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Free (2,0) Theory on a Circle Fibration

Hampus Linander
Department of Fundamental Physics, Chalmers University of Technology

Abstract
Using the geometry of a circle fibration the free (2,0) theory, a six dimensional
superconformal field theory, is reduced to a five dimensional abelian Yang-Mills
theory. The six dimensional theory is conjectured to exist as an interacting
theory but as of this time no consistent formulation of the theory is known. In
this thesis a simpler non-interacting, classical version of the theory is considered
on a six dimensional space-time which is a circle fibration over a curved five
dimensional manifold. It is found that the reduced theory in five dimensions
has a supersymmetric Lagrangian description. This thesis starts by giving an
introduction to the mathematical formalism used in field theory on curved space-
time and continues to describe the free (2,0) theory in six dimensions. The
reduction on the circle fibration is then presented together with the resulting
five dimensional theory.
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Chapter 1

Introduction

The main topic of this thesis is superconformal field theory. Field theory is a
mathematical framework that many modern theories of fundamental physics is
built upon. In particular the four known fundamental forces are all modeled by
field theories: Einsteins theory of general relativity describing gravity and the
quantum field theories describing the electromagnetic, weak and strong force.

Superconformal field theories are a special class of field theories that are very
symmetric, they are both supersymmetric and conformally invariant.

Symmetry

The word symmetry in everyday life is mostly associated with geometry, for
example the human body is approximately left/right symmetric. In physics a
symmetry can be geometric but it can also be more abstract. The essence of
a symmetry is that there is some kind of transformation that leaves an object
unchanged. In the case of the human body this transformation is reflection
through a vertical plane. This idea can be generalised to a more abstract setting,
for example equations. A simple example is the equation

x2 = 1.

This equation is symmetric under the transformation of changing x into −x, i.e.
if we replace x by −x the equation looks exactly the same due to the fact that
(−1)2 = 1. If x corresponds to a coordinate then this would be a reflection, but
x doesn’t necessarily need to correspond to something geometric. These kinds
of abstract symmetries turn out to be a powerful tool in creating mathematical
models of reality, and there is a simple reason for this.

Symmetry is often associated to beauty and one could argue that this is also
the case in physics. When analyzing experimental data of how nature works at
a small scale one finds an interesting structure, a simplicity in that most of what
we observe can be explained in terms of a handful of elementary particles and
their interactions. What’s more, these interactions are highly systematic. One
way of modeling this simplicity mathematically is by introducing symmetries.
There is an analogy with geometry where symmetry is also associated with sim-
plicity. Take for example a sphere, the most symmetric of all geometric objects.
It has, besides reflection symmetries, complete rotational symmetry. Because of
its symmetries a sphere is completely specified by a single point on its surface,
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i.e. with this information the whole sphere can be constructed. By demand-
ing the theories describing elementary particles to have certain symmetries the
simple structure observed in nature can be implemented.

Superconformal field theories have two symmetries that are not directly mo-
tivated by observations but rather for their mathematical consequences:

• Supersymmetry

Not only does symmetry provide a natural way to implement constraints
in a theory, it can also save them from some disasters. In fact sometimes
it is absolutely necessary to impose a symmetry to get a consistent theory.
One example of this is antiparticles. When combining special relativity
and quantum mechanics one is led to a formulation where it becomes
absolutely necessary to have a charge symmetry [1], i.e. there need to
exist antiparticles. Supersymmetry is another possible symmetry of a
theory that relates fermions1 to bosons and it brings about many nice
properties for quantum field theories [2]. It is yet to be seen if nature
chooses to use this symmetry, but that doesn’t stop us from investigating
its consequences.

• Conformal symmetry

Apart from Poincaré2 symmetry and supersymmetry this is the last re-
maining possible space-time symmetry. Conformal transformations change
the scale of things from point to point. In addition to simplifying a theory
from a mathematical point of view conformal symmetry also shows up
in macroscopic systems, often related to phase transitions in condensed
matter physics [3].

There is an interesting reason for why these two particular types of symmetries
are studied. It turns out that under some natural requirements for a field theory
these symmetries are the only possibilities in addition to Poincaré symmetry and
internal symmetries, i.e. symmetries not related to space and time [4].

(2,0) theory

As in the geometric case, symmetry constrains a theory and since superconfor-
mal theories are as symmetric as a theory can be, one would expect that maybe
there doesn’t exist so many examples of them. The analogy in geometry would
be to ask the question: What objects are completely rotationally symmetric?
The answer in geometry is a single object, the sphere. The situation for super-
conformal theories is similar. In fact, in 1977 all superconformal algebras3 were
completely classified by Nahm [5] and it turns out superconformal symmetry
can only exist up to 6 space-time dimensions. Even though a symmetry exists

1Fermions are particles with half-integer spin whereas bosons have integer spin. Broadly

speaking, fermions are associated with matter and bosons with the forces. For example the

electron is a fermion and the photon is a boson.
2Poincaré transformations include translations, rotations and boosts. These are always

symmetries of any relativistic field theory by the postulates of special relativity.
3Mathematically the symmetry transformations of an object form what is called a group.

An algebra in this context is another mathematical construction related to the group. In

particular all the infinitesimal symmetry transformations form an algebra and it is the classi-

fication of these that was carried out by Nahm in the case of the superconformal group.
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abstractly there is no reason for a consistent field theory to have the algebra
as its symmetries and the only examples of superconformal field theories today
are defined in 4 or less space-time dimensions. In fact it was not believed there
would exist any consistent theories in 5 and 6 dimensions [6]. This changed in
1995 when Witten [7] gave strong evidence for their existence as limits of string
theory. In particular there seemed to be reason to believe that one particular
superconformal algebra, the so called (2,0) algebra, should exist as an interact-
ing theory in six dimensions. It is this theory that is the topic of this thesis.

The classification by itself is enough reason to study this theory but today
there are many other reasons [8, 9]. One of these comes from a conjecture that
was made two years later, in 1997, by Maldacena [10]. The conjecture states
that there is a duality between string theory on a particular space and a confor-
mal field theory on its boundary. The duality means that the two theories are
essentially the same in a certain limit and instead of calculating a quantity in
one of the theories, where maybe for various reasons it’s difficult, we can instead
calculate it in the other one if it is easier there.

A particular case that has been studied is the duality between M -theory [7]
on the space-time AdS7 ×S4 and a conformal field theory on the boundary of
the AdS7 [10]. Since AdS7 is 7 dimensional its boundary is a 6 dimensional
space and thus the dual theory in this case is a conformal field theory in 6 di-
mensions. The fact that these dualities relate theories with weak interactions to
theories with strong interactions makes them very useful since with the current
mathematical framework it is hard to do calculations in strongly interacting
theories. Another exiting feature of this duality is that it relates a theory con-
taining gravity to a theory that does not. This might be the correct setting to
understand one of the biggest questions in physics today, how to formulate a
quantum theory of gravity.

If this (2, 0) theory is such an interesting theory, then certainly someone has
written it down explicitly and investigated its properties? As it turns out there
are problems with just formulating the theory at all. From the classification
and from the properties inferred by the dualities there are many hints at how
the theory should look like, for example what kind of fields it should contain
and how they should behave (e.g [11], [12]), but when applying the standard
machinery problems immediately appear. In particular there are problems with
constructing a Lagrangian formulation, even for the free theory, as will be seen
in chapter 4. Because of this there is at present no explicit formulation of the
theory even though many of its properties have been investigated.

1.1 Overview

In this thesis a highly simplified version of this theory will be considered, a the-
ory without any interactions. In addition to only looking at the free theory, only
the classical field theory is considered. In other words the fields in the theory
are not quantum fields, i.e. operator valued fields, but instead real and complex
valued fields. This is normally the starting point for a quantum field theory but
in the end a full quantum field theory might behave rather differently compared
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to its classical version. For example the quantum theory need not always inherit
all the symmetries [13]. The classical version can often be used to say something
qualitatively about the quantum version but in the end the full theory needs to
be investigated to give the final answer.

The main goal of this thesis is to investigate what happens to the free theory
when the 6 dimensional space-time locally is the product of a 5 dimensional
space-time and a periodic dimension. The periodicity of the sixth dimension
will enable a low energy limit to be taken so that only a theory living on the 5
dimensional space-time will remain. The hope is then that this reduced theory
can tell us something about the theory in 6 dimensions.

This thesis, supervised by Måns Henningson, is based on the work presented
in the included paper done together with Fredrik Ohlsson.

1.2 Outline

In the first part of the thesis some of the necessary mathematical formalism will
be presented. Chapter 2 contains a summary of the standard construction of
spinor representations and their properties in the dimensions under considera-
tion. Chapter 3 introduces the framework that enables the construction of field
theories on curved space-time. In chapter 4 the 6-dimensional superconformal
theory is described and some of its properties are verified explicitly. Chap-
ter 5 describes how the specific splitting of space-time under consideration is
constructed. Finally in chapter 6 and 7 the results and the description of the
calculations of the 5-dimensional reduced theory are presented, the special case
of a product metric is also considered.

1.3 Conventions

Indices denoted by capital roman starting from M and lower-case Greek will be
coordinate indices, also referred to as curved indices, in the range

M,N, . . . ∈ {0, 1, . . . , 5}
µ, ν, . . . ∈ {0, 1, . . . , 4}.

The sixth coordinate index, corresponding in the fibration to the periodic coor-
dinate, will be denoted by ϕ so that x5 = xϕ.

Flat indices corresponding to non-coordinate bases will be denoted by capital
and lower-case roman letters in the range

A,B, . . . ∈ {0, 1, . . . , 5}
a, b, . . . ∈ {0, 1, . . . , 4}.

Indices corresponding to the fundamental representation of the internal symme-
try group Sp(4) are denoted by lower-case roman letters starting from i in the
range

i, j, . . . ∈ {0, 1, 2, 3}.
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The signature convention for the Minkowski metric is mostly plus, i.e.

ηMN = diag(−1, 1, . . . , 1). (1.1)

The 6-dimensional metric is denoted GMN and the 5-dimensional metric in the
fibration by gµν . The determinant of these metrics will be defined by G and g

respectively. Since the determinants are negative by the choice of signature, the
invariant volume elements are

vol6 = d6x
√
−G

vol5 = d5x
√−g.

When the integration limits are suppressed it is understood that the integration
should be carried out over all of space.

∫
d6x

√
−G =

∫

M

d6x
√
−G

The Levi-Civita symbol is defined by

ε012345 = 1,

and that its totally antisymmetric. The corresponding tensor is defined by

ǫMNOPQR =
1√
−G

εMNOPQR.

The commutator and anticommutator are defined respectively by

[X,Y ] = XY − Y X

{X,Y } = XY + Y X

Antisymmetrisation of indices is denoted by brackets and defined by

A[M1M2...Mp] =
1

p!

(
AM1M2...Mp

± . . .
)
.

If some of the indices should be left out of the antisymmetrisation this is denoted
with bars as in A[M1|M2|M3] =

1
2 (AM1M2M3

−AM3M2M1
).

Complex conjugation swaps order of two Grassman variables so that for
spinors

(λααβ)
⋆
= α⋆βλ

⋆
α

= −λ⋆ααβ .



Chapter 2

Spinors

“A spinor is thus a sort of ’directed’ or ’polarised’ isotropic vector; a
rotation about an axis through an angle 2π changes the polarisation
of this isotropic vector.”

-Élie Cartan: The Theory of Spinors.

When an object, this thesis for example, is rotated around an axis exactly
one time it returns to it’s original configuration. That is, it is impossible to
distinguish between the object before and after we rotate it. This is what
everyday experience tells us, but it turns out that there are things that behave
differently under rotations, namely spinors. These are mathematical objects
that when rotated one full revolution are distinguishable from the original, but
when rotated two full revolutions return to the original configuration.

The reason for studying these kinds of objects is that some of the elementary
particles behave in exactly this way, the electron and the quarks for example.

This chapter will review the construction of spin representations using a
Clifford algebra and set the notation and conventions that will be used in later
parts of this thesis. The goal will be to give a description of symplectic Majorana
spinors that will be used later in the construction of the (2,0) theory.

2.0.1 Spin group

Rotations in space are transformations that leave the length of vectors un-
changed. If you turn this around and ask what transformations leave the length
of vectors unchanged you get rotations but also reflections. The group of all
transformations preserving the length of vectors in n dimensions is called the
orthogonal group, denoted O(n). The group of consisting of only rotations is
called the special orthogonal group, denoted SO(n).

Transformations that preserve the Minkowski inner product of two vectors is
called the Lorentz group, denoted by O(1, d− 1). The Minkowski inner product
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is given by

< V,W > =
(
V 1, V 2, . . . , V d

)




−1 0 0 0
0 1 0 0

0 0
. . .

