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Abstract
Increasing environmental awareness has in recent years motivated the automotive industry
to advance towards electric and hybrid electric vehicles. Safe and efficient operation of
electrically powered vehicles requires a wide range of systems and functions for managing
power storage in battery packs. The performance of these systems is crucially dependent
on knowledge about the remaining available charge in the batteries, referred to as state-
of-charge (SOC). However, due to the complex electrochemical processes taking place
inside battery cells, the SOC is generally hard to determine directly. As this is an important
topic for further development of electrically powered vehicles, researchers are exploring
the problem of efficiently and accurately estimating the battery cell SOC.

In this thesis, we investigate a novel model-based statistical filtering approach to the
SOC estimation problem. In the Bayesian inference framework, an Ensemble Kalman
Filter (EnKF) is implemented to jointly estimate inner battery states and parameters. For
efficiency, the battery cell is modelled by a simple Equivalent Circuit Model (ECM), with
three parameters that are initially identified using current and voltage measurements. With
the objective to determine its viability for the proposed problem, the EnKF is compared to
two previously studied and closely related algorithms: the Unscented Kalman Filter (UKF)
and the bootstrap Particle Filter (PF).

The work has been carried out at National Electric Vehicle Sweden using pre-recorded
data of current and voltage measurements for two different lithium-ion battery cell
chemistries. Our findings suggest that the accuracy of the EnKF is similar to that of the
PF, but with a lower computational cost, and overall more accurate than the UKF. In
comparison, the EnKF is also easily implemented, with less tuning parameters than the
UKF, and does not require as high dimensionality as the PF for convergence of the estimate.
As such, we see good potential for the EnKF in the SOC estimation problem, providing
flexibility and high performance.

Keywords: Electric vehicle, battery management system, state-of-charge, Bayesian filtering,
ensemble Kalman filter, battery modelling, equivalent circuit model, unscented Kalman
filter, particle filter.
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1
Introduction

Vehicles powered by electric motors have many advantages over the traditional choice
of internal combustion engines. Environmental impact, energy efficiency, mechanical
complexity, and noise pollution are only a few. Safe and efficient operation of Electric
Vehicles (EVs) is crucially dependent on proper management of the on-board power
storage; most commonly in lithium-ion battery packs. The embedded system employed in an
electrically powered application for sensing, protection, interfacing, managing performance,
and diagnosing of battery packs is collectively labelled as a Battery Management System
(BMS). One of the key factors for reliable performance management in a BMS is knowledge
about the individual battery cells’ State Of Charge (SOC)—the available electrical capacity
at any given time. The average SOC of a complete battery pack can thus, in essence, be
compared to the fuel gauge in an internal combustion engine vehicle.

Electrochemically, the cell SOC is a stoichiometry, related to the average concentration
of lithium in the negative electrode solid particles [1], and can as such in practice not
be measured directly. This motivates the employment of more advanced techniques
for estimating the SOC, which is typically challenged by noise-contaminated sensor
measurements, variations in temperature, and battery cell degeneracy [2] as well as an
overall complex, nonlinear, and time-variant dynamic behaviour. Methods are thus needed
for combining information from several sources to produce a less uncertain estimate.

The problem of estimating inner, and oftentimes immeasurable, states of a system or
process is an important topic in signal processing applications. Advanced estimation of SOC
in battery cells is commonly approached using statistical filtering techniques; specifically
in the framework of the Kalman Filter (KF) [3] and its relatives. The objective of this thesis
is to investigate a novel KF based approach to the SOC estimation problem—the so-called
Ensemble Kalman Filter (EnKF)—in an attempt to fill the gap between the commonly
exploited methods.

1.1 Background
State estimation in electrochemical battery cells is a relatively new research topic, but has
been investigated thoroughly during the last few decades, much motivated by the resurgence
of EVs and Hybrid Electric Vehicles (HEVs) in the 1990s [4], in which power is managed
and stored in battery packs of multiple lithium-ion cells. In particular, the battery cell
SOC is of high importance for energy and power calculations in EV applications [5], and
serves as a crucial parameter in, e.g., determining an efficient control strategy, ensuring
safe power utilisation, and improving the battery life [6].

For the purpose of real-time SOC estimation, a wide range of techniques have been
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1. Introduction

studied [7], varying in complexity, accuracy, and versatility. Real-time estimation of SOC
is of particular interest in the automotive sector and demands indirect methods that are fast,
robust, and accurate. The most popular methods are, in brief [5]:

• Current-based methods: Exploits the fact that the supplied or withdrawn current is
directly dependent on the change of available charge in the battery; often referred to
as “coulomb counting”. Current measurements are continuously used to update the
SOC estimate.

• Voltage-based methods: Offline determination of the relationship between the SOC
and the battery cell’s Open-Circuit Voltage (OCV) enables online look-up of SOC,
given terminal voltage measurements and a mathematical battery model.

• Model-based state estimation: Employs mathematical models to make predictions
for inner process states as well as impending measurements. When the real system
is observed, associated predicted and measured quantities are compared, and the
potential difference is fed back to update the predicted inner states. This scheme is
illustrated in Figure 1.1.

The model-based state estimation technique provides a number of advantages—much
due to the information provided by the feedback of the prediction error—and is often the
preferred choice when computational capacity is sufficient.

+
True
system +

System
model

−

Input

Measured
output

Predicted
output

K

Process
noise

Sensor
noise

State

State estimate

Figure 1.1: Conceptual schematic of the model-based approach for state estimation. The difference between
predicted and measured system output is fed back, under some policy K, to the system model to update the
state estimate.

Under a certain set of conditions one such model-based state estimator, the KF, computes
the provably optimal state estimate in real-time by combining modelled and observed data.
Optimality is obtained in the minimum-variance sense, and is limited to linear systems, by
proper selection of the feedback policy K, cf. Figure 1.1. The estimate is delivered together
with a dynamic uncertainty of the approximation, weighing the user-specified quality of the
model prediction against the quality of the measurements, and making the Kalman filter an
exceptionally useful algorithm for the problem at hand.

One of the key challenges encountered in SOC estimation is the nonlinear mapping
between observed data and inner battery states. This demands usage of suboptimal
derivatives of the KF, as the linear assumption is not fulfilled. Another challenge in this
problem is the inherent dependence of the electrochemical dynamics with respect to the
SOC; such that the battery model dynamics change nonlinearly during cell charge and
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1. Introduction

discharge. This is usually approached by also estimating the model parameters as SOC
changes.

1.2 Problem Statement
In this thesis, a statistical inverse problem is investigated for estimating inner states
and parameters in lithium-ion battery cells within the inference framework of Bayesian
probability theory. In this context, the estimate of a target quantity x is, in essence, computed
as a conditional probability distribution of the quantity, given available measurements y,
by application of optimal filtering theory. That is: for every measurement of the process an
estimate of the SOC is computed together with an associated uncertainty.

Conceptually, the proposed problem can be divided into the following four subtasks.

1. Dynamical model. Mathematical modelling of the electrochemical dynamics of
lithium-ion battery cells. In the Bayesian inference framework, prior knowledge
about the state x is represented by a probabilistic dynamical model, describing the
transition of battery states and parameters in time.

2. Measurement model. Mathematical modelling of the sensor measurements y, as
related to the process states x. This probabilistic measurement model represents the
likelihood of the measurements, given the prior knowledge of the state.

3. Filter design. Design and implementation of the estimation scheme for fusing the
information provided by the dynamical and measurement models with measurement
data gained from observations. This fusion process is referred to as filtering.

4. Evaluation. Comparative evaluation of the developed filtering algorithm as related
to similar approaches, represented in external research.

Task 3 constitutes the main objective of this thesis and represents the motivation for our
investigation: to explore the literature gap in SOC estimation, between the two more
common and closely related sample-based filtering techniques referred to as sigma-point
methods and particle filters.

1.3 Purpose and Thesis Objective
The purpose of this thesis is to design, implement, and evaluate an EnKF for real-time
estimation of SOC in lithium-ion battery cells. The battery model used to predict
the evolution of the system is adapted by also estimating associated parameters. The
performance of the EnKF algorithm shall be assessed with regard to closely related filtering
algorithms—the Unscented Kalman Filter (UKF) and the bootstrap Particle Filter (PF).

The main objective of this thesis is thus to investigate the EnKF as an alternative
nonlinear filtering algorithm in SOC estimation. The following research questions highlight
this aim within the general purpose of the thesis.

(i) What is a suitable battery model for prediction in real-time SOC estimation, with
regard to accuracy and computational complexity?

3



1. Introduction

(ii) Can the battery model parameters be estimated on-line to increase the accuracy of
the SOC estimate?

(iii) What is the potential of the EnKF for the proposed SOC estimation problem and
how does it compare to the PF and UKF?

(iv) With regard to tunable filter parameters; what are the minimum criteria of the EnKF
that ensures filter converges?

1.4 Scope and Limitations
In this thesis, the estimate of the target quantity x is considered to be a Gaussian random
variable. That is, the result of the estimation scheme is characterised by the mean and
covariance of a Gaussian distribution, representing the actual estimate and its associated
uncertainty.

It is generally required to perform time-consuming and expensive laboratory tests, in
order to obtain accurate offline estimates of SOC and the nonlinear mapping to the cell
OCV. This thesis does not aim to produce such data but shall use readily available data sets
provided by Dr. Gregory L. Plett at the University of Colorado, Colorado Springs, (UCCS).
The details of these resources are explained in Section 4.3.

The posed problem in Section 1.2 shall be solved within the frames of applicability
to EVs and thus expected power demand during driving. The models for predicting the
battery cell state evolution are therefore required to be simple enough for implementation
on embedded computer systems. This requirement is validated by reviewing the literature
on the topic of battery modelling, and will not be subject to actual tests on embedded
hardware. As such, all algorithms are developed and tested in the Matlab and Simulink
software.

The developed estimation algorithm requires measurements of cell terminal voltage and
load current, as well as information about the cell temperature. This information is in a
real system acquired using sensors with an associated uncertainty, but due to restricted
access to appropriate data sets the current will be regarded as a known input to the system.
Furthermore, the battery cell temperature is assumed to be constant, uniformly distributed,
and completely known throughout each test scenario. Note that inferring the battery cell’s
inner temperature can be regarded as an independent estimation problem, which is not of
interest in this thesis.

In reality, battery cells suffer from degeneracy as the number of charge–discharge cycles
increase. This has an effect on e.g. how much energy the cell can store and its charging
efficiency. The time frame of these changes is however outside the scope of this project,
and the effects associated with battery ageing are assumed to be negligible in the tests
performed.

1.5 Related Work
The most distinct subproblems that arise in the topic of battery SOC estimation—modelling
of battery dynamics and selection of a suitable estimation scheme—are both well-
represented in the literature. Batterymodelling is an important subject in both understanding
the short and long-term behaviour of electrochemical power storage systems and improving
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1. Introduction

the quality of model-based estimators in EV and HEV applications. Advanced estimation
schemes are needed to further develop the flexibility, performance, and robustness of
electric vehicles, by providing more accurate information about the power state of the
vehicle. Below follows a brief review of some of the most prominent contributions and
related studies in these areas, as well as an introduction to the EnKF.

1.5.1 Battery Modelling
In particular, modelling of battery dynamics is a diverse and thoroughly investigated
topic. The two most important categories for the wide range of existing approaches are
electrochemical and equivalent circuit modelling.

Electrochemical models or physics-based models aim to represent the internal electro-
chemical processes occurring in the battery cell. These models are more detailed
and computationally heavy, typically describing the cell dynamics using coupled
partial differential equations [8].

Equivalent circuit models describe input–output behaviour of the battery cell. Empirical
data is used to fit black-box model parameters, represented by electrical components.
These low-complexity, and sometimes even linear, models generally yield robust
and fast output predictions, but cannot provide any information about inner battery
states [5].

Several review studies have been published for EV and HEV simulation [9] and real-
time estimation of battery states [8], [10], [11], in detail discussing the two categories of
modelling techniques above. Two recent studies [12], [13] in electrochemical lithium-ion
battery modelling incorporate simplified physical models for real-time simulation and
estimation of battery states, such as state-of-charge and state of health. Another recent
example [14] presents a reduced-order electrochemical model for a composite electrode
lithium-ion battery, a technology which has seen an increase in popularity for automotive
applications. Furthermore, in [15], an electrochemical-polarisation model is proposed
for real-time estimation, combining the electrochemical Nernst model with an Equivalent
Circuit Model (ECM) for battery polarisation effects.

While the general conclusion in the literature is that the choice of model should reflect
the intended application, the low-complexity ECMs are the best choice for real-time model-
based estimation applications. In particular, the first and second order Resistor–Capacitor
(RC) models, with extensions, have proven to be the preferred choice in SOC estimation
problems [10].

1.5.2 Model-Based Estimation Techniques
As the practical standard choice for nonlinear filtering problems [16], the Extended Kalman
Filter (EKF) has been investigated extensively for state estimation in battery management
systems. In a series of three highly cited papers by G. L. Plett [17]–[19], the EKF algorithm
is used with an ECM to estimate SOC and time-variant model parameters. Innovation-based
adaptive versions of the EKF—often referred to as Adaptive Extended Kalman Filter
(AEKF) in the literature—have shown to further improve SOC estimates [20], [21].
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An accurate estimation of SOC depends on its parameters that vary along with it. This
surfaces the necessity to jointly estimate the parameters along with the states of interest.
In [22] an AEKF has been proposed for estimating the SOC along with the battery model
parameters that vary with it; to account for the varying parameters the noise terms in
the motion and measurement models are adapted based on innovation sequences inside
a moving estimation window. A similar AEKF method proposed in [20] shows that the
maximum SOC estimation error decreases from 14.96% to 2.54% and that the mean
SOC estimation error reduces from 3.19% to 1.06%. A further more advanced method
for jointly estimating SOC and peak power capabilities in lithium-ion batteries has been
proposed in [23]. In this method, the joint estimation of both the states along with the
varying parameters has been done by implementing an AEKF as well, but the information
from the coupled states of peak power capability and SOC has facilitated to achieve an
accurate SOC estimate with an estimation error below 2%.

