

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2017

The Red-Black Physics Engine

A Parallel Framework for Interactive Soft Body Dynamics
Master’s thesis in Interaction Design and Technologies

OSKAR NYLÉN
PONTUS PALL

The Red-Black Physics Engine
A Parallel Framework for Interactive Soft Body Dynamics
Oskar Nylén & Pontus Pall
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
The simulation of soft bodies has been an ongoing research problem for over 30
years. The desiderata for real-time applications are believable results, while main-
taining interactivity. The most popular approach to achieve this has been to use
iterative methods, that find an approximate solution to the underlying equation
system rapidly. In recent years, efforts have been made to improve the performance
of these methods by exploiting the computational capabilities of modern hardware
architectures, such as the graphics processing unit.

This thesis introduces a parallel iterative solver that utilizes a Red-Black Gauss-
Seidel technique. The solver is implemented within the Projective Dynamics frame-
work, using a quadrangular network of particles and constraints, to simulate soft
bodies in real-time. The results show that in this particular case, the Red-Black
Gauss-Seidel method outperforms other traditional iterative solvers in terms of con-
vergence speed.

The results were achieved by creating a physics engine prototype, using a Verlet
numerical integration scheme, parallel collision handling and three different types
of iterative solvers; sequential Gauss-Seidel, parallel Jacobi and parallel Red-Black
Gauss-Seidel. These solvers were then compared to each other. The physics engine
as a whole was also compared to other contributions in the field. The quadrangu-
lar structure of the soft bodies resulted in real-time performance, at the cost of a
moderate loss in precision.

Keywords: real-time, computer animation, physics-based animation, simulation, soft
body dynamics, deformable bodies, projective dynamics, red-black gauss-seidel

ii

Acknowledgements
We would like to thank Marco Fratarcangeli, our supervisor, for spending a consid-
erable amount of time and effort guiding us. His input, knowledge and enthusiasm
has been of tremendous value for the realization of this thesis.

Oskar Nylén and Pontus Pall, Gothenburg, June 2017

iv

Contents

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 2
1.3 Problem statement . 2
1.4 Limitations . 2
1.5 Outline . 3

2 Previous work 4

3 Theory 6
3.1 Mass-spring systems . 6
3.2 Linear equation system solving . 7

3.2.1 Jacobi iterative method . 7
3.2.2 Gauss-Seidel iterative method 8
3.2.3 Graph coloring . 10

3.3 Numerical integration . 11
3.3.1 Euler integration . 12
3.3.2 Verlet integration . 12

3.4 Collision handling . 13
3.5 Position Based Dynamics . 14
3.6 Projective Dynamics . 15
3.7 Parallel computing . 15

4 Methodology 18
4.1 Research workflow . 18
4.2 Prototype . 19
4.3 Result evaluation . 20

5 Process 22
5.1 Setup . 22
5.2 Data structures . 23
5.3 Simulation . 25

5.3.1 Initialization . 26
5.3.2 Verlet integration . 28
5.3.3 Position based dynamics . 28
5.3.4 Projective dynamics . 29
5.3.5 Collision handling . 32

vi

Contents

5.3.6 Friction . 35
5.3.7 Tearing . 36
5.3.8 User interaction . 37

5.4 Rendering . 38
5.4.1 Mesh generation . 38
5.4.2 Shading . 39
5.4.3 Shadows . 40

5.5 Animation of kinematic bodies . 43
5.5.1 Model sequence . 43
5.5.2 Collision handling . 44
5.5.3 Attachment points . 45

6 Results 46
6.1 Performance . 46
6.2 Test cases . 52

7 Discussion 63

8 Conclusion 65

9 Future work 67

A Appendix 1 I

vii

1
Introduction

The need to simulate deformable bodies in real-time can be found in many different
areas, ranging from video games to medical simulation to interior design and beyond.
While hardware advancements and increasingly efficient algorithms have allowed for
impressive results, many problems are yet to be solved. This chapter introduces the
topic of soft-body simulation and presents the aim, purpose and limitations of the
thesis.

1.1 Background
The simulation of both rigid and soft bodies has been an active area of research for
the last 30 years [Terzopoulos et al., 1987]. Traditionally, these simulations have
been used in fields such as 3D animation and video games. While still being heavily
used in those fields, the need for realistic simulations has grown, as a lot of industries
that have not used them in the past are now finding ways to use them to achieve
business value. Such areas include interactive surgical simulation [Bender et al.,
2015], hair simulation [Rungjiratananon et al., 2010] and motion capture animation
[O’Brien et al., 2011].

Along with the increase in interest in physics-based animation, the power of mod-
ern personal computers has also increased substantially over time, allowing realistic
simulations to be run in real-time. Many attempts have been made to increase the
interactivity of the simulations by inventing new, efficient methods.

A popular approach for simulating soft bodies is to model objects as a network of
particles and constraints [Liu et al., 2013]. The constraints limit the movement
of the particles in ways which plausibly simulates the way real soft bodies move
when subjected to external forces. This model produces a large system of constraint
equations, which needs to be solved in a few milliseconds in order for the simulation
to sustain real-time interactivity. Thus, the manner in which the constraints are
solved is a highly important factor for the field of soft body dynamics. In order to
further speed up this process, the Graphical Processing Unit (GPU) can be used
to parallelize calculations, increasing the number of calculations per second, thus
lowering the computation time.

Even though speed is not as critical in offline simulation as in real-time simulation, it
is still of great importance for productivity reasons. Thus, the advances in real-time

1

1. Introduction

simulation can also be beneficial for areas which heavily rely on offline simulation,
such as the movie industry and virtual prototyping.

1.2 Purpose
This thesis attempts to create a physically based simulation engine, which addresses
the problem of creating stable and visually plausible simulations of soft bodies, while
allowing for interactivity and stability. This is done by utilizing a constraint solving
technique called Red-Black Gauss-Seidel, presented in section 3.2.3 Graph coloring,
with the aim of solving the underlying equation system in just a few milliseconds.
The goal is to contribute to the overall knowledge within the area of real-time soft
body dynamics.

1.3 Problem statement
As applications of physically-based animation become more common in a wide range
of fields, from medical simulations to feature films, the demand for performance in-
creases. At the same time, the required level of believability keeps rising.

The thesis will conclude whether or not a Red-Black Gauss-Seidel solver is viable
for real-time physics simulation. This will be determined by answering the following
research question:

Can a solver which utilizes the Red-Black Gauss-Seidel method be more
suitable for real-time graphics applications than other traditional solvers,
by enhancing interactivity and producing a more believable visual result?

If the answer to this question is positive, and a Red-Black Gauss-Seidel solver can
be used effectively, this might bring the field closer to achieving realistic looking
real-time simulations of soft bodies.

1.4 Limitations
The proposed solver has the potential to accelerate the computational performance
of the animation significantly. However, due to the intrinsic limitations of the solver,
it can model only objects with a relatively simple structures, such as cloths and ropes.
In order to simulate volumetric objects with shape conservation, other constraints,
such as bending, would need to be implemented.

The goal of the thesis is primarily to create a solver, but there are various other
concepts which needs to be implemented in order to test the solver and create a
simulation. For example, collision handling and rendering has to be implemented in
order to test the applicability of the solver in a practical environment.

2

1. Introduction

Collision handling always poses a difficulty when creating real-time physics-based
simulations, as it is a continuous problem solved in a discrete manner. Furthermore,
tens of thousands of particles need to be simulated in real-time, which presents a
problem regarding interactivity. Among the many different approaches in the liter-
ature, we chose the simple, yet effective in practice, approach presented in [Green,
2010].

Similarly, considerable amounts of time could be spent on achieving realistic render-
ing. The quality of rendering is limited to a degree which gives the viewer a good
understanding of the deformation of the soft objects and how various objects are
related to one another.

1.5 Outline
The list below briefly outlines the contents of each chapter of the thesis.

• 2 Previous work - Presentation of notable research made in the field of soft
object simulation.

• 3 Theory - Review of the theory required for fast soft object simulation.
• 4 Methodology - High-level descriptions of the methods applied in order to

answer the research question and fulfill the purpose of the thesis.
• 5 Process - In-depth presentation of implementation of the simulation engine.
• 6 Results - Analysis of the results in terms of both performance and visual

appearance.
• 7 Discussion - Interpretation and explanation of the achieved results, and

what they add to the field of soft object simulation.
• 8 Conclusion - Reflection on the purpose of the thesis and the implications

of the results.
• 9 Future work - Discussion of possible options to expand beyond the limi-

tations of the thesis.

3

2
Previous work

Within computer graphics, there are several types of simulation techniques for differ-
ent types of objects. For objects which are not deformed during simulation, methods
based on rigid body dynamics can be applied. However, there is also a need to sim-
ulate soft objects, which can be deformed by external forces in a physically plausible
way. In order to do this, [Terzopoulos et al., 1987] found that the partial differential
equations which determine both the shape and the motion of these objects needs to
be solved. These equations can be discretized in several ways, producing a system of
inter-dependent ordinary differential equations. One way of discretizing continuous
shapes is to divide them into particles with constraints between them. The problem
is then to satisfy each constraint based on the forces which are applied. This model
has been used by [Provot, 1995], to simulate convincing non-elastic cloth, [Faure,
1999] to simulate interactive solid animation. Another notable example is the work
of [Baraff and Witkin, 1998], which focused on creating a simulation system which
could handle large time-steps for cloth simulation.

The idea has since then been developed to simulate a wide array of deformable
bodies, using different types of constraints and constraint solving methods. One
of the first examples of this being used in a commercial product, was presented by
[Jakobsen, 2001]. This method uses springs which are infinitely stiff, called stick
constraints, to simulate ragdolls and cloth. It was used in the game Hitman Code-
name 47, to great success.

The Position Based Dynamics framework [Müller et al., 2007] presents a model which
shows many advantages of purposely disregarding velocities and applying changes
over time directly on the positions of the particles making up the shape. In this ap-
proach, virtually any type of soft body can be modeled, by using various constraints.
For example, one can use bending constraints to simulate cloth more convincingly,
volume conservation constraints to keep the volume of tetrahedral meshes [Bender
et al., 2015], and density constraints to simulate fluids [Macklin and Müller, 2013].
Position Based Dynamics is fast, easy to implement and controllable. Similarly, Au-
todesk’s Nucleus solver was presented in 2009, which also makes use of constraints to
simulate soft bodies [Stam, 2009]. Nucleus was developed independently of Position
Based Dynamics, but the two methods have some similarities.

However, Position Based Dynamics has received some critique for not being derived
from proper physical principles. In [Bouaziz et al., 2014] the Projective Dynamics
framework is presented. The purpose of Projective Dynamics is to fuse together

4

2. Previous work

the simplicity and efficiency of Position Based Dynamics, with physically correct
methods such as the Finite Element method. In Projective Dynamics, constraints
are defined with energy potentials, which are derived from real physical laws. This
work builds upon the work by [Liu et al., 2013], where Hooke’s law is applied to a
mass-spring system. In [Liu et al., 2013] an alternating minimization technique is
used to solve the constraints. This technique is later used in Projective Dynamics,
and is generalized for any kind of constraint. The performance of the framework has
been significantly increased by using the Chebyshev semi-iterative method [Wang,
2015; Wang and Yang, 2016]. However, this method may introduce artifacts for
simulations that require a small number of solver iterations. Recently, Projective
Dynamics has been reformulated as a quasi-Newton method, which enables simu-
lation of a large group of hyper-elastic materials with even faster convergence [Liu
et al., 2017].

In later years, focus has been made towards solving large systems of equations in
the fastest way possible. In [Müller et al., 2007], the constraints are solved in an
iterative, sequential Gauss-Seidel fashion. However, with the increased demand for
interactive physics and the improvement of graphical processing units (GPUs), effort
has been made to parallelize the constraint solving process. In [Macklin and Müller,
2013] a Jacobi solver was used for fluid simulation, a method which is also trivially
parallelizable. However, Jacobi solvers have the slowest convergence speed among
iterative solvers, so they require a high number of iterations to provide a solution.
In case of objects with many constraints, this may severely affect performance. This
problem is much less significant with Gauss-Seidel solvers. Research by [Fratar-
cangeli and Pellacini, 2015] has proven that Gauss-Seidel could also be effectively
parallelized, by using a graph coloring technique with the Position Based Dynamics
framework. In this approach, the convergence speed per iteration of Gauss-Seidel
is preserved, while heavily reducing the computation time spent per iteration. In
later work, this technique was also used with Projective Dynamics along with a
randomized coloring technique [Fratarcangeli et al., 2016].

5

3
Theory

Real-time physics-based simulations have two conflicting goals: simulating accurate
behavior while remaining interactive. Achieving both goals perfectly is very difficult
and not yet achieved, thus the actual objective is finding a satisfactory compromise
between accuracy and speed. Implementing a particle based physics engine involves
a set of different techniques and methods that all need to relate to these conflicting
aspects. The theory behind these methods will be presented in this section. Both
methods which were later implemented, and methods that were discarded will be
discussed.

3.1 Mass-spring systems
One of the most basic ways of modeling soft bodies is to discretize an object into a
network of particles and springs, also known as a mass-spring system. This provides
an intuitive, simple, yet powerful way to model deformable objects [Liu et al., 2013].
The springs act as constraints, which limit the motion of the particles by keeping
them within a set distance from each other. In [Liu et al., 2013], the spring forces are
determined by Hooke’s law, while in [Müller et al., 2007] they are mainly geometrical.

m = 1 m = 2 m = 3

n = 1

n = 2

n = 3

mass :

spring :

Figure 3.1: Example of a mass-spring system from [Provot, 1995].

More complex models consider phenomena such as bending, volume preservation
and more to allow for increasingly sophisticated soft body simulations. However, in
general, the models still consist of a network of particles and varyingly advanced
constraints.

6

3. Theory

3.2 Linear equation system solving
The constraints can be expressed as a sparse system of linear equations. In each
equation, the particle position is the unknown. A set of n equations and n unknowns
can be expressed as:

Ax = b (3.1)
where A is the coefficient matrix, b is the right-hand side vector of knowns and x
is the vector of unknowns [Saad, 2001].

One way of solving this system is to calculate the inverse of A. However, com-
puting A−1 is very slow, and there is no guarantee that the inverse actually exists.
The complexity of calculating the inverse matrix is generally O(n3), using Gaussian
elimination. In the case of soft body dynamics, n usually is far above 10 000, which
makes this method unviable [Kim, 2016].

