
DF

Data-driven Learning of Fiber-optic
Communication Systems with Quantized
Feedback
Master’s thesis in Master Programme of Communication Engineering

Jinxiang Song

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

Master’s thesis 2019:NN

Data-driven Learning of Fiber-optic
Communication Systems with Quantized

Feedback

Jinxiang Song

DF

Department of Electrical Engineering
Master Program of Commnunication Engineering

Chalmers University of Technology
Gothenburg, Sweden 2019

Data-driven Learning of Fiber-optic Communication Systems with Quantized Feed-
back
Jinxiang Song

© Jinxiang Song, 2019.

Supervisor: Henk Wymeersch, Christian Häger, Bile Peng
Examiner: Henk Wymeersch

Master’s Thesis 2019:NN
Department of Electrical Engineering
Master Program of Communication Engineering Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 704648175

Typeset in LATEX, template by David Frisk
Printed by Chalmers Reproservice
Gothenburg, Sweden 2019

iv

Data-driven Learning of Fiber-optic Communication Systems with Quantized Feed-
back
Jinxiang Song
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Conventional model based transmitter and receiver design has lead to the stable
and widely applied communication systems we have today. However, optimal mod-
ulation formats and detection methods are hard to find for communication systems
where the physical channels are nonlinear. Recently work shows that data-driven
optimization of transmitters and receivers can reveal new modulation and detection
schemes and enable physical-layer communication over unknown channels. In prac-
tice, this approach requires a feedback signal from the receiver to the transmitter.

In this thesis, the impact of quantized feedback in data-driven learning of com-
munication over a fiber-optic channel is studied. We propose a novel quantization
method that exploits the specific properties of the feedback signal and is suitable
for non-stationary signal distributions. Our simulation results show that feedback
quantization does not appreciably affect the learning process and can lead to excel-
lent performance, even with 1-bit quantization. In addition, it is shown that learning
is robust to noisy feedback where the quantization bits are randomly flipped.

Keywords: data-driven learning, policy optimization, unknown channel, noisy feed-
back, quantization

v

Acknowledgements
I would like to thank Prof. Henk Wymeersch for proposing this novel thesis topic
and for giving me this precious opportunity to do this project.

I would like to express my gratitude to my supervisors Henk Wymeersch and Chris-
tian Häger and Bile Peng for their continuous guidance, support, patience and tol-
erance during my thesis work. Thank you all for the kindness and great work for
the paper that we are going to publish.

In a word, I sincerely thank all the people who were involved in my thesis work.
This work would been a unforgettable experience, and I do believe whatever I learnt
during this thesis work will benefit my future career.

Jinxiang Song, Gothenburg, June 2019

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Communication system design . 1
1.2 Difficulties in fiber-optic communication system design 1
1.3 Data-driven learning of communication systems 3
1.4 Goal of the thesis . 4
1.5 Machine learning Ethics . 4

2 Theory 5
2.1 Fiber-Optic communication . 5
2.2 Quantization . 5

2.2.1 Uniform quantization . 6
2.3 Neural network basics . 7

2.3.1 Neuron . 7
2.3.1.1 Activation Function 7
2.3.1.2 Bias . 9

2.3.2 Artificial Neural Network . 10
2.4 Learning of neural networks . 10

2.4.1 Objective Function . 11
2.4.2 Gradient Based Learning . 11

2.4.2.1 Gradient Descent . 11
2.4.2.2 Gradient descent variations 12
2.4.2.3 Optimization methods 13

2.4.3 Supervised Learning . 14
2.4.3.1 Loss Function . 14

2.4.4 Reinforcement learning . 15
2.4.4.1 Reward Function . 16
2.4.4.2 Policy Gradient . 17

3 Learning Physical-layer Communication with Quantized Feedback 19
3.1 Introduction . 19
3.2 System Model . 19

3.2.1 Transmitter structure . 20
3.2.2 Receiver structure . 20

ix

Contents

3.2.3 Feedback link . 21
3.3 Data-Driven Learning . 21

3.3.1 Receiver Learning . 21
3.3.2 Transmitter Learning . 22
3.3.3 Loss feedback . 23

3.3.3.1 Loss transformation 23
3.3.3.2 Loss quantization . 25

4 Performance Analysis 27
4.1 Setup and Parameters . 27

4.1.1 Channel model . 27
4.1.2 Transmitter and receiver neural networks. 27
4.1.3 Training procedure . 28
4.1.4 Transmitter exploration variance 28

4.2 Perfect vs quantized feedback . 28
4.3 Impact of number of quantization bits 30
4.4 Impact on convergence rate . 31
4.5 Impact of Noisy feedback . 32

5 Discussion 35
5.1 Impact of Quantized Feedback Signal 35
5.2 Impact of Noisy Feedback Channel 36

6 Conclusion 39

Bibliography 41

x

List of Figures

1.1 Communication system model . 1
1.2 Detected 16-QAM symbols when transmitted over a simplified fiber

optical channel with input power equals to −5dBm and noise power
equals to −21.3dBm. 2

1.3 Symbol error rate achieved when 16-QAM symbols are transmitted
over a simplified fiber-optical channel with Kerr effect and fixed noise
power equals to −21.3dBm and an AWGN channel. Both cases use
Euclidean distance detector . 2

2.1 Quantization . 6
2.2 Neuron structure . 7
2.3 Activation functions . 9
2.4 impact of bias on neuron with one input 9
2.5 struture of an artificial neural network 10
2.6 gradient descent example . 12
2.7 Reinforcement Learning Model . 16

3.1 System Model . 20
3.2 Architectures of transmitter and receiver 20
3.3 Illustration of the non-stationary loss distribution as a function of the

number of training iterations in the alternating optimization. 24

4.1 Learned constellations for the nonlinear optical channel,M = 16, and
P = −5 dBm (a) without quantizing per-sample losses and (b) using
the proposed quantization scheme and 1-bit quantization. 29

4.2 Learned decision regions for the nonlinear optical channel, M = 16,
and P = −5 dBm (a) without quantizing per-sample losses and (b)
using the proposed quantization scheme and 1-bit quantization. . . . 29

4.3 Symbol error rate achieved for M = 16. The training SNR is 15 dB
for the AWGN channel, whereas training is done separately for each
input power (i.e., SNR) for the optical channel. 30

4.4 Impact of the number of quantization bits on the achieved perfor-
mance for the nonlinear optical channel with M = 16, P = −5 dBm.
Results are averaged over 10 different training runs where error bars
indicate the standard deviation between the runs. 31

xi

List of Figures

4.5 Evolution of L(θR) during the alternating optimization for the fiber
optical channel with M = 16, P = −5 dBm. Results are averaged
over 15 different training runs where the shaded area indicates one
standard deviation between the runs. 32

4.6 Performance on fiber optical channel with M = 16, P = −5dBm
when transmitting quantized losses over a noisy feedback channel
modeled as a binary symmetric channel with flip probability p. Re-
sults are average over 10 runs where the error bars indicate one stan-
dard deviation between runs. 33

xii

List of Tables

2.1 List of some commonly used activation functions 8

4.1 Neural network parameters, where M = 16 27

xiii

List of Tables

xiv

1
Introduction

1.1 Communication system design
The fundamental problem of communication is to transmit a message at one point
and either exactly or approximately reproduce it at another point [1] or, in other
words, a communication system aims at reliably exchanging information between two
nodes over a channel. Fig. 1.1 shows a classic representation of a communication
system, where communication over a physical channel is conducted by the use of
transmitter and receiver.

m transmitter x channel
y

receiver m̂

Figure 1.1: Communication system model

Here, transmitter maps messages m to complex symbols x and sent it through the
channel defined by a conditional probability density function (PDF) p(y|x). Receiver
makes observation of channel output y and estimates the transmitted messages m̂.

Conventionally, communication systems are designed by dividing transmitter and
receiver into several processing blocks, each performing a individual task such a
source encoding, channel encoding, or modulation. This approach enables indepen-
dent analysis and optimization of each block, and has lead to the communication
systems that are in use today [2].

1.2 Difficulties in fiber-optic communication sys-
tem design

As communication system becomes more complex, this model-based approach be-
comes more and more difficult to analysis and optimize, especially in fiber-optic
communication systems. The difficulty in designing transmitter and receiver for
optical communication system mainly arises from the fact that Kerr effect [3] in
the fiber-optic channel makes optimal transmission and detection method unknown.
This is because that Kerr effect leads to a rotation of transmitted constellation
symbols, and and symbols with higher energy rotate more. Fig.1.2 shows the con-
stellation pattern observed when 16-QAM symbols are transmitted over a simplified
fiber-optic channel where only Kerr effect and Gaussian noise exist.

1

1. Introduction

Figure 1.2: Detected 16-QAM symbols when transmitted over a simplified fiber opti-
cal channel with input power equals to−5dBm and noise power equals to−21.3dBm.

As one can see from the figure, symbols with higher energy are perturbed with
stronger phase noise, which makes the design of optimal receiver an complex task.
To see that, Fig. 1.3 visualizes the achieved symbol error rate (SER) when 16-QAM
symbols are transmitted over a fiber-optic channel, and Euclidean distance detector
are used for symbol detection. The channel noise is assumed to be Gaussian noise
with fixed power.

