
Translation between fractal images and
music
Using Grammatical Framework to translate between self-similar
fractals, and how the fractals can be interpreted as music

DATX02-19-26, Supervisor: Krasimir Angelov

H. ANDERSSON, A. BERGSTEN, B. BRANDSTRÖM,
G. ENGSMYRE, E. KNOPH, E. MEIJER

Cover: A screen shot of the finished product. On the left (Fractal 1) is the graph-
ical representation of the fifth iteration of the Sierpinski triangle, and on the right
(Fractal 2) is the fifth iteration of the Dragon curve. A fourth order phrase has
been highlighted in red in the left fractal, and the corresponding phrase in the right
fractal is marked in red as well.

Helena Andersson, Alfred Bergsten, Boel Brandström, Gustav Engsmyre, Eli Knoph,
Edvin Meijer
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
This bachelor’s thesis concerns the translation between certain types of self-similar
fractals, and the interpretation of said fractals as music. The fractals used in this
project are the Dragon curve, the Sierpinski triangle, the Hilbert curve, the Gosper
curve, and the Koch square snowflake. All these fractals can be described by Lin-
denmayer systems, or L-systems, consisting of an alphabet, an axiom and a set of
rules. These systems can be viewed as a type of formal grammar, and thus the
programming language Grammatical Framework, or GF, can be used to generate
strings that represent the fractal images. GF is based on functional programming
and is used for translation between languages – natural as well as formal. With
GF it is possible to translate between the fractal images (e.g. from a Koch square
snowflake to a Sierpinski triangle). The fractals and the translation between them
are visualised in a GUI in the form of a web application. Information about the
fractals (such as phrases, the coordinates for the different line segments that the
fractal images consist of etc.) is temporarily stored in a data structure constructed
for this project. The instructions for graphically rendering the fractal images are
used to create a musical representation of the fractals. A straight line in the graph-
ical representation means ”play note”, and turns mean ”raise/lower the pitch”. The
pitch is changed with respect to the angle of the turn, and the duration of the notes
is decided stochastically. In order to make the music harmonic, all pieces of music
are created from a certain scale, e.g. C-major.

Keywords: fractals, music, Grammatical Framework, L-systems, formal grammar.

i

Sammandrag
Detta kandidatarbete behandlar översättning mellan vissa typer av självliknande
fraktalbilder samt tolkningen av dessa fraktaler som musik. Fraktalerna som använts
i projektet är Drakkurvan, Hilbertkurvan, Sierpinskis triangel, Gospers kurva och
von Kochs fyrkantiga snöflinga. Alla dessa fraktaler kan beskrivas av Lindenmay-
ersystem, eller L-system, vilka består av ett alfabet, ett axiom och en uppsättning
regler. Dessa system kan ses som en sorts formell grammatik och därmed kan pro-
grammeringsspråket Grammatical Framework, eller GF, användas för att generera
strängar som representerar fraktalbilderna. GF är baserat på funktionell program-
mering och används för översättning mellan språk – naturliga såväl som formella.
Med GF är det även möjligt att översätta mellan fraktalbilderna (exempelvis från
von Kochs fyrkantiga snöflinga till Sierpinskis triangel). Fraktalerna och översät-
tningen mellan dem visualiseras i ett grafiskt användargränssnitt i form av en web-
applikation. Information om fraktalerna (så som fraser, koordinaterna för de olika
linjerna som bygger upp fraktalbilderna, m.m.) lagras temporärt i en datastruktur
som konstruerats för detta projekt. Instruktionerna för det grafiska generererandet
av fraktalbilderna används för att skapa en musikalisk representation av fraktalerna.
En rät linje i den grafiska representationen betyder ”spela tonen” och svängar be-
tyder ”höj/sänk tonhöjden”. Tonhöjden ändras med avseende på svängningsvinkeln
och tonlängden bestäms stokastiskt. För att göra musiken harmonisk skapas alla
musikstycken utifrån en viss skala, exempelvis C-dur.

Nyckelord: fraktaler, musik, Grammatical Framework, L-system, formell gram-
matik.

ii

Contents

1 Background 1
1.1 Fractals . 1
1.2 Grammars and Lindenmayer systems 2
1.3 Grammatical Framework . 4

1.3.1 Simulated recursion in GF . 4
1.3.2 Phrases in GF . 4

1.4 MIDI files . 6
1.5 Turtle graphics . 6
1.6 Web server architecture . 6

2 Task 8

3 Scope 9
3.1 Ethical aspects . 9
3.2 Fractals used . 9
3.3 Musical input . 10
3.4 Stochastic rules . 11
3.5 Grammar input . 11

4 Method 12
4.1 Initial stage . 12

4.1.1 Prototype . 13
4.1.2 Exploring existing L-systems for music 14

4.2 GF generation . 15
4.3 Data structure . 16
4.4 Parsing . 18

4.4.1 From string to tree . 18
4.4.2 Musical interpretation . 19
4.4.3 Virtual piano input affecting graphical representation 20

4.5 Web application . 21
4.5.1 Client-server architecture . 21
4.5.2 Drawing and translating between fractals 22

5 Result 24

6 Discussion 29
6.1 Generating strings in GF . 29

iii

Contents

6.2 Data structure . 29
6.3 Musical observations . 31
6.4 Translating fractal fragments . 31
6.5 Taking the project further . 31

A Appendix: Musical terms 33

B Appendix: GF-grammars in the project 34

References 37

iv

1
Background

Fractals have always been fascinating to mathematicians, programmers and people
in general. There are multiple ways of generating fractals, and these ways vary
among different fractal types, but self-similar fractals are possible to define using a
grammar (see Section 1.2), similar to how a grammar can define a natural language.
Grammatical Framework (see Section 1.3) is a programming language mainly used
for translating between natural languages by defining a thorough grammar for each
of the languages one wishes to translate between. Fractals can also be described by
a grammar, and if these grammars are defined in Grammatical Framework trans-
lation between fractals is possible. Since fractal images and music are both two
dimensional, with music having the properties of both pitch (”height”) and dura-
tion (”length”), the fractal images can be interpreted as music.

To be able to translate between fractal images and/or music is mainly of academic
interest. It is a way to possibly extend the use of Grammatical Framework and
examine fractals from a different point of view. It can also be used to help people
further understand fractals by comparing them to each other, study their grammars
and visualise their construction. The musical interpretation can also be used to help
composers by letting them be inspired by the fractal nature of music. The product
might also be used to create or inspire multimedia art. Therefore, three main target
groups were identified for this project: people interested in different applications of
Grammatical Framework, students trying to understand fractals and people com-
posing music or creating multimedia art.

The main purpose of this project is to examine how Grammatical Framework can be
used as a tool for translating between different fractal images, and how said fractal
images can be interpreted as music. Furthermore, a secondary purpose of the project
is to examine how to make the final product interactive, accessible, and interesting
for the target groups mentioned above.

1.1 Fractals
Benoit B. Mandelbrot [1, p15] gives the following definition of a fractal:

“A fractal is by definition a set for which the Hausdorff Besicovitch dimension strictly
exceeds the topological dimension.”

1

1. Background

However, as Kenneth Falconer [2] states in his book on the topic, this definition
and many others prove unsatisfactory as they do not apply for certain sets that
should be considered fractals. Instead, Falconer [2, pXXVIII] argues, a set F can
be thought of as a fractal if:

• “F has a fine structure, that is, detail on arbitrarily small scales.”
• “F is too irregular to be described in traditional geometrical language, both

locally and globally.”
• “Often F has some form of self-similarity, perhaps approximate or statistical.”
• “Usually, the ‘fractal dimension’ of F (defined in some way) is greater than

its topological dimension.”
• “In most cases of interest, F is defined in a very simple way, perhaps recur-

sively.”

For this text, the exact definition is not very relevant. All examples of fractals
considered in the project are self-similar and defined recursively. According to Man-
delbrot [1], a set F is called self-similar if it is made up of disjoint subsets that are
all similar to F .