Linear iterative solvers, such as the Jacobi and Gauss-Seidel methods can also be
used. For each iteration, these solvers calculate an increasingly better approxima-
tion to the correct solution. When the purpose of the simulation is human visual
consumption, the correct solution is often not needed, only a good approximation.
If the result is close enough to the actual solution, the human eye will not perceive
the error. Since iterative solvers usually can produce a good approximation faster
than the previously mentioned method, this is most commonly used in real-time
physics simulation.

p0

p4

p2 p8

p6

p1

p5

p3

p7

0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8

Figure 3.2: A structure with 9 particles and 12 constraints is represented by the
connectivity matrix on the right hand side. Each row constitutes one equation, and
each equation is defined in terms of the constraint coefficients.

In the following two sections, the Jacobi and Gauss-Seidel iterative methods are
presented. These are two of the most commonly used iterative methods for solving
large systems of equations. The lexicographical definitions will be presented, but
there are also many different variations and combinations of the methods [Saad,
2001].

3.2.1 Jacobi iterative method
One method to solve the linear equation system previously presented is by using the
Jacobi method. This method calculates an increasingly accurate approximate solu-

7

3. Theory

tion for the whole system given an initial guess, then updates the system. Thus, the
solution of each equation uses the initial values of the previous iteration. Therefore,
the equations can be solved independently and in any order. Practically, this means
that the system can be solved in parallel.

The following equations describe the Jacobi iterative method [Barrett et al., 1994]:

x(1)
i = bi

aii

(3.2)

x(k)
i =

bi −
∑

j 6=i aijx(k−1)
j

bii

(3.3)

In equation 3.1 the initial values are set to a guessed value. In equation 3.2 the
next iteration k is calculated, from the known vector b and the sum of equations on
which xi depend. Subtracting this sum from b and dividing by the diagonal value
of the corresponding row in A yields the new position of xi. If the Jacobi method
is applied to the structure presented in section 3.1 Mass-spring systems, the solving
could be visualized as follows:

1 4

2 5

3

Figure 3.3: Example of one Jacobi iteration. 1: The rest state of the system.
2: The particles gets displaced by an external force. 3: For each particle, deltas
are calculated. 4: The deltas are averaged by the number of constraints. 5: The
positions are updated.

All the positional deltas can be calculated for each constraint in the system in
parallel. For each particle, the deltas are accumulated, and averaged to provide
one positional change per particle, which also can be applied in parallel. This
parallelization means that each iteration is faster than the Gauss-Seidel method.
However, the convergence per iteration is not as substantial as with Gauss-Seidel.

3.2.2 Gauss-Seidel iterative method
The Gauss-Seidel method solves each equation sequentially. Each new equation uses
the result of the last equation, and directly updates the result. The Gauss-Seidel
iterative method can be defined as follows [Barrett et al., 1994]:

8

3. Theory

x(1)
i = bi

aii

(3.4)

x(k)
i =

bi −
∑

j<i aijx(k)
j −

∑
j>i aijx(k−1)

j

aii

(3.5)

In equation 3.4, the initial values of the system are calculated. In equation 3.5,
the next iteration k is calculated, from the known vector b and the equations on
which xi depend. The difference between this method and the Jacobi method is
that Gauss Seidel considers the previous computations from the current iteration,
while Jacobi uses the values of the previous iteration for all computations. Note
that the leftmost sum in the numerator uses values of x from iteration k, while the
rightmost sum uses iteration k − 1. This is in contrast to the Jacobi method which
only computes one sum using the values of iteration k−1. A visual example of when
the Gauss-Seidel method is applied to a mass-spring system can be seen below:

1

2

3

4

5

6

Figure 3.4: Example of one Gauss-Seidel iteration. 1: The rest state of the system.
2: The particles are displaced by external forces. 3-6: Each equation is sequentially
solved.

The Gauss-Seidel method finds a better approximation in fewer iterations than the
Jacobi method, but is less straightforward to parallelize due to the interdependent
equations. This results in more time-consuming iterations, and therefore a less effi-
cient solution. This is the reason behind wanting to parallelize Gauss-Seidel.

Successive over-relaxation In order to increase the convergence speed of the
Gauss-Seidel method, a technique called successive over-relaxation can be applied.
This technique takes the value computed by the standard Gauss-Seidel method, and
extrapolates it in the direction given by x(k) − x(k−1). The amount of extrapolation
depends on the relaxation factor ω.

x(k) = x(k) + ω(x(k) − x(k−1)) (3.6)

If ω is set to 1, the successive over-relaxation method is equivalent to standard
Gauss-Seidel iteration. The method is shown to converge for a relaxation factor
within the interval (0, 2) [Barrett et al., 1994].

9

3. Theory

3.2.3 Graph coloring
The structure of particles and constraints can be seen as a graph. As such, methods
from graph theory can be applied to streamline various computations. One such
method is graph coloring, which aims to mark all elements of a graph with a certain
color such that no interconnected elements share the same color. By coloring the
particle system, particles can be partitioned into groups which can be solved inde-
pendently, allowing for parallel solving [Saad, 2001]. The naive way of achieving this
is to assign a different color to each particle. However, this would not accomplish
much since the number of parallel solving steps is equal to the number of particles,
making parallelism pointless. Ideally, we want a small number of similarly sized
partitions to allow for maximal parallelization.

Recently, attempts have been made to parallelize Gauss-Seidel without having to use
concurrency control techniques which slow down the execution. The concurrency
problem occurs when the Gauss-Seidel solver tries to manipulate the same particle
position from multiple threads. Multiple threads accessing the same particle at the
same time can be avoided by using atomic operations, but this heavily slows down
the parallel execution [Bender et al., 2015].

However, these concurrency problems can be avoided by using graph coloring. A
graph coloring technique to tackle this problem was proposed by [Fratarcangeli et al.,
2016], called Vivace. In this approach, each particle is colored using a parallel graph
coloring technique, which allows for a large maximum degree of the constraint graph.
The technique utilizes randomization and a heuristic to avoid colors conflicting with
each other. Vivace produced impressive results, being able to handle hundreds of
thousands of constraints, while keeping interactivity and avoiding any noticeable
visual artifacts.

10

3. Theory

p0

p5

p2

p7

p10

p8

p13

p15

p1

p3

p6

p4

p9

p11

p14

p12p0

p5

p2

p7

p10

p8

p13

p15

p1

p3

p6

p4

p9

p11

p14

p12

Figure 3.5: On the left, the unpartitioned system and its corresponding coefficient
matrix. On the right is the same system colored red and black.

A simple graph coloring method is the red-black method, in which the elements of
the graph are split into two independent partitions. This approach is described in
detail by [Saad, 2001]. A comparison between a unpartitioned graph and a Red-
Black partitioned graph can be seen in Figure 3.5. The graphs presented in the
figure are so called grid graphs, which belong to the family of bipartite graphs. The
chromatic number, i.e. the smallest number of colors needed to color the graph such
that no elements of the same color share an edge, of a bipartite graph is 2 [Godsil and
Royle, 2001]. When introducing more complex constraints, the chromatic number
grows, thus forcing the use of more sophisticated graph coloring techniques such as
the one presented by [Fratarcangeli and Pellacini, 2015].

3.3 Numerical integration
For any physics simulation based upon continuum mechanics, a numerical time inte-
gration scheme is required in order to update the state of the simulated objects. The
integrator takes a time-step value and computes the new positions of the particles
based on the velocity and external forces such as gravity, wind and friction. If the
desired frame-rate of the simulation is 60 frames per second, the simulation time
window is 1/60s ≈ 0.016 seconds, excluding the time consumed by the rendering
step. In order to achieve a real-time simulation, the time-step chosen should be de-
pendent on this value. Thus, when choosing a time-step we can simply set it to 0.016
seconds and perform one numerical integration step during each frame. Another op-
tion is to select a smaller multiple of 0.016, such as 0.004, and instead perform

11

3. Theory

several (in this case 4) numerical integration steps during each frame. The size of
the time-step gives rise to an important trade-off - precision versus performance. A
high time-step allows for fewer numerical integration steps, but also results in lower
precision, making collision detection prone to errors. A low time-step gives higher
precision, but forces the numerical integration step to be computed several times
during each frame, which in turn negatively impacts performance.

Another aspect which needs to be taken into account, for particle-based physics
simulations in particular, is that some integration methods can produce unstable
behavior [Provot, 1995]. There are methods that produce very accurate and stable
results, such as higher order Runge-Kutta methods, but these are generally hard to
implement and more computationally expensive [Eberly and Shoemake, 2004]. The
general difficulty which gives rise to these problems, is that we are trying to simulate
continuous phenomena in a discrete manner. What this means is that the result we
get from the numerical integration is only an approximation of an integral [Kim,
2016].

3.3.1 Euler integration
One of the most basic approaches to numerical integration is the explicit Euler
method. This method is also called forward Euler, and is a very popular time inte-
gration method, due to its simplicity [Eberly and Shoemake, 2004].

Using Euler integration, applying Newton’s laws of motion, the new position x(t+h)

and velocity v(t+h) are computed by applying the following equations:

x(t+h) = x(t) + v(t) · h (3.7)
v(t+h) = v(t) + a · h (3.8)

Here, h is the time-step, and a is the acceleration computed using Newton’s second
law of motion: F = m · a (where F is the accumulated force acting on the particle).

This method is trivially implemented, but is inherently unstable. This instability
is due to the size of the time-steps. The time-step has to be very small, otherwise,
at high velocities and/or forces, there might be inaccuracies which feedback on
themselves, making the error bigger and bigger. Eventually, the system becomes
too unstable and explodes or breaks apart. Having small time-steps is therefore
more or less a requirement for Explicit Euler to give accurate results [Eberly and
Shoemake, 2004]. The error is directly proportional to the size of the time-step,
meaning that if the time-step is halved, the error is also halved.

3.3.2 Verlet integration
Another approach, which does not require storing the velocity is the Verlet method.
Instead of storing the velocity, it is calculated by approximation, which takes place
implicitly. This is done by storing the previous position, and keeping the time step
constant.

12

3. Theory

x(t+h) = 2x(t) − x(t−h) + a(t) · h2 (3.9)

x(t−h) = x(t) (3.10)

The current velocity can be written by approximation by rearranging the formula
the following way:

2x(t) − x(t−h) = x + (x(t) − x(t−h)) (3.11)

where x(t) − x(t−h) is the distance traveled the last time-step. Verlet is both more
accurate, and stable than explicit Euler. With Verlet integration, the error is kept
at O(h4) [Eberly and Shoemake, 2004]. This integration technique is also easily
implementable, and is not computationally expensive [Jakobsen, 2001]. Another
benefit from Verlet integration is that the size of the time-steps can be larger than
when using explicit Euler.

3.4 Collision handling
To make objects interact with each other in a natural manner, collisions need to be
detected and handled accurately. This involves finding any intersections between
objects, calculating collision displacements and applying them to the objects. As
always in real-time rendering, the time budget is limited, making a parallel solution
more appropriate for the task.

In order to achieve fast collision detection, it is important to only examine objects
that are near each other and therefore susceptible to collision. Normally, this is
done by employing two phases: one for determining which objects are likely to
collide (broad-phase) and another for detecting the exact collisions (narrow-phase)
[Le Grand, 2007]. This also allows for the treatment of different groups of parti-
cles independently, making parallelization possible. To efficiently determine which
particles are within collision distance of each other, a uniform grid can be used to
discretize the simulation scene during the broad-phase.

13

3. Theory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

5

3

2
4

1

0

Figure 3.6: The spacial subdivision into a uniform grid. The indices of the cells and
particles are specified with black and white text respectively. (Courtesy of NVIDIA)

A list of all the object-cell pairs is stored, sorted by the cell id. Then, in the narrow-
phase, all potential collisions for each cell are checked, and a response is calculated
and applied if the objects are within a set distance from each other. This distance
is usually equal to the sum of the particles radii.

Another problem that needs to be addressed is that the collision detection only works
with the positions provided by the numerical integration and the solver. Since this
is done in a discrete manner, there are risks of missing collisions. With larger time-
steps, the problems increase. There are methods that try to address this problem,
but they are not in the scope of this thesis.

3.5 Position Based Dynamics
Position based dynamics is a popular framework for physics-based animation [Müller
et al., 2007]. Many different physics engines utilizes position based dynamics, in-
cluding PhysX, Havok Cloth and Bullet [Bouaziz et al., 2014]. There are many
factors that contribute to this popularity. Position Based Dynamics provides good
stability, which is usually one of the biggest problems with physics-based animation.
Another aspect that helps to explain the popularity of the framework is that it is
easy to understand and implement [Müller et al., 2007].

In Position Based Dynamics, a deformable object is represented by n particles and
m constraints [Müller et al., 2007]. Each particle has a position, velocity and mass.
Each constraint has a cardinality nj, which states the connectivity of the constraint.
A constraint also has a function Cj, which describes the manner in which the con-
straint will need to be solved. The constraint has a set of particle indices i1 − in,
which states which particles are connected with the constraint. The stiffness is also
described by a stiffness parameter. The solver, in the original implementation, uses
a Gauss-Seidel type iterative solver. In later implementations a Jacobi solver has
also been used [Macklin and Müller, 2013].

14

3. Theory

While Position Based Dynamics is generally a popular approach, it has some draw-
backs. It is not rigorously built upon mechanical principles, which makes it hard or
even impossible to correctly combine with parameters derived from physical mea-
surements [Bouaziz et al., 2014]. Because of this, parameter tuning is an inherent
problem when working with position based dynamics. Additionally, since the stiff-
ness of the simulated model is not independent of the time-step and number of solver
iterations, modifying these parameters without affecting the stiffness is impossible
[Bender et al., 2017].

3.6 Projective Dynamics
The Projective Dynamics framework was presented by [Bouaziz et al., 2014] as a
way to bridge the gap between Position Based Dynamics and finite element meth-
ods, thus providing a more accurate model for simulating soft bodies. In projective
dynamics, a constraint is described with a potential energy, rather than the simpli-
fied geometric distance, as in Position Based Dynamics. The potential is defined
by an energy function derived from physics. In the case of the spring constraint,
Hooke’s law is used. This energy needs to be minimized for the constraint to be
satisfied [Bouaziz et al., 2014]. In Projective Dynamics, the minimization technique
from [Liu et al., 2013] is used, which finds optimal spring directions in a local step,
then finds the correct node positions in a global step.