−15 −10 −5 0 5 10

10−5

10−4

10−3

10−2

10−1

100

input power (dBm)

sy
m

bo
le

rr
or

ra
te

optical: 16-QAM
awgn: 16−QAM

Figure 1.3: Symbol error rate achieved when 16-QAM symbols are transmitted over
a simplified fiber-optical channel with Kerr effect and fixed noise power equals to
−21.3dBm and an AWGN channel. Both cases use Euclidean distance detector

As one can see from the figure, the resulted SER first goes down and then goes up as

2

1. Introduction

transmission power increases. This is because when transmission power is low, the
main perturbation comes from the Gaussian noise. While when transmission power
is high, the phase noise introduced by Kerr effect becomes more dominant than
Gaussian noise. As a reference, the performance achieved from an AWGN channel,
where there only exists Gaussian noise, is also shown. From the figure one can see
that SER decreases as transmission power increases.

1.3 Data-driven learning of communication sys-
tems

The rapid growth of machine learning (ML) has lead to a new line of transmit-
ter and receiver design. Recent work shows that transmitter and receiver can be
jointly learned from data without introducing any block-wise structure like modu-
lator, channel encoder and so on. This concept was first brought up in [4] and [5],
in which a communication system was interpreted as an auto-encoder. Since then,
numerous extensions of the original idea towards channel coding [6], joint source-
channel coding [7], orthogonal frequency-division multiplexing (OFDM) [8], and
multiple-input multiple-output (MIMO) [9, 10] have been made, which all demon-
strate the versatility of this approach.

However, this joint optimization of transmitter and receiver is problematic in prac-
tice since it requires a known and differential channel model, which is often hardly
the case. One simple approach to circumvent this limitation is to first learn trans-
mitter and receiver based on an estimated channel model and then performs receiver
fine-tuning in real channel [2]. However, with this approach, the transmitter cannot
be fine-tuned, resulting in sub-optimal performance. Another approach is to first
learn a generative differentiable channel model and optimize the transmitter and
receiver by using the surrogate channel [8, 11]. However, the learnt channel model
probably does not cover all hardware insufficiency and channel characteristics, thus
the performance is highly limited by the model accuracy. A different approach is
to regard transmitter learning as an reinforcement learning task, where transmitter
maps a fixed message to a random variable following a certain distribution during
the transmitter training process [12–14]. With this approach, the surrogate gradi-
ent can be computed without channel model, and leads to the sufficient training of
transmitter.

In order to compute the surrogate gradient for training transmitter, a feedback signal
must be communicated from the receiver to the transmitter over a feedback channel.
And this feedback signal can be either perfect [12–15] or noisy [16]. In the latter case,
it is instructive to regard the feedback transmission as a separate communication
problem for which optimized transmitter and receiver pairs can again be learned.
This has been done in [16], where a feedback link is learnt such that real numbers
can be communicated over an additive white Gaussian noise (AWGN) channel. In
practice, however, signals will be quantized to a finite number of bits, including the
feedback signal. And it’s not clear what influence of quantization will have on the

3

1. Introduction

system training process.

1.4 Goal of the thesis
Reinforcement learning based transmitter optimization enables end-to-end learning
of communication systems without knowing a differentiable channel model. Previ-
ous work shows that this approach requires a feedback signal from the receiver to
the transmitter. In this thesis, we study the impact of quantized feedback signal in
learning communication system over a fiber-optic channel. To estimate the perfor-
mance of our proposed training approach, we provide numerical results where the
system performance is measured in terms of symbol error rate (SER).

1.5 Machine learning Ethics
Machine learning has become a hot research topic and it brings many advantages
to human society. However, there are still many ethical concerns about machine
learning that should not be ignored by researchers.

Firstly, machine learning algorithm can be biased or discriminating [17]. On one
hand, machine learning algorithm are designed by developers, which means that
it’s possible that the algorithm itself is designed to be discriminative against some
population. on the other hand, the machine learning algorithms are usually learned
from data. If the dataset is discriminative or incomplete, the trained algorithms are
possible to be biased and discriminating.

Secondly, machine learning can leads privacy concern. Training of machine learning
algorithm requires huge amount of data, and user data might be collected without
being notification. For example, a recommending system might predict user’s like-
ness or dis-likeness according to user’s previous usage.

Thirdly, machine learning can lead to safety concerns. For example, autonomous
driving car has become a hot research topic in recent years. However, we still don’t
know the trustness of autonomous driving system.

Last but not least, machine learning helps the growing of industrial robots design,
and there has been concern about high unemployment rate caused by large-scale
usage of robots.

In this thesis, machine learning is used for designing of fiber-optic communication
system, the issues mentioned above won’t be concerns of this work.

4

2
Theory

In this chapter, we first give a brief introduction to fiber-optical communication,
then this is followed by a brief description of a simplified optical channel model that
we will use in this thesis work. After that,the idea of quantization is introduced. In
the last part of this chapter, we give an overview of concepts related to deep learning
and some of the commonly used algorithms used in deep learning.

2.1 Fiber-Optic communication
Fiber-optic communication is a method of transmitting information from one point
to another by sending pulses of light through an optical fiber. The light forms an
electromagnetic carrier wave that is modulated to carry information [18]. The prop-
agation of signals in a optical fiber with ideal distributed amplification is modeled
by the nonlinear Schrödinger equation [19]:

∂x(z, t)
∂z

= iγ||x(z, t)||2x(z, t)− iβ2

2
∂2x(z, t)
∂t2

− n(z, t) (2.1)

where x(z, t) = [xx xy] is the trasmitted signal, z and t are distance and time
coordinates, γ is the nonlinearity parameter, β2 is the group velocity dispersion
coefficient, and n(z, t) is the Gaussian noise. The first term on the right side of the
equation represents the Kerr effect, which causes a rotation of transmitted signal
and the rotation is proportional to the signal’s power. The second term on the right
side of the equation represents dispersion, which usually leads to the inter symbol
interference in fiber-optic communication systems. In this work, a simplified fiber-
optic channel model is considered, in which we the dispersion is ignored. The model
is described by the following recursion [20]:

xk+1 = xke
jLγ|xk|2/K + nk+1, 0 ≤ k < K (2.2)

where x0 = x is the complex-valued channel input, y = xK is the channel output,
nk+1 ∈ CN (0, PN/K) is the white Gaussian noise, L is the total link length, PN
is the noise power, and γ is the nonlinearity parameter. The model assumes ideal
distributed amplification and K →∞.

2.2 Quantization
Quantization is the process of converting a continuous-valued or large set of values
into a finite set of discreet values [21]. More precisely, a quantizer is a function

5

2. Theory

x quantizer m ∈ (1, 2N)

f(·)

x̂ dequantizer m̂

Figure 2.1: Quantization

fQ(·) that maps signals x with continuous range to a discrete set of representation
levels r , {r1, r2, · · · , rM} by applying signals x to a set a decision levels d ,
{d1, d2, · · · , dM} such that

fQ(x)→ ri, if x ∈ (di−1, di], i = 1, 2, 3, · · · ,M (2.3)

whereM is the total number of representation levels. Usually,M is set toM = 2N so
that each input value can be represented by N bits. Fig. 2.1 illustrates the process
of quantization. As it can be seen, quantization is decomposed into two distinct
stages: classification stage denoted by Q(·) and reconstruction stage denoted by
Q−1(·). In classification stage, each input value x is mapped to an integer m such
that dm−1 < x ≤ dm; In the reconstruction stage, the quantized value x̂ is restored
from m following x̂ = rm. Note that the successful reconstruction of quantized value
relies on the assumption that Q(·) and Q−1(·) shares common knowledge about the
decision levels d and representation levels r.

Due to the fact that all signals that lie in (di−1, i] are represented by a fixed value
ri, there will always be a difference between the original signal x and the quantized
signal x̂. Usually, the difference between x and x̂ is measured by the mean-square
quantization error defined by

D = E{(xi − x̂i)2} (2.4)

Designing optimal quantizer can be regard as finding x̂ that minimizes the mean
square quantization error.

2.2.1 Uniform quantization
Depending on how the decision levels and representation levels are spaced, quantizer
can be categorized into different types. In this work, we only consider uniform
quantizer in which all decision levels and representation levels are equally spaced.
Assuming all input values lies within (a, b), and each value is to be quantized with
N bits, the uniform quantizer would divide (a, b) into 2N equal-size sub-ranges with
size ∆ = (b− a)/2N , and take the decision levels and representation levels as:

di = i∆
M
, i = 0, 1, 2, · · · ,M (2.5)

6

2. Theory

ri = i∆
M

+ ∆
2M , i = 0, 1, 2, · · · ,M (2.6)

2.3 Neural network basics
Artificial neural networks are mathematical models or computing models that simu-
lates the neuronal structures and functions of animal brains [22].And like the neural
network in an animal brain, a artificial neural network is made up of several con-
nected layers of nodes known as neuron.

2.3.1 Neuron
Neurons are the basic elements that forms an artificial neural network. Fig. 2.2
shows the structure of one single neuron.

x1

x2

x3

xn

..
.

b

∑
w1

w2

w3

wn

f(·) y

Figure 2.2: Neuron structure

Given an input vector x, the neuron generates an output y according to

y = f(wTx + b) (2.7)

where w is vector of weights, b is a scalar called bias, and f(·) is an activation
function. In a neural network, the input vector x are outputs of neurons in the
previous layer.

