
Repair Efficient Erasure Correcting Codes
for Distributed Storage Systems
Master’s thesis in Communication Engineering

SIDDHARTHA KUMAR

Department of Signals and Systems
Chalmers University of Technology
Gothenburg, Sweden 2015

Master’s thesis EX042/2015

Repair Efficient Erasure Correcting Codes for
Distributed Storage Systems

SIDDHARTHA KUMAR

Department of Signals and Systems
Division of Communication Systems

Chalmers University of Technology
Gothenburg, Sweden 2015

Master Thesis for the Master Programme “Communication Engineering”
Repair Efficient Erasure Correcting Codes for Distributed Storage Systems
SIDDHARTHA KUMAR

c© SIDDHARTHA KUMAR, 2015.

Master’s Thesis EX042/2015
Department of Signals and Systems
Division of Communication Systems
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Architecture of a typical distributed storage system present in data centers.
The cylinders denote the storage nodes while the colored boxes denote the nodes
that perform file handling.

Typeset in LATEX
Gothenburg, Sweden 2015

iv

Abstract

The current age of information technology is characterized by an ever increasing
presence of digital data in the world. Digital data has become an integral part of
our lives in the form of social networking, online streaming and accessing crucial
data on the go. The huge amount of data generated needs to be stored in an
inexpensive and reliable way.

Distributed storage (DS) is a technology that stores data on a network of inex-
pensive storage devices, referred to as nodes, thereby lowering the cost of storage.
However, such storage nodes are prone to failures, which leads to unavailability of
the stored data. The ability to tolerate multiple node failures is defined as fault
tolerance. The addition of redundancy in DS systems allows for the recovery of
the lost data by guaranteeing fault tolerance. The easiest way to achieve this,
is to replicate the data in a system, i.e., the data is copied over several nodes.
However, replication schemes store data inefficiently. Hence, the storage industry
has started moving towards erasure correcting codes (ECCs) that store data much
more efficiently. Essentially, data in DS systems is available as long as the number
of node failures does not exceed its limit of fault tolerance. When a node fails,
to maintain the initial level of availability, another node needs to be populated
with the lost data. This is referred to as repair. By using ECCs, one gains in
storage efficiency but looses in repair performance, namely in such parameters as
repair bandwidth and repair complexity. Therefore, in recent years, the research
has been focused on designing ECCs for DS that perform repair efficiently.

In this thesis, we present the construction of a new family of ECCs for DS that
yield low repair bandwidth and low repair complexity for a single failed data node.
In particular, we present a systematic construction based on two classes of parity
symbols. The primary goal of the first class of symbols is to provide good erasure
correcting capability, while the second class facilitates node repair, reducing the
repair bandwidth and the repair complexity. Lastly, we compare the proposed
codes with Minimum Disk I/O codes, Zigzag codes, piggyback codes and local
reconstruction codes that are proposed in the literature.

Keywords: Erasure correcting codes, distributed storage, repair bandwidth, re-
pair complexity

v

Acknowledgements

First, I would like to express my deepest gratitude towards my supervisor and
examiner Alexandre Graell i Amat, who at each step encouraged and motivated
me to reach excellence. Without his guidance, I would not have been able to
overcome the challenges I faced. I am also grateful towards my co-supervisors
Iryna Andriyanova and Fredrik Brännström who where always approachable and
did their very best to guide me throughout my thesis.
I would like to thank my parents who provided me an opportunity to study in
Sweden. Even though they were not physically present, they always provided me
with emotional support.
Last, I would like to thank all my friends who always supported me in my good
and bad times.

Siddhartha Kumar
Gothenburg, June 15, 2015

vii

Contents

1 Introduction 1
1.1 Coding for DS Systems . 2
1.2 Erasure Correcting Codes . 3
1.3 System Model . 4
1.4 Contributions and Thesis Outline 6

2 Code Construction 9
2.1 Preliminaries . 9
2.2 Class A Parity Nodes . 11
2.3 Class B Parity Nodes . 12

2.3.1 Construction Example . 14
2.3.2 Discussion of the Construction Example 16
2.3.3 Matrix Approach . 17
2.3.4 Repair of a Single Node Failure: Decoding Schedule 21

3 Code Characteristics and Comparison 23
3.1 Fault Tolerance . 23
3.2 Normalized Repair Bandwidth . 23
3.3 Repair Complexity of a Failed Node 24
3.4 Encoding Complexity . 24
3.5 Code Comparison . 24

4 Conclusions 29
4.1 Future Work . 29

A Proof of Theorem 2.1 31

B Algorithm to Construct Class B Parity Nodes 33

Bibliography 35

ix

Acronyms

DS Distributed Storage

ECC Erasure Correcting Codes

GFS Google File System

HDFS Hadoop Distributed File System

LRC Local Reconstruction Codes

MDR Minimum Disk I/O repairable

MDS Maximum Distance Separable

P2P peer-to-peer

QFS Quick File System

RAID Redundant Array of Independent Disks

WAS Windows Azure Storage

xi

Notations

x Scalar

x Vector

xT Transpose of x

X Set

X Matrix

Fqp Galois field of size qp

(a+ b)k Summation over modulo k

xiii

Chapter 1

Introduction

The advent of the digital revolution during the late 20th century, marked the on-
set of the information age in human history. Central to this are the advances in
miniaturization of logic circuits that have lead to popularization of mobile phones,
personal computers and other wireless devices. This in-turn has lead to an ex-
ponential increase in the amount of digital data. In a study conducted by EMC,
it was predicted that by the end of this decade, approximately 40000 exabytes
(1 EB = 1018 bytes) of digital data would be stored yearly [1]. Nowadays, it is
common to see Internet companies such as Google or Facebook to handle ter-
abytes (1 TB = 1012 bytes) of data each day. In fact, Facebook stores petabytes
(1 PB = 1015 bytes) of data from its Internet based social network website [2]. To
store such large amounts of data on a single storage device is impractical due to
high costs and reliability issues.

This has lead to the emergence of a new concept called distributed storage (DS).
DS systems consist of a network of numerous, relatively inexpensive storage devices
(or simply storage nodes) where the data is stored in a distributed fashion. Storing
data in this fashion introduces scalability, i.e., the means of maintaining stable
performance for steadily growing data collection by adding new resources to the
system [3]. For instance, to increase the storage capacity of a DS system, one just
needs to add new storage nodes to the network without the fear of degrading the
performance of the system. However, these storage nodes are subject to electrical
and mechanical failures [4]. In some cases, network outage due to sudden influx of
traffic in the network can also lead to node failures. Therefore, it is important to
prevent the loss of data in such systems. To achieve the ability to recover the lost
data from failed nodes requires the addition of redundancy to the system. The
easiest way to achieve fault tolerance in DS systems is by introducing n-replication
schemes. In particular, DS systems such as the Google File System (GFS) [5] and
the Hadoop Distributed File System (HDFS) [6] employ 3-replication scheme, i.e.,
they replicate the data three times. As a result, the system can tolerate up to
two storage node failures. There is of course a price to pay: adding redundancy,
increases the amount of data that needs to be stored. As it turns out, replication
schemes are inefficient when it comes to the amount of redundancy introduced.

1

1. Introduction

A more efficient alternative is to employ parity schemes such as the Redundant
Array of Independent Disks (RAID) [7] as the amount of redundancy added is
less. However, RAID schemes are not reliable in the case when there are more
than 2 node failures. In this regard, erasure correcting coding schemes are a better
alternative as they require less redundancy as compared to replication and can
deal with more node failures than RAID.

1.1 Coding for DS Systems

An (n, k) erasure correcting code (ECC) of code rate R = k/n, encodes k data
symbols to obtain n > k code symbols. The n−k redundancy symbols added serve
the purpose of recovering failures. An (n, k) ECC can repair up to dmin− 1 simul-
taneous symbol erasures, where dmin is the code’s minimum hamming distance.
From a coding perspective, a replication scheme can be seen as an (n, 1) repetition
code, where 1 data symbol is replicated n times. These kind of codes, though they
are easy to implement, suffer from a high storage overhead, n/k = n. In other
words, n symbols need to be stored for each data symbol. This directly translates
to high cost of storage. An alternative to the replication scheme are the classical
(n, k) maximum distance separable (MDS) codes. MDS codes are ECCs that sat-
isfy the singleton bound, dmin ≤ n− k+ 1, with equality. This implies MDS codes
have the best fault tolerance-storage overhead tradeoff [8]. For instance, a (9, 7)
MDS code and a (3, 1) repetition code have the same reliability (can correct upto
2 simultaneous failures) but the former has storage overhead of 1.29 compared to
latter’s 3. This has lead the industry to move from replication schemes towards
ECC in DS systems. More specifically, storage systems like GFS II (successor of
GFS by Google) and Quick File System (QFS) use (9, 6) Reed-Solomon (RS) code
(also an MDS code) [9].