All these features combined produces a result which is superior to Position Based
Dynamics in terms of visual believability, while still maintaining good efficiency. To
summarize, the main difference between Position Based Dynamics and Projective
Dynamics is the way the constraints are defined, and that Projective Dynamics
implements the alternate optimization technique used by [Liu et al., 2013].

3.7 Parallel computing
Physical barriers such as power usage, heat dissipation and transistor size have in
recent years forced CPU manufacturers to focus less on increasing clock speeds and
more on putting multiple cores on their processors [Deng, 2013]. Following this de-
velopment, programs need to be parallelized in order to fully utilize the processor’s
capabilities. While parallel computing has not always been an important matter
on the CPU, the graphics processing unit (GPU) is parallel by design due to the
rendering pipeline. Even though the GPU and its API’s were originally tailored
towards generating bitmaps for the display, this did not stop programmers from
performing other, more general purpose programming tasks on it. As the interest
in general purpose programming on the GPU increased, software and hardware was
developed to make these endeavors more convenient [Sanders and Kandrot, 2010].

When processing large amounts of independent objects, such as vertices, pixels or
particles, the speed benefits of parallel computing can prove to be immense. The

15

3. Theory

GPU provides hardware multi-threading, enabling the execution of many threads in
parallel. The GPU is also provided with a higher number of transistors than the
CPU, in order to increase the data processing capabilities [Nvidia, 2017].

CUDA NVIDIA provides an interface for programming their GPUs. This inter-
face, called CUDA (short for Compute Unified Device Architecture), is a C/C++
API for general-purpose computing on graphics processing units (GPGPU), and
was presented in November 2006 [Nvidia, 2017]. CUDA enables the programmer to
write both host code, which runs on the CPU and device code which runs on the
GPU [Kim et al., 2012]. The device code is written in CUDA C functions, called
kernels. When a kernel is called, CUDA launches a programmer-defined number of
threads on the GPU, which all execute the kernel in parallel. This is in contrast
to regular functions in languages such as C or Java, which only run once per call.
CUDA provides the possibility to use the GPU not only for graphics, but also other
computationally heavy tasks.

For example, two arrays can be trivially added and saved to a third array, in parallel,
using CUDA. This is done by using the unique indices of the threads as access indices
for the arrays.

Listing 3.1: An example of a CUDA kernel adding two arrays (A and B) together
to a third array (C)
__global__ void
vectorAdd (const f loat ∗A, const f loat ∗B, f loat ∗C,

int numElements)
{

int index = blockDim . x ∗ blockIdx . x + threadIdx . x ;

i f (index < numElements)
{

C[index] = A[index] + B[index] ;
}

}

Here, a unique thread index is calculated based on the size of a block, the index of
that block and the block-local thread index. A block, also called thread block, is
a collection of threads that reside on the same core of the GPU, and have access
to the same shared memory [Nvidia, 2017]. This provides a way of assigning each
array index to an individual thread. The function call to the kernel can be seen in
Listing 3.2. Furthermore, the blocks are organized in grids. The grid, block and
thread hierarchy are illustrated below:

16

3. Theory

Figure 3.7: Visualization of the thread hierarchy; with grids, blocks and threads.
(Courtesy of NVIDIA)

Listing 3.2: Code to call the CUDA kernel vectorAdd
int threadsPerBlock = 256 ;
int blocksPerGrid =

(numElements + threadsPerBlock − 1)/ threadsPerBlock ;

vectorAdd<<<blocksPerGrid , threadsPerBlock>>>
(d_A, d_B, d_C, numElements) ;

In addition to this, memory management is a vital part of programming on the
graphics card. CUDA provides several functions to allocate memory on both the
CPU (host) and GPU (device), along with methods to easily transfer this data back
and forth. However, since the memory transfer is one of the biggest bottlenecks, it
is crucial to only use the GPU when the benefits outweigh the cost of the commu-
nication between the CPU and GPU [Kim et al., 2012].

17

4
Methodology

This chapter will present how the process of answering the research question and how
the purpose of the thesis was fulfilled. The chapter will treat both specific aspects
of the development and more general aspects of the study. First, the workflow of
the research is described in detail. After that, the manner in which the research
question was answered will be presented. Finally, the method used to evaluate the
generated data is described.

4.1 Research workflow
The research was divided into three phases. First, a literature study was conducted.
This provided the knowledge needed to develop the first iteration of the prototype,
thus creating a platform to build upon. The findings of the literature study can be
seen in chapters 2 Previous work and 3 Theory.

After this initial phase, the development began. The attention was focused towards
building a prototype, and improving it until a point of satisfaction was reached.
First, a version of Position Based Dynamics using a parallel Jacobi solver was built.
Since Position Based Dynamics basically is a simplified special case of Projective
Dynamics, this was a way to create a proper platform for further development. This
also gave good insight in how GPGPU computing works with CUDA. After this,
Projective Dynamics with the Red-Black Gauss-Seidel solver was implemented. To
be able to compare the RBGS solver to others, two additional solvers were imple-
mented and tested:

• Parallel GPU Jacobi solver
• Sequential single-core CPU Gauss-Seidel solver

The entirety of the work was evaluated by conducting several experiments in a
structured environment. These experiments provided the data needed in order to
draw conclusions about the solver and answer the research question. The research
workflow can be viewed in the figure below:

18

4. Methodology

Development phase Evaluation phase

Physics engine
prototype

Knowledge from
literature study

Additional
features

Final experiment
setup

Data analysis
and conclusion

Figure 4.1: Visualization of the three phases of research.

The experiments were conducted by comparing the performance of the RBGS solver
to the other solvers. The main variables of this comparison were the squared residual
error over iterations and squared residual error over time. This will be further
explained in section 4.3 Result evaluation

4.2 Prototype
In order to answer the research question, a high-fidelity software prototype was
developed. While a solver could certainly have been developed and tested from a
performance-centered perspective without a visual representation, the second part of
the research question necessitated a relatively sophisticated rendering of the solved
constraints. It was of great importance that the tools and methods used to create
the prototype were the most suitable for the context, real-time computer animation.

There were several techniques that could have been utilized to realize the prototype.
The most important aspect for this particular context was performance. This ex-
cludes many computer languages such as hosted, interpreted or garbage-collecting
languages. We chose to use the industry standard language for developing high
performance applications such as video games and real-time simulations, which is
C/C++.

To further increase performance, it was essential to maximize the number of floating-
point operations per second (FLOPS). One method to do this is to utilize multiple
cores of the CPU. This can be achieved with tools such as OpenMP.

OpenMP is a cross-platform API which allows programmers to use shared memory
multiprocessing by annotating programs in C, C++ and Fortran [Chapman et al.,
2008]. By using multiple threads in parallel, the number of FLOPS performed can
be increased significantly. However, compared to the GPU, the number of physical
parallel processing units is small. Thus, in order to increase performance, the highly

19

4. Methodology

parallel solver of the prototype was implemented on the GPU.

There are many different frameworks available for GPGPU programming. OpenCL
is a open framework developed by Khronos Group. It provides a standard for paral-
lel computing, and each implementation of is provided by the manufacturers of the
GPUs.

NVIDIA provides their own API for GPGPU programming, called CUDA. This
framework is presented in depth in section 3.7 Parallel computing. Since NVIDIA
tailor their API to the hardware they manufacture, CUDA is generally more per-
formant than OpenCL. OpenCL has also been shown to produce significantly more
run-time overhead [Demidov et al., 2013].

Apart from performance related considerations, factors such as extensibility and
modularity also had to be taken into account. Since a number of solvers were to be
developed and compared, the ability to quickly switch between solvers was required.
This was handled via a configuration file framework, described in section 5.1 Setup,
which allowed for the creation of scenes with different parameters and contents.

4.3 Result evaluation
There were two types of result evaluation conducted in order to analyze the physics
engine. The first being a performance evaluation, where the evaluated data was
easily quantifiable as the squared error. The other aspect which had to be analyzed
was the visual results. When doing this result evaluation, the experimental design
is crucial, as well as addressing the validity threats correctly.

The goal of the performance evaluation was to analyze how the proposed Red-Black
Gauss-Seidel solver would perform compared to other iterative solvers, with respect
to the convergence speed. This was done by comparing the total internal squared
residual error over both iterations and time, between the different solvers. The error
was measured using the following equation:

totalSquaredError =
∑
N

(|qa − qb| − L)2 (4.1)

In the equation, the error is calculated as the distance between the positions, qa

and qb, of the connected particles minus the rest length L. The resulting values are
squared to give the total internal squared error of the system. Two widely different
scenarios were used when conducting these experiments. A more detailed descrip-
tion and the results are presented in section 6.1 Performance.

When evaluating the visual result, there is no easily quantifiable metric. Therefore
the results produced by our physics engine were compared to other examples in lit-
erature and online. These results are presented in section 6.2 Test cases.

20

4. Methodology

Validity threats One concern with the experiments was how valid the results
are. There are typically four different types of validity threats that need to be
addressed. These are conclusion, internal, construct and external validity threats
[Wohlin et al., 2000].

An internal validity threat was the time measurement. The time consumed when
writing to disk had to be compensated for correctly, when logging the performance.
It is also essential to always run the experiments on the same device, with as few
interfering background processes as possible. All experiments were thus executed
on a computer with a Intel Xeon E5 CPU, and a NVIDIA GTX970 GPU.

A conclusional validity threat which had to be addressed, was that even though
the physics engine might produce less total error, other methods might have better
results. Other methods can have a larger amount, or other types of constraints,
which produce a larger internal error, although the visual error is small.

When analyzing the visual result, an obvious construction validity threat, which we
had to be aware of, was that we would be biased in our analysis. There is not much
that can be done about this, other than be aware of it and try to prevent it.

21

5
Process

In this chapter the implementation of the prototype is presented. This includes
a thorough explanation of the creation of the physics engine and its components,
along with motivations for the decisions made during the process. There were many
different sub-projects within the main project, some of which are not included in
the final result. However, they will all be described here, as everything that was
developed directly or indirectly helped answer the research question.

5.1 Setup
Before applying the theoretical knowledge described in chapter 3 Theory, a number
of optional steps are taken in order to allow for modular development, rapid proto-
typing and performance measurement. The steps taken to achieve this are described
below.

Setting up a physics engine involves the storage, manipulation and usage of many
parameters. To avoid a recompilation between each parameter change, a configura-
tion file framework was developed. The framework was set up using RapidJSON, a
fast JSON parser and generator, enabling us to easily write and read configuration
files with parameters of all primitive data types.

Listing 5.1: Example of a configuration file
{

"softObjects" : [
{

"src" : "100 cloth" ,
"position" : [0 , 0 , 0] ,
"color" : [2 55 , 94 , 8 5] ,
"fixed" : [0 , 99]

}
] ,
"solver" : "PD_RBGS" ,
"innerIterations" : 4 ,
"outerIterations" : 4 ,
"timestep" : 0 . 002 ,
"stiffness" : 1000000 ,
"gravity" : 9 . 82 ,
"cameraPos" : [0 , 0 , −3] ,
"tearingThreshold" : 3 ,
"modelPath" : "model/sitting/sitting"

}

22

5. Process

In the example above, we simulate a cloth represented as a signed distance field in
the file called 32cloth. The position and color of the cloth are also provided. The
list of integers named "fixed" determines which particles should remain unaffected
by any internal or external forces, effectively making them stationary during simula-
tion. Various constants and properties describing the environment are also defined,
such as the gravitational constant. Additionally, here we define if and in that case
which model animation should be present in the scene.

Logging was implemented using Loguru, a header-only logging library. This tool
was used mainly for outputting various performance characteristics of the different
solvers. Since the performance is one of the most important aspects to consider to
answer the research question, it is crucial to the project to have a reliable logging
tool.

5.2 Data structures
Data layout is critical when pursuing high performance. Generally, the more com-
pact and ordered the data is, the more efficiently it can be accessed by the processor.
Therefore, it is important to choose the right model when building real-time systems.
At a fundamental level, there are mainly two different layouts one can choose from,
namely structure of arrays (SoA) and arrays of structures (AoS). Both of the layouts
have their advantages and disadvantages. There are also various modifications and
combinations of the two [Strzodka, 2012]. Below, the essentials of the two concepts
are described.

Structure of arrays When working with Single Instruction, Multiple Data (SIMD)
units such as the GPU, SoA is generally preferable [Strzodka, 2012]. In the figure
below, an example of SoA is visualized.

x
y
z
w
...

Positions
0

1

2

3
...

n-3

n-2

n-1

n

p0

x
y
z
w

p(n/4)-1

x
y
z
w
...

Velocities

v0

x
y
z
w

v(n/4)-1

0

1

2

3
...

n-3

n-2

n-1

n

Figure 5.1: Positions and velocities using the SoA data layout.

Although the usage of SoA results in superior performance when it comes to GPGPU
programming, it carries some difficulties. For example, the indexes of the arrays

23

5. Process

needs to be synchronized correctly, and this way of modeling real world objects is
sometimes counter-intuitive.

Arrays of structures Most computer languages have good support for the AoS
layout. The manner in which objects in a object oriented language are defined
could be viewed as a case of the AoS structure. An example of this would be to
have a structure called particle, which contains all information needed to represent
an individual particle. Visualizations of this layout can be seen in figures 5.2 and 5.3.

particle0

int index
float4 position
float4 velocity
int color

p1 p2 p3 p4

...

particle1

int index
float4 position
float4 velocity
int color

...

Figure 5.2: An array containing particle structures. Each structure contains its
own position, velocity and color data.

q.x0

q0
v0

qn vn

q.y0 q.z0 q.w0 v.x0 v.y0 v.z0 v.w0

q.xn q.yn q.zn q.wn v.xn v.yn v.zn v.wn

pn

p0

Figure 5.3: Actual memory layout for the example in Figure 5.2.

AoS is often seen as more intuitive and easier to implement than SoA, at the cost
of performance. This is due to the data being scattered across different locations.

Implementation Due to the improved performance of SoA, the data structur-
ing of the engine was implemented in a SoA fashion. Structures such as positions,
previous positions and velocities were all stored as arrays of floats. This was done
instead of defining a specific particle data structure containing this information for
one particle. The difference can be seen in figure 5.4.