2.3.1.1 Activation Function

An activation function of one neuron is a function that defines the output of that
neuron [23]. Usually, using activation function aims at introducing non-linearity to
the neuron , such that a neural network of more than one layer can be possibly
approximate arbitrary complex functions. Consider a scenario where no activation
function is used in the neural network, then each neuron in the neural network is
simply a linear function and the neural network as a whole is simply a linear re-
gression model, which has limited power in approximating a complex function. So,
using activation function in a neural network enables non-linearity thus dramatically
improves the system performance.

7

2. Theory

In practice, there are many different types of activation functions with different
features. Table 2.1 lists some of the most common activation functions.

Table 2.1: List of some commonly used activation functions

name f(x) = range
Linear x (−∞,∞)
Sigmoid 1

1+e−x (0, 1)
tanH 1−e−2x

1+e−2x (−1, 1)
ReLU max(0, x) (0,∞)

Softmax exi∑
i
exi

(0, 1]

Different activation functions have different features, and these different features
determines the different usage of these activation functions. Generally speaking, the
desirable properties of an activation function include:

• Non-linearity: As it’s mentioned before, non-linearity makes a neural network
of more than one layer a universal function approximator [24]. In another
world, a multiple layers neural network without non-linearity is equivalent to
a single layer network, which is a simple linear regression model.

• Finite range: An activation function with finite range makes the gradient based
training method more stable.

• Continuously differentiable: When the activation is not differentiable at some
point, the gradient based training method could possibly get stuck at that
point.

• Computationally friendly: Activation functions with lower computation com-
plexity are more favorable then those requires high computation power.

Fig. 2.3 shows some of the commonly used activation functions. As one can see, each
of these functions has different features. For instance, identity function is linear, and
it’s only used in a neural networks output layer. Sigmoid function saturates when
the input is large, which in practice makes gradient descent based learning converge
slowly. This is because when input is large, the gradient of a Sigmoid function
is close to zero, which leads to a small update to the trainable weights. TanH
function is similar to Sigmoid function in terms of saturating when the input is large.
However, in many applications TanH function outperforms Sigmoid function due to
the fact that the output of TanH function is zero-centered, while Sigmoid function
always has positive output. Besides, both TanH function and Sigmoid function
are computational complex due to the exponential computation. In practice, Relu
function was used instead of TanH and Sigmoid in many cases since ReLu function
is more computationally friendly. However, Relu can leads problems such as "Relu-
dying" because Relu function has zero-graident when the input is smaller than zero.

8

2. Theory

−10 −5 0 5 10
−10

−5

0

5

10

x

L
in

ea
r

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

x

S
ig
m
o
id

−10 −5 0 5 10
−5

0

5

10

x

R
eL

U

−10 −5 0 5 10
−1

−0.5

0

0.5

1

x

ta
n
H

Figure 2.3: Activation functions

2.3.1.2 Bias

Bias is another parameter that helps to improve the performance of an neuron. Fig.
2.4 shows the impact of bias on a single neuron with one feature input. As one can
see from the figure, when no bias is added to the neuron model, it will be trained
over point passing through origin only, which is not in accordance with the real
world scenarios. On the other hand, the neuron can be trained to represent any
linear function in the presence of bias.

−4 −2 0 2 4 6 8 10
−5

0

5

10

(0, 0)

x

y

y = x

y = 2x

y = −x

−4 −2 0 2 4 6 8 10
−5

0

5

10

x

y y = x+ 1.5

y = 2x+ 2.6

y = −x+ 3

Figure 2.4: impact of bias on neuron with one input

9

2. Theory

2.3.2 Artificial Neural Network
Artificial neural networks (ANN) are computing systems vaguely inspired by the
biological neural networks that constitute animal brains [25]. And like the neural
network in an animal brain, a artificial neural network consists of several layers.
The first layer is referred to as input layer and the last layer as output layer, the
layers between input layer and output layer are called hidden layers. The structure
of neural networks can vary a lot from each other and NNs in practice are divided
into different categories. In this work, the simplest kind of neural network, fully-
connected neural network (FNN), is considered. Fig. 2.5 shows a simple FNN with
an input layer, an output layer and 3 hidden layers.

x1

x2

x3

input

..
.

hidden− layers
..
.

..
.

output
y1

y2

Figure 2.5: struture of an artificial neural network

As one can see from the figure, neurons in one layer of a FNN are connected to
all neurons in the adjacent layers, and the computation within one layer can be
described by:

y[l] = f [l](W[l]y[l−1] + b[l]) (2.8)

where the superscript [l] denotes the parameters associate to the lth layer and y is a
vector of outputs, W is a matrix of trainable weights, b is a vector of bias, and f(·)
is the activation function. To the fact that data in FNN is passed through in one
direction, FNN is relatively simple to maintain and it’s one of the mostly commonly
used neural network in practice.

2.4 Learning of neural networks

Neuron Network has been applied to solve problems in different fields, and based
on those different applications, machine learning tasks can be broadly categorized

10

2. Theory

into 3 classes, which are supervised learning, unsupervised learning and reinforce-
ment learning. In this section, we will introduce the concept of supervised learning,
reinforcement learning and some commonly used algorithms related to them.

2.4.1 Objective Function

In order to train a neural network, we need a metric that tells us how good or bad
that a neural network performs in modeling the given data. In machine learning
context, this performance metric is referred to as objective function. And depending
on what machine learning tasks that an objective function is applied to, it’s usually
divied into two categories: loss function (see Sec. 2.4.3.1) and reward function(see
Sec. 2.4.4.1). Typically, all machine learning algorithm aims at minimizing the loss
function or maximizing the reward function.

2.4.2 Gradient Based Learning

Training of a neural network is equivalent to find the optimal parameters so that
the objective function is optimized. In this section, we give an overview of gradient
descent, which is the most popular algorithm for optimizing objective functions.

2.4.2.1 Gradient Descent

Gradient descent [26] is one of the most common ways to minimize loss function 1.
The general idea is that to finding the minimum value of a function can be achieved
by iteratively taking steps proportional to the negative gradient of the function
at current point. Given a multi-variable function J(θ) parameterized by θ that
we want to minimize, gradient descent algorithm solves the problem by recursively
updating θ until convergence. In each update, the parameters θ follows:

θt+1 = θt − α∇θJ(θt) (2.9)

where α is the learning step size referred to as learning rate and the subscript t
denotes the time step of optimization.

1Maximizing the reward function can be equally achieved by minimizing the negative reward
function

11

2. Theory

−8 −6 −4 −2 2 4 6 8 10

−10

−5

5

10

15

20

25

30

θ3• Local −Minimum

θ1
•

θ2•

θ

J(θ)

Figure 2.6: gradient descent example

Fig.2.6 shows a simple example how gradient descent works. For instance, when
θ = θ1, J(θ) has an negative gradient and the updating rule leads to an increased
θ which results in an reduction of objective function. When θ = θ2, the gradient of
J(θ) is positive, thus leading to an decrease of θ which reduces J(θ) as well.

2.4.2.2 Gradient descent variations

Depending on how the training data set is used for updating parameters θ, there
exists several variants of gradient descent. This section gives an brief description of
these gradient descent variants.

Batch Gradient Descent
In BGD, the entire training data set is used for calculating the gradient of J(θ) in
each update of θ, which is:

θt+1 = θt − αE{∇θJ(θt; (x(i), y(i)))} (2.10)

By averaging the gradient over the whole data set, it leads to a stable update of θ,
and only a few updates can lead to loss convergence. However, when the training
data is very large, computing loss gradient over the whole data set is very inefficient
and it takes a long time for training. In the mean time, BGD has the drawback that
it’s very likely to converge to a local minimum for a non-convex function.

Stochastic Gradient Descent
Different from BGD, in each update of trainable parameters θ, SGD computes the
loss gradient by using only one sample from the data set [27], that is:

θt+1 = θt − α∇θJ(θt; (x(i), y(i)))} (2.11)

12

2. Theory

The good side of SGD is that loss gradient is computed in a very fast way, and com-
puting loss gradient with one sample introduced randomness into the parameters
update, which can actually help SGD jump out of local minimum. However, on the
other hand, the randomness introduced in loss gradient makes training unstable,
and SGD usually requires much more iteration for convergence.

Mini− batch Gradient Descent
In MBGD, parameters are updated by computing loss gradient over a mini-batch of
the whole training data set, that is:

θt+1 = θt − α
1
N

N∑
i=1
{∇θJ(θt; (x(i), y(i)))} (2.12)

where N is the mini-bacth size. By computing loss gradient in this way, MBGD
shares the characteristics of both BGD and SGD. In each parameters update, loss
gradient is computed in a fast way, and the average over a min-batch stabilizes the
training process.

2.4.2.3 Optimization methods

The fact that learning steps fluctuate in SGD and MBGD makes the learning slow.
In practices, there exists several extensions of SGD that speed up training of neural
network. This section introduces some of the extensions of SGD.

Momentum
Different from SGD where only the gradient of the current step is used for parameters
update, Momentum updates trainable parameters by taking the gradient of past
steps into account [28]. The equations of gradient descent are revised as follows:

vt = βvt−1 + (1− β)∇θJ(θt) (2.13)

θt+1 = θt − αvt (2.14)

When β = 0, the method is equivalent to gradient descent, meaning that gradients
of past steps are not taking into account. In practice, the β is usually initialized at
0.5, and gradually adjusted to 0.9 over multiple epochs.