In a DS system, the n code symbols are typically stored in n nodes. Therefore,
the system can tolerate up to dmin − 1 node failures. The number of failures that
the system can tolerate is referred to as fault tolerance. We also say that an
(n, k) ECC introduces a storage overhead of n/k. Essentially, an ECC ensures
data availability as long as node failure does not exceed the fault tolerance limit.
Therefore, to maintain the availability of data over long periods of time, failed
nodes need to be repaired. In general, classical ECCs do not perform efficient
repair. Repair efficiency is parameterized as repair access and repair bandwidth.
Repair access is defined as the number of nodes that need to be contacted for
the repair of a failed node, while repair bandwidth is defined as the amount of
information (in bits) that is communicated through the network for the repair of
a single node. A classical ECC has a high repair access and repair bandwidth as
it entails reading k′ ≥ k symbols in k′ nodes for a repair of a failed node. For

2

1. Introduction

example, an (n, k) MDS code has a repair access of k and a repair bandwidth of
k × # symbols / node × size of symbol. In contrast, an (n,1) repetition code has a
repair access of 1 and repair bandwidth of 1×# symbols / node× size of symbol.

During the repair process, the nodes involved in the repair are not available for
other network processes (e.g., download). Therefore, a high repair access harms the
data availability. On the other hand, a high repair bandwidth incurs a high data
traffic. As a consequence, the repair process would dominate system’s resources.
Therefore, in recent years, the research has been focused in designing ECCs that
achieve low repair access and low repair bandwidth.

1.2 Erasure Correcting Codes

Pyramid codes introduced in [10] were the first codes to address the problem of
high repair access. These codes sacrificed on the fault tolerance to reduce the
repair access. In [11], it was shown that these codes were optimal in terms of fault
tolerance/repair access. On the downside, these codes needed to be constructed
from a large galois field that led to higher complexity. Local reconstruction codes
(LRCs) introduced in [12] are constructed from an MDS code. The parity symbols
are modified such that they reduce repair access. Unlike the pyramid codes, LRCs
needed to be constructed from a smaller galois field. LRCs are currently being
used in the Windows cloud storage platform, Windows Azure Storage (WAS).
Other known codes that reduce the repair access are the locally repairable codes
[2], [13]. As with LRCs, these codes are modified MDS codes.

In [14], the authors discussed the effects of a high repair bandwidth and identi-
fied a tradeoff between storage and repair bandwidth. In particular, they provided
theoretical bounds on the repair bandwidth for any code. Codes such as mini-
mum disk I/O repairable (MDR) codes [15], zigzag codes [16] and the piggyback
framework [17] aim at reducing the repair bandwidth. MDR codes are a family of
RAID-6 codes. This means that they have a reliability of 2. These codes provide
optimal repair bandwidth for a given code rate and at the same time have low
complexity. On the other hand, Zigzag codes are a family of variable rate ECCs
that have optimal repair bandwidth for a given rate but have high complexity.
Both MDR and Zigzag codes are a class of MDS codes. The piggyback framework
is applied to an existing code to reduce the repair bandwidth. The drawback of
such a framework is that it reduces the reliability of the existing code.

In Table 1.1, we have summarized the codes that have been discussed1. The

1In Table 1.1, ν is the size of the data symbol in bits. A [k,l,g] LRC code encodes k symbols
to get n = k + l + g code symbols, where l denotes the number of local parity symbols that are
encoded by k/l data symbols. g denotes the number of global parity symbols that are encoded
by k data symbols. An [n,k,r] locally repairable code encodes k symbols to get n code symbols
having repair access r. An [n, k r] piggyback code modifies r−1 parity nodes of an [n, k] base code

3

1. Introduction

Code Family Objective
Fault

Tolerance
Overhead RA RB

MDS (n, k) Reliability n− k
n

k k kν

Pyramid (n, k) [10] Reduce RA MDS
n

k − −

LRC [k, l, g] [12] Reduce RA g + 1
k + l + g

k
k

l

kν

l

Locally Repairable Code
[n, k, r] [2]

Reduce RA MDS
n

k r rν

Locally Repairable Code
[n, k, r] [13]

Reduce RA MDS
(r + 1)n

rk r rν

MDR (k + 2, k) [15] Reduce RB 2
k + 2

k k
(k + 1)ν

k

Zigzag (n, k) [16] Reduce RB n− k
n

k k
n− 1

n− kν

Piggyback [n, k, r] [17] Reduce RB n− k − r+ 1
n

k k
Reduction
of 25% to

50%

Table 1.1: Summary of different ECCs present in literature. RA and RB denote repair access
and repair bandwidth respectively.

repair access and repair bandwidth reported in the table are normalized per data
symbol. Fault tolerance of pyramid and locally repairable codes depend on the
underlining smaller MDS codes from which they are constructed. In the case of
piggyback codes, they provide a minimum fault tolerance of 1. This fault tolerance
depends upon the repair bandwidth. Thus, a better repair bandwidth would mean
a lower fault tolerance achieved by the code. Modifying the parity symbols by
using piggybacks in the fashion as introduced in [17] leads to a reduction of repair
bandwidth by 25% to 50%. It is easily seen from the table that Zigzag codes
provide the best repair bandwidth for a given code rate and fault tolerance.

1.3 System Model

In general, DS systems fall into two main categories which are data centers and
peer-to-peer (P2P) storage/backup systems [18]. While data centers like GFS [5]
and HDFS [6], comprise of a network of clusters, each containing thousands of

4

1. Introduction

Central Server

Storage Node

(a) A Cluster

...
...

...

Node/Disk Chunk

Stripe

Block/Symbol

(b) Data Layout

Figure 1.1: Architecture of a DS system

nodes. P2P systems like Wuala2 consists of a network of nodes that are geograph-
ically distributed. In this section, we describe the architecture of a DS system for
data centers.

A DS system used in data centers consists of a collection of clusters. Each cluster
is a collection of interconnected nodes that are connected to a central server as seen
in Fig. 1.1(a). The function of the central server is to manage the data storage.
This is to say that it handles the creation, deletion and encoding schemes of the
data. A file that needs to be stored is first divided into blocks (called symbols)
of a fixed size (For example, 1 MB [9]). These symbols are then stored in groups
referred to as chunks in a node. Each chunk is of fixed size, default being 64 MB
in GFS [5] and HDFS [9]. Each node contains a number of chunks and a row of
chunks across the nodes is referred as stripe, as seen in Fig. 1.1b. An (n, k) ECC
is employed over a cluster once the data is stored across the nodes. This means
that k data symbols from k nodes across the stripe are encoded to get n−k parity
symbols that are stored across n− k nodes.

Consider a DS system that employs an (n, k) erasure code to store data re-
liably. In what follows, the parameters used in this thesis that characterize the
performance of ECC in the context of DS are presented and formally defined.

1. Fault tolerance: Fault tolerance of an erasure code is defined as the number
of simultaneous node failures that a DS system can tolerate. For a DS system
that employs an (n, k) coding scheme, with minimum distance dmin, its fault
tolerance is f = dmin − 1.

2www.wuala.com/en/learn/technology

5

www.wuala.com/en/learn/technology

1. Introduction

2. Storage overhead: This parameter characterizes the amount of symbols
that need to be stored on the DS system per data symbol to maintain the
given fault tolerance of the system [12]. In the case when coding is not em-
ployed, the storage overhead is 1. When an (n, k) erasure code is employed,
the storage overhead is n/k.

3. Repair bandwidth: It is defined as the amount of information in bits that
needs to be read from the DS system to repair a failed node [14]. More
formally, for a DS system storing β symbols per node, the repair bandwidth,
γ is defined as

γ = νβλ (1.1)

where ν is the number of bits per symbols and λ is the total number of
symbols read for he recovery of a failed symbol. DS systems having low
repair bandwidth are preferable as they can repair faster.