24

5. Process

q0 v0 q1 v1 q2 v2 q3 v3

q0 q1 q2 q3 q4 q5 q6 q7

v0 v1 v2 v3 v4 v5 v6 v7

AoS

SoA

Figure 5.4: SoA memory usage compared to AoS.

Similarly, the constraints themselves are stored in an array. For each particle, the
constraint array stores 6 particle indexes, which corresponds to the particles which
it is connected to. A particle can at maximum be connected to 6 other particles,
one in each positive and negative direction. If there is no constraint in a direction,
the index value is replaced by a negative value.

The ambition with using this layout for all properties, instead of storing them in
structures, was to improve performance. While no explicit performance tests be-
tween SoA and AoS were made, it is safe to assume that the SoA approach makes
for more efficient memory access.

5.3 Simulation
This section describes and motivates the implementation of all the simulation com-
ponents. First an overview is presented, and each component of the simulation
overview is then explained in detail in the subsequent sections.

Algorithm 1: Simulation overview
1 scene initialization
2 particle system initialization
3 while running do
4 for k iterations do
5 numerical integration
6 constraint solving
7 collision handling
8 end
9 user input

10 rendering
11 end

The first step of the simulation is to read the configuration file, and load resources
into memory. Based on the parameters in the file, different components of the simu-
lation system are activated. When the initialization phase is finished, the simulation
loop starts. In it, k is the number of physics simulation steps to perform between
each rendered frame. Inside each physics step, numerical integration, constraint
solving and collision handling is performed. Between the physics simulation and the
rendering of the frame, user input is taken into account. If we want our system to

25

5. Process

run in real-time at 60 frames per second, everything within the outermost loop has
to be computed in approximately 16 milliseconds.

5.3.1 Initialization
The simulation initialization step involves allocating memory for simulated objects,
such that the data can be efficiently transferred to the graphics card. By using
information gathered from the configuration file we can determine the number of
particles and constraints needed for the simulation. We also need to create particle
indices and distance constraints between adjacent particles. This process, including
prerequisite steps, is detailed below.

Voxelization A deformable body in the physics engine is represented by a num-
ber of particles. However, the most common way of representing objects in computer
graphics is with a triangulated mesh. For example, a cube is modeled using 12 tri-
angles (2 triangles per face), and the vertex order is described by a set of indices.

Since this is the standard way of representing an object in computer graphics, an
effective method to convert these types of meshes into a set of particles, while
still maintaining a reasonably high resolution, is needed. As explained in s ec-
tion 3.2.3 Graph coloring, the structure of particles and constraints must form a
grid graph, so that only two colors are needed in the coloring step. A common way
to achieve this is by discretizing the mesh into volumetric pixels, or voxels. This is
done by sampling the mesh in a uniform grid. One of the most useful structures
that can be used for this purpose, is a signed distance field.

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1 -1

-1

-1

-1

-1

-1

-1 -1

-1

-10

2

4

1 3

√5

√2

1

√2

√5

√2

1

1

√2

1 √5

√2

1

√2

√5

√2

1 √2

1

10

-1

0

0 0

Figure 5.5: To the left: A triangular mesh. In the middle: The signed distance
values. To the right: The particle indices.

A signed distance field subdivides the space surrounding a mesh into a uniform grid,
and for each cell in the grid, stores the distance from the center of the cell to the
surface of the mesh. The signed distance value is positive if the cell is outside the
mesh, zero if it is on the surface and negative if it is inside the mesh. The SDFGen
utility, made by Christopher Batty1, was used to generate the signed distance field
data. In our case, the actual distance of the signed distance value is not considered,

1https://github.com/christopherbatty/SDFGen

26

https://github.com/christopherbatty/SDFGen

5. Process

only the sign. This allows us to determine whether to place a particle or not. The
voxelized mesh is stored in a 3 dimensional array, containing a negative value if
there is no particle in the voxel, otherwise the index of the particle stored in that
position.

Figure 5.6: To the left: A monkey head defined as a triangular mesh. To the right:
The corresponding particle structure. Monkey model courtesy of Blender Foundation.

When placing a particle, the color of that particle is also determined. The color is
decided depending on the position of the voxel, using the following assignment:

color ⇐ (x+ y + z) % 2 == 0 (5.1)

This ensures that particles are colored correctly in an alternating fashion. The color
is stored as a boolean value.

Constraint creation Once the particle system has been initialized, constraints
are created between each adjacent particle in the system. This is done by iteratively
examining the neighboring positions of each particle in the voxelized mesh, to de-
termine whether a constraint should be created or not. If the neighboring position
contains a non-negative value, i.e. a particle index, a constraint between the par-
ticle being processed and the neighbor is created. During this process, the number
of constraints per particle and the total amount of constraints for the entire system
are also stored for later use in constraint solving.

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1 -1

-1

-1

-1

-1

-1

-1 -1

-1

-10

2

4

1 3

p0

p2

p4

p1 p3

p0

p2

p4

C12 p3p1

C02

C23

C24

Figure 5.7: To the left: The particle indices. In the middle: The particle place-
ments. To the right: The generated constraints.

27

5. Process

5.3.2 Verlet integration
In all physics-based animation, the positions and velocities of the simulated objects
are updated each time-step. This step is called time integration, and is further ex-
plained in section 3.3 Numerical integration. The integration method chosen for
this project was the Verlet method. This is due to Verlet enabling us to more or
less discard the velocities out of the equation. It is also very accurate, stable, and
easy to implement.

The Verlet method was implemented, by using the equations presented in section
3.3.2 Verlet integration. Below is the implementation in pseudo code.

Algorithm 2: Verlet integration
1 for particles p do in parallel
2 if p is fixed then
3 return
4 end
5 f ext ⇐ fg − v fdamping

6 q ⇐ 2q− qprev + h2 fext

7 qprev ⇐ q
8 end

In steps 2-4 particles which have been marked as fixed in the configuration file
are ignored. We calculate external forces in step 5, considering both gravity and
damping coefficients. In step 6 the actual integration takes place. This is directly
derived from the equation presented in section 3.3.2 Verlet integration. Finally, we
update the value of the old position in step 7.

5.3.3 Position based dynamics
Position based dynamics is a popular framework for soft-body simulation presented
by [Müller et al., 2007]. In Position Based Dynamics, the velocity is implicitly up-
dated by manipulating the positions of the particles. The framework provides good
stability, at the cost of simplifying physical principles, thus producing a less convinc-
ing result. More details about the underlying theory of this framework is presented
in section 3.5 Position Based Dynamics.

Jacobi solver Position based dynamics was implemented using a Jacobi solver
implemented on the GPU. The iterative Jacobi method is presented in section
3.2.1 Jacobi iterative method. Pseudo-code for the implementation is presented
in Algorithm 3.

Beginning at step 1 the solver runs i iterations. For each constraint, the displacement
delta, ∆c, is calculated from the two particles of the constraint, qa

c and qb
c. This

is done for all constraints in parallel (steps 3-4). The delta is then divided by two
(the number of particles in the constraint), and stored in an array of deltas, indexed

28

5. Process

Algorithm 3: Position Based Dynamics - Jacobi solver
1 loop iterations times
2 for constraints c do in parallel
3 d ⇐ qa

c − qb
c

4 ∆c ⇐ (|d| − L) d̂
5 ∆qa

c ⇐ qa
c + ∆c/2

6 ∆qb
c ⇐ qb

c −∆c/2
7 end
8 for particles p do in parallel
9 qp ⇐ ∆qp/np

10 end
11 end

on particles (steps 5-6). Since each particle may be part of several constraints,
updating its accumulated delta directly could lead to concurrency issues. In order
to resolve this issue, the built-in atomic addition function was used. This prevents
the threads from accessing the same array index simultaneously, but also briefly
diminishes the benefits of parallelization. After each constraint has accumulated
its delta displacement, the positions for each particle are updated in parallel (steps
8-10). Each positional change is divided by np, the number of constraints of that
particular particle.

5.3.4 Projective dynamics
Projective Dynamics is a framework presented by [Bouaziz et al., 2014]. It uses
energy potentials to define different constraints, then applies an alternating mini-
mization technique to find the optimal solution. A detailed description of Projective
Dynamics is presented in section 3.6 Projective Dynamics. In this section, our im-
plementation is described in general terms, followed by the specific implementations
of each solver. Three different solvers were implemented using Projective Dynamics:

• Sequential CPU Gauss-Seidel
• Parallel GPU Jacobi
• Parallel GPU Red-Black Gauss-Seidel

To end this section, the implementation of successive over-relaxation (SOR) for the
two Gauss-Seidel solvers is described.

General algorithm Algorithm 4 describes how the alternating optimization meth-
od is implemented. Beginning at step 1, the particle positions computed in the
numerical integration step are stored in y. Then, i outer iterations are executed. In
[Liu et al., 2013], the normalized vector between two particles of a constraint, called
d, is calculated in the outer loop (local step). In step 3, we instead store the result
calculated by the solver, q, in temp and calculate d on-the-fly based on temp inside
the solver. The first time the outer loop is executed, the value of q is equal to y. In

29

5. Process

step 4, the inner loop is executed j iterations. Inside each inner iteration (step 5),
the solver processes all simulated particles, sequentially or in parallel depending on
the specific solver. The three solver algorithms described below are all encapsulated
by this general algorithm.

Algorithm 4: Projective Dynamics - General algorithm
1 y ⇐ verletIntegration
2 loop outerIterations times
3 temp ⇐ q
4 loop innerIterations times
5 solve linear equation system
6 end
7 end

Sequential Gauss-Seidel solver The sequential Gauss-Seidel solver was imple-
mented on the CPU. The theory behind the Gauss-Seidel method is described in
section 3.2.2 Gauss-Seidel iterative method. Pseudo-code for the implementation is
presented in algorithm 5.

Algorithm 5: Projective Dynamics - sequential Gauss-Seidel solver
1 forall particles p do
2 accum ⇐ yp (mass/h2)
3 forall connected particles cp do
4 d ⇐ tempp − tempcp

5 accum ⇐ accum + qcp + d̂Lk
6 end
7 a⇐ n k +mass/h2

8 qp ⇐ accum/a

9 end

An accumulated value accum is used to calculate the new position of each par-
ticle. In step 5, this value is initiated to y, multiplied by the mass divided by
the squared time-step. Considering the linear equation system solving equation
Ax = b, this value corresponds to b for the particle p. Then, for all particles con-
nected to p, the results of the Gauss-Seidel equations are accumulated. In step 11,
when all connected particles have been processed, the value a, corresponding to the
diagonal of the matrix A is computed. As in normal Gauss-Seidel solving (see sec-
tion 3.2.2 Gauss-Seidel iterative method), the equations are divided by this diagonal
value to compute the new position of particle p, denoted as qp.

Parallel Jacobi solver The parallel Jacobi solver was implemented on the GPU.
For an introduction to the Jacobi method, see section section 3.2.1 Jacobi iterative
method. Pseudo-code for the implementation is presented in algorithm 6.

30

5. Process

Algorithm 6: Projective Dynamics - parallel Jacobi solver
1 for particles p do in parallel
2 accum = yp (mass/h2)
3 forall connected particles cp do
4 d ⇐ tempp − tempcp

5 accum ⇐ accum + qcp + d̂Lk
6 end
7 a⇐ n k +mass/h2

8 ∆p ⇐ accum/a− pos
9 ∆p ⇐ ∆p/np

10 end
11 for particles p do in parallel
12 qp ⇐ ∆p

13 end

The parallel Jacobi algorithm naturally has a lot in common with the sequential
Gauss-Seidel method, since both are implemented using Projective Dynamics. How-
ever, there are some notable differences inside the inner loop. In steps 4-11 of the
Jacobi solver, displacement deltas are computed. Since qp is updated afterwards in
a separate parallel step, the calculation of deltas is independent of any other calcu-
lations, and thus can also be executed in parallel.

Parallel Red-Black Gauss-Seidel solver The parallel Red-Black Gauss-Seidel
solver was implemented on the GPU. The differences in respect to the previously
mentioned methods are presented below. Pseudo-code for the implementation is
presented in algorithm 7.
The Red-Black Gauss Seidel method divides the solving process into two steps, 1-8
and 9-16, in which the two colors are solved. The color partitioning ensures that no
particles of the same color share a constraint, thereby allowing the entire system to
be solved in only two parallel steps. Inside each parallel step, the solving is equiva-
lent to the standard Gauss-Seidel method described above.

Successive over-relaxation In order to increase the convergence speed of the
two Gauss-Seidel-based solvers, successive over-relaxation (SOR) is applied. The
theory behind this method can be found in section 3.2.2 Gauss-Seidel iterative
method.

q⇐ q + ω (accum/a− q) (5.2)

In the final step where the particle position q is updated, SOR is trivially imple-
mented. The relaxation factor ω is chosen by hand for each solver. In general,
it was set to a value which increased the convergence speed without introducing
instabilities.

31

5. Process

Algorithm 7: Projective Dynamics - parallel Red-Black Gauss-Seidel solver
1 for red particles p do in parallel
2 accum ⇐ yp (mass/h2)
3 forall connected particles cp do
4 d ⇐ tempp − tempcp

5 accum ⇐ accum + qcp + d̂Lk
6 end
7 a⇐ n k +mass/h2

8 qp ⇐ accum/a

9 end
10 for black particles p do in parallel
11 accum ⇐ yp (mass/h2)
12 forall connected particles cp do
13 d ⇐ tempp − tempcp

14 accum ⇐ accum + qcp + d̂Lk
15 end
16 a⇐ n k +mass/h2

17 qp ⇐ accum/a

18 end

5.3.5 Collision handling
The collision handling is essential to any physics engine. The collisions needs to be
detected and responded to correctly, while still maintaining high performance. In
our simulation, we have tens of thousands of particles that all should interact with
each other in real-time. Because of this, optimization is essential.

One of the most common and intuitive ways of optimizing the collision handling, is
to use spatial subdivision. It is extremely time consuming to collision check each
individual particle with all other particles. This gives a complexity of O(n2), which
definitely is not acceptable when n reaches tens of thousands of particles. If spatial
subdivision is used, each particle only needs to be checked with its closest neighbors.

A uniform grid was used, where the size of each cell is set to fit one particle diameter.
This means that each particle will only collision check with particles that potentially
can collide with it, heavily reducing computational time. More information about
this method can be found in section 3.4 Collision handling.

In the following sections we will explain how the collision detection and response
between particles and geometrical shapes are calculated. All of these collision sce-
narios are presented in section 6.2 Test cases.

