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GUSTAV SUNDIN
Department of Computer Science and Engineering
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Abstract

In order to maintain a system’s security properties during evolution, it is important
to follow a principled way of evolution. Doing so will decrease both the time needed
to be spent on evolution as well as the number of security risks and other errors
that might arise during the process. One such principled way of evolution is to
use change patterns. A change pattern always covers the evolution of two closely
intertwined artifacts on different levels of abstraction (such as requirements and
software architecture), and gives a principled way of evolving one of the artifacts
based on the changes made to the other.

In this master’s thesis, a VoIP system known as Cryptify Call is evolved with the
purpose of identifying at least one such change pattern. The goal of the thesis is
more specifically to find a general solution on how to evolve a system from secure
one-to-one into secure many-to-many communication, without violating any of the
system’s security requirements along the way. Two alternative solutions to this
problem are identified for the Cryptify Call system, which are then expressed as
abstract and context-free change patterns. This ensures that the identified solutions
are applicable not only to the Cryptify Call system or other VoIP applications, but
to any type of system with a suitable software architecture. Both of the identified
change patterns cover how the system’s software architecture has to evolve due to
changes made to the system’s functional requirements.

In order to identify these change patterns, the Cryptify Call system’s software archi-
tecture and security requirements had to be modeled using UML and SI* notation
respectively, both before and after evolution. The most important roles in the soft-
ware architecture for each of the solutions were then mapped to a template showing
the architectural-level transformation necessary to apply that change pattern. While
two alternative change patterns are given in the thesis, only one of them was actually
implemented in the Cryptify Call system.

Keywords: secure software evolution, change patterns, multiparty communication,
multicall, secure communication, action research.
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1
Introduction

A large part of the budget at many software companies today is spent on evolving
existing software, for example to conform to new environments or changing require-
ments. Any streamlining of the evolution process could therefore lead to substantial
savings, both in terms of time and money. The fast pace in the field of software
and the ever rising number of software systems in use further increases the need of
robust methods and tools to use during evolution.

This master’s thesis intends to add a piece of knowledge to the field of software
evolution research by investigating the relationship between evolution and security.
This is done by evolving a secure telecommunications system into supporting secure
multiparty calls. This introductory chapter begins by giving some background to
the thesis in section 1.1, and continues by defining the research question and purpose
of the thesis in sections 1.2 and 1.3. How the thesis was conducted and the research
methodology followed is described in sections 1.4. Some possible limitations to the
validity of the thesis’ findings are mentioned in section 1.7 and finally the structure
of the rest of the thesis is described in section 1.8.

1.1 Background

Software evolution is always associated with some amount of risk, since every time
the code changes; there is a probability that new bugs are introduced with the change
[26]. Security bugs are no exception, and therefore security flaws have a tendency
to accumulate as the software evolves unless actively counteracted [36]. While some
research has been done in this area, not much of it focuses on the security aspects
of evolution. How to guarantee that security requirements are maintained during
software evolution is therefore still an area open to research. The motivation behind
this thesis is thus to shed some light on the role of security in relation to the co-
evolution of requirements, architecture and implementation.

In this thesis, a software system used for conducting secure voice and text communi-
cation is evolved into also supporting secure multiparty calls. Throughout the whole
process of evolution, focus lays on finding ways to minimize the risk of introducing
any security flaws. One way to do that is to follow a principled process of evolution,
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1. Introduction

for example based on change patterns, a concept introduced by Yskout, Scandari-
ato and Joosen [51]. A change pattern (or pattern of co-evolution) is a principled
way of co-evolving two related artifacts, for example requirements and software ar-
chitecture. Based on the changes to one of the artifacts, the change pattern gives
guidance on how to transform the second artifact. This can help streamlining the
evolution process, and will guarantee a sound result as long as the change pattern
itself is sound [51]. The specific purpose of this study is to come up with at least
one change pattern that can generalize the evolution of any software system mov-
ing from a one-to-one communication paradigm into also supporting many-to-many
communication, without jeopardizing any of the system’s security properties. Such
a change pattern could prove of great use to software developers evolving similar
pieces of software in the future.

1.2 Problem Statement

A software system can be described on different levels of abstraction, for example
on the requirements, architectural or implementation level. Any changes on one of
these abstraction levels will need to propagate to all other levels in order to keep
the system and its specification coherent. This is a time consuming and error-prone
process that could potentially be made more efficient, for example by the use of
change patterns. In theory, following such a principled way of evolution could help
keeping the process on a high level of abstraction and reduce the effort needed to be
spent on evolution [14]. As long as the change pattern itself is sound, the resulting
software can also be guaranteed to be sound, greatly reducing the risk of introducing
security issues of any kind.

In order for this approach to be useful though, a sufficiently large set of change
patterns needs to be defined. And as the idea of using change patterns during
evolution is still very young, not many change scenarios have been covered with
precise patterns yet. A change pattern guiding the transition from one-to-one into
many-to-many communication is one such pattern that still is missing. Therefore
the following questions are the main research questions to be discussed in this study:

Is it possible to find one or more general solutions on how to evolve a system from
secure one-to-one into secure many-to-many communication? How can such a solu-
tion be expressed in the form of a change pattern?

1.3 Purpose of the Study

The scope of the study is to investigate how security related changes on the archi-
tectural level are caused by changing requirements, and then in turn propagated to
changes in the actual code. These changes can for example be changes to security

2



1. Introduction

requirements, or changes to other requirements that are in turn affected by overlay-
ing security constraints. Either way, it is desirable to be able to perform the change
at such a high level of abstraction as possible. This will both prevent eroding the
software architecture as well as giving the developers a better understanding of the
implications of the change.

The results of this study – two separate change patterns on how to evolve a secure
one-to-one communication system into also supporting secure multiparty commu-
nication – will hopefully be of use to practitioners working with software evolution
in the industry. Even though it focuses mostly on the communication and security
aspects of evolution, it can hopefully be combined with the findings of future studies
in the same direction to form a more complete picture of the process of software
evolution. The findings of the study will also act as a building block and a source
of inspiration for future research in the field of software evolution.

1.4 Research Methodology

In order to answer the research questions specified in section 1.2, a study was per-
formed at the company Cryptify AB, located in Kungsbacka, Sweden. Cryptify
AB maintains and develops secure telecommunications applications for making en-
crypted voice calls and sending text messages. The company is specialized in soft-
ware security, which meant that the security-related aspects of evolution could be
studied in great detail. The specific system studied in this thesis is a smartphone
application that is to be evolved from only allowing one-to-one phone calls into also
supporting many-to-many communication (telephone conferences). This system,
known as Cryptify Call, will be described in chapter 3.

The study was carried out using the action research methodology [13], which basi-
cally means that a real-world problem is solved by the researcher(s) and that the
experience gained during this process is continuously reflected upon and analyzed
in order to be able to draw general conclusions regarding the problem being inves-
tigated [18]. This flexible approach enables practical problem solving and research
to be conducted simultaneously [15]. In the case of this specific study, the problem
to be solved was to evolve the secure one-to-one communication system of Cryptify
Call into also supporting secure multiparty communication, while at the same time
identifying at least one change pattern covering this change scenario.

Action research first emerged as a research methodology in social psychology in the
mid 1940s [6] and has been used when studying software and information systems
since around 1985 [47]. Action research is based upon the idea that the act of
performing an action leads to a deeper understanding of it, and it is for this reason
not necessary to have a strict distinction between researchers and practitioners in
an action research study [6]. Instead, the researchers involved in action research are
supposed to both contribute practically to solving the problem being studied (i.e.,
perform actions) and observe it (i.e., do research) [6]. Another key aspect of action

3



1. Introduction

Figure 1.1: A cycle in the iterative action research methodology begins with a
diagnosis in order to identify the problem that is to be solved. Next comes the action
planning step, where a set of actions for how the problem can be solved is decided
upon, based on the theoretical framework laying the foundation for the study. These
actions are carried out in the action taking step and evaluated in the evaluation step.
Finally comes the reflection step, where the knowledge gained during the other steps
is analyzed in order to construct or refine some sort of theoretical results and/or
to provide input for the next cycle in the iterative process. The reflection step is
the most important part of the action research methodology, and it is usually an
ongoing process instead of being confined to the end of each iterative cycle [6].

research is collaboration [6], which means that the researcher should strive to work
together with domain experts as much as possible. In the same way, these domain
experts or other participants of the study are also encouraged to contribute to the
scientific and theory-building aspects of the study as well [6].

The main motivation behind all action research studies is to make a contribution
of scientific knowledge to the research community, but almost as important is to
help a client or organization (Cryptify AB in the case of this specific study) to solve
the practical problem being investigated. An action research study can therefore be
expected to give benefits to both the research community as well as to the client or
organization itself, but to count as action research the study must be based upon a
theoretical foundation of previous research [6]. The theoretical background of this
master’s thesis will be presented in chapter 2.

Action research studies commonly uses an iterative approach, as the one visualized
in figure 1.1 [6] [13]. Doing so enables the researchers to continuously reflect upon

4



1. Introduction

and analyze their observations in order to be able to draw conclusions and produce
some sort of results. With this iterative process in mind, the study was divided into
the following subtasks:

• First, the current architecture of the Cryptify Call system was visualized using
UML notation (step 1 in figure 1.2). The model was then complemented by a
trust model showing the security requirements that the system needs to fulfill.
The relevant features in the system’s trust model were also mapped to the
corresponding components in the software architecture, in order to know which
changes that might affect the system’s security requirements. The conduction
of this step and the resulting models are presented in chapter 3. This step was
carried out by the author of the thesis alone, but the resulting architectural
and trust models were verified by domain experts at the company.

• Next, the system’s architecture was evolved in order to conform to the new
requirements. The evolved architecture and trust model of the system were
also visualized, again using UML notation (step 3 in figure 1.2). This step was
performed by the author of the thesis in collaboration with the company and
using the iterative process shown in figure 1.1. The evolved architecture and
trust model is described in chapter 4. At this point, an alternative approach on
how to evolve the architecture was also identified. This alternative approach
was also modeled, and is presented as the alternative change pattern given in
section 5.2.

• The code of the system’s implementation also had to be evolved (step 2 in
figure 1.2) in order to correspond to one the new architectures identified in the
previous step. This step was also carried out by the author of the thesis using
the iterative process shown in figure 1.1 and validated by domain experts at
the company. The implementation of the evolved architecture is described in
section 4.4.

• Finally, the findings of the study were summarized by the author in the form of
two separate and context-free change patterns (see chapter 5). These change
patterns are based upon the knowledge gained and documented in the project
log during the previous steps of the study.

1.5 Data Collection

As the main intent of this thesis is to extend the currently existing literature on
software evolution with at least one new change pattern, the thesis can be described
as theory-driven action research, using the terminology of Dick [15]. But in order
to be able to express the general change patterns in chapter 5, some data of course
first had to be gathered and analyzed. In this section, the data collection strategy
used throughout this thesis project will be described, as it is important to clearly
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1. Introduction

Figure 1.2: This figure shows the process of software evolution. A set of software
artifacts are evolved through a set of transitions. The dashed arrows show that
a change in the code is usually caused by the software architecture being evolved,
which is in turn usually caused by a change in the system’s requirements.

specify the techniques that will be used to gather empirical data when following the
action research methodology [6].

The data which was collected during the study consists of the artifacts shown in
figure 1.2 (requirements, architecture and code), both before and after evolution, as
well as the transitions used to evolve these artifacts. By analyzing these transitions,
it has been possible to identify two separate solutions for how to evolve a software
architecture into supporting many-to-many communication between the system’s
end users, and to express these two solutions as two context-free change patterns.
Both of these change patterns were identified by observing a change in the system’s
trust model. These changes in turn led to some changes in the software architecture
of the system, which are captured in the form of an architectural-level transformation
for each of the identified change patterns.

The necessary data about the transitions that the different artifacts went through
was gathered by the author of the thesis through a detailed log of the actions per-
formed during the evolution process. The actual artifacts themselves were recorded
and stored in a Git repository, making the initial and the evolved versions accessi-
ble, as well as all intermediate steps. The combined use of a Git repository and a
detailed log of all changes performed while evolving the software made it possible
not only to keep track of which components that had changed and in what way,
but also why. This ensured that the rationale behind each design decision was not
lost. By recording all data in this way, it was also possible to analyze and interpret
it continuously throughout the thesis project, and finally summarize the knowledge
gained during the project in the form of two context-free and generally applicable
change patterns.
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1.6 Contributions

The main contribution of this master’s thesis consists of the two identified change
patterns that are presented in chapter 5. One of these patterns was also applied to
the Cryptify Call system during the case study, both on an architectural level and
implemented by the author of this thesis in the actual code. This implementation
later acted as the foundation to the code for supporting conference calls that has
now been put into production by the company, and is about to be released to the
end users of the Cryptify Call system. The second identified change pattern could in
theory also been have implemented in the Cryptify Call system, but the performance
restrictions in many of the smartphone devices used by the end users of the Cryptify
Call system today meant that this solution would not work very well in practice.
Therefore, in combination with the thesis’ time constraints, a decision was made by
all the involved stakeholders not to implement this solution. This decision will be
discussed in further detail in sections 4.1 and 6.1. The change pattern that was not
implemented is still included in this thesis for the reason that the pattern is still
applicable to other systems with less strict performance requirements.

1.7 Threats to Validity

In this section, some threats to the validity of the findings from this study will be
discussed. These threats have been classified according to the scheme used by Rune-
son and Höst [42], namely by sorting them into the following categories; construct
validity, internal validity, external validity and reliability. Construct validity refers
to the validity of the research questions and methodology used in the study, internal
validity covers concerns about causal relations in the study (in other words, what is
the cause and what is the effect of various observations), external validity specifies
whether the findings of the study can be generalized or not, and the reliability of the
study takes into account how much the individual researcher(s) behind the study
have influenced its outcome [42].