4. Complexity: The term complexity determines the amount of resource re-
quired for the completion of a task. This resource may be time, space, op-
erations etc. In this thesis, this resource is the number of operations. Basic
tasks such as addition and multiplications of symbols of size ν, require O(ν)
and O(ν2) bit operations, respectively [19]. Here, we consider two aspects
pertaining to complexity. The first being the encoding complexity, which is
defined as the number of operations that needs to be performed to to obtain
the parity symbols in each stripe. The second is the repair complexity, which
is defined as the number of operations performed to repair a failed symbol.
Complexity can be directly translated to hardware costs. Therefore, it is
preferable for DS systems to have a low complexity ECC.

1.4 Contributions and Thesis Outline

In this thesis, we present and analyze a new family of ECCs that achieve low
repair complexity and repair bandwidth for a single failed data node. In particu-
lar, we present a systematic construction based on two classes of parity symbols.
Correspondingly, there are two classes of parity nodes.

The first class of parity nodes, referred as Class A nodes, are constructed from
an MDS code having a fixed fault tolerance. These codes are then modified using
the concept of piggybacking, introduced in [17]. Piggybacking considers adding
carefully chosen linear combinations of data symbols (called piggybacks) to the
parity symbols of a given erasure correcting code. The primary aim of the parity
symbols of Class A is to provide fault tolerance to the DS system.

6

1. Introduction

The second class of parity node, referred to as Class B nodes, are constructed
from a block code whose parity symbols are obtained with simple additions. These
parity symbols facilitate low complexity repair of a failed data node using low repair
bandwidth. In addition to this, Class B nodes offer rate compatibility, i.e., storage
overhead can be reduced at the expense of extra repair bandwidth.

We compare the proposed codes with MDR codes, Zigzag codes, piggyback
codes and LRCs in terms of repair bandwidth and repair complexity.

We present a couple of notations that would be used throughout the document.
We define the operator (a + b)k , (a + b) mod k. The Galois field of order qp is
denoted by Fqp .

The remainder of the thesis is organized as follows. In Chapter 2, the code
construction for both Class A and Class B parity symbols is presented. We then
provide a decoding schedule for the repair of a failed node. In Chapter 3, we analyze
the fault tolerance, complexity and repair bandwidth of the proposed codes. We
conclude this report by summarizing the work done and presenting some open
problems that need to be considered for future in Chapter 4.

7

Chapter 2

Code Construction

In the previous chapter, the concept of DS was introduced. To ensure the relia-
bility of these storage systems, the concept of ECC is applied. In this chapter, a
new family of ECC that has low repair bandwidth and low repair complexity is
presented.

2.1 Preliminaries

We consider the distributed storage system depicted in Fig. 2.1. There are k data
nodes, each containing a very large number of data symbols over Fqp . As we shall
see in the sequel, the proposed code construction works with blocks of k data
symbols per node. Thus, without loss of generality, we assume that each node
contains k data symbols. We denote by di,j, i,j = 0, . . . ,k − 1, the ith data symbol
in the jth data node. We say that the data symbols form a k × k data array D,
where di,j = [D]i,j. For later use, we also define the set of data symbols D , {di,j}.
Further, there are n − k parity nodes each storing k parity symbols. We denote
by pi,j, i = 0, . . . ,k − 1, j = k, . . . ,n − 1, the ith parity symbol in the jth parity
node. We further define the set Pj as the set of parity symbols in the jth parity
node. The set of all parity symbols is denoted by P , ∪j{Pj}. We say that the
data and parity symbols form a k×n code array C, where ci,j = [C]i,j. Note that
ci,j = di,j for i, j = 0, . . . ,k− 1 and ci,j = pi,j for i = 0, . . . ,k− 1, j = k, . . . ,n− 1.

Our main goal is to construct codes that yield low repair bandwidth and low
repair complexity of a single failed systematic node. To this purpose, we construct
a family of systematic (n,k) codes consisting of two different classes of parity
symbols. Correspondingly, there are two classes of parity nodes, referred to as
Class A and Class B parity nodes, as shown in Fig. 2.1. Class A and Class B parity
nodes are built using an (nA,k) code and an (nB, k) code, respectively, such that
n = nA +nB−k. In other words, the parity nodes of the (n,k) code1 correspond to
the parity nodes of Class A and Class B codes. The primary goal of Class A parity

1With some abuse of language we refer to the nodes storing the parity symbols of a code as
the parity nodes of the code.

9

2. Code Construction

...
...

Class A parities Class B paritiesk data nodes

k
da

ta
sy

m
bo

ls

nA + nB − 2k parity nodes

Figure 2.1: System model.

nodes is to achieve good erasure correcting capability, while the purpose of Class
B nodes is to yield low repair bandwidth and low repair complexity. In particular,
we focus on the repair of data nodes. Note that the repair bandwidth (in bits) per
node, denoted by γ, is proportional to the average number of symbols (data and
parity) that need to be read to repair a data symbol, denoted by λ. Then,

λ =
γ

νβ
=

γ

νk
, (2.1)

where ν = dlog2 q
pe is the size (in bits) of a symbol. Note that λ can also be

interpreted as the repair bandwidth normalized by the size (in bits) of a node.
Therefore, in the rest of the paper λ is used to refer to the normalized repair
bandwidth.

The main principle behind the code construction is the following. The repair is
performed one symbol at a time. After the repair of a data symbol is accomplished,
the symbols read to repair that symbol are cached in the memory. Therefore, they
can be used to repair the remaining data symbols at no additional read cost. The
proposed codes are constructed in such a way that the repair of a new data symbol
requires a low additional read cost (defined as the number of additional symbols
that need to be read to repair the data symbol), so that λ (hence γ) is reduced.
Since we will often use the concepts of read cost and additional read cost in the
remainder of the paper, we define them in the following definition.

Definition 2.1. The read cost of a symbol is the number of symbols that need to
be read to repair the symbol. The additional read cost of a symbol is the additional
number of symbols that need to be read to repair the symbol, considering that other
symbols are already cached in the memory (i.e., have been read to recover some
other data symbols previously).

10

2. Code Construction

2.2 Class A Parity Nodes

Class A parity nodes are constructed using a modified (nA, k) MDS code, k + 2 ≤
nA < 2k, over Fqp . In particular, we start from an (nA, k) MDS code and apply
piggybacks [17] to some of the parity symbols. The construction of Class A parity
nodes is performed in two steps as follows.

1) Encode each row of the data array using an (nA,k) MDS code (the same for
each row). The parity symbol pAi,j is2

pAi,j =
k−1∑
l=0

αl,jdi,l, j = k, . . . nA − 1, (2.2)

where αl,j denotes a coefficient in Fqp . Store the parity symbols in the cor-
responding row of the code array. Overall, k(nA − k) parity symbols are
generated.

2) Modify some of the parity symbols by adding piggybacks. Let τ , 1 ≤ τ ≤
nA − k − 1, be the number of piggybacks introduced per row. The parity
symbol pi,u is obtained as

pAi,u = pAi,u + d(i+u−nA+τ+1)k,i, (2.3)

where u = nA − τ, . . . ,nA − 1 and the second term in the summation is the
piggyback.

Codes constructed in this way have erasure correcting capability at least nA −
k − τ + 1. We prove this in the following theorem.

Theorem 2.1. An (nA,k) Class A code with τ piggybacks per row can correct a
minimum of nA − k − τ + 1 node failures.

Proof. The proof is given in Appendix A.

When a failure of a data node occurs, Class A parity nodes are used to recover
τ+1 of the k failed symbols. The Class A parity symbols are constructed in such a
way that, when node j is erased, τ + 1 data symbols in this node can be recovered
reading the (non-failed) k − 1 data symbols in the jth row of the data array and
τ + 1 parity symbols in the jth row of Class A nodes (see also Section 2.3.4). For
later use, we define the set Rj as follows.

Definition 2.2. Rj is the set of k − 1 data symbols that are read from row j to
recover τ + 1 data symbols of node j using Class A parity nodes.

2We use the superscript A to indicate that the parity symbol is stored in a Class A parity node.