Sphere-Sphere The sphere-sphere collision check is trivial. The distance be-
tween the center of the two spheres needs to be computed and compared with the
sum of the radii. If the distance is less than the sum, the spheres have collided.

32

5. Process

In order to generate a proper collision response, a displacement delta needs to be cal-
culated. It is calculated using the normalized direction vector between the spheres
centers, with the magnitude of the overlap. In our implementation the sphere-sphere
collision algorithm handles both colliding spheres at the same time. This means that
we need to displace both spheres simultaneously. Our implementation also considers
the general case, with spheres of different size. Therefore, the displacement must be
spread across both spheres depending on the size of the spheres. If the spheres are
the same size, we simply assign half the displacement to each particle.

r0

C0

C1

r1
C0

C1

l d

v1v0

n
C0

C1-n(d/2)

n(d/2)

(a) (b) (c)

Figure 5.8: Example of a sphere-sphere collision. C is the center point of a sphere,
and r is the radius. This is considering the case of equal sized particles.

In (a) the two spheres move toward each other. The distance between the spheres is
defined by l = |C0 − C1|. The overlap of the spheres happens in the next time-step
(b). The collision is detected when l is less than one rest length (L). The overlap
d = l − L is then computed. The response occurs in (c), where each particle gets
displaced by n(d/2).

Sphere-Plane The intersection test between a sphere and an infinite plane is
quite straight forward. When a collision is detected, the displacement direction is
perpendicular to the plane. This is visualized in the example below:

r

n

r

C

v

r

n

C

r

n

C

d
nd

(a) (b) (c)

Figure 5.9: Example of a sphere-plane collision. C is the center point of the sphere,
r is the radii and n is the normal of the plane.

33

5. Process

The plane is defined by the general equation:

ax+ by + cz + d = 0 (5.3)

The distance l between the sphere center C is determined with the following equa-
tion:

l = nxCx + nyCy + nzCz + d

|n|
(5.4)

If this distance is less than the sphere radii, there is an intersection. The displace-
ment is then simply defined as nd.

Sphere-Box To collide a sphere with a box correctly is a non-trivial task. We
define a box as an axis-aligned bounding box (AABB) between two points. After
an intersection is found, the sphere is displaced to the nearest point of the plane of
the box. This can be seen in the figure below:

r
C

v

boxmin

boxmax

C

boxmin

boxmax

bmin

bmax
bmax.y

bmin.y

bmax.x

bmin.x

bb

C

boxmin

boxmax

bmax.y

(a) (b) (c)

d

Figure 5.10: Example of a sphere-box collision. C is the sphere center point, and
r is the sphere radius. boxmin and boxmin are the two points that define the box.
bmin and bmax are vectors going from boxmin and boxmin to the sphere center. The
vector d is the computed displacement.

In this implementation, we redefine the origin to be placed at the minimum point of
the box. All particles whose position that are less than zero, and all particle posi-
tions which are greater than the maximum value of the bounding box are discarded.
If this is not the case, the sphere is inside the box, and there has been a collision.

For the collision response, the nearest point on the surface of the box needs to be
calculated. For this, we find the minimum value between bmin.x, bmin.y, bmax.x and
bmax.y. The lowest value indicates which side of the box the sphere should be dis-
placed to. In the scenario of Figure 5.10, bmax.y is found to be the minimum value.
For the displacement, the sphere keeps its x coordinate, but the y coordinate is set

34

5. Process

to be boxmax.y +r. This example is in 2D but the method works equivalently in 3D.

Sphere-Funnel To create the funnel showcase presented in section 6.2 Test cases,
collision detection and response for a funnel was implemented. The intersection test
is quite trivial, while the response proved to be a challenge.

The following parametric equations describe a funnel:

x = u · cos(v)

y = a · ln(u)

z = u · sin(v)

In our implementation, the collision between a particle and the funnel is simplified
by only using an intersection of the funnel at the current y-value. This intersection
gives a circle, whose radius depends on the relation rf = e

Cy
a .

rc

C

r
C

v

v

rf

Cy

rf
d

CCf n
C

nd

(a) (b) (c) (d)

Figure 5.11: Example of a sphere-funnel collision. In (a), the funnel is seen from
the side. In (b)-(d) the funnel segment circle and the particle, is visualized from
above.

This means that the radius of the funnel decreases logarithmically in relation to
y. The intersection test is trivial, as it is essentially an inverted circle intersection
test. If the particle is within the height of the funnel, and partly or fully outside the
cross section of the funnel, a collision has occurred. The difficult part is to calculate
the correct displacement of the particle. In our case we simply calculate the 2
dimensional displacement, and add a high friction, simply to be able to demonstrate
the funnel. If this were to be implemented properly, the displacement would have to
be calculated in three dimensions. For our purposes however, this implementation
is sufficient.

5.3.6 Friction
The friction is handled as a subsequent step after the collision response. Instead of
damping velocities or calculating external forces which are applied in the integration
step, we chose to manipulate the positions directly after the collision response. This

35

5. Process

is essentially the same thing, since we are using non-velocity Verlet integration. This
is essentially a simplified version of [Bridson et al., 2002].

From the collision handling two values are required, namely the displacement δ and
the distance between the two colliding objects. We want to calculate a delta which
states how much of the displacement we want to remove due to friction.

First we need to calculate the velocity vi for particle i. This is done by subtracting
the position returned by the integration, with the current position. This basically
gives the average velocity.

vi = q− qprev

We also need to calculate the positional delta in the tangential direction:

∆tan = v− n(vn)
2

This delta needs to depend on the friction coefficient µ and how much the objects
collide. If the collision displacement between two objects is large, the impact of the
friction needs to be large as well.

coef = µ · d
|∆tan|

Now, the delta needs to be updated with the coefficient we just calculated. No value
above 1 is accepted.

∆tan = ∆tan ·min(coef, 1)

Finally, the total displacement can be calculated, and then applied to the particle.

displacement = displacement−∆tan

5.3.7 Tearing
For realistic animation of deformable bodies such as ropes and cloth, behaviors like
tearing needs to be reproduced when the body interacts with other objects or is
affected by external forces, such as the input from a user [Rungjiratananon et al.,
2010].

This was implemented by adding a tearing parameter which stated how far apart
the particles can be before the constraint is removed. Once the distance threshold
is exceeded, the indexes in the constraint is set to a negative value and thus are
not considered any longer. Similarly, the triangles between the particles previously
sharing constraints are no longer generated.

36

5. Process

5.3.8 User interaction
A goal of the project was to be able to simulate soft objects in real-time. Real-time
applications allow the user to view or manipulate various objects directly. To show-
case the potential of the engine, some sort of user interaction was required, such as
picking objects and dragging them around.

The mouse picking was implemented using ray casting. Whenever the user clicks
the mouse, a ray is shot through the three dimensional environment, and each par-
ticle checks if it collides with the ray, in parallel. To detect collisions between a ray
and a sphere, the algorithm provided by [Haines and Akenine-Möller, 2002] was used.

A sphere can be represented by a point and a radius. A formula for the sphere can
then be expressed in the following way:

f(p) = |p− c| − r = 0

Similarly, a ray can be defined as having an origin and a direction:

r(t) = o + td

To solve the intersection between a ray and a sphere, replace p in the equation for
a sphere with the equation for a ray:

f(r(p)) = |o + td− c| = r

These equations do not consider which particle is closest to the camera. This pro-
duces the behavior that all the particles which intersects will be picked. This poses
a problem when several objects lie on top of each other, and the user wants to pick
the top one. Therefore, a check was implemented which enables the picking of only
the closest particle.

The detection is more or less trivial in implementing. However, the picked particles
need to move according to the mouse cursor. In order to do this, the screen space
coordinates need to be transformed into world space in a correct manner. This
requires projecting from the closest particle to the screen in order to find its depth
value. The mouse motion in X and Y is then projected back at this depth value
in order to keep the picked particle tied to the mouse pointer, independent of the
world-space position of the particle.

37

5. Process

Figure 5.12: Example of mouse picking with rays. The grid is the screen space and
the particles are in world space. The displacement in screen space is converted into
motion in world space.

5.4 Rendering
The main objective of this project was to create a physics engine, not a render en-
gine. However, for the purpose of developing and demonstrating the physics engine,
the simulated world has to be conveyed in a comprehensive manner.

In our case, the physics simulation is modeled with particles, therefore the simplest
way of visualizing the underlying dynamics is by rendering each particle position
as a shaded sphere. This is essentially the only entity that needs to be rendered.
However, this is not sufficient to provide a sense of depth and spacial perspective.

The rendering was implemented mainly by using OpenGL, with some calculations
done in CUDA, such as generating primitives and normals for the cloth rendering.
The lighting, material and shadows were implemented using GLSL, which is the
shader language that OpenGL uses. In this model a shader program usually contains
two shaders, a vertex shader which makes calculations upon the vertices and a
fragment shader which specifies the color of each pixel [John Kessenich, 2016].

5.4.1 Mesh generation
The rendering of a mesh is essential to conveying the underlying dynamics and
presenting a realistic looking result. In order to create the mesh, triangles and
vertex normals given the current particle positions need to be generated. These are
then sent to the rendering pipeline for vertex and fragment shading.

38

5. Process

p0

p5

p2

p7

p10

p8

p13

p15

p1

p3

p6

p4

p9

p11

p14

p12

v12

v8v4

v0

v13
v9v5

v1

v14v10v6

v2

v15v11v7

v3

Figure 5.13: The triangles (right) are generated by the underlying particle system
(left).

The triangles are updated based on the current positions of the particles. For a
2-dimensional cloth c, the maximum number of triangles is equal to 2(cx−1)(cy−1)
where cx and cy are the dimensions of the cloth. In order to determine if a triangle
should be generated, we examine the constraints of each particle in parallel. For
example, if a particle p0 has a constraint in the positive y axis, and the other particle
of that constraint, p1, itself has a constraint in the positive x axis with particle p2,
a triangle is generated. This triangle has its vertices equal to the positions of the
three constrained particles, and the vertex normals are computed as the average of
the surface normals of the surrounding triangles. By making the triangles depend
on the constraints between particles, we can trivially reflect updates in the structure
such as tearing.

To visualize the underlying structure of triangles on the smoothly shaded cloth, a
wireframe can be rendered on top of it by calling OpenGL’s glPolygonMode function
with the GL_LINE rasterization mode. In order to prevent z-fighting when render-
ing the wireframe, we use a shader which applies a minor positional displacement
in the direction of the camera.

5.4.2 Shading
Multiple light sources are essential when aiming to produce a realistic image. They
also give the viewer a better spatial comprehension [Sunden and Ropinski, 2015].
Since we do not have any global illumination and are only using point lights, all of
our scenes contain two light sources.

In many cases, the appearance of rendered images seeks to achieve photo-realism
[Haines and Akenine-Möller, 2002]. Generally, the speed of the rendering and the
realism of the result are in conflict with each other. To obtain physically correct
shading, techniques based on ray-tracing are employed. These methods correctly
model how light travels and bounces on surfaces, but are comparatively slow to
compute. In this thesis, the speed and simplicity of the rendering is more impor-
tant than photo-realism, and therefore a simplified model, presented in [Haines and

39

5. Process

Akenine-Möller, 2002], is used.

In this model, we calculate the outgoing radiance itot of the material, in the view
direction. The model contains ambient, diffuse and specular light, and sometimes
also emissive. Each component is calculated separately in the fragment shader, and
is finally accumulated to produce the color of an individual pixel.

Figure 5.14: From left to right: cloth with only ambient shading, diffuse shading,
specular shading, all three components added together

The ambient term accounts for the global illumination, and is simply a constant
color that depends on the material color and the light colors. The ⊗ symbol used
in the equations below signifies component-wise multiplication.

iamb = mcolor ⊗ scolor

The diffuse component depends on the material color, light colors and the light
positions. It is built upon Lambert’s Law, which describes that a totally matte
surface will distribute light according to the cosine between the surface normal and
the light vector. Another way of expressing this is with the following equation:

idiff = (n · l)mcolor ⊗ scolor

In order to account for highlights, the specular term needs to be calculated. There
are many different models which are used to do this. One of the most famous and
common ones is Phong’s model. Here mshi is the shininess parameter.

ispec = max(0, (r · v))mshimcolor ⊗ scolor

All of the components added together provide the correct outgoing radiance L0:

itot = iamb + idiff + ispec

5.4.3 Shadows
Without shadows in a scene, there is no sense of depth. It is very difficult for the
human eye to locate various objects in relation to each other when looking at a 2D
projection of the 3D world [Sunden and Ropinski, 2015]. We choose to implement
a very basic shadow mapping algorithm due to this reason.

40

5. Process

Figure 5.15: Rendering without and with shadows. A small cloth is hanging close
to the camera and a bigger cloth hanging further away.

Shadow mapping is one of the fastest ways to produce shadows in computer graph-
ics. However, it is quite difficult to implement good looking shadow mapping. The
method is not entirely correct in terms of physical accuracy either, but produces a
reasonably convincing result. For our purpose, it was the most sensible choice due
to performance considerations.

shadow
map

lightlight
camera

a
b

v

v

a

b

(a) (b)

Figure 5.16: In (a), the depth values are rendered to a texture called the shadow
map, from the light’s perspective. In (b), each fragment from the camera’s perspective
is compared to the corresponding value in the shadow map. If the depth value of the
shadow map is smaller, the fragment is occluded. For example, point vb is further
away from the light than the corresponding depth value at texel b. Image courtesy of
[Haines and Akenine-Möller, 2002]

When using shadow mapping the scene needs to be rendered in two passes. In the
first pass, the scene is rendered from the lights perspective, onto a 2D texture, called
the depth map. The texture only contains the z-depth values.

41

5. Process

When the scene is rendered a second time, from the cameras perspective, each frag-
ments z-value is compared to the shadow map. If the fragment is farther away from
the source of light than the corresponding value in the shadow map, it is considered
to be occluded [Haines and Akenine-Möller, 2002].

Figure 5.17: Example of surface acne due to self shadowing.

There are various problems connected to shadow mapping, such as surface acne and
light leaking. Because of this, we choose to only cast shadows on the floor and mod-
els of the scene, not the actual cloth. Self-shadowing cloth with shadow mapping
simply poses to many problems. The shading of the cloth was considered enough to
give the viewer a sense of depth.