...
0 0 . . . 1




︸ ︷︷ ︸
d×d matrix




W 1

W 2

...
W d




= VMWNηMN .

The subgroup of the Lorentz group which consists of elements that can be
continuously deformed to the identity is called the proper orthosynchronous
Lorentz group, denoted by SO+(1, d− 1). This consists of transformations that
in addition to preserving the inner product also preserve orientation and the
direction of time. Since these are the transformations that is of main interest
and since that name is tiresome to write every time it is usually just referred to
as the Lorentz group.

It turns out that to every special orthogonal group there is an associated
group called the spin group. For the Lorentz group SO(1, d− 1) the associated
group is denoted Spin(1, d − 1). They are almost the same but the spin group
contains two transformations for every transformation in the orthogonal group.
Because of this the spin group is called a double cover.

2.0.2 Spin representations

If there is a vector space on which the elements of Spin(1, d − 1) acts as linear
transformations, we say that there is a representation of the group on the vector
space. For example R

3 is a representation of the group SO(3), the group of
rotations, when it acts on vectors by the rotation matrices. Spinors are simply
elements of a vector space on which the group Spin(1, d− 1) is represented.

In practise one seldom works with the full Lorentz and spin group but instead
only consider infinitesimal transformations. These are transformations that are
infinitesimally close to the identity transformation. The reason for doing this
is that these are much easier to work with and they still contain almost all the
information of the full group.

2.0.3 Infinitesimal transformations

Here a small motivation for working with the algebra of a group will be given.
This part is not essential for the rest of the thesis, it only serves as a reminder
of the motivations behind the constructions of spinors (and many other things).

Given a transformation T that is infinitesimally close to the identity we can
write it as

T = 1 + εA+O(ε2).

For example if T is a rotation then ε would be an infinitesimal angle. If ε is
small, the higher order terms are neglectible and can be dropped. Given two
such infinitesimal transformations A and B, the composition acts linearly:

(1 + εaA) (1 + εbB) = 1 + εaA+ εbB +O(ε2).
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A finite transformation of length l can be constructed by breaking l down into
infinitesimal pieces,

Tn =

(
1 +

l

n
A

)(
1 +

l

n
A

)
. . .

(
1 +

l

n
A

)

︸ ︷︷ ︸
n times

.

By letting n → ∞ each piece becomes infinitesimal and the above expression
becomes more and more accurate. By expanding Tn we find

lim
n→∞

Tn = lim
n→∞

(
1 + lA+

(
n

2

)
l2

n2
A2 + . . .

)

= 1 + lA+
1

2!
l2A2 + . . .

= elA.

Thus the exponential map gives a finite transformation from an infinitesimal
one. How does the infinitesimal transformations contain the information from
the full group? The defining property of a group is that two transformations
become a new transformation in the group. To see how this is described in-
finitesimally, let A and B be two infinitesimal transformations. Exponentiated
they will give rise to a combined finite transformations, the question is now what
infinitesimal transformation C does this new finite transformation correspond
to. In equations,

eAeB = eC .

The problem is that since A,B,C are operators they might not commute so
C 6= A+B in general. To find out what C is, we can simply take the logarithm
(defined by its Taylor series) of both sides.

C = log
(
eAeB

)

= log

([
1 +A+

1

2
A2 + . . .

] [
1 +B +

1

2
B2 + . . .

])

= 1 +A+B +
1

2
A2 +AB +

1

2
B2 − 1

2
(A+B + . . .)

2
+ . . .

= 1 +A+B +
1

2
[A,B] + . . .

So C is almost A + B but with corrections in terms of the commutator. The
wonderful thing is now that all of the higher order corrections can also be ex-
pressed in terms of the commutator. In conclusion, if we know the infinitesimal
transformations and their commutators we can construct the full group. This
last statement is not true for any group, but for compact simply connected
groups it is. The gain from this construction is that instead of working with
the group which in general is non-linear we can work with linear maps and their
commutators instead. The infinitesimal transformations together with the com-
mutator is called an algebra.
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2.0.4 Clifford algebra

Suppose we have matrices ΓA, A ∈ {0, 1, . . . d − 1} acting as linear transforma-
tions on a complex vector space with the property

{
ΓA,ΓB

}
= 2ηABI.

The algebra generated by these matrices is called a Clifford algebra and the
matrices themselves are called gamma matrices. If such matrices can be found
a representation of the Lorentz algebra can be constructed with the following
combination.

ΣAB =
1

4

[
ΓA,ΓB

]

These satisfy the Lorentz algebra,

[
ΣAB ,ΣCD

]
= −ηACΣBD + ηADΣBC − ηBDΣAC + ηBCΣAD,

and thus constitute a representation of the Lorentz algebra.
It can be shown [14] that the gamma matrices can always be chosen such

that

(
Γ0

)†
= −Γ0

(
ΓA

)†
= ΓA A > 0.

Antisymmetrized products of gamma matrices will be denoted by

ΓM1M2...Mn = Γ[M1ΓM2 . . .ΓMn].

The generators of the Lorentz algebra can then be written as

ΣAB =
1

2

1

2

(
ΓAB − ΓBA

)

=
1

2
ΓAB .

In d dimensions the vector space on which these generators act is 2⌊ d
2 ⌋, where

the brackets indicate the integer part of a number. For d = 6 the vector space
is 8 dimensional. Spinors are elements of this vector space.

2.0.5 Charge conjugation

In all dimensions there exists [14] a charge conjugation operator C with the
property

(
CΓ(r)

)T
= −trCΓ(r), (2.1)

where Γ(r) is an antisymmetrized product of r gamma matrices and tr = ±1
depending on the dimension and signature of the metric.

In 5 dimensions in particular the numerical factors are given by

t0 = t1 = 1

t2 = t3 = −1.
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In 6 dimensions there are two choices where one is equal to the 5 dimensional
tr. For convenience in the spinor reduction we choose tr to be the same in both
5 and 6 dimensions.

Thus for example

CT = −C (2.2)
(
CΓA

)T
= −CΓA (2.3)

(
CΓAB

)T
= CΓAB (2.4)

These can then be used to relate a spinor to its transpose. Relation (2.3) implies
(
ΓA

)T
CT = −CΓA

[using ( 2.2)] ⇐⇒
(
ΓA

)T
= CΓAC−1 (2.5)

This enables the definition of a conjugate spinor in the following useful way:

λ̄ ≡ λTC. (2.6)

Note that this is not the standard definition, where the bar would indicate the
Dirac conjugate spinor λ̄ = λ†Γ0, but they are related as will be seen later.

With this definition we can form a scalar from two spinors that is Lorentz
invariant,

λ̄ε = λTCε

= λαCαβε
β . (2.7)

Where α and β are indices in spinor space, i.e. the vector space where λ and ε are
elements. This is the only time that the indices associated with the spinor space
will be written out. All the properties of spinors can be conveniently expressed
in matrix notation and henceforth all the spinor indices will be suppressed.

To check that (2.7) is invariant we perform an infinitesimal Lorentz trans-
formation Λ = 1 + 1

2ωMNΣMN = 1
8ωMNΓMN . A spinor bilinear will then

transforms as

δ
(
λ̄ε

)
= δλε+ λ̄δε

=
1

8

(
ωMNΓMNλ

)
ε+

1

8
λ̄ωMNΓMNε

=
1

8
ωMNλ

T
(
ΓMN

)T
Cε+

1

8
λ̄εMNΓMNε

=
1

8
ωMNλ

TCC−1
(
ΓMN

)T
Cε+

1

8
λ̄εMNΓMNε

Note that ( 2.2) and ( 2.4) implies that C−1
(
ΓMN

)T
C = −ΓMN

=
1

8
λ̄εMNΓMNε− 1

8
λ̄εMNΓMNε

= 0

Note also that with these definitions we can flip a spinor bilinear, start for
example with a bilinear

λ̄ΓMε.
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This is a complex number and therefore equal to it’s transpose.

(
λ̄ΓMε

)T
=

(
λTCΓMε

)T

= −εT (ΓM )
T
CTλ

= εTCC−1ΓMCλ

= εTCΓMλ

= ε̄ΓMλ

Where the first sign change comes from the fact that we have defined complex
conjugation to swap the order of the Grassman components of the spinors.

2.0.6 Majorana spinors

In four dimensions there is the possibility to impose a reality condition on
spinors. The spinors satisfying such a condition are called Majorana spinors. It
will turn out that it is not possible to impose this kind of condition on spinors in
5 and 6 dimensions, but there is a generalisation. To motivate the introduction
of symplectic Majorana spinors this section will first investigate why the normal
approach fails in these dimensions.

A general reality condition for a spinor λ takes the form

λ⋆ = Bλ. (2.8)

The reason for the matrix B is that the simplest condition λ⋆ = λ is not Lorentz
invariant and thus a real spinor in one frame is necessarily not real in another.
To find out what B needs to satisfy we perform a Lorentz transformation of
(2.8).

ωMN

(
ΓMN

)⋆
λ⋆ = ωMNBΓMNλ

⇐⇒
ωMN

(
ΓMN

)⋆
λ⋆ = ωMNBΓMNB−1Bλ

Thus B must satisfy

BΓMNB−1 =
(
ΓMN

)⋆

With C such a matrix can be constructed as follow.

B = CΓ0.

Actually,

BΓMB−1 = CΓ0ΓM
(
−Γ0

)
C−1

= −C
(
ΓM

)†
C−1

= −C
((

ΓM
)⋆)T

C−1

= −
(
ΓM

)⋆
(2.9)

=⇒
BΓMΓNB−1 = BΓMB−1BΓNB−1

=
(
ΓMΓN

)⋆
.
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Now “charge conjugation” can be defined as

λC = B−1λ⋆. (2.10)

Note that with these definitions,
(
λC

)C
= −λ.

The reality condition then becomes

λC = λ

B−1λ⋆ = λ

λ⋆ = Bλ (2.11)

It turns out that it is not only a Lorentz transformation that can spoil this
relation. By just taking the complex conjugate of (2.11) and inserting back into
itself we get

λ⋆ = BB⋆λ⋆

So for a spinor of this type to be non-zero, B needs to satisfy

BB⋆ = 1 (2.12)

But in 5 or 6 dimensions this is not the case with B defined as above,

BB⋆ = Cγ0C⋆
(
γ0

)⋆

[insert identity] = Cγ0C−1CC⋆
(
γ0

)⋆

[use(2.3)] =
(
γ0

)T
CC⋆

(
γ0

)⋆

[use(2.2)] = −
(
γ0

)T
CC† (γ0

)⋆

[C unitary] = −
(
γ0

)T (
γ0

)⋆

= −
((
γ0

)†
γ0

)⋆

= −
(
−γ0γ0

)⋆

= −1.

So we can not consistently impose this kind of reality condition on spinors in
5 or 6 dimensions. There is another way to impose a reality condition between
an even number of spinors instead of relating a spinor to itself. The resulting
spinors are called symplectic Majorana spinors and these are the irreducible
spinors in 5 dimensions. There are also symplectic Majorana spinors in 6 di-
mensions but here we can also have chirality and the two are compatible so that
the irreducible spinors are symplectic Majorana-Weyl.

Before turning to symplectic Majorana spinors we make some useful defini-
tions for reality calculations. The Majorana condition will be stated in terms of
charge conjugation it would be nice to be able to express complex conjugation
in terms of charge conjugation when checking the reality of bilinears. To arrive
at such a relation, regard a general bilinear term.

(
λ̄Mε

)⋆
= −

(
λ̄
)⋆
M⋆ε⋆

= −
(
λ̄
)⋆
M⋆BB−1ε⋆

= −
(
λ̄
)⋆
M⋆BεC
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Then note that,

(
λ̄
)⋆

=
(
λTC

)⋆

= λ⋆TC⋆

=
(
B−1λ⋆

)T
BTC⋆

=
(
λC

)T
BTC⋆BB−1

=
(
λC

)T (
Γ0

)T
CTC⋆

(
CΓ0

)
B−1

=
(
λC

)T (
Γ0

)T
CΓ0B−1

=
(
λC

)T
CC−1

(
Γ0

)T
CΓ0B−1

= −λCB−1.

Combining this gives

(
λ̄Mε

)⋆
= λCB−1M⋆BεC .