RMSProp
Root mean square propagation (RMSProp) is another extension of SGD. Aiming
at dampen the oscillations in the training process, RMSProp takes the second mo-
ment of gradient into account when updating parameters [29]. The mathematical
expression is:

vt = βvt−1 + (1− β)(∇θJ(θt))2 (2.15)

θt = θt−1 − α
∇θJ(θt)√
vt + ε

(2.16)

where β is a hyper-parameter generally chosen to be 0.9, α is the initial learning
rate, and ε is a hyper-parameter that avoids the gradient being divided by zero.

13

2. Theory

Adam optimization
Adam or Adaptive Moment Optimization algorithms combines the heuristics of both
Momentum and RMSProp [30], and the update rule follows:

vt = β1vt−1 + (1− β1)∇θJ(θt) (2.17)

st = β2st−1 + (1− β2)(∇θJ(θt))2 (2.18)

vcorrectedt = vt
1− β1

(2.19)

scorrectedt = st
1− β1

(2.20)

θt+1 = θt − α
vcorrectedt√
scorrectedt + ε

(2.21)

where β1 and β2 are a set of hyper-parameters, α is the initial learning rate. By
taking the gradients of past steps as well as the second moment of gradients, Adam
optimizer has the following properties:

• The actual step size taken by the Adam in each iteration is approximately
bounded by the step size hyper-parameter.

• Step size of Adam update rule is invariant to the magnitude of the gradient,
which helps the training a lot when going through areas with tiny gradients
such as saddle points or ravines.

2.4.3 Supervised Learning
As the name suggests, supervised learning is the machine learning task that aims at
learning a mapping from an input to an output based on training data set which we
have prior knowledge about what the output y should be given an input x. To be
precise, given training data pairs {xi, yi} (i = 1, 2, 3, · · · , N), the goal of supervised
learning is to find a function ŷi = fθ(xi) that minimizes the difference between label
yi and prediction ŷi for each input data xi.

2.4.3.1 Loss Function

The differences between predictions and previously known labels in supervised learn-
ing are measured by an object function, or more precisely loss function or cost func-
tion. In practice, there are more than one type of loss function used in supervised
learning depending on whether it’s a regression problem or a classification problem.
In this section, we introduce some of the most commonly used loss function.

For regression problem, the most commonly used loss function is known as Mean
Squared Error (MSE) Loss:

J(θ) = 1
N

N∑
i=1
|fθ(xi)− yi|2 (2.22)

14

2. Theory

that computes the mean of squared differences between predictions and previous
known labels. Another common loss function is Mean Absolute Error(MAE) loss:

J(θ) = 1
N

N∑
i=1
|fθ(xi)− yi| (2.23)

that computes the mean of absolute differences between predictions and previous
known labels. Generally, MSE loss performs better than MAE loss, since the square
operation in MSE loss makes it more sensitive to samples with larger difference,
thus leading to the model to be adjusted to fit that data. While in scenarios where
outliers exist in the data set, MAE loss sometimes outperforms MSE loss. This is
can be explained as follow: given a outlier in the dataset, The square operation in
MSE loss makes it more sensative to that outlier than MAE loss does, thus model
using MSE loss is more likely to fit itself to that out lying example at the expense
of many other common samples. Another type of Loss that compromises MAE loss
and MSE loss is Huber loss [31]. Defined by:

Jδ(θ) =


1

2N
∑N
i=1 |fθ(xi)− yi|2 , if |fθ(xi)− yi| < δ

1
N

∑N
i=1 δ|fθ(xi)− yi| − 1

2δ , otherwise

Huber loss is much less sensative to outlier than MSE loss does since square opera-
tion only happens in a small interval.

For classification problem, since the classification model outputs a vector of proba-
bilities, the above mentioned loss functions can no longer work and the most popular
loss function used is cross entropy loss:

J(θ) = 1
N

N∑
i=1

yi log(fθ(xi)) (2.24)

Minimizing the cross entropy loss is equivalent to finding a mapping function that
outputs a probability of 1 for the target label.

2.4.4 Reinforcement learning

Reinforcement learning is another type of machine learning in which the problem is
modeled as an agent learn how to behave in a environment by performing actions
and seeing the results [32]. The idea behind reinforcement learning is that an agent
will learn from the environment by interacting with it and receiving rewards for
performing actions. The figure depicts the concept of reinforcement learning.

15

2. Theory

state
St

reward
Rt

action
At

Rt+1

St+1

Agent

Environment

Figure 2.7: Reinforcement Learning Model

As it’s shown in Fig.2.7, the agent moves in the environment and makes observation.
Based on its observation of current state St, the agent takes an action At according
to a tragedy called policy and transfers to a new state S ′. In this transaction process,
the environment returns a feedback signal Rt called reward, according to which the
agent estimate the bad or good of that taken action. Reinforcement learning aims
at finding a policy such that the agent can achieve maximal accumulative reward .

2.4.4.1 Reward Function

Different from supervised learning, the objective function in reinforcement learning
is called reward function. The following is a commonly used objective function for
reinforcement learning:

J(θ) = Eπθ

{ ∞∑
t=0

γtr(st, at)
}

(2.25)

where t stands for the time step, γ ∈ (0, 1] is the discount factor2, st is the current
state of step t, at is the action taken according to the policy πθ, and r(st, at) is the
reward received when by taking action at.

The reward function can be rewritten as :

J(θ) =
∑
τ

πθ(τ)R(τ) (2.26)

where τ = (st, at; st+1, at+1; st+2, at+2; · · · sH , aH) is a trajectory of actions that the
agent follows under policy πθ, πθ(τ) = ∏H

i=t p(si, ai, si+1) is the probability distribu-
tion of trajectory τ , p(st, at, st+1) is the probability of transferring from state st to
st+1 by taking action at and R(τ) = ∑∞

t=0 γ
tr(at|st, πθ) is the corresponding accu-

mulative reward of trajectory τ .

2 Discount factor is a measure of how far ahead in time the algorithm looks. To prioritise
rewards in the distant future, keep the value closer to one. A discount factor closer to zero on the
other hand indicates that only rewards in the immediate future are being considered, implying a
shallow look ahead. In scenarios where discount factor equals 1, rewards in the long future will be
considered and the rewards goes to infinity and never converge.

16

2. Theory

The optimization problem in reinforcement learning is to find a policy πθ that creates
a trajectory:

(st, at; st+1, at+1; st+2, at+2; · · · sH , aH) (2.27)

that maximizes the reward function:

max
θ

J(θ) = max
θ

∑
τ

πθ(τ)R(τ) (2.28)

2.4.4.2 Policy Gradient

The optimization problem of maximizing reward function J(θ) can be achieved by
doing gradient ascend3 which recursively updates parameters θ in the direction of
gradient of J(θ):

θt+1 = θt + α∇θJ(θt) (2.29)

where the gradient of J(θ):

∇θJ(θ) = ∇θ
∑
τ

πθ(τ)R(τ)

=
∑
τ

∇θπθ(τ)R(τ)
(2.30)

is hard to compute since πθ(τ) = ∏H
i=t p(si, ai, si+1), where p(st, at, st+1) is a function

of θ. Policy gradient theorem simplifies the computation of ∇θJθ by applying the
likelihood ratio trick [33] to Eq. 2.30:

∇θJ(θ) = ∇θ
∑
τ

πθ(τ)R(τ)

=
∑
τ

∇θπθ(τ)R(τ)

=
∑
τ

πθ(τ)∇θπθ(τ)
πθ(τ) R(τ)

=
∑
τ

πθ(τ)∇θ log πθ(τ)R(τ)dτ

= Eτ∼πθ(τ) {∇θ log πθ(τ)R(τ)}

(2.31)

Since πθ(τ) is defined as:

πθ(τ) = πθ(st, at; st+1, at+1; . . . ; sT , aT)

= p(st)
T−1∏
i=t

πθ(at|st)p(st+1|st, at)
(2.32)

3Gradient descent is the inverse of gradient descent

17

2. Theory

the gradient of log πθ(τ) is:

∇θ log πθ(τ) = ∇θ{log p(st)
T∏
i=t
πθ(at|st)p(st+1|st, at)}

= ∇θ{log p(st) +
T∑
i=t

log πθ(at|st) +
T∑
i=t

log p(st+1|st, at)}

= ∇θ log p(st) +∇θ
T∑
i=t

log πθ(at|st) +∇θ
T∑
i=t

log p(st+1|st, at)

=
T∑
i=t
∇θ log πθ(at|st)

(2.33)

where the first and last term in the third line can be removed because they are
independent of θ. Applying Eq.2.33 to Eq.2.31, the gradient ∇θJ(θ) then becomes:

∇θJ(θ) = Eτ∼πθ(τ) {∇θ log πθ(τ)R(τ)}

= Eτ∼πθ(τ)

{(
T∑
t=0
∇θ log πθ(at|st)

)
R(τ)

}

= Eτ∼πθ(τ)

{(
T∑
t=0
∇θ log πθ(at|st)

)(
T∑
t=0

γtr(st, at)
)} (2.34)

18

3
Learning Physical-layer

Communication with Quantized
Feedback

3.1 Introduction

Previous work has shown that end-to-end learning of transmitter and receiver can
outperform conventional model-based transmitter and receiver design. However,
joint optimization of transmitter and receiver in practice is problematic since it re-
quires a known differentiable channel model. More recent work shows that reinforce-
ment learning enables sufficient learning of transmitter without knowledge about
channel model. However, this approach requires a feedback signal from receiver
to transmitter. In this research, we applied reinforcement learning to transmitter
design for fiber-optic communication and we investigate the impact of quantized
feedback signal on system performance of fiber-optic communication.