One thing that is important to keep in mind is that neither of the two identified
change patterns can ever be used in order to improve the security of the system
to which they are applied. Instead, both of the change patterns only strive to
guarantee that no new security risks of any kind will be introduced to the system
when it is evolved according to that change pattern. This means that it will not be
possible to detect or remove security risks that already exist in the system before
evolution by using any of these patterns. That both of the two identified change
patterns guarantee that no new security risks will be introduced during the evolution
process, at least when applied to the Cryptify Call system, has been verified through
a detailed threat model analysis carried out by the author in collaboration with
domain experts at Cryptify AB (see section 1.7.1). However, this does not necessarily
mean that the soundness of the change patterns can be guaranteed when they are
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1. Introduction

applied to other systems, as will be discussed in section 1.7.3 below.

1.7.1 Construct Validity

Since the author of this thesis only had limited control over the environment in
which the study was conducted, it would have been very problematic to conduct the
study as a traditional experiment with the aim of proving or rejecting a scientific
hypothesis, for example by singling out and investigating just a single variable.
Instead, a decision was made to follow the action research methodology, in which a
problem is studied in its natural real-world environment in all its complexity [15].
This type of research is well-suited in many cases when the goal is to draw general
conclusions from a concrete real-world scenario, as it in a real-life setting might be so
many factors and variables affecting each other that singling out just a single one of
them would become more or less meaningless [15]. However, it is important to point
out that all action research is subject to some inherent characteristics. According
to Checkland and Holwell, an action research study can never claim an as strong
truth claim as for example a controlled experiment [11]. Nevertheless, some claim
of truth can be made, as long as the study is properly structured, and it is usually a
claim that is stronger than a mere plausibility, according to the same authors [11].
Another characteristic of action research, that actually strengthens the construct
validity of this thesis, is the fact that each iteration of the process visualized in
figure 1.1 provides the opportunity of trying out the results that have been achieved
during the previous iterations in practice [15].

Instead of proving or rejecting a scientific theory, an action research study aims at
identifying more general conclusions or themes of knowledge [11]. Therefore this
study and its research questions were designed with the aim of achieving results
that are as generally applicable as possible, while at the same time making sure
that the intermediate problem of adding secure multiparty support to the Cryptify
Call system was solved during the process. That the author’s university supervisor
is a leading expert within the field of change pattern research strengthens the claim
that the thesis is properly constructed and that the two resulting change patterns
are sound.

When it comes to the validity of the two change patterns themselves, they have
both been shown to fulfill the goal of adding support for secure multiparty com-
munication without introducing any new security risks of any kind, at least for the
Cryptify Call system. This was shown by a threat model analysis [30] [1] that was
conducted on both of the identified architectural solutions by the author of the the-
sis in collaboration with several experts in software security at Cryptify AB. The
actual change patterns themselves have also been verified by the author’s university
supervisor. However, there is still a possibility that these patterns are only appli-
cable to the specific context of the Cryptify Call system, and not to any software
system in general as is desired. This will discussed further in section 1.7.3.

8



1. Introduction

One additional risk to the validity of the alternative change pattern (see section 5.2)
is the fact that this pattern was only described theoretically and never implemented
in the Cryptify Call system. This of course leads to a small risk of the architectural
design being flawed in some way, but as no actual implementation is necessary in
order to perform a threat model analysis, this risk should be minimal.

1.7.2 Internal Validity

A performance evaluation (see section 4.5) was carried out in order to test the per-
formance of the implemented solution in the Cryptify Call system. However, due to
the high variance in the gathered data samples, it was not possible show any statis-
tical significance of the positive results. This means that these results could as well
be the result of chance. Unfortunately, it was not possible to gather more test data
due to the time constraints of the thesis project. However, this fact does not have
any implications for the validity of the implemented change pattern for two reasons.
First, performance is to a large extent a question of implementation-level details
rather than architectural-level design decisions. More importantly however, is that
neither of two change patterns described in this thesis strives to achieve the best
possible performance whatsoever. Instead, both of the two described change pat-
terns only set out to guarantee that the security level before evolution is maintained
also after the evolutionary process is done.

1.7.3 External Validity

The two change patterns identified by the author of this thesis are both shown to
be applicable to at least the Cryptify Call system1, which has been verified by both
experts at Cryptify AB and by the author’s university supervisor. However, this
does not mean that these patterns can be guaranteed to work for just any arbitrary
system. In order to do so, further studies would have to be conducted where the
change patterns are applied to other systems as well.

As already stated, most action research aims at identifying general lessons by study-
ing a practical problem in a complex real-world scenario, as opposed to proving or
rejecting a scientific hypothesis by for instance studying some single variable [11].
This means that most action research studies carry low external validity, which sim-
ply is an inherent characteristic of action research that is difficult to tackle [11] [29].
However, measures were taken in order to express both of the change pattern in an
as general and context-free way as possible, but a change pattern obviously still have
to keep some level of concreteness in order to be of any use at all when it is to be
applied. The belief of the author of this thesis is therefore that both of the change

1However, as already stated, only one of the two change patterns were actually implemented in
practice in the Cryptify Call system. The reasons behind this decision will be discussed further in
sections 4.1 and 6.1
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patterns described in chapter 5 should be applicable to at least other systems with a
similar software architecture and a similar trust model to the Cryptify Call system.
Regardless of how generally applicable the results of this thesis will prove to be, the
findings should at least be able to use as part of the foundations for future research
within the field of change patterns or secure software evolution in general.

1.7.4 Reliability

The greatest threat to the reliability of this thesis is the fact that the results are
based on data that to a large extent is qualitative and interpretive. This means that
some other researcher or research team that carried out an identical study could
have drawn different conclusions and achieved slightly different results than those
presented in this thesis. However, this threat is to some extent mitigated by the
collaborative aspects of action research [6]. This is because all design choices and
other important decisions were taken by the author, the university supervisor and
the managers and domain experts at the company in collaboration. In the same
way were all results of the thesis continuously reviewed and confirmed by all of
these stakeholders. This means that all actions performed during the thesis project
are well-grounded in both theory and in practical domain knowledge, and should
therefore strengthen the reliability of this study [6].

Another reliability threat is the bias introduced by the fact that the author has acted
as both researcher and participant of the study, but this dual researcher/participant
role is of course inherent in all action research, and is also to some extent mitigated
by the collaborative aspects of action research described above [6].

Finally it should be said that the managers at Cryptify could sometimes have con-
flicting goals to those of the supervisor and the examiner at the university. In order
to cope with this problem, a senior programmer/team leader at Cryptify was ap-
pointed to act as a dedicated company supervisor for the thesis project, which greatly
helped when deciding how to best meet the goals of the different stakeholders.

1.8 Structure of the Thesis

The rest of this thesis is structured in the following way. Chapter 2 gives the
background and theoretical framework of the thesis by summarizing the current
state of research in the field of software evolution, as well as introducing a couple
of important concepts. Chapter 3 gives a description and an architectural model
of how the Cryptify Call system looked before evolution, and chapter 4 describes
how the system had to change in order to conform to the new requirements. The
findings of the study are summarized in the form of a change pattern in chapter 5.
The thesis ends with a discussion on these findings in chapter 6.
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2
Related Work and Foundations

This chapter covers the state of current research in the field of software evolution,
including the sub-fields of secure software evolution (section 2.2) and model-driven
software evolution (section 2.3). Section 2.4 briefly introduces a couple of important
concepts in the scope of this specific study, namely SI* notation (section 2.4.1),
change patterns (section 2.4.2) and identity-based public key cryptography (sec-
tion 2.4.3).

2.1 Software Evolution

Since the famous laws of evolution was first formulated by Manny Lehman back in
1980 [31], quite a lot of research has been done in the field of software evolution.
Nowadays, software evolution is considered crucial in preventing software aging, of-
ten referred to as software decay, a phenomenon that is (usually) caused by changes
in the software’s environment [34]. A foundation for a theoretical framework for
helping software architects planning for software evolution has been proposed by
Garlan et al. [23] and further elaborated by Barnes [3]. Yet many questions still
remain unanswered, and very little has been written about concrete tools and tech-
niques to use during software evolution [9]. Much of the research that do exist
on software evolution focuses on topics such as how to prepare an architecture for
evolution, management-related issues, reverse engineering and modelling techniques
[34] [9]. Unfortunately, a majority of these studies are case studies, which means
that their findings might not be as generally applicable as desired [9].

In a paper from 2009, Ernst, Mylopoulos and Wang [21] state that requirements
evolution is a field which will require much research in the near future. The root
cause of change is still an area open to research, but it can generally be assumed
that changing requirements - either due to new business needs or to changes in the
system environment - is the main motivation for most software evolution [21]. But
even if most evolution is caused by changing requirements, most existing research
instead focuses on other aspects such as design and code [21][38]. For example, Bass,
Clements and Kazman [7] have come up with a set of design principles on how to,
already from the design phase, make a software architecture as easy to evolve as
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possible. Some other key research topics that are identified in the study by Ernst
et al. are inventing tools for evolving requirements and implementing requiremental
changes, as well as identifying what characterizes high variability in a design – in
other words; a design that is well suited for evolution [21].

In a paper from 2005, Mens et al. summarize a set of research challenges concerning
software evolution [33]. In the paper, they state that there is a huge need for
finding tools and techniques that support co-evolution between different types or
representations of software artifacts. Other research challenges noted in the same
paper are the need for tools and techniques to preserve or improve software quality
over time as well as a theoretical model of software evolution. Some advances have
been made since then, for example by Ernst, Borgida and Mylopoulos [20]. In their
paper, they investigate the relationship between requirements and evolution, but at
the same time point out that the co-evolution challenge mentioned by Mens et al.
[33] is yet to be solved. This thesis aims to contribute with a piece of knowledge,
in the form of two change patterns, that will help in partly solving this co-evolution
problem.

Much current research also focuses on making software systems self-adaptive by
planning for future changes already in the system’s design phase [21], an area which
is outside of the scope of this master’s thesis.

2.2 Secure Software Evolution

Security requirements engineering is widely recognized as an important aspect of
software engineering, and its importance has come to grow during later years based
on the idea that security issues need to be addressed early during the design pro-
cess [22]. As a result, a variety of tools and techniques to help managing security
requirements have been developed during the last 10-15 years [38]. However, only
a few of these take software evolution into account [38]. To address this problem,
Nhlabatsi, Nuseibeh and Yu [38] have suggested that the field of security require-
ments engineering should be combined with the field of software evolution, resulting
in what they choose to call security requirements engineering for evolving systems.
Regardless of the lack of research in this field, it is an important aspect of software
evolution since security vulnerabilities in a system can arise both from changes in
the external environment and from internal evolutionary changes [22]. Therefore the
goals of secure software evolution research can be summarized as finding out how to
maintain security properties during software evolution and how software evolution
impacts security requirements.

One tool that actually puts security requirements engineering into a evolutionary
context is SeCMER, a tool for managing evolving requirements and automatically
detecting any violations of the systems security properties, developed by Bergmann
et al. [8]. Another method for detecting changes to security properties is the Ope-
nArgue tool developed by Yu et al. [53]. OpenArgue uses the argumentation tech-
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nique introduced by Haley et al. [25] in order to validate that certain security
properties are fulfilled in an evolved software architecture.

The goals of this thesis correspond to the goals of secure software evolution research
proposed by Nhlabatsi, Nuseibeh and Yu [38]; namely to find a way of guaranteeing
that the security properties of a system are maintained during the evolution of that
system. It is important to once more point out that this thesis does not aim to
find a way of increasing the level of security a system has, but only preventing the
system’s security from weakening during evolution.

2.3 Model-Driven Evolution of Security Artifacts

Model-driven engineering holds great potential for improving software evolution pro-
cesses [14]. The main idea is to work with different types of models instead of the
actual code when performing both development and evolution. By raising the ab-
straction level in this way, many advantages can be gained; the effort needed to be
spent on developing or evolving software will be reduced, the developers will get a
better overview of the software and the risk of programmer errors will be reduced
[14]. A problem with many current model-driven techniques, however, is that the
models become obsolete very quickly, as the actual code often evolves independently
of the corresponding models [21]. One way of solving this problem could be to im-
prove the possibilities of adding application specific code to the models (as opposed
to adding custom code to code generated from the models), and this is a key research
topic within the field of model-driven engineering [14].

When it comes to conducting secure software evolution in a model-driven way, ad-
ditional problems arise. Jürjens [27] states that security requirements are not only
hard to come up with, but also difficult to enforce in the software. The security
requirements also have to be re-verified, often manually, after each modification of
the software [28]. This means that performing model-driven evolution in a secure
context will be challenging, but possibly also very beneficial once these challenges
have been solved [27].

Most existing model-driven techniques that aim to resolve these issues are based on
the Unified Modeling Language (UML) [22]. Examples of such techniques include
the UMLchange framework developed by J. Jürjens [46] (which in turn is based on
an older framework called UMLsec [27]) and SecureUML, proposed by Basin, Doser
and Lodderstedt [5]. SecureUML also uses an approach called Role-Based Access
Control, which is a technique currently getting attention from researchers within
the field. This technique is intended to help managing complex access control rules,
but most other models (such as PRBAC [39]) does not handle evolution very well,
according to Montrieux, Wermelinger and Yu [37]. Basin et al. have however later
developed a tool called SecureMOVA that can be used to automatically verify the
security requirements of a SecureUML model [4].
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Another technique which has received researchers’ attention recently is model-based
argument analysis. This technique is used to evaluate the impact on security caused
by evolutionary changes, for example in tools such as OpenPF [45] and OpenArgue
[53].

In this thesis, modelling is mainly used in order to describe the changes in a system’s
trust model that arise from changing requirements. For each of the resulting change
patterns that are presented in chapter 5, a model-to-model transformation is also
given using the QVT Operational transformation language [17].

2.4 Thesis Foundations

This section introduces some important concepts that will be used throughout this
thesis. Section 2.4.1 describes the SI* modelling language, which will later be used in
order to describe the security features of the Cryptify Call system. Section 2.4.2 gives
a description of what a change pattern is, including an example, and section 2.4.3
introduces the concept of identity-based public key cryptography.