1.2 Grammars and Lindenmayer systems
A grammar is, according to Aarne Ranta, defined as: “a set of rules for analysing
and producing text and speech” [3, p3]. Ranta writes that for natural languages (e.g.
Swedish), grammars are a consequence of the language they describe. For formal
languages, the language is defined by its grammar and has thus been designed with
a specific purpose.

The types of grammar that are used in this project are all formal grammars. A
formal grammar consists of three components: an alphabet, an axiom and a set of
rules that should be applied to the axiom and the following iterations of it, as stated
by Ullman and Hopcroft in [4]. The alphabet is – according to [4] – the set of char-
acters that can be used in the particular grammar. Among many things it can be
letters, descriptions of drawing operations or musical notes, depending of what type
of grammar it is. Ullman and Hopcroft further mention that the axiom is the initial
”sentence” consisting of characters from the alphabet. The characters of the axiom
will then be substituted with other characters from the alphabet. The substitution
will depend on the grammatical rules, stating which characters should be changed
into which characters, see (1.1) for example.

A Lindenmayer system, or L-system, is a type of formal grammar that uses rewriting
for generating fractals – described by James Hanan and Przemysaw Prusinkiewicz
in [5]. Hanan and Prusinkiewicz state that rewriting is a process where the axiom is
changed to a more complex string by iteratively replacing parts of it. In an L-system,
all possible rules are applied at every iteration [6]. An example of an L-system is:

2

1. Background

Alphabet : A, B, r, l

Axiom : A

Rules : A → BlAlB, B → ArBrA

(1.1)

The system in (1.1) takes the initial string ”A” and replaces the A with B l A l B,
generating the new string ”B l A l B”. In this string, the A is replaced with B l A l
B and the B is replaced with A r B r A, generating the string ”A r B r A l B l A l
B l A r B r A”. The iterations continue as follows:

0 : A

1 : BlAlB

2 : ArBrAlBlAlBlArBrA

3 : BlAlBrArBrArBlAlBlArBrAlBlAlBlArBrAlBlAlBrArBrArBlAlB

...

The string can then be interpreted differently depending on what operations A, B, r
and l represent. To know how to translate a string from an L-system, the following
example of interpretations can be used:

A : draw a line and move forward
B : draw a line and move forward
r : turn right
l : turn left

The above interpretation of the L-system presented in (1.1) will generate a fractal
called the Sierpinski triangle. A string generated from a grammar in Grammat-
ical Framework could thus be interpreted in another programming language, e.g.
Python, to draw a fractal or generate musical notes [7].
A possible way to interpret the alphabet as music could be as follows:

A : play the current tone
B : play the current tone
r : raise pitch
l : lower pitch

Since A and B both have the same interpretation in these examples, they will hence-
forth be replaced with the letter F.

3

1. Background

1.3 Grammatical Framework
Grammatical Framework (GF) is a programming language, developed in 1999, used
for defining different types of grammars in a programming context [3]. It is – ac-
cording to Ranta [3] – mainly used for natural languages and serves as a tool for
translating between them by defining complex grammatical structures for each lan-
guage. Ranta writes that the design of GF is based on typed functional program-
ming languages such as Haskell, but since the users of GF vary from programmers
to linguists it needs to be accessible to people of various backgrounds. Though the
main application of GF lies within natural languages, it can also be used for other
purposes where a grammar is a core component. One example is fractals based on
Lindenmayer systems (see Section 1.2).

Ranta describes that when translating between two languages/grammars in GF,
one defines an abstract syntax where the axiom and the rules for the grammar are
defined. The abstract syntax is inherited by one or many concrete syntaxes, where
the different alphabets are defined [3]. A system with one abstract syntax and sev-
eral concrete syntaxes is called a multilingual grammar [3]. If there are operations
that are usable in more than one concrete syntax, Ranta writes that resource mod-
ules could be used. [3] states that a resource module defines these operations and
that it can be opened by a concrete grammar that thus can use the operations.

1.3.1 Simulated recursion in GF
To achieve a fractal by GF generation the defined grammar needs to be called in a
recursive manner. However, recursion is not supported by any type of grammar and
will therefore be simulated by repeatedly calling a function on itself, any number of
times. An example of recursion in GF reads as follows:

c(s(s(s(s z))))

This call would have a recursive depth of 4, where the function for simulating the
recursion is called s, the function for describing the axiom is called z, and the whole
expression – where the c function describes the composing of the string – generates
a full fractal.

1.3.2 Phrases in GF
In natural languages, sentences can be divided into smaller components called
clauses and phrases. The phrases of a sentence can be represented in a phrase
tree, see Figure 1.1. A phrase can consist of either a group of words or a single
word building a meaningful unit within a clause; furthermore, there are different
categories of phrases such as noun phrases and verb phrases [8]. The GF function
brackets can split a sentence or clause into phrases, marking the phrases within
round brackets and a number to indicate the order of the phrase. The order of a
phrase gives information about on what level in the phrase tree the phrase belongs.

4

1. Background

Even though the strings representing the fractals in this project do not consist of
words, GF can still divide these strings into phrases using the bracket function. An
example of this can be seen in Figure 1.2, where the string ”F r F r F l F l F l F
l F r F r F”, representing the third iteration of the Sierpinski triangle, is split into
different phrases where each phrase consists of smaller sub-phrases. When using the
bracket function with this string (generated using the Sierpinski concrete grammar
in Appendix B), the output in GF reads:

(N:2
(N:1 (N:0 F) r (N:0 F) r (N:0 F)) l
(N:1 (N:0 F) l (N:0 F) l (N:0 F)) l
(N:1 (N:0 F) r (N:0 F) r (N:0 F))

)

Each phrase is marked – within round brackets – with an N and the order of the
phrase. All F are of order zero, and each phrase of order one consists of multiple
sub-phrases of order zero, and so on. For the Sierpinski triangle the number of sub-
phrases of order n − 1 in a phrase of order n is three; however, this varies among
the different fractals.

Figure 1.1: An example of a phrase tree for natural languages, where the sentence
”The cat sat on the mat.” is divided into phrases and sub-phrases. From [9].
Reproduced with permission.

5

1. Background

Figure 1.2: The string ”F r F r F l F l F l F l F r F r F” represented by a
phrase tree, where the string is split into different phrases. The different levels in
the tree (marked with N) represent different orders of phrases. Each phrase consists
of smaller sub-phrases, where order zero F build up higher order phrases.

1.4 MIDI files
MIDI (Musical Instrument Digital Interface) is a communication protocol invented in
1983. It is used as a tool for communication between digital musical instruments [10].
According to [10], there are three major parts of the MIDI system: a message
format, a storage format and a physical connector. The message format is used
for communication between musical instruments and computers by translating the
music into programming language, making it possible to e.g. change recorded music
by using a computer, states [10]. The file extension .mid is an industry standard
that can be used by many different music programs [10]. To connect the musical
instruments to each other, or to a computer, [10] describes that physical connectors
such as MIDI cables are used. [10] further describes that MIDI messages are received
through the in-port and MIDI data is transmitted through the out-port to the
computer.

1.5 Turtle graphics
Turtle is a graphical tool, mainly developed for introducing programming to children
in the LOGO programming language [11]. According to [11], it is based on the user
giving commands such as LEFT 45 and FORWARD 20. The first command will
change the starting angle of the Turtle by 45 degrees and the second will draw a line
with the length 20 steps [11]. Turtle graphics is mainly used for primitive graphical
representations, such as lines and simple geometrical shapes, as stated in [11].

1.6 Web server architecture
A web server – as described by Simon Collin in [12] – can either refer to a physical
computer which has the task of storing web server software and files, or a software
that is running on a physical server. Collin states that whenever a web browser vis-
its a website, a request is made to the web server which returns a file that tells the
web browser how to render the website and how interactions from the user should
be handled.

6

1. Background

Client-server architecture is a software design pattern which describes how two com-
puters can communicate with each other, according to Craig Larman in [13]. The
task of the server is to perform some service and listen for requests made to it [13].
Larman further states that the client (often a web browser or a UI) will send a
request to the server specifying a service to be performed.