If we then define MC = B−1M⋆B, complex conjugation of a bilinear can be
replaced with charge conjugation and we have

(
λ̄Mε

)⋆
=

(
λ̄Mε

)C

= λCMCεC

In particular we can calculate the action of charge conjugation on a gamma
matrix:

(
ΓM

)C
= B

(
ΓM

)⋆
B−1

[using ( 2.9)] = −ΓM

2.1 Symplectic Majorana spinors

The crucial thing that prevented the construction of Majorana spinors in 5
and 6 dimensions was the consistency check (2.12). As will be investigated in
this section there is a way around this. We will introduce an antisymmetric,
non-degenerate form Mij and then change the reality condition to

(
λi
)⋆

=MijBλ
j . (2.13)

In order not to loose any information by imposing this relation the form should
also be invertible. A form with these conditions only exists in even dimensions,
thus for this construction to work there needs to be an even number of spinors.
A non-degenerate antisymmetric form is called a symplectic form [15].

In the (2,0) theory under consideration, the above structure comes from the
internal R-symmetry group Sp(4).

2.1.1 Symplectic group and representations

We will take the spinor fields to live in the fundamental representation of Sp(4).
In other words they will be vectors in a 4 dimensional complex vector space on
which the symplectic transformations act. The vector space will be denoted by
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4, referring to its dimension. The symplectic transformations are defined by
that they preserve an antisymmetric form which for example can be taken to be

Mab =




0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0


 . (2.14)

This bilinear form acts on two vectors x, y ∈ 4 in the fundamental representation
in the following way,

(x, y)M = xiMijy
j

= xTMy ∈ C. (2.15)

The symplectic form is very similar to an inner product except that by definition
it is antisymmetric. To be preserved under a transformation A means that

(x, y)M = (Ax,Ay)M ,

or in matrix notation using definition (2.15),

xTMy = (Ax)
T
M (Ay)

= xTATMAy. (2.16)

Which says that the inner product of the vectors are unchanged by a symplectic
transformation. A symplectic transformation A satisfies (2.16) for all vector x
and y i.e

ATMA =M.

As with a metric the symplectic form can be used to define upper and lower
indices. Any vector space V has a dual vector space V ⋆ where elements are
linear maps from V to C. When the vector space has a non-degenerate bilinear
form defined there is a natural isomorphism between V and V ⋆. In this case
the isomorphism takes the form

V → V ⋆

x 7→Mijx
j .

The resulting object Mijx
j is indeed a linear map from V to C since we can

contract it with a vector to form a complex number. The standard definition is
then to say that vectors in V have upper indices and vectors in V ⋆ have lower.

The matrix Mij has an inverse denoted by T ij that satisfy

MijT
jk = δi

k.

This in turn can be used to map a vector in V ⋆ to V , or in the language of
indices, to raise the index of vectors. In practice this means that we can have a
notation that looks exactly like that for space-time vectors, Einstein summation
convention for contractions etc.

From the theory of representations we can choose our representation to be
unitary ([15] chap. 13.4), that is all the transformations are unitary matrices.
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Indeed we must if the theory is to preserve probabilities. For the algebra of
infinitesimal transformations this means that the representation matrices will
be antihermitian. A matrix is antihermitian if R = −R† = −R⋆T .

A complex representation naturally has a conjugate representation, con-
structed by simply taking the complex conjugate of the matrices. These also
form a representation and in the case of unitary representations this is related
to the dual vector space. To see this lets start by taking the complex conjugate
of a representation matrix R.

R⋆ =
(
−R†)⋆

= −RT

Thus the complex conjugate of a representation matrix is associated with it’s
transpose, but since the transpose naturally acts on the dual this means that
something that transforms under R⋆ transforms in the same way as something
in the dual.

In particular we can look at a vector vi, it transforms under symplectic
transformations as

wi = Ri jv
j .

Taking the complex conjugate of this equation gives

(
wi

)⋆
=

(
Ri j

)⋆ (
vj
)⋆

= −
(
RT

)i
j

(
vj
)⋆

So (vi)⋆ transforms as a vector in the dual representation. In this way we arrive
at the conclusion that it is natural to associate a lower index to the complex
conjugate of a vector, (vi

)⋆
= ṽi. Note that this object need not be the same as

lowering the index using the symplectic form, hence the tilde on the right hand
side.

2.1.2 The symplectic Majorana condition

With the above definitions for the symplectic group the consistency of (2.13)
can be checked. First by complex conjugation of (2.13) we find

λi = (Mij)
⋆
B⋆

(
λj

)⋆

inserting this back into (2.13):

(
λi
)⋆

=MijB (Mjk)
⋆
B⋆

(
λk

)⋆

= BB⋆Mij (Mjk)
⋆ (
λk

)⋆

= −Mij (Mjk)
⋆ (
λk

)⋆
,

where Mij is just a complex number and thus commutes with everything.
For this to be consistent we thus require Mij to satisfy

Mij (Mjk)
⋆
= −δi k. (2.17)
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That Mij satisfies this can be checked by noting that (2.14) satisfies it and that
any other M̃ij can be brought to this form by a unitary change of basis. For
the components of (Mij)

⋆, (2.17) implies that

(Mij)
⋆
= −T ij .

In conclusion we now have a consistent reality condition for chiral spinors in 6
dimensions,

(
ψi

)⋆
=MijBψ

j .

Multiplying with B−1 gives

B−1
(
ψi

)⋆
=Mijψ

j .

Comparing this to the definition of charge conjugation (2.10), the condition is
simply

(
ψi

)C
=Mijψ

j (2.18)

= ψi

Which also implies

(ψi)
C
=

(
Mijψ

j
)C

= (Mij)
⋆ (
ψj

)C

= −T ijψj
= −ψi (2.19)

Expression (2.18) and (2.19) are the conditions that will be used in calculations.
A spinor that satisfies this condition is called a symplectic Majorana spinor.

Note that in all calculations involving the internal indices it is important to
note the order of contracted indices since the symplectic form and it’s inverse
are antisymmetric.

Spinor bilinears To create spinor bilinears that are invariant under both
Lorentz and symplectic transformations we simply write down the natural con-
traction of two symplectic Majorana spinors using the symplectic form,

Mjiψiε
j = ψjε

j .

Note the choice of order in the contraction which will be adopted as convention
when the internal indices are suppressed, so that

ψ̄ε = ψiε
i.

Finally we can put all of this framework together to easily verify if a given
bilinear in terms of symplectic Majorana spinors is real. For example,

(
ψ̄ε

)⋆
=

(
ψiε

i
)⋆

=
(
ψiε

i
)C

= (ψi)
C (
εi
)C

= −ψiεi
= −Mijψiε

j

= ψiε
i
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It is now possible to check if a given term in the action functional is real. In
the end a well defined Lagrangian should be real scalar and it is now possible
to verify that easily. This is useful as a consistency check on the reduction as
well, since all the resulting terms should be real or possibly sum together to be
real.

Dirac bar The connection between definition (2.6) of conjugation and the
standard Dirac bar can be seen by regarding the specific combination

λC = B−1λ⋆

= λ†
(
B−1

)T
C

= −λ†
(
Γ0C†)T C

= −λ†C⋆
(
Γ0

)T
C

= λ†C† (Γ0
)T
C

= λ†C† (Γ0
)T
C

= λ†Γ0.

Which is the standard Dirac bar. The two definitions agree for normal Majorana
spinors, since then λC = λ, but in the case of symplectic Majorana spinors the
definition employed here is simply more convenient.



Chapter 3

Field theory on curved
space-time

“We’ll do a parallel transport on the Captain.”

-Worf: Star Trek TNG, 1988

The first part of this chapter will briefly review the relevant parts of differ-
ential geometry relevant to this thesis and introduce the concept of vielbeins.
The vielbeins will then be used to carry over the construction of spinors to the
setting of curved space-time. This chapter is based on standard material that
can be found for example in [16], [17] and [18]. The discussion of spinors in
curved space-time is based on [19].

3.1 Mathematics of curved space-time

A smooth manifold is something that looks locally like flat space R
d. A smooth

Lorentzian manifold is also equipped with a non-degenerate metric of indefinite
signature, in this thesis taken to be (−1, 1, . . . , 1). This means that in a small
neighbourhood around a point the manifold is equivalent to a neighbourhood of
R
d together with an indefinite metric. This enables the manifold to be described

in terms of the coordinates on R
d.

The coordinates on a smooth Lorentzian manifold M of dimension d will
be denoted by x0, x1, . . . , xd−1. Indices for tensors in the set of capital roman
letters L,M, . . . will take values {0, 1, . . . d− 1} in anticipation of the reduction
in chapter 6 where two sets of indices will be needed.

At each point p on the manifold there is a tangent space, denoted TpM ,
which is the vector space spanned by vectors tangent to the manifold at this
point. Here one can think of the example when the manifold is a 2 dimensional
surface in space. In this case the tangent space at a point is the tangent plane,
i.e the best linear approximation to the surface at that point.

The local coordinates xM induce a basis of the tangent space at a point
denoted by ∂M . A vector at this point can be expressed in terms of the basis,

V = VM∂M .
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This notation stems from the fact that when the manifold is not described by an
embedding into R

n one can still define the tangent space in terms of directional
derivatives.

Usually one does not write out the geometric information about the vector
but instead choose to work only with the component VM .

The metric tensor will be denoted GMN and the scalar product that corre-
sponds to it will be denoted

< V,W > = VMWNGMN .

The inverse metric will be denoted by GMN .
There is a covariant derivative on M denoted DN defined by its action on

tangent vectors,

DNV
P = ∂NV

P + ΓPNLV
L.

The connection coefficients ΓPMN are the Christoffel symbols, uniquely deter-
mined by the condition that the covariant derivative should be metric compat-
ible,

DN < V,W > = < DNV,W > + < V,DNW >, (3.1)

and that ΓPNL = ΓPLN , i.e. it should be torsion free.
Solving (3.1) in local coordinates for the connection coefficients gives

ΓPMN =
1

2
GPL (∂MGNL + ∂NGML − ∂LGMN ) .

Condition (3.1) is also equivalent in component form to the condition

DMGNP = 0.

There is a canonical tensor defined on any smooth manifold with a covariant
derivative that characterises it’s curvature, the Riemann tensor. It is defined by
the amount that two covariant derivatives fail to commute,

[DM , DN ]V P = RMN
P
LV

L. (3.2)

This is the infinitesimal form of parallel transporting the vector V around a
small loop and comparing it to the original vector. The new vector will differ
by a linear transformation specified by the Riemann tensor.

By writing out the left hand side of (3.2), an expression for the Riemann
tensor in terms of the Christoffel symbols is found,

RP SMN = ∂MΓPNS − ∂NΓPMS + ΓQSNΓPQM − ΓQSMΓPQN

From the Riemann tensor one additional tensor and one scalar can be con-
structed by contraction.

RMN = RP MPN

R = GMNRMN

These are the Ricci tensor and the Ricci scalar respectively.
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3.2 Vielbeins

The coordinate basis for the tangent space defined above is just one of many
possible choices. The freedom to choose a basis can be used to create a new
tensor called the vielbein that will turn out to be very useful. The starting point
is to decribe the metric information of a manifold locally by choosing a basis of
orthonormal tangent vectors at each point.

EA (x) ∈ TxM

EA(x) = EMA (x)∂M (3.3)

< EA, EB > = ηAB

The EA are called vielbeins, German for many legs, and are as stated simply
vectors in the tangent space.

In components the orthonormality means

< EA, EB > = < EMA ∂M , E
N
B ∂N >

= EMA E
N
BGMN

= ηAB . (3.4)

Now, since it was assumed that the vielbeins formed a basis, the coordinate
basis can also be expressed in the vielbeins

∂M = (∂M )
C
EC .

Substituting this into (3.3) shows that

EA(x) = EMA (x) (∂M )
C
EC(x).

For this to be consistent, the matrix (∂M )
C

is seen to be the inverse of EMA (x).
In other words

EMA (x) (∂M )
C
= δCA .

The same line of reasoning leads to

EMA (x) (∂N )
A
= δMN .

To adhere to the standard notation found in literature, and also following the
notation for Lorentz transformations, we now make the slightly confusing choice
to name

(∂M )
C
= ECM .

One could have argued that the matrix EMA by definition is invertible and just
name it’s inverse EAM but the above construction emphasises the geometric ori-
gin. It should be noted that the vielbeins also go by the name of frame fields.

3.3 Spinors on curved space-time

The starting point for introducing spinors on curved manifolds is to note that
the tangent space at a point is a flat Minkowski vector space by the definition
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of a Lorentzian manifold. So it might seem like there is no problem in doing the
standard construction of spinors on the tangent space using a Clifford algebra
as in chapter 2. But there are some obstacles.

The next step is to note that two coordinate systems on M induce two
different bases for the tangent space at a point. These two bases are related by a
general linear transformation. Since the spin group is only related to the group of
orthogonal transformations we will need some way to restrict the general linear
transformation above to something that is only an orthogonal transformation
so that we know how it acts in spin space. This is where the vielbeins come in.
They define an orthonormal base of the tangent space, and any two different
sets of vielbeins will thus be related by an orthogonal transformation.

