
Exploring Supervision Levels for Patent
Classification
Using Weakly Supervised, Semi-supervised, and Supervised
Learning to Classify Patents at Different Granularity Levels

Master’s thesis in Data Science and AI

ADAM VAN HOEWIJK AND HENRIK HOLMSTRÖM

DEPARTMENT OF MATHEMATICAL SCIENCES

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2022
www.chalmers.se

www.chalmers.se

Master’s thesis 2022

Exploring Supervision Levels for Patent
Classification

Using Weakly Supervised, Semi-supervised, and Supervised Learning
to Classify Patents at Different Granularity Levels

ADAM VAN HOEWIJK AND HENRIK HOLMSTRÖM

Department of Mathematical Sciences
Division of Data Science and AI

Chalmers University of Technology
Gothenburg, Sweden 2022

Exploring Supervision Levels for Patent Classification
Using Weakly Supervised, Semi-supervised, and Supervised Learning to Classify
Patents at Different Granularity Levels
ADAM VAN HOEWIJK AND HENRIK HOLMSTRÖM

© ADAM VAN HOEWIJK AND HENRIK HOLMSTRÖM, 2022.

Supervisor at CSE: Dana Dannélls, Computer Science and Engineering
Examiner at CSE: Marina Axelson-Fisk, Mathematical Sciences

Master’s Thesis 2022
Department of Mathematical Sciences
Division of Data Science and AI
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: BERT & Co. learning how to classify patents.
Figures containing dogs or cats use resources from Flaticon.com

Typeset in LATEX, template by Kyriaki Antoniadou-Plytaria
Printed by Chalmers Reproservice
Gothenburg, Sweden 2022

iv

Exploring Supervision Levels for Patent Classification
Using Weakly Supervised, Semi-supervised, and Supervised Learning to Classify
Patents at Different Granularity Levels
ADAM VAN HOEWIJK AND HENRIK HOLMSTRÖM
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
Machine learning can help automate monotonous work. However, most approaches
use supervised learning, requiring a labeled dataset. The consulting firm Konsert
Strategy & IP AB (Konsert) sees great value in automating its task of manually
classifying patents into a custom technology tree. But the ever-changing categories
leaves a pre-labeled dataset unavailable. Can other forms of supervision be used for
machine learning to excel without extensive data? This thesis explores how weakly
supervised, semi-supervised, and supervised learning can help Konsert to classify
patents with minimal hand-labeling. Furthermore, what effect class granularity has
on performance is explored alongside whether or not using patents’ unique charac-
teristics can help.

Two existing state-of-the-art methods at two supervision levels are employed. Firstly,
LOTClass, a keyword-based weakly supervised approach. Secondly, MixText, a
semi-supervised approach. We also propose LabelLR, a supervised approach based
on patents’ cooperative patent classification (CPC) labels. Each method is tested on
all granularity levels of a technology tree provided by Konsert alongside a combined
ensemble of the three methods. MixText receives all unlabeled patent abstracts to-
gether with the same ten labeled documents per class LabelLR receives. LOTClass
on the other hand receives the unlabeled abstracts along with class keywords.

Results reveal that the small training dataset of around 4 200 patents leaves LOT-
Class struggling while MixText excels. LabelLR outperforms MixText on the rare
occasion when the CPC labels and the classifications closely match. The ensem-
ble proves more consistent than LabelLR but only outperforms MixText on some
granular classes. In conclusion, a semi-supervised approach appears to be the best
balance of minimal manual work and classification proficiency reaching an accuracy
of 60.7% on 33 classes using only ten labeled patents per class.

Keywords: Patent, Weakly supervised learning, Semi-supervised learning, Super-
vised learning, BERT.

v

Acknowledgements
We would like to thank Konsert for providing us with the resources and opportu-
nity to work on this thesis along with great workout sessions and breakfasts every
Tuesday. A special thank you to Emil Haldorson and Jonas Lindgren from Konsert
for their support. We also want to thank Lisa and Mats Holmström, and Mia van
Hoewijk for proofreading. A big thank you to our supervisor Dana Dannélls for con-
tinuously offering input on the work as well as answers to any questions or concerns.
Additionally, we thank Marina Axelson-Fisk for being our examiner for the thesis.

Adam van Hoewijk and Henrik Holmström, Gothenburg, June 2022

vii

List of Acronyms

This is a list of alphabetical ordered acronyms used throughout this thesis:

BERT Bidirectional Encoder Representations from Transformers
CPC Cooperative Patent Classification
IP Intellectual Property
IPC International Patent Classification
MLM Masked Language Model
MCP Masked Category Prediction

ix

Contents

List of Acronyms ix

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Aim . 2
1.2 Outline . 2
1.3 Rationale . 2
1.4 Scope . 2
1.5 Limitations . 3
1.6 Ethical Considerations . 3
1.7 Contributions . 3

2 Background 5
2.1 Patents . 5

2.1.1 Contents of Patents . 5
2.1.2 Patent Language . 6
2.1.3 Patent Landscaping . 7

2.2 Levels of Supervision in Machine Learning 7
2.2.1 Supervised Learning . 8
2.2.2 Semi-supervised Learning . 8
2.2.3 Weakly Supervised Learning 9
2.2.4 Unsupervised Learning . 10

2.3 Machine Learning Approaches . 10
2.3.1 Language Modeling . 10
2.3.2 Transformers . 11
2.3.3 BERT . 12

2.3.3.1 BERT Variations . 14
2.3.4 Logistic Regression . 14
2.3.5 Ensembles . 15

2.3.5.1 Hard Voting . 15
2.3.5.2 Soft Voting . 16

2.4 Evaluation . 17
2.5 Previous Work . 18

3 Data 19
3.1 Web Scraping and Pre-processing . 20

xi

Contents

4 Method 23
4.1 Weakly Supervised Learning - LOTClass 24

4.1.1 Generating Category Vocabularies 24
4.1.2 Finding Category Indicative Word Occurrences 25
4.1.3 Fine-tuning for Masked Category Prediction 26
4.1.4 Self-training BERT on Examples 26

4.2 Semi-Supervised Learning - MixText 27
4.2.1 Linear Interpolation . 27
4.2.2 Semi-supervision . 28
4.2.3 Entropy Minimization . 29

4.3 Supervised Learning - LabelLR . 29
4.4 Ensemble . 30
4.5 Supervised Learning - Fine-tuned BERT 31
4.6 Evaluation . 31
4.7 Experimental Setup . 32

4.7.1 Experiment 1 - LOTClass . 32
4.7.2 Experiment 2 - MixText . 32
4.7.3 Experiment 3 - LabelLR . 33
4.7.4 Experiment 4 - Ensamble . 33
4.7.5 Experiment 5 - Fine-tuned BERT 33

5 Result 35

6 Discussion 39
6.1 Models . 39

6.1.1 LOTClass . 39
6.1.2 MixText . 39
6.1.3 LabelLR . 40
6.1.4 Ensemble . 41

6.2 Data . 41
6.3 Practical applicability . 41
6.4 Future Work . 42

6.4.1 Patents’ Unique Characteristics 42
6.4.2 Back-translation . 43
6.4.3 Transfer-Learning . 43
6.4.4 LOTClass Keywords . 43
6.4.5 Combining LOTClass and MixText 43
6.4.6 More Patent Datasets . 43
6.4.7 Hierarchical Classification . 44
6.4.8 Comparison to Search Engines 44
6.4.9 Variability in Results . 44
6.4.10 Explore Other Weakly and Semi-supervised Methods 44

7 Conclusion 45

A Appendix 1: LOTClass Keywords I
A.1 Manufacturing and Applications . I
A.2 Batteries, Fuel Cells, and Capacitors: II

xii

List of Figures

2.1 The different parts of a CPC label. 6
2.2 Different supervision levels on a spectrum. 7
2.3 Example flowchart of a supervised learning. 8
2.4 Example flowchart of a semi-supervised learning. 9
2.5 Example flowchart of a weakly supervised learning. 9
2.6 Example flowchart of a unsupervised learning. 10
2.7 Example language model. 11
2.8 Model architecture of a transformer [45]. 12
2.9 The three parts of the BERT input embeddings. The token embed-

dings, the segmentation embeddings and the position embeddings [15]. 13
2.10 Plot of logistic function described in Equation 2.1. 14
2.11 Ensemble using hard voting to aggregate the predictions of multiple

models. 16
2.12 Ensemble using soft voting to aggregate the predictions of multiple

models. 16
2.13 Confusion matrix of prediction and true classes where TP means true

positive, FN means false negative, etc. 17

3.1 Tree describing the datasets structure. The leaf nodes with black
text represent the number of patents in each class. The gray nodes
represent the sum of the patents in its child nodes. Each level of the
tree is marked to allow for reference in testing. 20

3.2 Tree describing the test sets structure after removing patents with
short abstract and descriptions as well as separated a test set. The
leaf nodes with black text represents the number of patents in each
class. The gray nodes is the sum of the patents in its child nodes.
Each level of the tree is marked to allow for reference in testing. . . . 21

4.1 LOTClass requires only keywords along with text from the patent in
training. 24

4.2 Example of how keywords are masked and a vocabulary is generated
by predicting what words fit into the context. 25

4.3 Example of how word predictions are compared with the category
vocabularies to determine whether or not the occurrence is category
indicative. 26

4.4 MCP consists of guessing a category based on context by a masked
word. 26

xiii

List of Figures

4.5 The BERT model can eventually predict categories based on the plain
texts. 27

4.6 MixText takes patents texts, a few of them labeled with their classes
to train. 27

4.7 Linear interpolation between to data points and generation a new one
that is a mix of the two original ones. 28

4.8 New data points generated from classified unlabeled data points. . . . 29
4.9 LabelLR requires a few classified documents along with their CPC

labels to train. 30
4.10 CPC labels are split into their sub-parts and fed to a logistic regression

model in LabelLR. 30
4.11 Our different methods use different data and are combined using soft

voting to predict a category. 31

5.1 Tree describing how the results are displayed. 35
5.2 Tree following the datasets structure with each node describing the

macro and micro F1score that LOTClass achieved on each branch. 3.2 36
5.3 Tree following the dataset’s structure with each node describing the

macro and micro F1score that MixText with 10 labeled patents per
class achieved on that each branch. Further description of the leaf
nodes is described in Figure 3.2 . 37

5.4 Tree following the dataset’s structure with each node describing the
macro and micro F1score that LabelLR with 10 labeled patents per
class achieved on each branch. 37

5.5 Tree following the dataset’s structure with each node describing the
macro and micro F1score that LabelLR with 10 labeled patents per
class achieved on each branch. 38

5.6 Tree following the datasets structure with each node describing the
macro and micro F1score our fine-tuned BERT model can achieve . . 38

xiv

List of Tables

4.1 The different supervision levels that are tested from low to high. . . . 24

5.1 The average macro and micro F1score for each level of the dataset
including performance on all leaf nodes. Blank cells are tests that
were not conducted while cells marked with ‘–’ failed. The best score
for each level is shown in bold excluding the results for the fine-tuned
BERT (FT BERT in table). 36

xv

List of Tables

xvi

1
Introduction

What is the mark of great language-focused artificial intelligence? Spectacular dis-
plays of language understanding? A nuanced vocabulary? We argue applicability. A
text classifier trained on plentiful labeled example texts can display great language
understanding. However remarkable, such a model suffers from limited utility. In
practice, labeling example data is time-consuming and labor-intensive. A machine
learning model that requires little supervision, that is, little or no manually labeled
data offers a solution. An approach that finds insight in unlabeled examples opens
the door to a wast ocean of practical applications. One such application is the cat-
egorizing of patents.