2.4.1 SI* Notation

The SI* notation is a modelling language [32] that will be used throughout this thesis
when describing the security requirements and other properties of the Cryptify Call
system. Amongst the core concepts of SI* are the modelling of actors and the
goals that these actors strive to fulfill. An actor can either be an agent (a human
or software entity) or a role, which can in turn be played by some agent. It is
also possible to model the resources that actors need in order to fulfill their goals.
Furthermore, the SI* notation describes the different relationships and dependencies
that might exist between these different entities, for example that a goal might be
divided into subgoals and that some actor might depend on some other actor to
provide a certain resource. SI* is based upon an older framework known as i* [52],
but is evolved in order to better encompass security properties such as trust and
permissions [32]. The graphical representations of the the different SI* entities and
relationships used in this thesis are shown in figure 2.1. The different relationships
are also described in the list below for reference. Figure 2.2 shows a simple example
of SI* notation, taken from [32].

De – Execution dependency, means that one actor appoints another actor to fulfill
a goal or provide a resource.

P – Provide, indicates that an actor provides a certain resource.

R – Request, indicates that an actor requests a certain resource or the fulfilment of
a certain goal.
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Figure 2.1: Graphical representations of the different SI* entities and relationships
used in this thesis.

Te – Trust of execution, shows that one actor trusts another actor to fulfill a goal
or provide a resource. Trust of execution is therefore a stronger relationship
than the execution dependency described above.

Tp – Trust of permission, shows that one actor trusts another actor not to misuse
a goal or a resource.

2.4.2 Change Patterns

An area that has many times been pointed out as an area in need of research is how
to properly handle co-evolution between different artifacts (such as requirements,
architecture, code et cetera). One solution to this problem is to use change patterns,
a concept introduced by Yskout, Scandariato and Joosen [51]. A change pattern
always covers the evolution of two closely intertwined artifacts, and gives a principled
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Figure 2.2: Example of SI* notation (taken from [32]). The Bank agent in this
scenario trusts the Credit Bureau to fulfill the goal of verifying a customer’s financial
credentials (shown by the Te relationship in the model). The Bank also trusts the
Credit Bureau not to misuse the customer’s financial data in any way (shown by
the Tp relationship).

way of evolving one of the artifacts based on the changes made to the other artifact.
A change pattern usually consists of a change scenario that describes the changes
to one of the artifacts, and some kind of transformation on how to change the other
artifact to cope with these changes.

An example change pattern, taken from [50], is shown in figure 2.3. This change
pattern covers a change scenario (shown in figure 2.3a) where some service used by
the system is instead to be delegated to a trusted external party. The architectural
support template shown in figure 2.3b shows that a new proxy component should
be introduced in the architecture, while the change guidance shown in figure 2.3c
shows the transformation necessary to make the architecture comply with the after
situation in the given change scenario – namely to let the service proxy use the
external service instead of the internal implementation.

2.4.3 Identity-Based Public Key Cryptography

In order to enable secure communication between end users, the Cryptify Call sys-
tem uses a type of cryptography known as identity-based public key cryptography
for key exchange and authentication. Instead of having a traditional public key
infrastructure in which a certification authority issues and verifies certificates for
each user, identity-based public key cryptography works by letting a user’s public
key (i.e., identity) be derivable from some publicly available property, such as that
user’s email address or phone number. A trusted third party (in this case a Key
Management Server is used) then generates and distributes private keys correspond-
ing to each identity [49] [41]. Identity-based cryptography was first proposed by Adi
Shamir in 1984 [43].

The most striking advantage of identity-based cryptography over a traditional pub-
lic key infrastructure is obviously that there is no need for issuing, managing and
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Figure 2.3: Example change pattern (taken from [50]). The change pattern consists
of a change scenario, an architectural support template and a change guidance on
how to transform the software architecture to comply with the changes caused by
the change scenario.
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validating digital certificates. This results in a simpler software architecture, bet-
ter performance and increased user-friendliness when compared to a system using a
public key infrastructure [49] [41].

One of the potential downsides with identity-based public key cryptography is that
all the keys are stored in a single location, namely the Key Management Server.
This is known as the key escrow problem [40]. Key escrow might be an advantage as
well as a disadvantage under certain circumstances, but the problem is that if this
location gets compromised, the attacker can decrypt all communication encrypted
using the compromised keys, including past communication [49]. In the Cryptify
Call system, this risk is mitigated by having the Key Management Server operate
entirely offline.
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3
The Existing Cryptify Call System

This chapter contains an architectural description as well as the most significant
security requirements of the Cryptify Call system. The chapter begins with a high-
level description of the system in section 3.1, followed by a description of the security
requirements and how these are fulfilled in section 3.2. Finally the roles and internal
architecture of the different components the system consists of are explained in
sections 3.3 through 3.5. For the sake of clarity, focus lays on architectural details
that are related to fulfilling the security requirements.

The requirements and the high-level description of the system were elicited by inter-
viewing several employees at Cryptify. The low-level internal software architecture
of the client application (see section 3.5) was elicited through reverse engineering.
A first draft of this architectural model was created with the help of the Doxygen
tool [16]. The model was then completed by manually stepping through the code,
following all different conceivable use cases, and finally validated by once more inter-
viewing the software developers with deeper insight into the architecture. All these
steps except the final validition was carried out by the author of this thesis alone.

3.1 High-Level Description

The system that is investigated in this case study is known as Cryptify Call. The sys-
tem is used in order to encrypt two-party voice and text messaging communication
between end users. This system is to be evolved into also supporting many-to-many
calls during the course of this thesis. The end user application is known as the
Cryptify Caller Application (CCA) and can be run on iOS or Android smartphones.
Other than this, two more components exist in the system; the Cryptify Rendezvous
Server (CRS) and the Cryptify Management System (CMS). An overview of how
these components are related to each other is shown in figure 3.1. Each of these
components will be described in more depth in the sections 3.3–3.5.

The CMS is the management system which is used to generate crypto credentials for
the end users, which are then distributed as printed QR codes that are scanned with
the end user’s smartphone. A single CMS and the end users using crypto credentials
generated by that CMS together forms what is known as a security domain. The
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Figure 3.1: Overview of a single security domain within in the Cryptify Call sys-
tem. In this example, Alice and Bob connects to the CRS and uses the cryptographic
keys generated by the CMS.

CMS is run as a desktop application on an offline computer, in order to reduce the
risk of it getting compromised.

The CRS is the system’s central node whose main role is to transmit communication
between end devices. The CRS is considered a non-critical node from a security
perspective, as it merely acts as a relay of already protected information and never
exposes any unencrypted data. It might therefore be deployed as any standard
Internet server or on some cloud-based platform.

The Cryptify Call system is sold as an enterprise product and not target directly
towards end users. The implications of this is that every organization that wishes to
use Cryptify Call is expected to set up and manage their own security domain, i.e.
deploy their own CMS (note that a single CRS can in theory be shared by different
security domains, as the CRS does not contain any security-critical data).

3.2 Security Requirements

Apart from the purely technical requirements of providing the functionality of voice
and text communication between end users, there are some security requirements
that need to be fulfilled in order for the end users to be able to use and trust the
system.
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Out of these requirements, which are derived from a specifications document issued
by CESG1 entitled Secure VoIP Client version 2.0 [10], there are two requirements
that stand out as the by far most important security characteristics of the system.
These are to be able to authenticate system users and to guarantee confidentiality of
their intercommunication. Authentication is necessary in order for a client to know
that the other party of a call really is who he or she claims to be, and confidentiality
is necessary in order to guarantee that no external party can eavesdrop on a private
conversation. In short, the authentication requirement is fulfilled by letting one of
the parties of a call create a digital signature which is then validated by the other
party. Confidentiality is achieved by exchanging a common Session Key between the
parties, which is then used in order to protect the contents of their conversation.

3.2.1 The MIKEY-SAKKE Protocol

In order to fulfill these security requirements, a cryptographic technique known as
identity-based cryptography is used. This technique combines aspects of both asym-
metric and symmetric cryptography. The authentication requirement and the key
exchange between clients (which in turn is necessary to later achieve the confiden-
tiality requirement) are both fulfilled with an asymmetric cryptographic method
called MIKEY-SAKKE. Once a call has been initiated and keys exchanged with the
help of the MIKEY-SAKKE protocol, a symmetric key algorithm is used to protect
the contents of the call.

The MIKEY-SAKKE protocol actually consists of several different techniques, which
are combined in order to provide secure end-to-end communication between end
users; the SAKKE algorithm is used to exchange a common Session Key (the key
later used to ensure confidentiality of the call) between the participants, the ECCSI
algorithm is used for authentication, and the communications protocol used between
the clients is known as MIKEY. The MIKEY-SAKKE protocol is described in detail
in RFC 6509 [24], but a brief summary is given below and the protocol will be
described further in the following sections.

A group of clients that are able to make secure calls to each other forms a so
called security domain, as already stated. Each client in the security domain is
identified by its unique public identity, which simply consists of a normal phone
number appended with the current year and month (meaning that these identities
change every month). For each security domain there also exists a Key Management
Server (KMS), which is responsible for generating all the keys that are necessary to
fulfill the system’s security requirements. The KMS is therefore also known as the
security domain’s root of trust. The KMS generates a set of unique personal keys
for each client, which are used for signing and decrypting messages. The KMS also
generates a single public key that is used for authenticating signatures and another
public key that is used when encrypting and decrypting messages. In the case of the
Cryptify Call system, the CMS – described in more detail in section 3.3 – assumes

1The UK national technical authority for information assurance.
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the KMS role.

The following two keys are the public keys generated by the KMS and distributed
to all of the clients in the security domain:

• KMS Public Key – used for encrypting and decrypting SAKKE messages.

• KMS Public Authentication Key (KPAK) – used by clients when au-
thenticating the signature sent by some other client.

In addition to this, the following set of keys (hereafter also referred to as a client’s
personal keys) are generated for all of the clients in the security domain (so that
each client receives a unique set of keys):

• Receiver Secret Key – used by the client together with the KMS Public
Key to decrypt SAKKE messages it receives.

• Secret Signing Key – used for signing messages with a digital signature.

• Public Validation Token – sent by the Caller of a call as part of the MIKEY-
SAKKE message and used by the receiving party to verify its counterparty’s
digital signature.

These keys come into use when some client, called the Caller, wants to set up a secure
phone call to another client, referred to as the Callee. The KPAK is used together
with the Caller’s Secret Signing Key and Public Validation Token for authentication,
while the KMS Public Key and the Receiver Secret Key are used together with the
Callee’s public identity in order to exchange a common Session Key between the
two clients. This Session Key will be used during the actual call in order to provide
confidentiality to the conversation. In other words, the secure call is set up using an
asymmetric key algorithm, while the actual voice data is protected using a symmetric
key algorithm.

3.2.1.1 Monthly Key Renewal

As the clients’ identities are changed every month (due to the fact that the current
year and month is part of the identity), it means that the personal keys described
above have to change as well. Normally, the KMS Public Key and the KMS Public
Authentication Key remain unchanged, while the other keys are re-generated by the
KMS each month and then distributed to the clients.

A client gets its first set of personal keys by scanning a QR code distributed to the
user by the CMS manager. When the keys need to be renewed, however, the new
keys are distributed wirelessly and invisible to the end users. In short, this process
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is implemented in the Cryptify Call system by letting the CMS generate the new
keys, which are then burned to a DVD. The CRS then reads the data from the DVD
and wirelessly distributes the proper set of keys to each respective client with the
help of AES encryption using a pre-shared key. The pre-shared key (referred to as
the Update Key) is originally distributed to the clients via the same QR code that
contains their personal keys, and then changed each month by including the next
month’s Update Key in each update message. This whole process will be described
in more detail in sections 3.3 and 3.4.

3.2.1.2 Advantages and Disadvantages

An identity-based cryptography scheme such as MIKEY-SAKKE obviously comes
with its own benefits and drawbacks when compared to other cryptographic meth-
ods. The main benefit of identity-based cryptography is that the cumbersome mech-
anism of individual certificates in certificate-based encryption is avoided. The Caller
doesn’t need to know anything about the Callee except its public identity – which
as previously stated consists only of the Callee’s phone number and the current year
and month – in order to compose a MIKEY-SAKKE message to him or her. This
indirectly leads to another advantage, namely that there is no need for the Callee to
be online or even created yet in order to create and encrypt a MIKEY-SAKKE to
him or her. This in turn means that it is possible to send for example text messages
to a client that has never been online, store these messages (still in encrypted form)
somewhere along the way and deliver them as soon as the receiving client comes
online.

The main drawback of identity-based encryption is the vulnerability of the KMS,
since it contains all the cryptographic keys used within the security domain. If an
attacker would gain access to the KMS, it would not only give the attacker the
opportunity to pose as any client in that security domain, it would also mean that
the attacker could decrypt any message sent within the security domain that is has
been able to intercept. In order to minimize this threat, the Cryptify Management
Server (CMS) which acts as the KMS in the Cryptify Call system always operates
completely offline.

Another drawback with identity-based encryption is that once an identity has been
issued by the KMS, it cannot be revoked. The impact of this threat is limited in
the MIKEY-SAKKE method by including the time component (current year and
month) in each identity. To remain valid, the set of personal keys associated with
an identity has to be renewed by the KMS once per month, meaning that a lost
or compromised identity will only be valid for the remainder of the month it was
compromised. However, another implication of this is that since the user’s phone
number is used as identity, it will not be possible for a user that loses his or her
cryptographic identity to get a new one using the same phone number until the
following month.
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3.2.2 Authentication

When a client, called the Caller, wants to set up a secure phone call to another
client, referred to as the Callee, the following procedure takes place. First of all,
the Caller must generate a random Session Key to use for this particular session.
The Session Key is then encrypted in a way that only the Callee can decrypt by
using the Sakai-Kasahara Key Encryption (SAKKE) algorithm, which utilizes the
KMS Public Key and the Callee’s public identity. This public identity consists of
the Callee’s normal phone number appended with the current year and month, and
is equivalent to the public key in a traditional asymmetric cryptographic algorithm.
The Caller then signs the SAKKE message with the use of the Elliptic Curve-Based
Certificateless Signatures (ECCSI) algorithm and his or her own Secret Signing
Key. The SAKKE message, the ECCSI signature and the Caller’s Public Validation
Token are thereafter encoded as a message in the Multimedia Internet Keying format
(MIKEY) and sent to the Callee.