We start by associating with every point on the manifold a complex vector
space of dimension 2

d
2 . On this vector space we define d operators, the gamma

matrices. Finally we couple these gamma matrices to the vielbeins to create
gamma matrices with a coordinate index.

ΓM ≡ EMA ΓA (3.5)

The point of this is that by the construction of the vielbeins, they will trans-
form under general coordinate transformations since they are related to the
coordinate basis. The gamma matrices on the other hand is only related to a
non-coordinate basis on the tangent space, namely the vielbeins themselves, and
so they will only transform under local Lorentz transformations. These local
Lorentz transformations are implemented exactly as a change of orthonormal
basis in the tangent space.

The gamma matrices with indices A,B, . . . will be referred to as the flat
gamma matrices, and the newly defined ones as the curved gamma matrices.

By the commutation relations of the flat gamma matrices and the properties
of the vielbeins,

{
ΓM ,ΓN

}
= EMA E

N
B

{
ΓA,ΓB

}

= 2EMA E
N
B η

AB

= 2GMN .

Which would be the natural generalisation of
{
ΓA,ΓB

}
= 2ηAB to the curved

case.

3.3.1 Spin connection

To be able to sensibly differentiate spinor fields there is a need for something to
relate a spinor at one point to a spinor at another. This new tool will be called
the spin connection and it is completely analogous to the Christoffel connection
for vectors. The definition is

DMψ = ∂Mψ +
1

2
ΩABM ΣABψ

= ∂Mψ +
1

4
ΩABM ΓABψ. (3.6)

Here ΣAB are generators for the Lorentz group in the spin representation and
ΩABM is the spin connection. In words this definition says that the change in
a spinor field at a point is the combination of a change due to the component
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functions and a change corresponding to a linear transformation of the spinor.
This is completely analogous the Christoffel connection and can be made more
clear by a slight change in notation for the vector case,

DMV
P = ∂MV

P + (ΓM )
P
LV

L.

Another way to think about the spin connection in the language of gauge theory
is that the spin connection is the gauge field associated with local Lorentz trans-
formations. Thus we can think of the spin connection as the required object
to be introduced if we want to create a derivative that transforms covariantly
under local Lorentz transformations,

DM (Λ(x)ψ) = Λ(x)DMψ.

Exactly as the vector potential is introduced to create a suitable covariant
derivative when the global U(1) symmetry of QED is promoted to a local sym-
metry [1].

The spin connection also defines a covariant derivative for objects with flat
indices associated with the vielbeins. The only difference to the definition (3.6) is
that the generators for the Lorentz group are taken in the vector representation
instead of the spin representation.

DMX
A = ∂MX

A +
1

2
ΩCDM (TCD)

A
LX

L

For the particular vector representation (TCD)
AB

= δACδ
B
D − δBC δ

A
D this simply

becomes

DMX
A = ∂MX

A +ΩCMDX
D

Since we can writeXM = EMA X
A, a consistency condition of the spin connection

is that DNE
M
A = 0 so that the covariant derivative gives the same result no

matter what representation we choose to present the vector X in.

DNX
M = EMA DNX

A

This condition when written out,

DME
N
A = ∂ME

N
A + ΓNMLE

L
A +ΩBNAE

N
B

= 0,

determines the spin connection uniquely in terms of the vielbeins.

ΩABM = 2EN [A∂[ME
B]
N ] − EP [AE|Q|B]∂PEQCE

C
M

Since the spin connection is defined to agree with the Christoffel connection
they both have the same curvature tensor. This results in the following relation
for spinors,

[DM , DN ]ψ =
1

4
RMNABΓ

ABψ,

which can be verified by direct computation.



3.4 Differential forms 23

3.3.2 Obstructions from topology

The above construction sweeps a few requirements under the rug. It turns out
that to be able to introduce spinors on the whole manifold in a consistent way
the manifold needs to satisfy certain properties. There is a precise classification
of when a manifold admits a spin structure as it is called. The classification
can be given in terms of the cohomology groups of the space. Specifically the
manifold admits a spin structure if a certain element in the second cohomology
group with Z2 coefficients is trivial.

H2 (M,Z2) ∋ w2 = 1

The failure in trying to introduce a spin structure on certain manifold is simi-
lar in nature to the problem of defining a nowhere vanishing vector field on a
manifold. The sphere for example does not admit any nowhere vanishing vector
fields. This fact is usually expressed colloquially as the statement “you cannot
comb a sphere” which is a consequence of the aptly named hairy ball theorem.

The main point is that spinors can not be introduced on all smooth mani-
folds.

For a full treatment of these concepts see ref. [20].

3.4 Differential forms

“These are the things which occur under integral signs.”

-Harley Flanders: Differential Forms with Applications to the Physical
Sciences.

A differential form is a totally antisymmetric tensor field. As indicated
they are the generalisation of the differentials encountered in calculus, guided
especially by their use in integration. They are conveniently represented by
introducing the basis 1-forms dxM and the wedge product ∧. The wedge product
is defined by

dxM ∧ dxN = −dxN ∧ dxM .

A general differential form of degree p is then a linear combination of the basis
forms

α =
1

p!
aM1...Mp

dxM1 ∧ . . . ∧ dxMp .

By the antisymmetry of the wedge product the coefficient functions αM1...Mp

can be taken to be antisymmetric.
Note that by antisymmetry, dxM ∧ dxM = −dxM ∧ dxM = 0. In particular

this means that in d dimensions, differential forms of degree higher than d will
be identically zero since there will need to be some repetition in the wedge
product of basis forms.

The space of p-forms on M is denoted Ωp(M) and forms a
(
d
p

)
-dimensional

vector space. The algebra generated by the forms together with the wedge
product is the collection of all these spaces ⊕pΩp(M) called the exterior algebra.
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There is a derivative operator for differential forms whose action on a p-form
gives a (p+ 1)-form. It is defined by its action on functions

df(x) = ∂Mf(x)dx
M ,

and then extended to a general form by

d

(
1

p!
aM1...Mp

dxM1 ∧ . . . ∧ dxMp

)
=

1

p!
∂NaM1...Mp

dxN ∧ dxM1 ∧ . . . ∧ dxMp .

From these definitions it follows that d2 = 0 on any form. It also follows that
for A ∈ Ωq(M) and B ∈ Ωl(M),

d (A ∧B) = dA ∧B + (−1)qA ∧ dB. (3.7)

The operator d is called the exterior derivative.

Finally we can make contact with integration by defining
∫

M

f(x)dxM1 ∧ . . . ∧ dxMd ≡
∫

M

f(x)dxM1 . . . dxMd ,

where the right hand side is the Riemann integral. Strictly speaking the above
definition only makes sense in a coordinate patch of the manifold so that inte-
gration over all of M needs to be broken down into smaller pieces. The main
point of differential forms is exactly that the above definition does not depend
on the choice of coordinates so that integration makes sense.

For a more complete treatment of differential forms see for example [21], [18]
and [16].

3.4.1 Levi-Civita tensor

There is a tensor that can be defined on any smooth manifold called the Levi-
Civita tensor. Start by introducing the totally antisymmetric symbol εM1M2...Md ,
defined by

ε01...d−1 = 1,

and that it is totally antisymmetric in all indices. This is not a tensor but
a tensor density, transforming with an additional factor of the determinant of
the coordinate transformation. By combining it with the determinant of the
metric, which is also a tensor density, we can create a tensor ǫM1M2...Md called
the Levi-Civita tensor.

ǫM1M2...Md =
1√
−G

εM1M2...Md

3.4.2 Hodge dual

There is a natural operator acting on differential forms on any manifold with
a metric, this operator is called the Hodge dual and it will be used later when
introducing the action and equations of motion for a form field.
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If there is a metric present on a smooth manifold then there is a natural
map from p-forms to (d− p)-forms. One way to see this is to note that we have
a canonical totally antisymmetric tensor with d indices, the Levi-Civita tensor.
We can use this to construct a (d − p)-form α from a p-form β according to
(3.8).

αM1...Md−p
= CǫM1...Md−p

Nd−p+1...NdβNd−p+1...Nd
C ∈ C (3.8)

Because the Levi-Civita tensor is totally antisymmetric, α will also be antisym-
metric and thus we have constructed a new differential form. This new form
will be called the Hodge dual of β, denoted ⋆β. Note that the Hodge dual of a
0-form is a d-form, and so it will be proportional to the volume form.

(⋆1)M1...Md
= CǫM1...Md

Writing this out in terms of the basis forms gives

⋆1 =
1

d!
CǫM1...Md

dxM1 ∧ . . . ∧ dxMd

=
1

d!
CGM1N1

. . . GMdNd
ǫN1...NddxM1 ∧ . . . ∧ dxMd

=
1

d!
CGM1N1

. . . GMdNd

1√
−G

εN1...NddxM1 ∧ . . . ∧ dxMd

= CG1N1
. . . GdNd

1√
−G

εN1...Nddx1 ∧ . . . ∧ dxd

= C
G√
−G

dx1 ∧ . . . ∧ dxd

= −C
√
−Gdx1 ∧ . . . ∧ dxd.

So if we choose C = −1 then this is exactly equal to the volume form of the
manifold. Actually we choose to C = −1

(d−p)! , depending on the degree of the

form. Definition (3.9) summarises the conventions used.

⋆α = ⋆

(
1

p!
αQ1...Qp

dxQ1 ∧ . . . ∧ dxQp

)

= − 1

p!

1

(d− p)!
ǫM1...Md−p

N1...NpαN1...Np
dxM1 ∧ . . . ∧ dxMd−p (3.9)

Note that when writing out the full form with the basis elements it is actually
more natural to think of the ⋆ operator acting on the basis elements instead of
on the components functions. In this language the ⋆ operator can be defined
equivalently as

⋆dxM1 ∧ . . . ∧ dxMp =
−1

(d− p)!
ǫM1...Mp

N1...Nd−p
dxN1 ∧ . . . ∧ dxNd−p

If this is taken as the definition of the star operator on differential forms it
will induce the same transformation on the component functions as defined in
(3.8). This definition is somewhat more geometrical since it describes how the
operator acts on the geometric objects, the basis forms, instead of the induced
transformation on the component functions.
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3.5 Conformal structure

A conformal transformation preserves angles but might distort the size of ob-
jects. To preserve angles means that if two curves cross with a certain angle,
they will continue to do so after the conformal transformation. Globally the
shape and size of things will change but locally angles are preserved. An ex-
ample of a conformal transformation is the representation of the earth on a
Mercator map. If a ship sails with a specific compass course, i.e. angle to the
meridian, it will also do so on the Mercator map [22]. But the map does not
preserve area, Africa looks about as big as Greenland while in reality it is ≈ 14
times larger.

The group of conformal transformations in flat space consists of the Lorentz
transformations together with translations and 5 additional transformations:
the scaling transformation and 4 special conformal transformations.

On curved space-time all the information about lengths and angles is con-
tained in the metric. A conformal transformation can be characterised by that
it preserves the metric up to a scaling

< V,W >→ e−2σ(x) < V,W > (3.10)

= e−2σ(x)GMNV
MWN .

Note that σ(x) is a function of the coordinates. This is simply a rescaling of
the metric at each point by a strictly positive smooth function.

From (3.10) it is clear that the transformation preserves angles since

cos(α) =
< V,W >√
V 2W 2

→ e2σ < V,W >√
e2σe2σV 2W 2

=
< V,W >√
V 2W 2

.

A conformal structure is a collection of metrics that are related by local rescal-
ings of this kind. Conformal invariance in this sense means that a theory only
depends on the conformal structure. In other words it should not matter which
metric in the conformal structure one chooses to use.

When checking that something is conformally invariant we can implement
the transformation in (3.10) by letting the components of the metric transform
as

GMN → e−2σ(x)GMN . (3.11)

Also note that (3.11) implies that the inverse metric transforms as

GMN → e2σGMN .

Apart from simply calculating the inverse this can be seen from the fact that
GMNGMN = d is an invariant.

The determinant of the metric is a sum of terms where there are d factors
of GMN and so it transforms as

G = e−2dσG.
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Since the metric information is also contained in the vielbeins they will also
transform under a conformal transformation. From the definition of the viel-
beins we have the relation

EMAE
A
N = GMN .

The natural choice for the transformation of the vielbeins is then

EAM → e−σEAM
EMA → eσEMA (3.12)



Chapter 4

(2,0) theory

With the framework of the previous chapters the construction of the (2,0) theory
in 6 dimensions can now be introduced. In this chapter the content of theory
is given and some of its properties explored. In particular it will be seen why a
Lagrangian formulation is not possible.