11

2. Code Construction

PA
5 PA

6

d0,0 d0,1 d0,2 d0,3 d0,4

d1,0 d1,1 d1,2 d1,3 d1,4

d2,0 d2,1 d2,2 d2,3 d2,4

d3,0 d3,1 d3,2 d3,3 d3,4

d4,0 d4,1 d4,2 d4,3 d4,4

pA0,5 pA0,6 + d1,0

pA1,5 pA1,6 + d2,1

pA2,5 pA2,6 + d3,2

pA3,5 pA3,6 + d4,3

pA4,5 pA4,6 + d0,4

Q0

X0

Figure 2.2: A (7, 5) Class A code with τ = 1 constructed from a (7, 5) MDS code. PA
5 and

PA
6 are the parity nodes. For each row i, colored symbols belong to Ri.

Example 1. An example of Class A code is shown in Fig. 2.2. One can verify that
the code can correct any 2 node failures. For each row i, the set Ri is indicated in
red color. For instance, R0 = {d0,1,d0,2,d0,3,d0,4}.

Although the main purpose of Class A parity nodes is to provide good erasure
correcting capability, the use of piggybacks helps also in reducing the number of
symbols that need to be read to recover the τ+1 symbols. The remaining k−τ−1
data symbols can also be recovered from Class A parity nodes, but at a high symbol
read cost. Hence, the idea is to add another class of parity nodes, namely Class B
parity nodes, in such a way that these symbols can be recovered with lower read
cost.

2.3 Class B Parity Nodes

Class B parity nodes are obtained using an (nB,k) linear block code over Fqp to
encode the k × k data symbols of the data array, i.e., we use the (nB,k) code k
times. This generates (nB − k) × k Class B parity symbols, pBi,u, i = 0, . . . ,k − 1,
u = nA, . . . ,n− 1.

Definition 2.3. For j = 0, . . . ,k − 1, define the set Qj as

Qj = {d(j+τ+1)k,j,d(j+τ+2)k,j, · · · , d(j+k−1)k,j}. (2.4)

Assume that data node j fails. Is it easy to see that the set Qj is the set of
k − τ − 1 data symbols that are not recovered using Class A parity nodes.

Example 2. For the example in Fig. 2.2, the set Qj is indicated by hatched
symbols for each column j, j = 0, . . . , k − 1. For instance, Q0 = {d2,0,d3,0,d4,0}.

12

2. Code Construction

For later use, we also define the following set.

Definition 2.4. For j = 0, . . . ,k − 1, define the set Xj as

Xj = {dj,(j+1)k ,dj,(j+2)k , · · · , dj,(j+k−τ−1)k}. (2.5)

Note that Xj = Rj ∩ {∪lQl}.
Example 3. For the example in Fig. 2.2, the set Xi is indicated by hatched symbols
for each row i. For instance, X0 = R0∩{Q0∪Q1∪Q2∪Q3∪Q4} = {d0,1,d0,2,d0,3}.

The purpose of Class B parity nodes is to allow recovering of the data symbols
in Qj, j = 0, . . . ,k − 1, at a low additional read cost. Note that after recovering
τ + 1 symbols using Class A parity nodes, the data symbols in Rj are already
stored in the decoder memory, therefore they are accessible for the recovery of the
remaining k − τ − 1 data symbols using Class B parity nodes without the need of
reading them again. In particular, the addition of a new Class B parity node allows
to recover one new data symbol in Qj (for all j) at the cost of one additional read.
Furthermore, other data symbols in Qj can be recovered at a lower additional read
cost than using only Class A parity nodes. The main idea is based on the following
proposition.

Proposition 1. If a Class B parity symbol pB is the sum of one data symbol d ∈ Qj
and a number of data symbols in Xj, then the recovery of d comes at the cost of
one additional read (one should read parity symbol pB).

This observation is used in the construction of Class B parity nodes (see Sec-
tion 2.3.1 below) to reduce the normalized repair bandwidth, λ.

We remark that adding k − τ − 1 Class B nodes would allow to reduce the
additional cost read for all data symbols in Qj (for all j) to 1. However, this
comes at the expense of a reduction in the code rate. Thus, our code construction
tradeoffs between repair bandwidth and code rate: the more Class B nodes are
added, the lower the repair bandwidth is, but the lower the code rate is.

In the following, we propose a recursive algorithm for the construction of Class B
parity nodes. In order to describe this algorithm, we define the function read(d,P)
as follows.

Definition 2.5. Consider a Class B parity node and let PB denote the set of
parity symbols in this node. Also, let d ∈ Qj for some j and pB ∈ PB be pB =
d+
∑

d′∈D′ d′, where D′ ⊂ D, i.e., the parity symbol pB is the sum of d and a subset
of other data symbols. Then,

read(d,pB) = |D̆\Xj|, (2.6)

where D̆ = {D′ ∪ d}.

13

2. Code Construction

5

1

∞
∞
∞

∞
5

1

∞
∞

∞
∞
5

1

∞

∞
∞
∞
5

1

1

∞
∞
∞
5

(a) Initial.

5

1

1

1

∞

∞
5

1

1

1

1

∞
5

1

1

1

1

∞
5

1

1

1

1

∞
5

(b) Step 1c.

5

1

1

2

3

3

5

1

1

2

2

3

5

1

1

1

2

3

5

1

1

1

2

3

5

(c) Step 1d.

5

1

1

2

1

1

5

1

1

2

2

1

5

1

1

1

2

1

5

1

1

1

2

1

5

(d) Step 2b.

5

1

1

1

1

1

5

1

1

1

1

1

5

1

1

1

1

1

5

1

1

1

1

1

5

(e) Step 3b.

Figure 2.3: Update of A during the construction of Class B parity nodes for the example
in Section 2.3.1. The updates of ai,j after each step are highlighted in red color. The shaded
symbols in column j denote the set Qj , while the shaded symbols in row i denote the set Xi.

For a given data symbol d, the function read(d,pB) gives the additional number
of symbols that need to be read to recover d (considering the fact that some symbols
are already cached in the memory).

To ease understanding, we introduce the algorithm through an example.

2.3.1 Construction Example

We construct a (10,5) code starting from the (7,5) Class A code in Fig. 2.2. In
particular, we construct three Class B parity nodes, so that the additional number
of reads to repair each of the remaining failed k − τ − 1 symbols (after recovering
τ + 1 symbols using Class A parity nodes) is 1. With some abuse of notation, we
denote these parity nodes by PB

7 , PB
8 , and PB

9 .
Denote by A, ai,j = [A]i,j, a temporary matrix of read values for the respective

data symbols di,j. After Class A decoding,

ai,j =

∞ if di,j ∈ {∪tQt}
k if i = j

1 otherwise,

(2.7)

where t = 0, . . . ,k − 1. For our example, A after Class A decoding is given in
Fig. 2.3(a). Our algorithm operates on the ai,js whose initial value is ∞ and aims

14

2. Code Construction

to obtain the lowest possible values for these ai,js under the given number of Class
B parity nodes. This is done in a recursive manner as follows.

1. Construct the first parity node, PB
7 .

1a. For each symbol di,j define the set D̃i,j , {d(i+s)k,(j+s)k}k−1s=0 .

1b. Start with the elements in Q0. Pick an element di,0 ∈ Q0 such that ai,0 =∞,
and d0,i ∈ X0\D̃i,0. For instance, we take d2,0.

1c. For t = 0, . . . ,k − 1 compute

pBt,7 = d(i+t)k,t + dt,(i+t)k (2.8)

and update the respective ai,0 and a0,i,

a(i+t)k,t = at,(i+t)k = read(d(i+t)k,t,p
B
t,7). (2.9)

The resulting matrix A is shown in Fig. 2.3(b). There are still entries ai,j =
∞ that need to be handled.

1d. For t = 0, . . . ,k − 1 update

pBt,7 = pBt,7 + dt,(i′+t)k , (2.10)

where d0,i′ ∈ X0 and a0,i′ = ∞ after step 1b. Update A accordingly (see
Fig. 2.3(c)). Note that the read values a(i+t)k,(j+t)k have not worsened. This
comes from the fact that the new added data symbol belongs to the corre-
sponding set X and is already cached in the memory. Thus, the additional
read cost is 0. On the other hand, the values a(j+t)k,(i+t)k increase.

2. Construct the second parity node, PB
8 .

2a. Pick an element di,0 ∈ Q0 such that the corresponding ai,j is maximal. In
our example, this is d4,0 because a4,0 = 3.