The problem of surface acne can be seen in figure 5.17. This problem occurs due
to the surface shadowing itself. This problem can be removed by introducing a
bias, which shifts the floor to be considered above the shadow depth [Haines and
Akenine-Möller, 2002].

Figure 5.18: An example demonstrating the problem of light leakage.

However, when introducing a bias, another problem called light leakage might occur.

42

5. Process

This problem produces an illusion that the object is floating above the surface, when
it is not [Haines and Akenine-Möller, 2002]. Therefore, a bias needs to be chosen
carefully in order to not produce either of these two problems.

5.5 Animation of kinematic bodies
Physically-based simulations can be applied in many different areas. Since the en-
gine, in its current state, mainly can produce cloth simulations, a clear example of
such an area is garment simulation. To be able to convincingly showcase this sce-
nario, a number of different aspects need to be considered. In the following sections,
the loading of the animation models, the collisions with the models and how the
garments are attached, will be explained.

5.5.1 Model sequence
The model animations were implemented with a quick-and-dirty approach. The
purpose of the animations was only to showcase the potential of the physics engine,
not to implement an efficient animation system.

Figure 5.19: A model sequence, showing four still frames from the generated ani-
mation.

Instead of using more sophisticated techniques such as skinning, a number of 3D
models are simply loaded into memory, using the ASSIMP library2. Then the ren-
dered model is changed each frame to create an animation. This is generally not

2http://assimp.sourceforge.net

43

http://assimp.sourceforge.net

5. Process

an advised approach, due to the amount of memory used, and the static nature of
having predefined models, but for showcasing it was considered acceptable.

5.5.2 Collision handling
The main reason behind having an animated model is for it to interact in a con-
vincing manner with the soft objects of the physics engine. This can be achieved in
a number of ways.

Signed distance fields (SDFs) could be used to produce very exact collisions with
the models. This was not viable, because of the very large amounts of memory it
would require. Each frame would need a precomputed SDF, which would need to be
stored in memory. In our case, an animation sometimes contains over 600 frames.
Given that an SDF at a reasonably high resolution consumes several megabytes of
memory, several hundred SDFs would simply take up to much memory to make
SDFs a feasible solution. Another approach which could be used is to try to fit
mathematically defined bounding volumes to each frame. This however would be
too difficult to implement.

In our case, we chose to implement the collisions by distributing particles over the
surface of the model. This is done by creating a subdivided model, and placing
a particle at each vertex position, in an iterative fashion. If the current particle
collides with any other previously placed particle, it is not placed. These particle
distributions are then stored for each frame. In contrast to the SDF solution, the
total amount of memory needed to store collision primitives for a whole animation is
quite small. For example, for the sitting man showcase in section 6.2 Test cases, the
amount of memory needed for storing animation collision particles is approximately
48 MB. The same animation would take up almost 10 GB if SDFs were to be used
instead.

44

5. Process

Figure 5.20: To the left: The model as rendered to the user. To the right: The
underlying particle distribution, to account for collisions with the model.

This will fill the surface of the model with a reasonably even distribution of particles.
These particles are not rendered, in order to produce the illusion that the soft objects
actually interact with the model.

5.5.3 Attachment points
A method to attach soft bodies to models was implemented. This feature can be
seen in the rotating ropes and curtain showcases in section 6.2 Test cases.

Figure 5.21: To the left: The rendered image, as visible to the user. To the
right: The attachment points. The blue particle is part of the cloth, while the cyan
particles are part of the model. When attached, the attachment model particles and
the attached cloth particles share the same position.

This was implemented by giving the option to attach an arbitrary amount of particles
in the soft object, by specifying their index, to a preferred location on the model.
The closest model vertex to the preferred position is then found, and the index is
stored. The attached particles positions are updated to the position of the vertex
at each frame.

45

6
Results

This chapter presents the results of the physics engine, in terms of both performance
and visual appearance. First, the experiment setup is described. Then the results
of the two experiments are presented and discussed from a data-centric perspective.
To end the chapter, the visual results achieved by the physics engine are presented
and analyzed. These are showcases which aim to demonstrate what can be achieved
with the engine.

6.1 Performance
The main reason for conducting the two experiments was to produce enough data
to confidently draw conclusions about the research question. This section includes
a presentation of the setup of the experiments, along with the produced results.

Convergence As stated in the research question, this thesis sought to answer if
the Red-Black Gauss-Seidel method would be viable in real-time simulations. To
draw any conclusions about the efficiency of the solver, the convergence speed would
have to be compared to other commonly used methods. In order to compare con-
vergence speed, the error of each solver had to be computed. This computation is
described in section 4.3 Result evaluation.

The first experiment was set up using an enlarged cloth, with the rendering, numeri-
cal integration and collision handling disabled. The Gauss-Seidel and Jacobi solvers
were implemented based on the lexicographical definitions. The implementations
are described in chapter 5 Process.

Figure 6.1: The experiment setup for the enlarged cloth. On the left: the initial
configuration of the cloth, being 5 times enlarged. In the middle: the cloth after a
few iterations. To the right: the cloth at rest position.

The second experiment uses a cloth hanging from two points. The cloth is dropped

46

6. Results

from a vertical position, and the convergence is measured. In this experiment, the
numerical integration is enabled, but collision handling and rendering remain dis-
abled.

Figure 6.2: The experiment setup for the hanging cloth. On the left: the start
configuration of the cloth, being in a horizontal position. In the middle: the cloth
after a few iterations. To the right: the cloth at rest position.

The hanging cloth experiment can be seen in the supplemental video. In the video,
the real frame rate can be viewed as well as the corresponding graphs.

Experiment 1 - Enlarged cloth The setup used for the enlarged experiments
can be seen in figure 6.1. In this experiment, the numerical integration was disabled,
and the distance between each particle was set to be 5 times the rest length. With
this setup, only the solver is manipulating the positions of the cloth. A cloth with
10 000 particles and 19 800 constraints was used for all experiments. For each frame
8 physics steps were used.

The following graph shows the convergence speed per iteration of the different
solvers. The x-axis limit is set to 17 000 iterations so that RBGS and GS is still
visible.

0 4000 8000 12000 16000 20000
Iterations

0

50

100

150

200

250

300

R
es

id
ua

l E
rr

or

RBGS JACOBI GS

Figure 6.3: Residual error vs. iterations for the enlarged cloth, using 10 000
particles and 19 800 constraints. The convergence speed of our method (red) is
compared with Gauss-Seidel (green) and Jacobi (blue). Note that Gauss-Seidel is a
dashed line due to overlapping curves.

In figure 6.5 the convergence speed of GS and RBGS is identical. This is to be
expected, since it is essentially the same solver, only that RBGS is implemented in

47

6. Results

parallel. The Jacobi solver shows a slow convergence rate per iteration in compari-
son to the Gauss-Seidel methods.

In the following graphs two experiments are presented. These two experiments use
a different time budget. Next to each curve, the number of iterations used to fulfill
the time budget is presented for each solver.

0 2 4 6 8 10
Time [s]

0

50

100

150

200

250

300

R
es

id
ua

l E
rr

or

Time budget: 1 ms

19
5

0 1 2 3 4 5
Time [s]

0

50

100

150

200

250

300

R
es

id
ua

l E
rr

or

Time budget: 8 ms

709
45

RBGS JACOBI GS

Figure 6.4: Residual error vs. time for the enlarged cloth, using 10 000 particles
and 19 800 constraints. The convergence speed of our method (red) is compared with
Gauss-Seidel (green) and Jacobi (blue). On the left hand side, a time budget of 1
ms for the solver is used. On the right hand side a time budget of 8 ms is used. The
corresponding number of iterations can be seen next to the curves.

In figure 6.6, it is clear that the Jacobi solver has better convergence than the GS
solver for small time budgets, but that GS performs slightly better at larger time
budgets. However, it is also visible that RBGS outperforms both other solvers mas-
sively with respect to time.

The following two graphs contain an extra curve which is the RBGS method with
SOR, using ω = 1.7. The graph on the left shows the convergence over iterations,
while the right shows the convergence over time, with a time budget of 2 ms.

48

6. Results

0 4000 8000 12000 16000 20000
0

50

100

150

200

250

300
R

es
id

ua
l E

rr
or

Iterations
0 1 2 3 4 5

Time [s]

0

50

100

150

200

250

300

R
es

id
ua

l E
rr

or

Time budget: 2 ms

2
19

1111

RBGS WITH SOR RBGS JACOBI GS

Figure 6.5: Comparison of our method with and without successive over-relaxation
for the enlarged cloth. Left hand side: Residual error vs iterations. Right hand side:
Residual error vs time. Using a time budget of 8 ms for the solver. The number of
iterations for each solver can be seen next to the corresponding curve.

From figure 6.7 we can draw the conclusion that SOR heavily increases the conver-
gence rate of the RBGS solver. Note that the experiment for this scenario was a
simplified one, which only considers the solver, without any external input.

Experiment 2 - Hanging cloth The setup used for the hanging cloth experi-
ments can be seen in figure 6.2. The cloth is attached in two corner particles and
dropped from a horizontal position. This experiment tests the elasticity and con-
vergence speed of the solver, under the stress of external forces. A cloth with 10
000 particles and 19 800 constraints was used for all experiments. For each frame 8
physics steps were used.

The first experiment presented shows the convergence over iteration. The first 60
000 iterations are visible.

0 10000 20000 30000 40000 50000 60000
Iterations

10-3

10-2

10-1

1

Lo
g

R
es

id
ua

l E
rr

or

RBGS JACOBI GS

Figure 6.6: Residual error vs. iterations for the hanging cloth, using 10 000 parti-
cles and 19 800 constraints. The convergence speed of our method (red) is compared
with Gauss-Seidel (green) and Jacobi (blue). Note that Gauss-Seidel is a dashed line
due to overlapping curves.

In figure 6.8 we can see that the convergence rate of both GS and RBGS is identical.

49

6. Results

As with the previous experiment, with an enlarged cloth, this is to be expected. The
convergence rate of the Jacobi solver is worse than the Gauss-Seidel solvers, even
after 60 000 iterations.

In the following two graphs, the error over time is presented with different time
budgets. For the left graph, a time budget of 2 ms was used, and 8 ms for the right.

0 2 4 6 8 10 12 14
Time [s]

10-3

10-2

10-1

1

Lo
g

R
es

id
ua

l E
rr

or

Time budget: 2 ms

11

19

2

0 5 10 15 20 25 30 35 40 45
Time [s]

10-4

10-3

10-2

10-1

Lo
g

R
es

id
ua

l E
rr

or

Time budget: 8 ms

45

9

70

RBGS JACOBI GS

Figure 6.7: Residual error vs. time for the hanging cloth, using 10 000 particles
and 19 800 constraints. The convergence speed of our method (red) is compared with
Gauss-Seidel (green) and Jacobi (blue). On the left hand side, a time budget of 2
ms for the solver is used. On the right hand side a time budget of 8 ms is used. The
corresponding number of iterations can be seen next to the curves.

The results in figure 6.9 indicate that the larger time budget, the better GS performs
in relation to Jacobi. At small time budgets the GS solver is unstable. This is due to
the GS solver requiring very few iterations in order not to exceed the time budget.
The instability can be seen in figure 6.10, where the green cloth exhibits strange
behavior. At a time budget of 1 ms the problem gets even more visible, which can
be seen in appendix A, figure A:10, where all the graphs are included. The RBGS
solver is outperforming both Jacobi and GS, regardless of time budget.

50

6. Results

Figure 6.8: Still frames corresponding to the left graph in figure 6.9, where a time
budget of 2 ms is used. From top to bottom: Red-Black Gauss-Seidel, Gauss-Seidel,
Jacobi. This sequence can also be seen in the accompanying video1.

In the following figure, the results of the hanging cloth experiment, including RBGS
with SOR are presented. The successive over-relaxation is using an ω of 1.7. Note
that the error over iterations is presented on the left and the error over time, using
a time budget of 2 ms, is presented on the right.

0 10000 20000 30000 40000 50000 60000
Iterations

10-4

10-3

10-2

10-1

1

Lo
g

R
es

id
ua

l E
rr

or

0 2 4 6 8 10 12 14
Time [s]

10-4

10-3

10-2

10-1

1

Lo
g

R
es

id
ua

l E
rr

or

Time budget: 2 ms

11

11

19

2

RBGS WITH SOR RBGS JACOBI GS

Figure 6.9: Comparison of our method with and without successive over-relaxation
for the hanging cloth. Left hand side: Residual error vs iterations. Right hand side:
Residual error vs time. Using a time budget of 8 ms for the solver. The number of
iterations for each solver can be seen next to the corresponding curve.

1https://youtu.be/RPDkt6THJ4k

51

https://youtu.be/RPDkt6THJ4k

6. Results

Figure 6.10: Comparison of our method with and without successive over-relaxation
for the hanging cloth after it has stabilized. This corresponds to the graphs in figure
6.11. RBGS to the left, and RBGS with SOR using ω = 1.7, to the right.

It is clear that RBGS with SOR outperforms all the other solvers, from the data
presented in figure 6.10. This performance gain can be seen both when error over
iterations and error over time is considered. The resulting cloth, after more than 50
000 iterations can be seen in figure 6.12.

6.2 Test cases
All the showcases can be viewed in the accompanying video1. The purpose of the
showcases is to demonstrate the potential of the physics engine. In most of these
scenarios, a time-step of 2 ms was used, compensated by 8 physical steps per frame.
All the showcases are in real-time, run at approximately 60 frames per second, unless
explicitly noted otherwise. In some cases, the scenario used is inspired by videos
accompanying other papers. In these cases, the other videos are referenced in a
footnote. Our showcase is then compared visually using the reference video.

Collisions with geometrical shapes There are several scenes showcasing col-
lisions between cloth and a geometrical shape. All the shapes are defined mathe-
matically, and the collision handling is explained in section 5.3.5 Collision handling.
The purpose of these showcases is to demonstrate that the cloth can interact with
its environment.

The scene where the cloths collide with a box demonstrates that the cloths can
collide with objects with sharp corners. However, for rendering purposes the box
had a scaling bias, otherwise z-fighting between the edges and the cloth would occur.

1https://youtu.be/RPDkt6THJ4k

52

https://youtu.be/RPDkt6THJ4k

6. Results

Figure 6.11: Five cloths of different colors are falling towards the ground. The
cloths collide with a box, and slide off to the ground.