4.1 Field content

The theory contains symplectic Majorana-Weyl spinors, a 2-form field and scalar
fields, called the tensor multiplet for the reason that its highest spin field is a
totally antisymmetric tensor field. In six dimensions the fields will be denoted
according to table 4.1.

Field Type
ψi spinor (anti-chiral, symplectic majorana)
BMN two form (real)
HMNP field strength of BMN (self-dual)
φij scalar (real)

(4.1)

Both the scalars and the two form are real while the spinors are complex Grass-
man, i.e. the components are taken to anticommute. All the fields are massless
as is to be expected from a conformally invariant theory.

The spinors ψi are anti-chiral, i.e. they satisfy Γψi = −ψi. The two form
BMN is self-dual, i.e. it has a self-dual field strength H = ⋆H.

In addition to the indicated transformation properties under the Lorentz
group the fields also transform under an internal symmetry group Spin(5) ∼=
Sp(4). This group will be referred to as the R-symmetry group, adhering to
standard notation. The fields transform under the representations of the inter-
nal symmetry group given in (4.2), where the complex dimension of the repre-
sentation is indicated.

ψ ∈ 4

BMN ∈ 1 (4.2)

φ ∈ 5 = 4⊗̂4

Where ⊗̂ indicates the antisymmetric and traceless part of 4⊗ 4.
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Thus all the fields carry, in addition to their Lorentz indices, an R-symmetry
index. This index will be denoted by roman literals in the range {i, j, . . .}.
The reason for the internal symmetry group is that it is necessary in order
to be able to accommodate a supersymmetric theory in six dimensions as was
shown in chapter 2. One subtlety in the choice of notation is that instead of
letting the scalar field have one index taking five values, we instead choose to
view it as an antisymmetric tensor with two indices in the 4 representation.
An antisymmetric two tensor in the 4 representation has 4·3

2 = 6 independent
components so in order to reduce that to 5 we impose the condition

Mijφ
ij = 0.

The reason for choosing this peculiar representation is simply that now it is
easy to write down terms coupling a scalar field to a spinor field since now
we can simply contract them. Since the scalar fields take values in a complex
representation we also need to impose a reality condition for them. In this case
there is no problem to simply impose

(
φij

)⋆
= φij .

A consequence of supersymmetry is that when the fields in the theory are
on-shell, the bosonic and fermionic degrees of freedom need to match [2]. Since
supersymmetry exchanges fermions and bosons this seems like a natural re-
quirement. As a first step we can verify that the tensor multiplet of (2,0) theory
satisfies this.

On-shell degrees of freedom A spinor in 6 dimensions has 2
6
2 = 8 complex

components. Chirality halves this down to 4 complex components and the sym-
plectic Majorana condition again halves this to 2 complex components. Finally
the on-shell field satisfies the Dirac equation which halves this number one final
time down to 1 complex on-shell degrees of freedom. Since the spinor fields also
live in the 4 representation of the R-symmetry group the final number is

d.o.fon - shell(ψ) = 4 complex

= 8 real

The scalar fields simply represent 5 degrees of freedom by virtue of the R-
symmetry group and the 2-form field has three on-shell degrees of freedom. It
can be shown that a p-form in d dimensions has

(
d−2
p

)
on-shell degrees of freedom

([23] appendix B.4). For a 2-form in 6 dimensions this is
(
4
2

)
= 4·3

2 = 6 d.o.f.
Self duality then halves this down 3.

Thus the total number of fermionic and bosonic degrees of freedom on-shell
are the same and the number is 8.

Symplectic structure One way to motivate the symplectic structure is to
think of dimensionally reduced 11-dimensional supergravity. If we think of the
space-time in this case as M = M6 ×M5 and reducing down to M6 leaves 5 of
the 11 dimensions as an internal symmetry. Spinors under the 11-dimensional
Lorentz group will then get an internal Spin(5) symmetry and the scalars will
get an internal SO(5) symmetry. As a group, Spin(5) is isomorphic to Sp(4). As
was shown in chapter 2, a transformation A of Sp(4) preserves an antisymmetric
bilinear form M ,

ATMA =M. (4.3)
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We will not check the isomorphism Spin(5) ∼= Sp(4) but we can as a first cal-
culation see that the dimensions work out. The dimension of Spin(5), that is
how many independent generators it contains, is the same as for SO(5) since it
is just it’s double cover. The algebra of SO(5) consists of antisymmetric 5 × 5
matrices which have 5·4

2 = 10 independent components, and thus it takes 10
generators to span the algebra.

The symplectic group on the other hand is the group of 4× 4 matrices that
satisfies condition (4.3). A general 4 by 4 matrix contains 42 entries, these
entries are then constrained by the symplectic condition. By regarding each
entry in the matrix condition as an equation we get 42 conditions, but these are
not all independent. Taking the transpose of the condition leaves it invariant
so there are a number of relations between the equations equal to the number
of independent entries in a symmetric 4 × 4 matrix. The remaining number
of independent equations is then 42 − 4·5

2 = 6. Now we have 6 equations for
the 42 = 16 entries of the matrix of the symplectic transformation, leaving
10 independent components. This is the same number as we got for Spin(5)
showing that they have the same dimension.

4.2 Equations of motion

The equations of motion for fields on a curved space-time are very similar to the
corresponding equations for the flat space case. With the formalism for curved
space-time introduced in chapter 3 the equations look exactly the same except
for an extra term in the equation of motion for the scalar fields. During the
introduction of the equations of motion the R-symmetry indices will sometimes
be suppressed for clarity.

4.2.1 Scalars

The scalar equation of motion is the massless Klein-Gordon equation but with
an extra term that is required to make the theory conformally invariant.

Sφ = −
∫
d6x

√
−G

(
DMφD

Mφ+
1

5
Rφ2

)

The first term is the usual scalar kinetic term, which up to a numerical factor is
the only possible Lorentz invariant term giving rise to a second order differential
equation for φ. The second term looks like a mass term but contains the Ricci
scalar, this term will turn out to be necessary for conformal invariance as will
be investigated shortly.

This action gives rise to the following equation of motion

DMD
Mφ− 1

5
Rφ = 0.

4.2.2 Spinors

The spinor action is the generalisation of the flat space version using the spin
connection to create a covariant derivative and using the vielbeins to associate
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a coordinate index to the tangent space index carried by the gamma matrices.

Sψ =

∫
d6x

√
−GψiEMA ΓADMψ

i

≡
∫
d6x

√
−Gψi 6D ψi

Fields at stationary point of this action satisfy the curved space-time Dirac
equation,

6D ψi = 0.

4.2.3 2-form

To motivate the equation of motion for the 2-form it is usefull to recall the
Lagrangian formulation of electro-magnetism.

In the language of differential forms the action that gives rise to the Maxwell
equations in flat 4-space is

Smaxwell =

∫
F ∧ ⋆F

=

∫
d4x

1

4
FµνFµν

where F = dA is the field strength corresponding to the potential A and ⋆ is
the Hodge dual. In the case of Maxwell theory the potential is a one-form and
therefore the field strength is a two form.

This action gives rise to the equation of motion for A.

d ⋆ F = 0

⇐⇒
∂µF

µν = 0 (4.4)

This correspond to one of the two pairs of Maxwell’s equations. The other pair
is given by dF = 0, which is fulfilled by construction since dF = d2A = 0 since
d2 = 0.

This action generalises directly to a curved manifold since differential forms
keep transforming tensorially under general coordinate transformations. The
problems of the two form arises when we declare it to be self dual. If we now
specialise to 6 dimensions and name the two form B and it’s field strength H

the above action generalises to

SH =

∫
H ∧ ⋆H

But if H is self dual, that is H = ⋆H, then this action is identically zero!

H ∧ ⋆H = H ∧H
= HM1M2M3

HN1N2N3
dxM1 ∧ dxM2 ∧ dxM3 ∧ dxN1 ∧ dxN2 ∧ dxN3

= (−1)9HM1M2M3
HN1N2N3

dxN1 ∧ dxN2 ∧ dxN3 ∧ dxM1 ∧ dxM2 ∧ dxM3

= −H ∧H
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The first step is just writing out the forms in terms of their components. In the
second step the first three basis elements are moved to the far right, picking up
a minus sign for every basis element it passes (by antisymmetry). So H ∧H =
−H ∧H = 0.

Although the action does not generalise in the case of six dimensions the
equations of motion (4.4) does. We can take the field strength H to satisfy

d ⋆ H = 0.

This equation has no problems in 6 dimensions, it’s only that there is no action
that gives rise to it. From a classical point of view this would not pose any
problems since it’s only the equations of motion that determine the behavior
of the theory. On the other hand if we try to construct a quantum theory, the
action is essential since the quantum theory depends not only on the stationary
points of the action. The approach here will be to start with what can be
generalised directly, the equations of motion, and see what this implies for a
compactified version of the theory in 5 dimensions.

Note that since the field strength is self-dual, the two equations

d ⋆ H = 0

dH = 0

are equivalent. So the complete equations of motion for the potential B is

dH = 0

H = ⋆H.

4.3 Supersymmetry

4.3.1 Penrose condition

In flat space-time we use constant supersymmetry parameters to implement
global supersymmetry, i.e. the same supersymmetry transformation applies to
all points. The condition of being constant is simply ∂Mε = 0, but this is not
good condition in curved space-time. Instead the natural generalisation is for
the parameter to be covariantly constant,

DMε = 0.

But this condition is not conformally invariant so there is no hope of using it
in a conformal theory. In a conformal theory, after a further generalisation, the
condition is

PMε ≡ DMε−
1

d
ΓM 6D ε = 0. (4.5)

Where PM is called the Penrose operator.
It turns out that there are not many first order differential operators acting

on spinors that are conformally invariant. There are two that can be constructed
naturally [24] and these are the Dirac operator and the Penrose operator.

The condition (4.5) is conformally invariant and this is what we will take
our supersymmetry parameters to satisfy. In this thesis it will be referred to as
the Penrose condition. For a mathematical treatment of this operator see [24].
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4.3.2 Amount of supersymmetry

The number of supersymmetry transformations will depend on how many solu-
tion there are to the Penrose condition. Since we only want to regard fields of
spin less than or equal to 1 the maximal amount of supersymmetry possible is
N = 4 extended supersymmetry.

The name (2,0) refers to the fact that the supercharges have the same chi-
rality and that there are two chiral supersymmetry parameters. This notation
stems from how one usually labels representation of the supersymmetry alge-
bra [25]. A spinor in 6 dimensions has 2

6
2 = 8 complex components, thus a

chiral spinor has 8
2 = 4 components. Two chiral spinors together has 16 real

components, resulting in 16 supercharges, corresponding to N = 4.
When the space-time manifold is not specified there can be everything from

maximal to no supersymmetry at all.

4.3.3 Supersymmetry variations

Solution to the equations of motion have a supersymmetry given by

δψi = i
1

12
ΓMNPHMNP ε

i + iDMφ
ijΓMεj +

2

3
φij 6D εj

δHMNP = 3i∂[M
(
ψiΓNP ]ε

i
)

δφij = ψ[iεj] − 1

4
T ijψkε

k.

Where εi are parameters that satisfy PMε
i = 0.

Under a transformation ψi → ψi + δψi, the new field will still be a solution
to the Dirac equation, provided HMNP and φ satisfy their equations of motion.
Likewise for the other fields. Since the theory is supersymmetric only when
the equations of motion are satisfied we say that the theory is supersymmetric
on-shell.

These transformations are also conformally invariant and in fact that fixes
the relative coefficients between the second and third term in the variation for
the spinor field.

4.4 Conformal invariance

We will now show that the free classical version of (2,0) theory is conformally in-
variant in the sense of section 3.5, i.e. the theory only depends on the conformal
structure.

4.4.1 Scalars

The scalar Lagrangian is given by

S = −
∫
d6x

√
−G

(
GMN∂Mφ∂Nφ− cRφ2

)
. (4.6)

It will now be seen why the term proportional to the Ricci scalar is needed for
the conformal invariance. This can be done in any dimension, but as will be
seen the constant c is dimension dependent.
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The scalar field is taken to transform as

φ→ esσφ,

with s yet to be determined. By first doing a global transformation, i.e. ∂Mσ =
0, we find

√
−GGMN∂Mφ∂Nφ→ e−dσe2σe2sσ

√
−GGMN∂Mφ∂Nφ.

For this to be conformally invariant the exponential factors must cancel so that

−dσ + 2σ + 2sσ = 0

=⇒
s =

d− 2

2
[d = 6] = 2.

This is a necessary condition, it remains to be seen if this implies invariance
under local rescalings.