3.2 System Model

The proposed system model is illustrated in Fig.3.1. The goal is to transmit mes-
sages m ∈ {1, · · · ,M} , [M] from transmitter to receiver over an priori unknown
fiber-optic channel, M is the total number of messages. The communication system
is implemented by representing the transmitter and receiver as two parameterized
functions: fθT

: [M] → C and fθT
: C → [0, 1]M , where θT and θR are sets of

transmitter and receiver parameters, known as trainable weights. The transmitter
maps the kth message mk to a complex symbol xk = fθT

(mk), and sends xk to
the fiber-optic channel. When receiver observes channel output yk, it maps yk to
a probability distribution vector pk over [M], and then generates an estimation of
transmitted message m̂k according to m̂k = arg maxm[qk]m.

To enable the learning of transmitter, we assume there exists a feedback link from
receiver to transmitter. Besides, in the transmitter training phase, there also exists
a random perturbation in the transmitter, which will be discussed in Sec.3.3.2.

19

3. Learning Physical-layer Communication with Quantized Feedback

fθT
(m) +

w
stochastic transmitter

p(y|x̃) fθR
(y)

ar
gm

axm x x̃ y q m̂

fT (·)

Q(·)binary
feedback

Q−1(·)

l

l̂

Figure 3.1: System Model

3.2.1 Transmitter structure
As mentioned in Sec. 3.2, the role that transmitter plays is to map a message mk

to a complex symbol xk so that it’s suitable for transmitting over the fiber-optic
channel. The structure of transmitter is illustrated in Fig. 3.2(a), where there are
an embedding layer, multi-hidden layers and a normalization layer. The embedding
layer maps a message mk to a M -dimension one-hot vector u in which the kth
element is one and all other elements equals to 0. Then, the multiple dense layers
take the one-hot vector u as input and generates a two dimensional vector [zr, zi]
that forms the complex channel input zk. Before zk is transmitted over the channel,
the last layer normalizes zk → xk such that the average power constrain E{x} ≤ P
is satisfied.

(a) (b)

Figure 3.2: Architectures of transmitter and receiver

3.2.2 Receiver structure
The goal of receiver is to reconstruct the transmitted message mk from the channel
observation yk, and it’s structure is illustrated in Fig. 3.2(b). As is shown in
the figure, receiver consists of multi-dense layers, a softmax layer and an argmax
layer. The multi-dense layers process the channel observation yk, and their output is
passed to the softmax layer for generating a probability distribution vector q. Here,

20

3. Learning Physical-layer Communication with Quantized Feedback

∑M
i=1 qi = 1 and qi can be interpreted as the estimated posterior probabilities for each

possible message. Then, the argmax layer generates an estimation of transmitted
message m̂k by choosing the one with highest probability.

3.2.3 Feedback link
To facilitate the learning of transmitter, we assume that there exists a binary feed-
back link from the receiver to the transmitter as shown in Fig.3.1. Here, fT (·)
denotes a pre-process an each feedback signal, Q(·) denotes a mapping from real
number to bits sequence, and Q−1(·) denotes the inverse process of Q(·) which is to
map a bits sequence to a real number. Sec. 3.3.3 will discuss this feedback link in
more detail.

3.3 Data-Driven Learning
Training of communication system is achieved by applying alternative training ap-
proached proposed in [34], where the transmitter and receiver are optimized alterna-
tively. This approach is based on the assumption that the transmitter and receiver
share the common knowledge about the data set used for training. Each training
iteration consists of two phase, one for training receiver and one for training receiver.
After a certain number of iterations, the overall system performance should improve.

3.3.1 Receiver Learning
Optimization of receiver is a supervised learning task since we assume receiver and
transmitter shares common knowledge about what is transmitted over the channel.
The training process is illustrated in Algorithm 1.

Algorithm 1 Receiver Learning
1: function ReceiverLearning(BR, Seed)
2: repeat
3: .Transmitter
4: mR ←PseudoRandom(BR, Seed)
5: X = fθT

(mR)
6: Send(X)
7: .Receiver
8: Y ←Receive()
9: q = fθR

(Y)
10: mR ←PseudoRandom(BR, Seed)
11: L(θR)←ComputeCrossEntropy(mR,p)
12: Receiver parameters update
13: until transmitter parameters updated for NR times
14: end function

The transmitter generates a mini-batch of BR uniformly distributed training mes-
sages mR, then these messages are mapped to a vector of complex symbol X and

21

3. Learning Physical-layer Communication with Quantized Feedback

sent to the channel. The receiver makes observation of channel outputs Y and
maps each of them to a probability vector qk over M . Then the receiver generates
a mini-batch of BR training examples with the same seed and computes the cross
entropy loss based on these probability vectors and training example. After that,
the receiver parameters θR are updated according to

θj+1
R = θjR − αR∇θR

L(θjR) (3.1)

where αR is the receiver learning rate, and L(θR) is the cross entropy loss defined
by

L(θR) = − 1
BR

BR∑
i=1

log([fθR
(yk)]mk

) (3.2)

where BR is the mini-batch size for receiver training. In each training iteration, θR
is iteratively updated for NR iterations.

3.3.2 Transmitter Learning
Transmitter learning is considered as a reinforcement task, where we regard the
transmitter as an agent exploring in the physical world (the physical channel and
receiver) and learning to take best actions (transmitter output) such that maximum
rewards (minimum loss) can be achieved. The training process is illustrated in
Algorithm 2.

Algorithm 2 Transmitter Learning
1: function TransmitterLearning(BT , Seed)
2: repeat
3: .Transmitter
4: mT ←PseudoRandom(BT, Seed)
5: X = fθT

(mT)
6: XP = X +W
7: Send(XP)
8: .Receiver
9: Y ←Receive()

10: q = fθT
(Y)

11: mT ←PseudoRandom(BT, Seed)
12: l←ComputePerExampleLoss(mT,p)
13: Send(l)
14: .Transmitter
15: l̂k ←ReceivePerExampleLoss()
16: Transmitter parameters update
17: until transmitter parameters updated for NT times
18: end function

The transmitter generates a mini-batch of BT uniformly distributed training mes-
sagesmT , and maps them to a vector of complex symbolsX. To enable transmitter
exploration, a small Gaussian perturbation wk ∼ CN (0, σ2

p) is added to each of the

22

3. Learning Physical-layer Communication with Quantized Feedback

transmitter output, such that the transmitter follows a Gaussian policy described
by the PDF

πθR
(x̃k|mk) = 1√

πσ2
p

exp
(
−
|x̃k − fθT (mk)|2

σ2
p

)
(3.3)

When receiver observes the perturbed messages Y , it generates a mini-batch of BT

pseudo-random uniformly distributed messages with the same seed and computes
the per-example losses l according to lk = −log([fθR

(yk)]mk
) for k ∈ {1, 2, . . . ,M}

and sends these back to the transmitter via the feedback link. When transmitter
receives the feedback per-example loss denoted by l̂, it updates its parameters θT
according to

θj+1
T = θjT − αT∇θT

L(θjT) (3.4)

where αT is the transmitter learning rate and L(θT) is the reward function defined
by

L(θT) = 1
BT

BT∑
i=1

l̂klogπθT
(x̃k|mk) (3.5)

where BT is the mini-batch size for training transmitter. In each training iteration,
θT is iteratively updated for NT times.

3.3.3 Loss feedback

Learning of transmitter requires the knowledge of per-example loss. Hence, as men-
tioned in Sec. 3.2.3, we consider there exists a binary feedback channel from receiver
to transmitter. In our set up, the loss feedback consists of two phases, which are
loss transformation and loss quantization.

3.3.3.1 Loss transformation

The necessity of loss transformation comes from the fact that the distribution of
per-example losses varies over time as illustrated in Fig. 3.3.

23

3. Learning Physical-layer Communication with Quantized Feedback

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

per-sample loss lk

di
st

ri
bu

tio
n
p
(l
k
)

N = 1 iteration
N = 10 iterations
N = 100 iterations

Figure 3.3: Illustration of the non-stationary loss distribution as a function of the
number of training iterations in the alternating optimization.

Due to this non-stationary loss distribution, quantization becomes tricky since a
large quantization range is required to cover large per-example losses in the initial
training stage while large quantization range dramatically reduces the quantization
resolution. To deal with this problem, we propose a pre-processing on each per-
example loss such that after pre-processing all example losses lie within a fixed
range. And this process is denoted by fT (·), which consists of the following 3 steps:

1. Clipping: The losses are firstly clipped to lie within a range (lmin, lmax), where
lmin is the minimum example loss in the current mini-batch BT , and lmax
is chosen such that 5 percent of largest losses in the current mini-batch are
clipped. These operation excludes very large per-example losses which maybe
be regarded outliers, thus stabilizing the training process. This operation is
denoted by fclip(·).