Once the MIKEY message has been received, the Callee begins by validating the
authenticity of the Caller’s ECCSI signature, using the KMS Public Authentication
Key (KPAK) provided by the CMS and the Caller’s Public Validation Token. If this
check passes, the Callee can proceed with decrypting the Session Key encapsulated
within the SAKKE message, using his or her Receiver Secret Key and the KMS
Public Key. The authentication requirement is now fulfilled, and both of the parties
now also have access to the same Session Key, which will be used to encrypt further
communication (see section 3.2.3) and thus fulfill the confidentiality requirement as
well. Note that the Callee does not need to authenticate itself to the Caller, as
the Caller knows that the holder of the Receiver Secret Key corresponding to the
intended Callee’s public identity will be the only one able to decrypt the SAKKE
message.

The authentication requirement has been captured in figures 3.2 and 3.3 using the
SI* notation, which is a modelling language used to model security requirements in
a precise way [32]. Figure 3.2 covers the goal of the client initiating the call, which
is to establish a Session Key and share it with the other party of the call. Figure 3.3
complements the first figure by capturing the goal of the Callee of the call, which
is to authenticate the Caller’s identity and get access to the Session Key. In order
for this whole process to work, both parties must put trust in that the crypto keys
provided by the offline CMS are valid (see figure 3.5).

Implementation-wise, the process of creating and validating the digital signatures is
implemented within the crypto module of the client application (see section 3.5.1.2).

3.2.3 Confidentiality

Once the Caller has been authenticated by the Callee and the session has been
initiated, further communication (including the actual media payload) is encrypted
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Figure 3.2: The goal of the Caller of a call is to establish a shared and secret Session
Key with the other party. This Session Key is encrypted using the SAKKE algorithm
and signed using the ECCSI algorithm. The encrypted message and the ECCSI
signature is then encoded in the MIKEY format together with the Caller’s Public
Validation Token and sent to the Callee. The Callee is now ready to authenticate
the identity of the Caller, so that the encrypted message can finally be decrypted
and give the Callee access to the secret Session Key.
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Figure 3.3: The goal of the Callee of a call is to authenticate the other party
and get access to the secret Session Key that will be used to encrypt further com-
munication between the two parties. The Callee begins by decoding the MIKEY
message in order to get access to the encrypted Session Key as well as the Caller’s
Public Validation Token and ECCSI signature. Thereafter, the Callee can validate
the authenticity of the ECCSI signature and finally decrypt the SAKKE message
containing the Session Key. Both parties now have access to the same Session Key,
which will be used in order to provide confidentiality to their subsequent communi-
cation.
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Figure 3.4: The media data sent between two clients during a secure call must
be protected end-to-end in order to guarantee confidentiality of the contents of
their conversation. The shared Session Key is used together with the Advanced
Encryption Standard (AES) algorithm in order to achieve this.

using the Advanced Encryption Standard (AES) in Galois/Counter Mode (GCM),
which is a symmetric-key algorithm; meaning that the same key is used for both
encryption and decryption at both ends. This is done in order to ensure end-to-
end confidentiality of the contents of the conversation, as well as to provide data
integrity by protecting against tampering with the media data. In this case, the key
being used is the Session Key that was exchanged during the authentication process
described in the previous section. Since anyone wiretapping the conversation will
not have access to the Session Key, the requirement of confidentiality is fulfilled. The
confidentiality requirement is captured using SI* notation in figure 3.4. The actual
functionality is implemented within the crypto module of the client application (see
section 3.5.1.2).

Note that the data only needs to be protected until it reaches the receiving client’s
phone in order for the confidentiality requirement to be considered fulfilled. After
this point, it is impossible to control what the end user chooses to do with the
information from a technological perspective, and therefore considered to be out of
scope of the security requirements.

3.2.4 Trust Model

To recapitulate, the requirement of authentication is fulfilled by having an offline
KMS acting as the root of trust for each security domain. Based on this trust, a
client can authenticate the digital signatures sent to it by other clients. Once a client
has authenticated its counterparty, the process of ensuring confidentiality is carried
out between the two clients alone. Apart from trusting the KMS for authenticating
other clients, the clients also trust each other for keeping their respective secret
keys (private crypto keys as well as the random Session Keys used for each call
session) private. These trust relationships have been modelled in figure 3.5 using
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Figure 3.5: Trust model of the Cryptify Call system. The clients trust that the
keys generated by the CMS are valid in order to authenticate the identity of other
clients. In addition to this, the clients also trust each other not to leak any of their
secret MIKEY-SAKKE or Session Keys.
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SI* notation.

3.3 Cryptify Management System (CMS)

The Cryptify Management System (CMS) acts as the system’s Key Management
Server (KMS) and desktop administration tool. From here, user management is
handled (adding and deleting users to and from the security domain). Due to the
inherent key escrow property of identity-based encryption (see section 1.7), the CMS
must store all keys being used within the security domain. This means that if the
CMS should get compromised, then all past and present communication secured
using the keys generated by that CMS, as well as the identities of all the users in
the security domain, will also be compromised. This must of course be prevented
at all costs, so in order to mitigate this risk, the CMS operates entirely on an offline
computer. This means that the CMS will be completely isolated from Internet
threats. Output data is instead printed in the form of QR codes or burned in
encrypted form onto a blank CD or DVD.

When the CMS manager adds a new user to the security domain, the CMS generates
a set of personal keys for that user (see section 3.2.1). To provide the user with his
or her set of personal keys the CMS prints them together with the KMS Public Key
and the KMS Public Authentication Key in the form of a QR code. Contained in
this QR code is also the Update Key that will be used for the next month’s key
renewal and a pre-shared key that the client will use to communicate securely with
the CRS. After the QR code has been scanned by a client application, the client has
access to all the necessary keys it needs and is ready to make secure calls. Since a
client’s set of personal keys have to be updated every month (due to the fact that
its identity also change every month), deleting a user from the security domain is
handled by preventing the CMS from generating new keys for that user. The user
will be able to use the system for the remainder of the current month, but will not
receive any new set of personal keys the following month, and thus will be unable
to communicate securely from that on.

When it is time for the monthly renewal of the clients’ personal keys, the CMS first
generates a new set of personal keys for each client. This update data is then burned
in encrypted form, using the AES algorithm with a pre-shared secret (manually
configured on the CMS as well as the CRS), onto a CD or DVD. The CD/DVD is
then read and decrypted by the CRS, which in turn distributes the renewed keys
wirelessly to each client, using the AES algorithm with a pre-shared Update Key.
The Update Key, as already mentioned, is originally distributed to the clients with
the QR code that also contains their MIKEY-SAKKE keys, and in each monthly
update a new Update Key is included to be used for next month’s update.
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3.4 Cryptify Rendezvous Server (CRS)

The Cryptify Rendezvous Server (CRS) is the system’s central node and is responsi-
ble for handling communication between the clients within a single security domain.
Regardless of this, the CRS is not considered a security-critical component of the
system, as it only forwards already protected data between clients and does not
play any role in the actual encryption or decryption of any of this data. The most
important responsibility of the CRS is to maintain a connection to all clients in the
security domain that are currently online. Via these connections, the CRS can set
up call sessions and deliver media data and text messages between the clients. Since
the CRS does not play any important role from a security requirements point of
view, it is not included in the trust model of the system (figure 3.5).

When a client wants to set up a secure call with some other client, the initiating
client sends a message to the CRS, containing the identity of the client it wants to
reach as part of the message’s metadata header and the encrypted MIKEY-SAKKE
initiation message (described in section 3.2.2) as payload. As the CRS maintains
a connection to all clients currently online, it immediately forwards the MIKEY-
SAKKE message to the right recipient, assuming that client is currently available.
Once the call has been established, all communication continues to pass through the
CRS. The only difference is that the payload now consists of AES-encrypted voice
data (see section 3.2.3) instead of MIKEY-SAKKE messages, but just as before can
the payload only be decrypted by the receiving client and never by the CRS itself.

All messages sent between a client and the CRS (encrypted messages bound for
another client as well as other signaling messages) are encrypted using the Transport
Layer Security with Pre-Shared Keys (TLS-PSK) protocol, in addition to the inner
MIKEY-SAKKE or AES encryption used by the clients. This makes it difficult or
impossible for an eavesdropper to analyze intercepted signaling messages and traffic
patterns. The pre-shared key used by the TLS-PSK protocol was initially shared
to the clients via the QR code they scanned to get access to their MIKEY-SAKKE
keys (see section 3.3).

The CRS is also responsible for distributing the renewed set of personal keys to all
the clients once per month. After the new keys have been generated by the CMS,
they are burned in encrypted form using the AES algorithm onto a CD or DVD.
The data on the CD/DVD is then read and decrypted by the CRS, using a pre-
shared secret manually configured onto the CMS and the CRS. Thereafter, the CRS
wirelessly distributes the right set of personal keys to each client. This distribution
uses a pre-shared key, referred to as the Update Key, and 256-bit AES in Cipher
Block Chaining (CBC) mode with SHA512-HMAC hashing in order to provide both
encryption and message authentication. Each Update Key is only used once, so the
update message also contains the key that will used to encrypt the following month’s
update message. Each client gets its first Update Key when scanning its QR code.

As the CRS implements none of the security functions it may be deployed as a cloud
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service on the Internet. Loss or compromise of the CRS will not compromise the
security of the system, but can of course impact the availability of the service. In
order to increase the system’s redundancy, multiple CRS servers might therefore be
used in parallel as a cluster. As the CRS does not handle any sensitive data, it is
also possible for several organizations (using separate security domains) to share a
single CRS or CRS cluster.

3.5 Cryptify Caller Application (CCA)

The Cryptify Caller Application is the system’s client application, and allows a
user to establish secure calls and to send encrypted text messages to other users
connected to the same security domain. Every user’s normal telephone number is
used to identify that user, together with the current year and month. In order to
get access to the KMS Public Key, the KMS Public Authentication Key and the
client’s set of personal keys (Receiver Secret Key, Secret Signing Key and Public
Validation Token), the user initially scans a QR code containing these keys, which is
distributed by the CMS manager. The QR code also contains the pre-shared key for
communicating with the CRS and the Update Key that will be used to protect the
following month’s update message. Thereafter, the personal keys and the Update
Key are renewed once per month via the update messages distributed wirelessly by
the CRS.

The client application connects to the CRS via the mobile network or WLAN. Voice
data is sent between two clients using the SRTP protocol protected with 128-bit
AES in Galois/Counter Mode (GCM) mode, after first having authenticated each
other and exchange a common Session Key with the help of the MIKEY-SAKKE
protocol. Loss or compromise of a single client does not compromise the complete
system, and a compromised client can also be blacklisted and thus be prevented
from establishing a connection with its CRS.

3.5.1 Low-Level Architecture

The actual evolution to be performed (described in chapter 4) during the thesis was
early on determined to be localized to the internal architecture of the client applica-
tion. Therefore, in the following sections, the client application is described in more
detail than the architecture of the CMS and the CRS. No complete architectural
description of the client application existed at the beginning of the project, so the
following architectural description had to be reverse engineered from the applica-
tion’s source code. The resulting architectural model was then validated by the
domain experts at the company.

The client application is implemented as a three-layered application (see figure 3.6).
The user interacts with the application through a Graphical User Interface (GUI),
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Figure 3.6: Architecture of the Cryptify Caller Application, which consists of three
layers; a graphical user interface, a middle layer called the MSS User Agent and a
platform-independent bottom layer called the Multi Session Stack.

the application’s top layer, while the platform-independent bottom layer known as
the Multi Session Stack (MSS) contains most of the actual logic. The middle layer,
the MSS User Agent (MUA), acts as an interface between the other two layers, and
also contains some virtual functions whose implementations differ between different
platforms.

The code necessary to fulfill the security requirements from section 3.2 is imple-
mented inside a special crypto module in the Multi Session Stack layer; the au-
thentication requirement with methods for creating and validating digital ECCSI
signatures and the confidentiality requirement with methods for encrypting and de-
crypting data messages.

3.5.1.1 The MSS User Agent Layer (MUA)

The middle layer of the client application is known as the MUA, which stands for
MSS User Agent. The MSS User Agent acts as the interface between the GUI and
the Multi Session Stack layer, the application’s bottom layer. The implementation of
the MSS User Agent layer for the OSX platform is visualized in figure 3.7. On other
platforms, the implementation of this layer differs slightly from the architecture
shown in figure 3.7. The OSX implementation of the MSS User Agent layer is
implemented in the Objective C++ language.

The most important component shown in figure 3.7 is the OsxMua. This compo-
nent is responsible for keeping track of an object called ActiveCall, representing
the current running phone session. Through the ActiveCall object, the OsxMua
makes various function calls down to the Multi Session Stack layer (described in
section 3.5.1.2), such as sending and fetching audio data.
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Figure 3.7: Internal architecture of the MSS User Agent layer for the OSX plat-
form.
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3.5.1.2 The Multi Session Stack Layer (MSS)

The bottom layer of the client application is called the Multi Session Stack (MSS).
This layer is largely platform independent and contains most of the actual logic
contained within the client application. It is structured into different modules, which
communicates internally through a routing module. The internal architecture of the
Multi Session Stack is visualized in figure 3.8 and the purposes of the different
modules are described below. Most of the Multi Session Stack layer is implemented
in C, but some parts are written in C++.

mssapi – the interface for communicating with the upper layers.

routing – takes care of internal (asynchronous) communication within the Multi
Session Stack layer.

session – the Multi Session Stack layer’s internal representation of a voice call.

letter – the module used for sending text messages.

object – the module responsible for encoding and decoding create, read, update
and delete requests sent to and from the CRS.

crypto – the module responsible for encrypting and decrypting MIKEY-SAKKE
and AES messages. This module is used to fulfill both the authentication and
the confidentiality requirements described in section 3.2.

umsg – the module used for communicating with the CRS.

media – contains a codec and buffers for handling audio, as well as an implemen-
tation of the SRTP protocol.

platform – contains common functionality that requires platform-specific imple-
mentations, such as creating UDP sockets and getting the current time in
nanoseconds.

utils – contains common utilities used by most of the other modules, such as global
definitions and tools for generating the JSON messages used for internal com-
munication.