Ricci scalar The Riemann tensor is given in terms of the Christoffel symbols
as

RP SMN = ∂MΓPNS − ∂NΓPMS + ΓQSNΓPQM − ΓQSMΓPQN

ΓSLM =
1

2
GNS (∂LGMN + ∂MGLN − ∂NGML) .

The Ricci tensor and Ricci scalar are defined as the following contractions.

RMN = RQ MQN

R = GMNRMN

Under a conformal transformation the Christoffel symbols transforms as

ΓPMN → 1

2
e2σGQP

(
∂M (e−2σGNQ) + ∂N (e−2σGMQ)− ∂Q(e

−2σGMN )
)

= ΓPMN +
(
−∂MσGNQGQP − ∂NσGMQG

QP + ∂QσGMNG
QP

)

= ΓALM + CPMN

CPMN = −∂MσδPN − ∂Nσδ
P
M + ∂QσG

QPGMN

Plugging this back into the definition of the Riemann tensor and contracting,
one finds that the Ricci scalar transforms as

R→ R+ δR

δR = DM∂Nσ
(
2 [d− 1]GMN

)
+ ∂Mσ∂Nσ

(
−
(
d− 2)(d− 1)GMN

)

Kinetic term Looking again at the scalar action:

S = −
∫
d6x

√
−G

(
GMN∂Mφ∂Nφ− cRφ2

)
(4.7)
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The first term transforms as
√
−GGMN∂Mφ∂Nφ −→

−→ e2σe−dσ
√
−GGMN∂M (esσφ) ∂N (esσφ)

=
√
−GGMN∂Mφ∂Nφ+

+e2σe−dσ
√
−GGMN (esσs∂Mσφ+ esσ∂Mφ) (e

sσs∂Nσφ+ esσ∂Nφ)

=
√
−G

(
GMN∂Mφ∂Nφ+GMN

(
s2∂Mσ∂Nσφ

2 + 2s∂Mσ (∂Nφ)φ+ ∂Mφ∂Nφ
))

Finally the total variation of the Lagrangian density is given by

δS = −
∫
d6x

√
−G{GMN

(
s2∂Mσ∂Nσφ

2 + 2s∂Mσ (∂Nφ)φ
)
+

−c
(
DM∂Nσ(2 [d− 1]GMN ) + ∂Mσ∂Nσ

(
−(d− 2)(d− 1)GMN

))
φ2}

Collecting terms this becomes

δS = −
∫
d6x

√
−GGMN{

(
s2 + c(d− 2)(d− 1)

)
φ2∂Mσ∂Nσ+

+2sφ∂Mσ (∂Nφ)− 2c(d− 1)DM∂Nσφ
2}

From the first term the condition for conformal invariance requires

s2 + c(d− 2)(d− 1) =
(d− 2)2

4
+ c(d− 2)(d− 1) = 0

=⇒
c = −1

4

d− 2

d− 1

= −1

5

With this definition the remaining part becomes

δS = −
∫
d6x

√
−GGMN

{
(d− 2)φ∂Mσ (∂Nφ) +

1

2
(d− 2)DM∂Nσφ

2

}

= −
∫
d6x

√
−G(d− 2)GMNDM

(
1

2
∂Nσφ

2

)

The action is thus invariant up to a total derivative and under the assumption
that the fields vanish at infinity the action is invariant.

4.4.2 Spinors

The spinor term in the action is

Sψ =

∫
d6x

√
Gψ̄ 6D ψ.

The only metric dependence apart from the determinant is contained in the spin
connection in the covariant derivative. Let’s single out that factor and expand
it.

6D ψ = ΓMDMψ

= EMA ΓADMψ

= EMA ΓA
(
∂Mψ +

1

4
ΩBC
M ΓBCψ

)
(4.8)
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The spin connection Ω is given in terms of the vielbeins as

ΩABM = 2EN [A∂[ME
B]
N ] − EP [AEQB]∂PEQCE

C
M

Recall from equation (3.12) that the vielbeins transform as

EMA → eσEMA

EAM → e−σEAM .

Using this the spin connection transforms as

ΩABM → 2eσEN [A∂[M

(
e−σEB]

N ]

)
− e2σEP [AEQB]∂P

(
e−σEQC

)
e−σECM

= ΩABM + 2EN [AE
B]
M ∂Nσ.

Thus the Dirac term transforms as

6D ψ = EMA ΓA
(
∂Mψ +

1

4
ΩBC
M ΓBC

)
ψ

−→ eσEMA ΓA
(
∂M (esσψ) +

1

4

(
ΩBCM + 2EN [BE

C]
M ∂Nσ

)
ΓBC

)
esσψ

= eσ(1+s) 6D ψ + eσ(1+s)
(
EMA ΓAs∂Mσ +

1

2
ENB∂NσΓ

AΓBA

)
ψ (4.9)

The product of gamma matrices can be simplified,

ΓAΓBA =
1

2

(
ΓAΓBΓA − ΓAΓAΓB

)

=
1

2

([
2δAB − ΓBΓ

A
]
ΓA − ΓAΓAΓB

)

= (1− d) ΓB .

Inserting back into (4.9) gives

6D ψ → eσ(1+s) 6D ψ + eσ(1+s)
(
EMA ΓAs∂Mσ +

1

2
ENB∂Nσ (1− d) ΓB

)
ψ

= eσ(1+s) 6D ψ + eσ(1+s)
(
s+

1− d

2

)
EMA ΓAψ∂Mσ.

For this to be conformally covariant the second term needs to vanish. The Dirac
equation is thus conformally covariant if the spinor transforms as

ψ → esσψ

s =
d− 1

2
.

Which in 6 dimensions is

s =
6− 1

2
=

5

2
.
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4.4.3 Form field

The first of the equations of motion

dH = 0

contains no metric information and so is automatically conformally invariant if
H itself does not transform under a conformal transformation. The self-duality
condition on the other hand needs to be checked.

H = ⋆H

⇐⇒
HMNP = − 1

3!

1

3!

1√
−G

GMM1
GNM2

GPM3
εM1M2M3QRSHQRS

= − 1

3!

1

3!

1√
−G

GMM1
GNM2

GPM3
EM1

A1
EM2

A2
EM3

A3
E
Q
B1
ERB2

ESB3
εA1A2A3B1B2B3HQRS

→ − 1

3!

1

3!

1

e−dσ
√
−G

e−2σ−2σ−2σGMM1
GNM2

GPM3
EM1

A1
EM2

A2
EM3

A3
E
Q
B1
ERB2

ESB3
·

·εA1A2A3B1B2B3HQRS

= −edσ−6σ 1

3!

1

3!

1√
−G

εMNP
QRSHM1M2M3

[d = 6] = 0

It might look as though this was only possible in exactly 6 dimensions but the
above reasoning works out equally well in d dimensions for d

2−forms.

4.5 Summary of (2,0) theory in 6 dimensions

The 6 dimensional action for the scalar and fermion fields is

S =

∫
d6x

√
−G

[
iψiΓ

MDMψ
i −DMφ

ijDMφij −
1

5
Rφijφij

]

The equations of motion for the two form is given in terms of its three form
field strength,

dH = 0

H = ⋆H.

This theory is invariant on-shell under the following supersymmetry transfor-
mations,

δψi = i
1

12
ΓMNPHMNP ε

i + iDMφ
ijΓMεj +

2

3
φij 6D εj

δHMNP = 3i∂[M
(
ψ̄iΓNP ]ε

i
)

δφij = ψ[iεj] − 1

4
T ijψCk ε

k,

where the supersymmetry parameters satisfy PMε
i = 0 with

PMε
i = DMε

i − 1

d
ΓM 6D εi.
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The theory is also scale invariant under the transformation,

GMN → e−2σ(x)GMN

ψ → e
5
2
σψ

φ→ e2σφ

H → H

ε→ e−
1
2
σε.



Chapter 5

Circle fibration

A concrete example of a fibration is a brush. The brush consists of a base
cylinder and many fibers attached to it. The mathematical version of this,
attaching many copies of a space to a base space is what is called a fibration.

A circle fibration over a space X is a new space M which consists of the
space X with a circle attached at each point. More precisely the circle fibration
over X looks locally like

M = X × S1.

The space X is called the base manifold and the circle S1 is called the fibre.

Figure 5.1: The green line represents a path in space-time and over each point
on the path is an attached circle.

In figure (5.1) a piece of a surface is drawn together with a path on it. The
space is a circle fibration so over every point on the path we find a circle. The
circles can vary in radius and orientation from point to point.

In our case the base manifold is a 5-dimensional manifold denoted by M5

and the fibration looks locally like

M6 =M5 × S1.
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The coordinate on the circle is taken to be x5 = ϕ. And the range is chosen so
that 0 6 ϕ < 2π.

5.1 Fibre metric

To specify how the circles are connected to the 5-dimensional base manifold we
need to specify the metric on the product M6 =M5 × S1.

When choosing the fibre coordinate ϕ on the six dimensional manifold the
metric can be written in local coordinates as

ds2 = Gµν(x
µ) dxµ dxν +Gµϕ(x

µ) dxµ dϕ+Gϕϕ(x
µ)dϕdϕ.

Note that the metric components are taken to be function on the base manifold
M5.

Thus we have split the metric into terms containing the ϕ dependence and
the 5 dimensional part. This would be the natural way to do the splitting but it
turns out that there is a smarter way to parametrize the metric. Regard instead
the following

ds2 = gµν dx
µ dxν +

(
rdϕ+ θ̃µ dx

µ
)2

,

which by a redefinition of θ̃ can be written as

= gµν dx
µ dxν +r2 (dϕ+ θµ dx

µ)
2

(5.1)

= gµν dx
µ dxν +r2dϕ2 + 2r2θµ dx

µ dϕ+ r2θµθν dx
µ dxν .

Note that in the last expression it is clear that this choice is just a different way
of parametrizing the degrees of freedom in G. The good thing about this is that
r and θ have natural interpretations. The term r2dϕ2 is exactly the metric on
a circle with radius r, and θ now behaves as a gauge potential under coordinate
transformations on the circle. To see this lets do a coordinate transformation
in the circle direction ϕ.

ϕ→ ϕ+ f(x) ⇒ dϕ→ dϕ+ ∂µf(x)dx
µ

Substituting this back into the metric in the form (5.2) gives

ds2 → gµν dx
µ dxν +r2

(
dϕ+ (θµ + ∂µf) dx

µ)
2
.

So we see that θ → θ + df , which looks exactly like a gauge transformation for
θ.

To summarise the choice of metric the components are given by

Gµν = gµν + r2θµθν Gϕµ = r2θµ Gϕϕ = r2 . (5.2)

The inverse metric can then be calculated to be

Gµν = gµν Gϕµ = −θµ Gϕϕ = 1
r2

+ θµθµ . (5.3)

This also implies that the determinant of GMN splits into

G = rg. (5.4)
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If this was Kaluza reduction of gravity [26] then θ would become the electro-
magnetic potential. Here it is a convenient way to parametrize the metric so
that it is easy to see when a term is invariant under coordinate transformations
on the circle. And of course we want all the resulting terms from the reduction
to be invariant since in the end we want to find something that only depends
on the five dimensional manifold. This can now be verified by checking that
all the resulting terms in the 5-dimensional theory should be invariant under
θ → θ + df .

5.2 Vielbeins

The vielbeins are defined by that they form an orthonormal basis in the tangent
space as defined in (3.4). By a slight rearrangement of this condition we get

EAMEAN = GMN. (5.5)

Since the metric has already been chosen on the fibration, some appropriate
vielbeins needs to be found to satisfy relation (5.5). By looking at the individual
components of the metric in the form (5.2), the components of the vielbeins can
be found.

Gϕϕ :

EAϕEAϕ = Gϕϕ = r2

To satisfy this we choose E5
ϕ = r and Eaϕ = 0.

Gµϕ :

EAµ EAϕ = Gµϕ = r2θµ

By the previous choice of EAϕ this becomes

E5
µE5ϕ = r2θµ.

=⇒
E5
µ = rθµ

Finally the Gµν component:

EAµ EAν = EaµEaν + E5
µE5ν

= EaµEaν + r2θµθν

= Gµν = gµν + r2θµθν .

=⇒
EaµEaν = gµν

Thus the 5-dimensional part of the vielbeins needs to satisfy the 5-dimensional
version of condition (5.5).

To make the distinction clear, name the vielbeins with only 5 dimensional
components with a lowercase eaµ. With this choice the vielbeins now have the
following appearance,

Eaµ = eaµ Eaϕ = 0
E5
µ = rθµ E5

ϕ = r
, (5.6)
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where eaµeaν = gµν .
The inverse vielbeins are then given by

Eνb = eνb Eν5 = 0
E
ϕ
b = −θµeµb E

ϕ
5 = 1

r
.