According to the official documentation of WebSockets by Ian Fette and Alexey
Melnikov [14], WebSockets describe a protocol for performing two-way communi-
cation between a client and a host. Fette and Melnikov further specify that the
connection is a two step process which begins with a handshake between the host
and the client followed by the messages to be sent. A new connection does not need
to be established for each new message, but the same message-frame is reused for
all messages until the connection is closed [14].

The JSON file format is designed for sending data between computers [15]. The
format is easily read by humans, and at the same time practical for computers to
generate and read [15].

7

2
Task

The aim of the project was to use GF as a tool to explore how certain fractals con-
structed from L-systems relate to one another, as well as how these fractal images
can be interpreted as music. A secondary goal was to create a user interface that
would allow a broad spectrum of users (as mentioned in Chapter 1), including those
lacking knowledge of fractals and/or GF, to explore and visualise the fractal rela-
tions.

In order to succeed with the task, a few main problems were identified. There
had to be feasible a way to represent the fractals graphically as well as a way to
translate between different types of fractals, using GF and L-systems. To enable
this, the best suited format of the GF-output had to be decided, as well as a way to
parse the output and interpret it as music. The next step was to find a suitable way
to enable storing and accessing of the information generated in GF. Furthermore,
the implementation of the user interface had to be decided and there needed to be a
way to take the information generated in GF and visualise it in a suitable way. The
level of user interactivity had to be decided as well, and the aim was to incorporate
a virtual piano into the user interface. In that way, the user could input notes or
pieces of music, and thereby have some sort of impact on the rendering of the fractal
images and/or musical interpretation of said images.

8

3
Scope

3.1 Ethical aspects
At an early stage ethical aspects were deemed irrelevant for this project. The only
thing to consider is not to use up too much research funds that could have better
use elsewhere, which affected the musical input (see Section 3.3).

3.2 Fractals used
The fractals used in this project are limited to those that can be represented by an
L-system (see Section 1.2), since the main purpose is to translate between different
fractals and not to generate complex ones. Furthermore, the fractals are also limited
to ones where the difference between two consecutive iterations can be described by
replacing one line segment with a set of lines matching the first iteration, see Fig-
ure 3.1 for example. Therefore, the fractals included in the scope are the Sierpinski
triangle (Figure 3.2), the Dragon curve (Figure 3.3), the Gosper curve (Figure 3.4),
the Koch square snowflake (Figure 3.5), and the Hilbert curve (Figure 3.6). Con-
versely, fractals such as the Mandelbrot set (Figure 3.7) were not included in the
scope.

Figure 3.1: The first two iterations of the Sierpinski triangle. The red dashed line
represents the axiom (n = 0), the blue dotted line is the first iteration (n = 1) and
the black line is the second iteration (n = 2). Note that the second iteration is
generated by changing all line segments in the first iteration to a self-similar piece.

9

3. Scope

Figure 3.2: An example
of the Sierpinski triangle
drawn from instructions
generated in GF with the
grammars defined in Ap-
pendix B.

Figure 3.3: An exam-
ple of the Dragon curve,
eight iterations drawn
from instructions gener-
ated in GF with the
grammars defined in Ap-
pendix B.

Figure 3.4: An exam-
ple of the Gosper curve,
three iterations drawn
from instructions gener-
ated in GF with the
grammars defined in Ap-
pendix B.

Figure 3.5: An exam-
ple of the Koch square
snowflake drawn from in-
structions generated in
GF with the grammars
defined in Appendix B.

Figure 3.6: An exam-
ple of the Hilbert curve
drawn from instructions
generated in GF with the
grammars defined in Ap-
pendix B.

Figure 3.7: An example
of the Mandelbrot set.
This fractal was omitted
from the scope. From
[16]. CC-BY-SA.

3.3 Musical input
As stated in Section 3.1, it is important not to use up too much research funds that
could have better use elsewhere. Therefore, a virtual keyboard was deemed most
suitable for this project, as opposed to a physical digital keyboard with a MIDI
connection (see Section 1.4). No other musical instruments are taken as input since
that will have an impact on both the expenses and the complexity of the project.

10

3. Scope

3.4 Stochastic rules
Stochastic rules were not used for the L-systems in the project. However, at quite
an early stage the musical representation was made stochastic in terms of the note
length. The stochastic note length was added to make the music more interesting
to listen to, instead of having the same duration for all notes.

3.5 Grammar input
The user is not able to define their own grammars and give them as input in the
GUI. The grammars that are used are predefined in GF and not open for change
from the front end.

11

4
Method

The fractals in this project are represented by strings generated from grammars in
Grammatical Framework. The strings are the blueprints for drawing the fractals –
and creating the music – generated by the grammar. In order to save, store and easily
access needed information about the fractals, a data structure was created. After
creating a simple prototype of the GUI, the project’s first step regarded generating
the strings and translating from one fractal image to another. The second step
concerned parsing the strings – turning the commands described in the GF alphabet
into drawing instructions and MIDI-generation instructions. The third step involved
drawing the fractal images and playing the music as well as developing the user
interface (a web application). When these three tasks were successfully completed,
further development of user interactivity was examined. This included a virtual
keyboard where the user can provide input to alter the rendering of the fractal
images.

4.1 Initial stage
Before the development of the product began, a prototype (see Section 4.1.1) was
created in order to get an idea of how the finished product might behave and look
like. A suitable structure of the data flow was also decided (see Figure 4.1).

12

4. Method

Figure 4.1: An overview of data flow through the application.

4.1.1 Prototype
Early on in the project, a simple prototype (see Figure 4.2) of the product was
created. The main purpose of this prototype was to understand how the Turtle
implementation would work in a web application. The prototype was programmed
with Python and Brython. The user can play a few notes on the keyboard, and
these notes will then appear in the leftmost grey box. The notes played by the user
will be the axiom for the rules used to build the figure drawn in the prototype. The
user can also enter how many iterations they want to perform. The rules used in the
prototype are not derived from any existing L-system, and hence do not represent
a fractal. The prototype is available at [17].

13

4. Method

Figure 4.2: A snapshot from the prototype. The notes played by the user appear
in the leftmost grey box. The user can also input the number of iterations they want
the prototype to perform (thus influencing the complexity of the rendered image).
The code for the piano (CSS and HTML) was adapted from [18]. The prototype is
available at [17].

4.1.2 Exploring existing L-systems for music
As music can be viewed as being two-dimensional, with notes having both the prop-
erty of pitch and duration, an interpretation of the strings as music is possible. There
are a few existing L-systems describing music as well as musical interpretations of
systems describing fractals [19] [20]. Prusinkiewicz [19] describes the following in-
terpretation, which inspired the final choice of implementation in this project:

• A starting tone and scale is defined.
• The image is walked through as if drawing it using Turtle.
• Any horizontal movement is interpreted as playing a note with length pro-

portional to the length of the corresponding line segment and with a pitch
determined by the y-coordinate of the line segment.

There are, however, some limitations to this interpretation. Firstly, it only applies
to fractals that only use 90°-angles, such as the Dragon curve or the Koch square
snowflake. A solution to this limitation, suggested by Stelios Manousakis [20], is

14

4. Method

to interpret sloped line segments as glissandi (see Appendix A). However, glissandi
is unfortunately not supported by the MIDIutil Python library used for generating
MIDI files (see Section 1.4). Secondly, the music generated with the interpretation
above has very repetitive rhythm. Since the line segments of the fractals in this
project all have the same length, only one note length will appear and the only
intervals that appear in each part are of either one or two semitones. The final
implementation chosen for the project is described in Section 4.4.2.

4.2 GF generation
Through a GF grammar in the form of an L-system, strings corresponding to a
certain fractal and a specific iteration are generated. The strings are then interpreted
and represented graphically; furthermore, the musical interpretation is based upon
the graphical representation.
The rules of the fractal L-systems are applied iteratively in GF, thus generating
strings that represent the two-dimensional growth of the fractals. As long as the
grammars for the different fractal images implement the same abstract grammar in
GF, translation between said images is possible.