When it comes to the security requirements of authentication and confidentiality,
these are both implemented within the crypto module. The authentication is han-
dled by the Caller creating and sending a digital ECCSI signature which is then
validated in the Callee’s crypto module. In order for this to work, both the clients
need to trust that the identities generated by the CMS are all valid, as discussed
in section 3.2.4. Once a session has been established and a shared Session Key has
been exchanged, the requirement of confidentiality can also be fulfilled by encrypt-
ing and decrypting all further communication, using that Session Key. Just like the
authentication, the process of encrypting and decrypting messages is also taken care
of by the crypto module.
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3.6 Validating the Architectural Model

As no complete documentation of the Cryptify Call system’s software architecture
existed before the start of this thesis, the whole architectural model given in this
chapter had to be manually elicited by the author of this thesis through reverse
engineering. A first draft of this model was created with the help of the Doxygen
tool [16] and by interviewing several developers with insight into different parts of
the code. This model was then completed by manually stepping through the code
of the Cryptify Caller Application, the system’s client application. The resulting
architectural model was then finally validated by several Cryptify developers in order
to guarantee its correctness.
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4
Towards a Multiparty Calling

System

This chapter concerns the actual evolution from the initial architecture into an ar-
chitecture supporting conference calls in addition to normal 1-to-1 calls. Section 4.1
describes the rationale behind the technical solution chosen, section 4.2 describes
how the system’s security requirements had to change and section 4.3 contains the
architectural model of the evolved system. The process of actually implementing the
evolved software architecture is described in section 4.4, and finally will the results
of a performance evaluation of the implemented solution be shown in section 4.5

4.1 Evolution Plan

One naive solution of implementing a conference call would be to set up a separate
session between each pair of participants in the conversation. This would automat-
ically solve the authentication and confidentiality requirements by letting each pair
of clients in the conference session take care of that separately of each other.

However, there are some technical limitations that first must be considered before
deciding upon such a solution. To be precise, to provide end-to-end encryption
between all participants of a conference call would require each client to set up a
unique SRTP session to each of the other participants. According to a prestudy
conducted at Cryptify before the start of this thesis, such a solution might just be
too performance heavy for a normal smartphone to handle [12]. The bottlenecks
seem to be to encode multiple audio streams simultaneously and the network load
of maintaining multiple SRTP sessions at the same time [12]. Measurements in
said prestudy indicates that an iPhone 5 with a dual-core CPU should be able to
handle a three-party call without problems, but that calls with more than three
participants would stress the phone’s CPU too much [12]. Based on this prestudy,
some additional constraints therefore had to be introduced. These are that regardless
of the number of participants in a conversation, each end user client participating
in the conversation is only allowed to maintain a single upstream and a maximum
of five concurrent downstreams of audio.
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The hardware constraints in most smartphones on today’s market therefore led to
the decision (made by the author of this thesis and the managers at Cryptify AB)
of introducing a new node into the system. All the participants of a conference call
will connect to this new node, hereafter referred to as the Call Coordinator, instead
of connecting directly to each other. This Call Coordinator will be implemented
as an evolved client application, that instead of being run on a smartphone will be
run on a desktop or laptop computer (the initial target will be the OSX operating
system). The usage scenario is that the organizer of the conference call uses this
computer to set up, manage and participate in the conference call. The Call Coordi-
nator will be able to draw advantage of the computer’s better performance and will
be responsible for coordinating the conference call as well as fulfilling the evolved
security requirements described in section 4.2.

4.2 Evolved Security Requirements

In order to give room for conference calls, the security requirements described in
section 3.2 will naturally have to change slightly, as each session now can contain any
number of participants instead of just two. In the architectural solution decided upon
in this case, however, it was possible to keep the authentication and confidentiality
requirements basically unchanged. The real change instead took place within the
system’s trust model, as will be described in section 4.2.3.

4.2.1 Authentication

Authentication remains just as important in the evolved as in the initial architecture.
However, it is now not only one other participant that needs to be authenticated,
but all the participants of the call. The chosen solution to this problem was to let the
authentication requirement remain unchanged, and instead let the change take place
in the system’s trust model (see section 4.2.3) by letting one of the participants act
as a trusted Call Coordinator. The authentication process between a single client
and the Call Coordinator stays the same as in the initial architecture, but the client
must now also trust the Call Coordinator to authenticate the other participants of
the conference call.

4.2.2 Confidentiality

The ideal solution to ensure data confidentiality would be to maintain end-to-end
encryption between all the clients participating in a conference call session. However,
as already mentioned in section 4.1, such a solution would simply not be possible
in the case of the Cryptify Call system when taking performance limitations into
account. Therefore, the same approach as for the authentication requirement was
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chosen and let the confidentiality requirement stay between the Call Coordinator
and each of the participants. In addition to this, an addition to the trust model
had to be made, which is that all of the participants have to trust that the Call
Coordinator forwards all media data in encrypted form to the other participants
of the conference session, without manipulating or censoring any of it along the
way. Finally, the regular participants will also have to trust the Call Coordinator
to only forward the data they send to the other authenticated participants of the
conversation, without leaking it to some untrusted external party.

4.2.3 Trust Model

As already mentioned, the key evolution of the security requirements took place
at the level of the system’s trust model. The evolved trust model is shown in
figure 4.1, again using SI* notation. In the figure, only two attached clients are shown
for simplicity, one Call Coordinator and one regular participant. Each additional
participant added to the call would have the same trust relationships to the Call
Coordinator and the KMS as the regular participant in the figure.

The participants that attach to a conference session put trust in the Call Coordinator
that it will not leak any of its session or private keys and trust the system’s KMS
for authenticating the Call Coordinator. In addition to this, all of the connected
participants also trust that the Call Coordinator will authenticate all of the other
participants, and that no voice data that they send will get manipulated or censored
along the way. The fact that the Call Coordinator gets access to the unprotected
voice data sent during the conversation is not a problem, since it also counts as
a participant of the conference call and therefore would do so anyway. In theory,
however, the Call Coordinator could discard or manipulate some voice data before
forwarding it to the other participants, and the participants therefore must put trust
in the Call Coordinator that it will not do so. The participants will also have to
trust the Call Coordinator to only forward the contents of their conversation to the
other participants, and not to some external party that is not part of the conference
call — in other words, the participants must trust that the Call Coordinator do not
keep any of the participants hidden from the rest.

The Call Coordinator will put the same trust in each of its counterparties as if
they would participate in a normal 1-to-1 call with each other. In other words,
the Call Coordinator trusts each of its counterparties to keep their respective secret
keys private, and it trusts the keys generated by the system’s KMS in order to
authenticate their identities.

39



4. Towards a Multiparty Calling System

Figure 4.1: Trust model after evolution. The trust model stays largely the same
as it did before evolution (see figure 3.5). The only difference is the addition of the
Call Coordinator, which now acts as the counterparty to each of the participants
of a single conference call session. In addition to the normal trust relationships a
participant needs to have with its counterparty, the regular participants must also
trust the Call Coordinator to authenticate the other participants as well as to trust
that it will not manipulate, censor or leak any data sent to or from any of the
participants. The model only shows one regular participant connected to the Call
Coordinator for the sake of clarity. Additional participants would have the same
trust relationships as the one already modeled in the figure.
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4.3 Evolved Architecture

In order to evolve the Cryptify Call system with the secure conference call func-
tionality, the author and the managers at Cryptify AB decided upon a solution
that would require only limited architectural changes to the system. In fact, ar-
chitectural changes were only required in the Call Coordinator, the desktop client
that acts as moderator for the call and to which the other participants connect.
No architectural changes had to be made to the CRS, CMS or to the other client
applications, to which a conference call works just like a normal 1-to-1 call, with the
Call Coordinator being their counterparty.

In addition to localizing most of the necessary architectural changes to the Call
Coordinator, this solution also has the advantage of keeping the evolved security re-
quirements simple. The only changes necessary to the system’s security requirements
was to add the trust relationships shown in figure 4.1 between the Call Coordinator
and the regular participants. More importantly, however, is that this solution is
compatible with the hardware constraints introduced in section 4.1, since most of
the performance-heavy computations will be carried out by the Call Coordinator,
which can easily be given enough hardware resources for the task.

In section 3.5, the architecture of a client application running on the OSX operating
system was described. In order to evolve this client into a Call Coordinator for the
Cryptify system, some architectural changes had to be made. All of these changes
have been located to the MSS User Agent layer, and the evolved architecture of this
layer is shown in figure 4.2. Of course the GUI and some other details had to be
altered as well, but these changes will not be described here as they are not related
to the software architecture of the system.

The first change that had to be made to the architecture was to let the MSS User
Agent allow for multiple ActiveCall instances running concurrently, each one repre-
senting one participant connected to the conference call. Next, a new component
(labeled Merger in figure 4.2) was added between the OsxMua and the ActiveCall
component. The Merger component is responsible for merging all the incoming
audio streams into a single outgoing audio stream for each of the connected partici-
pants of the call, as opposed to just forwarding all audio streams separately to all of
the participants without doing any kind of merging. This step was necessary due to
the regular clients of the system being constrained to a maximum of five concurrent
downstreams of audio, as described in section 4.1. By performing this merging be-
fore sending any data from the Call Coordinator, each regular participant connected
to the Call Coordinator will only need to maintain a single downstream of audio
each, regardless of the number of participants in the conversation. In order to also
let the Call Coordinator itself participate in the conference call, a CircularBuffer
component was finally added for outgoing respectively incoming audio between the
OsxMua and the Merger.
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Figure 4.2: Internal architecture of the Call Coordinator’s MSS User Agent layer
after evolution. The new components that have been introduced are highlighted in
the model. The OsxMua component now supports multiple simultaneous ActiveCall
instances instead of being limited to just one. The audio sent to and from each one
of them is being coordinated via the Merger component, and the audio sent to and
from the Call Coordinator itself is being passed through one of the CircularBuffer
components first. Apart from these changes, the architecture is the same as before
evolution (see figure 3.7).
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4.4 Implementing the Evolved Architecture

Once a solution for how to implement the evolved functionality of supporting se-
cure conference calls had been decided upon in collaboration with the managers at
Cryptify AB, the actual implementation was carried out by the author of this thesis
alone. As most of the client-side logic is contained within the Multi Session Stack
layer and platform-independent, creating the desktop application that would act
as the Call Coordinator proved a relatively simple task once the evolved software
architecture had been designed. The components that needed to be implemented in
order to get a functional prototype running were just a basic GUI and a platform-
specific implementation of the MSS User Agent layer. This client application then
had to be evolved with the capability of setting up telephone conferences, according
to the architectural changes specified in section 4.3 and visualized in figure 4.2. The
main difficulty in this turned out to be the merging of the different audio streams
and making sure that each participant receives the right audio data. The method
used in order to achieve this merging is described in section 4.4.1.

In order to evolve the MSS User Agent layer of the Call Coordinator device to com-
ply with the evolved architecture shown in figure 4.2, around 500 lines of code had
to be added. Most of these lines are localized to the new Merger and CircularBuffer
components, with only a few minor changes made to the OsxMua component, mean-
ing that the risk of having introduced any new security-related bugs to the code is
relatively low. The implementation also proved satisfying to the Cryptify man-
agement in other aspects as well, as will be shown in the performance evaluation
conducted in section 4.5. This led to the decision of using the implemented code as
the foundation for the Call Coordinator code that has now been put into production
and is about to be released on the market. A screenshot of this application is shown
in figure 4.3.

4.4.1 Merging of Audio Streams

Due to the performance limitations of the smartphone clients described in section 4.1,
measures had to be taken in order to reduce the number of audio streams being sent
to each of the participants. This was achieved by merging together all the audio
streams originating from each of the participants of the call, including any voice
data sent by the Call Coordinator but excluding the voice data sent by the receiving
client itself (as the end user would otherwise hear an echo of his or her own voice),
before sending the merged audio voice data out to each of the participants. The
method used by the Call Coordinator in order to merge multiple incoming audio
streams into a single outgoing stream for each of its counterparties is the following.

First, the Merger component tries to fetch a new audio packet from each of the
participants using a method named eatAudio. Next, the Merger loops through all the
participants of the conference call, including the Call Coordinator itself (represented
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Figure 4.3: A screenshot of the implemented Call Coordinator application, show-
ing a running conference call session with three participants connected to the Call
Coordinator.
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by the OsxMua component), in order to feed a merged audio stream to each of them.
As the audio is encoded using the PCM audio data format1, the merging can be done
by just adding together the data contained in each audio packet retrieved by the
Merger in the first step. The packet sent by the current participant itself is omitted
from the merging though, in order to remove that participants own echo from the
output stream. If the addition would result in a value that is outside of the range
allowed by the PCM data format, that value is instead changed to the maximum
or minimum value allowed respectively, a procedure known as clipping. Finally, the
merged audio packet is sent to the ActiveCall instance representing the intended
receiver of the packet, using the feedAudio method.

A couple of more complicated functions for the actual merging of the audio streams
were considered to be used instead of the clipping function described above. How-
ever, due to the large amplitude overhead available in the PCM format, clipping
seems to occur very rarely as long as only one or a few participants are speaking at
the same time. As it in any case would be hard to discern anything if too many par-
ticipants are speaking simultaneously, regardless of which merging function is being
used, it was decided to stick to the clipping function in the final implementation.
Some of the other merging algorithms that were considered to be used instead of
the simple clipping function are described in Appendix A.

4.5 Performance Evaluation

In order to give some indication of the effectiveness of the implemented solution,
a performance evaluation was carried out by the author of the thesis. During this
performance evaluation, a MacBook Pro (early 2015 model) laptop computer was
used as Call Coordinator. This device managed to maintain a multiparty call with
50 simultaneously connected participants – which should be more than enough for
the intended use cases of the Cryptify Call system – without ever exceeding 100%
CPU load. The results of these measurements, which are shown in the graph in
figure 4.4, indicate that the CPU usage is roughly linear to the number of partici-
pants connected to the Call Coordinator. The implications of this is that if it should
be necessary to support an even larger number of participants, this can easily be
achieved by adding more processing the power to the Call Coordinator (or, alterna-
tively, by improving the resource usage of the algorithms implemented in the Call
Coordinator).