The inverse vielbeins can be found either by calculating the inverse of the
first form or by just raising or lowering with the fibre metric.

5.3 Spin connection

The spin connection is given in terms of contractions of the vielbeins and so it
will split up into a 5-dimensional part and ϕ-part. Using expressions (5.6) the
spin connection, given by

ωAB
M = 2EN [A∂[ME

B]
N ] − EP [AE|Q|B]∂PEQCE

C
M , (5.7)

reduces on the fibration to

ωabϕ = − 1
2r

2eρaeσbFρσ
ω5b
ϕ = eρb∂ρr

ω5b
µ = − 1

2re
ρbFµρ + θµe

ρb∂ρr

ωabµ = ω̃abµ − 1
2r

2θµe
ρaeσbFρσ.

(5.8)

Where Fµν = ∂µθν −∂νθµ and ω̃abµ is the spin connection in 5-dimensions, given

by expression (5.7) but with the 5-dimensional vielbeins eµa instead of EMa .
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Reduction

The dynamics of the 6 dimensional theory is described by the equation of motion
for the fields. When the theory is reduced to five dimensions these equations of
motion will split into parts that depend only on the 5 dimensional manifold and
parts involving the circle coordinate ϕ. As an example lets look at a contraction
of two tensors AM and BN .

AMBN = AµBµ +AϕBϕ

M ∈ {0, 1, . . . 5}
µ ∈ {0, 1, . . . 4}

Note that the index corresponding to the circle coordinate is denoted by ϕ.
The goal of the reduction will be to find a Lagrangian description of the

resulting 5 dimensional theory. Thus, since we already have an action for the
scalars and the spinors we might as well do the reduction of the action directly.
The action for the scalars and the spinors is

S =

∫
d6x

√
−G

[
iψiΓ

MDMψ
i −DMφ

ijDMφij −
1

5
Rφijφij

]
.

It is not obvious that this will reduce to something nice in terms of the five
remaining coordinates but as we will see the result is quite simple although the
calculations are lengthy.

To get an overview of what needs to be done, lets look at the action and try
to see how it depends on ϕ. First there is the determinant of the metric. From
(5.4) we know it splits nicely into the 5-dimensional metric. Next there is the
Dirac terms for the spinors. The contraction splits trivially but the covariant
derivative contains the spin connection which in turn is a contraction of the
metric and it’s derivatives. The spinors live in spin representations of the 6
dimensional Lorentz group and these will split into two parts as well. The
scalar kinetic term is easy since the covariant derivative acts on scalars does
not depend on the connection. Finally the last term contains the Ricci scalar
which is a contraction of the Riemann tensor which in turn is a contraction of
the metric and it’s derivatives.

For form field the equations of motion needs to be reduces and the main
part will consist of the implications of the self-duality condition.
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6.1 Field reduction

From Fourier analysis we know that a periodic function can be represented by
a sum of plane waves with discrete periods. One way to think of a smooth
periodic function is as a smooth function on the circle, in particular a smooth
function is continuous so that when we get back to the same point on the circle
the function necessarily gets back to the same value again. Now let’s say that we
have a wave function on the circle describing a particle, then only momenta that
corresponds to wavelengths that fits in nicely on the circumference of the circle
will be able to propagate. This is exactly the above statement about periodic
function in physical terms.

When one of the coordinates is taken to be a circle the fields will be restricted
to a discrete set of momenta in this direction. If we then take the limit of low
energy only the zero modes of the fields will survive since there will not be
enough energy to excite the first discrete momenta on the circle. This means
that in the low energy limit the fields will not depend on the circle coordinate
since the zero modes of the fields are constant in the circle direction. Lets see
this in more mathematical terms.

Let φ(xM ) be a field on the manifold, where M = {0, 1, . . . , 5}. If now one
of the coordinates, x5 = ϕ is periodic we can single it out and write the field
as φ(xµ, ϕ), where µ = {0, 1, . . . , 4}. If ϕ is the angle coordinate of a circle the
field will have a 2π periodicity and so we can expand it in a Fourier series.

φ(xµ, ϕ) =
∑

p∈Z

φp(x
µ) · epϕi

= φ0(x
µ) +

∑

p>0

φp(x
µ) · epϕi

The coefficients of this series is of course still functions of xµ since it is only an
expansion in the circle coordinate. In the low energy limit we can then throw
away the p > 0 part and thus get

φlow - energy(x
µ, ϕ) = φ0(x

µ)

≡ φ(xµ).

The argument is similar for the form field and the scalar. For a more complete
treatment of these arguments see [27].

In addition to throwing away the non-zero modes we will also rescale the
scalar and the fermion field by the radius r(x) to ensure that five dimensional
fields will have their canonical scaling dimensions. The rescaling takes the form

ψ → ψ

r
√
2π

φ→ φ

r
√
2π

H → H√
2π
.

The extra factor of 1√
2π

is included for convenience to cancel the 2π coming

from integrating over ϕ as will be seen later. In the reduction we will look at
the low energy behavior of the theory and thus only retain the zero modes of
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the fields. This means that in the low energy limit we get a theory that looks 5
dimensional. It is the appearance of this 5 dimensional theory that is the goal
of this chapter.

6.2 Scalar reduction

Ricci scalar In the reduction of the terms involving the scalar field we need
to work out the behaviour or the Ricci scalar curvature under the reduction.

The Ricci scalar is a fully contracted Riemann tensor. To find out what
parts depend on the lower dimensions these contractions needs to be split up
into the five dimensional contractions and the ϕ direction. As before the sixth
index is denoted ϕ = 5.

R = GMNRMN

= GµνRµν + 2GϕνRϕν +GϕϕRϕϕ

= GµνRP µPν + 2GϕνRP ϕPν +GϕϕRP ϕPϕ

= . . .

The Riemann tensor is itself a contraction of the Christoffel symbols which in
turn is a contraction of the metric and it’s derivative. Using the expressions
(5.2) for the metric on the fibration results in that the Ricci scalar consists of
two parts, one which is just the five dimensional Ricci scalar and another part
which depends on the parameters of the fibration, r(x) and θµ(x).

R = R̃− 1

4
r2FµνFρσg

µρgνσ − 2

r
gµνDµDνr (6.1)

Here R̃ is the 5 dimensional Ricci scalar curvature, all the covariant derivatives
are taken with respect to the 5 dimensional geometry and where

Fµν = ∂µθν − ∂νθµ.

6.2.1 Action

Using (6.1) we can see how the full action looks on the fibration,

Sφ = −
∫
d6x

√
−G

[
GMN∂Mφ∂Nφ+

1

5
Rφ2

]

−→
−
∫ 2π

0

dϕ

∫
d5x

√−gr
[
gµν∂µ

(
φ

r
√
2π

)
∂ν

(
φ

r
√
2π

)
+

+
1

5

(
R̃− 1

4
r2FµνF

µν − 2

r
DµDµr

)(
φ

r
√
2π

)2
]

= −
∫
d5x

√−g
[
1

r
gµν∂µφ∂νφ− 2

1

r2
gµνφ∂µr∂νφ+

1

r3
gµνφ2∂µr∂νr

+
1

5

1

r

(
R̃− 1

4
r2FµνF

µν − 2

r
DµDµr

)
φ2

]

To simplify this we can use partial integration to bring the terms into the same
form. Partial integration on the second term gives

−2

∫
1

r2
gµνφ∂µφ∂νr =

∫
(−4)

∂µr

r3
gµνφ2∂νr +

2

r2
gµν (∂µφ)φ∂νr +

2

r2
gµνφ2∂µ∂νr.
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Rearranging terms results in the following identity,

−2

∫
1

r2
gµνφ∂µφ∂νr =

∫
2

r3
gµνφ2∂µr∂νr −

1

r2
gµνφ2∂µ∂νr.

Substituting this back into the action gives

Sφ = −
∫
d5x

√−g
[
1

r
gµν∂µφ∂νφ+

1

r
Dµ

(
1

r
Dµr

)
φ2

+
1

5

1

r

(
R̃− 1

4
r2FµνF

µν − 2

r
DµDµr

)
φ2

]
.

6.3 Three form reduction

Start by splitting up the three form so as to single out the ϕ dependence of the
basis.

H = E + dϕ ∧ F

This is simply a way of organising the components of H into a three form E

and a two form F . From the general arguments of section (6.1) E and F will
not contain any dependence on ϕ. It now remains to see what the self-duality
condition and the equations of motion imply for E and F .

6.3.1 Self-duality condition

The Hodge dual of the three form H in terms of E and F is

⋆H = ⋆E + ⋆(dϕ ∧ F ). (6.2)

Since H is self-dual, this will impose a relation between E and F :

⋆E + ⋆ (dϕ ∧ F ) = E + dϕ ∧ F.

It turns out that using this relation we can completely solve for E in terms of
F . The final relation is

E =
1

r
⋆g F + θ ∧ F.

Where ⋆g is the Hodge dual with respect to the 5-dimensional manifold. This
makes sense since in 5 dimensions a 2-form and a 3-form has

(
5
2

)
=

(
5
3

)
= 10

components, which also coincides with a self-dual 3-form in 6 dimensions. This
means that we can take all the degrees of freedom in F and forget about E as
long as we use the fact that dE = 0 as will be done in the next section.

6.3.2 Equation of motion for F

From the fact that

dH = 0

It follows that

dF = dE = 0
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From the self duality of H it followed that there is a linear relation between E
and F . Thus the condition that E is closed becomes an equation of motion for
F .

dE = d

(
1

r
⋆g F + θ ∧ F

)

= −dr
r2

∧ ⋆gF +
1

r
d ⋆g F + d (θ ∧ F )

= 0

This equation follows from the action

SF =

∫

M

{
−1

r
F ∧ ⋆F − θ ∧ F ∧ F

}

As usual F is regarded as the field strength of some connection A so that

F = dA.

This is true at least locally since we now that dF = 0.
A variation of the connection then simply induces a variation in F as

δF = dδA

The variation of the action SF then becomes

δSF =

∫

M

{
−1

r
[δF ∧ ⋆gF + F ∧ ⋆gδF ]− 2θ ∧ F ∧ δF

}

The θ-term follows from that F is a two form, so in the term where the variation
hits the middle F it can be moved to the right picking up two sign changes.

From the definition of the Hodge dual one can calculate that for p-forms A
and B,

A ∧ ⋆B = < A,B > vold .

Where vold is the volume element, e.g. vold =
√−gd5x in 5 dimensions. Since

the inner product is symmetric, it then follows that

A ∧ ⋆B = ⋆A ∧B.
Using this fact the variation of the action can be written

δSF = 2

∫

M

{
−1

r
⋆g F ∧ δF − θ ∧ F ∧ δF

}

= 2

∫

M

{
−1

r
⋆g F ∧ dδA− θ ∧ F ∧ dδA

}

= 2

[∫

M

d

{
1

r
[⋆gF ∧ δA] + θ ∧ F ∧ δA

}
−
∫

M

{
d

(
1

r
⋆g F

)
∧ δA+ d (θ ∧ F ) ∧ δA

}]

= 2



∫

∂M

{
1

r
[⋆gF ∧ δA] + θ ∧ F ∧ δA

}

︸ ︷︷ ︸
0

−
∫

M

{
d

(
1

r
⋆g F

)
+ d (θ ∧ F )

}
∧ δA,

using relation (3.7).
Demanding this variation to be zero for every δA gives the desired equation

of motion for F .
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6.4 Spinor reduction

Since the spinors are elements in a representation of the Spin group, their re-
duction on the circle fibration is not as transparent as for the scalar and the
2-form. The vector space of spinors is 8 dimensional in six dimensions and 4
dimensional in five, so the reduction is not as simple as throwing away one com-
ponent. The correct way is instead to view the 6 dimensional representation as
a tensor product of two spinor representations in 5 and 2 space-time dimensions.
Such a tensor product representation will be a vector space of dimension 4·2 = 8
which is the correct dimensionality for spinors on a 6 dimensional space-time.

6.4.1 Clifford algebra reduction

Start with a 4 dimensional Clifford algebra represented by the matrices γ0, γ1, γ2, γ3.

{
γa, γb

}
= 2ηab (6.3)

To construct a five dimensional Clifford algebra append a fifth matrix consisting
of the four multiplied together.