As the EKF comes with a palpable computational complexity, requiring linearisation
of the dynamics and measurements models in every iteration of the algorithm, the more
versatile sigma-point methods have been investigated as an alternative, producing overall
better results than the EKF at the same computational cost. In [24], [25], Plett revisits his
previous study and achieves better results with a Central-Difference Kalman Filter (CDKF)
than with the previous EKF approach. The UKF is another common nonlinear filtering
algorithm in the category of sigma-point methods [24], and has as well been studied for
SOC estimation, by e.g. [26]–[28].

Less cited studies [29]–[31] have been performed using various versions of the highly
flexible and computationally heavy PF. Results show more accurate estimation results for
the PF, as compared to EKF and UKF algorithms, but at a higher computational cost.

1.5.3 The Ensemble Kalman Filter
The EnKF is, like the sigma-point methods and particle filters, a sample-based method for
nonlinear filtering problems. Its ability to handle extremely high-dimensional, nonlinear,
and non-Gaussian problems has made the EnKF a popular choice for estimation problems
in geoscientific disciplines [32]. The algorithm was first proposed in 1994 by Geir
Evensen [33]—and modified in [34] to account for a systematically underestimated
uncertainty estimate—as a better alternative to nonlinear filtering problems than the EKF,
specifically for ocean models.

Interestingly, the EnKF stands somewhat isolated in relation to recent signal processing
literature, and with few references to comparable nonlinear filtering algorithms [32], despite
similarities with sigma-point methods and particle filters. The majority of EnKF studies
have been published within the geoscientific area, predominantly with applications in
weather and ocean forecasting, under the terminology “data assimilation”. A few exceptions
exist in the form of review articles [35]–[38].

1.6 Major Contributions
The scientific value of this thesis is centred around the investigation of the EnKF as a novel
estimation algorithm in the SOC estimation problem. As highlighted by the related work,
the EKF is a popular choice for the proposed problem and comes in many flavours and
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configurations. The EKF uses a first order Taylor expansion to approximate nonlinearities
in the problem, and thus requires the mathematical models of the process the sensors to be
differentiable. For this reason, the EKF also suffers from a relatively high computational
complexity and divergence of the estimate if the nonlinearities are considerable [39]. It is
desirable to investigate if the EnKF can circumvent the issues associated with the EKF.

Other methods, such as the UKF, use sigma-points to better capture the effect of
nonlinear transforms on the filtering distribution. However, the information contained
in the sigma-points are in every iteration condensed into an estimate and an associated
uncertainty, resulting in loss of information. The EnKF incorporates a set of samples,
similar to the sigma-points, but keeps the information in the set of samples throughout the
entire estimation sequence. It is of interest to analyse the effects of this property in the
proposed problem, which is one of the contributions of this thesis.

The particle filter, being a versatile and computationally heavy filtering algorithm, is
closely related to the EnKF. In this thesis, the novel EnKF approach provides similar
versatility but at a lower computational cost.

1.7 Thesis Outline
The remainder of this thesis report is structured as follows. Chapter 2 presents the
theoretical foundation required for performing statistical filtering. After a general review
of the Bayesian inference framework, algorithms are formulated and discussed for the
KF, the UKF, the bootstrap PF and the EnKF. Next, Chapter 3 describes the terminology
and philosophy of equivalent circuit battery modelling, explaining the different concepts
considered in the development of the dynamical model.

In Chapter 4, the estimation problem is formally defined followed by the system analysis
required for identifying battery model parameters. The second half of Chapter 4 describes
the test scenario, data, and performance metrics used for evaluating the different estimation
schemes. Results are presented in Chapter 5 and discussed in Chapter 6. Finally, the thesis
conclusions are given in Chapter 7.
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2
Statistical Filtering

The objective of this thesis is to estimate a set of immeasurable states and parameters in a
dynamical system. In this chapter, the topic of optimal filtering is briefly reviewed, as a
model-based estimation approach. The chapter begins with a general description of the
Bayesian statistical inference framework; stating important assumptions made regarding
dynamical and stochastic processes. To support subsequent discussions about comparing
different filtering algorithms, we present the linear KF, the UKF, the bootstrap PF, and
finally the EnKF. In cases where a nonlinear filtering problem is considered, the estimate
is approximated as a Gaussian density.

2.1 Bayesian Estimation
Optimal filtering refers to the problem of finding the best estimate of the inner state in a
time-varying system, given indirect and noise-contaminated observations. In particular, the
filtering problem concerns estimation of the unknown present state of the process given past
and current observations. Mathematically, this is conventionally considered a statistical
inversion problem, which in the Bayesian sense entails combining prior information about
the process with present observations or measurements. The estimate is computed as a
joint probability distribution of all the hidden states up until time k, x0:k , conditioned on
all available observations, y1:k , by application of Bayes’ rule,

p(x0:k | y1:k) =
p(y1:k | x0:k)p(x0:k)

p(y1:k)
, (2.1)

describing the sought posterior distribution p(x0:k | y1:k) of the hidden states in terms
of their prior distribution p(x0:k) and the measurement likelihood p(y1:k | x0:k). In this
context, optimality has a statistical meaning signifying that the posterior estimate is the
one with minimal uncertainty.

The state time sequence {x0, x1, x2, . . . } is assumed to have the Markov property, which
means that the present state of the process xk is dependent only on the previous state xk−1;
and independent of all other past states and observations,

p(xk | x0:k−1, y1:k−1) = p(xk | xk−1). (2.2)

Consequently, anymeasurement in the sequence of observations {y1, y2, . . . } is conditionally
independent of all other measurements and only dependent on the current process state;

p(yk | x0:k, y1:k−1) = p(yk | xk). (2.3)
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hidden: xk−2 xk−1 xk

observed: yk−2 yk−1 yk

Figure 2.1: Bayesian network illustrating the conditional dependencies between the hidden state sequence x
and observations y.

These dependencies are illustrated in the form of a Bayesian network in Figure 2.1. Under
the Markov assumption, the probability distributions in equation (2.1) can as such be
described recursively by a probabilistic state-space model:

x0 ∼ p(x0), (2.4a)
xk ∼ p(xk | xk−1), (2.4b)
yk ∼ p(yk | xk), (2.4c)

specifying the initial state distribution of the process (2.4a), the state transition probability
distribution (2.4b), and the dependence of observations on the hidden state, (2.4c).

The objective of the recursive Bayesian filter is to, at each time instant k, compute the
marginal distribution of the present process state xk given all available observations y1:k ,
i.e., p(xk | y1:k). Given a prior distribution, each subsequent filtering iteration consists
of a prediction step and an update step. The predicted density at time k can, given the
dynamical model (2.4b) and all previous measurements y1:k−1, be computed using the
Chapman–Kolmogorov equation:

p(xk | y1:k−1) =

∫
p(xk | xk−1)p(xk−1 | y1:k−1) dxk−1. (2.5)

The posterior density at time k is then, given the measurement model (2.4c) and the current
measurement yk , obtained by using Bayes’ rule [39],

p(xk | y1:k) =
p(yk | xk)p(xk | y1:k−1)

p(yk | y1:k−1)
. (2.6)

The recursive Bayesian estimation scheme is illustrated in Figure 2.2 in terms of the
densities in equations (2.5) and (2.6).

Update

Predict

p(xk | y1:k)

k ← k + 1

yk

p(xk−1 | y1:k−1)p(xk | y1:k−1)

Figure 2.2: Recursive Bayesian estimation scheme. The predicted density p(xk | y1:k−1) is computed
using the transition density p(xk | xk−1) and the previous posterior density p(xk−1 | y1:k−1), after which
measurements yk are fused with the prediction to obtain the posterior density p(xk | y1:k).
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2.2 The Kalman Filter
The Kalman filter [3] was first presented in 1960 by Rudolph E. Kálmán as a solution to the
optimal filtering problem. The algorithm is exactly the closed form solution to the optimal
filtering equations (2.5) and (2.6) when the probabilistic state-space model (2.4) in linear
and Gaussian. In such a scenario, a matrix Ak−1 can be used to describe the state transition
from time step k − 1 to k and another matrix Hk describes the linear mapping between the
process states xk ∈ R

n and the observations yk ∈ R
m. The filtering model can hereby be

written as a set of discrete-time difference equations,

xk = Ak−1xk−1 + qk−1, (2.7a)
yk = Hkxk + rk, (2.7b)

where qk−1 ∼N(0,Qk−1) and rk ∼N(0,Rk) are additive zero-mean Gaussian processes,
with covariance matrices Qk−1 and Rk respectively, describing the stochastic part of the
dynamical and measurement models.

In this setting, all densities involved in the optimal filtering equations (2.5) and (2.6) are
guaranteed to be Gaussian [39], under the condition that the prior p(x0) is Gaussian, and
can thus be completely characterised by their first and second moments: the mean and the
covariance. Denoting by x̂ the mean of the filtering distribution and by P the covariance,
the KF can be summarised by Algorithm 1 below.

Algorithm 1 (Kalman filter). Given a linear and Gaussian filtering model (2.7), the
characterising moments of the optimal filtering density, in the variance-minimising sense,
are computed by the following prediction and update steps:

Prediction:

x̂k |k−1 = Ak−1x̂k−1|k−1, (2.8a)
Pk |k−1 = Ak−1Pk−1|k−1AT

k−1 +Qk−1. (2.8b)

Update:

vk = yk −Hk x̂k |k−1, (2.9a)
Sk = HkPk |k−1HT

k + Rk, (2.9b)
Kk = Pk |k−1HT

kS−1
k , (2.9c)

x̂k |k = x̂k |k−1 +Kkvk, (2.9d)
Pk |k = Pk |k−1 −KkSkKT

k . (2.9e)

The densities of particular interest in the KF are the predicted distribution,

p(xk | y1:k−1) = N(xk ; x̂k |k−1,Pk |k−1),

the measurement prediction or innovation distribution,

p(yk | y1:k−1) = N(yk ; Hk x̂k |k−1, Sk)

11
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and the filtered distribution,

p(xk | y1:k) = N(xk ; x̂k |k,Pk |k). (2.10)

This summary of the Kalman filter is concluded by making a final remark about the
posterior distribution computed by (2.9). It can be shown that estimate x̂k |k is—by selection
of the Kalman gain Kk—optimal in the sense that it is the most probable value of the
random variable x at time k, as well as the value that minimises the mean squared error
of the estimate [40]. That is, the Kalman filter computes both the maximum a posteriori
(MAP) and (linear)1 minimum mean square error (LMMSE) estimate of the state x.

The following sections will present Kalman filter inspired techniques for solving
nonlinear filtering problems, in which approximations have to be made in order to not
deviate from the Gaussian framework.

2.3 The Unscented Kalman Filter
The UKF is a popular filtering algorithm for nonlinear estimation problems. It was proposed
by Julier and Uhlmann in 1997 [41] as a better alternative to the EKF, which commonly
suffers from being generally difficult to implement and tune. The UKF belongs to a class of
filtering techniques called sigma-point methods, which employ a set of discretely sampled
“sigma-points” in the state-space to approximate mean and covariance of the filtering
distribution as it is subjected to the possibly nonlinear transforms present in the motion and
measurement models.

−4 −2 0 2 4 6 8
−4
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2

4
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8
Original Gaussian Distribution

3σ ellipse
Sigma-points

−2 0 2 4 6 8
−2

0

2

4
Transformed Gaussian Distribution

UKF 3σ
UKF mean

EKF 3σ

Figure 2.3: Illustration of the unscented transform based approximation of a transformed two-dimensional
Gaussian random variable. To the left is the distribution of the original Gaussian random variable, illustrated
with samples and the contour of the three standard deviation (3σ) ellipse (dashed). A total of 5 sigma-points
are placed to capture the original distribution, using scaling parameters α = 1, β = 2, κ = 5. To the right is
the transformed distribution illustrated together with the transformed sigma-points. The unscented transform
Gaussian approximation is drawn with a solid thick line, representing the 3σ ellipse, and a cross representing
the approximated mean. Also drawn is the linear approximation that an EKF would produce (dotted).

In contrast to the linear filtering model in (2.7), the UKF is formulated for a nonlinear

1The Kalman filter is restricted to be an affine approximation of data.
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stochastic state-space model of the form

xk = f(xk−1) + qk−1, (2.11a)
yk = h(xk) + rk, (2.11b)

where f : Rn 7→ Rn and h : Rn 7→ Rm are the nonlinear state transition and measurement
functions; and q and r are as in (2.7). Since f and h are assumed to be nonlinear, the
transformed random variable, f(x) or h(x), does not necessarily retain its Gaussian property.
The UKF forms a Gaussian approximation to the transformed density by computing the
weighted average of the transformed sigma-points, serving as an estimate for the mean, and
their weighted outer product, estimating the covariance [42].

