RF metabolites

t.test (Xaller VSMALTOSE.MEOX 8TMS 11 M.z217~metaallerV$
any allergies , alternative="two.sided’) #p = 0.9205

t.test (XallerVEM000000_A275014.101.xxx NA 2740_81_PRED VAR5
ALK NA~metaallerV8any allergies , alternative="two.sided ")

#p = 0.06712

#t—tests of PLS-DA metabolites

t.test (XallerV8Nonacosane___n~metaallerV8any allergies ,
alternative="two.sided " )#p = 0.1861

t.test (XallerVSGLYCOLIC ACID.2TMS 1 M.z66~metaallerV$any
allergies , alternative="two.sided )#p = 0.1021

t.test (XallerV§Cholesterol .5beta_6beta.epoxide__ 1TMS ~
metaallerV8any allergies , alternative="two.sided ' )#p =
0.05189

t.test (XallerV$Phenylpyruvic_acid__ IMEOX _ 1TMS MP~
metaallerV8any allergies , alternative="two.sided’)#p =
0.2616

t.test (XallerVEM000000_A148003.101.xxx NA 1464_64 PRED VAR5
ALK NA~metaallerV8any allergies , alternative="two.sided ")
Ay = 0.4806

t.test (Xaller VEMO000000_A196022.101.xxx NA 1959 01_PRED VAR5
ALK NA~metaallerV8any allergies , alternative="two.sided )
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#p = 0.291

t.test (XallerV$X1 2 3.Propanetriol 1. 4.hydroxy.3.
methoxyphenyl . 4TMS ~metaallerV$any allergies ,
alternative="two.sided " )#p = 0.3573

t.test (XallerVEM000000_A322001.101.xxx NA 3204_72 PRED VAR5
ALK NA~metaallerV8any allergies , alternative="two.sided ")
#p = 0.08813

t.test (XallerV8Unknown.bth.pae.01l3~metaallerV8any allergies ,

alternative="two.sided " )#p = 0.3283
t.test (Xaller VSMALTOTRIOSE.MEOX 11TMS 2 2 M.z361~

metaallerV8any allergies , alternative="two.sided ' )#p =
0.06282

#no significant metabolites found.

plot (ModelallerPLSV$Fit$plsFitMid$variates$X[,1],
ModelallerPLSVS$Fit$plsFitMid$variates$X[,2], col=YallerV
+1, pch=16, xlab="Component 1", ylab="Component 2")

legend ("topleft", legend=c( ’'non—allergic’, “allergic’), col=
unique( YallerV+1),pch=16 ,bty="n")

title (main="PLS-DA of samples from Venous — allergy", cex.
main=1)

A — allergy
ModelallerPLSM$miss

ModelallerPLSM$auc
ModelallerRFM$miss
ModelallerRFM$auc
permFitnessallerRFMmid

PLSallerMmin=getVIP (ModelallerPLSM , model="min ")
PLSallerMmid=getVIP (ModelallerPLSM , model="mid ")
PLSallerMmax=getVIP ( ModelallerPLSM ;, model="max ")
RFallerMmin=getVIP ( ModelallerRFM , model="min ")
RFallerMmid=get VIP (ModelallerRFM , model="mid ")
RFallerMmax=getVIP (ModelallerRFM , model="max ")

#check number of metabolites in each model
nrow ( PLSallerMmin )
nrow ( PLSallerMmid)
nrow ( PLSallerMmax)
nrow ( RFallerMmin)
nrow ( RFallerMmid)
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nrow (RFallerMmax)
RFallerMmin
RFallerMmid
RFallerMmax

head (PLSallerMmin ,10)
head (PLSallerMmid ,10)
head (PLSallerMmax,10)

tallerMPLS=cbind .data.frame (head (PLSallerMmin$name, 10),
head (PLSallerMmin$rank, 10), head(PLSallerMmid$name, 10),
head (PLSallerMmid$rank, 10), head(PLSallerMmax$name, 10)
, head (PLSallerMmax$rank, 10))

tallerMRF=cbind . data . frame (head (RFallerMmin$name, 10), head/(
RFallerMmin$rank, 10), head(RFallerMmid$name, 10), head(
RFallerMmid$rank, 10), head(RFallerMmax$name, 10), head(
RFallerMmax$rank, 10))

write.table(tallerMPLS, "PLStableallerM" , sep=";", row.names
=F, quote=F)

write.table(tallerMRF , "RFtableallerM", sep=";"', row.names=F
, quote=F)

#check mean values to see if allergic or mon allergic
children have highest concentration of metabolite

Maller=which(metaallerM$any allergies==1)