γ4 = iγ0γ1γ2γ3

The i ensures that

(
γ4

)2
= 1,

as can be checked by using (6.3).
The full six dimensional algebra can now be created as a tensor product

construction which makes the splitting under the fibration 6 = 5 + 1 explicit.
Take as the six dimensional gamma matrices

Γa = γa ⊗ ρ1

Γ5 = 1⊗ ρ2,

where ρ1 and ρ2 satisfy {ρi, ρj} = 2δij .
These have the correct anticommutation relations to form a six dimensional

algebra. The two dimensional matrices ensure that Γ5 has the right relation to
the other 5 matrices. For example:

{
Γa,Γb

}
= γaγb ⊗ (ρ1)

2
+ γbγa ⊗ (ρ1)

2

= γaγb ⊗ 1 + γbγa ⊗ 1

=
{
γa, γb

}
⊗ 1

= 2ηab (1⊗ 1)

= 2ηabI

The chirality operator in 6 dimensions now take the form:

Γ = Γ0Γ1 . . .Γ5

= γ0γ1γ2γ3γ4 ⊗ (ρ1)
5
ρ2

= −i
(
γ4

)2 ⊗ ρ1ρ2

= 1⊗−iρ1ρ2
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Thus it is natural to define the two dimensional chirality operator as

ρ = −iρ1ρ2. (6.4)

For the reduction calculations a particular choice for this two dimensional alge-
bra needs to be done. Here the first two Pauli matrices will serve that purpose.

ρ1 = σ1

=

(
0 1
1 0

)

ρ2 = σ2

=

(
0 −i
i 0

)

These anticommute and square to one:

ρ1ρ2 − ρ2ρ1 =

(
i 0
0 −i

)
+

(
−i 0
0 i

)

= 0

ρ21 =

(
1 0
0 1

)

ρ22 =

(
1 0
0 1

)

For the particular choice of chirality operator in (6.4):

ρ = −iρ1ρ2
= −i

(
i 0
0 −i

)

=

(
1 0
0 −1

)

The eigenvectors of this operator is

η+ =

(
1
0

)

η− =

(
0
1

)

with eigenvalue ±1 as indicated. Thus chiral 6 dimensional spinors lie in the η+
direction, and antichiral spinors in the η− direction.

The following spinors will come up often in the calculations:

ρ1η+ =

(
0 1
1 0

)(
1
0

)

=

(
0
1

)

= η−

ρ2η+ =

(
0 −i
i 0

)(
1
0

)

=

(
0
i

)

= iη−

So ρ1η+ and ρ2η+ transforms as antichiral spinors.
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6.4.2 Charge conjugation

Both the charge conjugation matrix and the B matrix need to be split as well
into the framework of the above reduction. One possible choice is to start with

B = B5 ⊗ 1.

Letting C = C5 ⊗ C2, where C5 is the unique charge conjugation matrix in 5
dimensions, we see that the six dimensional relation B = CΓ0 implies

B5 ⊗ 1 = C5γ
0 ⊗ C2ρ1.

For this to be consistent we choose C2 = ρ1 so that

B5 = C5γ
0.

It can now be checked that B and C in terms of their splitting satisfies all the
properties of the original B and C. For example,

CΓµC−1 = C5γ
µC−1

5 ⊗ ρ1ρ1ρ1

= (γµ)
T ⊗ ρ1

= (γµ)
T ⊗ ρT1

= (Γµ)
T
,

which is the same result as equation (2.5).

6.4.3 Spinors

By the choice basis for the 2-dimensional Clifford algebra we can choose the
spinors ψ and the supersymmetry parameters ε to split according to

ψi = λi ⊗ η−

εi = εi ⊗ η+.

With these definitions they have the same chirality properties as in the full
6-dimensional theory. For example,

Γψi = (1⊗ ρ)
(
λi ⊗ η−)

= λi ⊗ (−η−)
= −λi ⊗ η−

= −ψi.

6.4.4 Spinor action

The action for the six dimensional spinors is

Sψ =

∫
d6x

√
−GiψiΓMDMψ

i

=

∫
d6x

√
−GiψiΓAEMA DMψ

i.
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Using the explicit splitting of the spinor representation from the reduction of
the Clifford algebra and rescaling with the radius r(x) the spinor ψ splits as

ψi =
1

r
√
2π
λi ⊗ η−.

Using the expressions for the vielbeins (5.6) and the spin connection (5.8) the
action above can be expanded to find that

Sψ =
1

2π

∫
d6x

√
−G

[
i

r2
λiγ

µDµλ
i − 1

2

i

r3
∂µrλiγ

µλi +
1

8

1

r
eρbeµcFµρλiγcbλ

i

]
⊗ η

†
−η−.

The second term is identically zero since,

λiγ
µλi =

(
λiγ

µλi
)T

= −
(
λi
)T

(γµ)
T
CTλi

=
(
λi
)T
CC−1 (γµ)

T
Cλi

=
(
λi
)T
Cγµλi

= −λiγµλi.

The determinant of the metric splits according to (5.4) and since nothing de-
pends on the ϕ direction we can perform the ϕ integral.

Sψ =

∫
d5x

√−g
[
i

r
λiγ

µDµλ
i +

1

8
eρbeµcFµρλiγcbλ

i

]
⊗ η

†
−η−

Finally note that we can choose the basis of the two dimensional algebra η± to
be normalised so that η†−η− = 1. Thus the right tensor factor reduces to the
identity and we are left with the 5 dimensional action

Sλ =

∫
d5x

√−g
(
i

r
λiγ

µDµλ
i +

1

8
Fµρλiγ

µρλi
)
.

This action contains the usual Dirac term, although with a varying coupling 1
r
,

but also contains an additional term depending on θµ.

6.5 Supersymmetry reduction

6.5.1 Scalars

The supersymmetry transformation for the scalar field reduces to

δφij = ψ[iεj] − 1

4
T ijψk ε

k

=
(
ψ[i

)T
Cεj] − 1

4
T ij (ψk)

T
C εk

=

((
λ[i

)T
⊗ ηT−

)
(C5 ⊗ ρ1)

(
ε̃j] ⊗ η+

)
− 1

4
T ij

(
(λk)

T ⊗ ηT−

)
(C5 ⊗ ρ1)

(
ε̃k ⊗ η+

)

= λ[iε̃j] ⊗ ηT−ρ1η+ − 1

4
T ijλk ε

k ⊗ ηT−ρ1η+

=

(
λ[iε̃j] − 1

4
T ijλk ε

k

)
⊗ 1.
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6.5.2 Two form

Starting with the supersymmetry transformation for the field strength H,

δHMNP = 3∂[M

(
EANE

B
P ]ψ̄ΓABε

)
.

From section 6.3 the remaining degrees of freedom after reducing the three form
are contained in just the two form F . Therefore we want to find what the above
transformation implies for F .

From the splitting,

H = E + dϕ ∧ F,

we see that the transformation for F will be given by the ϕ components of δH.

δFµν = δHµνϕ

Carrying out this computation, using the reduced expressions for the vielbeins
and spinor bilinear it is found that

δFµν = 2iD[µ

(
λ̄γν]ε̃

)
.

6.5.3 Penrose condition

The Penrose condition for the supersymmetry parameters ε in 6 dimensions is
given by

PMε = 0,

where

PMε = DMε−
1

6
ΓM 6D ε.

The reduction of PM on the circle fibration consists of two parts, Pµε and Pϕε.
Combining the information from the two we get a condition in five dimensions

Pµε = Dµε̃−
1

6
γµ ˜6Dε̃+

i

4
rFµργ

ρε̃− i

8

1

d
rFρσγµγ

ρσ ε̃+

−1

2

1

d

1

r
∂ρrγµρε̃−

1

2

1

d

1

r
∂µrε̃.

This can be further reduced by contracting with γµ to give

Dµε =
1

2

1

r
∂ρrγµρε+

1

2

1

r
∂µrε−

i

8
rFρσγµγ

ρσ ε̃− i

4
rFµργ

ρε. (6.5)

6.5.4 Spinors

Starting from super symmetry transformation in 6 dimensions for the spinor
fields,

δψi = i
1

12
ΓMNPHMNP ε

i + iDMφ
ijΓMεj +

2

3
φij 6D εj ,
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going through the same procedure of reduction as before it is found after some
computation that

δλ = −1

2
Fνργ

νρε̃− 1

12
rFνρφγ

νρε̃− 2i

3
r∂µrφγ

µε̃+ i∂µφγ
µε̃+

2

3
φ˜6Dε̃.

Using relation (6.5) this can be further reduced to

δλ = −1

2
Fνργ

νρε̃i +
1

2
rFνρφ

ijγνρε̃j + i
1

r
∂µrφ

ijγµε̃j + i∂µφ
ijγµε̃j .



Chapter 7

Results

7.1 Summary of reduction

Combining the result from the scalar, form and spinor reductions the action is

S =

∫
d5x

√−g
[
i

r
λiγ

µDµλ
i +

1

8
Fµνλiγµνλ

i − 1

2r
FµνF

µν − 1

4
θµFνρFστε

µνρστ+

−1

r
gµν∂µφ

ij∂νφij −
1

r
Dµ

(
1

r
Dµr

)
φ2 − 1

5

1

r

(
R̃− 1

4
r2FµνF

µν − 2

r
DµDµr

)
φ2

]
.

The six dimensional Penrose condition on the supersymmetry parameter reduces
to the following condition in five dimensions for the supersymmetry parameters
εi.

Dµε
i =

1

2

1

r
∂ρrγµρε

i +
1

2

1

r
∂µrε

i − i

8
rFρσγµγ

ρσεi − i

4
rFµργ

ρεi.

The 6 dimensional supersymmetry variations reduce to

δλi = −1

2
Fνργ

νρεi +
1

2
rFνρφ

ijγνρεj + i
1

r
∂µrφ

ijγµεj + i∂µφ
ijγµεj

δFµν = 2iD̃[µ

(
λiγν]ε

i
)

δφij = λ[iεj] − 1

4
T ijλk ε

k.

The main result is now that the action as given above is invariant under these
supersymmetry transformations if ε satisfies the reduced Penrose condition. The
calculations, although lengthy, are straight forward variation and substitution
with the above definitions.

Note that the coupling “constant” is no longer constant, the function 1
r(x)

depends on x. In the same manner the terms containing F are also x dependent,
but neither x nor θµ are dynamic fields.

Also note the appearance of the θ-term in the action for the 2-form F . This
is to be compared with the θ-term discussed in [28] which in d = 4 super Yang-
Mills gives rise to S-duality. Here the term arises naturally from the geometry
of the 6 dimensional manifold. Upon further compactification this term would
result in exactly the θ-term of the 4 dimensional theory but also additional
terms.
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In conclusion the classical 6-dimensional free (2,0) theory on a circle fibration
over a 5-dimensional manifold reduces in the low energy limit to a 5-dimensional
theory with a Lagrangian description where the Lagrangian is supersymmetric.

7.1.1 Product metric

Note also that if we take the fibre metric to be the product metric by assuming
r constant and θµ = 0, the Lagrangian reduces to

S =

∫
d5x

√−g
[
i

r
λCi γ

µDµλ
i − 1

2r
FµνF

µν − 1

r
gµν∂µφ

ij∂νφij

]
. (7.1)

And the supersymmetry variations to

δλi = −1

2
Fνργ

νρε̃i

δFµν = 2iD̃[µ

(
λiγν]ε̃

i
)

δφij = λ[iε̃j] − 1

4
T ijλkε̃

k.

With ε satisfying Dµε
i = 0.

Note that the reduced Penrose condition now reduces further to the condition
that ε should be covariantly constant. This turns out to have quite strong
implications for the geometry, in particular we can form the combination

[Dµ, Dν ] ε =
1

4
R̃µνabγ

abε.

Since the left hand side is zero, after some manipulations, this gives the condition
R̃µν = 0. This of course also implies R̃ = 0 so there is no such term in (7.1).

The resulting theory is the free N = 4 supersymmetric Yang-Mills theory in
5 dimensions.

7.2 Outlook

One could say that the existence of a supersymmetric Lagrangian formulation
on the circle fibration of the free theory is a positive sign of a consistent theory
in 6 dimensions. It is certainly not suprising that the reduced equations of
motions are supersymmetric, but that they extend to a supersymmetric action
is at least a first step.

In the end one would like to make contact with the interacting theory and
one of the motivations of the circle fibration is that this extension comes about
naturally. In particular, since the reduced theory in 5 dimensions looks exactly
like a free supersymmetric Yang-Mills theory the extension to an interacting
theory in 5 dimensions is immidiate. The 2-form in 6 dimensions reduced to a 1-
form in 5 dimensions which is precisely the correct setting for a gauge potential.
If the fields are then placed in representations of a gauge group, and the 1-form
is promoted to a connection, we have an interacting theory in 5 dimensions.
The hope is that there will be natural extension of the reduced action to a
supersymmetric interacting theory in 5 dimensions. This interacting theory
in 5 dimensions would then hopefully give some new hints for the interacting
theory in 6 dimensions.
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