The Gaussian approximation of the filtering distribution employed in the UKF is based
on a method called the Unscented Transform (UT), which is also credited to Julier and
Uhlmann. For a general Gaussian random variable x, with mean m and covariance P, and
nonlinear transform g,

x ∼ N(m,P),
y = g(x),

(2.12)

the UT computes the Gaussian approximation of the transformed random variable y by
first forming a set of 2n + 1 sigma-points as

X(0) = m,

X(i) = m +
√

n + λ
[√

P
]

i
, i = 1, . . . n,

X(i+n) = m −
√

n + λ
[√

P
]

i
, i = 1, . . . n,

(2.13)

where λ is a scaling parameter defined as

λ = α2(n + κ) − n. (2.14)

The parameters α and κ can be adjusted to control the spread of the sigma-points; see
example in Figure 2.3. The notation [

√
P]i in (2.13) denotes the ith column of a matrix

√
P

such that
√

P
√

P
T
= P.2 By propagating the sigma-points through the nonlinear transform,

Y(i) = g
(
X(i)

)
, i = 0, . . . , 2n, (2.15)

the mean and covariance of the transformed random variable are approximated by

E [g(x)] = ȳ ≈
2n∑
i=0

W (m)i Y
(i),

Cov [g(x)] = P̄y ≈
2n∑
i=0

W (c)i

(
Y(i) − ȳ

) (
Y(i) − ȳ

)T

,

(2.16)

2There are a number of methods available for computing the square root of the state estimate covariance
matrix. For instance, using eigenvalue decomposition, Shur decomposition, or Cholesky decomposition. The
latter method is indicated to be best suited for the UKF algorithm [43].
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using the weights W (m)i and W (c)i defined as

W (m)0 =
λ

n + λ
,

W (c)0 =
λ

n + λ
+ (1 − α2 + β),

W (m)i =
1

2(n + λ)
, i = 1, . . . 2n,

W (c)i =
1

2(n + λ)
, i = 1, . . . 2n.

(2.17)

For Gaussian distributions, a value of β = 2 is optimal in the calculation (2.17) of the UT
weights. An example of the UT Gaussian approximation method is illustrated in Figure 2.3,
for a two-dimensional Gaussian random variable subjected to a nonlinear transform.

Using equations (2.13)–(2.17), the UKF algorithm has the formulation given in Algo-
rithm 2 [39].

Algorithm 2 (Unscented Kalman Filter). The unscented Kalman filter for nonlinear
problems of the form (2.11) computes the filtering distribution at each time step k in the
following prediction and update steps:

Prediction: Form the sigma-points

X
(0)
k−1 = x̂k−1|k−1,

X
(i)
k−1 = x̂k−1|k−1 +

√
n + λ

[√
Pk−1|k−1

]
i
, i = 1, . . . n,

X
(i+n)
k−1 = x̂k−1|k−1 −

√
n + λ

[√
Pk−1|k−1

]
i
, i = 1, . . . n,

(2.18)

and compute the predicted mean and covariance after propagating the sigma-points
through the dynamic model:

x̂k |k−1 =
2n∑
i=0

W (m)i f
(
X
(i)
k−1

)
,

Pk |k−1 =
2n∑
i=0

W (c)i

(
f
(
X
(i)
k−1

)
− x̂k |k−1

) (
f
(
X
(i)
k−1

)
− x̂k |k−1

)T

,

(2.19)

using the weights W (m)i and W (c)i defined in equation (2.17).

Update: Form the sigma-points

X
(0)
k = x̂k |k−1,

X
(i)
k = x̂k |k−1 +

√
n + λ

[√
Pk |k−1

]
i
, i = 1, . . . n,

X
(i+n)
k = x̂k |k−1 −

√
n + λ

[√
Pk |k−1

]
i
, i = 1, . . . n,

(2.20)

and compute the mean and covariance of the predicted output, as well as the cross-
covariance of the state and the measurement, after propagating the sigma-points
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through the measurement model:

ŷk |k−1 =
2n∑
i=0

W (m)i h
(
X
(i)
k

)
,

Sk =
2n∑
i=0

W (c)i

(
h
(
X
(i)
k

)
− ŷk |k−1

) (
h
(
X
(i)
k

)
− ŷk |k−1

)T

,

Ck =
2n∑
i=0

W (c)i

(
X
(i)
k − x̂k |k−1

) (
h
(
X
(i)
k

)
− ŷk |k−1

)T

.

(2.21)

The mean and covariance of the Gaussian approximated filtered distribution are now
computed as:

Kk = CkS−1
k ,

x̂k |k = x̂k |k−1 +Kk(yk − ŷk |k−1),

Pk |k = Pk |k−1 −KkSkKT
k .

(2.22)

Due to the employment of sigma-points in the UKF to capture the nonlinear behaviour
of the motion and measurement models, the algorithm is technically a sample-based filter.
The sample is however not random since the locations of the sigma-points in the state-space
are distinctly defined by the UT, cf. equation (2.13). By this strategic selection, only a few
sigma-points—and associated weights—are required to effectively compute the first and
second moments of the filtering distribution; as opposed to the required size of a random
sample.

Since the goal of the UKF algorithm in this thesis is to approximate the filtering
distribution as a Gaussian distribution, represented only by the mean and the covariance,
some information stored in the sigma-points is lost between iterations. The following
section will present filtering methods in which the information contained in the sample is
instead retained throughout the complete estimation sequence. This approach results in
more versatile and accurate algorithms, but also increases the computational cost.

2.4 Monte Carlo Methods
Monte Carlo methods refer to a class of techniques employed to estimate statistical quantities
from random samples of a probability distribution. The convergence of such methods is
guaranteed by the central limit theorem [39], i.e., estimates approach their true values as
the sample size N →∞.

In Bayesian filtering, the objective to compute the filtered density, cf. equations (2.5)
and (2.6), can often be reduced to evaluating expectations of some transformed random
variable, conditioned on observed data. That is, given some arbitrary function, g : Rn 7→

Rm, the problem is to compute integrals of the form:

E [g(x) | y1:T ] =

∫
g(x)p(x | y1:T ) dx, (2.23)

where p(x | y1:T ) is the posterior probability distribution of the the target quantity x given
all measurements y1, . . . , yT .
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Monte Carlo methods can be employed to numerically approximate integrals of the
form (2.23). Given a set of random samples {x(i) : i = 1, . . . , N} from the probability
distribution of interest p(x | y1:T ), the best estimator for the expectation is the average:

E [g(x) | y1:T ] ≈
1
N

N∑
i=1

g(x(i)). (2.24)

2.4.1 The Particle Filter
A particle filter employs sequential Monte Carlo methods to approximate the solution to the
optimal filtering equations (2.5) and (2.6). The particle idea amounts to propagating through
time a set of weighted particles {(w(i)k , x

(i)
k ) : i = 1, . . . , N} drawn from an importance

distribution, representing the filtering distribution p(xk | y1:k). This is in contrast to, e.g.,
the KF and the UKF, which condenses all information about the filtering density into its
mean x̂k |k and covariance Pk |k in each iteration. The particle filter also differs in that the
measurement update amounts to updating the particle weights w(i) instead of the actual
state realisations x(i). Particle filters are thus very flexible and therefore particularly suitable
for highly nonlinear problems and are capable of characterising multimodal distributions.

A significant problem that arises in the particle filter is that of particle degeneracy.
Sequential importance sampling is a basic particle filter where, in each filter iteration,
samples are drawn from the importance distribution and weights are calculated recursively
to approximate the posterior probabilities of the samples. Since the information provided
by observations are injected into the estimate through the weights, wk , it is possible for
the algorithm to reach a point where almost all weights are equal or close to zero; under
the condition that ∑N

i=1 w
(i)
k = 1. This means that, even though using a large number of

samples, the particle filter cannot produce a useful estimate. The solution to the degeneracy
problem is referred to as resampling, and can be summarised as the following algorithm:

Algorithm 3 (Resampling). Given a set of weighted particles {(w(i)k , x
(i)
k ) : i = 1, . . . , N}

at time step k, resampling is performed by

1. Generating indices j ∈ {1, . . . , N} such that p( j = i) = w
(i)
k for each i = 1, . . . , N .

2. Replacing the old particle set with x( j)k ; duplicating probable particles and removing
degenerate particles.

3. Setting all new weights w(i)k = 1/N .

Another problem arising in the particle filter scheme is that the filtering distribution is
not always such that samples can be drawn from it directly. To overcome this, samples are
instead obtained from an importance distribution π(x | y1:T ) that approximates p(x | y1:T );
this is called importance sampling. In this thesis, a particular type of particle filter will be
investigated, the bootstrap filter [44], in which the importance distribution is represented
by the dynamical model p(xk | xk−1) for the process of interest.

Although this choice of π(x | y1:T ) is intuitively a sensible idea, the dynamical model
turns out to be a generally inefficient choice for the importance distribution [39]. As such,
the bootstrap filter usually requires a large set of particles to accurately approximate the
filtering distribution, as well as resampling of the particles at each iteration.

Algorithm 4 describes the bootstrap filter, using resampling to handle the degeneracy
problem.
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Algorithm 4 (Bootstrap filter). The bootstrap filter is initialised by drawing N samples
x(i)0 from the prior distribution

x(i)0 ∼ p(x0), i = 1, . . . , N,

and setting all weights w(i)0 = 1/N, i = 1, . . . , N . For each iteration k = 1, . . . ,T , do the
following:

1. Draw new samples x(i)k from the importance distribution, represented by the dynamic
model:

x(i)k ∼ p(xk | x(i)k−1), i = 1, . . . , N .

2. Calculate the weights for each particle from the likelihood model of the measurements:

w
(i)
k ∝ p(yk | x(i)k ), i = 1, . . . , N,

and normalise them to sum to unity.
3. Perform resampling of the particles, according to Algorithm 3.

The filtering distribution of particle filters is approximated by a sum of weighted Dirac
delta functions, as

p(xk | y1:k) ≈
N∑

i=1
w
(i)
k δ(xk − x(i)k ). (2.25)

However, since resampling is performed in every iteration of the bootstrap filter, the particle
weights are all identical: w(i)k = 1/N for all i = 1, . . . , N . Thus, the approximated first and
seconds moments of the filtered density (2.10) are simply obtained as the sample average
and covariance of the particle set; such that (2.10) is described by

x̂k |k ≈ x̄k |k =
1
N

N∑
i=1

x(i)k , (2.26a)

Pk |k ≈ P̄k |k =
1

N − 1

N∑
i=1
(x(i)k − x̂k |k)(x(i)k − x̂k |k)

T. (2.26b)

2.4.2 The Ensemble Kalman Filter
The EnKF is a sampling based nonlinear filter with similarities to the linear KF, the UKF,
and the PF. The algorithm differs from other nonlinear filters most importantly in that it is
derived as an approximation to the linear KF, in contrast to actually attempting to solve the
nonlinear filtering problem.

The Ensemble Idea and Algorithm

The EnKF centres around the idea to propagate an ensemble of state realisations {x(i)k :
i = 1, . . . , N}; similar to the PF and in contrast to the UKF, where only the first two
moments of the filtering distribution are stored between filter iterations [32]. The estimate
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and associated uncertainty of the filtered density can thus in any iteration be obtained by
computing the average and covariance of the state ensemble, see (2.26).

For the formulation of the EnKF algorithm it is convenient to collect the ensemble of state
realisations in a matrix Xk ∈ R

n×N , whose columns are the state vectors x(i)k , i = 1, . . . N .
A natural ensemble extension of the process noise qk in the nonlinear filtering model (2.11)
is to assign a Gaussian noise vector to each state realisation, creating the noise matrix Vk .
Using the same notation for sample mean and covariance as in equations (2.26), the state
ensemble of deviations from the mean is defined as

X̃k , Xk − x̄k1
T = Xk(IN −

1
N11

T),

where 1 , [1, . . . , 1]T is a vector of ones. Analogous notation is used for an ensemble
of measurement predictions Yk and its associated noise matrix Ek ; refer to the nonlinear
problem in (2.11). The EnKF is summarised in Algorithm 5.

Algorithm 5 (Ensemble Kalman filter). The ensemble Kalman filter for nonlinear problems
of the form (2.11) is initialised by drawing N samples x(i)0 from the prior distribution

x(i)0 ∼ p(x0), i = 1, . . . , N,

to form the initial state ensemble matrix X0|0. For each iteration k = 1, . . . ,T, perform the
following prediction and update steps:

Prediction: Form the process noise matrix Vk−1 by drawing N samples from the process
noise distribution,

Vk−1 =
[
q(1)k−1 · · · q(N)k−1

]
, q(i)k−1 ∼ N(0,Qk−1), i = 1, . . . , N,

and propagate the state ensemble through the dynamic model to obtain the ensemble
of state predictions:

Xk |k−1 = f(Xk−1|k−1) + Vk−1. (2.27)

Update: Form the measurement noise matrix Ek by drawing N samples from the measure-
ment noise distribution,

Ek =
[
r(1)k · · · r(N)k

]
, r(i)k ∼ N(0,Rk), i = 1, . . . , N,

and compute the ensemble of output predictions by propagating the ensemble of state
predictions through the measurement model,

Yk |k−1 = h(Xk |k−1) + Ek . (2.28)

Compute the state and measurement ensembles of deviations,

X̃k |k−1 = Xk |k−1(IN −
1
N11

T),

Ỹk |k−1 = Yk |k−1(IN −
1
N11

T),
(2.29)
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and obtain the updated state ensemble from the sample covariance of the mea-
surements S̄k and the sample cross-covariance of the state and measurement C̄k
as:

S̄k =
1

N−1Ỹk |k−1ỸT
k |k−1,

C̄k =
1

N−1X̃k |k−1ỸT
k |k−1,

K̄k = C̄k S̄−1
k ,

Xk |k = Xk |k−1 + K̄k(yk1
T − Yk |k−1).