Konsert is a niche consulting firm with a focus on technology innovation and intellec-
tual property (IP). As part of their work developing business-driven IP strategies for
industry clients, Konsert has the recurring task of analyzing external IP landscapes.
Their most common approach involves sorting patents into manually pre-defined
frameworks. Firstly, this allows for the mapping of opportunities and constraints of
a technology field. For example, which parts of the field are less protected and where
investments are being made. Secondly, it gives Konsert a framework of patents they
can refer back to when consulting with a client. However, reading and categorizing
patents manually is time-consuming and limits the amount of data Konsert can pro-
cess. Every time Konsert analyzes a new IP landscape a new framework is created
and the manual patent sorting starts once more. Automating the monotonous work
would enable Konsert to use more comprehensive patent datasets consequently in-
creasing the scope and quality of client insights.

For a machine learning model to accurately classify text requires a nuanced, deep
understanding of natural language. State-of-the-art methods show an understanding
of context and complex language, classifying everything from news articles to movie
reviews [36]. But for Konsert, patents offer a unique challenge. The vocabulary in
patents is domain-specific [37] and the language is ambiguous [7]. Such language
leaves most language models struggling. Extensive data-consuming model training
is thus vital. Pre-trained models offer a unique opportunity in having profound lan-
guage understanding with training done on general tasks [15]. A pre-trained model
can give way to proficient classification with little to no labeled data [51, 47, 28,
36]. But the question of whether or not these models are capable of navigating the
complex landscape of patent classification remains open.

Deviating from supervised learning where a labeled dataset is required, semi-supervised

1

1. Introduction

and weakly supervised learning offer an opportunity. Two approaches that can prove
successful in classification even when deprived of labeled data. Several methods have
been developed [51, 47, 28], but they are yet to be applied to patent classification.
Expanding upon some of these methods to adapt to patents’ unique characteristics
can reveal what level of supervision is needed to help a company such as Konsert.

1.1 Aim
This thesis aims to classify patents with different levels of supervision utilizing
patents’ unique characteristics to elucidate when adequate proficiency is reached.
These aims can be divided into the following questions:

• What supervision level fits best for patent classification while minimizing man-
ual work?

• What performance can be achieved in patent classification?
• How does classes’ granularity affect performance in patent classification?
• How can patents’ unique properties be utilized in patent classification?

1.2 Outline
Now that the problem has been introduced and the aims have been stated the rest
of the thesis follows the subsequent outline. Chapter 2 gives a background to the
necessary theory for a complete understanding of the thesis. Including supervision
levels, machine learning models, and how patents work and are written. Following
Chapter 2, Chapter 3 gives background to the datasets to be used in the method,
described in Chapter 4. In Chapter 5 we show the results which are then discussed
in Chapter 6. Finally, a conclusion is drawn in Chapter 7.

1.3 Rationale
For each aim to be reached a rationale for achieving the aims of the thesis is pre-
sented. To test what supervision level fits best several approaches are trained on
the dataset. The different models are compared both regarding supervision level
and predictive performance to evaluate what fits best. A model is also fine-tuned on
the full dataset to see what proficiency is possible. To understand how the classes’
granularity affects performance the dataset is tested on the different levels of its
hierarchical structure. To see how unique aspects of patents can be used a method
will be tested that classifies using patents’ CPC labels.

1.4 Scope
Because of the constrained time frame of the thesis, the scope is limited. Therefore,
when it comes to the aims of the thesis they can only be investigated to a limited
extent. Only three different methods are tested. Text classification is limited to
the abstract and description and does not include parts such as claims. The other

2

1. Introduction

attribute of patents that is looked at is limited to the predefined hand-labeled CPC
labels included in the patents. Additionally, only one dataset from Konsert is used
for analysis.

1.5 Limitations
The thesis is technically limited. Computing power is limited in Google’s Colabora-
tory service which means that entire patents cannot be used. Instead selected parts
of the patents are chosen. Limited computing power also limits choices such as the
number of epochs reasonable to run.

1.6 Ethical Considerations
One of the first ethical considerations is that a machine learning model can adopt
biases. A bias can cause a model to tend to categorize based on aspects that are
not relevant to the category. This leads to certain patents being systematically put
into the wrong category. If this machine learning is used in patent classification one
could imagine, for example, Chinese patents tending to be left incorrectly classified.
Possibly due to a different grammatical structure. Considering that the patent clas-
sifications are intended to be used to analyze different technology areas, failing to
classify a certain country’s patents correctly could lead to unfavorable consequences.
A bias could come from the data used, the processing of that data, the model’s struc-
ture, and the keywords or example patents used for each category [48].

A second ethical consideration is a model’s impact on people’s work. Instead of
supplementing people’s jobs and making them easier it could replace their job. Al-
though making society more productive is generally desirable, in the short term,
someone could be left without a job.

1.7 Contributions
First and foremost we contribute by testing state-of-the-art weakly supervised and
semi-supervised methods on patents. Furthermore, we test how well the CPC la-
bels can be used to classify other categories than the CPC labels’ own category.
Finally, we evaluate how a combination of several approaches can affect predictive
performance along with what effect class granularity has on each approach.

3

1. Introduction

4

2
Background

This chapter explains some essential theory regarding patents and approaches to
machine learning.

2.1 Patents
Some of companies’ most valuable assets can be IP. IP is concepts or ideas one has
created that can be legally protected. For example, a manufacturing technique. To
protect one’s IP a patent can be issued. A patent is a legal right to that IP. The ben-
efits of a patent are fairly straightforward. If you invent something you can legally
protect it and stop others from copying by suing. It does come with limitations
though. A patent only gives protection for a limited amount of time, generally 20
years. This means that you can get a head start without any competition given no
one infringes on your patent. Owning a patent can be valuable, but having a patent
issued relies on filling some criteria. It must be something new. Meaning you are
the first to do it. It must be non-obvious and it must have utility. If it can not be
of use there is no point to the patent [7].

2.1.1 Contents of Patents
In practice, patents follow a standardized structure. This makes sure one can in-
terpret what the patent protects and what the invention is. To start with, there
is a title and an abstract. The abstract gives the reader a summary of what the
patent contains [7]. Technical details can be included [19] but it primarily serves to
give a more general idea of the patent’s contents. In case one wants a more detailed
understanding further exploration of the patent will be in the description.

After the abstract, one finds the description. The description is considerably longer
than the abstract but also includes more technical details. The exact contents of
the description can vary but in general, the invention must be described in enough
detail that the invention can be used by anyone skilled in the technical field. Parts
of the description can include a background to the problem, examples of where and
how the invention can be used, and technical features. Furthermore, figures can
be used. This is done in combination with the text to further illustrate ideas [7].
The description provides insights but does not determine the legal protection of the
patent. This is instead done in the claims sections.

5

2. Background

Possibly the most important part of a patent is the claims. The claims is a list
of specifications determining what the patent legally protects. Other parts of the
patent can provide more insight but the claims are what will protect you in case
of an infringement on your patent. In case you sue someone whom you believe is
using your IP, a judge will examine the claims to determine whether or not you are
protected. Claims along with the description and abstract make up most of the text
within a patent. But several other pieces of information are also included. Exam-
ples include the inventor, the owner, related patents, and interestingly classifications.

Another important part of a patent is its classifications. Patents are manually
classified into different technology areas. This helps one find patents relevant to a
given technology. There have been several classification schemes one example being
the International Patent Classification (IPC) [22]. Although IPC has been com-
monly used, in 2013 the European Patent Office and the US Patent and Trademark
Office jointly finished creating the Cooperative Patent Classification, in short CPC.
[1]. The CPC is similar to the IPC. It is a classification scheme where the cate-
gories are hierarchically ordered into different technologies. For example the class
H01L27/0744. The H stands for electricity. The H01 is electric elements. H01L
is semiconductor devices. In short, one can search for patent classes with different
granularity. A patent can be part of a very specific class but the first letters and
numbers represent a broader category [7]. The example category’s different parts
are illustrated in Figure 2.1 with the broadest category being its section, followed
by class, sub-class, group, and sub-group.

Figure 2.1: The different parts of a CPC label.

2.1.2 Patent Language
For obvious reasons a patent that gives broad protection is of more use. Writing
specific claims leaves the protection equally specific [7]. Language formulated in a
way that allows for several interpretations can mean a patent can be interpreted to
protect more. Furthermore making a description too descriptive can make a com-
petitor understand your invention and opens the door to copycats [7]. Because of
this, several challenges arise with patents’ language. Firstly, the sentence length
is significantly longer than in more general corpora. Secondly, the vocabulary is

6

2. Background

unconventional with domains specific terms. Finally, the syntactic structure is com-
plex [46]. These factors mean that patents’ language is hard to read and understand
requiring excellent language understanding and a deep vocabulary.

2.1.3 Patent Landscaping

A patent can provide great value but also comes at a cost. Legals fees for a patent
exceed thousands of euros [44]. Since patents are publicly available, patent invest-
ments provide insight into what areas of technology are being invested in. Looking
at a patent’s bibliographic information can provide even more insight into the in-
vestments. What type of patents are issued in what countries can tell you where
investments are being made as well as what inventors are at the cutting edge their
respective field. The practice of analyzing patents in this way is called patent land-
scaping [43].

Creating patent landscapes can be a great way for a company to look for opportuni-
ties and threats to one’s business. On the flip side, it can be a labor-intensive task.
Using the existing patent classifications can be a shortcut to finding patents in your
area of interest but rarely will you find a category matching your exact needs. This
is where companies can spend extensive time and resources reading and classifying
patents into custom categories for their specific needs [43]. A task not helped by
the difficult language patents so often contain.

2.2 Levels of Supervision in Machine Learning

There are several approaches to machine learning with different levels of supervision
being one way in which they vary. More labeled data or more help can be considered
a higher level of supervision. Unsupervised learning lies on one side of the spectrum
while supervised learning is on the other [11]. In between these levels, one can find
alternatives that don’t provide as much supervision as supervised learning but more
than nothing as in the case of unsupervised learning. Some of these approaches
are seen in Figure 2.2. Weakly supervised [42] and semi-supervised learning [52] are
examples that fit in between the two extremes. Each one of these methods is further
explained in the following section.

Figure 2.2: Different supervision levels on a spectrum.

7

2. Background

2.2.1 Supervised Learning
One of the most robust machine learning approaches is supervised learning [13].
In supervised learning, data is annotated by mapping a piece of data to a target
variable. A model is then trained on the annotated examples. Practically this can
be done by having a feature vector X and assigning it a variable y [38]. If one
wants to train a model in binary classification, the target variable would be a 1 or 0
representing whether or not the data belong to a class [6]. The piece of data can also
be assigned a continuous variable. Using machine learning to predict a continuous
variable is instead called regression [14]. As an example of classification, imagine
having pictures of cats and dogs. After manually labeling the picture with cat or
dog a machine learning model can then be trained on these examples to classify cat
and dog pictures as illustrated by Figure 2.3.

Figure 2.3: Example flowchart of a supervised learning.

Common examples of supervised classification approaches include logistic regression
which models the probability that a piece of data belongs to a certain class [27]
and random forests which is a combination of multiple decision trees [30]. Another
example is neural networks which can classify a broader range of data [49].