Already existing grammars for fractals (available at [21]) provided the starting point
for this project. Below is an example of the concrete grammar for the Sierpinski
triangle from [21]:

concrete Sierpinski of Graftal = {
lincat N = {a : Str; b : Str} ;
lincat S = {s : Str} ;

lin z = {a = A; b = B} ;
lin s x = {a = x.b ++ R ++ x.a ++ R ++ x.b; b =x.a ++ L ++ x.b ++ L ++ x.a} ;
lin c x = {s = "newpath 300 550 moveto" ++ x.a ++ "stroke showpage"} ;

oper A : Str = "0 2 rlineto" ;
oper B : Str = "0 2 rlineto" ;
oper L : Str = "+60 rotate" ;
oper R : Str = "-60 rotate" ;

}

These concrete grammars are constructed to generate a file in Postscript, which is an
unsuitable format for the visualisation in this project. Therefore Postscript-specific
functions and linearisations, as well as the alphabet, were modified to suit the imple-
mentation in this project. A resource model was also created to make the concrete
grammars more compact. The Sierpinski triangle grammar in the new format is
shown below:

concrete Sierpinski of Graftal = open Operations in {
lincat N = {a : Str; b : Str} ;

15

4. Method

lincat S = {s : Str} ;

lin z = {a = F; b = F} ;
lin s x = {a = x.b ++ L ++ x.a ++ L ++ x.b; b = x.a ++ R ++ x.b ++ R ++ x.a} ;
lin c x = {s = "ang:60" ++ x.a} ;

}

A full list of the concrete grammars for the different fractals, as well as the abstract
grammar and the resource module, used in this project are available in Appendix
B. The alphabet used for fractal description in the project is presented in table 4.1.

Table 4.1: The different operations available in the defined grammars.

Operation Example
Draw forward F

Turn right r
Turn left l

Set the turn angle of the fractal ang:60

An example of a string generated with the GF bracket function (see Section 1.3.2),
in this case the second iteration of the Sierpinski triangle, follows:

(S:3 ang:60 (N:2 (N:1 (N:0 F) r (N:0 F) r (N:0 F)) l
(N:1 (N:0 F) l (N:0 F) l (N:0 F)) l (N:1 (N:0 F) r (N:0 F) r (N:0 F))))

Since the fractals used in this project only consist of straight line segments and
turns, the required alphabet is small. The strings generated in GF are sent to a
parser to be interpreted into something more meaningful for the other components
in the product.

4.3 Data structure
In order to store and access necessary information about the fractals, a data structure
(see Figure 4.3) enabling this was created. The data structure is based on a tree-
structure filled with Nodes. In this project, each Node contains a LineSegment that
is created using a graphicless Turtle adaption (further described in Section 4.4.1),
but could theoretically contain any arbitrary object. The LineSegment has a start
position, an end position, a colour, a note length and a boolean to tell whether or
not to start a new musical part (see Figure 4.4).
The Nodes are added iteratively to arraylists called Layers. The Layers are divided
into different segments called ListSets where the number of ListSets per Layer de-
pends on both the order of the Layer and which fractal is being studied. Each
ListSet is doubly linked and holds a reference to both its parent and its children.
If the Layer is of order n, then each ListSet in the Layer corresponds to a phrase
of order n. The number of phrases of order n depends on how many children per
parent the fractal has. In Figure 4.3 for example, the number of children per parent

16

4. Method

is three, and thus the number of ListSets per Layer of order n in a fractal with
highest iteration h is 3h−n. The number of children per parent depends on the rules
of the grammar.
References to all Layers are stored in a separate list (not part of the tree), making it
possible to retrieve a direct reference to any Layer without having to traverse trough
the tree. This improves the performance and simplifies translation between fractals.
An example of how the data structure is used for the Sierpinski triangle can be seen
in Figure 4.5.

Figure 4.3: The data structure used in the project consists of a list of Layers,
where each Layer has an order n, where in this example n = 0, 1, 2, 3. Each Layer
contains all the information needed to form a full fractal, and the Layers are divided
into ListSets representing phrases in the fractal. The number of ListSets per Layer
depends on the order n of the Layer, as well as the number of children per parent
in the fractal. The Layers in the list are also linked to each other in a tree, such
that each Node (marked with an asterisk) in the Layer belongs to a ListSet which
is connected to one parent and/or several children. In this example the number of
children per parent is three; however, this varies among the different fractals.

Figure 4.4: UML-diagram of the classes that fill the different parts of the data
structure in Figure 4.3.

17

4. Method

Figure 4.5: The second iteration of the Sierpinski triangle, shown in b). The Layers
in a) all contain nine Nodes, where each Node contains information according to
Figure 4.4. The Layer n = 2 consists of one single ListSet with all nine Nodes, the
Layer n = 1 consists of three ListSets with three Nodes in each ListSet, and for
n = 0 there are nine ListSets which all contain only one Node. In a), the ListSet
marked with blue dots represents the phrase marked with blue dots in c). The
ListSet marked with dashed red in n = 0 corresponds to a phrase of order zero,
marked with dashed red in d). For n = 2, the ListSet of Nodes represents a phrase
of order two, and the graphical representation of such a phrase is identical to b).

4.4 Parsing
The information in the data structure described in Section 4.3 is used both when the
product generates music, as well as for the graphical representation of the fractals.
A string that represents a fractal is generated by GF, and said string is then parsed
by a Parser written in Python.

4.4.1 From string to tree
The data structure is filled with Nodes containing LineSegments that, for conve-
nience when generating the music, each have an associated note length. In order
to generate the LineSegments from the strings generated in GF, an adaptation of
Turtle was created. The Turtle adaption is called HiddenTurtle and only keeps track
of its position, without drawing anything. HiddenTurtle is not an adaptation of ex-
isting Turtle libraries in Python – it was created for this project. The way in which
the LineSegments are created and stored in the data structure is done as follows:

18

4. Method

• A base angle α and the depth of the tree (corresponding to the highest iteration
h of the fractal) are defined. α is the number given by the ang:α constant (see
table 4.1).

• When a right or left command is given, the HiddenTurtle changes its angle by
±α.

• When an opening round bracket ”(” is found, a new ListSet corresponding to
the depth of insertion is created in the Layer.

• When a forward command is given, the current position of the HiddenTurtle
is stored and the HiddenTurtle then moves a predefined distance.

• A LineSegment is created between the stored position and the current position
of the HiddenTurtle and is stored in the data structure.

• When a closing round bracket ”)” is found, the ListSet containing all data
within the round brackets is ended.

When the tree is filled this way, each Layer of order n consists of the information
in the Layer of order n − 1; however, additional information can be added to the
Layer depending on the fractal. In Figure 4.3 Layer two corresponds to a fractal of
iteration four, using nine different ListSets each consisting of three LineSegments.

4.4.2 Musical interpretation
From the information stored in the data structure, a musical representation is cre-
ated. The highest order Layer in the data structure is interpreted as a MIDI file
(see Section 1.4) in the following way:

• A key note, a musical scale and a maximum length of the musical parts (see
Appendix A) are defined.

• Each LineSegment in the image is interpreted as a note.
• The first LineSegment in the image is interpreted as the key note of a random

note length between a sixteenth and a whole note, all equally likely.
• In order to determine the following notes, the angle θ between the two Line-

Segments corresponding to the notes is taken into consideration. The interval
is θ/30° semitones, rounded down to the closest integer. Left turns raise the
pitch and right turns lower it.

• The note is then fitted to the predefined musical scale by changing the tone to
the closest one in the musical scale. If the two closest tones are equally close,
the lower one will be chosen.

• If the length of the musical part will exceed the predefined maximum length
if the note is added, a new musical part is created starting over at the key note.

In order to play the music from the web application, the MIDI format is not suitable.
Therefore, a WAV file containing the same music is also created using the program
TiMidity++. In Section 4.4.3, the impact of the user input from the virtual piano
on the graphical representation of the fractals is described. Since the musical inter-
pretation is based on said graphical representation, the input from the virtual piano
will indirectly affect the musical interpretation of the fractals.