(2.30)

TheEnKF is not restricted toGaussian initial state and noise distributions, p(x0), p(qk), p(rk),
neither is the noise required to be additive. This means that Algorithm 5 can be generalised
to handle a wider range of filtering problems [32]. However, for the purpose of this thesis,
these distributions are all assumed to be Gaussian; as is common in SOC estimation, e.g.,
[17]–[20], [24], [25], [45], [46].

Important Advantages and Disadvantages

The main advantage of the EnKF, and the motivation for its development, is its ability to
handle extremely high-dimensional estimation problems. In cases where n is very large,
other algorithms suffer from the need to store an n × n covariance matrix of the filtered
distribution Pk |k . In contrast, the EnKF can be implemented with an ensemble size N < n
to circumvent this problem. Comparing with the linear KF, the EnKF can in this situation
reduce the number of floating point operations required by a factor N/n [32].

Using a too small ensemble size N , in particular when N < n, has proven to result
in severe underestimations of the state uncertainty Pk |k [47]–[49]. Since the ensemble
is initially a random sample of the state distribution, in contrast to the UKF, it is not
guaranteed that the N points in the state-space are able to adequately describe the density.
This effect persists as the ensemble is transformed by the possibly nonlinear motion and
measurement functions, resulting in an over-confident estimate Xk |k . Furthermore, as
the Kalman gain is computed from the ensemble itself, see (2.30), the ensemble can not
be considered a random sample after a few iterations of the algorithm. The update step
couples the ensemble members nonlinearly to each other; which results in a sample that is
neither independent nor Gaussian [32].

Convergence of the mean and covariance, computed from the ensemble in the EnKF,
towards the KF estimate in (2.9), is only guaranteed for linear filtering problems, as
N →∞. For nonlinear problems, the EnKF does not give the Bayesian filtering solution,
as concluded in [50].

The discussion so far has concerned problems where n is large, n > N . To describe the
battery dynamics considered in the SOC estimation problem it is not necessary to use a
large number of states, which means that it is affordable to use a large N , N � n, in the
EnKF implementation. This will result in an algorithm that is very similar to the PF, with
the important exception that the state realisations are directly updated, without association
to particle weights.
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3
Lithium-Ion Battery Modelling

This chapter introduces the fundamental concepts of Lithium-ion battery modelling in
the framework of the low-complexity equivalent-circuit cell models. The set of electrical
analogies presented here, for describing the otherwise electrochemical behaviour of
lithium-ion battery cells, are in Chapter 4 used to formulate the estimation problem.

3.1 A Physical Perspective
Energy is stored chemically in a battery cell by supplying an electrical current, due to
the transportation of lithium from the cathode (positive electrode) to the anode (negative
electrode). When a current is demanded from the battery, lithium is instead moved in the
opposite direction, discharging the battery. This is illustrated in Figure 3.1. The concept of
the cell’s state-of-charge is thus directly related to the concentration of lithium in the solid
particles cs of the cell anode.

e−e−

CHARGE

LOAD

LiLi

DISCHARGE

ChargeDischarge

CATHODE ANODE

ELECTROLYTE

+

Figure 3.1: Conceptual illustration of the electrochemical mechanics in a lithium-ion battery cell.

The physical definition of state-of-charge is based on the stoichiometry

α =
cs,avg

cs,max
, (3.1)

which is the ratio of the present average lithium concentration in the anode to the possible
maximum equivalent. The cell state-of-charge z at any time t can hereby be defined as

z(t) =
α(t) − α0
α100 − α0

, (3.2)

where α100 and α0 corresponds to the ratio (3.1) when the cell is fully charged and fully
discharged, respectively.
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3. Lithium-Ion Battery Modelling

3.2 Equivalent-Circuit Cell Models
Modern lithium-ion batteries are complex electrochemical systems that are difficult and
cumbersome to adequately describe from a physical perspective. For the problem addressed
in this thesis, it turns out to be sufficient—and necessary for implementation in real-time
applications—to consider the input–output behaviour of a single battery cell as a black-box
system. In the context of black-box modelling, the input–output system behaviour is
analysed to infer the parameters of some ready-made model; refer to Section 4.2.2 for a
more detailed description of these models. Generally, these parameters do not have any
physical interpretation.

Electrical components are commonly used to represent the observed static and dynamic
electrical behaviour, resulting in an Equivalent Circuit Model (ECM). For instance, an
electrical resistor represents an internal voltage drop and power loss within the battery cell,
due to the passage of current, while a capacitor models an intrinsic voltage inertia. In this
case, the system input is the load current,

i(t)

{
> 0 during discharge,
< 0 during charge,

(3.3)

and the system output is the cell terminal voltage, v(t).
Results from investigating the single cell can be generalised to different types of battery

packs, as suggested in [5], and will not be treated here.

3.2.1 Open-Circuit Voltage
The Open-Circuit Voltage (OCV) refers to the effective voltage across the terminal of
the circuit under a no-load condition. An ideal battery can be considered as an ideal
voltage source, as demonstrated in Figure 3.2a. However, in reality, a battery cell’s OCV
tends to decrease as it is being discharged, i.e., it is dependent on the residual capacity
or equivalently the SOC; this is illustrated in Figure 3.2b. Furthermore, the OCV also
depends on its operating temperature.

The SOC and temperature dependencies are both nonlinear, but static, i.e. there is
a direct correspondence1 between a certain value of SOC and OCV, and likewise for
temperature. These relationships are commonly determined from careful cell tests in a lab
environment, as in [1]. The data can then be used to create a multidimensional Look-Up
Table (LUT) or to fit polynomials of suitable order; approximating the relationships. The
latter method is often used in connection with the EKF as filtering algorithm, due to the
need to compute derivatives for linearisation of the motion and measurement models.

3.2.2 Battery Cell Capacity
In Section 3.1 the SOC was defined in a physical context. The remainder of this chapter
will almost exclusively consider the battery cell from a strictly electrical perspective. The
battery is primarily a vessel for storing electrical energy. To continue the discussion in the

1There is a hysteresis present in the OCV as a function of SOC for charging and discharging of the battery
cell.
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−
+voc

i(t)

+

−

v(t)

(a) OCV represented by an ideal voltage source.

−

+voc(z(t))

i(t)

+

−

v(t)

(b) OCV as a function of SOC, z(t).

Figure 3.2: Two equivalent circuits modelling the OCV of a battery cell.

following section, the total capacity of the cell is here formally defined, as well as when a
cell is considered to be fully charged and fully discharged. Last, we make an electrical
definition of SOC.

Definition 1 (Total capacity). The quantity of charge removed from a cell as it is brought
from a fully charged state to a fully discharged state is termed the total capacity, Q.

Definition 2 (Fully charged cell). A cell is fully charged when its OCV reaches vh(T), a
manufacturer specified voltage that may be a function of temperature T .

Definition 3 (Fully discharged cell). A cell is fully discharged when its OCV reaches vl(T),
a manufacturer specified voltage that may be a function of temperature T .

Definition 4 (Residual capacity). The quantity of charge that would be removed from a
cell if it were brought from its present state to a fully discharged state is called the residual
capacity, Qres.

Definition 5 (State-of-charge). The ratio of the residual capacity to the total capacity of
the cell is defined as the cell state-of-charge; z , Qres/Q.

Definitions 1 through 5 are illustrated in Fig. 3.3.

Qres

Q

vh(T) , voc(z)|z=100 %

vl(T) , voc(z)|z=100 %

z , Qres
Q

Figure 3.3: Schematic illustration of a single battery cell with definitions of cell total capacity Q, residual
capacity Qres, fully charged voltage vh and fully discharged voltage vl as functions of temperature T , and
SOC, z.
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3.2.3 State-of-Charge

From Definition 5 it is clear that SOC changes only due to changes of the residual capacity,2
which is the accumulated charge in the battery cell due to passage of current,

ÛQres(t) = i(t). (3.4)

From Definition 5, using the sign convention for the input current in (3.4), we arrive at the
dynamic equation for the SOC in a battery cell as

Ûz(t) = −η
1
Q

i(t), (3.5)

where η is the Coulombic efficiency parameter [1], representing loss of energy when
charging the cell.

3.2.4 Linear Polarisation and Diffusion Voltages

Electrochemical polarisation in battery cells refers to the internal side-effects in a battery
cell from changes in input current; isolating the electrodes from the electrolyte. Polarisation
is important in the mathematical abstraction of a battery cell because it results in a departure
of the terminal voltage from the open-circuit voltage of the cell, v < voc. The observed
voltage difference,

vd , voc(z) − v, (3.6)

is referred to as diffusion voltage.
Diffusion voltage is the collective effect of both an instantaneous response to the change

in input current as well as a dynamic (non-instantaneous) one.

−

+voc(z(t))

R0 i(t)

+

−

v(t)

(a) Instantaneous polarisation modelled by a
single resistor in series with the cell OCV.

−

+voc(z(t))

R1

R0 i(t)

+

−

v(t)

C1

+ −

vrc(t)

(b) Extending (a) with an RC sub-circuit, modelling dy-
namic polarisation.

Figure 3.4: Two equivalent circuits modelling the input–output behaviour of battery cell polarisation.

2This is true if the cell total capacity is regarded as a constant, time-invariant quantity. In reality, the total
capacity will slowly change as the battery is ageing, but this effect is negligible in the context of this thesis.
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Equivalent Series Resistance

Voltage drop across an equivalent series resistance, R0, effectively models the instantaneous
diffusion voltage. In an actual circuit, power would dissipate through the internal resistance
as heat, and as such the internal resistance models the static inefficiency of the battery cell
at load. The instantaneous diffusion model is illustrated by the circuit in Figure 3.4a, where
the input–output behaviour can be obtained using Kirchhoff’s Voltage Law (KVL),

v(t) = voc(z(t)) − i(t)R0. (3.7)

Dynamic Polarisation

When the cell is allowed to rest, terminal voltage of the cell gradually approaches OCV.
This phenomenon is due to the slow diffusion processes occurring in the cell, observable as
a slowly changing voltage. The dynamic behaviour, referred to as dynamic diffusion voltage,
can be closely approximated by one or more parallel RC sub-circuits. In Figure 3.4b, the
static polarisation model described in (3.7) has been extended by one such RC branch.
Using KVL, we obtain the dynamic input–output voltage behaviour

v(t) = voc(z(t)) − vrc(t) − i(t)R0, (3.8)

where
Ûvrc(t) +

1
R1C1

vrc(t) =
1

C1
i(t). (3.9)

Figure 3.5 displays example simulation results from the first order RC model in
Figure 3.4b. To illustrate the contribution from the static and dynamic polarisation
models respectively, a discharge pulse of 1C-magnitude3 is applied to the circuit between
t = 5.5 min and t = 17.5 min. The polarisation voltage drop is plotted in Figure 3.5a and
the output terminal voltage in Figure 3.5b.
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(a) Cell polarisation per model component.
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(b) Cell output voltage.

Figure 3.5: Simulation results of a first order RC model subjected to a pulse current between time instances
t = 5.5 min and t = 17.5 min. Note the drop in steady-state terminal voltage, due to the dependence of OCV
on SOC.

3A measure of battery cell discharge rate, expressed relative to the maximum cell capacity. The 1C-rate
for a cell with a total capacity of 20Ah is 20A, which will discharge the cell completely in one hour.
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4
Implementation and Methods

This chapter presents the mathematical equations for the motion and measurement models
of the nonlinear SOC filtering problem. Identification of equivalent circuit parameters
for the first order RC model are also described for two different lithium-ion battery cell
chemistries; denoted E2 and A123. Furthermore, the data sets and test scenario are
explained, as well as a systematic method to measure filter performance.

4.1 The Estimation Problem
Model-based estimation problems require well-defined motion and measurement models.
Estimation is carried out for two cases: state-only estimation and state-and-parameter
estimation. In the first case, the motion model for the battery dynamics can be described
with a linear transition function in time. In the second case, however, when the model
parameters are assumed to be non-stationary, the joint motion model for the evolution of
states and parameters is nonlinear. The explicit mathematical expressions for these two
different cases are given below.