2. shifting: After the clipping operation, the per-example losses are then shifted
by a factor of lmin such that all losses lie within range (0, lmax − lmin). This
operation is referred to as baseline in reinforcement learning, which can help
to reduce monte-carlo variance in some cases. We denote this operation as
fshift · ().

3. Scaling: Before the shifted per-example losses are quantized for transmission,
all losses are scaled by a factor of 1/(lmax− lmin) such that all per-sample losses
lie within range (0, 1). We denote this operation by fsc(·).

In summary, the proposed loss transformation scheme consists of a loss cliping, a
loss shifting and a loss scaling. We can write the entire loss transformation process
as fT (·) = fsc(fshift(fclip)(·))

24

3. Learning Physical-layer Communication with Quantized Feedback

3.3.3.2 Loss quantization

After the pre-process denoted by fT (·), all example losses lies within [0, 1]). To
facilitate the successful transmission of each example loss over a binary feedback
channel, we further perform quantization on each example loss. Denoted by fQ(·),
our quantization process applies the following steps:

1. Mapping from real number to N bits: This is done by uniform quantization.
We divide the range into 2N equal-size sub-ranges, and each sub-range has size
∆ = 1

2N . Then we represent each transformed loss fT (lk) with an integer mk

according to (mk − 1)∆ ≤ f(lk) < mk∆. Finally, we convert mk to its N -bit
binary representation. We denote this process as Q(·). The N -bit represented
per-example loss then can be send back over the binary feedback channel.

2. Mapping from N bits to real number: When transmitter receives the N -bit
represented per-example loss from the binary feedback channel, it first con-
verts each N bits to an integer m̂k, and then maps m̂k back to real number
according to l̂k = (m̂k + 1

2)∆. We denote this process as Q−1(·).

In summary, our quantization strategy is to map a each example loss to N bits, so
that it can be restored at the transmitter side by sending that N bits back to the
transmitter over a binary feedback channel. Our full quantization process can be
written as fQ(·) = Q−1(Q(·)).

25

3. Learning Physical-layer Communication with Quantized Feedback

26

4
Performance Analysis

In this chapter, we provide the numerical results that we achieved from the proposed
training approach. We start with showing results that illustrates the impact of
feedback quantization on the trained system performance. Then, we compare the
performances of communication systems trained with different quantization bits.
After that, we further investigate the impact of qunantization on learning speed. In
the end, we show the system performance of trained system when noise exists in the
feedback link.

4.1 Setup and Parameters

4.1.1 Channel model
The communication system is trained over a simplified fiber-optic channel model
described by (2.2). Numerical results are achieved by setting channel parameters
are set to L = 2000km, K = 20, γ = 1.27, and σ2 = −21.3 dBm. The signal-to-noise
ration (SNR) is defined as SNR = P/σ2.

4.1.2 Transmitter and receiver neural networks.
The network parameters for transmitter and receiver are shown in Table 4.1

Table 4.1: Neural network parameters, where M = 16

transmitter fθT
receiver fθR

layer 1 2-3 4 1 2-3 4
number of neurons M 30 2 2 50 M
activation function - ReLU linear - ReLU softmax

The neural network parameters are chosen by try-and-fail, for example, we tried
several kinds of activation functions (e.g. TanH, Sigmoid, ReLU) and it turned out
ReLU function enbles the best performance in our scenario. As for number of hid-
den layers that should be chose, we simply follow the trace that a too small neural
network would lead to low accuracy and a too large network might take a long time
to converge. In our setup when M = 16, a neural network with two hidden layers
is shown to be sufficient for modelling the transmitter or receiver. The input layer
of transmitter consists of M = 16 neurons, this is because we wish the input to the

27

4. Performance Analysis

neural network is one-hot encoded, which can helps the learning of neural network.
The output layer of receiver is chosen to be a softmax layer, the intuition behind
is that softmax layer outputs a probability distribution vector, and then the cross-
entropy loss can be computed for trainining of neural network.

4.1.3 Training procedure

The alternative optimization is repeated for N = 4000 iterations, and each iteration
consists of a receiver training phase and a transmitter training phase. In receiver
training phase, transmitter parameters are fixed, and receiver parameters are up-
dated for NR = 30 iterations. In each receiver training iteration, a mini-batch of
NR = 64 samples are used for training. In transmitter training phase, receiver pa-
rameters are fixed, and transmitter parameters are updated for NT = 20 iterations.
In each transmitter training iteration, a mini-batch size NT = 64 samples are used
for training. Adam optimizer is chosen to perform gradient descent based param-
eters update, and the initial learning rate are set to αR = 0.008 and αT = 0.001
respectively.

4.1.4 Transmitter exploration variance

Transmitter exploration variance σ2
p has to be chosen carefully so that transmitter

can be successfully learned. In particular, choosing σ2
p too small will result in insuf-

ficient exploration and slow down the training process. On the other hand, if σ2
p is

chosen too large, the resulting noise may in fact be larger than the actual channel
noise, resulting in many falsely detected messages and unstable training. In our
simulations, we use σ2

p = P · 10−3.

4.2 Perfect vs quantized feedback

To visualize the impact of quantization on learning of the communication system,
we start at looking at the learned constellations and their corresponding learned
decision region. Fig. 4.1 shows the learned constellation for the quantized (left)
and unquantized (right) schemes assuming the optical channel with P = −5dBm.
Fig. 4.2 shows the corresponding learned decision regions. As one can see from the
figures, both constellations have very similar constellation format and only slight
difference can be observed between their corresponding decision regions.

28

4. Performance Analysis

(a) (b)

Figure 4.1: Learned constellations for the nonlinear optical channel, M = 16, and
P = −5 dBm (a) without quantizing per-sample losses and (b) using the proposed
quantization scheme and 1-bit quantization.

(a) (b)

Figure 4.2: Learned decision regions for the nonlinear optical channel, M = 16, and
P = −5 dBm (a) without quantizing per-sample losses and (b) using the proposed
quantization scheme and 1-bit quantization.

We further evaluate the impact of quantization on system performance. Here, the
system performance is measured in terms of symbol error rate (SER). Fig. 4.3
shows the achieved SER assuming both perfect feedback without quantization and
1-bit quantization based on proposed quantization scheme. Note that for each input
power P , a separate transmitter-receiver pair is trained due to the fact that optimal
signal constellations and receivers for fiber-optic communication systems are highly

29

4. Performance Analysis

dependent on the transmission power [35]. From the figure we can see that system
trained with 1-bit quantized feedback achieves very similar performance to the one
trained with perfect feedback. As a reference, the performance of standard 16-QAM
and Maximum-likelihood detector is also shown in the figure, we can see that both
learning approach outperform this baseline.

−12 −10 −8 −6 −4 −2 0
10−5

10−4

10−3

10−2

10−1

100

optical channel

AWGN channel

input power P (dBm)

sy
m

bo
le

rr
or

ra
te

16-QAM, ML detector
learned, no quantization
learned, 1-bit quantization

10 12 14 16 18 20 22

SNR (dB)

Figure 4.3: Symbol error rate achieved for M = 16. The training SNR is 15 dB for
the AWGN channel, whereas training is done separately for each input power (i.e.,
SNR) for the optical channel.

To show that the proposed learning approach can be extended to any type of physical
layer communication, we also consider a using case where the learning is performed
over an AWGN channel. The parameters used for AWGN channel is consistent with
optical channel except the fact that the transmitter and receiver are trained for a
fixed SNR = 15dB. The resulting system is also shown in Fig. 4.3, and we can see
that the same conclusion holds for AWGN channel.

4.3 Impact of number of quantization bits
In this section, numerical results are provided to evaluated the impact of the number
of quantization bits on the performance. Fig. 4.4 shows the acheived SER when per-
example losses are quantized with different quantizing schemes. The results show

30

4. Performance Analysis

that when feedback signal is uniformly quantized without loss transformation, the
performance of trained system is highly dependent on the number of bits used for
quantization and the assumed quantization range (0, l̄). For example, when l̄ is set
to 10, the resulted system with 1-bit quantization has noticeable poorer and more
unstable performance (as indicated by the error bar) then the case where more bits
are used for quantization.When l̄ is decreased to 3, the system performance improves
essentially. As for the proposed quantization scheme, the resulted performance of
trained system is independent of number of bits used for quantization and virtually
indistinguishable from a system trained with unquantized feedback. Hence we can
conclude that our proposed quantization scheme outperforms conventional uniform
quantization and has negligible impact on system performance.

1 2 3 4 5

2

4

6

8

·10−2

number of quantization bits

sy
m

bo
le

rr
or

ra
te

pre-processing, no quantization
proposed (pre-processing, fixed quantization)
no pre-processing, fixed quantization (l̄ = 4)
no pre-processing, fixed quantization (l̄ = 10)

Figure 4.4: Impact of the number of quantization bits on the achieved performance
for the nonlinear optical channel with M = 16, P = −5 dBm. Results are averaged
over 10 different training runs where error bars indicate the standard deviation
between the runs.

4.4 Impact on convergence rate
We further investigate the impact of quantization on convergence rate. Fig. 4.5
visualizes the evolution of empirical cross entropy loss L(θR) during the alternative
optimization for the optical channel with P = −5dBm. It can be seen that quan-

31

4. Performance Analysis

tization results in a slightly decreased convergence rate during the training. When
per-example losses are quantized with 5 bits, the empirical loss takes roughly 80
iterations to converge, which is very similar to the case where per-example losses
are not quantized. When only 1 bit is used for quantizing per-example losses, the
training convergences roughly after 100 iterations, which is slightly slower then the
unquantized scheme.