2.2.2 Semi-supervised Learning
Semi-supervised learning lies between supervised learning and unsupervised learn-
ing. In semi-supervised learning, you have access to some labeled data and a large
amount of unlabeled data. There are several ways to use the unlabeled data. For
example, the labeled data can be used to generate more labeled data from the un-
labeled data consequently combining the two. One way of doing this could be to
assign the same label as the closest labeled data point. If your data points are fea-
ture vectors you can simply check the distance between the vectors [38]. Another
example could be if you have some labeled texts describing cats and dogs and many
unlabeled cat and dog texts. By counting how many words the unlabeled texts share
with the cat and dog texts one could label some of the unlabeled texts. Simply com-
pare what texts share the most words with either the cat or dog texts. These now

8

2. Background

labeled examples can be used to train a more sophisticated model using supervised
learning as illustrated in Figure 2.4.

Figure 2.4: Example flowchart of a semi-supervised learning.

2.2.3 Weakly Supervised Learning
Weakly supervised learning can be a path to good prediction performance with little
manual work [42]. Instead of using labeled data, it uses other sources of data that
are easier to come by. This data can then be used to create a dataset that can be
utilized in conventional supervised learning. An example of this would be providing
keywords for each class [42]. Imagine having texts about dogs and cats. You can
then provide keywords for each class, for example, the class names ‘dog’ and ‘cat’.
Each text containing the word ‘dog’ can then be labeled as a dog text and texts
containing the word ‘cat’ can be labeled as cat texts. The now labeled data can be
used to train a model that is more complex than simply searching for the word ‘dog’
or ‘cat’. This allows us to classify texts that do not contain any keywords or maybe
contain both keywords equally. The concept is illustrated by Figure 2.5.

Figure 2.5: Example flowchart of a weakly supervised learning.

9

2. Background

2.2.4 Unsupervised Learning

Unsupervised learning requires no manual annotation. Instead, it seeks to find
natural patterns in the data. Either by finding clusters and assigning a label or
by assigning values and ranking the data [38]. An example of this could be having
a bunch of pictures of cats and dogs, and using machine learning to find natural
clusters as shown in Figure 2.6. The clusters may or may not represent cats and
dogs. Any other pattern in the data could be found. Furthermore, the label of each
cluster would simply be a cluster id and not animal names.

Figure 2.6: Example flowchart of a unsupervised learning.

A common approach is K-means clustering which tries to find the middle of clusters
by moving randomly initiated centroids in the direction of clusters. By iteratively
assigning data points to the closest centroid and moving the centroid to the center
of the assigned data points, k-means clustering can find natural clusters in the data
[24]. Another common approach is DBSCAN which instead clusters based on data
density [18].

2.3 Machine Learning Approaches

In the following section, a few machine learning methods are explained.

2.3.1 Language Modeling

Statistical language modeling, or more simply language modeling is a method where
the goal is to draw insight from sequences of words through the use of statistics [2].
Language modelling is a general term used to describe statistical models that take
text as an input. This could for example be a model that ranks words after how
important they are perceived to be in a text as illustrated in Figure 2.7.

10

2. Background

Figure 2.7: Example language model.

The first Language models were simple like Ziph’s that explored statistical patterns
between how word occurrence decays as a power function of a word’s rank [12]. Later
examples of Language models are more involved such as the transformer architecture
[45].

2.3.2 Transformers

Transformers are the base of several recent natural language processing techniques
such as BERT [15]. Transformers consist of two parts, an encoder, and a decoder
which are the left and, right blocks respectively as shown in Figure 2.8 [45]. An
encoder can not simply read a text such as ‘This is an dog’, it has to be tokenized
first. Tokenizing a text means that you exchange each word with its index in a
predefined list of words to create a number representation. The text ‘This is a
dog’ could be converted into the tokens [‘This’, ‘is’, ‘a’, ‘dog’] which could have the
corresponding numbers in the list of tokens [1, 2, 3, 4]. This tokenized text can be
introduced to the encoder where it additionally saves the position of the words in
the sentence. From this point forward the goal of the encoder is to take this text
and create its attention. Attention refers to the encoder’s perceived importance
of each word in the text relating to the rest of the words. For the earlier text,
this might mean that ‘dog’ would be given a higher value than ‘a’ because it is of
higher importance to the sentence’s meaning. Similar to the case in Figure 2.7. The
encoder in this sense simply says what words in a text contextually should be paid
more attention to.

11

2. Background

Figure 2.8: Model architecture of a transformer [45].

The decoder can be thought of as writing a text one word at a time, where the
next word is determined by the previous words written and the importance of the
words from a text given to the encoder. To be precise, the goal of the decoder is
to determine the next token of the output by using a few inputs. These inputs are
all the previously predicted tokens and the attention of all tokens inserted into the
encoder.

2.3.3 BERT
BERT, the acronym of Bidirectional Encoder Representations from Transformers is
made from one part of the transformer architecture, the encoder. Only the encoder
is needed since the goal of BERT is to create a language model, such as assigning the
attention of a sentence. BERT is often called bidirectional though non-directional
might be a more intuitive description. This comes from the fact that BERT does
not read a sentence from left to right as other models might do, instead, BERT
looks at the complete sentence at once when determining its context. This is done
with the help of three separate embeddings BERT receives from the tokenizer seen in
Figure 2.9. The position embedding describes the position of each token, the segment
embedding describes if the text is separated, and the token embedding consists of the
input tokens. To increase the complexity of what a BERT model can understand it
actually consists of several such attention mechanisms. First of all, there are several

12

2. Background

mechanisms that work next to one another called heads. Secondly, the output of
the attention mechanism are feed into several layers of attention mechanisms called
hidden layers. By varying the number of attention heads and layers one can form
BERT models of different sizes.

Figure 2.9: The three parts of the BERT input embeddings. The token embed-
dings, the segmentation embeddings and the position embeddings [15].

There are several pre-trained BERT models. The earliest model, BERTbase, is
trained on a books corpus (800M words) and the English Wikipedia (2,500M words)
[15]. This pre-training means that only fine-tuning of a BERT model’s parameters
is required to adapt it to a specific task. Before examining how BERT can be fine-
tuned it is helpful to have an understanding of how the pre-training is done.

When training a language model a prediction goal needs to be determined. BERT
uses two training strategies. The first one is called Masked Language Modeling
which means that some words in a text are replaced with the [MASK] token and
BERT tries to predict the original value of that token based on the surrounding
tokens. This can be compared to covering up a word in a text and making BERT
predict based on the surrounding words. Masked Language Modelling makes BERT
good at using context to understand words.

The second training method is called Next Sentence Prediction. The goal of Next
Sentence Prediction is to predict whether two sentences come after each other or
are two random sentences. For this task, a [CLS] token is inserted at the beginning
and a [SEP] token after each sentence. From the [CLS] token the similarity of the
sentences can be extracted.

When fine-tuning BERT for classification the [CLS] token can be used as an output
to understand what words are important in a specific classification problem. Dif-
ferent words can have changing levels of importance in different classification tasks.
Because of this, the models’ parameters have to be fine-tuned for the [CLS] token
to aid in classification for specific tasks [15].

13

2. Background

2.3.3.1 BERT Variations

There exist different variations of the original BERTbase model each made for differ-
ent purposes [16]. One example is MobileBERT, a BERT model more than five times
smaller than the base model. This allows for similar performance to a BERTbase

model but requires less computing power [40]. Another variant is BERTlarge. This
model is instead larger than the original with more parameters to tune. Because
of the size, it is heavier to run but can also learn more [16]. Such a model thus
fits for harder tasks such as reading patents. A variant of the BERTlarge model is
BERT for patents. A model trained specifically on patents [33]. BERT for patents is
trained on the text of over 100 million patents [39]. This entails a few things. First
of all, it means that the model is adapted to the peculiar language in patents. This
can help the model understand complex language specific to patents. Secondly, it
means that the model’s vocabulary is adapted to patents. Instead of prioritizing the
words most commonly used in everyday language the BERT for patents model can
include words in its vocabulary commonly used in patents language. Additionally
BERT for patents has a few extra tokens indicating what part of a patent text comes
from. Examples include the tokens [TITLE] and [ABSTRACT]. This does make the
model more niche but also allows it to excel further than other models in the do-
main [33]. After the release of BERT, models such as RoBERTA which introduces
better pre-training have shown significantly better performance [25]. Still, BERT
for patents has shown even better results when it comes to domain-specific tasks in
patent classification [5].

2.3.4 Logistic Regression
Logistic regression is a regression methodology used for binary classification. Given
any input features Logistic regression models the probability of an output of one or
zero [34]. To achieve this a logistic regression model has a tunable weight for each
input feature. The input and the weights are multiplied to be run through a logistic
function. The logistic function essentially compresses the output of the model to
be between zero and one, representing a probability [3]. Figure 2.10 illustrates how
different values all fall in the range.

Figure 2.10: Plot of logistic function described in Equation 2.1.

The logistic function f(x) is also described mathematically in Equation 2.1.

14

2. Background

f(x) = 1
1 + e−x

(2.1)

To train the model the loss is calculated by the maximum likelihood estimation.
This essentially maximizes the probability of a correct guess where any prediction
higher than 0.5 is a guess of one and anything lower is a guess of zero [34].

Furthermore, the logistic regression function can be expanded for multiclass classi-
fication. To do this a technique called one-vs-rest can be employed [3]. One-vs-rest
splits the problem into multiple binary classification problems where each class is
compared to all the rest of the classes. This is done by creating a set of feature
weights, essentially a unique model, for each class. These are then tuned to predict
whether a given data point belongs to the class in question or any of the rest. The
final prediction is the class that has the highest predicted probability of being true.

2.3.5 Ensembles

A single machine learning model can have glaring weaknesses. Furthermore, different
models can have different weaknesses. To combat weaknesses but to utilize that
different models can have different weaknesses one can assemble multiple models.
This is done in hopes that a majority of the models will have a correct prediction
and individual mistakes can be avoided. Arranging multiple models in such a way
is called an ensemble. To make an ensemble you train multiple models on the same
dataset and combine the models to make a single superior one [20]. In Figure 2.11
one can see how multiple models all train on the same data to then combine each
of the models’ predictions. There are several ways one can combine the models’
predictions. Two of the most common ways are hard voting and soft voting.

2.3.5.1 Hard Voting

One of the most common ways to combine models in using hard voting. In hard
voting, each model in the ensemble gets one vote. After voting the prediction with
the most amount of votes becomes the ensemble’s unified vote [20]. This is the
example illustrated in Figure 2.11. An example of an ensemble that uses hard
voting is random forests [30]. A random forest consists of a set of decision trees each
trained on different subsets of the data. Once each tree is trained the forest makes
a prediction based on the trees’ votes [17]. One of the downsides of hard voting is
that it disregards some information. Some machine learning models allow for the
prediction of probabilities. To utilize this and weigh each vote one can employ soft
voting.

15

2. Background

Figure 2.11: Ensemble using hard voting to aggregate the predictions of multiple
models.

2.3.5.2 Soft Voting

Instead of simply having each model in an ensemble vote on a prediction one can
weight each prediction. First of all, if a model is not confident in a prediction one
should probably listen to that prediction less. Furthermore, each model can return
confidence levels on the alternatives outside its first choice. For example, imagine
a model is 60% confident in alternative one, 35% confident in alternative two, and
5% in alternative three. Using hard voting the vote would be cast on alternative
one. But it is still relevant that the model prefers alternative two over alternative
three. To utilize this we employ soft voting. In soft voting, we can simply sum each
of the models’ prediction confidence for each guess. The ensemble then predicts the
alternative which has the highest sum [4]. This example is illustrated in Figure 2.12.