We define the state vector, xk ∈ R
n, to contain the SOC and the voltage drop across the

RC sub-circuit in the ECM,
xk ,

[
zk vrc

k

]T
, (4.1)

and the vector of model parameters to be estimated, θ, to contain the equivalent series
resistance, R0, and the dynamic polarisation parameters, R1 and C1, as described in
equations (3.8) and (3.9) and Figure 3.4b,

θk ,
[
R0,k R1,k C1,k

]T
. (4.2)

The measurement, yk ∈ R
m, providing observations of the real process, is defined to be the

battery cell terminal voltage,
yk , vk . (4.3)

The states, parameters, and measurements are all associated with uncertainties, modelled
using additive white noise processes, explained in chapter 2, and are denoted qk, qθk, and
rk respectively. Furthermore, we define a deterministic input, uk ∈ R

p, to the system of
interest as the load current, representing the energy demand of an EV,

uk , ik . (4.4)

As the input is considered to be deterministic, no uncertainty is associated with the battery
cell load current, ik .
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4.1.1 State-Only Estimation
When assuming stationary battery model parameters, the target quantity of interest in the
estimation scheme is the state vector x, defined in (4.1): the cell SOC and the voltage
drop across the RC subcircuit. As such, the motion model is linear in its states, while the
measurement model depends nonlinearly on the SOC. We can describe this generically as

xk = Ak−1xk−1 + Bk−1uk−1 + qk−1, (4.5a)
yk = h(xk, uk) + rk, (4.5b)

where Ak−1 ∈ R
n×n and Bk−1 ∈ R

n×p are the parameter dependent state transition and
control matrices, and h : Rn 7→ Rm is the nonlinear measurement model. The two
matrices, Ak and Bk , can be obtained by discretization of the continuous-time differential
equations (3.5) and (3.9). Assuming a sampling time Ts, equation (4.5a) can be written
explicitly as [

zk
vrc

k

]
=

[
1 0

0 e
(
−

Ts
R1C1

) ] [
zk−1
vrc

k−1

]
+


−Tsη/Q

R1

(
1 − e

(
−

Ts
R1C1

) ) ik−1 + qk−1. (4.6)

The state vector (4.1) is mapped to the measurements (4.3) according to the first order
RC model voltage equation (3.8). The measurement model (4.5b) is thus explicitly defined
as

vk = voc(zk) − v
rc
k − R0ik + rk . (4.7)

4.1.2 State-and-Parameter Estimation
Owing to the electrochemical dynamics of the battery cells, the battery model parameters θ,
defined in (4.2), varies over a charging or discharging cycle. To account for this, parameters
are jointly estimated by augmentation of the state vector, enabling a possibly more accurate
estimation of the state variable of interest, z. A simple way to model the parameter
evolution, when there is no meaningfully identifiable behaviour, is by assuming a Gaussian
random walk, i.e., the parameters are assumed to be constant, but driven by a noise process
qθk .

The generic motion model for the state-and-parameter estimation case can be described
as

xk = f(xk−1, θk−1, uk−1) + qk−1, (4.8a)
θk = θk−1 + qθk−1, (4.8b)
yk = h(xk, θk, uk) + rk, (4.8c)

where the state transition function f : Rn 7→ Rn is linear in its states, but nonlinear when
considering an augmented state-and-parameter vector [x, θ]T. The explicit expression
for (4.8a) is the same as (4.6), but with time-varying model parameters, θ. Likewise,
the measurement model (4.8c) in the state-and-parameter estimation scheme is the same
as (4.5b), but is now nonlinearly dependent on the model parameters.
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4.2 Parametric System Identification
The first order RC model, illustrated in Figure 3.4b and characterised by equations (3.8)
and (3.9), is an equivalent circuit model and does not, as such, have any physical meaning
in terms of its electrical parameters,

θ =
[
R0 R1 C1

]T
.

In order to choose a suitable black-box model structure to ultimately identify θ, a brief
system analysis is here presented for describing the input–output behaviour of the circuit,
see Figure 3.4b, in terms of its parameters. This is followed by a description and selection
of model structure as well as the method used to fit model parameters to measurement
data. The section is concluded with a comparison between the data and the resulting model
predictions.

4.2.1 System Analysis
The continuous-time transfer function from load current i(t) to total diffusion voltage,

vd(t) = vrc(t) + i(t)R0,

where vrc(t) is defined in eq. (3.9), is obtained by Laplace transformation:

Vd(s)
I(s)

= R0 +
R1

1 + R1C1s
=

R0 + R1 + R0R1C1s
1 + R1C1s

. (4.9)

Here, s denotes the complex Laplace transform variable. For computer implementation
a discrete-time transfer function is required. Here, one is obtained using the bilinear
transform,

s =
2
Ts

1 − z−1

1 + z−1 , (4.10)

where z now denotes the discrete-time equivalent of the variable s, and Ts is the sampling
time. Using (4.10), the discrete-time transfer function that corresponds to (4.9) is

Vd(z)
I(z)

=
β0 + β1z−1

1 + α1z−1 , (4.11)

with coefficients defined in terms of the equivalent electrical parameters as

α1 =
Ts − 2R1C1
Ts + 2R1C1

, (4.12a)

β0 =
R0Ts + R1Ts + 2R0R1C1

Ts + 2R1C1
, (4.12b)

β1 =
R0Ts + R1Ts − 2R0R1C1

Ts + 2R1C1
. (4.12c)
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Given knowledge about the coefficients α1, β0, and β1, the RC model parameters θ can
be obtained from the expressions in (4.12) as

R0 =
β0 − β1
1 − α1

, (4.13a)

R1 =
2β1 − 2β0α1

1 − α2
1

, (4.13b)

C1 =
(1 − α1)

2

4(β1 − β0α1)
. (4.13c)

4.2.2 Linear Time-Series Models
The objective here is to find the, in some sense, best possible values for the coefficients
a1, b0, and b1 for the discrete-time transfer function in (4.11). These will statically describe
the battery system in state-only estimation, and serve as the initial guess in the state-and-
parameter estimation scheme. For the particular problem of finding black-box parameter
values, a common method is to consider observed input, u(t), and output, y(t), sequences
for the system in eq. (4.11). Since actual measurements are utilised, it is also natural to
assume that a, possibly coloured, error signal, e(t), is present in the data. This scenario can
be written generally in the time-domain using the shift operator q [51], which is such that
qy(tk) = y(tk+1) where tk = kTs, as

y(t) = G(q, ϑ)u(t) + H(q, ϑ)e(t), (4.14)

Here, the input is the load current, u(t) ≡ i(t), the output is the diffusion voltage, y(t) ≡ vd(t),
G(q, ϑ) represents the transfer function in (4.11), H(q, ϑ) is the error signal linear filter, and
ϑ denotes the linear time-series model parameters, as coefficients of the transfer functions
G(q) and H(q). Obtaining the best parameter values depends on how the structure of G(q)
and H(q) are selected.

The transfer functions in the general form (4.14), called the Box-Jenkins (BJ) model,
can be written as polynomial rational functions of the shift-operator q:

G(q, ϑ) =
B(q)
F(q)

=
b0 + b1q−1 + b2q−2 + · · · + bnbq−nb

1 + f1q−1 + f2q−2 + · · · + fnf q−nf
, (4.15a)

H(q, ϑ) =
C(q)
D(q)

=
c0 + c1q−1 + c2q−2 + · · · + cncq−nc

1 + d1q−1 + d2q−2 + · · · + dndq−nd
, (4.15b)

where F(q) is the auto-regressive part of the output dynamics, B(q) describes the injection
of the exogenous input into the system, C(q) represents a moving average function of the
white noise signal, and D(q) represents the dynamics that the disturbance signal is subjected
to when entering the system. A summary of the three most relevant linear time-model
structures are presented in Table 4.1: the Auto Regressive Moving Average with eXogenous
input (ARMAX) model, the Auto Regressive with eXogenous input (ARX) model, and the
Output-Error (OE) model. The main problem to consider when selecting the polynomials
in (4.15) is how to model the injection of the disturbance signal e(t) into the system.

For the problem at hand, it is reasonable to assume that the error enters early in the
process [2] and that it is thus coloured by the auto-regressive part of the output dynamics.
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Table 4.1: Summary of relevant linear time-series model structures. The polynomial time-shift transfer
functions are divided into the following categories: the auto regression of the output A(q)y(t), the exogenous
input B(q)u(t), and the moving average of the white noise C(q)e(t) [51]; cf. equations (4.14) and (4.15).

Model Type Mathematical Structure Description

ARMAX F(q) = D(q) = A(q)

A(q)y(t) = B(q)u(t) + C(q)e(t)

Auto-RegressiveMoving Average with eXogenous input:
Noise and input are subjected to the same dynamics.
Suitable if noise enters early in the process.

ARX C(q) ≡ 1
A(q)y(t) = B(q)u(t) + e(t)

Auto Regressive with eXogenous input: Simpler form
of the ARMAX model, without the moving average
function of the white noise.

OE H(q) ≡ 1
A(q)y(t) = B(q)u(t) + A(q)e(t)

Output Error: The properties of the disturbance signals
are not modelled, and the error is simply the difference
between the actual output and the noise-free output.

The simplest model structure, among those in Table 4.1, satisfying this assumption is the
ARXmodel [51]. The mathematical significance of this choice, referring to equations (4.14)
and (4.15), is that F(q) = D(q) = A(q) and C(q) ≡ 1, meaning that the noise is strongly
influenced by the auto-regressive operator of the battery diffusion voltage dynamics [2].
This is illustrated in Figure 4.1.

B + 1
A

e(t)
u(t) y(t)

Figure 4.1: Block diagram describing the ARX model structure.

Thus, we arrive at the following linear time-series model for the current to diffusion
voltage dynamics:

A(q)y(t) = B(q)u(t) + e(t). (4.16)

With model orders na = 1 and nb = 2, as suggested by the discrete-time transfer function
in equation (4.11), we have that (4.16) is equivalent to

y(tk) + a1y(tk−1) = b0u(tk) + b1u(tk−1) + e(tk). (4.17)

4.2.3 Linear Regression
To find the best vector of parameters ϑ∗, the ARX linear-in-parameters system output
predictor ŷ(t | ϑ) is constructed from (4.17), using discrete measurement sequences of the
input u(t) and output y(t) collected at uniformly spaced time instants tk, k = 1, . . . , N , as

ŷ(tk | ϑ) = −a1y(tk−1) + b0u(tk) + b1u(tk−1) = ϑ
Tϕ(tk), (4.18)

where
ϑ =

[
a1 b0 b1

]T
, and ϕ =

[
−y(tk−1) u(tk) u(tk−1)

]T
. (4.19)

The ARX model prediction error, given the set of identified parameters ϑ, is then

ε(tk | ϑ) = y(tk) − ŷ(tk | ϑ). (4.20)
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By forming the mean squared error

VN (ϑ) =
1
N

N∑
k=1

ε2(tk | ϑ), (4.21)

an estimate of the best vector of parameters is obtained, in the least-squares sense, by
solving the minimisation problem

ϑ∗N = arg min
ϑ

VN (ϑ). (4.22)

Using Matlab’s System Identification Toolbox, an ARX model of order na = 1 and
nb = 2 was fitted with a congruence of 97% to current and voltage measurement data for
the E2 and A123 battery chemistries. Model predictions are compared to measurements in
Figure 4.2. Observation of the diffusion voltage, used as output in the system identification
process, were derived from the relationship (3.6) using LUTs for mapping SOC to OCV
and a sequence of true SOC values. See Section 4.3 for a detailed explanation of this data.
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Figure 4.2: System identification results for two different lithium-ion cell chemistries: E2 (top) and A123
(bottom). The first 30–100min are shown for the measured data, vd = v − voc, 25 ◦C, and an ARX(1,2,0)
model output prediction. The first 30min not include in the plot are used to bring the battery cell to its
nominal operating mode. A fitness of 97% is achieved for both chemistries.

The values for the best vector of parameters are given in Table 4.2, expressed in terms
of θ.

4.2.4 Significance of Non-Stationary Parameters
One of the key problems in SOC estimation is that the systems are non-stationary. This
means that no single set of parameters ϑ can describe the complete battery cell input–output
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Table 4.2: Results from system identification for the first order RC model.

Chemistry R0 [mW] R1 [mW] C1 [F]

E2 10.8 12.3 1941
A123 10.8 11.6 1979

behaviour as the SOC changes. The proposed solution to this problem investigated in this
thesis is to jointly estimate how the model parameters change when SOC changes. For
this purpose, the system identification is made using only an initial sub-sequence of the
input–output data, where the process is nearly stationary. The identified parameters will
then serve as an initial guess for the state-and-parameters estimation scheme. The same
initial-guess parameter values are used for the state-only estimation algorithm as well, to
illustrate the significance of the adaptive approach.

4.3 Data Sets and Test Scenario

Data sets for algorithm benchmarking and validation are obtained from the supplementary
material to [1], available1 at [52], and consists of:

• Time signals for cell load current, terminal voltage, and SOC when subjected to a
typical automotive application load profile at different temperatures, see Figures 4.3
and 4.4.

• Temperature dependent parameter values for coulombic efficiency η and total cell
capacity Q, see Figure 4.5.

• OCV curves as functions of SOC, Figure 4.6.

4.3.1 Dynamic Test Sequence

The test scenario is based on an Urban Dynamometer Drive Schedule (UDDS) profile,
designed to excite battery cell dynamics in a way representative for a typical EV/HEV
application [19]. In the test the battery cell, with initial SOC z0 = 100 %, is subjected to a
load current consisting of a sequence of UDDS profiles, see Figure 4.3a, alternated with
5min intervals of zero load current. The UDDS cycle is only applied if the SOC is in the
range z ∈ [90, 10]%, which is the estimation region of interest.2 The entire dynamic test is
explained by Program 1.

The ground truth for estimation tests is constituted by input–output behaviour obtained
from the UDDS tests, illustrated in Figure 4.3, as well as a predetermined “true” SOC
signal, see Figure 4.4. As seen in Figure 4.4, the test sequence begins at 100% SOC.
However, to properly evaluate the convergence of the filter SOC estimate to its true value, a
filtering sequence is initialised with an offset associated with a relatively high uncertainty.
This is further detailed in Section 4.4 and Table 4.3.