0 20 40 60 80 100 120 140
0

1

2

3

training iteration N

em
pi

ri
ca

ll
os

s
L
(θ

R
)

unquantized
1-bit quantization
5-bit quantization

Figure 4.5: Evolution of L(θR) during the alternating optimization for the fiber
optical channel with M = 16, P = −5 dBm. Results are averaged over 15 different
training runs where the shaded area indicates one standard deviation between the
runs.

4.5 Impact of Noisy feedback

Due to the fact that noise always exists in communication systems, we further
evaluate the performance of trained system when per-example losses are transmitted
over a feedback link where noise exists. For numerical results, a fiber-optical channel
with a fixed input power P = −5dBm is considered. Fig. 4.6 shows the resulted SER
when feedback signal is transmitted over a binary symmetric channel with flipping
rate p ∈ [0, 0.5].

32

4. Performance Analysis

0 0.1 0.2 0.3 0.4 0.5
10−3

10−2

10−1

100

flip probability p

sy
m

bo
le

rr
or

ra
te

1-bit quantization, BT = 64

2-bit quantization, BT = 64

1-bit quantization, BT = 640

Figure 4.6: Performance on fiber optical channel with M = 16, P = −5dBm when
transmitting quantized losses over a noisy feedback channel modeled as a binary
symmetric channel with flip probability p. Results are average over 10 runs where
the error bars indicate one standard deviation between runs.

Our simulation results indicate that the proposed quantization scheme is highly ro-
bust to the channel noise. In Fig. 4.6, one may observe that when the assumed
mini-batch size is BT = 64, the performance of resulted system starts to decrease
only for high flipping rate and remains essentially unchanged when p < 0.1 with
1-bit quantization and p < 0.2 with 2-bit quantization. We also find that increasing
the mini-batch size can essentially help training when there is high flipping proba-
bility. Fig. 4.6 shows that when the mini-batch size is increased from BT = 64 to
BT = 640, the performance for 1-bit quantization is significantly improved and the
performance remains unchanged when the flipping rate is as high as p = 0.3.

One may also notice that for p = 0.5, the achieved SER is slightly better than
(M − 1)/M ≈ 0.938 corresponding to random guessing. This is because receiver is
still learning even though transmitter just performs random exploration.

33

4. Performance Analysis

34

5
Discussion

In Chapter 4, we show that quantiztion of feedback signal has negligible impact on
the performance of trained system, and our proposed loss quantization approach is
robust to noise in the feedback link. In this chapter, we discuss why the proposed
approach enables sufficient learning of transmitter and receiver.

5.1 Impact of Quantized Feedback Signal
The effect of quantization can be assessed via the Bussgang Theorem [36], which is
a generalization of MMSE decomposition. If we assume lk ∼ p(l) with mean µl and
variance σ2

l , then

fQ(lk) = glk + wk, (5.1)

in which g ∈ R is the Bussgang gain and wk is a random variable, uncorrelated with
lk provided, we set

g = E{lkfQ(lk)} − µlE{fQ(lk)}
σ2
l

. (5.2)

When the number of quantization bits N increases, f(lk)→ lk and thus g → 1.

Let γk = lk∇θT
log πθT

(x̃k|mk), lk ∈ [0, 1], with ∇θT
L(θT) = E{γk}, and γq

k =
fQ(lk)∇τ log πτ (x̃k|mk), if we replace lk with fQ(lk) in (3.4), denote the corresponding
gradient function by ∇θT

Lq(θT), and substitute (5.1), then the quantized version of
the gradient function, which is the expectation of γqk can be described by:

∇θT
Lq(θT) = E{γqk}

= E{fQ(lk)∇θT
log πθT

(x̃k|mk)}
= gE{lk∇θT

log πθT
(x̃k|mk)}+ E{wk∇θT

log πθT
(x̃k|mk)}

(5.3)

Due to the fact that wk is unrelated to lk, we can further rewrite ∇θT
Lq(θT) as:

∇θT
Lq(θT) = gE{lk∇θT

log πθT
(x̃k|mk)}+ E{wk}E{∇θT

log πθT
(x̃k|mk)}

= gE{lk∇θT
log πθT

(x̃k|mk)}
= g∇θT

L(θT)
(5.4)

where the penultimate step follows the fact that E{∇θT
log πθT

(x̃k|mk)} = 0.

35

5. Discussion

The variance of the loss gradient V{γqk} is

V{γqk} = V{fQ(lk)∇θT
log πθT

(x̃k|mk)}
= E{‖fQ(lk)∇θT

log πθT
(x̃k|mk)‖2} − ‖E{fQ(lk)∇θT

log πθT
(x̃k|mk)}‖2

= E{(fQ(lk))2‖∇θT
log πθT

(x̃k|mk)‖2} − g2‖∇θT
L(θT)‖2

= g2E{l2k‖∇θT
log πθT

(x̃k|mk)‖2} − g2‖∇θT
L(θT)‖2

+ E{w2
k‖∇θT

log πθT
(x̃k|mk)‖2}

+ 2gE{lkwk‖∇θT
log πθT

(x̃k|mk)‖2}
(5.5)

since −wklk = lk(glk − fQ(lk)) ≤ maxlk |glk − fQ(lk)| = w̄, that lk ≤ 1, and that
tr{J(θT)} = E{‖∇ log πτ (xk|mk)‖2}, the variance of γk can be bounded by:

V{γk} ≤ g2V{γk}+ w̄2tr{J(θT)} − 2gE{wklk‖∇ log πθT
(x̃k|mk)‖2}

≤ g2V{γk}+ w̄2tr{J(θT)}+ 2gw̄tr{J(θT)}
(5.6)

where J(θT) = E{∇θT
log πθT

(x̃k|mk)∇ᵀ
θT

log πθT
(x̃k|mk)} � 0 is the fisher infor-

mation matrix of the transmitter parameters θT and w̄ = maxl |gl − fQ(l)| =
|1 − 1/2N−1 − g| is a measure of the maximum quantization error. From (5.6) one
can see that the variance is affected in two ways: a scaling with g2 and an additive
term that depends on the maximum quantization error and the Fisher information
at θT . When number of quantization bits N increases, g → 1 and w̄ → 0, so that
V{γq

k} → V{γk}, as expected. Hence, the impact of quantization is simply a scaling
of the expected gradient when the mini-batch size is sufficiently large.

In general, the value of g is hard to compute in closed form, but for 1-bit quantization
and a Gaussian loss distribution, (5.2) admits a closed-form solution.1 In particular:

g =

1/
√

8πσ2
l µl = 1/2

e−1/(8σ2
l)/
√

8πσ2
l µl ∈ {0, 1}.

(5.7)

By looking into the distributions of per-exampl losses from Fig. 3.3, we observe that
(after loss transformation) for most iterations, µl ≈ 1/2 and σ2

l will be moderate
(around 1/(8π)), leading to g ≈ 1. Only after many iterations µl < 1/2 and σ2

l

will be small, leading to g � 1. Hence, for sufficiently large batch sizes, 1-bit
quantization should not significantly affect the learning convergence rate.

5.2 Impact of Noisy Feedback Channel
The impact of noise in the feedback channel on system performance can be evaluated
by looking into the impact of flipped bits on the gradient function. We start with
the case when only one bit is used for quantization. When per-example losses

1For Gaussian losses, w̄ in (5.6) is not defined. The proposition can be modified to deal with
unbounded losses.

36

5. Discussion

are all quantized with one bit, ∆ = 1/2 and the quantized losses l̂k are either
f(lk) = ∆

2 = 1/4 with probability (1 − p) or 1 − f(lk) = 3/4 with probability p.
Then the gradient of reward function in Eq. 3.4 can be written as:

∇θT
L(θT) = E{l̂k∇θT

log πθT
(x̃k|mk)}

= E{fQ(lk)1−nk(1− fQ(lk))nk∇θT
log πθT

(x̃k|mk)}
(5.8)

where nk are independent and identically distributed Bernoulli random variables
with parameters p. Since nk is independent of all other random variables, we can
compute:

∇θT
L(θT) = E{((1− 2p)fQ(lk) + p)∇θT

log πθT
(x̃k|mk)}

= (1− 2p)E{fQ(lk)∇θT
log πθT

(x̃k|mk)}+ pE{∇θT
log πθT

(x̃k|mk)}
= (1− 2p)E{fQ(lk)∇θT

log πθT
(x̃k|mk)}

(5.9)

where the last step follows the property of policy gradient learning that E{∇θT
logπθT

(x̂k|mk)} =
0.

When each example loss is quantized with two bits, ∆ = 1/4, and the received losses
have four possible values which are 1/8, 3/8, 5/8, 7/8. Then for a transmitted loss
f(lk), the received loss follows

fQ(lk) with probability (1− p)2

1− fQ(lk) with probability p2

other two with the same probability p(1− p)

and the expected received loss is

E{l̂k} = (1− 2p)f(lk) + p (5.10)

then, the gradient in Eq. 3.4 becomes

∇θT
L(θT) = (1− 2p)E{fQ(lk)∇θT

logπθT
(x̃k|mk)} (5.11)

which is the same as the one for 1-bit quantization.