The roundtrip time between a pair of participants – that is, the time it takes for a
data packet to travel from one client to another and then back again – was measured
as well to see if any additional delay had been added to the system after the evolved

1Pulse-code modulation (PCM) is a common way of converting a analog audio signal into a
digital format. At regular intervals, the amplitude of the analog audio signal is sampled and
converted to an integer value. In the Cryptify Call system, a sample rate of 48 000 samples per
second is used; meaning that each second of voice audio is represented digitally in the system by
48 000 integer values.
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Figure 4.4: CPU usage vs. number of participants.

architecture had been implemented. A low delay is necessary in order to make the
end users satisfied with the quality of the service, and it is therefore important to
keep the total roundtrip time as low as possible. The roundtrip time was measured
by sending data packets originating from both the Call Coordinator and from a
normal client, with the target client also varying between the Call Coordinator and a
normal client respectively. The measurements were performed both before and after
evolution, and the results are summarized in table 4.1. For these measurements,
the MacBook Pro was again used as Call Coordinator, and an iPhone 4 was used as
the regular client. For the measurements before evolution, the normal OSX client
application was run on the MacBook Pro (in other words, before it was evolved to
act as Call Coordinator). For the measurements after evolution, a varying amount
of simultaneously connected participants was used to make sure that this factor
did not affect the results. Since the roundtrip time is affected by random network
fluctuations, a relatively large number of measurements had to be made in order
to determine an average value. Each of the average values specified in table 4.1
is therefore based upon between 100 and 300 individual measurements. It was not
possible to do more measurements than this due to the time constraints of the thesis.

Interesting to note is that when measuring the time for a packet to travel from
the MacBook to the iPhone and back again, the average roundtrip time proved to
be exactly the same whether using a normal two-party call (before evolution) or
a multiparty call with the MacBook as Call Coordinator (after evolution). This
alone is a clear indicator that no additional delay seems to have been added to the
system by the evolution performed during the thesis project. The added delay of 58
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Before evolution After evolution Difference
MacBook –> iPhone 196 ms 196 ms 0
iPhone –> MacBook 299 ms 357 ms + 58 ms
iPhone –> iPhone 239 ms 208 ms -31 ms

Table 4.1: Roundtrip time in milliseconds, before and after evolution.

milliseconds in roundtrip time when transferring a packet from the iPhone to the
MacBook and back again is explained by the implementation of the circular buffer
within the Call Coordinator. As the length of the audio packets that is being put
into this buffer is 60 milliseconds, the Call Coordinator correspondingly tries to eat
from the buffer every 60 milliseconds. Theoretically there should therefore be a 60
milliseconds long delay before it is possible to consume the first packet, which is close
enough to the measured value of 58 milliseconds. As the audio packets thereafter
should continue to arrive at roughly regular intervals, the delay should continue to
be constant throughout the duration of the call. The measurements indicate that
this really is the case, and the added delay is small enough to be acceptable under
the current circumstances.

When measuring the roundtrip time between two normal iPhone client applications,
a 31 milliseconds faster roundtrip time was measured when the clients where con-
nected through a Call Coordinator. However, this does not necessarily mean that
the evolved system provides a shorter overall roundtrip time, as this difference is not
statistically significant due to the large variance observed in the gathered measure-
ment data (the standard deviations for the measurements before and after evolution
are 24 ms and 21 ms respectively). The observed difference in roundtrip time could
therefore be caused by temporary network fluctuations or measurement errors. In
order to be able to show a statistically significant difference, more data would have
to be gathered, perhaps as many as 1000 measurements both before and after evo-
lution. As each measurement had to be done manually in a rather time-consuming
manner, the time constraints of this thesis unfortunately prevented further testing
to be done.
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5
Change Patterns for Multiparty

Communication

In this chapter, the findings of this master’s thesis will be presented. Most impor-
tantly, section 5.1 summarizes the evolution performed in chapter 4 in the form of
an abstract and context-free change pattern. This change pattern can hopefully
be reused by software engineers encountering the same or a similar change scenario
as described here in the future. An alternative change pattern is also proposed in
section 5.2.

5.1 Main Change Pattern

In this section, a precise change scenario for a system evolving from secure one-
to-one into secure multiparty communication will be described, together with an
architectural-level description of how to implement the proposed solution. The
change scenario is shown using SI* notation in figure 5.1 and depicts a change
in the system’s trust model. As long as a system has a trust model that correspond
to the trust model shown in figure 5.1a, then the change pattern can be applied
by following the architectural transformation given in section 5.1.1. Doing so will
result in the trust model shown in figure 5.1b.

Figure 5.1a, representing the system’s trust model before evolution, shows the re-
lationship between the system, the service it provides and two clients (denoted as
Caller and Callee) participating in a secure conversation with each other. The two
clients trust that the keys and identities generated by the system’s Root of Trust1

are valid and are dependent on the Call Service (owned by the system) to provide
the actual functionality of their communication. The clients also trust each other
not to leak any sensitive information, such as their respective private keys or their
shared Session Key.

Figure 5.1b shows the situation after the Call Service has been evolved to support

1Which is the Key Management Server – a role played by the CMS – in the case of the Cryptify
Call System.
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multiple participants of the same call session. The participants still trust the keys
and identities generated by the system’s Root of Trust and depend on the functional
Call Service provided by the system, just as before. In addition to this, however,
one of the participants now has to act as the coordinator of the call. This special
client, referred to as the Call Coordinator, sets up a normal call session with each
of the other participants, with each of these individual call sessions having the same
trust relationships as between the Caller and the Callee in figure 5.1a. In addition
to this, however, the regular participants also have to trust the Call Coordinator
to forward all data sent by a participant during the conversation to all of the other
participants. Finally, the regular participants also have to trust the Call Coordinator
not to misuse its role, for example by modifying or censoring the data sent by some
of the clients, or by leaking data to some unauthorized party. Figure 5.1b shows
a conference call with a total of two participants (including the Call Coordinator),
but any number of additional participants could be added as well. All additional
participants would have the same relationships as the the regular participant already
included in the figure.

5.1.1 Solution

As the Call Coordinator introduced in figure 5.1b will also act as a participant of
the multiparty conversation, the natural way to implement this change pattern is to
evolve a normal client into also assuming the Call Coordinator role. This way, the
Call Coordinator can still act as a participant of the call, while at the same time
take care of its added responsibilities of coordinating the call. If this is possible, it
will be an easy process to implement the change pattern, as will be shown in the
following sections. Section 5.1.1.1 describes some preparatory work that has to be
done in order to prepare the system to be evolved according to the architectural
transformation that is given in section 5.1.1.2.

5.1.1.1 Architectural Support

In order to evolve the architecture of a software system according to the change
scenario described in section 5.1, some important roles first need to be identified ac-
cording to the architectural support template shown in figure 5.2. More specifically,
the roles mentioned in the deployment diagram (figure 5.2a) should be mapped to
the corresponding components in the initial architecture of the system being evolved.

Figure 5.2a shows a Client device, which consists of a Participant module (in turn
containing a Cryptographic Module) and a Call Participant Proxy. The latter is
the interface used by the client when exchanging data with its counterparty during
a secure conversation. The actual data exchange between two clients is facilitated
by some Call Service deployed on a separate device, as also shown in figure 5.2a.
The interfaces between these different components are shown in the component
diagram in figure 5.2b. Note that it is assumed in the component diagram that each
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Figure 5.1: Change scenario for the main change pattern. The figure shows the
trust model of the system, both before and after evolution. A new role, the Call
Coordinator, has been added to the system in the situation after evolution. The
other participants trust and depend on the Call Coordinator to manage the confer-
ence call and to forward all data (without modifying it in any way) sent during the
conversation to all of the participants, and to no one else. The Call Coordinator,
which is also a participant of the call in addition to its other responsibilities, in turn
trusts the regular participants not to leak any sensitive data or cryptographic keys
regarding their conversation. Note that while all of the participating clients must
put trust in the Call Coordinator, there is no direct trust relationship between any
of the regular participants themselves.
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participant can act as either Caller or Callee, depending on who is calling who. In
some implementations however, there might be certain client types that will always
assume only one of these roles. If that is the case, either the CallerPort or the
CalleePort in figure 5.2b can be ignored for those clients.

5.1.1.2 Change Guidance

When applying the change pattern to the software architecture of the target system,
the deployment diagram in figure 5.2a will have to be evolved by adding a Call
Coordinator device, as shown in figure 5.4a. This Call Coordinator, which still has
all the capabilities of a normal client, must also be given the capability of maintaining
multiple simultaneous counterparties, each of them represented by a separate Call
Participant Proxy. The Call Coordinator also needs access to some merging module
that can merge all of the incoming data streams into a single outgoing data stream
for each of the Call Coordinator’s individual counterparties. Note that the Client
and Service Provider devices remain unchanged in the evolved deployment diagram
shown in figure 5.4a.

The Multiparty Participant component in figure 5.4 encapsulates two components, a
Merger and a normal Participant component. The interfaces and internal architec-
ture of the Multiparty Participant component are shown in the component diagram
in figure 5.4b. In this solution, the Call Coordinator can dynamically choose between
the roles of Caller and Callee, and it can even assume different roles for different of
its counterparties in the same conversation. If an implementation where the Call
Coordinator only uses one of these roles is desired, then only one of the CallerPort
and CalleePort needs to be used.

As already stated, the best way to move from the architecture shown in figure 5.2a
into the evolved architecture shown in figure 5.4a is to evolve a normal client into
also assuming the Call Coordinator role. The transformation described below gives
a more detailed guidance of how this is done, and can be used as a template for
how to evolve a system according to the change scenario described in section 5.1.
Once the relevant roles in the initial software architecture have been identified,
as described in section 5.1.1.1, applying the transformation should in most cases
be a straightforward and relatively easy process. The following change guidance
is also expressed in the form of an automatic model-to-model transformation in
section 5.1.1.3.
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Figure 5.2: Architectural support template for the main change pattern. The
deployment diagram shows the client device, consisting of a Participant component
and a Call Participant Proxy, and some other device providing the system’s Call
Service. The Call Participant Proxy is used by the client to exchange data with its
counterparty, via the Call Service provided by the Service Provider device. The in-
terfaces between these different components are detailed in the component diagram.
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1. In order to create the Call Coordinator shown in the deployment diagram in
figure 5.4a, a Multiparty Participant component (as shown in figure 5.4b) first
needs to be developed. This is done in the following way:

(a) Start by encapsulating a Participant component, taken from the imple-
mentation of a normal client, into the Multiparty Participant.

(b) Also add a Merger component to the Multiparty Participant. The Merger
component is used to merge the incoming data streams from each of the
Call Coordinator’s counterparties (plus any data sent by the Call Coor-
dinator itself) into a single outgoing data stream for each of its counter-
parties.

(c) Move the CallerPort, CalleePort, InPort and OutPort from the Partic-
ipant component to the Multiparty Participant component. Under cer-
tain circumstances, the software architect can choose to ignore either the
CallerPort or the CalleePort, as described above.

(d) Let the Cryptographic Module feed its outgoing data through the Merger
component, which will merge all the different data streams and then
in turn feed the merged data out through the Multiparty Participant’s
OutPort.

(e) Connect the rest of the ports directly to the Cryptographic Module.

2. The Call Coordinator needs to be given the capability of handling multiple
simultaneous connections to other clients, instead of just one. Therefore, the
Multiparty Participant component should be able to have any number of si-
multaneous Call Participant Proxies, as shown in figure 5.4a.

3. The software architecture has now been evolved according to the change pat-
tern. When the architecture has been implemented, the system is therefore
guaranteed to support secure multiparty calls using the trust model shown in
figure 5.1b. Note that the Client and Service Provider devices do not have to
change architecturally in any way, as a multiparty call using this solution will
technically look exactly the same as a two-party call from their point of view.

5.1.1.3 Automatic Transformation

The transformation for how to evolve a regular client into a Call Coordinator is also
expressed as a model-to-model transformation in code snippet 5.1 below, using the
QVT Operational transformation language [17] [35]. The transformation is designed
in order to be used on an architectural model expressed as a UML component
diagram.

In order to use the transformation, the UML profile presented in figure 5.3 first
needs to be applied to the UML model of the initial architecture. This is done by
applying the stereotype ComponentType to each of the elements corresponding to
one of the roles that were identified in section 5.1.1.2. The type attribute of each
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Figure 5.3: Graphical representation of the UML profile that needs to be applied
to the system’s architectural model before it can be transformed using one of the
automatic transformations. The ComponentType stereotype is applied to each com-
ponent that has an architecturally significant role in the sense of the transformation.
This way, the component can be assigned one of the ComponentEnum types that
corresponds to its architectural role.

of these components is consequently set to the ComponentEnum that corresponds
to each component’s architectural role. When this is done, the transformation will
be able to identify the components shown in figure 5.2 and automatically transform
the architecture according to the change guidance shown in figure 5.4. Note that
the actual names of the components does not matter, which simplifies the process
of transforming the architecture.

Code snippet 5.1: Main pattern transformation
modeltype UML uses ’http://www.eclipse.org/uml2/5.0.0/UML’;

transformation MainPatternTransformation(inout model : UML, in profile :
UML);

property componentType : Stereotype = profile.objects()[Stereotype]![name
= ’ComponentType’];

// Global variables used when comparing enum values
property clientEnum : EnumerationLiteral;
property participantEnum : EnumerationLiteral;

main() {
// Assign values to the global enum variables
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profile.objects()[EnumerationLiteral]->enum_helper();

// Perform actual transformation
model.objects()[Component]->client2callCoordinator();

}

mapping inout Component::client2callCoordinator()
when {

// Only perform this mapping for any component of the Client type
not

self.getAppliedStereotype(’Profile::ComponentType’).oclIsUndefined()
and self.getValue(componentType, ’type’) = clientEnum

}
{

// Transform the Client into a Call Coordinator
self.name := "Call Coordinator";
self.setValue(componentType, ’type’, ’CallCoordinator’);

// Create a Multiparty Participant component and add it to the Call
Coordinator

var multipartyComponent = object Component { name:=’Multiparty
Participant’ };

self.packagedElement += multipartyComponent;
multipartyComponent.applyStereotype(componentType);
multipartyComponent.setValue(componentType, ’type’,

’MultipartyParticipant’);

// Create a Merger component and add it to the Call Coordinator
var mergerComponent = object Component { name := ’Merger’ };
multipartyComponent.packagedElement += mergerComponent;
mergerComponent.applyStereotype(componentType);
mergerComponent.setValue(componentType, ’type’, ’Merger’);

// Locate the Participant component(s) and move it to the Multiparty
Participant component

var participantComponents = model.objects()[Component]
->select(c | not

c.getAppliedStereotype(’Profile::ComponentType’).oclIsUndefined()
and c.getValue(componentType, ’type’) = participantEnum);

multipartyComponent.packagedElement += participantComponents;
}

helper EnumerationLiteral::enum_helper() {
// These two EnumerationLiterals will be needed to make enum

comparisons in the client2callCoordinator mapping
if (self.name = ’Client’) then clientEnum :=

self.oclAsType(UML::EnumerationLiteral) endif;
if (self.name = ’Participant’) then participantEnum :=

self.oclAsType(UML::EnumerationLiteral) endif;
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}

5.1.2 Advantages and Disadvantages

The main benefit with the solution described in section 5.1.1 is that it is simple
to implement. Architectural changes are only necessary to the one client that is
to assume the Call Coordinator role. No changes are necessary to any other part
of the system’s software architecture, as made clear in figure 5.4a (assuming that
the clients already before the evolution had the capability of dynamically choosing
between the Caller and Callee roles). The performance requirements also remain the
same for all of the system’s hardware nodes except for the Call Coordinator, which
can easily be upgraded with enough hardware resources to maintain a multiparty
call with a large number of participants.