Figure 2.12: Ensemble using soft voting to aggregate the predictions of multiple
models.

16

2. Background

2.4 Evaluation
Probably the most fundamental metric in machine learning is accuracy. Accuracy is
the percentage of correct guesses. It is useful since we want to achieve the maximum
amount of correct guesses. Mathematically accuracy along with other metrics can
be explained with the help of true positives, false positives, true negatives, and false
negatives. Each one of these is illustrated by the confusion matrix in Figure 2.13
where the row represents a model’s prediction and the column represents the truth.

Figure 2.13: Confusion matrix of prediction and true classes where TP means true
positive, FN means false negative, etc.

With the help of Figure 2.13 Accuracy can be explained by Equation 2.2.

Accuracy = TP + TN
TP + TN + FN + FP (2.2)

Although easily interpretable, sometimes accuracy can be misleading leaving room
for other metrics. One such example is the F1score [38]. F1score is one of the most
common metrics used in evaluating classifiers. The accuracy score is easier to un-
derstand but has flaws. Imagine classifying a rare disease where 99% of people are
free from the disease. A model classifying everyone as healthy yields an accuracy
of 99% [38]. Employing further metrics illustrates the flawed approach. The recall,
how many positive cases were correctly classified, is 0%. We never correctly guess
the state of a patient that has the disease. Precision is another metric that lands
at 0%. Precision is the number of positive guesses that were correct. We never
guess that a case was positive, the metric thus lands at 0%. To combat the flaws
of accuracy we can utilize precision and recall. They are both useful so instead of
using one of them, we can combine the two into their harmonic mean giving us the
F1score [41]. The formulas of precision, recall, and F1score are shown in equations
2.3, 2.4, and 2.5.

17

2. Background

Precision = TP
FP + TP (2.3)

Recall = TP
FN + TP (2.4)

F1score = 2× Precision× Recall
Precision + Recall (2.5)

These formulas hold strong in binary classification but as soon as there are more
than two categories a problem arises. Our equations no longer work since you no
longer guess positive or negative. With multiple categories, there are many guesses
one can make. An easy way to solve this is simply to calculate precision, recall, and
F1score with regard to whether or not you guess one of the classes correctly. After
calculating an F1score for each class individually you simply take the average score
[41]. This is called macro F1score. There is another approached called micro F1score.
With this approach, we sum each true positive, false positive, and false negative to
calculate a final micro F1score in the end. In the case of multiclass classification
this befittingly leaves us with the percentage of correct guesses, accuracy in other
words.

2.5 Previous Work
Problems regarding patent classifications have been previously tackled in the form of
classifying IPC labels. IPC labels are labels that are manually assigned to patents.
These are used to search through patents in a given technology domain. Since each
patent can have multiple labels it is a problem for multi-label classification [23].

DeepPatent, an algorithm, consists of a convolutional neural network that is based
on the abstract and title, labels patents’ IPC sub-classes [23]. The authors further
contributed with a patent dataset called USPTO-2M. DeepPatent uses supervised
learning to train on the dataset. The dataset contains roughly 2 million patents filed
in the United States Patent and Trademark along with their manual classification
given to them in filing [23].

DeepPatent is outperformed on this dataset by PatentBERT [21]. PatentBERT is
another contribution to the field and consists of a BERT for patents model fine-tuned
on classifying IPC sub-classes. The model can with the help of extensive pre-training
and the superior BERT architecture achieve state-of-the-art performance.

18

3

Data

For testing, Konsert provide a dataset. The dataset was created by manually build-
ing a technology tree and assigning patents to each category within the tree to create
a patent landscape within material technology. The data is saved in an excel sheet
with patents IDs and their respective category. As the technology trees can con-
tain sensitive information some categories are not named. In general, the dataset
contains patents regarding a material. Figure 3.1 illustrates the tree with the num-
ber of patents represented in each node. The first branching of the tree represents
manufacturing on the left and application on the right of the material in question.
Examples of applications (starting from the left in the right branch in Figure 3.1) in-
clude energy storage, high-speed electronics, biosensors, optoelectronics, composite
coatings, and composites. The energy storage category includes the two categories
batteries, and transistors and fuel cells. The dataset contains 6057 patents divided
into 34 categories. Each category belongs to a parent category higher up in the tree.
Figure 3.1 illustrates the hierarchical nature of the dataset with the number in each
node representing the number of patents in that category. The Gray nodes with
gray text are parent nodes with the number of patents being the sum of patents in
its child nodes. Furthermore, the tree is divided into 3 levels. The lower the level the
more granular the categories become. Level 3 is the most abstract category while
level 1 is the most granular. Furthermore, each category in level 1 is a leaf node.

19

3. Data

Figure 3.1: Tree describing the datasets structure. The leaf nodes with black text
represent the number of patents in each class. The gray nodes represent the sum of
the patents in its child nodes. Each level of the tree is marked to allow for reference
in testing.

To classify these categories, more data about the patents than their ID is needed. To
improve the dataset each patent’s text and CPC classification will be added through
web scraping.

3.1 Web Scraping and Pre-processing
Since more data than the patent’s ID is needed for classification, the patent’s text
and CPC labels are web scraped from Google Patents. Google Patents is a service
Google provides where one can find patents from patent offices such as the United
States Patent and Trademark Office and the European Patent Office along with
most major patent offices [31]. Using the service you can find most information
about a patent such as a title, abstract, description, claims, and CPC classifications
all in a standardized way. This allows for web scraping. Web scraping is a method
where one collects information from websites and saves it in a standardized way by
reading the website and extracting useful information.

There are several aspects of a patent that can be used to aid classification with
the text probably being the most important. The abstract often contains a general
overview but sometimes excludes vital details needed for some classification tasks.
The patent description often contains some details excluded in an abstract. Both
the abstract and description are thus web scraped. Since most BERT models can-
not process more than 512 words the length of the text data is limited to that size.
The text consists of the abstract and is then filled with the start of the description
text until the size of 512 words is reached along with the abstract and description

20

3. Data

tokens used in BERT for patents. Furthermore, the CPC labels are also saved. the
classifications consist of strings, for example, H01L27/3262.

As the contents on a website consistently vary, collecting the abstract, description,
and CPC labels sometimes fail. Any patents that have an abstract or description
with fewer characters than 100 are removed. The average abstract and description
length is far greater so these are considered to be outliers that cannot be used for
classification.

In practice, Konsert would not be using a test set but to be able to compare our
model a test set is created. This consists of 500 patents taken so that the class
balance is the same as before. After removing the mentioned documents from the
original 6057 we are left with 4760 patents and 33 categories instead of 34. 500
patents are then saved to a test set leaving us with 4260 patents organized in the
way illustrated by Figure 3.2.

Figure 3.2: Tree describing the test sets structure after removing patents with
short abstract and descriptions as well as separated a test set. The leaf nodes with
black text represents the number of patents in each class. The gray nodes is the
sum of the patents in its child nodes. Each level of the tree is marked to allow for
reference in testing.

21

3. Data

22

4

Method

To utilize the collected patent texts a few different text classification methods are
employed. Several approaches are tested to explore what supervision level is opti-
mal to classify patents with minimal manual work. Our lowest level of supervision
is weakly supervised learning. For this approach, we employ a method called LOT-
Class made by Meng et al. (2020), which only requires keywords for each class [28].
For the next level of supervision, semi-supervised learning is employed. The chosen
semi-supervised method is called MixText, which is made by Eva Sharma, Chen Li,
and Lu Wang (2020) [9]. A method that only requires a small amount of labeled
data (we only use 5-20 examples per class). This also allows us to test how the mod-
els’ performance change with different amounts of labeled data. Finally, we propose
a supervised approach we call LabelLR. LabelLR only requires CPC labels which
might be quicker to learn than long texts. Because of this the supervised learning
method is tested with the same amount of labeled data as MixText but without all
the unlabeled data.

To achieve maximum performance a combination of the models is also tested. They
are assembled into an ensemble to investigate what performance is possible if all
the approaches work together. LOTCLass requires keywords and MixText and La-
belLR always receive the same labeled documents in each experiment. The models’
predictions are combined with the help of soft voting. If one of the models fails to
run on a part of the data it will be excluded from the ensemble in that case. Each
approach is further explained below along with what changes have been made.

These methods are compared to a fine-tuned BERT model trained on all avail-
able data. Each supervision level is illustrated in Table 4.1 along with what data
they receive.

23

4. Method

Supervision Level Method Data
Weakly supervised learning LOTClass keywords + unlabeled patents

5 labels/class + unlabeled patents
Semi-supervised learning MixText 10 labels/class + unlabeled patents

20 labels/class + unlabeled patents
5 labels/class

Supervised learning LabelLR 10 labels/class
20 labels/class

Supervised learning FT BERT Full dataset

Table 4.1: The different supervision levels that are tested from low to high.

4.1 Weakly Supervised Learning - LOTClass
LOTClass, made by Meng et al. (2020), is the chosen weakly supervised model [28].
To train, it requires only keywords along with text which is illustrated in Figure 4.1.
But it is limited by how many texts it can find containing the keywords in question.
The approach can be divided into 4 parts. Generating a category vocabulary, finding
category indicative words, fine-tuning for masked category prediction, and finally
self-training BERT on examples. A BERT for patents is the BERT model used
throughout the method.

Figure 4.1: LOTClass requires only keywords along with text from the patent in
training.

4.1.1 Generating Category Vocabularies
For a given category defined by a keyword, there are other words also indicative
of that category. This bigger vocabulary of words can be used to give a broader
understanding of the category instead of only using a single keyword. For example,
the category and keyword ‘dog’ has words such as ‘Golden Retriever’, ‘pet’, and
‘animal’ that can all be used in similar contexts. We create such a vocabulary of
similar words for each category following the method described below.

Words used in similar contexts are usually words with similar meanings. To find
similar words to our keywords a BERT Masked language model (MLM) is used.
The corpus is iterated over and each keyword occurrence is masked and fed into
the MLM. Masking means that the word is hidden from the model. Based on the

24

4. Method

surrounding words, the context, our MLM returns a probability distribution over
each word in the vocabulary describing which word it thinks is most probable to
be behind the mask. The top 50 most probable words are saved for each keyword
occurrence. These are then compiled into a category vocabulary containing the 100
most commonly predicted words for each category. For example, a category named
sport will get a vocabulary of 100 words which BERT finds are the most often in-
terchangeable with the word sport [28]. How a keyword is masked and possible
replacement words are generated is illustrated in Figure 4.2

Figure 4.2: Example of how keywords are masked and a vocabulary is generated
by predicting what words fit into the context.

4.1.2 Finding Category Indicative Word Occurrences

Based on each keyword in the generated category vocabulary the model can go
through the corpora again and mask each keyword and check if the occurrence is
category indicative or not. This is done by checking if the MLM predicts that a
keyword occurrence can be replaced with similar words to the category vocabulary.
Let’s say we have a dog category and the dog breed ‘boxer’ is included in the
category vocabulary. If, for example, the word ‘boxer’ is used as the dog breed
boxer predicted words might include ‘dog’, ‘animal’, and ‘canine’. If that is the case
we would consider the keyword appearance category indicative. An example of such
a comparison is illustrated in Figure 4.3. But if instead the word is used in the
context of someone boxing other words might be predicted. Let’s say words such
as ‘fighter’, ‘athlete’, and ‘sport’ are predicted. In that case, the keyword is not
considered to be category indicative of the category dog. In this implementation, a
masked keyword is considered category indicative if 20 of the top 50 predicted words
from the MLM are included in that category’s 100-word category vocabulary [28].
This leaves us with a few labeled texts we can use in training for the next step.