19

4. Method

4.4.3 Virtual piano input affecting graphical representation
As there were no predefined rules of how piano input should affect fractal visual-
isation, a system interpreting the notes of a piano as alterations to the drawing
operations was defined. The turning angle α for right and left turns between Line-
Segments, as well as the LineSegment colour are changed according to table 4.2
depending on which piano keys are pressed.

Table 4.2: Different changes to the drawing instructions for the fractal images
depending on which piano key is pressed. The changes are stored in a list; thus,
pressing a new key on the virtual keyboard does not overwrite previous commands.

Note Right turning angle Left turning angle Colour
C3 −1°
C♯3 #FF0000 (red)
D3 −1°
D♯3 #FF8000 (orange)
E3 +1°
F3 #FFFF00 (yellow)
F♯3 +1°
G3 #80FF00 (bright green)
G♯3 −2°
A3 #00FF00 (green)
A♯3 −2°
B3 #00FF80 (turquoise)
C4 +2°
C♯4 #00FFFF (baby blue)
D4 +2°
D♯4 #0080FF (bright blue)
E4 −3°
F4 #0000FF (blue)
F♯4 −3°
G4 #7F00FF (purple)
G♯4 +3°
A4 #FF00FF (pink)
A♯4 +3°
B4 #FF007F (magenta)

By using the rules stated in table 4.2, piano input from the user interface read by
the Piano class in Python will generate three lists:

• A list of colours.
• A list of right angle changes.
• A list of left angle changes.

These three lists are then added to the TreeFiller class through the Parser and are
interpreted when generating the Nodes in the data structure. The changes of colour

20

4. Method

and turning angle are applied to information in the data structure as follows:

• For a list of c colours and l LineSegments:
The list of l LineSegments is divided into c parts, with (l/c) + (l mod c)
LineSegments in each part. The LineSegments in the first part are given the
first colour, those in the second part are given the second colour and so on.

• For a list of ar right angle changes and tr right turns:
The list of tr right turns is divided into ar parts, with (tr/ar) + (tr mod ar)
right turns in each part. The right turns in the first part of the list are changed
by the first right angle change, those in the second part of the list are changed
by the second right angle change and so on.

• For a list of al left angle changes and tl left turns:
Same as for the right turns, but with al instead of ar and tl instead of tr.

4.5 Web application
The web application consists of a server and a client. The server (see Section 1.6)
holds GF, the generation of strings, and all Python code. To achieve the goal of
making the product interactive, an already existing JavaScript piano (available at
[22]) was integrated into the web application. The virtual piano was stripped down
of JavaScript code and CSS styling deemed redundant for this project. Instructions
for playing the virtual piano from the computer keyboard are presented in Figure 4.6.

Z X C V B N M R T Y U I O P

S SD G H J 5 6 8 9 0

Figure 4.6: Instructions for playing the virtual piano on the web application from
the users computer keyboard. For example, the note C3 can be played either by
clicking the leftmost key on the virtual piano, or by pressing the z-key on the
computer keyboard. To be able to play from the computer keyboard enables the
user to play more complicated pieces of music, since multiple keys can be pressed
at once. The setup of how the computer keys (on a Swedish QWERTY keyboard)
correspond to the virtual piano keys was made to resemble the fingering used when
playing a real piano.

4.5.1 Client-server architecture
The architecture used in this product consists of a web server, which holds the fractal
generation, and a client (the web application with the GUI, as seen in Figure 4.1).
After taking input from the user, the client sends a request to the server to gen-
erate the commands needed to draw a fractal. The server generates and returns a
command to the client with details regarding the coordinates where the front end
should draw lines, which colours they should be, and other information regarding

21

4. Method

the fractal.

For the client to communicate with the server, WebSockets are used. If a client’s
request to connect to the server is successful, a connection between the server and
the requesting client is established. Once the connection has been established, the
client will send a JSON file to the server containing what sort of operation it wants
the server to perform, as well as the data required for the operation.

4.5.2 Drawing and translating between fractals
The fractal images on the web application are rendered using the HiddenTurtle (Sec-
tion 4.4.1) for coordinate calculation and JavaScript for drawing. In order to make
the fractals clickable – and to be able to compare different phrases (see Section 1.3.2)
in the fractal images – an HTML canvas is used as drawing surface, and to register
mouse events. Since the fractals vary in size, a scaling method was developed. The
scaling is implemented by finding the maximum and minimum x and y coordinates
of the fractal and dividing the size of the canvas with the distance between the
minimum and maximum coordinate in the fractal.

The translation between fractals was for this project interpreted as comparing their
phrases. When translating phrases between fractals, the user chooses which order of
phrase they want to highlight in the fractal. When the user clicks the canvas, the co-
ordinates of the cursor are compared to the coordinates of the LineSegments stored
in the data structure. Through the data structure, corresponding phrases in the
fractal images can be found and highlighted in both fractal images (see Figure 4.7)
.

Figure 4.7: The fourth iteration of the Sierpinski triangle and the Dragon curve.
The second sequential phrase of order one is highlighted in red in both of the fractal
images.

If the number of sub-phrases per phrase in the first fractal is the same – or less – as
in the second fractal, then when the user selects a sub-phrase in the first fractal the
sub-phrase that comes in the same sequential order in the corresponding GF string is
highlighted in the other fractal (e.g. in Figure 4.7 the second sub-phrase of order one
is highlighted). Conversely, if the first fractal has a higher number of sub-phrases

22

4. Method

per phrase, the selection of a corresponding sub-phrase has to be done differently.
Should the user select a phrase in the first fractal with a higher sequential order
than the number of sub-phrases in the second fractal, then the sub-phrase that is
highlighted in the second fractal is calculated using the modulo operation.

23

5
Result

One of the main goals of the project was to make the result accessible to the general
public, hence the developed product is a web application. There are three pages on
the web application: Fractal-O-Mat (see Figure 5.1), the front page, Fractal Fun (see
Figure 5.2), for exploring fractals, and Resources (see Figure 5.3) which contains
useful links. The front page contains an explanatory image that shows the main
components and structure of the project, as well as how the components interact
with each other. On the front page, the user can also download this bachelor’s
thesis report. To make the web application more user friendly, tooltips and other
explanatory features were added to several of the elements (as seen in Figure 5.4
and 5.5) on the Fractal Fun page. The features of the product make it accessible to
most people, regardless of their operative system or what knowledge they may – or
may not – have about fractals, GF, music theory, etc.

Figure 5.1: The front page of the web application consists of an explanatory
image of the general structure and main components of the project, as well as some
information to help the user navigate through the application. It is also possible to
download this bachelor’s thesis report or inspect the code base of the application
on GitHub [23]. The front page is accessed by clicking on Fractal-O-Mat in the
navigation menu.

On the Fractal Fun page, the user can choose two fractals that they want to generate

24

5. Result

(Fractal 1 and Fractal 2 in Figure 5.2) as well as which iteration of the fractals
should be generated. The number of iterations (the choosable number depends on
the fractal) decides how complex the fractal images are going to be. The two fractal
images (in Figure 5.2 the fifth iteration of the Sierpinski triangle and the Dragon
curve) are drawn on the web application. By choosing what order of phrases the
user wants to study in the Choose order of phrases drop down list and then clicking
the left fractal, some parts of it are highlighted in red. These parts represent a
phrase of the selected order in the left fractal, and the corresponding phrase is also
highlighted in the right fractal (see Section 4.5.2).

Figure 5.2: A screenshot from the web application where the user has chosen to
generate the fifth iteration of the Sierpinski triangle and the Dragon curve. The
fractals are chosen below Fractal 1: Draw to the upper left and Fractal 2: Draw to
the upper right, whereas the iteration is only chosen below Fractal 1: Draw. The
user has chosen to highlight phrases of order four and then clicked the left fractal.
The corresponding phrase is highlighted in red in the right fractal. The page is
accessed by clicking on Fractal Fun in the navigation menu.