1Copyright © 2015 by Gregory L. Plett of the UCCS. Licensed under CC BY-NC-SA 4.0.
2The SOC range z ∈ [90, 10]% represents the expected design limits for the cell chemistries of interest [18].
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Program 1 Dynamic UDDS discharge test.
Require: Uniform cell test temperature T
Require: v = vh (T ) at steady state: z = 100 %
Ensure: z < 10 %

while z > 90 % do
i ← 1C rate

end while
while z ≥ 10 % do

i ← UDDS cycle
if UDDS ended then

i ← 0
Pause(5 min)

end if
end while
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(a) One cycle of the UDDS current profile. The
desired 1C rate is adjusted for a specific cell by
multiplication with its total capacity Q.
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(b) Sample terminal voltage outputs for the E2 and
A123 cell chemistries when subjected to the UDDS
profile.

Figure 4.3: Sample input and output sequences for the exactly 35min long UDDS profile.

4.3.2 Temperature Dependent Parameters and Hysteresis

The temperature dependency of total cell capacity Q and coulombic efficiency η, introduced
in Chapter 3, are displayed in Figure 4.5 for two different battery cell chemistries: E2
and A123. Parameter values are given for the eight uniformly spaced temperatures
T ∈ {−15,−5, 5, 15, 25, 35, 45} ◦C. However, the available data sets do not provide a
meaningful way of varying cell temperature for any single test sequence.

Temperature dependent OCV–SOC curves are also accessible for the same range of
temperatures as η and Q. However, due to the complex behaviour of the OCV–SOC
hysteresis nonlinearity, and the simplistic first order RC model used in the filtering
algorithms, a LUT for average OCV is utilised, based on the present SOC estimate and
temperature. Furthermore, the nominal desired operating temperature for battery packs
in EV/HEV applications is in the range 15–35 ◦C [53], [54], in which the OCV–SOC
relationship is near stationary. Therefore, tests will be restricted to the cell temperature
25 ◦C, as marked in Figure 4.5, and the OCV–SOC data is incorporated in the estimation
scheme as the average of the charge and discharge curves, displayed in Figure 4.6.
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Figure 4.4: Ground truth of SOC from the UDDS test in Program 1. To the left (a) is the complete time plot
and to the right (b) is a magnified segment between 10min and 60min; marked in (a) with a rectangle.
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Figure 4.5: Temperature dependent battery cell parameters. Pre-estimated cell coulombic efficiency η and
total cell capacity Q for eight different temperatures. The filled markers, at 25 ◦C, are the parameter values
used in the test scenario.

4.4 Filter Dimensions and Tuning
The performance of any filter is highly dependent on proper tuning of its parameters; in
particular the noise covariance matrices of the motion and measurement model, denoted Q
and R respectively. Each application requires a different setting, which depends on the
type of processes involved in the estimation problem, the sampling time used in computer
implementations, and the level of certainty associated with the mathematical model of the
process and the measurements. A brief description of the different tunable parameters
involved in this thesis is given below in terms of what they represent in the context of
mathematical modelling.

The values used in subsequent tests for the tuning parameters explained below are
summarised in Table 4.3.

Initial State Vector x0

The initial state vector, x0, represents the prior information about the initial condition of
the system. In the dynamic test considered, the battery is being discharged from its fully
charged state from rest. This means the initial SOC is 100% and no voltage drop across the
RC sub-circuit. Initial values for parameters R0, R1, and C1 are identified using parametric
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Figure 4.6: OCV curves as functions of SOC for 25 ◦C. The hysteresis observed in charge and dischare for
both chemistries is approximated by an average LUT.

system identification explained in Section 4.2. With the purpose to investigate the transient
behaviour of the filter, the SOC is initialised with an offset of 20%. This makes it possible
to study the stability and convergence of the filter as the dynamic test progresses.

Initial Covariance P0

The initial filter covariance matrix, P0, represents the uncertainty of the initial state of
the system in terms of statistical variance. For a system in which the initial state is rather
unknown, corresponding values in the P0 matrix are set to a high value, and conversely to
a low value if the initial state is certain. If there’s no meaningful way of determining the
initial state, x0, the initial state covariance is usually tuned to represent a higher uncertainty
than the measurements, to achieve faster initial convergence of the estimate towards what
can be inferred from the available measurements. In the EnKF, the P0 matrix determines
the spread of the initial state realisations, X0.

Process Noise Q

The process noise matrix, Q, models the uncertainty of the states in the motion model.
The diagonal elements represent the intensity, in terms of variance, of the random noise
processes that are part of the state evolution. Off-diagonal elements represents any possible
correlation between the stochastic parts of state evolutions. For a system with independent
states, the off-diagonal elements are usually set to zero. Smaller variance levels in the
diagonal of Q means less uncertainty of a particular state variable, i.e, the state evolution is
more deterministic.

For the problem at hand, the evolution of the dynamical system is rather small during
each sampling period, Ts = 1 s. As such, the stochastic part of the dynamical model is of a
smaller or equal magnitude. The order of magnitude for the process noise is determined
by analysis of the observable states in the data sets. Further tuning is performed with the
objective to improve the SOC estimate.
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Measurement Noise R

The measurement noise matrix, R, models the measurement uncertainty in terms of the
expected variance of the noise in sensor measurements. A lower measurement variance
represents higher accuracy of the sensor measurements.

The Kalman gain is computed based on the process noise Q and the measurement noise
R, representing the quality of the information provided by the dynamical model and the
observations of the system, respectively. Lower values in Q means that more trust is put in
the motion model, while lower values in R results in a filter that trusts the measurements
more. The relative values of Q and R determine the Kalman gain, K, and directly affect
the measurement update.

EnKF Ensemble Size N

The number of ensemble members for each state realisation is called the ensemble size.
As suggested in Section 2.4.2, there is a lower limit for the ensemble size below which
the filter is unable to converge. The number of members in the ensemble also determines
the accuracy of the estimate and the associated uncertainty; at an expense of computation
time. For lower ensemble sizes, an increase in N would drastically improve the accuracy.
However, for larger ensemble sizes, a similar increase in N would not significantly improve
the accuracy, but would increase the computation time, leading to a saturation in the effect
of the ensemble size. Thus, as long as convergence of the estimate is achieved, the ensemble
size can be tuned for the trade-off between accuracy and computational cost.

PF Particle Set Size N

Similar to the EnKF, the PF uses a weighted set of N samples, or particles, to represent the
filtering distribution. Analogous arguments can be made regarding the particle size as with
ensemble size in respect to convergence, accuracy and computation time. However, since
the bootstrap version of the PF is used, the number of particles is required to be higher,
relative to the number of ensemble members.

UKF Parameters

As described earlier, the UKF is a sigma-point method, in which the set of sigma-points
are chosen deterministically to capture the nonlinearities in the motion and measurement
models. The parameters α and κ together define the spread of the sigma-points, while β is
related to the prior distribution. Setting the β parameter to 2 is optimal for a prior that is a
Gaussian distribution, which is the case here.

4.5 Performance Metrics
A standardised evaluation system is required to assess and gauge the performances of
different state estimating algorithms. Different performance metrics—estimation accuracy
Kest, drift Kdrift, residual charge determination Kres, and transient behaviour Ktrans, defined
in [45] and used in [46]—are incorporated to evaluate each algorithm individually, and to
compare the results with other algorithms. Various error boundaries ε are used to define
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Table 4.3: Filter tuning parameters for the two different chemistries, E2 and A123. The values for the
model parameters R0, R1, and C1 in the initial state vector x0 have been obtained from the parametric system
identification, explained in Section 4.2.

Parameter E2 A123

Initial state vector, x0 z 80% 80%
vrc 0V 0V
R0 10.8mW 10.8mW
R1 12.3mW 11.6mW
C1 1941 F 1979 F

Initial covariance, P0 z 5 × 10−3 5 × 10−3

vrc 1 × 10−12 1 × 10−12

R0 1 × 10−5 1 × 10−5

R1 1 × 10−5 1 × 10−5

C1 1 × 10−5 1 × 10−5

Process noise, Q z 1 × 10−9 1 × 10−9

vrc 1 × 10−9 1 × 10−9

R0 1 × 10−9 1 × 10−9

R1 1 × 10−9 1 × 10−9

C1 1 × 10−5 1 × 10−5

Measurement noise, R v 5 × 10−2 5 × 10−2

EnKF ensemble size N 2 × 103 2 × 103
PF particle set size N 5 × 103 5 × 103

UKF parameters α 1 1
β 2 2
κ 5 5

Sampling time Ts 1 s 1 s

the performance metrics. Each error boundary corresponds to an evaluation score P(ε),
defined as

P(ε) =



5, for 0 % ≤ |ε | ≤ 0.5 %,
4, for 0.5 % < |ε | ≤ 1 %,
3, for 1 % < |ε | ≤ 2 %,
2, for 2 % < |ε | ≤ 4 %,
1, for 4 % < |ε | ≤ 8 %,
0, for |ε | > 8 %.

(4.23)

4.5.1 Estimation Accuracy Kest

Estimation accuracy is the weighted average of evaluation scores for all the error boundaries.
Let δ be the absolute difference between the true SOC, z, and the estimated SOC, ẑ, let
Σ∆tδ∈εi be total time duration in a certain error boundary, and let ttotal be the total measured
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time for all error boundaries. Then, the estimation accuracy Kest is calculated as

ε = z − ẑ,

Kest =
6∑

i=1

(
P(εi)

Σ∆tδ∈εi
ttotal

)
.

(4.24)

4.5.2 Drift Kdrift

Long validation tests or real-time applications during repeated discharge of batteries can
lead to error accumulation and drift in the error measurements. Drift in the error can be
measured by fitting a regression line,

y = at + n, (4.25)

to the estimation error, ε = z− ẑ. The average drift score, Kdrift, is calculated by multiplying
the gradient a of the regression line with the time representing 1 h of testing, t1h,

ε1h = at1h, Kdrift = P(ε1h), (4.26)

where ε1h is the error per hour. This validation principle is illustrated in Figure 4.7.

ε1h

t1h t

ε Error, z − ẑ
Regression gradient, at

Figure 4.7: Validation principle for the drift error, Kdrift. The linear regression of the estimation error, z − ẑ,
gives the drift error, P(ε1h).

4.5.3 Residual Charge Determination Kres

The estimation and drift validation metrics are both measures of the overall filtering
performance. In general, it is of interest to have access to accurate knowledge about when
the battery is starting to deplete. Thus, the estimation scheme is also validated based on the
error between the true and the estimated residual capacity, zres. This performance metric is
calculated as

ε = | ẑres − zres |,
Kres = P(ε).

(4.27)

4.5.4 Transient Behaviour Ktrans

Transient behaviour is the initial response of the system to any input before it reaches the
steady state. Incorrect initial values are the perturbation given to the system to analyse its
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transient behaviour. To measure Ktrans, initial conditions are set to incorrect values and the
error bound at the time instant t10%, 10 percent of the total time duration is compared with
the difference in true SOC, z, and estimated SOC, ẑ, at t0% to evaluate Ktrans as:

ε = zt10% − ẑt10%,

Ktrans = P(ε)
|zt0% − ẑt0% |

zt0%

.
(4.28)

The highest Ktrans score is achieved when the initial true SOC, z, is 100% and initial
estimated SOC, ẑ, is 0%; and the error, ε at t10% reaches the smallest error bound. This
implies that the estimate has managed to reach the true SOC at t10% frommaximum possible
initial perturbation.
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Results

Presented below are results from simulations in Matlab using recorded measurement
data, detailed in Section 4.3, representing the dynamic discharge test sequence outlined in
Section 4.3.1. All tests are made assuming a constant temperature of 25 ◦C, as explained in
Section 4.3.2.

Tables 5.1 and 5.2 displays overall performance metrics, defined in Section 4.5, for the
three filters in both state-only and state-and-parameter estimation configuration, for tests
performed in the two battery cell chemistry types E2 and A123 respectively. The tables
also include a set of measures for the SOC estimation error of the entire test sequence.
These measures are the Root-Mean-Square Error (RMSE),

RMSE (z) =

√
1
T

T∑
k=1
(zk − ẑk)

2, (5.1)

the Mean Absolute Error (MAE),

MAE (z) =
1
T

T∑
k=1
|zk − ẑk |, (5.2)

and the mean filter estimated uncertainty in the form of STandard Deviation (STD),

STD (z) =
1
T

T∑
k=1

√
Pz

k |k, (5.3)

where Pz
k |k is the estimated variance for the filtered SOC at time step k. The RMSE

and MAE have also been computed for the filter output predictions, i.e. the error of the
predicted terminal voltage as compared to the corresponding measurements.

Plots displaying evolution of the estimation error and associated estimated uncertainty
are provided in Figures 5.1 and 5.2. Parameter evolutions are plotted in Figures 5.4 and 5.5
for the joint filters, as well as in Figure 5.6 in the form of estimated total internal battery
cell resistance.

A comparison of the state-only EnKF performance in the A123 chemistry is also made
in Figure 5.3 for different ensemble sizes. The performance is evaluated in terms of the
estimated uncertainty, related to the actual estimation error, see (5.3). The portion of the
total test sequence where the SOC estimate has a larger error than three standard deviations,
see (5.3), the estimation accuracy, defined in (4.24); and the total computation time.
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Table 5.1: Performance benchmarks for estimation tests performed with the E2 battery cell chemistry type.
The SOC estimation errors are given in terms of RMSE, MAE, and the filter estimated STD of the SOC
estimate for all three filter algorithms in both state-only and state-and-parameter estimation. Estimation
scores are given in terms of the performance metric defined in section 4.5. The error of the filter output
predictions are also given, in terms of both RMSE and MAE.