25

4. Method

Figure 4.3: Example of how word predictions are compared with the category
vocabularies to determine whether or not the occurrence is category indicative.

4.1.3 Fine-tuning for Masked Category Prediction
The above method for classifying what keywords can be used to create data set of
instances with category indicative words. These are then used to fine-tune in a task
called Masked Category Prediction (MCP) [28]. Instead of predicting what words
can replace a masked word, our model is trained to predict what category the word
belongs to directly, as illustrated in Figure 4.4. This is done for two reasons. Firstly,
it teaches our BERT model to look for indications of our category in text. Secondly,
it might be able to find more category indicative instances of the keywords.

Figure 4.4: MCP consists of guessing a category based on context by a masked
word.

4.1.4 Self-training BERT on Examples
After the MCP model is trained to predict what category a masked word belongs to
we can now create a model capable of classifying any document regardless if there
are category keywords present or not. Based on the occurrence of category indicative
words we label a few documents. These can then be used to further fine-tune the
BERT model. This is done for two reasons. Firstly, the keywords for each category
are only found in some of the texts making a large chunk of the corpus unseen.
Secondly, the MCP model masks words to predict what category they belong to,

26

4. Method

meaning it removes information. We can instead fine-tune our model on the entire
text. This leaves us with the final model capable of categorizing our dataset of
unlabeled patent texts [28]. Bert predicting text without further steps is illustrated
by Figure 4.5.

Figure 4.5: The BERT model can eventually predict categories based on the plain
texts.

4.2 Semi-Supervised Learning - MixText

At a slightly higher supervision level, MixText is the semi-supervised method made
by Eva Sharma, Chen Li, and Lu Wang (2020) [36]. MixText trains using a small
amount of labeled data, around five to twenty labels per class, but utilizes plentiful
unlabeled data. The data required to train MixText is shown in Figure 4.6. Just as
LOTClass, MixText fine-tunes a BERT model. To adapt the approach to patents
we utilize BERT for patents in MixText as well. One of MixText’s techniques is to
generate more data using back-translation. In back-translation, the text is translated
into another language and then back to generate a slightly different text of the same
label. This is not used to limit our scope.

Figure 4.6: MixText takes patents texts, a few of them labeled with their classes
to train.

4.2.1 Linear Interpolation

The first part of the process is a data augmentation technique called TMix [9]. The
approach is based on a technique called Mixup. Mixup is data augmentation used
for images where new data points are created in between two already labeled ones
[50]. Imagine we have two data points with the same label. A given data point
between the two probably has the same label. Furthermore, a data point between
two other data points with different labels could be given a mix of the two labels.
This concept is illustrated in Figure 4.7

27

4. Method

Figure 4.7: Linear interpolation between to data points and generation a new one
that is a mix of the two original ones.

Mathematically it can be described in the following way. Given two data points
along with their respective labels (xi, yi) and (xj, yj). We can get a new point in
between xi and xj and a label in between yi and yj using linear interpolation as seen
in Equation 4.1 and Equation 4.2 given that λ ∈ [0, 1] sampled from a beta distri-
bution [9]. This gives us more data points as well as forces the model’s predictions
to change linearly in between data points.

x̂ = λxi + (1− λ)xj (4.1)

ŷ = λyi + (1− λ)yj (4.2)

TMix augments image data but we want to apply the technique to text. This leaves
us with a problem, how do we interpolate between texts. To do this we embed the
texts using BERT for patents and interpolate in one of the hidden layers randomly
chosen each batch between layers 7, 9, and 12.

4.2.2 Semi-supervision

To incorporate all the unlabeled texts we can utilize linear interpolation. To give
the unlabeled document a label we have our model predict their labels. The two sets
of now labeled text are combined into a super set. This set is then used by choosing
two points randomly and performing the linear interpolation [9]. An example of how
new data points can be generated from classified unlabeled data points can be seen
in Figure 4.8.

28

4. Method

Figure 4.8: New data points generated from classified unlabeled data points.

4.2.3 Entropy Minimization

Entropy minimization is also employed on the unlabeled text. This is done to
get predictions with higher confidence and minimize entropy within the prediction.
Practically this is done by adding a loss to the existing TMix Loss. With γ being
a tunable hyperparameter, xu being an embedded unlabeled text, and yu being a
label prediction for that text the added loss can be described by Equation 4.3.

Lmargin = max(0, γ − ||yu||22) (4.3)

This leaves us with a final loss for the unlabeled text with LT Mix being KL-divergence
between the predicted and the interpolated label for a given datapoint:

LMixT ext = LT Mix + γmLmargin (4.4)

4.3 Supervised Learning - LabelLR

Although patents’ texts are useful they also contain CPC labels. We propose an
approach we call LabelLR to use the CPC labels to classify our dataset’s classes.
The method uses supervised learning but since CPC labels are less complex than
text no more data than for MixText is required (5-20 labeled documents per class).
LabelLR only requires the CPC labels and the classes of a few patents as shown in
4.9 to train.

29

4. Method

Figure 4.9: LabelLR requires a few classified documents along with their CPC
labels to train.

CPC labels are hierarchical. To utilize this we extract the classifications section,
class, sub-class, group, and sub-group. Meaning if we have the label H01L27/3262
we also add the labels H, H01, H01L, and H01L27. This step is done for each label.
Two labels may be part of the same group. Let’s say several labels are in the H
section. In this case, duplicate H labels are removed. To train the model one feature
is created for each possible label and is annotated 1 or 0 for each patent depending
on if they contain that label. These features are then fed into a logistic regression
model. For prediction, the labels contained in the patent can be fed to the trained
logistic regression model as illustrated in Figure 4.10.

Figure 4.10: CPC labels are split into their sub-parts and fed to a logistic regression
model in LabelLR.

4.4 Ensemble
To test whether or not the models perform better together they are assembled into
an ensemble. This is done by letting MixText and LabelLR train on the same 10
labeled documents per class and LOTClass train using keywords. Each model then
gives its predictions on the test set. The different predictions are then united into
one prediction through soft voting. Figure 4.11 illustrates how LOTClass requires
keywords and patents text while MixText only requires the text and LabelLR uses
the CPC labels to make predictions.

30

4. Method

Figure 4.11: Our different methods use different data and are combined using soft
voting to predict a category.

4.5 Supervised Learning - Fine-tuned BERT
To understand how well the different models perform, a supervised approach trained
on the whole text dataset is also used. This is implemented to understand what is
possible using the dataset. To do this the parameters of a BERT for patents model
are fine-tuned on our dataset. Practically this is done by adding a layer of neurons
to the output of the model with each added neuron corresponding to a category.
Similar to our other approaches the difference is that in this approach we have
access to all the data labeled. This thus sets a benchmark of what is possible.

4.6 Evaluation
There are several ways of classifying categories in a tree structure. Firstly, we will
simply regard each leaf node as a category and then move on with normal classi-
fication directly yielding a result. Our second approach is to classify the patents
starting from the top of the tree and regard each branch as a new classification
task. Classifying in this way iteratively divides the patents into more and more
fine-grained classes eventually reaching the leaf nodes. The branches can be divided
into levels depending on how far down from the root node they are. These levels are
illustrated in Figure 3.2 as level 1, level 2, and level 3. Using such an approach does
require doing more classifications and thus training several models. It does however
come with a benefit. It allows us to evaluate how well our methods perform with
categories at different levels of granularity.

To evaluate how well each of the models performs we utilize the macro and mi-
cro F1score. A model is trained and the scores are calculated for each parent node

31

4. Method

of the tree as well as for all the leaf nodes. Since there are 9 parent nodes 9 models
will be trained plus 1 for all leaf nodes resulting in a total of 10 models for each
experiment. In the case of the ensemble if any of the individual models that cannot
classify a certain level of the tree will be excluded from the test. Further tests are
run with 5 and 20 labeled patents on the leaf nodes and the top level, level 3. This
is done to allow for analysis of how a different data amount can change the results
without having to train another 10 models for each data amount.

4.7 Experimental Setup
The setup used to run the methods is Google’s Colaborary (Colab). Colab is an
online code environment that gives users access to cloud-based computing. This
makes Colab good for collaboration and allows for easy access to good computing
resources including GPUs [26].

For this project, Colab Pro+ is used to get access to longer run times, more RAM,
and better GPUs. The GPUs available in Colab Pro+ vary depending on which
ones are available at the time [26]. Examples of GPUs we had access to include an
‘NVIDIA Tesla P100-PCIe-16GB’ and an ‘NVIDIA Tesla V100-SXM2-16GB’.

Using this setup five different experiments are run. They all are trained and evalu-
ated on the same train and test data. All models are trained and evaluated on each
level of the hierarchical dataset as well as all the individual leaf nodes.

4.7.1 Experiment 1 - LOTClass
The first experiment consists of training LOTClass on the training data. The hyper-
parameters are matched with the parameters used in LOTClass’s paper [28]. Some
parameters were changed to allow for our less powerful system to run the model.
The keywords used as well as the category vocabularies generated by LOTClass are
shown in Appendix A.1 and Appendix A.2 for the tests that run successfully.

The BERT model used for LOTClass is BERT for patents [33]. The maximum
amount of tokens for each document is set to 256 tokens. The training batch size is
128 with 5 epochs run. The optimizer used is Adam and the learning rate is 0.00002
for MCP and 0.000001 for self-training. The keywords for each class are chosen by
writing down the name of the class and its subclasses.

4.7.2 Experiment 2 - MixText
For the second experiment, a MixText model is fitted to the training data. The
hyperparameters are chosen from mainly two factors: the default parameters used
on MixText’s GitHub [8], and what works with our available computer resources.

The MixText method is given 10 labeled documents per class, with the rest being
unlabeled. Two epochs are run using 1000 validation iterations each epoch. Where

32

4. Method

validation iterations are the number of documents the method manually classifies
from the unlabeled data each epoch. The learning rates are set to the same as in
MixText’s GitHub [8]. An initial learning rate for BERT at 0.000005 and an initial
learning rate for the whole model at 0.0005. The maximum amount of tokens from
each document the model has access to is the first 256. The α in the beta distribu-
tion is set to 16, and the temperature T for the sharpen function is set to 0.5. Back
translation is not used for data augmentation. The batch size for both the labeled
and unlabeled is set to 1. The BERT model used is BERT for patents [33].

4.7.3 Experiment 3 - LabelLR
LabelLR’s logistic regression model uses the default hyperparameters from Scikit-
learn [35]. It recieves the same 10 labeled documets per class as MixText.

4.7.4 Experiment 4 - Ensamble
The fourth experiment consists of testing an ensemble of the three models using soft
voting. LOTClass is excluded from the ensemble when it fails to run.

4.7.5 Experiment 5 - Fine-tuned BERT
For the fifth experiment, a BERT for patents model is fine-tuned on all the training
data and is run for 5 epochs. The maximum token length of the texts is 256 tokens
and an Adam optimizer is used with the learning rate set to 0.00002.

33

4. Method

34

5
Result

This chapter contains the results of the experiments in two forms. Firstly, each ap-
proach’s results will be described separately in a tree following the dataset’s structure
illustrated in Figure 3.2. Each node contains the macro and micro F1score. For ex-
ample, if a node says 70.3/75.5 it means that the macro F1score is 70.3 and the
micro F1score (accuracy) is 75.5. The exception is the leaf nodes that instead show
how many classes it represents. This way of showing the F1score is illustrated by
Figure 5.1.