The user also has the option to listen to a musical interpretation (see Section 4.4.2) of
the fractal images, by clicking the play button for each of the fractals (see Figure 5.2
or 5.7), after choosing a desired musical scale and a key note in drop down lists. The
types of musical scales that are available are the major, major pentatonic, minor,
minor harmonic, minor pentatonic and blues scales. The key notes span an octave.
Figure 5.6 shows the sheet music for a musical interpretation of the fourth iteration
of the Sierpinski triangle.
The web application also contains a virtual piano keyboard spanning two octaves
(see Figure 5.2 and 5.7). This allows the user to play a piece of music by clicking
the piano keys or pressing certain keys on their computer keyboard (see Figure 4.6).
Depending on what notes are played, the rendering of the fractal images is affected
according to the rules in table 4.2.

25

5. Result

Figure 5.3: The Resources page provides links to information and inspiration re-
garding the project. The page is accessed by clicking on Resources in the navigation
menu.

Figure 5.4: When hovering the drop down lists, tooltips will appear. The tooltips
describe the functions of the respective drop down lists.

26

5. Result

Figure 5.5: The tooltip for the virtual piano keyboard appears when hovering the
purple information button. By clicking the button, a help piano will appear showing
what keys on the computer keyboard the user should press to play the virtual piano.

Figure 5.6: Sheet music for the music generated from the fourth iteration of the
Sierpinski triangle. Music is first generated as a MIDI file and then converted to
sheet music by an external program.

27

5. Result

Figure 5.7: By playing different keys on the virtual piano before clicking the Gen-
erate Fractals button, the rendering of the fractals is changed according to table 4.2.

28

6
Discussion

The goal of making information about fractals, and how they relate to one another,
accessible to a broad spectrum of users was accomplished through an interactive
web application. However, the client-side code was written in JavaScript with no
frameworks such as ReactJS, Vue.js, or AngularJS. Using a framework would have
made it easier to develop and read the code, but learning new web frameworks was
deemed too time-consuming for this project.

6.1 Generating strings in GF
In the original project description, one of the major parts of the project concerned
translating between different fractals. As discussed in Section 1.3, fractal translation
is something that can be done using GF. However, when it comes to the fractals
used in this project, the translation that takes place is in reality nothing more than
comparing same order phrases in different fractals. Since the axiom and the rules are
built into the grammar and never change, the only thing about the first fractal that
actually affects the rendering of the second fractal is the number of iterations the
first fractal goes through. Compared to natural languages, the translation between
fractals is not translation in the sense one is used to thinking about it as the first
fractal hardly impacts the creation of the second at all.

Some of the fractals grow quickly – for the Gosper curve the growth per iteration
n is proportional to 7n – the strings become very long very fast. Since generating
strings is very time-consuming, this raises the question about the usefulness of this
method to the project. Instead the strings could be generated only once and stored
to be used, as opposed to being generated anew each time a fractal is to be drawn.
An even better solution would be to use a mathematical description of the fractals
instead of strings.

6.2 Data structure
The original scope of the project did not include the Hilbert curve, since the Hilbert
curve fractal is constructed in a slightly different manner from the other fractals in
the project. The axiom of the L-system for the Hilbert curve is not a line, which
caused the resulting string representing the fractal to be incompatible with the ear-
lier versions of the data structure. The Dragon curve also caused some issues, since
the fractal has a straight line segment connecting its phrases that is not part of

29

6. Discussion

any phrase. The issue with the Dragon curve was resolved and the Hilbert curve
could be included in the scope by reworking the data structure so it functioned as
described in this section.

As mentioned in Section 4.4.1, a Layer of order n contains all the information in
the Layer of order n − 1. For some fractals, additional information is added to the
Layer of order n. The additional information is what binds together the ListSets in
the Layer of order n − 1. The c function, described in Section 1.3.1, provides the
information regarding how the ListSets are combined. For example, in Figure 6.1
the Dragon curve of iteration five is presented. The fractal consists of four phrases of
order three, marked with lines in red, blue, green and pink, respectively. The dashed
lines, corresponding to the graphical representation of the forward command, are not
part of the phrases. The forward command is therefore part of the additional infor-
mation that is added between the Layers. For fractal specific information regarding
the binding of the ListSets, see Appendix B.

Figure 6.1: Iteration five of the Dragon curve. This fractal image consists of four
phrases of order three, drawn with lines in red, blue, green and pink, respectively.
The dashed lines between the phrases are the graphical representation of the addi-
tional information – in this case an extra forward command – that is added between
the Layers.

30

6. Discussion

6.3 Musical observations
Since the strings grow exponentially with the iterations and the music files are set not
to exceed a certain duration, the music often gets many different musical parts (see
Appendix A). For example, the musical interpretation of the Gosper curve quickly
grows to almost 30 musical parts. This – in combination with each note having an
assigned random note length – means that after a note has started playing, there is
rarely more than a sixteenth-note before another note starts playing which makes
the music quite blurry. Due to the blurriness, it is difficult to hear which fractal is
being interpreted in a given piece of music.

Depending on the musical scale, it is also possible that the music gets stuck in
one certain chord. For instance, if the musical scale is set to be the A minor har-
monic scale the allowed tones are: A, B, C, D, E, F and G♯. The subset of tones
containing only the tones B, D, F and G♯ make up a G♯ (or B, D or F) diminished
seventh chord and since the distances between these tones are all multiples of 3
semitones, any interpretation of an image containing only angles between 90° and
119° will get stuck in this chord as soon as one of these tones is played.

6.4 Translating fractal fragments
An alternative method for comparing phrases in one fractal to the phrases in a
different fractal (as opposed to the method described in Section 4.5.2) is by using
the data structure to extract a phrase from one of the fractal strings. GF can
subsequently be used as a tool for translating the phrase to the corresponding phrase
in the other fractal string. This method was considered early on in the project, as
it would fit the original project description slightly better than the current solution.
For time constraint reasons, the work on this method was discontinued since the
functionality of the product was prioritised over a product more dependent on GF.
As mentioned in Section 1.3.2 and 4.5.2, different fractals have different number of
sub-phrases per phrase. When comparing phrases between the fractals, it is not ob-
vious how this problem should be solved and the solution presented in Section 4.5.2
is just one of many interpretations of how the phrases in the different fractals cor-
respond to each other.

6.5 Taking the project further
There is a multitude of options for developing the project further. The graphical
representation could be extended, for instance adding more complex rules for how
the piano affects the rendering of the fractal images, more possibilities for user
interactivity (such as zooming and rotating), etc. If the web application could
register the rests (see Appendix A) in the user input from the virtual piano, said
rests could have some impact on the rendering of the fractal images, e.g. gaps in
the fractal images. The musical interpretation of a fractal could also be played

31

6. Discussion

simultaneously as the fractal is being drawn, and the drawing could then be done
in time with the music.
A further development could be letting the user provide their own L-systems for
generating fractals. The data structure could also be adapted so that it will be
compatible with even more fractals.

32

A
Appendix: Musical terms

The musical terms used in the report are meant to be understood as follows:

• Pitch/tone – The frequency of the sound wave.
• Note – A tone with a certain duration.
• Key/scale – A set of pre-defined tones on which the music is based. In a

scale, the tones are usually ordered from the first to the seventh with the first
tone being lower than the second, the second being lower than the third, etc.
The seventh tone is lower than the double frequency of the first tone.

• Rest – Can be viewed as a silent note.
• Glissando – A note with continuously, strictly increasing or decreasing pitch.
• Interval – The distance between two tones. The interval can be measured in

semitones.
• Semitone – The interval between two tones is a semitone if their frequencies

are f1 and f2 = 12
√

2f1. This is the smallest interval used in western music and
the smallest interval that is supported in the MIDIutil librabry (not counting
notes of the same pitch).

• Octave – The interval between two tones is an octave if their frequencies are
f1 and f2 = 2f1.