XMaller=XallerM [ Maller | |

XMnoaller=XallerM[—Maller |, |

mean ( XMnoaller $SORBOSE.MFOX 5TMS 2 1 M. z306 )—mean( XMaller
$SORBOSE.MEOX 5TMS 2 1. M. z306)

mean ( XMnoaller$§GLYCERIC_ACID.3TMS __ 3)—mean( XMaller $§GLYCERIC
_ACID.3TMS __ 3)

mean ( XMnoaller§Heptadecan.1.0l__n.__ 1TMS )—mean(XMaller$
Heptadecan.1l.0l _n._ 1TMS )

mean ( XMnoaller$M000000_A202006.101.xxx NA 2017_1_PRED VAR5
ALK NA)—mean( XMaller$M000000_A202006.101.xxx NA 2017 1
PRED VAR5 ALK NA)

mean ( XMnoaller$§Heptanoic_acid__n._ 1TMS )—mean(XMaller$
Heptanoic_acid__n.__ 1TMS )

mean ( XMnoaller$§Unknown. bth . pae.011)—mean( XMaller$Unknown . bth
.pae.011)

mean ( XMnoaller$M000000_A209004.101.xxx_NA 2078 56_PRED VAR5
ALK NA)—mean( XMaller $M000000_A209004.101.xxx NA 2078 56__
PRED VAR5 ALK NA)

mean ( XMnoaller$Unknown. sst . cgl.104)—mean( XMaller $Unknown. sst
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.cgl.104)

mean ( XMnoaller §GLUCARIC_ACID _1_4 TACTONE.4TMS _ 1)—mean(
XMaller$GLUCARIC_ACID _1_4 TACTONE.4TMS 1)

mean ( XMnoaller$M000000_A145005.101.xxx NA 1436_41_PRED VAR5
ALK_NA)—mean( XMaller $M000000_A145005.101. xxx NA 1436 _41
PRED VAR5 ALK NA)

mean ( XMnoaller$D223156 )—mean( XMaller$D223156)

mean ( XMnoaller$M000000_A238002.101.xxx NA 2366_44 PRED VAR5
ALK NA)—mean( XMaller$M000000_A238002.101.xxx_NA 2366_44__
PRED VAR5 ALK NA)

mean ( XMnoaller $SARCOSINE.2TMS ___ 1)—mean( XMaller $SSARCOSINE. 2
™S 1)

#t—tests of RF metabolites

t.test (XallerM$SORBOSE.MEOX 5TMS 2 1. M. z306~metaallerM$
any allergies , alternative="two.sided’) #p = 0.4961

t.test (XallerM$GLYCERIC _ACID.3TMS  3~metaallerM$any

allergies , alternative="two.sided’) #p = 0.0688

#t—tests of PLS-DA metabolites
t.test (XallerM$Heptadecan.1.0l__n.__ 1TMS ~metaallerM$any _
allergies , alternative="two.sided’) #p = 0.1331
t.test (XallerM$M000000_A202006.101.xxx NA 2017_1_PRED VAR5
ALK NA~metaallerM$any allergies , alternative="two.sided’)
4y = 0.3415
t.test (XallerM$Heptanoic_acid__n.__ 1TMS ~metaallerM$any _
allergies , alternative="two.sided’) #p = 0.83703
t.test (XallerM$Unknown.bth.pae.01l1~metaallerM8$any allergies |,
alternative="two.sided’) #p = 0.1788
t.test (XallerM$MO0O00000_A209004.101.xxx NA 2078_56_PRED VAR5 _
ALK NA~metaallerM$any allergies , alternative="two.sided ")
#p = 0.4059
t.test (XallerM$Unknown. sst.cgl.104~metaallerM8$any allergies |,
alternative="two.sided’) #p = 0.3912
t.test (XallerM$GLUCARIC _ACID 1 4 LACTONE.4TMS _ 1~metaallerM
$any allergies , alternative="two.sided’) #p = 0.4429
t.test (XallerM$M000000_A145005.101.xxx NA 1436_41_PRED VAR5
ALK NA~metaallerM$any allergies , alternative="two.sided ")
#p = 0.419
t.test (XallerM$D223156~metaallerM8$any allergies , alternative
="two.sided’) #p = 0.4018
t.test (XallerM$MO000000_A238002.101.xxx NA 2366_44 PRED VAR5
ALK NA~metaallerM$any allergies , alternative="two.sided ")
#p = 0.42
t.test (XallerM$SARCOSINE.2TMS _ 1~metaallerM$any allergies |,
alternative="two.sided’) #p =3.882%10" =5
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par (mfrow=c(2,3))

boxplot ( XallerM$SARCOSINE.2TMS _ 1~metaallerM8$any allergies |,
main=’Sarcosine’, xaxt='n’, ylab="Relative concentration
")

axis(side=1, at=c(1,2), labels=c(’non—allergic’, ’allergic’)
)

plot (ModelallerPLSM$Fit$plsFitMid$variates$X[,1],

ModelallerPLSM$Fit$plsFitMid$variates$X[,2], col=YallerM
+1, pch=16, xlab="Component 1", ylab='"Component 2")

legend("topleft"', legend=c( 'non—allergic’, ’allergic’), col=
unique ( YallerM+1) ,pch=16 ,bty="n")

title (main="PLS-DA of samples from Mixed, — allergy", cex.
main=1)
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