Metric Unit UKF Joint UKF EnKF Joint EnKF PF Joint PF

SOC RMSE % 2.13 2.43 1.07 0.95 1.72 2.29
SOC MAE % 1.93 2.22 0.94 0.79 1.63 2.24
SOC STD % 0.73 0.86 0.48 0.49 0.32 0.31
Output RMSE mV 11.20 11.15 13.90 13.86 13.99 16.76
Output MAE mV 8.29 8.28 10.75 10.68 10.24 11.60
Kest — 2.75 2.57 3.76 3.90 2.88 2.13
Kdrift — 5 5 5 5 5 5
Kres — 3 3 3 3 3 3
Ktrans — 0.6 0.6 0.8 1 0.6 0.4

Table 5.2: Performance benchmarks for estimation tests performed with the A123 battery cell chemistry
type. The SOC estimation errors are given in terms of RMSE, MAE, and the filter estimated STD of the
SOC estimate for all three filter algorithms in both state-only and state-and-parameter estimation. Estimation
scores are given in terms of the performance metric defined in section 4.5. The error of the filter output
predictions are also given, in terms of both RMSE and MAE.

Metric Unit UKF Joint UKF EnKF Joint EnKF PF Joint PF

SOC RMSE % 1.43 1.28 0.60 0.57 0.44 0.41
SOC MAE % 0.83 0.74 0.30 0.28 0.20 0.18
SOC STD % 0.42 0.45 0.31 0.32 0.27 0.29
Output RMSE mV 18.22 16.67 31.90 30.97 45.26 43.23
Output MAE mV 14.22 12.85 23.49 22.72 27.13 27.13
Kest — 4.14 4.19 4.86 4.87 4.93 4.90
Kdrift — 5 5 5 5 5 5
Kres — 2 2 2 2 3 3
Ktrans — 1 1 1 1 1 1
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E2 SOC Estimation Results
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Figure 5.1: Estimation results for the three different filter algorithms, in both state-only and state-and-
parameter (joint) estimation configurations, for the UDDS discharge test of the E2 chemistry at 25 ◦C. The
estimation error (thick line) ∆z = ẑ − z is plotted with the associated filter uncertainty (thin lines, shaded
area); displayed as three standard deviations from the estimate. The vertical dotted lines mark where the true
SOC reaches 90% and 10%.
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A123 SOC Estimation Results
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Figure 5.2: Estimation results for the three different filter algorithms, in both state-only and state-and-
parameter (joint) estimation configurations, for the UDDS discharge test of the A123 chemistry at 25 ◦C. The
estimation error (thick line) ∆z = ẑ − z is plotted with the associated filter uncertainty (thin lines, shaded
area); displayed as three standard deviations from the estimate. The vertical dotted lines mark where the true
SOC reaches 90% and 10%.
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Figure 5.3: Performance metrics for the EnKF using different ensemble sizes for state-only estimation in
A123 cell type. In (a) is the SOC RMSE plotted together with the estimated uncertainty as standard deviation.
In (b) is the time, in percentage of the total estimation time, plotted for which the absolute estimation error
is larger 3 standard deviations; computed from the filter estimated uncertainty. In (c) is the estimation
performance metric Kest plotted, and in (d) the computation time for the total estimation sequence.
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E2 Parameter Evolutions
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Figure 5.4: Evolutions of estimated ECM parameters for the UDDS discharge test of the E2 chemistry at
25 ◦C. Note that due to the employment of an ECM, there is no ground truth available for these results.
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A123 Parameter Evolutions
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Figure 5.5: Evolutions of estimated ECM parameters for the UDDS discharge test of the A123 chemistry at
25 ◦C. Note that due to the employment of an ECM, there is no ground truth available for these results.
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Figure 5.6: Estimated total internal resistance. The sum of the resistance parameters, R0 and R1, as an
approximation of the total internal resistance of the E2 (top) and A123 (bottom) battery cells.
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6
Discussion

The discussion for this thesis begins with a review of the results presented in Chapter 5.
Estimation errors for the SOC are discussed and compared for the two different battery cell
chemistry types, E2 and A123, as well as in regard to the parameter estimation results. A
comparison of the estimation results are also made in relation to an external study.

A discussion is also provided regarding the EnKF dimensions and tuning, followed by
evaluations of some of the most important choices made concerning the methodology and
scientific approach of this thesis.

6.1 Discussion of Estimation Results
Results using the UKF, EnKF, and PF to estimate the SOC with and without parameters—
employing the first order RCmodel for output predictions—are shown in Figures 5.1 and 5.2;
with associated numerical performance metrics in Tables 5.1 and 5.2 respectively. Rather
than showing the actual state evolution together with the different estimate sequences, we
have plotted the SOC estimation error, z − ẑ, for the complete dynamic discharge test. We
have also plotted the associated uncertainty of the estimate as error bounds corresponding
to three STDs, computed from Pk |k . Preferably, the zero-error should be included in this
confidence region for all estimates, or at least when the true SOC is in the region of interest,
which corresponds to 10–90% SOC. The STD is furthermore an indicator of whether a
particular algorithm is working properly or not. Preferably, the average estimated filter
STD should be in the same order of magnitude as the estimation RMSE; both metrics are
presented in Tables 5.1 and 5.2.

E2 Cell Tests

We begin by discussing the tests performed on the E2 battery cell chemistry, with results
displayed in Figure 5.1. The filters are purposefully initialised with an incorrect SOC value
of 80%, the true initial value being 100%, to study the convergence of the filter estimates
to the true value; called transient behaviour. The initial uncertainty is therefore relatively
large, but reduces over time and converges to different domains for the different filters.
The UKF and EnKF are both able to converge faster to the true state. The PF, however,
does not converge, but produces a SOC estimate with a nearly constant offset of about 2%
from the true value throughout the discharge sequence. The convergence of the PF to the
wrong value could be the result of erroneous initial parameters, errors in the OCV–SOC
LUT, using too few particles, or improper tuning. As the discharge test progresses, the
estimation error is kept at a constant level, except for the UKF, which slowly diverges from
the zero-error. At the very end of the discharge test the estimation errors of all filters are
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reduced to about 1%, with a comparatively small uncertainty as the predicted terminal
voltage approaches vl , resulting in an intermediate residual score, Kres, of 3 for all filters.

The constant offset observed for all filters is likely related to the OCV–SOC relationship,
which in reality includes a quite substantial hysteresis for the E2 chemistry, but is
approximated by an average curve, see Figure 4.6a. Since both charging and discharging
of the battery cell is occurring during the dynamic discharge test, i.e., the sign of the
load current is alternating, the average approximation introduces an uncertainty in the
measurement function that can yield very different SOC correspondences. For instance, at
60% SOC, the OCV could vary in 80mV between the charge and discharge curves. This
poses an important problem as the simple RC model relies heavily on OCV and the only
available observation of the actual process is through a single measurement of the terminal
voltage. Therefore, errors in the OCV curve, in combination with the potential parameter
errors in the rather crude ECM, has a large impact on the SOC estimate. The model error
is further confirmed at the end of the discharge test, where the filters produce an improper
overconfident estimate.

A123 Cell Tests

Moving on to the tests performed on the A123 battery cell chemistry, with estimation results
shown in Figure 5.2. As with the E2 tests, all filters are initialised with an offset in SOC
at 80%. In this case, however, all filters are able to move their respective SOC estimates
toward the true value. The error plots show exceptional filtering performance for the EnKF
and PF, until the true SOC reaches 10%, at which point we observe a behaviour similar
to that in the E2 tests, namely that the estimate diverges from the true state. The EnKF
has a final estimation error of 2.5% while the PF finishes as 1.5%. The UKF, however,
clearly diverges at the time of 400min. At this point the true SOC is about 35%, which is
where the OCV curve, cf. Figure 4.6b, goes from being almost completely flat to having a
non-zero gradient during discharge. Relating to the E2 tests, the residual estimation scores,
Kres, are lower in the A123 cell type, with a value of 2 for all filters except the PF.

One of the reasons for the deviating behaviour of the UKF is likely related to the
filter confidence in the terminal voltage measurements. As seen in Table 5.2, the output
prediction error of the UKF, in terms of RMSE, is much smaller than for the EnKF and the
PF. Even though all filters are tuned identically, using the same process and measurement
noise matrices, the UKF is apparently producing an SOC estimate that better conforms to
the observed terminal voltage. This could imply that the OCV influences the UKF estimate
more than in the other filters and that conversely the EnKF and the PF rely more on the
model prediction of the SOC. The latter attitude is apparently to an advantage in the A123
cell, which has a very flat OCV curve in the range 35–90%, as seen in Figure 4.6b. This
means that voltage measurements do not provide much information about the SOC while
in this region since a particular OCV value can correspond to a wide range of SOC values.
Also, comparing the output prediction errors of the A123 and E2 tests, the RMSE is much
higher for the A123 cell type; implying a sensitivity in the measurement function and the
OCV–SOC relationship.
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Joint Parameter Estimation

To handle variations in battery cell dynamics during the discharge test, we have implemented
a parameter estimation approach for adaptation of the rather simple ECM used for output
predictions. The results of these tests are given in the same format as the state-only filters
in Figures 5.1 and 5.2, and Tables 5.1 and 5.2. The evolution of parameter estimates
is plotted in Figures 5.4 and 5.5 for the two different battery cell chemistries. A total
internal resistance approximation is presented in Figure 5.6 as the sum of the two resistive
parameters, R0 and R1.

Slight improvements are observable only for the EnKF in the E2 tests: all error statistics
drop and the estimation metric Kest increases from 3.75 to 3.90, as seen in Table 5.1. In
the A123 tests, all joint versions show small improvements in estimation error statistics,
perhaps best illustrated by the small decrease in MAE seen in Table 5.2. Due to the
stochastic nature of the EnKF and PF, however, these small performance enhancements
are difficult to verify, and it is thus appropriate to have a discussion about some of the
drawbacks of this approach.

The joint filter versions are realised by augmentation of the two-dimensional state
vector to also include the three ECM parameters: R0, R1, and C1. As the motion model
for the parameter evolution is implemented as a stochastic walk, cf. Section 4.1.2, the
joint estimation scheme introduces three additional noise processes to tune. This poses
a rather intangible problem, as the ECM parameters does not have a distinct physical
correspondence. Ultimately, the parameter evolution is impossible to evaluate other than
observable improvements in the SOC estimation sequence. Since these are of a rather
small magnitude, and only for the EnKF, our investigation leaves research question (ii)
unresolved.

Parameter Evolution in the Different Filters

Although it is not possible to directly evaluate or verify the parameter estimates, results
from the three different filters can be compared for consistency. Similar evolution patterns
in different filters could indicate that the filter innovation from the voltage measurements is
enough to move the parameter estimates in a reasonable direction. For the E2 chemistry, see
Figure 5.4, there’s a distinguishable similarity between the UKF and EnKF R0 estimates:
the evolution curves having a similar shape and value range. The PF R0 estimate is different
in that a higher value is estimated in the middle of the estimation sequence, while also
showing a quite different evolution curve. The other parameters on the other hand show
very different behaviour as the cell is being discharged. In particular, the UKF C1 estimate
is almost completely static, as compared to the other two filters, which could contribute to
the slightly worse SOC estimate produced by the UKF.

A similar discussion can be made for the A123 parameter estimates, which are plotted
in Figure 5.5. As for the E2 parameters, the R0 estimate is very similar when comparing
UKF and EnKF, while the PF shows a rather different behaviour, especially in the final
value, which is much smaller than in the other two algorithms. Figure 5.5 further displays
a similar behaviour of the R1 estimate between the three filters, but in rather different value
ranges. Again, the C1 parameter is relatively static in the UKF, and does not present any
similar behaviour when comparing the EnKF with the PF.

In conclusion, the instantaneous polarisation resistance, R0, is the only parameter
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showing a distinct evolution of its estimate during the discharge test. As this is the most
tangible of the ECM parameters, representing the battery cell’s internal ohmic resistance,
these findings are not too surprising. In fact, a similar behaviour has been observed in [55],
where a second order RC model is used to estimate different resistive components of a
lead-acid battery cell. In particular, the total internal resistance is examined in [55], which
shows an increase as the SOC of the cell approaches zero percent. A similar behaviour can
be observed in Figure 5.6 for the sum of R0 and R1. Note though that such an analysis of
the total resistance should really be made for non-dynamic discharge tests, to only consider
static impedance components. The dynamic tests performed in this study does also excite
the dynamic impedance modelled by the capacitance C1.

Comparison of Cell Chemistry Tests

In the discussions above there is a clear difference in the estimation performance of SOC
when comparing the two different cell chemistry tests. Not only visible in Figures 5.1
and 5.2, but also verified by the performance metrics in Tables 5.1 and 5.2. For instance,
the SOC RMSE in the E2 cell was found to be in the range 1.07–2.13% for the state-only
filters, and 0.95–2.43% for the joint filters. In contrast, the SOC RMSE in the A123 cell
was only 0.44–1.43% for the state-only filters, and 0.41–1.28% for the joint versions,
almost half the RMSE of the E2 cell.

A possible inconsistency in the filter algorithms can be analysed by inspection of the
filter estimated uncertainty. Comparing the average square-root of Pk |k , which we call the
filter STD, with the estimation RMSE, a consistency was observed in the uncertainty to
estimation error ratio. The ratio for both versions of the UKF was 0.30–0.35 in both cell
types, and 0.45–0.56 for both EnKF versions. The PF showed to have the best ratio of
0.61–0.7 in the A123 cell type, and conversely the worst ratio of 0.14–0.18 in the E2 type.