• Part – A sequence of notes and rests. Multiple parts can be played simulta-
neously.

• Note length – Note lengths are defined only relative to each other: a half
note is defined as half a whole note, a quarter note is defined as a quarter of
a whole note, etc. The main note lengths are named after integer powers of
1/2. A tempo can later be defined, usually by quarter notes per minute, to
give the note lengths absolute values.

33

B
Appendix: GF-grammars in the

project

The abstract grammar (see Section 1.3) adapted from [21] and used in the project
follows:

-- "The L-system is a grammar formalism which is used to describe
-- graftals (recursive graphical objects). It is an interesting
-- coincidence that every L-System grammar could be redefined
-- as PMCFG grammar. This demo shows how to generate graftals
-- using GF. The output from every concrete syntax is a string
-- to be read in Python.

abstract Graftal = {
flags startcat = N;
cat N; S;
fun z : N ;

s : N -> N ;
c : N -> S ;

}

In addition to the abstract grammar, a resource module with the three operations
in table 4.1 were defined:

resource Operations = {
oper

F : Str = "F" ;
R : Str = "r" ;
L : Str = "l" ;

}

From the abstract grammar, five concrete grammars were developed that open the
resource module. The grammars for the Sierpinski triangle, the Koch square curve
(that later was modified into the Koch square snowflake) and the Dragon curve were
all adapted from existing GF files at [21]. Conversely, the grammar for the Gosper
curve and the Hilbert curve were implemented from scratch. The concrete grammars
follow:

34

B. Appendix: GF-grammars in the project

concrete Sierpinski of Graftal = open Operations in {
lincat N = {a : Str; b : Str} ;
lincat S = {s : Str} ;

lin z = {a = F; b = F} ;
lin s x = {a = x.b ++ L ++ x.a ++ L ++ x.b;

b = x.a ++ R ++ x.b ++ R ++ x.a} ;
lin c x = {s = "ang:60" ++ x.a} ;

}

concrete Koch of Graftal = open Operations in {
lincat N = {f : Str} ;
lincat S = {s : Str} ;

lin z = {f = F} ;
lin s x = {f = x.f ++ R ++ x.f ++ L ++ x.f ++ L ++ x.f ++ R ++ x.f} ;
lin c x = {s = "ang:90" ++ x.f ++ R ++ x.f ++ R ++ x.f ++ R ++ x.f } ;

}

concrete Dragon of Graftal = open Operations in {
lincat N = {a : Str; b : Str} ;
lincat S = {s : Str} ;

lin z = {a = ""; b = ""} ;
lin s x = {a = x.a ++ L ++ x.b ++ F ++ L; b = R ++ F ++ x.a ++ R ++ x.b} ;
lin c x = {s = "ang:90" ++ F ++ x.a } ;

}

concrete Gosper of Graftal = open Operations in {
lincat N = {a : Str; b : Str} ;
lincat S = {s : Str} ;

lin z = {a = F; b = F} ;
lin s x = {a = x.a ++ L ++ x.b ++ L ++ L ++ x.b ++ R ++ x.a ++ R ++ R

++ x.a ++ x.a ++ R ++ x.b ++ L;
b = R ++ x.a ++ L ++ x.b ++ x.b ++ L ++ L ++ x.b ++ L ++

x.a ++ R ++ R ++ x.a ++ R ++ x.b} ;
lin c x = {s = "ang:60" ++ x.a} ;

}

concrete Hilbert of Graftal = open Operations in {

35

B. Appendix: GF-grammars in the project

lincat N = {a : Str; b : Str} ;
lincat S = {s : Str} ;

lin z = {a = ""; b = ""} ;
lin s x = {a = L ++ x.b ++ F ++ R ++ x.a ++ F ++ x.a ++ R ++ F ++ x.b ++ L;

b = R ++ x.a ++ F ++ L ++ x.b ++ F ++ x.b ++ L ++ F ++ x.a ++ R} ;
lin c x = {s = "ang:90" ++ x.a} ;

}

36

References

[1] B. B. Mandelbrot, The fractal geometry of nature. New York, United States:
W.H. Freeman and company, 1983, p. 15.

[2] K. Falconer, Fractal Geometry : Mathematical Foundations and Applications,
3rd ed. University of St Andrews, United Kingdom: John Wiley & Sons, In-
corporated, 2013, p. xxviii.

[3] A. Ranta, Grammatical Framework: Programming with Multilingual Gram-
mars, 1st ed. Stanford University, United States: CSLI Publications, 2011.

[4] J. Hopcroft, J. Ullman, and R. Motwani, Introduction to Automata The-
ory, Languages, and Computation, 3rd ed. Pearson Education, 2014, [Online].
Available: https://www.dawsonera.com/abstract/9781292056166 Accessed
on: 2019/02/12.

[5] P. Prusinkiewicz and J. Hanan, Lindenmayer Systems, Fractals, and Plants,
ser. Lecture addendums in Biomathematics. New York, United States: Springer
Science & Business Media, 1989, vol. 79, [Online]. Available: https://books.
google.se/books?id=J6fxBwAAQBAJ&printsec=frontcover#v=onepage&q&
f=false. Accessed on: 2019/02/10.

[6] P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty Of Plants,
2nd ed. New York: Springer-Verlag, 1996, [Online]. Available: http://algorithmicbotany.
org/papers/#abop Accessed on: 2019/02/04.

[7] D. Shiffman, The Nature of Code. Cambridge MA: The Nature of Code,
2012, [Online]. Available: https://natureofcode.com/book/. Accessed on:
2019/02/04.

[8] U. Teleman, S. Hellberg, and E. Andersson, Svenska Akademiens grammatik.
Stockholm, Sweden: Svenska Akademien, 1999, [Online]. Available: https:
//svenska.se/SAG_Volym_1.pdf, Accesed on: 2019/05/09.

[9] A. Moos, ”Basic constituent structure analysis English sentence”, 2014, [Elec-
tronic image]. Available: https://commons.wikimedia.org/wiki/File:
Basic _ constituent _ structure _ analysis _ English _ sentence . svg Ac-
cessed on: 2019/05/16.

[10] R. Moog, “Midi: Musical instrument digital interface”, Journal of Audio En-
gineering Society, vol. 34, no. 5, pp. 394–404, May 1986, [Online]. Available:
https://moogfoundation.org/wp-content/uploads/5267.pdf, Accessed
on: 2019/04/26.

37

https://www.dawsonera.com/abstract/9781292056166
https://books.google.se/books?id=J6fxBwAAQBAJ&printsec=frontcover#v=onepage&q&f=false
https://books.google.se/books?id=J6fxBwAAQBAJ&printsec=frontcover#v=onepage&q&f=false
https://books.google.se/books?id=J6fxBwAAQBAJ&printsec=frontcover#v=onepage&q&f=false
http://algorithmicbotany.org/papers/#abop
http://algorithmicbotany.org/papers/#abop
https://natureofcode.com/book/
https://svenska.se/SAG_Volym_1.pdf
https://svenska.se/SAG_Volym_1.pdf
https://commons.wikimedia.org/wiki/File:Basic_constituent_structure_analysis_English_sentence.svg
https://commons.wikimedia.org/wiki/File:Basic_constituent_structure_analysis_English_sentence.svg
https://moogfoundation.org/wp-content/uploads/5267.pdf

References

[11] R. Goldman, S. Schaefer, and T. Ju, “Turtle geometry in computer graphics
and computer aided design”, Computer-Aided Design, vol. 36, pp. 1471–1482,
Dec. 2004. doi: https://doi.org/10.1016/j.cad.2003.10.005, [On-
line]. Available: https://www.sciencedirect.com/science/article/pii/
S0010448504000521 Accessed on: 2019/05/13.

[12] S. Collin, Setting Up a Web Server. Boston, United States: Digital Press,
1997, [Online]. Available: https://library-books24x7-com.proxy.lib.
chalmers.se/assetviewer.aspx?bookid=549&chunkid=943466268&rowid=
9 Accessed on: 2019/05/07.