2b. For t = 0, . . . ,k − 1, do the following. Pick an element dt,(u+t)k ∈ Xt\D̃i,j
such that for all di′,j′ ∈ D̆, read(di′,j′ ,pt,8) ≤ ai′,j′ , where pB is set to pBt,8 =
d(i+t)k,t + dt,(u+t)k . For our example, we choose d0,2. Notice the only other
option d0,3 is not a good choice as the new additional read cost would increase
from 1 to 2. If such dt,(u+t)k does not exist, set pBt,8 = d(i+t)k,t.

Update A. The updated matrix is shown in Fig. 2.3(d).

3. Construct PB
9 .

15

2. Code Construction

PB
7 PB

8 PB
9

d2,0 + d0,2 + d0,1

d3,1 + d1,3 + d1,2

d4,2 + d2,4 + d2,3

d0,3 + d3,0 + d3,4

d1,4 + d4,1 + d4,0

d4,0 + d0,2

d0,1 + d1,3

d1,2 + d2,4

d2,3 + d3,0

d3,4 + d4,1

d3,0

d4,1

d0,2

d1,3

d2,4

Figure 2.4: Class B parity nodes for the data nodes in Fig. 2.2.

3a. Pick an element di,0 ∈ Q0 such that the corresponding ai,0 is maximal. In
our example, this is d3,0.

3b. For t = 0, . . . ,k−1, do the following. pBt,9 = d(i+t)k,t. Update A. The resulting
A has value k for all diagonal elements and 1 elsewhere (Fig. 2.3(e)).

The Class B parity nodes PB
7 , PB

8 , and PB
9 are shown in Fig. 2.4.

A general version of the algorithm to construct Class B parity nodes is given in
Appendix B.

2.3.2 Discussion of the Construction Example

The construction of Class B parity nodes starts by selecting an element di,j of a
given Qj such that ai,j = ∞ and dj,i ∈ Xj\D̃i,j (for simplicity, as in the example,
we can start with j = 0). The first parity symbol of P7 after step 1c is therefore
p0,7 = di,0 + d0,i, and the remaining parity symbols are obtained as in (2.8). By
Proposition 1 the additional read cost of di,j (after step 1c) is 1. The reason for
selecting dj,i ∈ Xj\D̃i,j is due to the fact that, again by Proposition 1, its additional
read cost is also 1. We remark that for each di,j ∈ Qj it is not always possible to
select dj,i ∈ Xj\D̃i,j and set pj,7 = di,j + dj,i. This is the case when k < 2(τ + 1).
If dj,i ∈ Xj\D̃i,j does not exist, then we select dj,t ∈ Xj\D̃i,j (see Appendix B). In
this case, the additional read cost of dj,t (after step 1c) is > 1.

In general, step 1d has to be performed |Qj| − 2 times, corresponding to the
number of entries ai,j =∞ per column of A.

To reduce the additional read cost for the k−τ−1 data symbols to 1, three Class
B parity nodes need to be introduced. This reduces the code rate from R = 5/7 to

16

2. Code Construction

R = 5/10 = 1/2, i.e., it increases the storage overhead. If a lower storage overhead
is required, Class B parity nodes can be punctured, starting from the last parity
node (for the example, nodes PB

9 , PB
8 , and PB

7 are punctured in this order), at the
expense of an increasing repair bandwidth. At the limit, we would remain only
with Class A parity nodes and the repair bandwidth corresponds to that of the
Class A code. Thus, our code construction gives a family of rate-compatible codes
and allows to tradeoff between repair bandwidth and storage overhead.

2.3.3 Matrix Approach

In the previous section, we have seen the construction of Class B parity nodes
PB
nA
, . . . ,PB

n−1 using the algorithm provided in Appendix B. In this section, we
approach the construction of Class B nodes using matrices.

Let d be a row vector of size 1 × k2 consisting of data blocks di,j, where i,j =
0,1, . . . ,k−1, row wise. This is to say that d = (d0,0, d0,1, . . . , d0,k−1, d1,0, . . . , d1,k−1
, . . . , dk−1,k−1). We define column vector pB = (pB0,nA

, pB1,nA
, . . . , pBk−1,nA

, pB0,nA+1,

pB1,nA+1, . . . , p
B
k−1,nA+1, . . . , p

B
k−1,n−1) of size k(nB− k)× 1 that consists of a column

of Class B parity symbols. Then these symbols can be constructed by a system of
linear equations given as

GdT = pB (2.11)

where G is a k(nB − k)× k2 matrix of the form

G =

GnA

(r0, r1, . . . , rk−1)

GnA+1(r0, r1, . . . , rk−1)
...

Gn−1(r0, r1, . . . , rk−1)

 (2.12)

Each submatrix Gl(r0, r1, . . . , rk−1), where l = nA,nA + 1, . . . ,n− 1, is of the order
k × k2 is defined as

Gl(r0, r1, . . . , rk−1) =

r00 r01 · · · r0k−1

r1k−1 r10 · · · r1k−2
...

...
. . .

...

rk−11 rk−12 · · · rk−10

 (2.13)

Each rsm, wherem = 0, . . . , k−1 is a vector of size 1×k, where rm = (rmk, rmk+1, . . . ,
rmk+k−1) is s−shifted to the right cyclically. Fig. 2.5 illustrates the system of linear
equations as shown in (2.11).

17

2. Code Construction

G dT pB

GnA

GnA+1

Gn−1

...

d0,0, · · · , d0,k−1

d1,0, · · · , d1,k−1

dk−1,0, · · · , dk−1,k−1

...

pB0,nA
, · · · , pBk−1,nA

pB0,nA+1, · · · , pBk−1,nA+1

pB0,n−1, · · · , pBk−1,n−1

...

Figure 2.5: Illustration for the construction of Class B parity symbols using matrix approach

Let us revisit the following definitions that would be used in determining G.
Let A be a temporary matrix that holds read values defined in Definition 2.5.
We initialize this matrix according to (2.7). Subsequently, for each symbol di,j we
redefine the set D̃i,j , {d(i+s)k,(j+s)k}k−1s=0 .

To determine G, we recursively construct GnA
(r0, r1, . . . , rk−1), GnA+1(r0, r1, . . .

, rk−1), . . ., Gn−1(r0, r1, . . . , rk−1). The matrix Gl(r0, r1, . . . , rk−1) is completely
determined by the vectors rm, where m = 0, . . . k − 1. These vectors are then
determined by selecting a symbol di,0 ∈ Q0 and max itr = k − τ − l + nA − 2
symbols d0,t ∈ X0. In the following, we provide the conditions on the choice of
these symbols.

1. Choose a symbol di,0 ∈ Q0: Select a symbol di,0 ∈ Q0 such that the corre-
sponding ai,0 is maximum and there exists d0,i ∈ X0\D̃i,0. If the latter does
not exists, then select di,0 such that ai,0 is maximum. Such a di,0 always
exist.

2. Choose max itr symbols d0,t ∈ X0\D̃i,0: Construct a parity symbol pB = di,0.
The choice of the symbols depends upon pB. Choose d0,i ∈ X0\D̃i,0 such that
a0,i > 1 and read(d0,i,p

B + d0,i) ≤ a0,i, then update pB = pB + d0,i. If d0,i
does not satisfy the conditions, choose d0,t ∈ X0\D̃i,0 such that a0,t > 1 and
read(d0,t,p

B + d0,t) ≤ a0,t, then update pB = pB + d0,t. For the remaining
max itr selections, recursively choose and update the following. Choose
d0,t ∈ X0\D̃i,0 such that a0,t > 1 and read(d0,t,p

B + d0,t) ≤ a0,t, then update
pB = pB + d0,t.

It can be easily seen that the above conditions on the choice of symbols in Q0 and
X0 is the same as that in Algorithm 1. In particular, the conditions for di,0 ∈ Q0

18

2. Code Construction

coincides with lines 2 and 3 in the algorithm. Similarly, the conditions for d0,t ∈ X0

coincide with line 20 in the same algorithm.

Depending upon the symbols di,j selected, assign rik+j = 1. The remaining
elements in each vector rm is the zero element.

Once Gl(r0, r1, . . . , rk−1) is determined, A should be updated. Let us denote an
element in row u and column v of Gl(r0, r1, . . . , rk−1) as glu,v. From Fig. 2.5, it can
be seen that an element glu,v denotes the coefficient of data symbol dbv/kc, (v)k present
in the parity check equation of pBu,l. The non-zero elements in Gl(r0, r1, . . . , rk−1)

signify the data symbols that are used in the construction of node PB
l . Accordingly,

their additional read costs need to be updated. Therefore, for all u = 0, . . . , k− 1
and v = 0, . . . , k2 − 1, update

abv/kc, (v)k = read(glu, v, p
B
u,l) s.t. glu,v = 1 (2.14)

Example 4. We construct a (8, 4) code starting from a (6, 4) Class A code having
τ = 1. Next, we construct a (6,4) Class B code. To do this, we have to determine
G. We initialize ai,j according to (2.7) as seen in Fig. 2.6(a). We set max itr = 1.