There are a number of possible reasons for the quite apparent difference in performance,
detailed in the chemistry-specific discussions. The relatively bad performance in the E2
cell is likely a combination of a problematic OCV relationship to the SOC, the ECM
battery model being over-simplified for the particular situation, model parameters being
erroneously identified, and improper tuning of the filter noise. In connection to research
question (i), it is likely that the choice of battery model should be made with regard to the
battery cell chemistry type of interest. A corollary to this hypothesis is that the first order
RC model is suitable for the A123 cell type.

Results in Comparison to Other Research

With the goal to investigate the validity of the EnKF in the SOC estimation problem, it is
of interest to also evaluate its performance in relation to findings in other research. In the
two-part paper series [24], [25], a remarkably similar investigation to the one presented in
this report is performed using a sigma-point method, for state estimation only [24] as well
as joint estimation of states and battery model parameters [25].

The implemented filter algorithm, referred to as CDKF, uses a first order RC ECM for
terminal voltage prediction in a LiMn2O4 cell. In addition to estimating the SOC and the
voltage diffusion effect, the OCV voltage hysteresis is also estimated, cf. Figure 4.6. The
same UDDS discharge cycle test, described in Section 4.3.1, is performed at the constant
temperature of 25 ◦C. Under these premises, results presented in [25] showed a SOC
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estimation RMSE of 1.44% for the CDKF and 1.18% for the joint CDKF, when the filters
were initialised with a SOC offset of 20%, as in our own tests.

In comparison, our UKF is the closest relative among the three filters we have studied to
the CDKF algorithm in [25]. Concentrating on the A123 cell type, the estimation RMSEs
of our UKF were 1.43%, in state-only estimation, and 1.28% in the joint UKF. This is
well in line with the the findings in [25], with the exception that our joint UKF performs
slightly worse than the joint CDKF.

Our other filter algorithms—the EnKF, PF, and their respective joint versions—show
better results than the CDKFs in [25]. The RMSE was for the EnKF 0.60%, for the joint
EnKF 0.57%; for the PF it was 0.44% and for the joint PF 0.41%. Connecting to research
question (iii) in Section 1.3, we interpret this as an indication that the EnKF has good
potential as a nonlinear filtering algorithm in the SOC estimation problem.

6.2 EnKF Dimensions
The primary motivation for this thesis was to investigate the EnKF as a statistical filtering
algorithm for estimation of SOC in battery cells. The formulation of the recursive filtering
algorithm in Section 2.4.2 was succeeded by a short review of some of the important
advantages and disadvantages with the ensemble idea. As most significant issues are
coupled with a too small ensemble size, N , an investigation of the EnKF performance
for different ensemble sizes was made, to answer research question (iv). Results of this
analysis are shown in Figure 5.3, for the state-only estimation approach in the A123 cell
type.

The primary problem encountered when implementing the EnKF was that the filter
uncertainty was underestimated. Even though the state-space is of low dimension, a
quite large number of ensemble members were required in order to obtain an acceptable
uncertainty estimate, as related to the estimation error. In Figure 5.3a, the SOC RMSE
is plotted for different ensemble sizes, together with the filter estimated uncertainty. It is
apparent that the uncertainty is underestimated for sizes N < 200 but corresponds better to
the actual estimation error for N ≥ 500.

In Figure 5.3b, the uncertainty error is plotted versus ensemble size. The uncertainty
error is taken to be the percentage of the total length of the estimation sequence, where
the estimation error is larger than three STDs of the filter uncertainty. As expected, the
uncertainty error decreases with increasing ensemble size, and shows that for the N = 2000
setting, the uncertainty is underestimated for only 10% of the total sequence.

Figure 5.3c shows the performance metric Kest, see Section 4.5.1 for definition, as a
function of ensemble size. Apparently, the estimation accuracy is not improved in the
Kest sense for ensemble sizes above N = 1000 members. Finally, in Figure 5.3d, the total
computation time for the complete estimation sequence is plotted. As might be expected, it
increases linearly with the ensemble size.

As this thesis does not aim to design an algorithm towards any specific performance
requirements, as related to accuracy and time, it does not make sense to reason about
the optimal size of the ensemble in the EnKF. Although there seems to exist a definite
requirement on the choice of N for which the EnKF works, as seen in Figure 5.3a, the
discussion about the trade-off between accuracy and efficiency is left for future research
and more specific implementations.
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6.3 Methods and Simplifications

The implications of the results discussed above are of course dependent on the methodology
adopted in this work. Below follows a discussion regarding some of the most important
assumptions and simplifications made in this study.

Battery Modelling

Modelling of the battery dynamics is one of the parts in this thesis that greatly influenced
the SOC estimation results. The choice of using the first order RC model for the cell
voltage predictions is a result of evaluating the trade-off between complexity and accuracy
in battery modelling. It is to be noted that higher accuracy could be obtained by using
other battery modelling techniques, such as the physics-based approach, but with higher
complexity and computational cost. The first order RC model is a simple equivalent
electrical circuit, modelling the battery cell’s input–output dynamics, and can as such not
represent the underlying complex electrochemical processes.

The equivalent circuit parameters do not hold any physical significance and the parametric
quantitative results are only numeric and do not quantify any physical interpretations.
Lack of physical interpretations for the parameters poses disadvantages in verification of
correctness of estimated parameters.

Temperature Simplifications

Battery packs in vehicles are generally temperature controlled in the range 15–35 ◦C, for
better safety, performance, and battery life [53], [54]. The dynamic test data recorded
at 25 ◦C was used to carry out the evaluation of the filter algorithms as this temperature
represents the operating temperature of the batteries. The results thus obtained in this
study are representative for 25 ◦C and in the mentioned temperature range. The algorithm
implementation may not be accurate outside this temperature window, as the OCV hysteresis
outside this range is too large to approximate with an average hysteresis curve.

Sensor Accuracy

The test data used in the analysis of the filtering algorithms was collected in a controlled
lab environment, using high-quality sensor equipment and without disturbances. This
means that the performance of the different SOC estimation schemes was analysed in a
very fair environment setting with a low uncertainty in the measurement data. However, in
real-time scenarios and EV applications, the estimation algorithm would likely need to
deal with low-cost sensor equipment and unpredictable disturbances of the measurements.
This poses a different setting for the posed problem, and would result in less robust, and
possibly less accurate, SOC estimates as compared to what is presented in this study.

Current as Input

Due to the high accuracy of the measurement data, the observations of the cell load current
were possible to use directly as an input to the system in the formulation of the estimation
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problem. The alternative is to associate the current measurements with an uncertainty, as
for the terminal voltage, and filter the load current as a state in the battery model.

Depending on the sensor quality in a particular EV application, the latter approach
might be necessary to mitigate the effect of spurious energy demands from the battery.
However, to filter the cell load current, a model is also needed for predictions of the energy
demand. Difficult as it may be to make informed predictions about the energy demand in
an EV, the simplest and most versatile approach would be to consider a random walk for
the evolution of the load current.

Filtering of the load current also introduces a small delay in the observed energy demand.
This directly affects the SOC estimate, as it is modelled according to the “coulomb counting”
principle.

Filter Tuning for Comparison

The primary purpose of the thesis is to evaluate the performance of the EnKF algorithm,
and the process and measurement noise parameters were first adjusted to improve the EnKF
SOC estimate. The same noise matrices were then used for both the UKF and PF in order
to make a fair comparison among the three algorithms, with respect to the performance of
the EnKF. As each algorithm has its own advantages and disadvantages, dedicated tuning
of the noise matrices might be required. It should be noted that this common setting is
meant to provide a consistent platform for comparison of the three filters and may not, as
such, represent the best settings for the UKF and PF.

Battery Chemistry

The two battery types investigated in this thesis are referred to as E2 and A123, which
are just names for the purpose of identification in the data set. There is no certain way to
identify the actual battery chemistries related to these two battery cell types, making it
difficult to associate the results obtained in this report to the actual batteries used in electric
vehicles. This could create a gap between the research work carried out in this thesis and
the requirement in the industry.
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The purpose of this thesis is to investigate the potential of the EnKF as a nonlinear statistical
filtering algorithm for the problem of efficiently and accurately estimating state-of-charge in
lithium-ion battery cells. Towards this end, the study at hand has presented solutions for the
sub-tasks of modelling electrochemical battery cell dynamics; identifying equivalent-circuit
model parameters using current and voltage measurements; formulating the estimation
problem within the Bayesian inference framework; and implementing a UKF, an EnKF, and
a bootstrap PF for joint estimation of immeasurable states and non-stationary parameters in
lithium-ion battery cells.

Results have been presented and discussed for the obtained SOC estimation errors using
the three respective filters, with and without parameter estimation, for two different battery
cell chemistries. The EnKF performance has been evaluated and validated internally within
this study, by comparing with the UKF and PF, as well as externally by connecting to a
similar study, implementing a CDKF in a nearly identical test scenario. Furthermore, the
performance of the EnKF has been investigated as a function of the ensemble size.

Major Findings

This study has shown that the EnKF is able to produce accurate SOC estimates—better
than the UKF and comparable to the PF—both with and without estimation of battery
model parameters. The results have furthermore shown that, compared with an external
study, the EnKF is capable of producing more accurate SOC estimates than the sigma-point
method CDKF.

The research has also shown that there is a lower bound for the ensemble size for which
the EnKF works. Above this limit, there is a trade-off between computational cost and
estimation accuracy that can be analysed for specific operation conditions in a real-time
application.

The investigation of joint parameter estimation has shown that the accuracy of the SOC
estimate can be sensitive to both the initial system identification and tuning of the stochastic
parameter evolution. The chemistry-specific tests also suggest the battery cell type can
have a large impact on the robustness of the estimation scheme, and should affect the choice
of battery model, as nonlinearities in open-circuit voltage can be more or less significant.

Ideas for Future Work

Below is a list of ideas, and suggestions for extensions, of this thesis, that has emerged
during the progression of this project, but had to be omitted due to either being outside the
scope or due to lack of time and resources.
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Noise adaptation. With the introduction of parameter estimation, the number of estimated
quantities increased from two to five. Even though this does not, in general, represent
a large system, the abstract nature of the ECM parameters resulted in an intangible
tuning problem. A few approaches to adaptation of the process and measurement
noise matrices were therefore explored but never implemented, due to time limitations.
With efficiency in mind, we propose an innovation-based adaptive policy for the
process noise in the three different filters, with the possibility to increase the versatility
of our estimation scheme.

Noise adaptation for this particular problem has been examined extensively for EKF
implementations [20], [21], [56], as noted in the related work, with indications of
improved error statistics, using the adaptation schemes such as Sage–Husa [57] and
covariance matching [58]. An innovation-based adaptive implementation of the
UKF, using covariance matching, has also been explored in [27]. Two additional
papers provide quite tangible reviews on different methods for noise adaptation in
localisation and positioning problems [59], [60].

Parameter noise tuning. An alternative to the proposed solution of noise adaptation for
the battery model parameter, a more systematic tuning process can be developed,
optimising the parameter noise levels with the objective to minimise the SOC
estimation error. Although this particular approach could potentially result in over-
fitting tuning parameters to a particular data set, we would argue to spend more time
on tuning the filters to be able to potentially find an answer to research question (ii).

Battery model extensions. Comparison of estimation results in the two different battery
cell chemistry types suggested a sensitivity to the OCV–SOC relationship, particularly
related to the charge–discharge hysteresis. As such, the state-vector might be extended
to also include the level of hysteresis in the OCV at the present SOC level. This
idea was investigated thoroughly in the two paper series [17]–[19] and [24], [25].
We believe this approach also has the potential to increase the versatility of our
SOC estimation scheme and would be worth investigating while also considering the
added computational cost.

Electrochemical battery models. The most significant advantage of the EnKF algorithm
is the ability to handle extremely high dimensional problems. Since this thesis
employed a fairly simple equivalent circuit battery model, described by only two
states, the usefulness of the EnKF for the SOC estimation problem could not be
evaluated completely. In contrast to the ECMs, the electrochemical battery model
category requires a higher dimensionality of the state. An interesting subject for
future studies is thus to investigate the EnKF in conjunction with a high-dimensional
electrochemical battery model.

High dynamic test scenario. In this thesis, the SOC estimation scheme has been evaluated
in one single test scenario: the UDDS test. In this test, the load current is designed
to be representative for urban driving, which means that the demanded current is
retained within moderate bounds. In subsequent studies, it is of course important to
examine how the estimation scheme handles a higher dynamical behaviour of the
demanded current, representative for, e.g., highway driving. Such a scenario would
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also have implications for the temperature of the battery pack, which introduces two
important problems: estimation of cell temperature and how to handle temperature
variations.

Temperature estimation. Due to limited access to appropriate data sets, the problems in
SOC estimation related to temperature had to be neglected. In a real application, it is
unreasonable to assume a constant and homogeneous temperature throughout the
battery pack, motivating a separate estimation scheme for inferring the inner battery
cell temperature. With the goal to perform real-time SOC estimation in EVs, this is
an important problem to consider in future research.

Temperature variations. Due to time limitations, the estimation tests had to be restricted
to 25 ◦C, to be able to provide a meaningful discussion about other aspects of SOC
estimation. It is however of recommended to in future research examine how the
estimation performance is affected by the cell temperature, in particular temperature
variations during discharge.
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