The downside of this solution is that the system’s trust model have to be somewhat
modified, since the participants of a multiparty call no longer can maintain complete
end-to-end encryption between each other. Instead they have to put some amount
of trust in the Call Coordinator, as shown in figure 5.1b.

5.2 Alternative Change Pattern

In some systems it might not be possible or desirable to put trust into a Call Co-
ordinator as was done in in the main change pattern (see figure 5.1). Therefore,
an alternative change pattern which takes another approach is described in this
section, namely to rely on peer-to-peer security instead of using a centralized Call
Coordinator. The change scenario for this alternative change pattern is shown in
figure 5.5. The situation before evolution, shown in figure 5.5a, is the same as for
the main change pattern (see figure 5.1a), but the situation after evolution instead
uses the trust model shown in figure 5.5b. With this solution, each participant of
a multiparty call have the same trust relationships to all of their counterparties as
they would have to their lone counterparty in a normal two-party call.

The roles that need to be identified and mapped to the corresponding components
in the software architecture of the system being evolved are the same as for the
main change pattern (see section 5.1.1.1 and the architectural support template
in figure 5.2). The deployment diagram in figure 5.6a shows the relevant roles in
the evolved architecture. The internal structure of every client is now similar to
that of the Call Coordinator described in section 5.1.1.2, except that there is no
need for a Merger component in this solution, as each client sends its outgoing data
directly to each of its counterparties instead of letting a Call Coordinator forward it.
The transformation necessary in order to evolve a system according to this change
pattern is therefore similar to the transformation described in section 5.1.1.2. The
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Figure 5.4: Change guidance for the main change pattern. One of the clients is
evolved into a Call Coordinator, as shown in the deployment diagram, which can
have any number of simultaneous counterparties. The component diagram shows
how the Multiparty Participant component encapsulates a normal Participant com-
ponent and a Merger component, which is used to assemble all the different signals
sent to the Call Coordinator into a single outgoing signal for each of the Call Co-
ordinator’s counterparties. Both the Call Coordinator and the regular participants
each have the capability of acting as either Caller or Callee in this solution.
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transformation for the alternative change pattern is given below, and is to be applied
to all the clients of the system (instead of just one, as were the case with the main
change pattern).

1. Each client in the system is to be evolved with a Multiparty Participant com-
ponent (see figure 5.5). This component is created in the following way:

(a) Start by encapsulating a Participant component, taken from the imple-
mentation of a normal client, into the Multiparty Participant.

(b) Move the CallerPort, CalleePort, InPort and OutPort from the Partici-
pant component to the Multiparty Participant component.

(c) Connect these ports directly to the Cryptographic Module encapsulated
in the Participant component. The result should now look like the Mul-
tiparty Participant component depicted in figure 5.5b.

2. Each client also needs to be given the capability of handling multiple simultane-
ous connections to other clients, instead of just one. Therefore, the Multiparty
Participant component should be able to have any number of simultaneous Call
Participant Proxies, as shown in figure 5.5a.

5.2.1 Automatic Transformation

Just as for the main change pattern, the change guidance for the alternative change
pattern is also given in the form of an automatic transformation, expressed in the
QVT Operational language, in code snippet 5.2 below. Before the transformation
can be executed, the UML profile shown in figure 5.3 needs to be applied to the UML
model of the initial architecture, just as in the case of the main transformation.

Code snippet 5.2: Alternative pattern transformation
modeltype UML uses ’http://www.eclipse.org/uml2/5.0.0/UML’;

transformation AlternativePatternTransformation(inout model : UML, in
profile : UML);

property componentType : Stereotype = profile.objects()[Stereotype]![name
= ’ComponentType’];

// Global variables used when comparing enum values
property clientEnum : EnumerationLiteral;
property participantEnum : EnumerationLiteral;

main() {
// Assign values to the global enum variables
profile.objects()[EnumerationLiteral]->enum_helper();
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// Perform actual transformation
model.objects()[Component]->evolveClient();

}

mapping inout Component::evolveClient()
when {

// Only perform this mapping for any component of the Client type
not

self.getAppliedStereotype(’Profile::ComponentType’).oclIsUndefined()
and self.getValue(componentType, ’type’) = clientEnum

}
{

// Create a Multiparty Participant component and add it to the Client
var multipartyComponent = object Component { name:=’Multiparty

Participant’ };
self.packagedElement += multipartyComponent;
multipartyComponent.applyStereotype(componentType);
multipartyComponent.setValue(componentType, ’type’,

’MultipartyParticipant’);

// Locate the Participant component(s) and move it to the Multiparty
Participant component

var participantComponents = model.objects()[Component]
->select(c | not

c.getAppliedStereotype(’Profile::ComponentType’).oclIsUndefined()
and c.getValue(componentType, ’type’) = participantEnum);

multipartyComponent.packagedElement += participantComponents;
}

helper EnumerationLiteral::enum_helper() {
// These two EnumerationLiterals will be needed to make enum

comparisons in the client2callCoordinator mapping
if (self.name = ’Client’) then clientEnum :=

self.oclAsType(UML::EnumerationLiteral) endif;
if (self.name = ’Participant’) then participantEnum :=

self.oclAsType(UML::EnumerationLiteral) endif;
}

5.2.2 Advantages and Disadvantages

The advantage of this solution is that end-to-end encryption and authentication
can be maintained between all pairs of participants in the multiparty call. No
additional trust – apart from the fact that each call session now can consist of any
number of participants – has to be introduced to the system’s trust model. On the
downside, however, this solution requires every client application to be modified in
order to support multiple simultaneous call sessions. As each participant will need to
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encrypt and decrypt a separate data stream to and from each of its counterparties,
this solution will also be extremely performance-heavy for the clients if the number
of participants in a conversation is large. Another potential flaw with this design
arises if the communication links between some of the participants should break
down while others remain intact. If this would happen, some of the participants
would not be able to communicate with each other any longer, and thus giving the
different participants differing views of who really is part of the conversation.

Some caution should also be advised in order to avoid introducing unnecessary
audio feedback to a multiparty conversation, as the risk of doing so is increased in
a solution such as this where all of the participants continuously send data to each
other. This should not be an issue in the case of the Cryptify Call system, which
already has very effective feedback elimination algorithms in place, but this factor
should be taken into consideration before deciding upon applying this solution to
some other system.

5.3 Choosing and Applying a Change Pattern

For the sake of clarity, in this section follows a step-by-step guide on how to apply
either of the two change patterns identified in this chapter to some arbitrary system.

First of all, the software developer looking to use one of these change patterns
needs to make sure that the trust model given in the before situation of the change
scenario of both the change patterns (as the before situation is the same in both of
the change patterns described in this chapter) can be mapped to the system that is
to be evolved. Once this is done, the developer can choose which out of the two given
change scenarios (either the change scenario shown in figure 5.1 or the one shown
in figure 5.5) that is desired for the system. If neither of these change scenarios
correspond to the change of trust that the system is to undergo, then neither of the
two change patterns given in this chapter can be applied.

Once a change pattern has been decided upon, the architectural roles in the given
architectural support template (figure 5.2 applies to both of the change patterns)
need to be mapped to the corresponding components in the system’s software archi-
tecture. In case that some of the roles are missing in the initial software architecture,
these roles will need to be added to the architecture before proceeding.

The final step is to follow the architectural-level transformation given in the change
guidance section of the chosen change patterns. This should result in an architecture
that looks like the one shown in figure 5.4 or 5.6 respectively.
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Figure 5.5: Change scenario for the alternative change pattern. In this scenario,
each pair of participants in the multiparty call sets up their own separate call session,
while the architecture remains otherwise unchanged.
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Figure 5.6: Change guidance for the alternative solution. Every Client is evolved
with a Multiparty Participant component in this change pattern. The internal
architecture of the Multiparty Participant component is shown in the component
diagram in this figure.
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6
Discussion and Conclusions

In this chapter, some aspects of the thesis will be discussed in more depth. First, a
short discussion is held in section 6.1 regarding the identified change patterns and the
impressions from implementing one of them. Next, a couple of other contexts where
the same change patterns could be applied are mentioned in section 6.2. Thereafter,
some directions which the future development of the Cryptify Call system might take
are explored in section 6.3, while a few areas requiring future work from a research
perspective are identified in section 6.4. Some of the challenges encountered during
the thesis project are discussed in section 6.5, and finally is the thesis concluded in
section 6.6.

6.1 The Identified Change Patterns

In chapter 5, two suitable change patterns were identified by the author in answer
to the research questions specified in section 1.2. Out of the two change patterns
described in chapter 5, the first solution (in which a centralized Call Coordinator is
used for each multiparty call) was chosen to be implemented for the Cryptify Call
system. The main reasons for this pattern to be chosen were that it only required
architectural changes to a single node (the client being evolved into Call Coordi-
nator) and that the bottleneck of the smartphone clients’ performance limitations
could be avoided. This solution did however require some changes to the system’s
trust model, as the regular participants of a multiparty conversation now have to
put some additional trust in the Call Coordinator handling the call. Such tradeoffs
between functionality and security are usually unavoidable though, and in this case,
the benefits of using this solution vastly outweighs the downsides.

The alternative solution shown in section 5.2, in which the participants of a multi-
party call each set up their own connections to each of their counterparties, could
be the better choice for some systems though. This solution would in a way result
in a more secure solution than the change pattern that was implemented, as no
additional dependencies have to be introduced in the system’s trust model. How-
ever, this solution would not be feasible to implement in the Cryptify Call system,
as each additional connection would require vast amounts of performance resources
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in the client devices. A typical smartphone used by the end users of Cryptify Call
today would only be able to manage perhaps two or three counterparties using this
solution. There are also some other downsides of this solution that would need to
be tackled, most notably the risk of ending up with some of the participants of a
multiparty call having conflicting views of who is participating in the call, due to
a subset of the links between the participants breaking down. For a non-security
critical application, this might not be a major issue, but in a security-critical system
such as Cryptify Call, some sort of mechanism would need to be implemented to
handle such situations.

After having evaluated the evolved version of the system, the Cryptify management
was very satisfied with the implementation. This led to the decision to let the
implemented code lay as the foundation for the Call Coordinator application that
has now been put into production and is about to be released on the market. The
most important factor in this decision was that it was possible to keep the system’s
security requirements basically untouched. The only changes necessary were some
small modifications to the system’s trust model, as the participants of a multiparty
call now must put some amount of additional trust in the Call Coordinator. That
it was possible to keep the necessary architectural changes rather minimal is also of
great value, as the less changes that have to be made to the code, the less is the
risk of introducing new bugs with the change [26]. Also from a non-functional point
of view, the results of the implementation are solid. The performance evaluation
conducted by the author in section 4.5 shows that it is possible to maintain a 50-
party multicall without adding any additional roundtrip delay between the end users,
using a MacBook Pro as Call Coordinator. Such a large number of participants is
way more than what is necessary in order to support the intended use cases of
the conferencing call functionality of the Cryptify Call system. However, should it
at some point be necessary to further increase this limit, this can rather easily be
achieved either by adding additional hardware resources to the Call Coordinator or
by further improving the efficiency of its implementation.

6.2 Other Applications

While the change patterns described in chapter 5 were derived from evolving an
identity-based VoIP application, the patterns themselves are not necessarily lim-
ited to only voice communication systems. The two identified change patterns can
therefore be used to add multiparty support to basically any type of system where
multiple parties need to exchange some sort of data in a secure way with each other.
Just as long as the initial architecture is based upon a secure 1-to-1 communications
paradigm, both of the patterns should be applicable in order to add support for
secure multiparty communication to the architecture. Examples could range from
online multiplayer games to smartphone applications of any kind that need to evolve
from two-party to multiparty communication. These change patterns should also be
well-suited to use on Internet of Things applications, where a multitude of devices
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with embedded software need to connect to each other and exchange data. Assume
for example that someone has a smart refrigerator which can communicate with its
owner’s smartphone. At some point, it might be necessary to evolve the refrigerator
to also let it communicate with other smart devices (such as the freezer or the bath-
room scales) connected to the same local area network. This could be achieved by
applying either of the two change patterns presented in this thesis. As the Internet
of Things is an area which is expected to grow rapidly in the near future [2], many
more possible applications of these change patterns will surely present themselves
in the years to come.

In order to decide whether a specific software system is suitable for being evolved
according to either of the change patterns identified in chapter 5, the roles in the
SI* diagram given in the architectural support template in figure 5.2 just need to
be mapped to the corresponding components in the software architecture of that
system. If it is possible to do so, then that architecture can be evolved according to
either of the two given change patterns.