1. Construct G6(r0,r1,r2,r3).

1a. Select di,0 ∈ Q0 such that ai,0 is maximum. For instance, we choose d2,0 as
a2,0 =∞. We then update r8 = 1.

1b. Select d0,t ∈ X0\D̃i,0 such that its additional read cost is reduced. We choose
d0,1 as the additional read cost now reduces to 2. We then update r1 = 1.

1c. We now construct G6(r0,r1,r2,r3) as follows

r0 = (0,1,0,0) (2.15)

r1 = (0,0,0,0) (2.16)

r2 = (1,0,0,0) (2.17)

r3 = (0,0,0,0) (2.18)

19

2. Code Construction

4

1

∞
∞

∞
4

1

∞

∞
∞
4

1

1

∞
∞
4

(a) Initial.

4

1

1

2

2

4

1

1

1

2

4

1

1

1

2

4

(b) Step 1c.

4

1

1

1

1

4

1

1

1

1

4

1

1

1

1

4

(c) Step 2d.

Figure 2.6: Update of A during the construction of G for the Example 4. The updates of
ai,j after each step is highlighted in red color. The shaded symbols denote the set Qj , while the
shaded symbols in rows i denote the set Xi

and

G6(r0,r1,r2,r3) =

r00 r01 r02 r03
r13 r10 r11 r12
r22 r23 r20 r21
r31 r32 r33 r30

=

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0

(2.19)

1d. Update A according to (2.14). The resulting matrix is seen in Fig. 2.6(b).

2. Construct G7(r0,r1,r2,r3).

1a. Select di,0 ∈ Q0 such that ai,0 is maximum. For instance, we choose d3,0 as
a3,0 = 2. We then update r12 = 1.

1b. Since max itr = 0, we do not choose any element in X0.

1c. We now construct G7(r0,r1,r2,r3)

r0 = (0,0,0,0) (2.20)

r1 = (0,0,0,0) (2.21)

r2 = (0,0,0,0) (2.22)

r3 = (1,0,0,0) (2.23)

20

2. Code Construction

and

G7(r0,r1,r2,r3) =

r00 r01 r02 r03
r13 r10 r11 r12
r22 r23 r20 r21
r31 r32 r33 r30

=

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

(2.24)

1d. Update A according to (2.14). The resulting matrix is seen in Fig. 2.6(c).

The matrix is then given as

G =

(
G7(r0,r1,r2,r3)

G8(r0,r1,r2,r3)

)

=

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

(2.25)

The resulting Class B parity symbols are shown in Fig. 2.7, which are computed
from (2.11).

2.3.4 Repair of a Single Node Failure: Decoding Schedule

The repair of a failed systematic node, proceeds as follows. First, τ + 1 symbols
are repaired using Class A parity nodes. Then, the remaining symbols are repaired
using Class B parity nodes. With a slight abuse of language, we will refer to the
repair of symbols using Class A and Class B parity nodes as the decoding of Class A
and Class B codes, respectively. Suppose that node j fails. Decoding is as follows.

21

2. Code Construction

PA
4 PA

5 PB
6 PB

7

d0,0 d0,1 d0,2 d0,3

d1,0 d1,1 d1,2 d1,3

d2,0 d2,1 d2,2 d2,3

d3,0 d3,1 d3,2 d3,3

pA0,4 pA0,5 + d1,0

pA1,4 pA1,5 + d2,1

pA2,4 pA2,5 + d3,2

pA3,4 pA3,5 + d0,3

d2,0 + d0,1

d3,1 + d1,2

d0,2 + d2,3

d1,3 + d3,0

d3,0

d0,1

d1,2

d2,3

Q0

X0

Figure 2.7: A (8, 4) code constructed from a (6, 4) Class A with τ = 1 and (6, 4) Class B
codes.

• Decoding of Class A code. k symbols (k − 1 data symbols in the jth row
of the code array and pAj,k) are read to reconstruct the failed data symbol in
that row. These symbols are now cached in the memory. We then read the τ
piggybacked symbols in the jth row. By construction (see (2.3)), this allows
to repair τ failed symbols, at the cost of an additional read each.

• Decoding of Class B code. Each remaining failed data symbol di,j ∈ Qj is

obtained by reading a Class B parity symbol whose corresponding set D̆ (see
Definition 2.5) contains di,j. In particular, if several Class B parity symbols
pBi′,j′ contain di,j, we read the parity symbol with largest index j′. This yields
the lowest additional read cost.

22

Chapter 3

Code Characteristics and
Comparison

In this chapter, we characterize the different properties of the codes presented
in Chapter 2. In particular, we present the fault tolerance, repair bandwidth,
encoding and decoding complexities of the codes. We go on to show that one can
improve the fault tolerance but at the cost of a lower repair bandwidth. Later, we
compare these codes with the codes present in literature.

3.1 Fault Tolerance

The fault tolerance of the Class A code depends on the MDS code used in its
construction and τ , as stated in Theorem 2.1. Hence, our proposed code has also
fault tolerance f ≥ nA − k − τ + 1. Since 1 ≤ τ ≤ nA − k − 1, our codes have a
fault tolerance of at least 2.

3.2 Normalized Repair Bandwidth

According to Section 2.3.4, to repair the first τ+1 symbols in a failed node requires
that k−1 data symbols plus τ +1 Class A parity symbols are read. The remaining
k−τ−1 data symbols in the failed node are repaired by reading the Class B parity
symbols. As seen in Section 2.3, the parity symbols in the first Class B parity node
are constructed from sets of data symbols of cardinality |Qj| = k−τ−1. Therefore,
to repair each of the k − τ − 1 data symbols in this set requires to read at most
k− τ −1 symbols. The remaining Class B parity nodes are constructed from fewer
symbols than k − τ − 1. An upper bound on the normalized repair bandwidth is
therefore λ ≤ (k+τ+(k−τ−1)2)/k. In the closed interval [1, k−2], it is observed
that when τ increases, the fault tolerance reduces while the λ improves.

23

3. Code Characteristics and Comparison

3.3 Repair Complexity of a Failed Node

To repair the first symbol requires k multiplications and k−1 additions. To repair
the following τ symbols require an additional τk multiplications and additions.
The final k − τ − 1 symbols require at most k − τ − 2 additions, since Class B
parity symbols are constructed as the sum of at most k− τ − 1 data symbols. The
repair complexity of one failed node is therefore

CR = O((k − 1)ν + kν2) +O(τk(ν + ν2)) +O((k − τ − 2)2ν). (3.1)

The first two terms correspond to the Class A code while the last term corresponds
to the Class B code.

3.4 Encoding Complexity

The encoding complexity of the (n,k) code is the sum of the encoding complexities
of the two codes. The generation of each of the nA − k Class A parity symbols
in one row of the code array, pAi,j in (2.2), requires k multiplications and k − 1
additions. Adding data symbols to τ of these parity symbols according to (2.3)
requires an additional τ additions. The encoding complexity of the Class A code
is therefore

CA = O((nA − k)(kν2 + (k − 1)ν)) +O(τν). (3.2)

According to Section 2.3, the first Class B parity symbol is constructed as the
sum of k − τ − 1 data symbols, and each subsequent parity symbol uses less data
symbols. Therefore, the encoding complexity of the Class B code is

CB =

n−nA∑
i=1

O((k − τ − 1− i)ν). (3.3)

Hence the total encoding complexity per row in our proposed code array is

CE = CA + CB. (3.4)

3.5 Code Comparison

Table 3.1 provides a summary of the characteristics of different codes present in the
literature as well as the codes constructed in this paper. Here, # Rows reported
in column 3 refers to the number of rows in the code array and, without loss of

24

3. Code Characteristics and Comparison

N
o
rm

.
R
e
p
a
ir

B
a
n
d
.

#
R
o
w
s

F
a
u
lt

T
o
le
ra

n
c
e

E
n
c
.
C
o
m
p
le
x
it
y

N
o
rm

.
R
e
p
a
ir

C
o
m
p
l.