There are some problems with friction between the clothes, which makes the top
clothes slide off easily. However, the showcase successfully demonstrates that no
inter-cloth penetration or tunneling occurs.

53

6. Results

Snapshots from the scene with the four hanging cloths which collide with the moving
sphere can be seen in the figure below. It was inspired by the video2 accompanying
[Tang et al., 2016].

Figure 6.12: Four cloths hanging from two points each, colliding with a sphere
moving at high velocity.

The main differences between the results of [Tang et al., 2016] and our results, is
that our cloth is more elastic and produces more wrinkles. However, in our case,
the results are computed in real-time, while they are not in [Tang et al., 2016].

2https://youtu.be/ZVyCfrAu7hY?t=1m52s

54

https://youtu.be/ZVyCfrAu7hY?t=1m52s

6. Results

In the following example, four vertical cloths are thrown against a vertical plane.
This showcase demonstrates the collision with a plane, self collision and that a
starting velocity can be given to the soft bodies. This is achieved by setting different
values for the previous position and the starting position, implicitly creating velocity.
The inspiration for this showcase can be seen in the Advanced Molecular & Particle
Physics Simulations video3, which uses the Molecular addon for Blender.

Figure 6.13: Four cloths of different colors are thrown against a vertical plane.

The main difference here is that our cloth has been given a much lower velocity
than the reference3. A higher velocity became infeasible with a time-step of 2 mil-
liseconds, due to inter-cloth penetration. However, our showcase is computed in
real-time, while the reference is not.

3https://youtu.be/x8Fo2slT2WA?t=1m6s

55

https://youtu.be/x8Fo2slT2WA?t=1m6s

6. Results

The following showcase demonstrates three cloths colliding with a mathematically
defined funnel. The inspiration for this showcase comes from the video4 accompa-
nying [Tang et al., 2016].

Figure 6.14: Three cloths colliding with a funnel. After exiting the end of the
funnel, they collide with a box.

In our showcase, some visual artifacts can be seen when the cloths are exiting the
end of the funnel. This is due to some compression of the particles, creating a large
collision displacement. In the video4 of [Tang et al., 2016], this problem is not vis-
ible. Also, in their example, the wrinkles and the friction between the cloths are
more convincing.

User interactions In the following examples, user interaction is demonstrated.
Since the purpose of the thesis was to create an interactive physics simulation, show-
casing user interaction is of great importance.

In the following scene, mouse picking, dragging and tearing is demonstrated. The
entire top row of particles were fixated, otherwise the tearing would be difficult to
produce, since the tearing will happen at the weakest point. The inspiration behind
this showcase was the tearing example presented in the video5 accompanying [Müller,
2008].

4https://youtu.be/ZVyCfrAu7hY?t=46s
5https://youtu.be/FeKkn-Na_Gs?t=1m22s

56

https://youtu.be/ZVyCfrAu7hY?t=46s
https://youtu.be/FeKkn-Na_Gs?t=1m22s

6. Results

Figure 6.15: A cloth being torn apart by user interaction. The user picks a point
on the cloth and drags it until the cloth tear.

A difference between the results presented in [Müller, 2008] and ours, is that their
cloth does not tear symmetrically, due to their seemingly random structure. In our
case, the rest lengths are defined uniformly. This produces a more symmetrical be-
havior.

57

6. Results

The user can also shoot cannonballs at the cloth, which can be seen in the following
showcase. This scenario was inspired by the video6 accompanying [Müller et al.,
2007].

Figure 6.16: A cannonball being shot at a hanging cloth. The impact produces
holes in the cloth.

In the video of [Müller et al., 2007], the top row is also completely fixated. This is
probably due to the same reasons as we fixate our top row. If the cloth was fixated
in only a few points, it would break at those points, not being able to show the hole
of the cannonball.

Models and animations An important feature to demonstrate is cloth inter-
acting with both static and animated models. For example, this could be used for
character clothing in games.

In the rope scene, three ropes are attached to two boxes which are rotating. The
6https://youtu.be/j5igW5-h4ZM?t=2m9s

58

https://youtu.be/j5igW5-h4ZM?t=2m9s

6. Results

ropes consist of 400 particles each. This example also demonstrates the particle-
particle collisions and a collision with a wedge. The scene sought to reproduce the
rope animation from the video Advanced Molecular & Particle Physics Simulations7.

Figure 6.17: Three ropes attached to one static cuboid and one rotating cuboid.
After the cloths are entwined, a wedge falls down and cuts them in half.

In the Advanced Molecular & Particle Physics Simulation video7, the animation is
not in real-time, while it is run in 60 frames per second in our case. However, in
their case, the ropes consist of more particles, and the rotation is faster. This could
not be achieved due to the insufficiently precise real-time collision handling.

7https://youtu.be/x8Fo2slT2WA?t=17s

59

https://youtu.be/x8Fo2slT2WA?t=17s

6. Results

The following showcase demonstrates a cloth colliding with a rotating chair. The
collisions are handled as described in section 5.5.2 Collision handling. This showcase
was inspired by the video8 accompanying [Fratarcangeli et al., 2016].

Figure 6.18: A cloth colliding with a rotating chair, where the kinematic body
consists of particles distributed on the surface of the chair.

There are several disadvantages to be seen with our approach in the comparison.
In [Fratarcangeli et al., 2016], the chair is defined by a signed distance field. This
makes the collision much more accurate. The friction is also superior, along with
better wrinkles. In both cases, the simulation is interactive.

8https://youtu.be/xIfuplNTjHc?t=15s

60

https://youtu.be/xIfuplNTjHc?t=15s

6. Results

A showcase demonstrating the interaction between cloth and a human model was
also created. This can be seen in the figure below. In this example, a poncho is
falling over a human character, who moves his arms and sits down on a stool.

Figure 6.19: A poncho, consisting of 66x66 particles with a hole in the middle,
falling on top of an animated character.

The showcase is played at twice the speed, using a time-step of 1 ms. This is due to
the collisions not being detected perfectly at larger time-steps. Thus, a better colli-
sion handling needs to be implemented in order for this to be viable in e.g. games.

61

6. Results

In the showcase with the hanging curtain, attachment points are demonstrated. The
attachment points of the model are also animated, making the curtain move in the
desired way.

Figure 6.20: A sliding curtain, made by a cloth attached to several moving points.

The attachment of the cloth produces some unwanted behavior. This is due to the
simplified structure of not having diagonal constraints. The curvature of the cloth
in the top, translates to the bottom in an unrealistic way. The curtain should ideally
be straight in the bottom.

62

7
Discussion

This chapter contains a discussion of the results and execution of the thesis. This
includes the actual outcome in relation to the expected result, and an analysis of
the causes that produced these results. A discussion about how the thesis relates to
the previous work is also included.

The results in terms of performance relate well to the theory. A parallel Gauss-
Seidel solver should exhibit the same convergence rate per iteration as the standard
Gauss-Seidel method, while significantly increasing efficiency, leading to faster solv-
ing. The time consumed by one Red-Black Gauss-Seidel solver iteration should
be closer to the Jacobi method, since they are both parallel. By combining the
advantages of the serial Gauss-Seidel method and the parallel Jacobi method, the
Red-Black Gauss-Seidel method should in theory outperform both of these solvers.
This theoretical behavior exactly matches the results provided by the experiments.

Due to the quadrangular structure and the absence of constraints other than dis-
tance constraints, we suspected that simulating volumetric bodies would be difficult.
Furthermore, we also suspected that the cloth would exhibit more elastic behavior
than if there were additional diagonal constraints. Both of our suspicions turned
out to be true. Another result of the simplified structure that we did not antici-
pate was the noticeable wrinkles. This is mainly due to there only being distance
constraints and no bending constraints. When comparing the visual results to the
results of others, some of these drawbacks can be seen. Still, our method is usually
faster than the examples with which we compare, making it possible to run the
simulations in real-time. The results are presented in section 6.2 Test cases and in
the accompanying video1.

Our method is a special case of the Vivace solver by [Fratarcangeli et al., 2016],
using a predefined coloring scheme. This is possible due to the simplified structure
of particles and constraints, allowing for the use of just two colors. The use of a sim-
plified structure means that our physics engine is currently not as widely applicable
as other methods presented in chapter 2 Previous work. Even though our method
has a lot of limitations, the idea could be further refined and combined with other
methods, thus contributing to the overall knowledge within the field.

In order to counter the internal validity threat of inconsistent performance measur-
1https://youtu.be/RPDkt6THJ4k

63

https://youtu.be/RPDkt6THJ4k

7. Discussion

ing, all experiments were carried out on the same computer. Since the full state of
the simulation is known at each point in time, the measuring is quite straightfor-
ward. Due to this, no major problems were encountered.

It is difficult to compare our results with the previous work made in soft body simu-
lation, since there is no clearly defined standard for how error measurement should
be defined. Two metrics of interest are the number of particles and constraints. For
the same amount of particles, different methods might have a different amount of
constraints. This leads to differences in the total error, even though the resulting
particle positions might be identical.

To account for the conclusional validity threat of contingent bias when conducting
the visual analysis, the reference videos were included as footnotes. This gives the
readers an opportunity to draw conclusions by themselves, in addition to reading
our conclusions.

64

8
Conclusion

Creating a physics engine for soft body simulation is a complex task. Not only are
there many interconnected components which all need to work together, they also
need to be computed within a small time budget. This chapter explains what con-
clusions can be drawn from the results, and in which ways the physics engine can
be useful for future purposes.

The research question that this thesis aimed to answer was if a Red-Black Gauss-
Seidel solver would be more suitable for real-time simulation than other traditional
solvers. This was tested through the Projective Dynamics framework, comparing
three different solvers; sequential Gauss-Seidel, parallel Jacobi and parallel Red-
Black Gauss Seidel. The results from the comparison can be examined in sec-
tion 6.1 Performance.

Given the results achieved, and the analysis of those results, we can be certain that
the Red-Black Gauss-Seidel solver performs better than both the Gauss-Seidel solver
and the Jacobi solver. The Red-Black Gauss-Seidel solver has the same convergence
per iteration as the Gauss-Seidel solver, which is to be expected. But it is much
faster, since it is able to solve the system in parallel. Similarly, while both Jacobi
and Red-Black Gauss-Seidel solves in parallel, the Red-Black Gauss-Seidel solver has
a higher convergence rate per iteration, which results in a better performance overall.

Furthermore, the visual difference between the different solvers suggests that Red-
Black Gauss-Seidel is superior. The Jacobi solver, due to its slow convergence,
produces a more elastic behavior of the cloth. The sequential Gauss-Seidel solver
produces a lower frame rate, since each iteration is very time consuming. This im-
plies that the Red-Black Gauss-Seidel solver is more suitable for real-time soft body
simulation than the other two solvers, producing more convincing cloth behavior
while keeping a high frame rate. There were no other visual artifacts that differed
between the solvers. Thus, we can confidently determine that this conclusion is valid.

However, these results were obtained using a simplified structure of particles and
constraints, thus the conclusion can only be drawn under these particular conditions.
For a more complex structure, the Red-Black Gauss-Seidel method is not applica-
ble in the way presented in this thesis. The visual implications of this simplified
structure can be seen in section 6.2 Test cases, where our results are compared to
other physics engines. Here, it is visible that our method produces more elasticity
and less convincing wrinkles. However, our method is significantly faster than most

65

8. Conclusion

other methods. This means that our method could be used for applications where
a highly approximate solution is sufficient. This could include fields such as games
and offline animation prototyping tools. For applications where physical accuracy
is important, improvements might have to be implemented.

Despite the shortcomings of our method, it shows the potential of using a simplified
structure. The results could be used as a starting point for further research, where
this method is combined with other methods in order to increase the applicability
of the Red-Black Gauss-Seidel solver. This could be achieved by solving distance
constraints with Red-Black Gauss-Seidel, and other constraints with other methods.
The method could also be further generalized by introducing several sets of distance
constraints, each with a red-black graph coloring.

66

9
Future work

There are several improvements and extensions that could be implemented to im-
prove the physics engine. Some of these were not implemented due to time limita-
tions, and some were not within the scope of the project. These possible improve-
ments will be presented in this chapter.

One of the most notable limitations with the current state of the engine is the sim-
plified structure of constraints. There are two main problems with this structure.
Firstly, the deformation of the cloth is not entirely satisfactory. Due to the lack of
support from the constraints, it exhibits a more elastic behavior than if diagonal
distance constraints or bending constraints would be included. Additionally, cloths
are quite wrinkly.

Secondly, the amount of soft object types that the current state of the engine can
simulate is very limited. It can only simulate very simple objects such as cloth
and ropes. Trying to simulate volumetric bodies produces poor results. The bodies
preserve the volume quite well, due to collisions and constraints interacting with
each other. However, the shape is not well preserved, due to the lack of support
internally in the body. This is an effect from the grid graph structure used.

Many of these issues could be dealt with by introducing bending constraints. How-
ever, this type of constraint considers 4 particles, which means that more colors
would have to be added. It would produce more convincing wrinkles on the cloth,
as well as shape conservation for volumetric bodies.

Another way of making the cloths less wrinkly would be to apply a low-pass filter
on the velocities. Compared to introducing a completely new constraint type, this
is a much smaller task. However, its inclusion could still be of great significance for
the smoothness of soft objects in the engine.

Although the engine requires quadrangular structures of particles and constraints,
this does not limit the range of meshes which can be simulated. Any triangular
mesh can be transformed into a quadrangular mesh, using the approach described
by [Jakob et al., 2015]. This work was generalized in the recent work by [Gao et al.,
2017], where a tetrahedral mesh is changed into a hexahedral-dominant mesh. The
output mesh can then be partitioned into red and black particles. In theory, this
makes it possible to use any mesh with our engine. This has yet to be tried.

67

9. Future work

The engine could also be further optimized in terms of memory allocation, to al-
low for more efficient GPU kernel calls. For example, instead of storing particle
positions in one array, the positions of the red and black particles could be divided
into separate arrays, further streamlining the solving process on the GPU. Several
such optimizations could be implemented in order to improve the performance of
the engine.

A major problem is that the collision handling only works well for small time steps.
With a large time step, which is desired for games, for example, a more sophisticated
collision handling would need to be implemented. One way this can be achieved is
by projecting the particles in their movement direction, to see if they will collide in
the next time step. This could be thought of as capsules extending into the next
position of the particle. In this way, the collision detection would be able to handle
larger time steps.