Figure 5.1: Tree describing how the results are displayed.

The data tree is divided into 3 levels illustrated by Figure 3.2. The average macro
and micro F1score is summarised for each level and each method in Table 5.1. The
second column shows what data is used by the methods. For example "10/class"
means that the model is given 10 labeled patents per class. Both MixText and
LOTClass additionally received all the unlabeled patent texts. For some levels,
tests are conducted on 5 and 20 labeled documents which can be seen in the table.
The final row shows the results for a fine-tuned BERT (written as FT BERT) trained
on a fully labeled dataset. For each level, the highest score is in bold excluding the
results for the fine-tuned BERT.

35

5. Result

Method Data Level 1 Level 2 Level 3 Leaf Nodes
F1 F1 F1 F1

Macro Micro Macro Micro Macro Micro Macro Micro
LOTClass Keywords 60.7 64.2 – – 38.9 42.4 – –

5/class 72.0 77.4 44.9 54.0
MixText 10/class 80.1 81.6 70.7 68.5 60.4 73.3 51.4 60.7

20/class 85.6 87.2 55.3 64.1
5/class 55.7 55.8 18.1 24.6

LabelLR 10/class 64.0 64.2 46.6 49.4 45.2 54.6 25.2 31.5
20/class 66.2 66.7 26.5 34.5
5/class 72.4 76.7 42.2 53.6

Ensemble 10/class 79.9 81.3 70.25 71.75 62.4 77.1 50.3 61.8
20/class 83.5 85.1 51.1 62.0

FT BERT Full dataset 87.5 89.1 84.6 88.1 69.6 84.4 61.3 71.4

Table 5.1: The average macro and micro F1score for each level of the dataset
including performance on all leaf nodes. Blank cells are tests that were not conducted
while cells marked with ‘–’ failed. The best score for each level is shown in bold
excluding the results for the fine-tuned BERT (FT BERT in table).

Observing Table 5.1 we can see that LOTClass yields the lowest scores with tests
on the leaf nodes failing. MixText has the highest scores of all the individual ap-
proaches with a higher number of labeled documents improving performance. A
notable difference is that the ensemble tends to perform better on lower levels, not
including the test on the leaf nodes. None of the approaches can beat the fine-tuned
BERT models shown in the last row. Although with 20 labeled documents per class
the ensemble and MixText are not far off.

In Figure 5.2 the results for LOTClass is shown. Figure 5.3 and 5.4 shows the
results of MixText and LablLR both trained on 10 labels per class. The results for
the combined ensemble is shown in Figure 5.5. Finally the fine-tuned BERT model
is shown in Figure 5.6.

LOTClass
Keywords

Figure 5.2: Tree following the datasets structure with each node describing the
macro and micro F1score that LOTClass achieved on each branch. 3.2

36

5. Result

Observing Figure 5.2 we can see that only two tests were completed by LOTClass
which were application/manufacturing and the energy storage classes. This is caused
by a lack of available patents in each class. Furthermore, the successful tests were
both completed on branches where two classes were categorized.

MixText
10 labels per class

Figure 5.3: Tree following the dataset’s structure with each node describing the
macro and micro F1score that MixText with 10 labeled patents per class achieved
on that each branch. Further description of the leaf nodes is described in Figure 3.2

MixText’s results in Figure 5.3 show that the results are similar on the higher levels
while on level 1 the scores vary more. For example on the third leaf node representing
energy storage, the macro F1score is 84.2 while on other nodes such as biosensors on
the third leaf node on the right branch goes down to a score of 40.0.

LabelLR
10 labels per class

Figure 5.4: Tree following the dataset’s structure with each node describing the
macro and micro F1score that LabelLR with 10 labeled patents per class achieved
on each branch.

Figure 5.4 shows the results for LabelLR which vary significantly. Notably, the best
results yield a macro F1score of 90.3 on the class energy storage while the worst is
26.5 on composites.

37

5. Result

Ensemble
10 labels per class + keywords

Figure 5.5: Tree following the dataset’s structure with each node describing the
macro and micro F1score that LabelLR with 10 labeled patents per class achieved
on each branch.

The results in Figure 5.5 show similar results to MixText although some nodes have
seen slight improvement matching where LabelLR performs well.

Fine-tuned BERT
Full dataset

Figure 5.6: Tree following the datasets structure with each node describing the
macro and micro F1score our fine-tuned BERT model can achieve

Finally, Figure 5.6 shows the results for our fine-tuned BERT which performs well
on all tests.

38

6
Discussion

In this chapter, each model, the dataset, practical applicability, and possible future
work is discussed.

6.1 Models
In this section, each one of the models’ results are discussed.

6.1.1 LOTClass
The most notable thing about LOTClass is that it fails on the majority of tests.
In other tests using LOTClass, big datasets are used with plenty of examples. Our
dataset is more limited. Some classes contain only a handful of documents as seen in
Figure 3.2. Using keywords to find these few examples is thus difficult. Even if the
approach worked perfectly and all available documents in a small class were found,
fine-tuning on these few examples would most likely yield disappointing results.

The approach fails on many of the small classes but how does it perform when
it can find enough documents. Since LOTClass is keyword-based finding example
documents in the high-level categories might be hard. Let’s say you have a patent
regarding dogs. A high-level category might be ‘organism’ and a low-level category
might be ‘dog’. ‘organism’ is unlikely to appear in the patent since it is too general
while ‘dog’ is more likely to appear. This can be an explanation as to why the
approach does not perform well on high-level classes. When you instead classify
low-level categories there is a different problem. There are fewer and fewer patents
in each class. This can cause the approach to fail just because it cannot find enough
examples even though many might contain relevant keywords. Because of these two
problems, LOTClass struggles with our dataset. Observing the results it did achieve
we can also see that both tests only had two categories. This means that simply
guessing the majority class would yield a micro F1score of over 50% which is higher
than LOTClass got on one of the tests.

6.1.2 MixText
MixText is the approach that requires the most amount of manual annotation along-
side LabelLR. It requires the user to manually label example documents but also
yields the best results. Considering the failure of LOTClass to perform and its su-
perior performance over LabelLR it is the best approach. MixText’s results also

39

6. Discussion

vary a lot. In Figure 5.3 we can see that on the top class with 10 labels per class
it achieves a macro F1score of 80.1 while on a lower level it goes down to 40.0. A
more granular class (the lower level classes) might require a better understanding of
specific nuances to classify. On a high abstraction level, a general context might be
good enough while on lower levels you have to understand specifics of a technology
area that MixText cannot do.

On level 3 we can see that performance is heavily dependent on how many la-
beled documents are available. On the leaf nodes, this is not the case. One possible
explanation is that the individual labeled documents don’t represent the overall
class very well. The top-level is manufacturing and application of a certain material
technology. A lower-level application patent might be a concrete example. For Mix-
Text to understand that the category is application many patents might be required
to understand the overall class. Furthermore, when you randomly take 10 labeled
documents for the high-level classes the patents in question might be a bad repre-
sentation of the class. The patents are randomly taken from sub-classes that may or
may not represent the parent category in a good way. While if you are categorizing
in a lower level the documents do not vary as much.

6.1.3 LabelLR

Using the CPC labels for classification generally didn’t perform very well. Although
with an exception. On battery storage, over 90 percent accuracy (micro F1score) is
reached. Generally, the model is not expected to perform well on its own but was
instead meant to complement MixText in the ensemble. Considering this, achieving
90 percent accuracy is impressive. The reason why the model generally does not
perform great is because the existing CPC labels are simply not enough to cate-
gorize into custom categories. And since LabelLR is not provided with more data
better performance is hard to achieve. But in the case where it achieves over 90
percent accuracy, it is most likely the case that the existing CPC labels are close to
the custom categories the dataset contains. In the example of energy storage the
CPC subclass H01M represents batteries [32] making the battery patents easy to
separate from the rest. On the other hand a CPC label for manufacturing of the
material in general was not found. In situations like energy storage relying on the
CPC labels for classification is a great option. The only problem is that they seem
to be rare to come by.

There are also some cases of significantly higher micro than macro F1score. This
is caused by imbalanced classes. It can be that our LableLR finds that classifying
a larger class often is beneficial but fails to perform as well on the smaller classes.
Since macro F1score is a balanced metric this preference for larger classes will be
reflected in the score, unlike micro F1score.

40

6. Discussion

6.1.4 Ensemble
For most of the tests, the ensemble only consisted of MixText and LabelLR since
LOTClass failed. LabelLR had varied results and combining it with MixText could
improve performance in several cases but not significantly. This could be because
the different models probably failed to classify similar patents. It could be that
any time LabelLR succeeded there was no problem for MixText to also do a correct
classification. But in the rare case that LabelLR could excel the ensemble could
take part as seen by the fact that the ensemble reaches score of over 90 percent in
the same places as LabelLR.

6.2 Data
The dataset used stands at the core of many of the struggles. The smaller size of the
datasets made the models struggle to learn. LOTClass could not even get enough
data to self-train correctly on the smaller subclasses of the datasets. When LOT-
Class could train it was often with a small sample of category indicative documents.
MixText on the other hand can run on all subclasses of the dataset even though it
still suffered from a small number of unlabeled documents to train on. This smaller
size of datasets also made the test set small and in several instances small enough
that removing one patent from the test set could have a rather large impact on the
evaluation. This can mean that the results have high variability depending on the
patents chosen for the test set.

Only testing the methods on one dataset is also a downfall. Only testing on one re-
duces our ability to generalize results since this dataset might not be representative
of the average dataset Konsert encounters.

Manually labeling a dataset in the real world is tiring work. This can lead to a
consultant using shortcuts when it comes to labeling patents. In research, datasets
can be labeled several times by several people to make sure to get rid of mistakes.
This has not been done with our dataset which increases the probability for mistakes.

6.3 Practical applicability
Evaluating how good a method has to be to prove useful in practice for Konsert is
difficult. One can argue that even a flawed method is useful. First of all, the classi-
fications can be the beginning of a patent landscape construction process. Letting
consultants manually classify the least confident predictions can refine the predic-
tions enough to be used. Secondly, perfect predictions are not necessary. If you
want to see general trends in a technology it is okay to have some patents with
the wrong class. What level of incorrectly predicted patents is acceptable is up to
Konsert to decide. This leaves us with another issue. There is no way to know how
well a model performs on a new unlabeled dataset.

41

6. Discussion

In real-world use, the process would also look a bit different. We randomly select
labels that are given to our models. But in practice, it is done differently. Instead,
the patents that best represent the class are chosen by consultants. In our case, the
patents chosen could even be of the wrong class because of incorrect classifications
on the dataset. By selecting the patent labels to be used carefully performance could
improve.

Some practical aspects should be considered if Konsert wants to employ a machine
learning based method for classifying patents. Firstly, it is impossible to know how
well the model would perform on a new dataset. Because each new dataset has
unique categories and patents it is impossible to guarantee a level of performance.
Secondly, it requires knowledge to operate and understand the weaknesses of the
method. This could mean that Konsert would need more machine learning exper-
tise to successfully utilize the method. Thirdly, the models tested in this paper
are far from practical for a regular consultant. In the models’ current state large
amounts of manual work needs to be performed before the predictions are made
such as pre-processing the data, and modifying and running the code.

6.4 Future Work
Limited resources leave our exploration equally limited. Because of this, there are
several opportunities for improvements that could be explored in the future.