M
D

S
(n
,k

)
k

1
n
−
k

O
((
n
−
k
)(

(k
−

1)
ν

+
k
ν
2
))

O
((
k
−

1
)ν

+
k
ν
2
)

L
R

C
[k
,l
,g

]
[1

2]
k l

1
g

+
1

g
O

((
k
−

1
)ν

+
k
ν
2
)

+
lO

((
dk l
e−

1
)ν

)
O

((
dk l
e−

1
)ν

)

M
D

R
(k

+
2
,k

)
[1

5]

k
+
1

2
2
k

2
O

((
k
−

1
)ν

)
O

((
k
−

1
)ν

)

Z
ig

za
g

(n
,k

)
[1

6]
n
−
1

n
−
k

(n
−
k
)k

−
1

n
−
k

(n
−
k
)O

((
k
−

1)
ν

+
k
ν
2
)

O
((
k
−

1
)ν

+
k
ν
2
)

P
ig

gy
b
ac

k
[n
,k
,r

]
[1

7]

(k
−
t r

)(
k
+
t)
+
t r

(k
+
t r

+
r
−
2
)

2
k

2
n
−
k
−
r

+
1

–
–

P
ro

p
os

ed
C

o
d

es

(n
A

+
n
B
−
k
,k

)
<

k
+
τ
+
(k

−
τ
−
1
)2

k
k

≥
n
A
−
k
−
τ

+
1

C
E

C
R
/
k

T
a
b
le

3
.1

:
C

om
p
a
ri

so
n

of
co

d
es

th
at

ai
m

at
re

d
u

ci
n

g
re

p
ai

r
b
an

d
w

id
th

.
T

h
e

re
p
ai

r
b

an
d

w
id

th
an

d
th

e
re

p
ai

r
co

m
p

le
x
it

y
a
re

n
o
rm

al
iz

ed
p

er
sy

m
b

ol
,

w
h
il
e

th
e

en
co

d
in

g
co

m
p
le

x
it

y
is

gi
ve

n
p

er
ro

w
in

th
e

co
d

e
ar

ra
y.

25

3. Code Characteristics and Comparison

1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

150

200

250

300

350

400

450

(8, 4, 3), (7, 4, 2) (10, 5, 4), (9, 5, 3), (8, 5, 2)

(10, 5, 5), (9, 5, 4), (8, 5, 3)

(8, 4, 4), (7, 4, 3)(7, 4, 2)

(8, 4, 1)

(8, 5, 1)

(8, 5, 3)(9, 5, 4)

(10, 5, 5)

(8, 4, 4)
(7, 4, 3)

(8, 4, 2)

(10, 5, 2) (9, 5, 2)

(8, 4, 3)

(10, 5, 3)(9, 5, 3)(8, 4, 2)

(7, 4, 2)(10, 5, 2)
(9, 5, 2)

(8, 5, 2)

normalized repair bandwidth (λ)

no
rm

al
iz

ed
re

pa
ir

co
m

pl
ex

ity

MDS code
LRC [2]
Zigzag [6]
Piggyback [7]
Our code, τ = 1, nA = k + 2
Our code, τ = 1, nA = k + 3
Our code, τ = 2, nA = k + 3

Figure 3.1: Comparisons of different codes (n,k,f) with ν = 8.

generality, it can be assumed to be equal to β (the number of symbols per node)
in (2.1). For our code, β grows linearly with k unlike MDR and Zigzag codes,
where the growth is exponential. This implies that our codes require less memory
to cache data symbols during repair. The fault tolerance f , the normalized repair
bandwidth λ, the normalized repair complexity, and the encoding complexity, dis-
cussed in the previous subsections, are reported for all codes in Table 3.1, columns
4, 2, 6, and 5, respectively.

We have compared our codes with other codes in the literature. In Fig. 3.1, the
normalized repair complexity of (n,k,f) codes over F28 (ν = 8) is plotted versus its
normalized repair bandwidth λ. In contrast to the bounds for the repair bandwidth
and complexity reported in Table 3.1, Fig. 3.1 contains the exact number of integer
additions.

The best codes for a DS system should be the ones that achieve the lowest
repair bandwidth and have the lowest repair complexity. As seen in Fig. 3.1, MDS
codes have both high repair complexity and repair bandwidth, but they are op-
timal in terms of fault tolerance for a given n and k. Zigzag codes achieve the
same fault tolerance and high repair complexity as MDS codes, but at the lowest

26

3. Code Characteristics and Comparison

repair bandwidth. At the other end, LRCs have the lowest repair complexity but
a higher repair bandwidth and worse fault tolerance than Zigzag codes. Piggy-
back codes have a repair bandwidth between Zigzag and MDS codes, but with
a higher repair complexity and worse fault tolerance. Our proposed codes have
better repair complexity than Zigzag, MDS, and Piggyback codes, and also lower
repair bandwidth compared to LRCs and Piggyback codes, at the same low repair
bandwidth as Zigzag codes, but with the price of a lower fault tolerance.

27

Chapter 4

Conclusions

In this thesis, we constructed a new class of codes that achieve low repair band-
width and low repair complexity for a single data node failure at the cost of fault
tolerance. The codes are constructed from two smaller codes, Class A and B, where
the former focuses on the reliability of the code, and latter focuses on reducing the
repair bandwidth and complexity. Class A codes are constructed from an MDS
code, which is then modified by using the piggybacking framework while Class B
codes are low complexity linear block codes whose construction depends upon the
Class A codes.

Our proposed codes achieve better repair complexity than Zigzag codes and
Piggyback codes and better repair bandwidth than LRCs, but at the cost of slightly
lower fault tolerance. A side effect of such a construction is that the number of
symbols per node that needs to be encoded grows linearly with the code dimension.
This implies that our codes are suitable for memory constrained DS systems as
compared to Zigzag and MDR codes for which the number of symbols per node
increases exponentially with the code dimension.

4.1 Future Work

While this thesis has presented a new family of repair efficient ECCs for DS sys-
tems, there are still opportunities to extend the work done here. Possible future
research includes:

1. Modifying the construction of Class A and B codes in such a way that it
provides optimal reduction in repair bandwidth.

2. Constructing codes that are able to reduce the repair bandwidth when there
are multiple node failures.

3. Applying the idea behind the proposed codes to protograph based sparse
graph codes since it is a known fact that these codes are low complexity.
Intuitively, such codes would have much lower complexity than the proposed
codes.

29

Appendix A

Proof of Theorem 2.1

Each row in the code array contains nA− k− τ parity symbols based on the MDS
construction (i.e., parity symbols without piggybacks). Using these symbols, one
can recover nA − k − τ data symbols in that row and, thus, nA − k − τ failures of
systematic nodes. In order to prove the theorem, we need to show that by using
piggybacked parity symbols pi,u, i = 0, . . . , k − 1, in some parity node, u, it is
possible to correct one arbitrary systematic failure. To do this, let us consider the
system of linear equations GdT = pT, representing the set of parity equations to
compute pi,us, where u = nA − τ .

In other words, d = (d0,0, . . . , d0,k−1, d1,0, . . . , dk−1,k−1), p = (p0,u, . . . , pk−1,u),
and G is given by

G =

a u0 0 0 . . . 0

0 a u1 0 . . . 0

0 0 a u2 . . . 0
...

...
...

...
. . .

...

uk−1 0 0 0 . . . a

 (A.1)

where a = (α0,u, . . . , αk−1,u), ui is a vector of length k with one at position i and
zeros elsewhere, and 0 is the all-zero vector of size k. Now, assume a systematic
node r has failed. In order to repair it, we need to solve the following subsystem
of linear equations G′wT = pT, in which w = (d0,r, . . . , dk−1,r) and G′ is a k × k
submatrix of G such that:

1. Its diagonal elements are all αr,u.

2. It has 1 at row r and column (r + 1)k

3. All other entries are 0.

31

A. Proof of Theorem 2.1

G′ =

αr,u 0 · · · 0 0 · · · 0

0 αr,u · · · 0 0 · · · 0
...

... · · · ...
... · · · ...

0 0 · · · αr,u 1 · · · 0
...

... · · · ...
... · · · ...

0 0 · · · 0 0 · · · αr,u

(A.2)

Note that G′ is full rank. Therefore, one arbitrary data symbol can be corrected
and, hence, the erasure correcting capabilities of the Class A code is nA−k−τ +1,
which completes the proof.