There are several improvements that could be done to the rendering. The computed
fragment colors are currently applied to both sides, which means that the side facing
away from the light source still looks lit up. Another desirable feature would be to
have soft shadows. This could be achieved by using for example variance shadow
mapping or Poisson sampling with percentage closed filtering.

These are some of the most impactful improvements, that would enhance the physics
engine significantly. All of these improvements could be seen as extensions to the
current state of the engine. No substantial alterations would have to be made to
the underlying architecture in order to realize these extensions.

68

Bibliography

Baraff, D. and Witkin, A. 1998. Large steps in cloth simulation. ACM, 43–54.

Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Don-
garra, J., Eijkhout, V., Pozo, R., Romine, C., and der Vorst, H. V.
1994. Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods, 2nd Edition. SIAM, Philadelphia, PA.

Bender, J., Müller, M., and Macklin, M. 2015. Tutorial: Position-Based
Simulation Methods in Computer Graphics.

Bender, J., Müller, M., and Macklin, M. 2017. A survey on position based
dynamics, 2017. In EUROGRAPHICS 2017 Tutorials. Eurographics Association.

Bouaziz, S., Martin, S., Liu, T., Kavan, L., and Pauly, M. 2014. Projective
Dynamics : Fusing Constraint Projections for Fast Simulation. ACM Transactions
on Graphics 33, 4, 154.

Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of col-
lisions, contact and friction for cloth animation. Vol. 21. ACM, NEW YORK,
594–603.

Chapman, B., Jost, G., and Pas, R. 2008. Using OpenMP: portable shared
memory parallel programming. MIT Press, Cambridge, Mass.

Demidov, D., Ahnert, K., Rupp, K., and Gottschling, P. 2013. Program-
ming cuda and opencl: A case study using modern c++ libraries. SIAM Journal
on Scientific Computing 35, 5, C.453–C472.

Deng, Y. 2013. Applied parallel computing. World Scientific, Hackensack,
NJ;Singapore;.

Eberly, D. H. and Shoemake, K. 2004. Game physics. Elsevier Science, Ams-
terdam.

Faure, F. 1999. Interactive Solid Animation Using Linearized Displacement Con-
straints. Springer Vienna, Vienna, 61–72.

Fratarcangeli, M. and Pellacini, F. 2015. Scalable partitioning for parallel
position based dynamics. Computer Graphics Forum 34, 2, 405–413.

Fratarcangeli, M., Tibaldo, V., and Pellacini, F. 2016. Vivace: A practical
gauss-seidel method for stable soft body dynamics. ACM Trans. Graph. 35, 6
(Nov.), 214:1–214:9.

69

Bibliography

Gao, X., Jakob, W., Tarini, M., and Panozzo, D. 2017. Robust hex-dominant
mesh generation using field-guided polyhedral agglomeration. ACM Transactions
on Graphics (Proceedings of SIGGRAPH) 36, 4 (July).

Godsil, C. D. and Royle, G. 2001. Algebraic graph theory. Vol. 207. Springer,
New York.

Green, S. 2010. Particle simulation using cuda. NVIDIA whitepaper 6, 121–128.

Haines, E. and Akenine-Möller, T. 2002. Real-time rendering.

Jakob, W., Tarini, M., Panozzo, D., and Sorkine-Hornung, O. 2015. In-
stant field-aligned meshes. ACM Transactions on Graphics (Proceedings of SIG-
GRAPH Asia) 34, 6 (Nov.), 189:1–189:15.

Jakobsen, T. 2001. Advanced character physics. In Game Developers Conference.
Vol. 3. Citeseer.

John Kessenich, Dave Baldwin, R. R. 2016. The opengl shading language.

Kim, D. 2016. Fluid Engine Development. A K Peters/CRC Press.

Kim, H., Vuduc, R., Baghsorkhi, S., and Choi, J. 2012. Performance Analysis
and Tuning for General Purpose Graphics Processing Units (GPGPU). Morgan
Claypool.

Le Grand, S. 2007. Broad-phase collision detection with cuda. GPU gems 3,
697–721.

Liu, T., Bargteil, A. W., O’Brien, J. F., and Kavan, L. 2013. Fast simula-
tion of mass-spring systems. ACM Transactions on Graphics 32, 6.

Liu, T., Bouaziz, S., and Kavan, L. 2017. Quasi-newton methods for real-time
simulation of hyperelastic materials. ACM Trans. Graph. 36, 3 (May), 23:1–23:16.

Macklin, M. and Müller, M. 2013. Position based fluids. ACM Trans.
Graph. 32, 4 (July), 104:1–104:12.

Müller, M. 2008. Hierarchical position based dynamics. Proceedings of Virtual
Reality Interactions and Physical Simulations, 13–22.

Müller, M., Heidelberger, B., Hennix, M., and Ratcliff, J. 2007. Position
based dynamics. J. Vis. Comun. Image Represent. 18, 2 (Apr.), 109–118.

Nvidia. 2017. Cuda c programming guide.

O’Brien, C., Dingliana, J., and Collins, S. 2011. Spacetime vertex constraints
for dynamically-based adaptation of motion-captured animation. In Proceedings
of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
SCA ’11. ACM, New York, NY, USA, 277–286.

Provot, X. 1995. Deformation Constraints in a Mass Spring Model to Describe
Rigid Cloth Behavior. Integr. Vlsi J., 147–154.

70

Bibliography

Rungjiratananon, W., Kanamori, Y., and Nishita, T. 2010. Chain shape
matching for simulating complex hairstyles. Computer Graphics Forum 29, 8,
2438–2446.

Saad, Y. 2001. Parallel iterative methods for sparse linear systems. Vol. 8. Chap-
ter C, 423–440.

Sanders, J. and Kandrot, E. 2010. CUDA by Example: An Introduction to
General-Purpose GPU Programming, 1st ed. Addison-Wesley Professional.

Stam, J. 2009. Nucleus: Towards a unified dynamics solver for computer graph-
ics. In 2009 11th IEEE International Conference on Computer-Aided Design and
Computer Graphics. 1–11.

Strzodka, R. 2012. Data layout optimization for multi-valued containers in opencl.
Journal of Parallel and Distributed Computing 72, 9, 1073–1082.

Sunden, E. and Ropinski, T. 2015. Efficient volume illumination with multiple
light sources through selective light updates. IEEE Pacific Visualization Sympo-
sium 2015-July, 231–238.

Tang, M., Wang, H., Tang, L., Tong, R., and Manocha, D. 2016. Cama:
Contact-aware matrix assembly with unified collision handling for gpu-based cloth
simulation. Computer Graphics Forum 35, 2, 511–521.

Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically
deformable models. ACM SIGGRAPH Comput. Graph. 21, 4, 205–214.

Wang, H. 2015. A Chebyshev semi-iterative approach for accelerating projective
and position-based dynamics. ACM Trans. Graph. 34, 6 (Oct.), 246:1–246:9.

Wang, H. and Yang, Y. 2016. Descent methods for elastic body simulation on
the gpu. ACM Trans. Graph. 35, 6 (Nov.), 212:1–212:10.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and
Wesslén, A. 2000. Experimentation in Software Engineering: An Introduction,
1 ed. Vol. 6. Springer US, Boston, MA.

71

A
Appendix 1

0 5000 10 000 15 000
0

50

100

150

200

250

300

Iterations

R
es

id
ua

lE
rr

or RBGS
GS
JACOBI

Figure A.1: Residual error vs. iterations for the enlarged cloth, using 10 000
particles and 19 800 constraints. The convergence speed of our method (red) is
compared with Gauss-Seidel (green) and Jacobi (blue).

0 5000 10 000 15 000
0

50

100

150

200

250

300

Iterations

R
es

id
ua

lE
rr

or RBGS WITH SOR
RBGS
GS
JACOBI

Figure A.2: Residual error vs. iterations for the enlarged cloth, using 10 000
particles and 19 800 constraints. The convergence speed of our method (red) is
compared with Gauss-Seidel (green) and Jacobi (blue). In this graph, RBGS with
SOR using an ω value of 1.7 is included.

I

A. Appendix 1

0 2 4 6 8 10
0

50

100

150

200

250

300

Time [s]

R
es

id
ua

lE
rr

or RBGS
GS
JACOBI

Figure A.3: Residual error vs. time for the enlarged cloth, using 10 000 particles
and 19 800 constraints and a time budget of 1 ms. The convergence speed of our
method (5 iterations) is compared with Gauss-Seidel (1 iteration) and Jacobi (9
iterations).

0 1 2 3 4 5 6 7
0

50

100

150

200

250

300

Time [s]

R
es

id
ua

lE
rr

or RBGS
GS
JACOBI

Figure A.4: Residual error vs. time for the enlarged cloth, using 10 000 particles
and 19 800 constraints and a time budget of 2 ms. The convergence speed of our
method (11 iterations) is compared with Gauss-Seidel (2 iterations) and Jacobi (19
iterations).

II

A. Appendix 1

0 1 2 3 4 5
0

50

100

150

200

250

300

Time [s]

R
es

id
ua

lE
rr

or RBGS
GS
JACOBI

Figure A.5: Residual error vs. time for the enlarged cloth, using 10 000 particles
and 19 800 constraints and a time budget of 4 ms. The convergence speed of our
method (22 iterations) is compared with Gauss-Seidel (4 iterations) and Jacobi (32
iterations).

0 1 2 3 4 5
0

50

100

150

200

250

300

Time [s]

R
es

id
ua

lE
rr

or RBGS
GS
JACOBI

Figure A.6: Residual error vs. time for the enlarged cloth, using 10 000 particles
and 19 800 constraints and a time budget of 8 ms. The convergence speed of our
method (45 iterations) is compared with Gauss-Seidel (9 iterations) and Jacobi (70
iterations).

III

A. Appendix 1

0 1 2 3 4 5
0

50

100

150

200

250

300

Time [s]

R
es

id
ua

lE
rr

or RBGS WITH SOR
RBGS
GS
JACOBI

Figure A.7: Residual error vs. time for the enlarged cloth, using 10 000 particles
and 19 800 constraints and a time budget of 2 ms. The convergence speed of our
method (11 iterations) is compared with Gauss-Seidel (2 iterations) and Jacobi (19
iterations). In this graph, RBGS with SOR (11 iterations) using an ω value of 1.7
is included.

0 10 000 20 000 30 000 40 000 50 000 60 000
10-4

0.001

0.010

0.100

1

Iterations

Lo
g

R
es

id
ua

lE
rr

or

RBGS
GS
JACOBI

Figure A.8: Residual error vs. iterations for the hanging cloth, using 10 000
particles and 19 800 constraints. The convergence speed of our method (red) is
compared with Gauss-Seidel (green) and Jacobi (blue).

IV

A. Appendix 1

0 10 000 20 000 30 000 40 000 50 000 60 000
10-4

0.001

0.010

0.100

1

Iterations

Lo
g

R
es

id
ua

lE
rr

or RBGS WITH SOR
RBGS
GS
JACOBI

Figure A.9: Residual error vs. iterations for the hanging cloth, using 10 000
particles and 19 800 constraints. The convergence speed of our method (red) is
compared with Gauss-Seidel (green) and Jacobi (blue). In this graph, RBGS with
SOR using an ω value of 1.7 is included.

0 2 4 6 8 10
0.001

0.010

0.100

1

10

Time [s]

Lo
g

R
es

id
ua

lE
rr

or

RBGS
GS
JACOBI

Figure A.10: Residual error vs. time for the hanging cloth, using 10 000 particles
and 19 800 constraints and a time budget of 1 ms. The convergence speed of our
method (5 iterations) is compared with Gauss-Seidel (1 iterations) and Jacobi (9
iterations).

V

A. Appendix 1

0 2 4 6 8 10 12 14

0.005

0.050

0.500

5

Time [s]

Lo
g

R
es

id
ua

lE
rr

or

RBGS
GS
JACOBI

Figure A.11: Residual error vs. time for the hanging cloth, using 10 000 particles
and 19 800 constraints and a time budget of 2 ms. The convergence speed of our
method (11 iterations) is compared with Gauss-Seidel (2 iterations) and Jacobi (19
iterations).

0 5 10 15 20 25
10-4

0.001

0.010

0.100

Time [s]

Lo
g

R
es

id
ua

lE
rr

or

RBGS
GS
JACOBI

Figure A.12: Residual error vs. time for the hanging cloth, using 10 000 particles
and 19 800 constraints and a time budget of 4 ms. The convergence speed of our
method (22 iterations) is compared with Gauss-Seidel (4 iterations) and Jacobi (32
iterations).

VI

A. Appendix 1

0 10 20 30 40
10-4

0.001

0.010

0.100

1

Time [s]

Lo
g

R
es

id
ua

lE
rr

or

RBGS
GS
JACOBI

Figure A.13: Residual error vs. time for the hanging cloth, using 10 000 particles
and 19 800 constraints and a time budget of 8 ms. The convergence speed of our
method (45 iterations) is compared with Gauss-Seidel (9 iterations) and Jacobi (70
iterations).

0 2 4 6 8 10 12 14
10-4

0.001

0.010

0.100

1

Time [s]

Lo
g

R
es

id
ua

lE
rr

or RBGS WITH SOR
RBGS
GS
JACOBI

Figure A.14: Residual error vs. time for the hanging cloth, using 10 000 particles
and 19 800 constraints and a time budget of 2 ms. The convergence speed of our
method (11 iterations) is compared with Gauss-Seidel (2 iterations) and Jacobi (19
iterations). In this graph, RBGS with SOR (11 iterations) using an ω value of 1.7
is included.

VII

	Introduction
	Background
	Purpose
	Problem statement
	Limitations
	Outline

	Previous work
	Theory
	Mass-spring systems
	Linear equation system solving
	Jacobi iterative method
	Gauss-Seidel iterative method
	Graph coloring

	Numerical integration
	Euler integration
	Verlet integration

	Collision handling
	Position Based Dynamics
	Projective Dynamics
	Parallel computing

	Methodology
	Research workflow
	Prototype
	Result evaluation

	Process
	Setup
	Data structures
	Simulation
	Initialization
	Verlet integration
	Position based dynamics
	Projective dynamics
	Collision handling
	Friction
	Tearing
	User interaction

	Rendering
	Mesh generation
	Shading
	Shadows

	Animation of kinematic bodies
	Model sequence
	Collision handling
	Attachment points

	Results
	Performance
	Test cases

	Discussion
	Conclusion
	Future work
	Appendix 1