[13] C. Larman, Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development, 3rd ed. Upper Saddle River,
New Jersey, USA: Prentice Hall, 2004, p. 471, [Online]. Available: https :
/ / www . utdallas . edu / ~chung / SP / applying - uml - and - patterns . pdf
Accessed on: 2019/05/05.

[14] I. Fette and A. Melnikov, Rfc6455: The websocket protocol, (2011) [Online].
Available: https://tools.ietf.org/html/rfc6455, Accessed on: 2019/04/29.

[15] The json data interchange syntax , ECMA-404, (2017)[Online]. Available: https:
//www.ecma-international.org/publications/files/ECMA-ST/ECMA-
404.pdf, Accessed on: 2019/04/09.

[16] W. Beyer, ”Partial view of the Mandelbrot set.” 2005, [Electronic image]. Avail-
able: https://commons.wikimedia.org/wiki/File:Mandel_zoom_11_
satellite_double_spiral.jpg Accessed on: 2019/02/13.

[17] A. Bergsten et al. (2019), Prototype, [Online]. Available: https://github.
com / Gurr1 / Grammars - for - music - poetry - fractals / tree / prototype
Accessed on: 2019/02/15.

[18] E. Jarrell (2018), Create a piano app with javascript, [Online]. Available:
https : / / hackernoon . com / create - a - piano - app - with - javascript -
97dbad1ff28c Accessed on: 2019/02/14.

[19] P. Prusinkiewicz, “Score generation with lsystems”, in Proceedings of the 1986
International Computer Music Conference, 1986, pp. 455–457, [Online]. Avail-
able: http://algorithmicbotany.org/papers/score.icmc86.pdf Accessed
on: 2019/03/04.

[20] S. Manousakis, “Musical l-systems”, Master’s thesis, Sonology, The Royal Con-
servatory, The Haque, Netherlands, 2006, [Online]. Available: http://www.
modularbrains.net/support/SteliosManousakis-Musical_L-systems.
pdf Accessed on: 2019/02/15.

[21] K. Angelov, “Gf runtime system”, Licentiate Thesis, Department of Computer
Science, Engineering, Chalmers University of Technology, and Gothenburg
University, Gothenburg, Sweden, 2009, [Online]. Available: http://www.cse.
chalmers.se/~krasimir/lic-thesis.pdf Accessed on: 2019/04/25.

[22] P. Coles (2013), Html5 javascript piano, [Online]. Available: https://github.
com/mrcoles/javascript-piano Accessed on: 2019/04/16.

38

https://doi.org/https://doi.org/10.1016/j.cad.2003.10.005
https://www.sciencedirect.com/science/article/pii/S0010448504000521
https://www.sciencedirect.com/science/article/pii/S0010448504000521
https://library-books24x7-com.proxy.lib.chalmers.se/assetviewer.aspx?bookid=549&chunkid=943466268&rowid=9
https://library-books24x7-com.proxy.lib.chalmers.se/assetviewer.aspx?bookid=549&chunkid=943466268&rowid=9
https://library-books24x7-com.proxy.lib.chalmers.se/assetviewer.aspx?bookid=549&chunkid=943466268&rowid=9
https://www.utdallas.edu/~chung/SP/applying-uml-and-patterns.pdf
https://www.utdallas.edu/~chung/SP/applying-uml-and-patterns.pdf
https://tools.ietf.org/html/rfc6455
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://commons.wikimedia.org/wiki/File:Mandel_zoom_11_satellite_double_spiral.jpg
https://commons.wikimedia.org/wiki/File:Mandel_zoom_11_satellite_double_spiral.jpg
https://github.com/Gurr1/Grammars-for-music-poetry-fractals/tree/prototype
https://github.com/Gurr1/Grammars-for-music-poetry-fractals/tree/prototype
https://hackernoon.com/create-a-piano-app-with-javascript-97dbad1ff28c
https://hackernoon.com/create-a-piano-app-with-javascript-97dbad1ff28c
http://algorithmicbotany.org/papers/score.icmc86.pdf
http://www.modularbrains.net/support/SteliosManousakis-Musical_L-systems.pdf
http://www.modularbrains.net/support/SteliosManousakis-Musical_L-systems.pdf
http://www.modularbrains.net/support/SteliosManousakis-Musical_L-systems.pdf
http://www.cse.chalmers.se/~krasimir/lic-thesis.pdf
http://www.cse.chalmers.se/~krasimir/lic-thesis.pdf
https://github.com/mrcoles/javascript-piano
https://github.com/mrcoles/javascript-piano

References

[23] A. Bergsten et al. (2019), Fractal-o-mat, [Online]. Available: https://github.
com/Gurr1/Grammars-for-music-poetry-fractals Accessed on: 2019/05/14.

Pictures only
[9] A. Moos, ”Basic constituent structure analysis English sentence”, 2014, [Elec-

tronic image]. Available: https://commons.wikimedia.org/wiki/File:
Basic _ constituent _ structure _ analysis _ English _ sentence . svg Ac-
cessed on: 2019/05/16.

[16] W. Beyer, ”Partial view of the Mandelbrot set.” 2005, [Electronic image]. Avail-
able: https://commons.wikimedia.org/wiki/File:Mandel_zoom_11_
satellite_double_spiral.jpg Accessed on: 2019/02/13.

Code only
[17] A. Bergsten et al. (2019), Prototype, [Online]. Available: https://github.

com / Gurr1 / Grammars - for - music - poetry - fractals / tree / prototype
Accessed on: 2019/02/15.

[18] E. Jarrell (2018), Create a piano app with javascript, [Online]. Available:
https : / / hackernoon . com / create - a - piano - app - with - javascript -
97dbad1ff28c Accessed on: 2019/02/14.

[22] P. Coles (2013), Html5 javascript piano, [Online]. Available: https://github.
com/mrcoles/javascript-piano Accessed on: 2019/04/16.

[23] A. Bergsten et al. (2019), Fractal-o-mat, [Online]. Available: https://github.
com/Gurr1/Grammars-for-music-poetry-fractals Accessed on: 2019/05/14.

39

https://github.com/Gurr1/Grammars-for-music-poetry-fractals
https://github.com/Gurr1/Grammars-for-music-poetry-fractals
https://commons.wikimedia.org/wiki/File:Basic_constituent_structure_analysis_English_sentence.svg
https://commons.wikimedia.org/wiki/File:Basic_constituent_structure_analysis_English_sentence.svg
https://commons.wikimedia.org/wiki/File:Mandel_zoom_11_satellite_double_spiral.jpg
https://commons.wikimedia.org/wiki/File:Mandel_zoom_11_satellite_double_spiral.jpg
https://github.com/Gurr1/Grammars-for-music-poetry-fractals/tree/prototype
https://github.com/Gurr1/Grammars-for-music-poetry-fractals/tree/prototype
https://hackernoon.com/create-a-piano-app-with-javascript-97dbad1ff28c
https://hackernoon.com/create-a-piano-app-with-javascript-97dbad1ff28c
https://github.com/mrcoles/javascript-piano
https://github.com/mrcoles/javascript-piano
https://github.com/Gurr1/Grammars-for-music-poetry-fractals
https://github.com/Gurr1/Grammars-for-music-poetry-fractals

	Background
	Fractals
	Grammars and Lindenmayer systems
	Grammatical Framework
	Simulated recursion in GF
	Phrases in GF

	MIDI files
	Turtle graphics
	Web server architecture

	Task
	Scope
	Ethical aspects
	Fractals used
	Musical input
	Stochastic rules
	Grammar input

	Method
	Initial stage
	Prototype
	Exploring existing L-systems for music

	GF generation
	Data structure
	Parsing
	From string to tree
	Musical interpretation
	Virtual piano input affecting graphical representation

	Web application
	Client-server architecture
	Drawing and translating between fractals

	Result
	Discussion
	Generating strings in GF
	Data structure
	Musical observations
	Translating fractal fragments
	Taking the project further

	Appendix: Musical terms
	Appendix: GF-grammars in the project
	References