6.4.1 Patents’ Unique Characteristics
To boost performance patents’ CPC classifications are used. Although useful, sev-
eral other aspects can also be used. First of all the inventors. The inventors of a
patent are probably experts in their field. Because of this, it is not unreasonable
to expect that they will issue more patents in the same field. This can be utilized
in patent classification. If an inventor has many patents in a certain technology
chances are that another patent from the same inventor is in the same or a similar
field. An inventor cannot alone determine the category of a patent, but it could
certainly provide a boost to performance. This could be implemented using logistic
regression in a similar way to how the CPC classifications are currently being used
in LabelLR. A patent’s inventor is only one of the many aspects that could be in-
corporated from a patent. A patent’s geographical origin or the owner of a patent
such as a company provides similar use.

More complex parts of the patents could also be used. All patent contains ref-
erences to other patents. Patents referencing each other are probably in similar
technologies. Utilizing this fact, one can find clusters based on how the patents are
connected. A patent is also often part of a patent family. A patent family is a group
of patents all protecting the same invention. But there can be different patents
for different geographical areas. Although these aspects might not be as simple to
integrate as the inventor of a patent. The question as to how it can improve patent
classification remains open.

42

6. Discussion

6.4.2 Back-translation
To limit the thesis back-translation is not used in MixText to augment data. From
time to time the method struggled. Furthermore, some patents originated from
countries such as China and have thus been translated. Augmenting the data by
translating the patents to Chinese and back provides more data to improve perfor-
mance. It also generates English patents with grammar more similar to the Chinese
ones as they have now also been translated. The method is of course not limited to
Chinese and any back-translation could have a significant impact on the performance
of MixText.

6.4.3 Transfer-Learning
Transfer learning is a useful tool when data is limited. Training a model on an-
other dataset to prepare it for the challenge ahead can prove useful. It could be
used in Konsert’s application. Patents are plentiful and most already have hand-
labeled CPC classes. Fine-tuning any of the BERT models to first categorize groups
within the CPC classes could prepare it for patent landscaping and might boost
performance.

6.4.4 LOTClass Keywords
LOTClass can find valuable insights using keywords. This leaves the issue of finding
good enough keywords. To boost the performance of the model one can provide
more and better keywords. This can be done using external databases. For example,
WordNet consists of relations between words [29]. This can be used to find synonyms
expanding on our list of keywords that LOTClass can use to search through patents.
Using external databases is a quick way to find more keywords but tools such as
Word2Vec can also be used [10]. Word2Vec embeds words. These embeddings
can be used to measure the similarity between words. Based on this the keyword
vocabulary of LOTClass can be expanded.

6.4.5 Combining LOTClass and MixText
The models are incorporated into an ensemble. This is not the only way to combine
the models. The technique used to find patents to fine-tune a BERT model in
LOTClass could instead be fed into a MixText model. The LOTClass approach
might not find many examples and MixText can thrive with little data. Exploring
if this could create one better model is future work. Although such a model does
come with a downside. When combining the models in an ensemble they hopefully
work against each other’s flaws. When combined into one, the benefits of being in
an ensemble disappears and overfitting might become a bigger issue.

6.4.6 More Patent Datasets
Konsert’s technology trees are custom-made for each client. This means that the
data is not publicly available. Comparing our approach to others is thus difficult.

43

6. Discussion

Future work can be to apply the approach to publicly available data. This would
allow for comparison between more models. Furthermore, it would allow us to assess
how difficult the categorization of Konsert’s patents is compared to other datasets.

6.4.7 Hierarchical Classification
We have two approaches to classifying categories in a tree structure. Firstly, we
categorized the leaf nodes. Secondly, we categorized each level of the tree. But
there are more approaches. One approach would be to regard the problem as one of
multi-label classification. To do this any patent would be labeled with its leaf node
category as well as its parent classes. To would additionally mean that a patent does
not have to belong to any leaf node and could instead only be categorized higher up
the tree. How this would affect general performance remains to be seen.

6.4.8 Comparison to Search Engines
Currently, Konsert uses search engines to find patents such as Google Patents. Al-
though, Google Patents does not provide custom categorization searching for cat-
egory keywords probably retrieves relevant information. An interesting point to
investigate could thus be to compare what type of patents Konsert receives with
simple searches in search engines compared to our approach.

6.4.9 Variability in Results
Because which example patents are randomly selected for MixText has an impact
on the performance the size of the impact could be measured. To measure this
variability the MixText model could be trained multiple times each time with dif-
ferent random patents to get a range of results. From this, an average result and a
standard deviation could be extracted to better understand the variability.

6.4.10 Explore Other Weakly and Semi-supervised Methods
The weakly supervised method, LOTClass, and the semi-supervised method, Mix-
Text, are not the only viable options for patent classification. To fully understand
what weakly and semi-supervised approaches work best for patent classification
other methods should be explored. Two examples of weakly supervised methods
that would be interesting to test with patent classification are ClassKG [51] and
X-Class [47] which both rely on keywords.

44

7
Conclusion

This thesis set out to explore weakly supervised, semi-supervised, and supervised
learning for patent classification. Employing LOTClass, MixText, and LabelLR
leads us to some conclusions.

Semi-supervised learning is the supervision level most fitting for classifying patents
with minimal manual labor. The semi-supervised approach, MixText, performed
best on most tests. Meanwhile, the weakly supervised approach, LOTClass, often
fails to run due to a lack of available text leave keyword instances rare to come by.

Using a unique property of the patent, the CPC labels, LabelLR can classify patents
with the help of few examples. Even though it uses supervised learning LabelLR can
be trained using less than ten labeled examples per class. It performs best on some
granular classes probably where the CPC labels fit well. This leaves the opportunity
for LabelLR to be combined into an ensemble with MixText which is not as affected
by class granularity.

When LabelLR is combined with MixText into an ensemble it performs similarly to
MixText. But MixText alone seems to be the best alternative reaching an accuracy
(micro F1score) of 60.7% on 33 classes with ten labeled patents per class, not far
from what a fine-tuned BERT model achieves. A great start for Konsert to serve
their clients. Although, the path to a useful product for Konsert’s consultants is
long. It requires streamlining data pre-processing and the creation of an interface
for the non-coder. But for now, this thesis shows that patent classification with low
levels of supervision is feasible.

45

7. Conclusion

46

Bibliography

[1] Stephen Adams. Information Sources in Patents. De Gruyter Saur, 2020. isbn:
9783110552263. doi: 10.1515/9783110552263.

[2] Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. “A neural probabilistic
language model”. In: Advances in Neural Information Processing Systems 13
(2000).

[3] Ekaba Bisong. “Logistic Regression”. In: Building Machine Learning and Deep
Learning Models on Google Cloud Platform: A Comprehensive Guide for Be-
ginners. Berkeley, CA: Apress, 2019, pp. 243–250. isbn: 978-1-4842-4470-8.
doi: 10.1007/978-1-4842-4470-8_20.

[4] J. Brownlee. Ensemble Learning Algorithms With Python: Make Better Pre-
dictions with Bagging, Boosting, and Stacking. Machine Learning Mastery,
2021.

[5] F Cariaggi, C De Nobili, and S Bratières. “Patents for Industrial Pollution
Prevention and Control”. In: (2021).

[6] Mauro Castelli, Leonardo Vanneschi, and Álvaro Rubio Largo. “Supervised
learning: classification”. In: por Ranganathan, S., M. Grisbskov, K. Nakai y
C. Schönbach 1 (2018), pp. 342–349.

[7] H. Charmasson. Patents, Copyrights and Trademarks For Dummies. –For
dummies. Wiley, 2004. isbn: 9780764525513.

[8] Jiaao Chen and Diyi Yang. MixText. 2020. url: https://github.com/GT-
SALT/MixText/blob/master/README.md (visited on 04/25/2022).

[9] Jiaao Chen, Zichao Yang, and Diyi Yang. “MixText: Linguistically-Informed
Interpolation of Hidden Space for Semi-Supervised Text Classification”. In:
Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. 2020, pp. 2147–2157.

[10] Kenneth Ward Church. “Word2Vec”. In: Natural Language Engineering 23.1
(2017), pp. 155–162.

[11] P.D.S. Consulting. Data Science for Business Professionals: A Practical Guide
for Beginners (English Edition). BPB PUBN, 2020. isbn: 9789389423280.

[12] Blaise Cronin. “Annual review of information science and technology”. In:
(2004).

[13] Pádraig Cunningham, Matthieu Cord, and Sarah Jane Delany. “Supervised
learning”. In: Machine learning techniques for multimedia. Springer, 2008,
pp. 21–49.

[14] Abhijit Dasgupta et al. “Brief review of regression-based and machine learning
methods in genetic epidemiology: the Genetic Analysis Workshop 17 experi-
ence”. In: Genetic epidemiology 35.S1 (2011), S5–S11.

47

https://doi.org/10.1515/9783110552263
https://doi.org/10.1007/978-1-4842-4470-8_20
https://github.com/GT-SALT/MixText/blob/master/README.md
https://github.com/GT-SALT/MixText/blob/master/README.md

Bibliography

[15] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transform-
ers for Language Understanding”. In: Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long and Short Papers). Min-
neapolis, Minnesota: Association for Computational Linguistics, June 2019,
pp. 4171–4186. doi: 10.18653/v1/N19-1423. url: https://aclanthology.
org/N19-1423.

[16] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transform-
ers for Language Understanding”. In: Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long and Short Papers). 2019,
pp. 4171–4186.

[17] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learn-
ing: Data Mining, Inference, and Prediction. Springer Series in Statistics.
Springer New York, 2013. isbn: 9780387216065.

[18] Kamran Khan et al. “DBSCAN: Past, present and future”. In: The fifth in-
ternational conference on the applications of digital information and web tech-
nologies (ICADIWT 2014). IEEE. 2014, pp. 232–238.

[19] Gabjo Kim et al. “Technology clusters exploration for patent portfolio through
patent abstract analysis”. In: Sustainability 8.12 (2016), p. 1252.

[20] A. Kumar and M. Jain. Ensemble Learning for AI Developers: Learn Bag-
ging, Stacking, and Boosting Methods with Use Cases. Apress, 2020. isbn:
9781484259399.

[21] Jieh-Sheng Lee and Jieh Hsiang. “PatentBERT: Patent Classification with
Fine-Tuning a pre-trained BERT Model”. In: arXiv e-prints (2019), arXiv–
1906.

[22] Loet Leydesdorff, Duncan Kushnir, and Ismael Rafols. “Interactive overlay
maps for US patent (USPTO) data based on International Patent Classifica-
tion (IPC)”. In: Scientometrics 98.3 (2014), pp. 1583–1599.

[23] Shaobo Li et al. “DeepPatent: patent classification with convolutional neural
networks and word embedding”. In: Scientometrics 117.2 (2018), pp. 721–744.

[24] Aristidis Likas, Nikos Vlassis, and Jakob J Verbeek. “The global k-means
clustering algorithm”. In: Pattern recognition 36.2 (2003), pp. 451–461.

[25] Yinhan Liu et al. “Roberta: A robustly optimized bert pretraining approach”.
In: arXiv preprint arXiv:1907.11692 (2019).

[26] Google LLC. Colaboratory Frequently Asked Questions. 2022. url: https :
//research.google.com/colaboratory/faq.html (visited on 04/12/2022).

[27] Scott Menard. Applied logistic regression analysis. Vol. 106. Sage, 2002.
[28] Yu Meng et al. “Text Classification Using Label Names Only: A Language

Model Self-Training Approach”. In: Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP). 2020, pp. 9006–
9017.