32

Appendix B

Algorithm to Construct Class B
Parity Nodes

We give an algorithm to construct k − τ − 1 Class B parity nodes in the order
PB
nA
,PB

nA+1, . . . ,PB
nA+k−τ−2. This results in the construction of (k − τ − 1)k parity

symbols pBt,j. The algorithm is given in Algorithm 1. Consider the construction of
the parity symbols of parity node PnA

. The algorithm constructs first the parity
symbol pB0,nA

as the sum of an element di,0 ∈ Q0 and max itr elements in X0. Then,
the other parity symbols pBt,nA

, t > 0, are constructed as the sum of an element
d(i+t)k,t ∈ Qt and max itr elements in Xt, i.e., following a specific pattern. The
remaining parity nodes are constructed in a similar way, with the only difference
that the number of elements added from the sets Xt, max itr, varies for each
parity node. The construction of the parity symbols pBt,j depends on the choice of
the symbols in the sets Qt and Xt. Assume that a parity symbol pB0,j is constructed.
The data symbols involved in pB0,j are picked as follows.

• Choice of a data symbol in Q0: Select a symbol di,0 ∈ Q0 such that the
corresponding ai,0 is maximum and there exists d0,i ∈ X0\D̃i,0 (lines 2 and 3
in the algorithm). If the latter does not exists, then select di,0 such that ai,0
is maximum. Such a di,0 always exist.

• Choice ofmax itr data symbols in X0: Selectmax itr symbols d0,i′ ∈ X0\D̃i,0
such that a0,i′ > 1 and its additional read cost does not increase (line 20 in
the algorithm). If such a condition is not met, then the symbol d0,i′ is not
used in the construction of the parity symbol.

After the construction of each parity symbol, the corresponding entry of matrix
A is updated.

33

B. Algorithm to Construct Class B Parity Nodes

Algorithm 1: Construction of Class B parity nodes

Initialization:
∀i,j = 0, . . . ,k − 1

ai,j as defined in (2.7)
D̃i,j , {d(i+s)k,(j+s)k}k−1s=0

max itr = k − τ − 2
1 for ω ← nA to nA + k − τ − 2 do
// construct k − τ − 1 nodes

2 choose di,0 ∈ Q0 s.t. ai,0 is max && d0,i ∈ X0\D̃i,0
3 if d0,i 6∈ X0\D̃i,0 then choose di,0 ∈ Q0 s.t. ai,0 is max
4 pB0,ω = di,0
5 for t← 1 to k − 1 do
6 pBt,ω = d(i+t)k,t
7 end
8 for itr ← 1 to max itr do
9 temp = pB0,ω + d0,i

10 if itr = 1 && d0,i ∈ X0\D̃i,0 && read(d0,i,temp) < a0,i then
11 i′ ← i
12 pB0,ω = temp

13 a0,i′ = ai′,0 = read(d0,i′ ,p
B
0,ω) = 1

14 for t← 1 to k − 1 do
15 pBt,ω = pBt,ω + dt,(i′+t)k
16 at,(i′+t)k = read(dt,(i′+t)k ,p

B
t,ω)

17 a(i+t)k,t = read(d(i+t)k,t,p
B
t,ω)

18 end

19 else

20 if ∃d0,i′ ∈ X0\D̃i,0 && read(d0,i′ ,p
B
0,w) ≤ a0,i′ && a0,i′ > 1 then

21 pB0,ω = pB0,ω + d0,i′

22 a0,i′ = read(d0,i′ ,p
B
0,ω)

23 for t← 1 to k − 1 do
24 pBt,ω = pBt,ω + dt,(i′+t)k
25 at,(i′+t)k = read(dt,(i′+t)k ,p

B
t,ω)

26 a(i+t)k,t = read(d(i+t)k,t,p
B
t,ω)

27 end

28 end

29 end

30 end
31 max itr ← max itr − 1

32 end

34

Bibliography

[1] J. Gantz and D. Reinsel, “THE DIGITAL UNIVERSE IN 2020: Big Data,
Bigger Digital Shadows, and Biggest Growth in the Far East,” EMC Corpo-
ration, Tech. Rep., 2012.

[2] M. Sathiamoorthy, M. Asteris, D. S. Papailiopoulos, A. G. Dimakis, R. Vadali,
S. Chen, and D. Borthakur, “XORing elephants: Novel erasure codes for big
data,” Proc. VLDB Endow., vol. 6, no. 5, pp. 325–336, Mar. 2013.

[3] S. Abiteboul, I. Manolescu, P. Rigaux, M. Rousset, and P. Senellart, Web
Data Managment. Cambridge University Press, 2011.

[4] S. Sankar, M. Shaw, K. Vaid, and S. Gurumurthi, “Datacenter scale evaluation
of the impact of temperature on hard disk drive failures,” Trans. Storage,
vol. 9, no. 2, pp. 6:1–6:24, Jul. 2013.

[5] S. Ghemawat, H. Gobioff, and S. Leung, “The Google File System,” SIGOPS
Oper. Syst. Rev., vol. 37, no. 5, pp. 29–43, Oct. 2003.

[6] J. J. Hanson, “An Introduction to the Hadoop Distributed File System,” IBM,
Tech. Rep., Feb. 2011.

[7] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for redundant arrays of
inexpensive disks (raid),” in Proceedings of the 1988 ACM SIGMOD Interna-
tional Conference on Management of Data, ser. SIGMOD ’88. New York,
NY, USA: ACM, 1988, pp. 109–116.

[8] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes.
North-Holland Publishing Company, 1977.

[9] J. Huang, X. Liang, X. Qin, P. Xie, and C. Xie, “Scale-RS: An efficient scaling
scheme for rs-coded storage clusters,” IEEE Trans. Parallel and Distributed
Systems, vol. PP, no. 99, p. 1, May 2014.

[10] C. Huang, M. Chen, and J. Li, “Pyramid codes: Flexible schemes to trade

35

Bibliography

space for access efficiency in reliable data storage systems,” in Proc. IEEE Int.
Symp. Network Computing and Applications, Jul. 2007.

[11] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the locality of code-
word symbols,” IEEE Trans. Inf. Theory, vol. 58, no. 11, pp. 6925–6934, Nov.
2012.

[12] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and
S. Yekhanin, “Erasure coding in windows azure storage,” in Proc. USENIX
Annual Technical Conference, Jun. 2012.

[13] D. Papailiopoulos and A. Dimakis, “Locally repairable codes,” in Proc. IEEE
Int. Symp. Inf. Theory, Jul. 2012.

[14] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran,
“Network coding for distributed storage systems,” IEEE Trans. Inf. Theory,
vol. 56, no. 9, pp. 4539–4551, Sept. 2010.

[15] Y. Wang, X. Yin, and X. Wang,“MDR codes: A new class of raid-6 codes with
optimal rebuilding and encoding,” IEEE J. Sel. Areas in Commun., vol. 32,
no. 5, pp. 1008–1018, May 2014.

[16] I. Tamo, Z. Wang, and J. Bruck,“Zigzag codes: MDS array codes with optimal
rebuilding,” IEEE Trans. Inf. Theory, vol. 59, no. 3, pp. 1597–1616, Mar. 2013.

[17] K. Rashmi, N. Shah, and K. Ramchandran,“A piggybacking design framework
for read-and download-efficient distributed storage codes,” in Proc. IEEE Int.
Symp. Inf. Theory, Jul. 2013.

[18] A. Datta and F. Oggier, “An overview of codes tailor-made for better re-
pairability in networked distributed storage systems,”SIGACT News, vol. 44,
no. 1, pp. 89–105, Mar. 2013.

[19] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied
Cryptography, 5th ed. CRC Press, Aug. 2001.

36

	Introduction
	Coding for DS Systems
	Erasure Correcting Codes
	System Model
	Contributions and Thesis Outline

	Code Construction
	Preliminaries
	Class A Parity Nodes
	Class B Parity Nodes
	Construction Example
	Discussion of the Construction Example
	Matrix Approach
	Repair of a Single Node Failure: Decoding Schedule

	Code Characteristics and Comparison
	Fault Tolerance
	Normalized Repair Bandwidth
	Repair Complexity of a Failed Node
	Encoding Complexity
	Code Comparison

	Conclusions
	Future Work

	Proof of Theorem 2.1
	Algorithm to Construct Class B Parity Nodes
	Bibliography