6.3 Future Work

One possible overall direction the future development of the Cryptify Call system
could take is to give all the different client applications the capability of acting as
the Call Coordinator for a single multiparty call session. This would be achieved by
applying the architectural solution of the implemented change pattern, as described
in section 5.1, to all client platforms, instead of just the desktop application. Doing
so would mean that any of those clients would be able to set up and manage an
n-party call, with n being constrained by that platform’s performance restrictions.
The implications of such an approach would be that a normal two-party call would
follow the same control flow as a call where a third party is added. The benefits of
using such a solution would mainly be to ease future maintenance, as all the clients
would be able to share largely the same code and architecture (as opposed to Call
Coordinators being implemented differently from the regular clients). Note that a
major difference between this approach and the alternative change pattern described
in section 5.2 (which was found to be unfeasible for the Cryptify Call system) is that
there will still be exactly one client acting as the Call Coordinator for each individual
conference call session, but that any of the participating clients can assume that
role. Due to the limited performance capabilities available in most smartphones
models, this solution might not be ideal however (many common smartphone models
available on the market today would not be able to handle multiparty calls with
more than three participants). But as long as the performance of new smartphone
models continue to increase, this solution will become a more and more attractive
alternative in the years to come.

The implementation of the evolved Call Coordinator could also be improved in
some areas in order to further increase the overall performance of the system, if
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necessary. To start with, a more advanced kind of buffer could be implemented
to replace the current circular buffers queuing audio packets sent to and from the
Call Coordinator. For example, a jitter buffer could be used to make sure that the
incoming audio arriving to the Call Coordinator is processed at regular intervals.
A jitter buffer works by dynamically adding and removing delay to the incoming
audio stream in order to neutralize any deviations in the time interval between the
arriving audio packets, and thus ensuring a smooth playback rate.

6.4 Future Research

Hopefully the findings presented in this master’s thesis can be combined with the
findings of other studies in order to form a more complete picture of the whole
process of software evolution. As more research is performed within this field, change
patterns and other principled ways of evolution will probably become more and more
important when it comes to improving and optimizing software evolution processes.
However, this area still suffers from a lack of research and is as not widely embraced
by the industry as it should be, where much evolution is instead done in an ad
hoc way. The most obvious area where more work needs to be done when it comes
to change patterns is the need to identify more patterns covering different change
scenarios. In this, the two change patterns identified in this thesis could help by
acting as inspiration, or possibly even as building blocks for more complex change
patterns. All change patterns that are identified should ideally also be verified by
applying them to real contexts in the industry. Case studies where already identified
change patterns are applied to existing systems are also necessary in order to further
prove the benefits of using such a principled way of evolution.

Once a sufficiently large number of change patterns covering different change scenar-
ios have been identified, then the technique will hopefully become more widespread
in its use. Ideally, all the identified patterns should be put together in some kind
of database and made available online to software developers and researchers all
around the world. Doing so would both promote and ease the concept of using
them, as well as inspire people to contribute with their own change patterns. The
pace in which new change patterns are identified could also be increased by creat-
ing some sort of framework to aid the process of coming up with patterns to solve
specific change scenarios. Such a framework could be something as simple as a
guidance and best-practices on how to identify suitable change patterns, or some
sort of meta-template to use during the process. Perhaps it will at some point in
the future also be possible to develop more complex tools that can be used in order
to semi-automate the extraction of new change patterns. Change pattern research
could also focus on finding ways to reuse components or whole change patterns in
order to save time when identifying solutions to new change scenarios.

There are also many other aspects of security and software evolution that can be
explored, such as self-adapting systems and code automatically generated from re-
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quirements, two areas not touched upon during this thesis. Both these techniques, as
well as others, could also be combined with the concept of change patterns. If it for
example would be possible to just apply a change pattern to the software architec-
ture of a system, and that the code would then automatically change in accordance
to the new architecture, the potential cost savings on software maintenance would
be huge.

6.5 Challenges

Quite a number of steps had to be performed in order to finally identify the two
change patterns presented in chapter 5, and some of these steps were more chal-
lenging than others. The most time-consuming and difficult step was probably to
understand and model the software architecture of the initial Cryptify Call system.
The main difficulties in this originated from the fact that no complete documen-
tation of the system architecture existed before the beginning of this project, and
neither did any developer at the company have complete knowledge of the whole
system. The software architecture also proved to be a quite complex affair, as the
original architecture seems to have deteriorated over time in many aspects, probably
due to the lack of documentation to rely on for the developers working on evolving
the system.

Another challenge during the thesis was to fully grasp the MIKEY-SAKKE protocol.
Such detailed knowledge was not necessary in order to just implement the evolved
functionality in the system – which actually proved to be a relatively simple and
straightforward process once the evolved architecture had been decided upon and
modeled – but important to have in order to guarantee that no security risks had
been introduced in the evolved architecture.

To translate the evolution performed on the Cryptify Call system into a context-
free change pattern was also quite challenging. The main difficulty in this was to
know on which level of abstraction to express the change pattern, as well as the
pattern for the alternative solution which was not implemented in the Cryptify Call
system. Both of the change patterns had to be abstract enough to not just apply to
the Cryptify Call system, while still being relevant and useful to anyone interested
in using these patterns. It took some work to get this right, but hopefully will
the resulting change patterns be seen as simple enough to map to some arbitrary
software system, while at the same time having detailed enough architectural-level
transformations to actually help while evolving the architecture of that system.

One step that went surprisingly easy was the actual implementation of the evolved
architecture in the Cryptify Call system. Even if quite some time had to be spent
on the implementation part of the evolution, it was possible to carry it through
without encountering any major issues. This was probably made possible through
the thorough work spent on identifying different possible architectural solutions and
then deciding upon one of them in collaboration with the company. However, quite
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some effort and creativity was needed in order to optimize the code and thereby
increase the number of participants that a single conference session can support.
These optimizations were solely carried out in low-level details of the code, and did
not affect the higher-level software architecture itself.

6.6 Conclusions

In order to answer the research questions specified in section 1.2 and find one or more
change patterns to evolve a system from secure one-to-one into secure many-to-many
communication, a suitable system had to be studied in that context. The system
chosen for the task was Cryptify Call, a VoIP application used for making secure
phone calls, which was evolved by adding support for secure telephone conferences.
During the evolution process, two different possible architectural solutions were
identified and later expressed as precise change patterns by the author of this thesis.

In order to both perform the evolution and to define the two change patterns, it
was necessary to first model the software architecture of the Cryptify Call system.
As no complete documentation of the system’s software architecture existed at the
beginning of the thesis project, the modelling had to be done mainly through reverse
engineering and by interviewing senior programmers at the company. Two promising
approaches – which in the end led to the two change patterns – on how to evolve the
architecture were identified early on during the process. As the necessary changes
to be made in both of these approaches mainly concerned the client-side of the
system, most focus was spent on modelling that part of the software architecture.
In addition, the system’s trust model and most important security requirements –
to offer authentication and confidentiality – were modeled using SI* notation. All
of this modelling work was carried out by the author of the thesis alone, and then
validated by experts at the company.

The change scenarios corresponding to the two change patterns were both based
upon the changes made to the system’s trust model and data flow. In order to
define a precise solution to each of these change scenarios, the most important
roles in the initial as well as the evolved software architecture for each solution
had to be identified. The architectural changes in the two change patterns were
then modeled by the author as architectural-level transformations, including an
automatic transformation expressed in the QVT Operational language for each of
the change patterns. In order to apply one of the change patterns to some other
software system in the future, this process simply has to be reversed by mapping the
architectural roles given by the change pattern to the corresponding components in
the software architecture of the system being evolved and then follow the steps in
the given transformation. A set of architectural models are given in chapter 5 in
order to aid the software architect during this transformation.

The solution that was chosen (by the author of the thesis in collaboration with the
managers at Cryptify AB) to be implemented in the Cryptify Call system was an

70



6. Discussion and Conclusions

architecture where one of the clients in a multiparty call acts as the coordinator
for that call. The responsibilities of this Call Coordinator are to authorize all the
participants of a multiparty call and to handle all exchange of data between them.
The Call Coordinator therefore needs to be trusted by the regular participants in
order to fulfill these obligations and not to misuse its role in any way. The only
change necessary to a system’s trust model in order to apply this change pattern
is to add those trust relationships between the Call Coordinator and the regular
participants of a multiparty call. Apart from this, none of the system’s security
requirements have to be modified. The main benefit with using this change pattern is
that the only part of the system’s software architecture that will require any changes
is the client application that will be evolved into assuming the Call Coordinator role.

The alternative solution, which was not implemented, instead works by letting each
participant set up a separate connection with each of its counterparties in the con-
versation. This alternative solution is technically more challenging but does not
require any changes at all to the system’s security requirements. Therefore this
solution could be the better choice for some systems, but it would not be possible
to implement in the Cryptify Call system due to performance limitations in the
system’s client applications.

Both of the identified change patterns can hopefully be applied in other contexts
as well. The most obvious use would be in similar VoIP applications, but the
change patterns are equally valid to any type of system built with a suitable software
architecture. Hopefully will this thesis also inspire further research in the same
direction, perhaps by letting the two identified change patterns be used as building
blocks for more complex change patterns.
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A
Different Merging Algorithms

There are plenty of algorithms that can be used to merge multiple audio signals
together, each one with its own benefits and drawbacks [19]. A couple of different
such algorithms were considered to be used in the evolved Cryptify Call system
instead of the simple clipping algorithm described in section 4.4.1, but in the end
it was decided that the clipping algorithm worked sufficiently good to use even
in conversations with a large number of participants. The reason for this is that
the PCM audio format used in the Cryptify Call system includes a large enough
amplitude headroom in the audio packets to ensure that clipping very rarely has
to occur. During testing, clipping was found to occur only when a large number of
speakers were speaking simultaneously. In the case of a telephone conference, it will
in any case be impossible to discern a single voice if too many people are talking at
the same time, regardless of what merging algorithm is being used, and therefore the
clipping algorithm was decided to be sufficient for the Cryptify Call system for the
time being. Some of the other algorithms that were considered during the evolution
process are discussed below however, as these algorithms might be of interest to use
in a system where clipping would occur more frequently when using the clipping
algorithm, or perhaps for merging some other kind of data altogether.

The implemented clipping algorithm is expressed as a function of time in equa-
tion A.1, for comparison. Zmin and Zmax in the equation represent the smallest and
largest PCM values allowed, A1 . . . An represent the individual audio streams sent by
the participants and Z represents the final merged signal. The graph in figure A.1
shows the clipping function being used to merge two sound waves (the dashed lines
in the graph) with different frequencies and amplitudes. The combined sound wave
is shown by the thicker line in the graph. Clipping occurs at several locations in the
merged sound wave, but in a real conversation this will rarely be the case due to the
large amplitude overhead available in the PCM specification used by the Cryptify
Call system.

Z(t) = min(Zmax, max(Zmin, A1(t) + A2(t) + · · ·+ An(t))) (A.1)

One of the alternatives that was tried out instead of using the clipping algorithm,
was to use linear attenuation. Linear attenuation simply works by adding together
all the separate signals and then dividing the result by the number of signals. This
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algorithm will always yield a result within the allowed range, but the amplitude of
the merged sound wave resulting from this algorithm is directly correlated to the
number of participants, regardless of how many of them that are currently speaking,
and thus the resulting audio would become more and more silent as more participants
connect to the call. Therefore this algorithm would not work well in Cryptify Call or
some other VoIP system, as the number of simultaneous speakers is usually limited
to just one or two, regardless of the total number of participants in the call. The
linear attenuation algorithm is expressed mathematically in equation A.2 and an
example of its use is shown in the graph in figure A.2. Note that the resulting sound
wave is free from distortion or clipping, but that it does not utilize the full amplitude
range available, resulting in a loss of volume.

One way of making the linear attenuation algorithm more useful for a VoIP appli-
cation is to first identify and discard any silent sound packets, before running the
algorithm only on the remaining packets. This way, the loss of volume would nor-
mally not be as discernable as when dividing by the total number of participants.
Linear attenuation could also be of interest to use in applications where it is some
other kind of data than audio that needs to be merged.

Z(t) = A1(t) + A2(t) + · · ·+ An(t)
n

(A.2)

Yet another alternative to the clipping algorithm is to use a method proposed by
Viktor T. Toth [44]. In this method, each PCM value in the merged signal is
calculated by taking the union of the values of the corresponding PCM samples in
the signals to be merged. In order for this algorithm to work though, each of the
samples first have to be normalized to a value ranging between 0 and 1. This is
done by dividing all the values with the largest allowed PCM value (Zmax). After
the union of all the signals thereafter has been calculated, getting the final result
is achieved by multiplying back Zmax. This algorithm is expressed mathematically
in equation A.3 and an example is shown in the graph in figure A.3. The merged
audio wave clearly utilizes the full amplitude range, but the sound wave looks to
be distorted at some points. This distortion means that the algorithm is not very
suitable for merging voice audio data, but could possibly work better for merging
other types of data.

Z(t) = Zmax · |
n⋃

i=1

Ai(t)
Zmax

| (A.3)

A better solution could possibly be to instead calculate the hyperbolic tangent of
the combined sound waves, using the tanh function [48]. Just as when using Viktor
Toth’s method, the values need to be normalized, but the result is guaranteed to
be distortion-free while at the same time utilizing most of the available amplitude
range. This function would therefore be the best alternative for a VoIP application
where the clipping algorithm would clip the merged audio stream too frequently.
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The algorithm is expressed mathematically in equation A.4, and an example of its
use is visualized in the graph in figure A.4.

Z(t) = Zmax · tanh(A1(t) + A2(t) + · · ·+ An(t)
Zmax

) (A.4)
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Figure A.1: The clipping function. Every time the merged audio signal (Z(t))
would go outside of the allowed PCM values, the signal is simply clipped to the
minimum or maximum value allowed by the PCM specification respectively.
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Figure A.2: Linear attenuation. The merged audio signal is guaranteed to be
distortion free, but as the amplitude of the signal corresponds negatively to the
number of speakers in the conversation, the volume of the resulting signal would
become very low in a conversation with many participants.
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Figure A.3: Viktor Toth’s method. This more complex algorithm utilizes the full
amplitude range, but the merged sound wave will be distorted at some points.
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Figure A.4: The hyperbolic tangent (tanh) function. This algorithm does not
utilize the full amplitude range, but it is guaranteed to be distortion free, and
should therefore be a favorable alternative for applications where the simple clipping
function does not work very well.
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