Hence, we can see that given a sufficiently large mini-batch, the gradient in Eq. 3.4
is simply scaled by a factor 1−2p. This means that even under very noisy feedback,
learning should still be possible. This is consistent to our simulation results that
system performance improves when the mini-batch size is increased from NT = 64
to NT = 640.

37

5. Discussion

38

6
Conclusion

We have proposed a novel method for data-driven learning of fiber-optic communi-
cation in the presence of a binary feedback channel. The training of communication
system is achieved through alternative training approach, and the loss feedback relies
on an adaptive clipping, shifting and scaling of losses followed by a fixed quantiza-
tion at the receiver, and a fixed reconstruction method at transmitter. We have
shown that the proposed method (i) can lead to good performance even under 1-bit
feedback; (ii) does not significantly affect the convergence speed of learning; and
(iii) is highly robust to noise in the feedback channel.

However, these still exist limitations on this approach. Firstly, training a separate
transmitter and receiver pair for each input power is very inefficient, and more
efficient training scheme needs to be developed. Secondly, each example loss requires
a feedback signal from receiver to transmitter, this slows the training down when
the feedback link is very long. Thirdly, constellation size M is limited to 16, higher
constellation orders may require a big fully-connected neural network, which may
take a long time to train. For the last limitation, possible solution can be using
convolutional neural network (CNN)instead of fully-connected neural network, since
has been shown to have better performance in pattern recognition problems, and
each input message can be regard as one pattern.

39

6. Conclusion

40

Bibliography

[1] C. E. Shannon, “A mathematical theory of communication, bell systems tech,”
J, vol. 27, pp. 379–423, 1948.

[2] S. Dörner, S. Cammerer, J. Hoydis, and S. ten Brink, “Deep learning based
communication over the air,” IEEE Journal of Selected Topics in Signal Pro-
cessing, vol. 12, no. 1, pp. 132–143, 2018.

[3] P. Weinberger, “John kerr and his effects found in 1877 and 1878,” Philosophical
Magazine Letters, vol. 88, no. 12, pp. 897–907, 2008.

[4] T. J. O’Shea, K. Karra, and T. C. Clancy, “Learning to communicate: Chan-
nel auto-encoders, domain specific regularizers, and attention,” in 2016 IEEE
International Symposium on Signal Processing and Information Technology (IS-
SPIT). IEEE, 2016, pp. 223–228.

[5] T. O’Shea and J. Hoydis, “An introduction to deep learning for the physi-
cal layer,” IEEE Transactions on Cognitive Communications and Networking,
vol. 3, no. 4, pp. 563–575, 2017.

[6] R. Fritschek, R. F. Schaefer, and G. Wunder, “Deep learning for channel coding
via neural mutual information estimation,” arXiv preprint arXiv:1903.02865,
2019.

[7] N. Farsad, M. Rao, and A. Goldsmith, “Deep learning for joint source-channel
coding of text,” in 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2018, pp. 2326–2330.

[8] H. Ye, G. Y. Li, and B.-H. Juang, “Power of deep learning for channel estimation
and signal detection in ofdm systems,” IEEE Wireless Communications Letters,
vol. 7, no. 1, pp. 114–117, 2018.

[9] T. J. O’Shea, T. Erpek, and T. C. Clancy, “Deep learning based mimo com-
munications,” arXiv preprint arXiv:1707.07980, 2017.

[10] T. Erpek, T. J. O’Shea, and T. C. Clancy, “Learning a physical layer scheme
for the mimo interference channel,” in 2018 IEEE International Conference on
Communications (ICC). IEEE, 2018, pp. 1–5.

[11] T. J. O’Shea, T. Roy, and N. West, “Approximating the void: Learning stochas-
tic channel models from observation with variational generative adversarial
networks,” in 2019 International Conference on Computing, Networking and
Communications (ICNC). IEEE, 2019, pp. 681–686.

[12] F. A. Aoudia and J. Hoydis, “End-to-End Learning of Communications Systems
Without a Channel Model,” arXiv:1804.02276, 2018.

[13] ——, “Model-free Training of End-to-end Communication Systems,”
arXiv:1812.05929, 2018.

41

Bibliography

[14] C. de Vrieze, S. Barratt, D. Tsai, and A. Sahai, “Cooperative Multi-
Agent Reinforcement Learning for Low-Level Wireless Communication,”
arXiv:1801.04541, 2018.

[15] V. Raj and S. Kalyani, “Backpropagating Through the Air: Deep Learning
at Physical Layer Without Channel Models,” IEEE Commun. Lett., vol. 22,
no. 11, pp. 2278–2281, Nov. 2018.

[16] M. Goutay, F. A. Aoudia, and J. Hoydis, “Deep reinforcement learning autoen-
coder with noisy feedback,” arXiv preprint arXiv:1810.05419, 2018.

[17] W. House, “Big data: A report on algorithmic systems, opportunity, and civil
rights. executive office of the president,” 2016.

[18] F. Idachaba, D. U. Ike, and H. Orovwode, “Future trends in fiber optics com-
munication,” 2014.

[19] H. F. Taylor, Fiber optics communications. Artech House Dedham, Mass,
1983.

[20] K. Keykhosravi, G. Durisi, and E. Agrell, “A tighter upper bound on the ca-
pacity of the nondispersive optical fiber channel,” in 2017 European Conference
on Optical Communication (ECOC). IEEE, 2017, pp. 1–3.

[21] R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE transactions on infor-
mation theory, vol. 44, no. 6, pp. 2325–2383, 1998.

[22] E. Bullmore and O. Sporns, “Complex brain networks: graph theoretical anal-
ysis of structural and functional systems,” Nature reviews neuroscience, vol. 10,
no. 3, p. 186, 2009.

[23] A. König, A. Dengel, K. Hinkelmann, K. Kise, R. J. Howlett, and L. C.
Jain, Knowledge-Based and Intelligent Information and Engineering Systems,
Part II: 15th International Conference, KES 2011, Kaiserslautern, Germany,
September 12-14, 2011, Proceedings. Springer, 2011, vol. 6882.

[24] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint
arXiv:1312.4400, 2013.

[25] K.-l. Hsu, H. V. Gupta, and S. Sorooshian, “Artificial neural network modeling
of the rainfall-runoff process,” Water resources research, vol. 31, no. 10, pp.
2517–2530, 1995.

[26] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv
preprint arXiv:1609.04747, 2016.

[27] L. Bottou, “Stochastic gradient descent tricks,” in Neural networks: Tricks of
the trade. Springer, 2012, pp. 421–436.

[28] A. C. Wilson, B. Recht, and M. I. Jordan, “A lyapunov analysis of momentum
methods in optimization,” arXiv preprint arXiv:1611.02635, 2016.

[29] M. C. Mukkamala and M. Hein, “Variants of rmsprop and adagrad with loga-
rithmic regret bounds,” in Proceedings of the 34th International Conference on
Machine Learning-Volume 70. JMLR. org, 2017, pp. 2545–2553.

[30] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[31] P. J. Huber, “Robust estimation of a location parameter: Annals mathematics
statistics, 35,” 1964.

[32] R. S. Sutton, A. G. Barto et al., Introduction to reinforcement learning. MIT
press Cambridge, 1998, vol. 2, no. 4.

42

Bibliography

[33] J. Peters and S. Schaal, “Policy gradient methods for robotics,” in 2006
IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,
2006, pp. 2219–2225.

[34] F. A. Aoudia and J. Hoydis, “End-to-end learning of communications systems
without a channel model,” in 2018 52nd Asilomar Conference on Signals, Sys-
tems, and Computers. IEEE, 2018, pp. 298–303.

[35] S. Li, C. Häger, N. Garcia, and H. Wymeersch, “Achievable information rates for
nonlinear fiber communication via end-to-end autoencoder learning,” in 2018
European Conference on Optical Communication (ECOC). IEEE, 2018, pp.
1–3.

[36] H. Rowe, “Memoryless nonlinearities with Gaussian inputs: Elementary re-
sults,” The BELL system technical Journal, vol. 61, no. 7, pp. 1519–1525, 1982.

43

Bibliography

44

	List of Figures
	List of Tables
	Introduction
	Communication system design
	Difficulties in fiber-optic communication system design
	Data-driven learning of communication systems
	Goal of the thesis
	Machine learning Ethics

	Theory
	Fiber-Optic communication
	Quantization
	Uniform quantization

	Neural network basics
	Neuron
	Activation Function
	Bias

	Artificial Neural Network

	Learning of neural networks
	Objective Function
	Gradient Based Learning
	Gradient Descent
	Gradient descent variations
	Optimization methods

	Supervised Learning
	Loss Function

	Reinforcement learning
	Reward Function
	Policy Gradient

	Learning Physical-layer Communication with Quantized Feedback
	Introduction
	System Model
	Transmitter structure
	Receiver structure
	Feedback link

	Data-Driven Learning
	Receiver Learning
	Transmitter Learning
	Loss feedback
	Loss transformation
	Loss quantization

	Performance Analysis
	Setup and Parameters
	Channel model
	Transmitter and receiver neural networks.
	Training procedure
	Transmitter exploration variance

	Perfect vs quantized feedback
	Impact of number of quantization bits
	Impact on convergence rate
	Impact of Noisy feedback

	Discussion
	Impact of Quantized Feedback Signal
	Impact of Noisy Feedback Channel

	Conclusion
	Bibliography