[29] George A Miller. “WordNet: a lexical database for English”. In: Communica-
tions of the ACM 38.11 (1995), pp. 39–41.

48

https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://research.google.com/colaboratory/faq.html
https://research.google.com/colaboratory/faq.html

Bibliography

[30] G. Nandi and R.K. Sharma. Data Science Fundamentals and Practical Ap-
proaches: Understand Why Data Science Is the Next. BPB Publications, 2020.
isbn: 9789389845662.

[31] Alireza Noruzi and Mohammadhiwa Abdekhoda. “Google Patents: The global
patent search engine”. In: Webology 11.1 (2014).

[32] United States Patent and Trademark Office. CPC Definition - Subclass H01M.
2022. url: https://www.uspto.gov/web/patents/classification/cpc/
html/defH01M.html (visited on 05/09/2022).

[33] Srebrovic Rob and Yonamine Jay. “Leveraging the BERT algorithm for Patents
with TensorFlow and BigQuery”. In: (Oct. 2020). url: https://services.
google.com/fh/files/blogs/bert_for_patents_white_paper.pdf.

[34] Ingo Ruczinski, Charles Kooperberg, and Michael LeBlanc. “Logic regression”.
In: Journal of Computational and graphical Statistics 12.3 (2003), pp. 475–511.

[35] Scikit-learn. sklearn.linearmodel.LogisticRegression. 2022. url: https : / /
scikit-learn.org/stable/modules/generated/sklearn.linear_model.
LogisticRegression.html (visited on 04/25/2022).

[36] Eva Sharma, Chen Li, and Lu Wang. “BIGPATENT: A Large-Scale Dataset
for Abstractive and Coherent Summarization”. In: Proceedings of the 57th An-
nual Meeting of the Association for Computational Linguistics. 2019, pp. 2204–
2213.

[37] Svetlana Sheremetyeva. “Natural language analysis of patent claims”. In: Pro-
ceedings of the ACL-2003 workshop on Patent corpus processing. 2003, pp. 66–
73.

[38] Steven S Skiena. The data science design manual. Springer, 2017.
[39] Rob Srebrovic. BERT for Patents. 2020. url: https://github.com/google/

patents-public-data/blob/master/models/BERT%5C%20for%5C%20Patents.
md (visited on 04/18/2022).

[40] Zhiqing Sun et al. “MobileBERT: a Compact Task-Agnostic BERT for Resource-
Limited Devices”. In: Proceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics. 2020, pp. 2158–2170.

[41] Kanae Takahashi et al. “Confidence interval for micro-averaged F1 and macro-
averaged F1 scores”. In: Applied Intelligence 52.5 (2022), pp. 4961–4972.

[42] W.H. Tok, A. Bahree, and S. Filipi. Practical Weak Supervision. O’Reilly Me-
dia, 2021. isbn: 9781492077015. url: https://books.google.se/books?id=
mLpFEAAAQBAJ.

[43] Anthony Trippe. “Guidelines for preparing patent landscape reports”. In:
Patent landscape reports. Geneva: WIPO (2015), p. 2015.

[44] Bruno Van Pottelsberghe de la Potterie and Malwina Mejer. “The London
Agreement and the cost of patenting in Europe”. In: European Journal of Law
and Economics 29.2 (2010), pp. 211–237.

[45] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural
information processing systems 30 (2017).

[46] Suzan Verberne, Cornelis H. A Koster, and Nelleke Oostdijk. “Quantifying the
Challenges in Parsing Patent Claims”. In: In Proceedings of the 1st Interna-
tional Workshop on Advances in Patent Information Retrieval. 2010, pp. 14–
21.

49

https://www.uspto.gov/web/patents/classification/cpc/html/defH01M.html
https://www.uspto.gov/web/patents/classification/cpc/html/defH01M.html
https://services.google.com/fh/files/blogs/bert_for_patents_white_paper.pdf
https://services.google.com/fh/files/blogs/bert_for_patents_white_paper.pdf
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://github.com/google/patents-public-data/blob/master/models/BERT%5C%20for%5C%20Patents.md
https://github.com/google/patents-public-data/blob/master/models/BERT%5C%20for%5C%20Patents.md
https://github.com/google/patents-public-data/blob/master/models/BERT%5C%20for%5C%20Patents.md
https://books.google.se/books?id=mLpFEAAAQBAJ
https://books.google.se/books?id=mLpFEAAAQBAJ

Bibliography

[47] Zihan Wang, Dheeraj Mekala, and Jingbo Shang. “X-Class: Text Classification
with Extremely Weak Supervision”. In: Proceedings of the 2021 Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. 2021, pp. 3043–3053.

[48] Adrienne Yapo and Joseph Weiss. “Ethical Implications of Bias in Machine
Learning”. In: Proceedings of the 51st Hawaii International Conference on
System Sciences. 2018.

[49] Guoqiang Peter Zhang. “Neural networks for classification: a survey”. In: IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews) 30.4 (2000), pp. 451–462.

[50] Hongyi Zhang et al. “mixup: Beyond Empirical Risk Minimization”. In: Inter-
national Conference on Learning Representations. 2018.

[51] Lu Zhang et al. “Weakly-supervised Text Classification Based on Keyword
Graph”. In: Proceedings of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing. 2021, pp. 2803–2813.

[52] Xiaojin Zhu. “Semi-Supervised Learning Literature Survey”. In: world 10
(2005), p. 10.

50

A
Appendix 1: LOTClass Keywords

A.1 Manufacturing and Applications
Keywords

Manufacturing:
Manufacture, manufacturing, produc-
tion, create, synthesis, masking, func-
tionalization, characterization.

Application:
Application, apply, enhanced, energy,
electronics, biotech, enviromental, capac-
itors, batteries, cells, power, functional,
composites.

Category Vocabulary

Manufacturing:
Manufacture, production, preparation,
manufacturing, processing, producing,
generation, synthesis, reaction, devel-
opment, produce, manufactured, con-
version, reduction, treatment, control,
produced, formation, purification, form-
ing, making, work, productions, driving,
mass, technology, recovery, productiv-
ity, fabrication, yield, fixing, generating,
growth, mounting, obtaining, preparing,
heating, performing, handling, cooling,
assembling, manufactures, wiring, plat-
ing, developing, peeling, using, clean-
ing, selection, lighting, compression, cre-
ation, molding, scanning, drying, main-
tenance, deposition, technical, producer,
improving, selecting, method, expres-
sion, requirement, modification, extrac-
tion, scale, detection, rotation, sepa-
ration, operating, peripheral, manufac-
turer, covering, switching, quality, re-
production, sealing, discovery, polymer-
ization, building, winding, feeding, syn-
thetic.

Application:
Application, energy, applications, power,
applied, apply, electricity, applicability,
applying, information, analysis, injec-
tion, item, current, absorption, object,
resource, energies, applicant, input, ac-
tivity, patent, ion, addition, ability, doc-
ument, output, assignment, submission,
electronic, electron, file, implementation,
number, energetic, battery, app, elec-
tronics, powers, content, grant, batteries,
cells, end, disclosure, voltage, force, spec-
ification, order, alternative, oil, request,
efficiency, storage, utility, reference, area,
electrical, electric, article, action, service,
emission, utilization, materials, connec-
tion, pressure, fuel, entry, environment,
extension, source, devices, light, heat,
adaptation, sensors, usage, charge, iden-
tification.

I

A. Appendix 1: LOTClass Keywords

A.2 Batteries, Fuel Cells, and Capacitors:
Keywords

Batteries:
Batteries.

Fuel cells and capacitors:
Capacitor, capacitors, fuel, cell, cells.

Category Vocabulary

Batteries:
Batteries, tires, databases, antennas,
alloys, roofs, bolts, cases, reservoirs,
plants, computers, relays, medicines,
poles, switches, compounds, cushions,
buttons, salts, cities, boxes, pow-
ers, drugs, parents, screens, shells,
lids, algorithms, packs, blocks, services,
paints, transformers, cosmetics, memo-
ries, things, cabinets, bases, states, me-
ters, watches, buses, plates, arrange-
ments, polymers, ceramics, methods,
derivatives, preparations, ions, ones, al-
ternatives, filters, solutions, rubbers,
lamps, networks, gears, warehouses,
belts, phones, motors, mats, stocks, dis-
plays, complexes, limits, models, fences,
engines, sources, situations, combina-
tions, stores, shocks, reports, nets, met-
als, currents, plans, pumps, variables,
protections, bearings, rails, schedules.

Fuel cells and capacitors:
Cell, cells, device, unit, sensor, combina-
tion, capacitor, film, fuel, capacitance,
memory, material, method, electrode,
condenser, capacitive, carbon, power, ca-
pacity, membrane, polymer, composite,
storage, compound, flow, diode, struc-
ture, dielectric, layer, precursor, cycle,
direct, product, contact, panel, pump,
end, gas, condition, chemical, filter, con-
tainer, vehicle, core, electrolyte, voltage,
cup, cleaner, path, element, single, re-
action, fluid, super, space, supply, cel-
lular, system, ratio, ceramic, hydrogen,
refrigerator, fabric, stack, blood, prod-
ucts, heat, methanol, composition, pro-
cess, store, loop, flexible, units, barrier,
tube, component, separator, fiber, air,
water, conditions, line, enzyme, catalyst,
panels.

II

A. Appendix 1: LOTClass Keywords

III

DEPARTMENT OF MATHEMATICAL SCIENCES
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden
www.chalmers.se

www.chalmers.se

	List of Acronyms
	List of Figures
	List of Tables
	Introduction
	Aim
	Outline
	Rationale
	Scope
	Limitations
	Ethical Considerations
	Contributions

	Background
	Patents
	Contents of Patents
	Patent Language
	Patent Landscaping

	Levels of Supervision in Machine Learning
	Supervised Learning
	Semi-supervised Learning
	Weakly Supervised Learning
	Unsupervised Learning

	Machine Learning Approaches
	Language Modeling
	Transformers
	BERT
	BERT Variations

	Logistic Regression
	Ensembles
	Hard Voting
	Soft Voting

	Evaluation
	Previous Work

	Data
	Web Scraping and Pre-processing

	Method
	Weakly Supervised Learning - LOTClass
	Generating Category Vocabularies
	Finding Category Indicative Word Occurrences
	Fine-tuning for Masked Category Prediction
	Self-training BERT on Examples

	Semi-Supervised Learning - MixText
	Linear Interpolation
	Semi-supervision
	Entropy Minimization

	Supervised Learning - LabelLR
	Ensemble
	Supervised Learning - Fine-tuned BERT
	Evaluation
	Experimental Setup
	Experiment 1 - LOTClass
	Experiment 2 - MixText
	Experiment 3 - LabelLR
	Experiment 4 - Ensamble
	Experiment 5 - Fine-tuned BERT

	Result
	Discussion
	Models
	LOTClass
	MixText
	LabelLR
	Ensemble

	Data
	Practical applicability
	Future Work
	Patents' Unique Characteristics
	Back-translation
	Transfer-Learning
	LOTClass Keywords
	Combining LOTClass and MixText
	More Patent Datasets
	Hierarchical Classification
	Comparison to Search Engines
	Variability in Results
	Explore Other Weakly and Semi-supervised Methods

	Conclusion
	Appendix 1: LOTClass Keywords
	Manufacturing and Applications
	Batteries, Fuel Cells, and Capacitors:

