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Abstract
In the development of self-driving cars, safety plays a key role. Different sensors are
used to continuously interpret the surroundings. Cameras are extremely important
and unique in being able to determine context whilst also distinguishing objects
with high resolution. However, many of today’s machine learning algorithms for
processing camera images are unaware of the uncertainties in their predictions and
can therefore not be fused optimally with data from other sensors. If these algo-
rithms were to be extended into knowing their uncertainties, they would be of more
practical use in safety-critical applications.

In this thesis, we study two methods for estimating uncertainties in machine learning
and apply them to a machine learning algorithm for monocular 3D object detection
to enable per prediction uncertainty estimates. The methods use ideas from Bayesian
statistics to estimate the uncertainties. Furthermore, a framework for propagating
uncertainties to the global coordinate system is presented. The first method aims
at capturing uncertainties due to noise in the data whilst the other method aims at
capturing uncertainties due to imperfections in the model.

The results are evaluated and analyzed extensively with a focus on the usefulness
and interpretability of the uncertainty estimates. The presented methods are, to the
best of our knowledge, the first of their kind for monocular vision 3D object detec-
tion and there is currently no standardized way of evaluating uncertainty estimates.
Therefore no comprehensive comparison to other methods could be done. We pro-
pose and study ways of evaluating uncertainty estimates. We find that a machine
learning algorithm for monocular 3D Object Detection can successfully estimate the
uncertainties in its predictions, thus making the algorithm more suitable for usage
in a safety-critical application.

Keywords: Machine Learning, Uncertainties, Bayesian, Autonomous Driving,
Monocular 3D Object Detection, Aleatoric, Epistemic.
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1
Introduction

In recent years, the interest in self-driving cars has increased drastically, gaining a
lot of attention from the media. As the interest has increased so has the amount of
resources that is being invested in the development of these cars. With self-driving
cars in the transportation system, the infrastructure would have the possibility to be
used much more efficiently and number of accidents to be much fewer. The comfort
of car users would also increase and time reserved for driving can be spent on other
activities.

Today’s Autonomous Driving (AD) systems are currently at a stage where the
system assists the driver in different ways, e.g. in highway pilot assist, but where the
driver remains responsible for monitoring the driving environment and is ultimately
responsible for the driving. The next level of AD is a stage where a vehicle drives
completely on its own with no driver supervision and primarily where the vehicle
takes full responsibility for the driving. There are no such solutions available on
the market today. However, most vehicle manufacturers are aiming for this level of
AD. For a self-driving car to be able to take full responsibility of the driving and
monitoring of the driving environment, as well as to ever have the possibility of
being allowed on the roads and gain the trust of the users, the safety needs to be
assured.

To develop vehicles that can control themselves in urban traffic is a very chal-
lenging task. The vehicle has to constantly scan and interpret its surroundings using
several different sensors to be able to make decisions regarding how to control the
vehicle in a safe manner. One of the key sensors in interpreting the surroundings
are the cameras which are mainly used to identify where the road is and to detect
where and what the other road users are. A common method for road and road user
identification from camera images is to use machine learning.

1.1 Machine Learning

Machine learning is a popular technology for solving complex tasks by making a
computer learn from data instead of explicitly programming a solution. The most
commonly used form of machine learning is supervised learning. In Supervised learn-
ing a machine learning model is presented with large amounts of data (inputs) and
corresponding correct answers (desired outputs) from which the supervised learning
model attempts to learn the pattern. When the model has learned a pattern the
hope is that the model is able to predict the correct answer to new, unseen, data
where the correct answer is desirable, but unknown. More formally, the supervised

1



1. Introduction

learning model attempts at finding the function f : X → Y mapping the input
data, X, to output data, Y , and where the training set (X, Y ) contains N number
of training samples {(x1, y1) . . . (xN , yN)}.

There are plenty of machine learning models for detecting where the road is and
for detecting other road users. The problem of detecting other road users is attacked
in the task of 3D object detection.

1.2 3D Object Detection
To enable safe navigation with an autonomous vehicle, its awareness of surrounding
road users has to be ensured. Detection of other road users in 3D infers that the
estimates regarding a road users whereabouts should be given in world coordinates,
i.e. in the same coordinate frame that the ego vehicle moves in. More specifically,
the task is to find a box that tightly encloses the road user to, ultimately, be able
to determine where it is and where it is not safe to drive. Furthermore, each road
user should be classified as e.g. a car or a pedestrian. It is of interest to know
what type of object that has been located since a car and a pedestrian have very
different characteristics, e.g. a pedestrian might abru ptly change the direction of
which it is heading whereas a car has a limited turn rate. Discerning the road
users whereabouts can be done more accurately by having a good description of the
uncertainties.

1.3 Uncertainties
Uncertainties are used to describe the precision of various things, but for the subject
of Autonomous Drive, uncertainties are used to describe the precision of different
sensors, measurements and models. The uncertainties give an indication of how
much a measurement from a sensor should be trusted. To have a proper uncertainty
description accompanied with each measurement is crucial in order to use each sensor
to its fullest potential and to make accurate predictions. Each sensor has its own set
of strengths and weaknesses and thus, by having a proper uncertainty description
for each measurement, we can exploit the strengths of multiple different sensors to
make more accurate predictions than we ever could with only one type of sensor.

To make predictions about other road users whereabouts from camera images
machine learning models can be used, as discussed in Section 1.2. However, most of
these models are unaware of the uncertainties in their predictions. In a regression
problem, the output from the network is often presented as a single value without
any uncertainties associated to the estimate. In a classification scenario, the output
is most often a percentage of how certain the network is that the detected object
is of a certain class. However, this percentage is not necessarily based on actual
certainty. To maximize the usefulness of the camera as a sensor, the associated
uncertainties has to be estimated in a robust way.

There are approaches for extracting uncertainty estimates in machine learning.
These approaches have already been applied to the tasks of semantic segmentation,
depth estimation, 2D detection and 3D detection using LiDAR information. This
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thesis has, however, focused on extracting uncertainties for the more comprehensive
task of monocular 3D object detection.

Lastly, having uncertainty estimates accompanied with the output from machine
learning algorithms used in 3D Object Detection would open up several use cases for
the output. It would enable the information to be fused with information from other
sensors, to make for better estimations. The uncertainty estimates can, furthermore,
also be utilized offline to find scenarios where the network indicates high uncertainty.
The difficulties in these scenarios can be analyzed, identified and learned from by
extending the training data set with similar images. This offline usage of the uncer-
tainties to extend the training data set might thus still have a tremendous impact
on the online performance.

1.4 Thesis Objectives

There are plenty of benchmarks for which one can compare the performance of a
machine learning model to other models. However, these benchmarks focus solely
on the pure performance of the models and does not take uncertainty into account.
In 3D object detection pure performance is measured by comparing how well the
networks best guesses of where the other road users are coincides with the actual
whereabouts of the road users, without taking the uncertainties into account.

A machine learning model which is unaware of its uncertainties is of limited use in
safety critical applications. Unfortunately, there is currently no standardized way of
evaluating the quality of uncertainty estimates in machine learning and thus no way
to compare two models to each other. The goal of the thesis is to first find a way to
estimate the deep learning uncertainties for monocular 3D object detection (3DOD)
to maximize the usefulness of the neural network outputs and to then propose a
method for evaluating the uncertainty estimates to be able to compare models to
each other.

When considering methods for extracting uncertainties computational efficiency
is not considered, i.e. the solution will be suitable for offline usage and not necessarily
for implementation in real-time safety critical systems. This thesis is furthermore
limited to estimating uncertainties for one type of task, namely 3DOD. This task
includes regression problems, find e.g. the height, width and length of a 3D bounding
box, as well as a classification problem where each object has to be classified into
e.g. pedestrian or car.

1.5 Contributions

This thesis work comprise the following major contributions to the field:
• Uncertainty estimation for monocular 3D Object Detection - Uncer-

tainty estimation has, to the best of our knowledge, never been implemented
in a machine learning algorithm used for the specific task of monocular 3D Ob-
ject Detection. Methods previously used in other applications for extracting
uncertainties are applied to the task.

3



1. Introduction

• Uncertainty evaluation framework - A framework for comprehensive eval-
uation of uncertainty estimates is proposed. It constitutes of multiple comple-
mentary evaluation metrics, inadequate on their own, but constitute a solid
evaluation framework when combined.

• Global uncertainty propagation - A framework for propagating uncertain-
ties from the image plane to the global coordinate system is derived in order
to present uncertainties completely for all 3D parameters as some parameters
are estimated in the image plane.

1.6 Related Work
In the paper by Kendall and Gal [1] they discuss the problem of how today’s machine
learning algorithms are not capable of understanding their uncertainties. They
further discuss and argue that finding a way to describe the uncertainties in a robust
way is a relevant problem to solve to make the most out of the machine learning
algorithms. Furthermore, they divide uncertainties in machine learning into two
sub-categories, epistemic and aleatoric uncertainty.

Epistemic uncertainty describes the uncertainty about our model parameters. For
so called out-of-data examples, where the data differs from what the network has
seen during training, the epistemic uncertainties increases, which is crucial to know
in safety critical applications. It is therefore very important to include because it
somewhat enables handling of unknown scenarios by expressing that the estimates
are uncertain [1].

Aleatoric uncertainty may be split up into homoscedastic and heteroscedastic
uncertainty, the first being a constant uncertainty over the data set and the latter
a varying input dependent uncertainty. The homoscedastic uncertainty is a certain
static uncertainty for one task, e.g. depth estimation, and another constant uncer-
tainty for another task. Heteroscedastic uncertainty is varying with the input and
in the example of depth estimation it is usually low for high resolution, clear images
where edges are distinct. The uncertainty is, on the contrary, high for blurry edges,
reflections and overexposure [1].

Kendall and Gal further propose the use of Bayesian Deep Learning (BDL) to
estimate the uncertainties. Bayesian Deep Learning is a field intersecting deep
machine learning and Bayesian statistics which benefits from being able to model
epistemic uncertainties. A practical approach to estimating these uncertainties is by
using Monte Carlo Dropout as discussed by Nair et al. [2] and Gal et al. [3] where
the network is trained with dropout and at test time multiple forward passes are
run with different nodes dropped, resulting in multiple predictions that can than
be combined to obtain a final estimate. An extension to the traditional dropout is
the Concrete Dropout which enables automated tuning of the dropout probabilities
which results, according to the authors [4], in a more calibrated [5] model. Gal and
Ghahramani [6] describes how to adapt the framework for estimating the epistemic
uncertainties through Monte-Carlo Dropout to convolutional neural networks.

Moreover, Deep Ensembles is another approach for approximating Bayesian Neu-
ral Networks [7] where multiple networks are trained and their predictions are com-
bined to obtain the final estimate, the idea is that this will reduce the variance in
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the predictions and make the model less sensitive to the specifics in the training
data as each model will learn slightly different things. A similar approach for de-
scribing the uncertainties is with the frequentist approach of bootstrapping [8]. The
bootstrapping approach is to train an ensemble of networks where each network is
trained with different fractions of the training data, e.g. every networks trains on
a unique 67% of the training data. The different predictions are then combined to
obtain the final estimate.

In their paper [9] Ilg et al. compare popular uncertainty methods and further-
more introduce a network structure that utilizes the Winner-Takes-All loss to, in a
single forward pass, predict multiple hypotheses for optical flow and corresponding
uncertainties. The hypotheses are combined to obtain the final optical flow estimates
and corresponding uncertainties in a computational efficient way.

Harakeh et. al [10] use BDL to estimate uncertainties in the output for 2D object
detectors. They estimate aleatoric uncertainty and extract epistemic uncertainty
using Monte-Carlo Dropout as in Kendall and Gal’s work. Further, they propose a
substitute to non-maximum suppression that is commonly used in object detection to
suppress some outputs. Their solution enables prior information to be incorporated
in the final estimates. They interpret the output from the machine learning model
as measurements of the variables to update the prior distribution to obtain the final
conditional posterior distribution for the variables. This way a lot of information,
that would normally be thrown away, is instead used to obtain the final estimates.

As described in this section, there are existing solutions that estimates the ac-
companied uncertainty estimates to machine learning predictions. However, to the
best of our knowledge, there is no current solution for estimating uncertainties in
monocular 3D object detection nor is there a standardized framework for evaluating
uncertainties. The methods used for extracting uncertainties in this thesis is based
on the methods presented by Kendall and Gal, Nair et al. and Gal Ghahramani et
al. The proposed framework for uncertainty evaluation combines ideas from Kendall
and Gal, Ilg et al. and Harakeh et. al.

1.7 Thesis Outline
The remainder of the thesis is structured as follows. Chapter 2 covers the theoretical
concepts that this thesis is built upon and presents the task at hand in greater de-
tail. The chapter ends by introducing how the performance of the machine learning
method is evaluated and a few metrics for evaluating uncertainties. In Chapter 3,
the method describing the conduction of this thesis is presented. The chapter is
further divided into first describing the network structure and specifics about choice
of parameters and implications thereof. Secondly implementation details such as
programming language and parameter settings are presented. Lastly, the evaluation
metrics used in the project are discussed. Chapter 4 contains the results that were
obtained, which are then discussed in Chapter 5. A conclusion is finally presented
in Chapter 6.
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2
Theory

2.1 Bayesian deep learning

In Bayesian inference the purpose is to provide a mathematical framework to model
systems in such a way that uncertainties of the system are taken into account, to
allow for well informed decisions [11]. In Bayesian deep learning the intention is
to incorporate Bayesian statistics into deep machine learning. By doing this it is
possible to account for, and express, uncertainties in the model. The uncertainties
are furthermore often categorized into uncertainty inherent in the model and uncer-
tainty inherent in the data. In other words, they are often categorized into epistemic
and aleatoric uncertainty [1, 12], further explained in Section 2.2.

There are a few fundamental building blocks in Bayesian modelling. These are
the prior distribution, the likelihood function and the posterior distribution. The
prior distribution p(ω), holds information about prior beliefs or knowledge about
the system or parameters. The likelihood function, p(y|x,ω), explains how probable
certain outputs, y, are given an input x and a parameter setting ω, where ω could
be a particular set of parameters or weight matrices. The posterior distribution,
p(ω|x, y), is the distribution over the unknown parameters given the data and the
distribution that represents the state of knowledge about the parameters when all
the information of the model and the observed measurements are used.

In a machine learning setting, the Bayesian mindset is applied by considering the
weights in the neural network to be stochastic random variables rather than deter-
ministic values and a prior distribution is placed over each weight. This distribution
represents our prior beliefs on the parameters. Given inputs X = {x1, ...., xN} and
corresponding target outputs Y = {y1, ...., yN} we wish to find the posterior dis-
tribution over the weights. This posterior distribution captures the set of plausible
parameters ω for a function y = f(x,ω) that are likely to have generated our outputs
[1]. The posterior distribution can be calculated using Bayes’ rule [11] as

p(ω|X ,Y) = p(Y|X ,ω)p(X ,ω)
p(Y|X )p(X ) . (2.1)

As the weights ω and the inputs X are independent of each other without cor-
responding targets Y , the joint distribution p(X ,ω) can be written as p(X ,ω) =
p(X )p(ω) [1]. This enables the expression for the posterior over the weights to be
simplified to

p(ω|X ,Y) = p(Y|X ,ω)p(ω)
p(Y|X ) . (2.2)
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However, the marginal probability

p(Y|X ) =
∫
p(Y ,ω|X ) dω =

∫
p(Y|X ,ω)p(ω) dω (2.3)

needed to calculate the posterior over the weights in Equation (2.2) can’t be evalu-
ated analytically as it requires us to integrate over all possible weight configurations,
which is infeasible. Thus the posterior distribution in Equation (2.2) has to be ap-
proximated. This can be done by fitting a simple distribution that minimizes the
Kullback–Leibler (KL) divergence [13] between the simple distribution and the true
posterior distribution over the weights [1, 6] to then use this simple distribution
as an approximation of the true posterior. Multiple methods for obtaining this
simple distribution exist [6, 14, 15, 16], where the most popular one is a dropout
approximation.

To now predict an output, y∗, for a new input point x∗ we want to calculate
the marginal distribution p(y∗|x∗,X ,Y). This can be done by first identifying the
distribution

p(y∗,ω|x∗,X ,Y) = p(y∗|x∗,ω)p(ω|X ,Y) . (2.4)

Integrating over the weights marginalizes the weights out, resulting in

p(y∗|x∗,X ,Y) =
∫
p(y∗|x∗,ω)︸ ︷︷ ︸

likelihood

p(ω|X ,Y)︸ ︷︷ ︸
posterior

dω . (2.5)

For regression, Laplacian and Gaussian likelihood functions have been used [1, 7, 9]
when approximating the marginal distribution and to model uncertainty inherent in
the data. The Gaussian likelihood function can be written as

p(y|x,ω) = N(y; f(x,ω), σ2)

where x is the input to the neural network, f(x,ω) is the output from the neural
network with weights ω. This can be thought of as corrupting the output with
observation noise.

However, evaluating Equation (2.5) still requires the evaluation of an integral
over the weight space, which is explained to be infeasible. A way of approximating
this distribution would be to sample from the distribution and to calculate the
sufficient statistics of the distribution from the samples. This could, for instance,
be done with the popular Monte-Carlo sampling method, Monte-Carlo Dropout
[3], that allows i.i.d. samples of the distribution in Equation (2.5) to be drawn by
having dropout enabled at test time when running inference with the neural network
[1][10]. Through these samples the mean and covariance of the distribution can be
approximated as

µ(xi) = 1
T

T∑
t=1

f(xi,ωt) (2.6)

Σe(xi) = 1
T

T∑
t=1

f(xi,ωt)f(xi,ωt)T − µ(xi)µ(xi)T (2.7)
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where xi is input number i to the neural network, T is the number of times MC-
Dropout sampling is performed, ωt is the specific weight configuration after applying
dropout at forward pass number t, f(xi,ωt) is the neural network regression output
for the tth MC-Dropout run. Lastly, Σe(xi) models the epistemic uncertainty for the
regression variables in the neural network output, further described in Section 2.2.2.

2.2 Uncertainties
To be able to optimally fuse data from different sensors into a single unified esti-
mate some measure of uncertainty for each data source has to be accounted for.
The uncertainties for each of the sensors can furthermore be divided into two main
categories, aleatoric and epistemic, that differentiates where the uncertainties arises
from [12]. These different sources for uncertainties can for instance be imperfections
in a model of the world or in variables that are unknown and that therefore can
not be accounted for. For instance, if one were to model the trajectory of an apple
dropped from an airplane, an imperfection in a model of the world could be to ignore
the effect of air resistance and an unknown variable could be the precise wind speed
at different altitudes along the trajectory.

2.2.1 Aleatoric Uncertainties
The first category that the uncertainties are divided into are the aleatoric uncer-
tainties. Aleatoric uncertainties arises from noise in the data which could be a
blurry or overexposed camera image, dirt on the sensor or occlusion due to various
reasons. These uncertainties can further be categorized into homoscedastic uncer-
tainties which stays constant for different inputs (for example a constant bias in
a sensor) and heteroscedastic uncertainty. Heteroscedastic uncertainty depends on
the input where some inputs or some part of the input space might have noisier
outputs due to occlusion or other similar reasons. For computer vision applications
heteroscedastic uncertainties is especially important as the input is normally camera
images where different parts of an image might clearly have more uncertain outputs
than other. For example, for depth regression where the task is to estimate the
distance to each pixel, a highly textured image with distinct edges are expected to
have confident predictions. On the contrary, the uncertainty is expected to be high
for blurry edges, reflections and overexposed regions.

As aleatoric uncertainty can be thought of as unknown observation noise that
is present in the data it can be learned from data. This is achieved by placing a
distribution over the output from the model to then try to learn the characteristics
that describes this distribution. For example the regression parameters in the output
might be modelled as corrupted with Gaussian random noise where we would then
want to learn the noise’s variance from different inputs [17] as the variance and the
mean fully describes a Gaussian distribution.

The Gaussian distribution for output variable yi can be written as

p(yi|ŷi) = 1√
2πσ(xi)2

exp
(
−|yi − ŷi|

2

2σ(xi)2

)
(2.8)

9



2. Theory

where ŷi is the mean and σ(xi)2 is the variance of the distribution for input image i.
To be able to find an expression for learning the mean and variance for the output
variable negative log likelihood is applied as proposed in [1], resulting in

− log(p(yi|ŷi)) = − log
 1√

2πσ(xi)2
exp

(
−|yi − ŷi|

2

2σ(xi)2

) =

= − log
 1√

2πσ(xi)2

− log
(

exp
(
−|yi − ŷi|

2

2σ(xi)2

))
=

= |yi − ŷi|
2

2σ(xi)2 − log
 1√

2πσ(xi)2

 = |yi − ŷi|
2

2σ(xi)2 + log
(√

2πσ(xi)2
)
∝

∝ |yi − ŷi|
2

2σ(xi)2 + log (σ(xi))

(2.9)

where xi is the input, ŷi = f(xi) is the output, yi is the ground truth regression
target and σ(xi)2 is the estimated output variance from the network. Using the final
expression in Equation (2.9) the loss for a regression parameter can be written as

LG(xi) = |yi − ŷi|
2

2σ(xi)2 + log
(
σ(xi)

)
. (2.10)

The variance of a Laplacian distribution is given by σ2 = 2b2 [18] and in a similar
fashion the loss, LL, for a Laplacian distribution, pL(yi|ŷi), can be written as

pL(yi|ŷi) = 1
2b(xi)

exp
(
−|yi − ŷi|

b(xi)

)
=
{

2b2 = σ2 ⇒ b = σ√
2

}

= 1√
2σ(xi)

exp
(
−
√

2|yi − ŷi|
σ(xi)

)
⇒ − log(pL(yi|ŷi))⇒

⇒ LL(xi) =
√

2|yi − ŷi|
σ(xi)

+ log
(
σ(xi)

)
.

(2.11)

The formulation of the loss functions in Equation (2.10) or Equation (2.11) gener-
ates the maximum likelihood estimate of the parameters. With these loss functions,
the network also has the possibility to attenuate the effect of outliers during train-
ing by increasing the estimated variance and thus making the first term in L(xi)
smaller. The second term acts as a regularizer, preventing the model from rejecting
all training examples by always setting the variance to be infinity. The aleatoric un-
certainties are thus computationally cheap to model as it only requires the network
to estimate twice as many regression parameters and a change of loss function.

2.2.2 Epistemic Uncertainties
The other category of uncertainty is epistemic uncertainty. Epistemic uncertainty,
also called model uncertainty, is uncertainty in the output inherent from the uncer-
tainty in the model’s parameters. Is our model a good approximation to the function
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turning inputs into desired predictions in terms of architecture and weights? As op-
posed to the aleatoric uncertainties, the epistemic uncertainties can be explained
away given more representative training data and it is supposed to increase for out-
of-data examples (situations that is different from the training set) [1][3]. In safety
critical applications, the ability to be able to identify situations that are different
from what the model has seen during training is important to be able to make well
informed and balanced decisions. As described in Section 2.1 the epistemic uncer-
tainties can not be calculated analytically but can be approximated with various
methods where the most popular one is Monte-Carlo Dropout [1].

2.3 Traditional computer vision
To find objects and recreate scenes [19] from camera images has been done for
decades. Traditional methods for, for example, scene reconstruction have practical
use cases such as building a map of the surroundings and localization within the
map. Such applications often make use of feature extractors, like SIFT [20], to
match descriptive regions across images and find the corresponding 3D points that
corresponds to the matched regions. Both the matching and finding 3D points can
be done in multiple different ways using traditional computer vision algorithms.
However, object detection using traditional computer vision techniques is extremely
difficult as objects of a specific class that one wishes to detect rarely look the same,
which is why machine learning is mostly used for object detection nowadays. In
traditional computer vision "hand crafted" features are extracted from the images
as opposed to leaving the task of extracting valuable features to a machine learning
model. The effect that this has becomes prominent when comparing the results for
the ImageNet challenge [21] from before and after 2012 when the first deep machine
learning model was used in the challenge.

2.3.1 Projecting 3D points onto the image plane
In this section we will give a brief understanding of how points in images relates to
3D world coordinates through a model of a camera. For more in depth explanations
we refer the reader to [22][23].

Given a set of 3D points in homogeneous coordinates X =
[
X Y Z 1

]T
and a

3× 4 camera matrix P that models the camera, one can derive expressions for the
image coordinates, (x, y) that corresponds to the 3D coordinates by

λ

xy
1

 = PX . (2.12)

By dividing by λ the image coordinates x, y can be found. In a similar fashion we can
derive 3D world coordinates from images coordinates by multiplying Equation (2.12)
with the pseudo inverse of the camera matrix P † on the left, we call this operation
a un-projection of a pixel. However, some additional information is required to
uniquely determine the world coordinates due to that a pixel in the image could arise
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from a ray in world coordinates. This is due to that points in images only have two
dimensions whereas points in the world has three dimensions. Therefore, we need
some way of determining where to cut the ray in order to find world coordinates
from image coordinates. There are multiple ways of handling the depth problem
where a common approach is to use a stereo camera, un-projecting two matched
pixels and finding the 3D point where the two rays intersects (or the point that
minimizes some distance between the rays, if the lines does not intersect in 3D),
thus solving the depth problem.

2.4 3D Object Detection
To detect objects in world coordinates is important to be able to interpret and
understand the surroundings. This task, called 3D object detection (3DOD), can
be done in multiple different ways where natural choices include radar, lidar, stereo
cameras or other depth sensors. For depth estimation and 3DOD, modern lidar
sensors is a popular choice [24][25]. For a camera to be a viable complement for
detecting objects the final estimates has to be in world coordinates (3D) rather than
in the image plane for the detections to be useful in other functions. Lately machine
learning has been the choice of method for performing object detection. In this
section the different components of a machine learning algorithm for 3DOD will be
described.

2.4.1 3D Parameters
A 3D bounding box can, assuming that the roll and pitch angles are negligible,
be described by its dimensions H, W, L, center point T = tx, ty, tz and yaw angle
θ. There are multiple different representations of what parameters that one could
regress and combine to obtain the parameters that describes a 3D bounding box.
One can for instance regress the final representation straight away as done in [26, 27]
or regress parts of the final parameters and derive the remaining ones from geometric
constraints as in [28].

2.4.2 Network outputs
In this section a parameter representations for when the 3D regression parameters
are not estimated directly will be described. The geometrical constraints that relates
the output parameters to the final variables will further be described in Section 2.4.5.

As discussed in [28] the global orientation or the yaw angle (rotation around
world coordinate Y axis) of an object is hard to estimate directly due to that an
object that has a constant global orientation might appear very differently in the
image plane depending on where in the image it is located. However, the observation
angle, α, from which the camera views the object is easier to estimate as that angle
is closer to the raw data. A visualization of how the observation angle changes as
an object with a constant yaw angle passes by the camera can be seen in Figure 2.1.

The variance of the dimension estimate is usually quite small (cars tend to be
roughly the same size), making it suitable to estimate the dimension variable di-
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Figure 2.1: An illustration of how the observation angle α changes when an object
with a constant yaw angle θ passes by the camera.

rectly. Furthermore, these variables stay constant as the objects moves or rotates in
relation to the camera. A possible choice could be to estimate the logarithm of the
dimension variables in order to solve the problem of negative dimensions. However,
as the outputs are assumed to be a distribution this would require the estimated
uncertainties to be transformed from uncertainties in the logarithm of the dimension
to uncertainties in dimension, σlog(d) → σd.

In this thesis the only sensor data that is used is images from a single camera. As
no depth information is available and since monocular reconstruction suffers from
scale ambiguity some depth estimate has to be regressed to be able to resolve this
problem. There are again different representations that can be chosen for the depth
variable. For instance, the distance along the Z axis, (the longitudinal distance) or
the euclidean distance to the objects can be chosen as a regression parameter. The
two depths are illustrated in Figure 2.2 where three objects has the same Z depth
to the camera whilst the euclidean distance differs.

Lastly the 2D bounding box, that encloses the object in the image plane, is
typically also estimated to be able to use it in a scoring function but also for deriving
world coordinates from it, further described in Section 2.4.5. In addition to the
regression variables a classification estimate for the predetermined classes has to be
included for the network to be able to classify the objects in the image.

2.4.3 Pixel-wise estimations
Similarly to what parameters to regress with the neural network there are also
multiple ways of choosing the output resolution from the neural network. Some
approaches includes using only a few locations in the image (also called anchor
points) [29, 30], for the network to output estimates at. Another approach is to
output estimates at a much higher resolution, as done in [31]. During training the
outputs of higher resolution are connected through support regions where each pixel
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Figure 2.2: Illustration of different depth representations to be able to resolve the
scale ambiguity that monocular reconstruction suffers from. The euclidean distances
d1, d2 and d3 differ but the distance along the Z axis is the same for the three objects.

mean 2D box

Figure 2.3: Output 2D bounding boxes after an initial classification threshold has
been applied. Each object has multiple estimates for its parameters.

in the region holds the regression targets and the classification one-hot target vector
for the object. The Support region for an object is created in the center of the
object’s ground truth 2D bounding box with its height and width being 20% of the
ground truth box height and width, respectively. With a high resolution output
map, a way of removing false detections and clustering estimates that are likely to
corresponds to the same object is needed. As a first step to remove estimates that are
likely to not be correct and correspond to an actual object a classification threshold
is applied. In this step all the output pixels that do not have a classification score
(softmax of logit vector) over a certain threshold for any of the objects that we
have trained the network to detect will be removed, ideally removing everything but
the duplicate detections where there is an object. This could result in a output as
the one in Figure 2.3 where the detected objects have multiple estimates for their
parameters. Thus further processing of the output is required before ending up with
the final estimates.

2.4.4 Box-selection through Non-Maximum-Suppression
After all of the post processing steps have been done we want one bounding box
per object in the frame. With the chosen output resolution there will be multiple
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mean 2D box

Figure 2.4: Output 2D bounding boxes when boxes have been suppresed by the
NMS algorithm.

boxes that all originates from the same object (see Figure 2.3) and thus we have to
find a way of clustering these together. This is done by applying a Non-Maximum-
Suppression (NMS) algorithm that suppresses outputs based on their 2D bounding
box overlap with other 2D bounding boxes of the same class. The NMS algorithm
is deployed once for each class in the classification head.

Given a set of estimates the NMS algorithm begins with picking the output
estimate that has the highest classification score (softmax of logit vector). This
estimate is saved and the 2D IoU for this box with all of the other outputted 2D
bounding boxes is calculated. If any other box (of the same class) has a 2D IoU
over a certain threshold value the output is removed and the procedure restarts with
whatever output estimate that has the highest classification score of the remaining
outputs. This is repeated until only boxes that does not have 2D IoU above the
chosen threshold remains.

When the algorithm has finished there will (ideally) be one output estimate for
each object. What the algorithm effectively does can be seen by comparing Figure
2.4, where the NMS algorithm has run, with Figure 2.3 that was the input to the
algorithm. Note that, in Figure 2.4, all of the detections for the second most leftward
car in the image is suppressed as its 2D bounding box has an IoU above the chosen
NMS threshold with the most leftward car.

2.4.5 Derive 3D parameters from 2D estimates
As described in Section 2.4.2 all 3D parameters are not necessarily regressed from
the neural network and thus the parameters that are not have to be derived as a
post processing step. The 3D bounding box parameters that are not regressed and
thus has to be derived are the X and Y components of the object’s 3D center, tx
and ty and the yaw angle θ.

To find the object’s 3D location we start by finding the object’s center in the image
plane that is found by simply computing the mean of the regressed 2D bounding
box coordinates c = (xmin, ymin, xmax, ymax). That is

ccenter = 1
2

[
xmax − xmin
ymax − ymin

]
. (2.13)

The camera matrix, explained in Section 2.3.1, is known, thus we can find a ray
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Figure 2.5: Top view illustration of how the object center is unprojected into world
coordinates and how the Z estimate from the neural network is used to solve the
problem that a pixel in an image corresponds to a line in world coordinates. Note
that this illustration only shows the X component but the lines are actually in 3D
and thus Y is obtained simultaneously.

from the camera center for which the object’s 3D center point, or 3D location, lies
on by unprojecting (inverting Equation (2.12)) the object’s center, ccenter, in the
image plane.

We know that the scale, s, is arbitrary when unprojecting a single pixel into world
coordinates. The ray, T ∗, for which the object’s 3D location, T, lies on is found by

P †
[
ccenter

1

]
= s


tx
ty
tz
1

⇒ T ∗ = s

txty
tz

 =

t
∗
x

t∗y
t∗z

 . (2.14)

The object’s 3D location T on the ray T ∗ can be found by scaling the vector T ∗
with a factor such that the third component of T ∗ equals the estimated Z depth,
Znn, where Znn is the estimated distance along the Z axis to the object’s center,
yielding

T = znn
t∗z
T ∗ =

 tx
ty
znn

 =

txty
tz

 . (2.15)

The procedure for finding the X and Y world coordinate is furthermore illustrated
in Figure 2.5.

The final parameter that has to be derived is the global orientation or the yaw
angle, θ, for which the object is rotated around the Y axis with. Given the obser-
vation angle, α, and the X, Z coordinates from the object’s 3D location the yaw
angle, θ can be calculated as
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Figure 2.6: Illustration of the different angles that is used to calculate the
global orientation (yaw angle, θ) using the observation angle α and the angle
β = arctan

(
X
Z

)
.

θ = α + arctan
(
X

Z

)
. (2.16)

Each respective angle from Equation (2.16) is visualized in a top view example in
Figure 2.6.

2.5 Performance evaluation

To compare trained networks of different architecture, appropriate evaluation meth-
ods have to be found. As the original network architecture, the baseline network,
will be altered and re-trained to also include uncertainty estimates it is not unlikely
that the pure performance of the network will differ from the baseline network. This
makes it interesting not only to have metrics to evaluate how good the uncertainties
estimates are but also what performance the network has.

2.5.1 KITTI benchmark
In the KITTI benchmark [32] different methods for 3D Object Detection on the
KITTI dataset [33] can be compared in terms of their pure performance. The per-
formance metric used in this benchmark is the average precision (see Section 2.5.5),
using the PASCAL criteria [34]. This benchmark has three different difficulties
where different filters are used to filter out objects before calculating the average
precision. The filters make sure that e.g. objects that are too far away, object that
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Table 2.1: The three different difficulties and each respective filter for the difficulty
used in the KITTI benchmark.

Difficulty Min. bounding
box height

Max.
occlusion level

Max.
truncation

Car bounding
box overlap

Pedestrians and cyclists
bounding box overlap

Easy 40 Px Fully visible 15 % 70 % 50 %
Moderate 25 Px Partly occluded 30 % 70 % 50 %
Hard 25 Px Difficult to see 50 % 70 % 50 %

Figure 2.7: A visual equation for Intersection over Union (Jaccard Index) [35].

are too truncated or occluded are not accounted for. The filters for the different
difficulties are summarized in Table 2.1.

2.5.2 Intersection over union
Intersection over union, also known as the Jaccard index, is a performance metric
evaluating the similarity and diversity of two sets, in object detection this would be
two areas or volumes. The Jaccard index is calculated by dividing the size of the
intersection with the size of the union of the two sets, as in Equation 2.17.

IoU(A,B) = A ∩B
A ∪B

(2.17)

This is furthermore illustrated in Figure 2.7.
In object detection the separation of true positives from false positives is often

determined based on a detection’s IoU in comparison to ground truth objects. This
comparison can be done in multiple different dimensions where the most common
ones are

• 2D IoU - Bounding box in the image plane,
• 3D IoU - Bounding box in world coordinates,
• IoU from bird’s-eye-view (BEV) - Bounding box in top view.

Furthermore, the mean IoU for each of these dimensions over the whole dataset can
be used to indicate performance of a model.

2.5.3 Detection statistics
Detections statistics is a performance metric keeping track of the number of dif-
ferent detections or the absence of them. A detection is here defined as having a
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classification confidence above a certain threshold. A detection is assigned as a true
positive to an annotated object if a scoring function for the two objects is above a
given threshold, a typical scoring function is IoU in some dimension. A split refers
to a certain filtering of objects that does or does not satisfy some constraint, for
example, only include objects that has a minimum height of 40 pixels.

• True Positive (TP) - The number of detections inside the split that were
assigned to ground truth objects.

• False Positive (FP) - The number of detections inside the split that were not
assigned as true positives to a ground truth object or to an object annotated
as non descriptive object.

• Don’t care - The number of detections inside the split that were assigned as
true positives to non descript objects.

• Duplicate detections - The number of detections inside the split that are
assigned to ground truth objects as duplicate detecitons.

• Predicted positives - All detections made. This is thus the summation of
the number of true and false positives, don’t care detections and detections
being filtered out due to not fulfilling the current split constraints.

• Non descripts - The number of objects that is annotated as non descripts
due to lack of ground truth data for them.

• False Negatives (FN) - The number of objects inside the split that were
not assigned to any detection.

2.5.4 Precision, recall and F1 score
Precision and recall are two performance metrics evaluating the ability to detect all
real objects and not to make detections for non existing objects. In object detection
a detection is classified as a TP if the detection got a score from a scoring function
above a predetermined threshold value. An object can thus change from being a TP
to a FP by merely changing the scoring function. The three most commonly used
scoring functions are 2D, 3D and BEV IoU.

Precision and recall are metrics describing the fraction of the outputted detections
that are actually TPs and the fraction of all objects that were detected, given a
specific scoring function. Precision is calculated by dividing the number of true
positives with the number of true and false positives, thus describing the fraction of
the outputs that are assigned to a ground truth object (see Equation 2.18). Recall
is the rate of which objects are detected, i.e. number of true positives divided
by number of ground truth objects (see Equation 2.19). Precision and recall are
illustrated in Figure 2.8. F1 score is the harmonic mean of the precision and recall
and reaches its best value at 1 and lowest value at 0 and is calculated as in Equation
2.20.

Precision = TP

TP + FP
(2.18)

Recall = TP

TP + FN
(2.19)
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Figure 2.8: Illustration of precision and recall that are central metrics in evaluating
performance of 3DOD algorithms [36].

F1 = 2 · Precision ·Recall
Precision+Recall

(2.20)

2.5.5 Average Precision
Average Precision (AP) is a perfomance metric combining combining precision and
recall while varying the classification threshold. AP is defined as the area under the
precision-recall curve and evaluates precision and recall in relation to each other.
The precision-recall curve is created by choosing different classification thresholds
for what detections that are accepted and for each different threshold registering
the precision and recall for that threshold. As this approach will not give us a
continuous precision-recall curve a way of interpolating the curve to be able to
compute the area under it is required. There are several common methods for
calculating AP (interpolating the curve) but the most common for object detection
benchmarking is called voc07, where voc is short for visual object classes and related
to the PASCAL criteria [34]. This metric is used when comparing models in the
KITTI object detection benchmark described in Subsection 2.5.1. Typical for the
APvoc07 is its evenly spaced recall levels {0, 0.1, ... 1.0} and it is calculated as

APvoc07 = 1
11

∑
r∈{0,0.1,...,1.0}

pinterp.(r) (2.21)

where pinterp.(r) is an interpolated precision taking the maximum precision over all
recalls greater than r:

pinterp.(r) = max
r̃≥r

p(r̃). (2.22)
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Average precision reaches its best value at 1, when the precision is 100 % for 100%
recall, and lowest value at 0, when the precision is 0 % for all rates of recall.

2.6 Uncertainty evaluation
How one evaluates the quality and correctness of the uncertainty estimates is not
obvious as there is no ground truth uncertainty data to compare to. There are,
however, other methods for evaluating uncertainties. One way is to analyze if de-
tections with high uncertainties also have larger errors compared to detections with
low uncertainties, i.e. analyze if the accompanied uncertainties are ordered correctly
[9]. A second way of evaluating uncertainty estimates is to analyze if the estimated
uncertainties coincides with the assumed distribution, described in Section 2.2.1. In
other words, analyzing if the parameters seem to follow the assumed distribution,
characterized by the estimated uncertainty and the mean estimate. A third way is
by analyzing if the uncertainties can help us distinguish true positives from false
positives. That is, analyzing if the uncertainties for false positives are consistently
higher than for true positives. In the following sections metrics that evaluates these,
sought after, properties for the uncertainties will be described.

2.6.1 Area under sparcification error (AUSE)
This metric is used to compare uncertainty estimates for multiple detections to each
other and how they relate in terms of magnitude. One would hope that the network
indicates large uncertainties where the actual error (compared to the ground truth)
is large and small uncertainties where the actual error is small. Thus estimates
that are sorted in order of decreasing uncertainty estimates should hopefully also be
sorted in order of decreasing error compared to the ground truth.

To calculate the AUSE there are a few steps that has to be done. Firstly, the spar-
cification curve is created by sequentially removing the estimates that the network
indicates the highest uncertainty about and calculating an arbitrary performance
metric for the remaining estimates as estimates are removed. The sparcification
curve has fraction of removed estimates on the x axis and average arbitrary perfor-
mance metric on y axis. If the relative order of the uncertainty estimates is good
the sparcification curve should be monotonically decreasing when removing the es-
timates that the network is the most uncertain about. This should retain the good
estimates, that should have a low error. If the sparcification curve remains flat then
the order of the uncertainty estimates are no better than random values and if the
derivative of the sparcification curve is positive then the order of the uncertainty
error are even worse than random, i.e. the uncertainty estimates are rather sorted
in reversed order. The sparcification curve can be compared to an oracle curve, cre-
ated by removing the estimates that, compared to the ground truth, actually have
the largest error, sequentially. The difference between these two curves is called
the Sparcification Error (SE) curve. This will create a curve with the SE on the
Y axis and fraction of removed estimates on the X axis. The area under this SE
curve (AUSE) can be used as a single value evaluation metric describing the relative
correctness of the uncertainty estimates [9]. As different regression variables and
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Figure 2.9: The sorting phase of the sparcification curve generation. Estimated
uncertainties (upper left) is sorted by their value ranging from highest to lowest
(lower left). The actual errors when compared to a ground truth target (upper
right) are also sorted in an equivalent order as the uncertainties resulting in a not
necessarily optimal sorting for the errors (lower right).

different models all have different oracles a comparison using a single sparcification
plot is not possible. However, since the sparcification error curve has normalized
the oracle out a fair comparison across variables and models can be done with a SE
curve or the AUSE metric. Best possible AUSE score is 0 which means that the
relative order between the uncertainty estimates coincides with the actual error to
the ground truth. This is visually explained in Figure 2.9 and Figure 2.10.

2.6.2 Calibration plots
To be able to trust the output from a neural network we want it to not be under
nor over confident. Pose that a neural network is trained to classify images of dogs
and cats. Given 10 images where the network has classified each image to be 70%
dog and 30% cat we want 7 out of those 10 samples to be an image of a dog and
3 of the samples to be an image of a cat. If the frequency of occurrence equals the
outputted probability for the whole range of probabilities (0% to 100%) the network
is said to be perfectly calibrated [5].

For the regression parameters similar reasoning can be applied as the regression
parameters are assumed to be densities rather than point estimates. The proba-
bility density function for each regression parameter can be integrated over to find
ranges that the ground truth estimate should, analytically, lie within with a certain
probability. In a similar fashion to that of the classification case this can be done for
probabilities from 0 to 100 percent and the frequency of occurrence can be compared
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Figure 2.10: The sparcification curve (right) is created by sequentially removing
the detections in the order that they were sorted and calculating the average error
(normalized by the initial average error) for the remaining samples. This is done
for detections sorted by uncertainties (left) and detections sorted by actual error to
ground truth (middle).

to the probability of which it should occur.
Given a Gaussian distribution with mean µ and variance σ2 the probability, c, for

a sample from the distribution to lie within a symmetric interval around the mean
value can be calculated by

c =
µ+x1∫
µ−x1

1√
2πσ2

exp
(
−(x− µ)2

2σ2

)
dx . (2.23)

Similarly, the probability for a sample from a Laplacian distribution with mean µ
and variance 2b2 [18] to lie within a symmetric interval around the mean can be
calculated as

c =
µ+x1∫
µ−x1

1
2b exp

(
−|x− µ|

b

)
dx . (2.24)

By now changing x1 > 0 so that c ranges from 0 to 100 percent and continuously
registering if the ground truth target for the regression parameter lies within the
range µ−x1 to µ+x1 the calibration for the regression parameters can be evaluated.
This is done by comparing the frequency for which the ground truth target lies
within some certain interval with the analytic probability that it should lie within
this interval. As this requires a ground truth target to be available for each of
the regression parameters this can only be done for detections classified as TPs.
Furthermore, the Mean Squared Error to perfect calibration (y = x) is calculated
for each parameter to be able to compare calibration across models and parameters.
A (perfectly) calibrated network is very useful as that indicates that the outputs
from the network can accurately be described by a distribution rather than point
estimates.
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2.6.3 Minimum Uncertainty Error (MUE)
In object detection an estimate is usually accepted as a detection if the probabil-
ity assigned to the estimate in the classification head is higher than some threshold.
When further analyzing the detections they can be divided into True Positives (TPs)
and False Positives (FPs) depending on if they meet some criterion (normally In-
tersection over Union, IoU, in some space) to a ground truth box of the same class.
MUE is a metric describing the ability to discriminate TPs from FPs based on a
detections uncertatinties [10][37].

For every TP and FP the categorical entropy and the entropy for the assumed
density (Gaussian or Laplacian) is calculated. The categorical entropy indicates how
confident the network are about the class for the detection and can be calculated as

Hcategorical = −
∑
i

pi log pi . (2.25)

If the network indicates complete certainty about a class the probability for that
class will be 1 and the probability for the other classes will be 0 which will result in
Hcategorical = 0. On the contrary the categorical entropy is maximized if the network
indicates equal probability for all of the classes.

For the regression parameters a specific distribution is assumed as described in
Section 2.2.1. For the case of a Multivariate Gaussian distribution the entropy,
HGauss, can be calculated as

HGauss = D

2
(

log(2π) + 1
)

+ 1
2 log |Σ| (2.26)

where D is the dimension and Σ is the covariance matrix for the multivariate Gaus-
sian distribution. If the variables are independent, the entropy can be written as

HGauss = D

2
(

log(2π) + 1
)

+ 1
2

D∑
j=1

log σ2
j (2.27)

where σ2
j is the variance for Gaussian variable j. Similarly, the entropy for multi-

ple, assumed independent, Laplacian variables can be calculated as the sum of the
individual entropies as

HLaplace =
∑
j

log(2bje) =
{

2b2 = σ2 ⇒ b = σ√
2

}
=

=
D∑
j=1

(
log(σj) + log(

√
2) + 1

)
= D

(
log

(√
2
)

+ 1
)

+
D∑
j=1

log(σj)
(2.28)

where σj is the standard deviation for Laplace variable j. Note that the entropy
can be calculated for all of the regression parameters jointly or a chosen subset of
them. A high entropy corresponds to high uncertainty among the included regression
parameters.

The entropy of the uncertainty estimates for the regression parameters is cal-
culated as in Equation (2.27) or (2.28), depending on the assumed density for the
regression variables and the categorical entropy of the classification probabilities is
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Figure 2.11: An example uncertainty error plot. The blue and red lines mark the
average entropy for the true and false positives respectively.

calculated as in Equation (2.25) for each and every one of the TPs and FPs. Com-
paring the entropies for the TPs and FPs to a threshold value the Uncertainty Error
(UE) can be calculated as

UE(δ) = 0.5 |TP > δ|
|TP |

+ 0.5 |FP ≤ δ|
|FP |

(2.29)

where δ is a specific value for the uncertainty measure (entropy) threshold. This is
calculated for the categorical entropy and the regression entropy separately. MUE
is defined as the lowest achievable UE when changing δ. In other words MUE for
each entropy is achieved at the δ that best separates the TPs from the FPs.

If the regression entropy for the chosen regression parameters and/or the cate-
gorical entropy of the classification probabilities for all of the TPs are consistently
lower than that of the FPs the uncertainties can be used to further discriminate TPs
from FPs. The best possible MUE is 0 where the TPs and FPs are fully separated.
A MUE value of 0.5 is the highest (worst) possible MUE. A mean entropy for TPs
below the mean entropy for FPs indicates that the uncertainties has the right ten-
dency, and can still be valuable even if the TPs and FPs are not fully separable.
An example plot of uncertainty error can be seen in Figure 2.11 where the TPs
are visualized in blue and the FPs in red at the values of their classification and
regression entropies.

25



2. Theory

26



3
Method

In this section the work flow will be described. Firstly, the baseline network and
our extensions to include uncertainties will be gone through. The chosen regression
parameters, how the 3D variables are derived and how the uncertainties are prop-
agated will be presented. Implementation details will be specified and lastly the
process of evaluating the results will be gone through.

3.1 Network structure
Information regarding the baseline network, that the project extends, will be pre-
sented. Our solution and extension of this baseline network will then be presented.
The network extended with uncertainty estimates is hereby called UncertaintyNet.

3.1.1 Baseline network
The base network structure is adopted from [31][38]. The input to the network is
a single image which is passed through a CNN encoder, more precisely the dilated
ResNet drn_c_26 [39]. The last two fully connected layers are removed resulting
in the image being down sampled by a factor of 8, resulting in a dense feature
vector of dimension 512. This feature vector is passed through separate task specific
decoders called task nets, each consisting of two 1 x 1 convolutional layers and
a tiling upsampling, resulting in an output that is one fourth of the input image
resolution. The output from the task nets is the final network output which is then
post processed to yield 3D boxes. The baseline network can be seen in Figure 3.1.

During training of the baseline network, the simple L1 loss, which penalizes the
distance between the prediction and the ground truth, is used,

L1 =
n∑
i=1
|yi − f(xi)| ,

where yi is the ground truth value, f(xi) the output predictions and n is the number
of output parameters. The baseline network will be used during evaluation for
comparing performance results.

3.1.2 Our network - UncertaintyNet
The model in this project is based on the baseline model described in Section 3.1.1.
The main extension of this network structure is that it includes also aleatoric uncer-
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Class Score

2D BBox

Depth

Orientation
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NMS

Mean 3D
Box Fitting
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Object Class
2D Bounding Boxes
3D Bounding Boxes

Figure 3.1: The baseline network used to compare performance with. The clas-
sification score and the 2D bounding boxes from the output is passed to a Non-
Maximum-Suppression algorithm to form a detection mask. For each detection
passed by the detection mask a 3D box is found using the network outputs. Image
source: [38].

tainties, thus an extra variable σ, for each mean parameter is estimated. Further-
more our network can also estimate the epistemic uncertainties by running multiple
forward passes with dropout enabled and calculating the predictive variance of the
outputs. The variables that the network estimates are:

• Class Score
• 2D Bounding Box
• Standard deviation for 2D Bounding Box
• Depth
• Standard deviation for Depth
• Orientation
• Standard deviation for Orientation
• Dimensions
• Standard deviation for Dimensions

All of our experiments have been performed with the assumption that the network
output is corrupted with observation noise from either a Gaussian or a Laplacian
distribution. Heteroscedastic aleatoric uncertainties, where the observation noise is
input dependant, and thus can vary across outputs, has mainly been used. The mean
estimates and the aleatoric uncertainties are learned by performing backpropagation
on the loss function. Depending on the assumed distribution one of two loss functions
has been used. For the models trained under the assumption of Gaussian observation
noise the loss function in Equation (2.10) has been used and similarly for the models
trained under the assumption of Laplacian observation noise the loss function in
Equation (2.11) has been used, as the loss function is what defines the parameters
to be from a certain distribution.

Furthermore, as there is only ground truth annotations for the regression variables
in the generated support regions (SR), discussed in Section 2.4.3, only the estimates
in these regions should generate a loss to perform backpropagation on. However,
the ground truth masks are constructed to have the same resolution as the network
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Figure 3.2: The network structure for training. All parameters and their corre-
sponding uncertainties form an individual loss term. The individual loss terms are
summarized to form the final loss for which backpropagation is performed on.

outputs but filled with zeros outside support regions. Therefore the network output
is masked out (set to zero) outside the support regions, effectively making sure that
the difference to the ground truth mask is zero and thus the gradient from these
pixels will be zero.

When the network output has passed the suppression mask, the loss for e.g. the
depth estimates given an input image x under the assumption of Laplacian output
noise is calculated for each pixel j ∈ SR as

Ldepth(x) =
∑
j

√
2|yGTj,depth − ŷj,depth|

σj,depth(x) + log(σj,depth(x))

where ŷj,depth is the estimate of the depth, yGTj,depth is the ground truth regression
target and σj,depth(x) is the estimated uncertainty at pixel j and where j belongs to
the pixels in the support regions.

The classification head, which has the background class as target outside the
support regions, is trained also outside the support regions. A standard cross entropy
loss function is used for the classification head. The total loss for a forward pass is
the sum of all task specific losses as illustrated in Figure 3.2.

To obtain the epistemic uncertainty estimates we want to calculate the marginal
distribution p(y∗|x∗, X, Y ) in Equation (2.5). As mentioned in Section 2.1 this can
not be calculated analytically but we can draw samples from the distribution in
various ways. The method that is used to sample from this is the Monte-Carlo
sampling method, Monte-Carlo Dropout [3], that allows us to draw samples from
the distribution by having dropout enabled at inference time, running T forward
passes and calculating the mean and variance as

µ(xi) = 1
T

T∑
t=1

f(xi,ωt) (3.1)
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Σe(xi) = 1
T

T∑
t=1

f(xi,ωt)f(xi,ωt)T − µ(xi)µ(xi)T (3.2)

where ωt is the network parameters and f(xi,ωt) is the network output for forward
pass t. Implementation-wise this requires the network to have a dropout layer after
every weight layer in the network [6]. We chose to only have dropout in the encoder
part of the network as the decoders are very brief (two 1x1 convolutional layers)
compared to the encoder. Training is done as usual with active dropout layers.
This does not increase the training time for a model. During inference dropout
layers remain active, which usually is not the case, and multiple forward passes are
performed with the same input image. Multiple forward passes increases the total
number of calculations required by the same factor as number of forward passes
performed.

An important thing to note here is that when performing multiple forward passes
through the network the mean value for the output’s distribution is sampled to
calculate the epistemic uncertainties. According to the Central Limit Theorem,
when sampling from any distribution the sampling distribution of the mean values
approaches a normal distribution as the number of samples goes to infinity [40]. Thus
the predictive variance (epistemic uncertainty), should approach the variance of a
normal distribution as the number of forward passes (samples) approaches infinity.
In the case where Laplacian observation noise has been assumed this is disregarded
and the combined uncertainty, σ2

al+ep = σ2
aleatoric + σ2

epistemic, is approximated as the
variance for a Laplacian distribution. However, the analysis of the uncertainties for
each model has been done for the uncertainties separately as well as combined.

During inference the class score and the 2D bounding box outputs are used to-
gether in a Non Maximum Supression (NMS) algorithm to generate a detection
mask filtering out unique (see Section 2.4.4) detections with classification confi-
dence higher than a certain threshold. Mean 3D bounding boxes are generated from
the mean 2D parameters and NMS detection mask via 3D box fitting, as described
in Section 2.4.5. The 3D uncertainties are propagated from 2D to 3D by passing the
2D bounding box, depth and uncertainty estimates along with the detection mask
through an uncertainty propagation algorithm, which is described in Section 3.1.4.
The complete flowchart is visualized in Figure 3.3.

We will now specify the chosen network outputs and potential encodings of the
parameters mentioned in Section 2.4.2. The class scores are estimated as a regular
classification task where the available classes are Background, Car, Pedestrian and
Cyclist. The 2D Bounding Box coordinates, (xmin, ymin, xmax, xmax) are encoded and
learned as relative coordinates, i.e. for every pixel (x, y) in the support region the
pixel distance from that pixel to the objects boundaries is estimated as

f(2Dbbox) = (x− xmin, y − ymin, xmax − x, ymax − y). (3.3)

The depth to the object is estimated in meters and is chosen as the distance to an
object along the Z axis. One could also choose to estimate the euclidean distance
to the object but as all parameters are assumed to be independent it is tractable
to keep the variables separated as much as possible. The euclidean distance, and
the corresponding uncertainty in euclidean distance, would be used to calculate the
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Figure 3.3: The overall network structure.

uncertainties for all three of the world coordinates X, Y and Z whereas now the Z
parameter, and corresponding uncertainties, are more isolated.

As described in Section 2.4.2 it is hard to estimate the global orientation, θ,
around the Y axis right away and thus we choose to estimate the observation angle,
α, to an object. We chose to encode the angle α as both sinα and cosα. The
observation angle is then recreated by

α = arctan
( sinα

cosα

)
(3.4)

where sinα and cosα are the two network orientation estimates. The final global
orientation is then calculated as per Equation (2.16) from Section 2.4.5.

The dimension outputs are estimations of the object dimension in meters straight
away. Some papers choose to encode the dimension variables and instead estimate
the logarithm of the dimensions to make sure not to get negative dimension esti-
mates. This is not done in this thesis as the outputs are assumed to be affected
by observation noise and thus it is favorable to not have to convert the uncertainty
estimates from uncertainty in log dimensions to uncertainty in dimensions. We did
not experience any problems with the network outputting negative dimensions.

We assume that there is observation noise on the outputs, which is modelled
by the aleatoric uncertainties, corrupting each one of the regression parameters
(2DBBOX, depth, orientation, dimensions). This observation noise is estimated
by the network. The aleatoric uncertainties are parameterized as the logarithm of
the standard deviation, log σ, instead of estimating the standard deviation σ right
away, thus forcing the σ estimates to be positive. Positive uncertainty estimates are
desirable as standard deviations and variances for distributions can’t be negative.

3.1.3 Deriving 3D variables
Some of the parameters describing a 3D bounding box is not estimated from the
network and thus have to be derived from the variables that are estimated. This
is done entirely in accordance with Section 2.4.5 resulting in the final parameters
describing the 3D bounding box, namely its dimensions (H, W, L), location (X,Y,Z),
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rotation (θ). The step of calculating the remaining 3D variables is performed after
NMS in order to substantially decrease the computational power that is required.

3.1.4 Propagating uncertainties to 3D
When 3D parameters are derived as a post processing step rather than estimated
from the network we have no direct estimate of the uncertainties for these variables
and thus the uncertainties has to be propagated in a similar fashion to how the
3D variables are derived. In this Section we will go through how we propagate the
uncertainties to the final 3D variables, i.e. how we derive σ for H, W, L, X, Y, Z
and θ.

The object’s dimensions H,W,L are estimated from the network and thus the
estimated uncertainties for these variables does not have to be propagated. As
described in Section 2.4.5 the 3D location is split between Z which is estimated
directly and X and Y which are derived from the 2D bounding box estimates.
Similarly to the dimension estimates, the Z estimate is already in the global world
coordinate system and thus no propagation of uncertainties is needed.

The variables X and Y are derived from the center point of the 2D bounding
box which in turn is derived from the 2D bounding box as in Equation 2.13. The
uncertainties about the four 2D bounding box edges are uncertainties in pixels in
the image plane. We want to propagate this uncertainty to uncertainty for the world
coordinates X and Y , that both have unit meter. To find the uncertainties in X the
2D bounding box center, ccenter, is shifted in the x direction by −σxmin and +σxmax .
The world coordinates that corresponds to these two points are found by applying
Equation (2.14) followed by Equation (2.15). As the pixel coordinates were two
standard deviations apart in the x direction the two world coordinates should now
also be two standard deviations apart in the X direction. The standard deviation
for the Y world coordinate is found in a similar fashion but shifting ccenter in the y
direction by −σymin and +σymax instead of the shift in the x direction.

Finally the uncertainties for the yaw angle θ has to be derived. The network
outputs connected to the observation angle α are encoded as sin(α) and cos(α). As
the estimated uncertainties are also uncertainties in sin(α) and cos(α) we have to
first convert these to uncertainties in α. This is done by projecting the uncertainties
in sin(α) and cos(α) onto the unit circle (see Figure 3.4) and taking the absolute
value to account for negative values of sin(α) and cos(α). These are then considered
as separate sources of uncertainty in α, i.e. their variances are added to obtain the
variance in α. Note that the uncertainties σα,sin and σα,cos are assumed to be small.
The smaller the uncertainties are, the better the approximation is.

3.2 Implementation
The implementation is written in Python and more specifically using PyTorch [41]
to build and train the models. The data set that the algorithms have been be trained
and evaluated on is the KITTI [33] data set.

The learning rate used during training is initialized to 10−4 and a learning rate
scheduler is used which reduces the learning rate by a factor 10 when either the F1

32



3. Method

Figure 3.4: Illustration of how uncertainties are propagated to α from sin α and
cos α under the assumption that the uncertainties in sin α, cos α are small.

score or the validation loss has not improved for 10 epochs.
Monte Carlo (MC) Dropout is used for approximating the posterior distribution

over the weights in the network, as described in Section 2.1, and the dropout rate
used during both training and inference is set to 0.2, as suggested in the paper by
Kendall and Gal [1]. The number of MC Dropout samples is set to 20.

For non maximum suppression (NMS) a 2D IoU threshold of 0.3 is used when
determining if detections belong to the same object.

3.3 Evaluation
Different metrics are used to evaluate and analyze the estimates. The metrics are
divided into uncertainty and performance metrics.

3.3.1 Uncertainties
There is currently no standardized way of evaluating uncertainty estimates in ma-
chine learning and therefore no comprehensive comparison to other methods could
be done. Instead we have to find metrics that covers, and describes, different aspects
of the uncertainties to be able to analyze them in a good way. For evaluation and
analysis of the estimated uncertainties, Area Under Sparcification Error (AUSE) (see
Section 2.6.1), Calibration plots (see Section 2.6.2) and Uncertainty Error (UE) (see
Section 2.6.3) are used. Together they cover evaluation of the order of uncertainties
in relation to each other, the magnitude (or calibration) of the uncertainties as well
as their ability to distinguish true from false positives. The uncertainties will be
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evaluated for epistemic and aleatoric uncertainties separately as well as combined.
For AUSE and calibration plots only true positives are considered as they require

ground truth targets to be calculated. To be able to evaluate and analyze the
uncertainties for as many detections as possible the 2D IoU scoring function is used
to distinguish true from false positives as this accepts more detections compared to
3D or BEV scoring functions. Similarly, no more extensive filtering of objects are
made than for objects of the class Car. In other words, no KITTI benchmark filters,
described in Section 2.5.1, are used.

A model is trained under the assumption that there is either Laplacian or Gaus-
sian observation noise corrupting the outputs. To analyze the calibration of a model
trained under the assumption that there is Laplacian observation noise corrupting
the outputs two set of calibration plots are created. The first set of calibration
plots is created by treating each output as a Laplacian distribution characterized
by the estimated mean and the estimated variance and then using Equation 2.24 as
described in Section 2.6.2. The second set of calibration plots is created by instead
treating each output as a Gaussian distribution characterized by the same estimated
mean and the same estimated variance, thus using Equation 2.24 as described in
Section 2.6.2. These two sets of calibration plots are created for each of the different
models. Furthermore, the Mean Squared Error to perfect calibration (y = x) is
calculated for each variable to be able to compare the calibration across models and
parameters.

For UE the ability of different parameters to distinguish true from false positives
are evaluated. Since the scoring function alone is what determines if a detection
is a true positive or a false positives the UE evaluation is performed with multiple
different scoring functions. No KITTI benchmark filters are used but the evaluation
is only done for cars as the vast majority of the objects in the dataset are cars.

3.3.2 Performance
For performance the metric of Average Precision (AP) (see Section 2.5.5) and Detec-
tion Statistics (see Section 2.5.3) are used. For both metrics all KITTI benchmark
filters (see Section 2.5.1) are considered as well as all scorers (see Section 2.5.2).
For Average precision, common practise is to use scoring threshold 0.5 but for the
KITTI benchmark 0.7 is specified. To possibly gain additional insights as to how
close the detections are to becoming true positives the threshold value 0.3 was used
as well, this gives some indication of how big the uncertainties have to be in order
to cover the otherwise missed objects. In other words, the threshold values 0.3, 0.5,
and 0.7 are considered. For Detection Statistics the classifications presented are true
positives, false positives and false negatives.
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In this chapter the results from our different models and experiments will be pre-
sented. The baseline for which we compare the performance against is the base
model that has been extended with uncertainty estimates, but without uncertain-
ties. Furthermore, the model that we have extended to estimate epistemic and
heteroscedastic aleatoric uncertainties is here called UncertaintyNet (UN). A few
different versions of UN have been trained with slight differences, these are:

• UN Val Laplace - UncertaintyNet with assumed Laplacian observation noise
that is stopped on lowest validation loss

• UN F1 Laplace - UncertaintyNet with assumed Laplacian observation noise
that is stopped on best F1 score (for validation set)

• UN Val Gauss - UncertaintyNet with assumed Gaussian observation noise
that is stopped on lowest validation loss

• UN F1 Gauss - UncertaintyNet with assumed Gaussian observation noise
that is stopped on best F1 score (for validation set)

where stopped on means that that model has been chosen as the "best model" for
which the presented results in this section are generated from. Everything in this
chapter is from experiments on the validation dataset.

4.1 Visualizations / Images
In the following section an example image generated by the UncertaintyNet model
trained under Laplacian observation noise that is stopped on best F1 score will be
presented. The same image will be used multiple times from different views and
with different estimates visualized.

In Figure 4.1 an example image is visualized with 2D ground truth annotations,
depth estimates ±σ, mean 2D bounding box estimates and two extra boxes per
detection where the mean box has been shifted ±σ for each edge.
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23.84m
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depth=18.94 ± 0.53m depth=25.18 ± 0.73m
depth=37.82 ± 2.66m

depth=34.32 ± 2.28m

GT 2D annotation

mean 2D box

mean 2D box ± σal+ep

Figure 4.1: An example image with corresponding GT 2D bounding boxes (or-
ange), mean estimated 2D bounding boxes (dark blue) and two additional boxes
where the mean boxes has been shifted by one standard deviation (light blue).
GT depth is written in the bottom left corner and estimated depth ± one standard
deviation is written in top left corner. The standard deviations is here combined
epistemic and aleatoric uncertainties for the parameters.

From Figure 4.2 we see that the network indicates greater uncertainty about its
depth estimate for the car that is the furthest away and that the uncertainties for
the 2D bounding box predictions are greater for the closest car. The estimated
3D bounding boxes are increased in size by one standard deviation and shifted
one standard deviation along the X, Y and Z axes to illustrate what volume that
is covered within one standard deviation. This volume, along with the estimated
3D bounding box and the ground truth 3D box, is projected onto the image and
visualized in Figure 4.3.

From Figure 4.2 we see that the estimated standard deviation for the depth
is 2.66m for the car furthest away compared to 0.53m for the closest car. The
depth is again the distance along the Z axis. The effect that this has in 3D can
clearly be seen in Figure 4.4 where the light blue box for the car with high depth
uncertainty is substantially longer than that of the car with small depth uncertainty.
The same image is visualized from a bird’s-eye-view (BEV) to be able to more
easily see how well the estimated 3D boxes match the GT and to see how the
uncertainties in various variables contributes to the area covered within one standard
deviation. In Figure 4.5 the uncertainties for (W, L), (X, Z) and θ are visualized
separately. Furthermore also the aleatoric, epistemic and combined uncertainties
are visualized separately. Note that the estimated boxes are manipulated with one
standard deviation for each variable and that the combined uncertainty is the square
root of the sum of the individual variances, i.e. σal+ep =

√
σ2
al + σ2

ep.
The uncertainties for W, L, X, Z and θ can be combined to visualize the total

area within one standard deviation for all of these variables combined. This is
done in Figure 4.6 where the estimated bounding boxes are made one standard
deviation longer and wider, rotated ± one standard deviation around the Y axis
and finally shifted ± one standard deviation in the X and Z direction. A few more
typical example images and corresponding bird’s-eye-view visualizations for the UN
F1 Laplace model can be seen in Figures 4.7 - 4.10.
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23.84m

33.93m

19.42m

36.59m

49.99m

depth=18.94 ± 0.53m depth=25.18 ± 0.73m
depth=37.82 ± 2.66m

depth=34.32 ± 2.28m

GT 2D annotation

mean 2D box

mean 2D box ± σal+ep

Figure 4.2: Two detections with the GT 2D bounding box (orange), mean esti-
mated 2D bounding box (dark blue) and mean box shifted one standard deviation
for each edge (light blue). Ground truth depth is written in the bottom left corner
and mean depth ± one standard deviation in the top left corner.
The mean estimates (2D bounding box and depth) for these objects are within one
standard deviation of the ground truth annotations, except for the top edge on the
closest car that is one pixel below the uncertainty box.

GT 3D bounding box

Mean 3D bounding box

Mean 3D bounding box ±σX,Y,Z,L,W,H (aleatoric + epistemic)

Figure 4.3: An example image with GT 3D bounding boxes (orange), estimated 3D
bounding boxes (blue) and the volumes created by increasing the size of each blue
box by one standard deviation in all dimensions and then shifting them one stan-
dard deviation along the world coordinate axes X,Y,Z (green). σ is here combined
epistemic and aleatoric uncertainties for the parameters.

GT 3D bounding box

Mean 3D bounding box

Mean 3D bounding box ±σX,Y,Z,L,W,H (aleatoric + epistemic)

Figure 4.4: Two detections with the GT 3D bounding boxes (orange), estimated
3D bounding boxes (blue) and the volume created by increasing the size of the blue
boxes by one standard deviation in all dimensions and then shifting it one standard
deviation along the world coordinate axes X,Y,Z (green).
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Figure 4.5: A bird’s-eye-view visualization of the area covered within one standard
deviation for the aleatoric uncertainties (top), epistemic uncertainties (middle) and
combined aleatoric and epistemic uncertainties (bottom). The estimated bounding
boxes (dark blue) have been manipulated to show the area (light blue) within one
standard deviation for three different parameter settings. The three plots show:
boxes increased/decreased in width and length with one standard deviation (left),
boxes shifted one standard deviation in the X and Z direction (middle) and boxes
rotated one standard deviation around the Y axis (right). Note that the uncertainties
for the length and width parameters are so small that they are hardly visible.
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Figure 4.6: A bird’s-eye-view visualization of the area covered within one stan-
dard deviation for the aleatoric uncertainties (top left), epistemic uncertainties (top
right) and combined aleatoric and epistemic uncertainties (bottom). The estimated
bounding boxes (dark blue) have been manipulated to show the area (light blue)
within one standard deviation for W, L, X, Z and θ. The boxes are made one stan-
dard deviation longer and wider, rotated ± one standard deviation around the Y
axis and then shifted ± one standard deviation in the X and Z direction.
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GT 3D bounding box

Mean 3D bounding box

Mean 3D bounding box ±σX,Y,Z,L,W,H (aleatoric + epistemic)

Figure 4.7: An example image with GT 3D bounding boxes (orange), estimated
3D bounding box (blue) and the volume created by increasing the size of the blue
box by one standard deviation in all dimensions and then shifting it one standard de-
viation along the world coordinate axes X,Y,Z (green). σ is here combined epistemic
and aleatoric uncertainties for the parameters. The corresponding bird’s-eye-view
version of this image can be seen in Figure 4.8.
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Figure 4.8: A bird’s-eye-view version of Figure 4.7 to visualize the area covered
within one standard deviation for the combined aleatoric and epistemic uncertain-
ties. The estimated bounding boxes (dark blue) have been manipulated to show the
area (light blue) within one standard deviation for W, L, X, Z and θ. The boxes
are made one standard deviation longer and wider, rotated ± one standard devia-
tion around the Y axis and then shifted ± one standard deviation in the X and Z
direction.
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GT 3D bounding box

Mean 3D bounding box

Mean 3D bounding box ±σX,Y,Z,L,W,H (aleatoric + epistemic)

Figure 4.9: An example image with GT 3D bounding boxes (orange), estimated
3D bounding box (blue) and the volume created by increasing the size of the blue
box by one standard deviation in all dimensions and then shifting it one standard de-
viation along the world coordinate axes X,Y,Z (green). σ is here combined epistemic
and aleatoric uncertainties for the parameters. The corresponding bird’s-eye-view
version of this image can be seen in Figure 4.10.
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Figure 4.10: A bird’s-eye-view version of Figure 4.9 to visualize the area covered
within one standard deviation for the combined aleatoric and epistemic uncertain-
ties. The estimated bounding boxes (dark blue) have been manipulated to show the
area (light blue) within one standard deviation for W, L, X, Z and θ. The boxes
are made one standard deviation longer and wider, rotated ± one standard devia-
tion around the Y axis and then shifted ± one standard deviation in the X and Z
direction.
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4.2 Uncertainty metrics
For evaluating uncertainties different metrics cover different aspects and complement
each other. By combining them a complete analysis of the uncertainties can be made.
The metrics used are Area Under Sparcification Error, Calibration and Uncertainty
Error. Throughout this section the same model as for the visualizations in Section
4.1 will be used, more precisely the UN F1 Laplace model.

4.2.1 Area Under Sparcification Error
A few sparcification curves demonstrating different phenomena are presented in Fig-
ures 4.11, 4.12 and 4.13. What can be seen in Figure 4.11 is that the sparcification
curves for the aleatoric and the epistemic uncertainty in the rotation parameter dif-
fers drastically for the most certain estimates. The length parameters (Figure 4.12)
has the highest AUSE for this model and, out of the 3D parameters, the Z parameter
has the lowest AUSE for this model (Figure 4.13). Additional sparcification curves
can be found in Appendix A.

The three Area Under Sparcification Error curves for aleatoric, epistemic and
combined uncertainties can be seen in Figure 4.14. What can be observed is that
length, width and Y have the highest and Z, 2DBBOX xmin and 2DBBOX xmax
the lowest values for AUSE.
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Figure 4.11: Sparcification curves for the rotation parameter.
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Figure 4.12: Sparcification curves for the length parameter. This parameter has
the highest value for AUSE for the UN F1 Laplace model.
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Figure 4.13: Sparcification curves for the Z parameter. This parameter has the
lowest value for AUSE out of the 3D parameters for the UN F1 Laplace model.
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Figure 4.14: Area Under Sparcification Error Curves for all parameters and for
aleatoric, epistemic as well as combined uncertainties. The model used is UN F1
Laplace.
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4.2.2 Calibration
The calibration plots in this section are for the parameters that describe a 3D bound-
ing box, i.e. dimensions, location, rotation, all of which can be seen in Figure 4.15.
The model is consistently over-confident which can be seen by that the curves lies
below the perfect calibration line y = x. In other words, the uncertainty estimates
are typically too small, resulting in that the intervals found when integrating the
distribution are too narrow and the ground truth does not fall within this narrow
interval frequently enough. If the uncertainties would have been bigger the intervals
would be wider for the same area under the probability density function and thus
the ground truth will fall within the specific intervals more often.

4.2.3 Uncertainty Error
The Laplacian minimum uncertainty error for different IoU scoring functions (2D,
3D and BEV) and uncertainties (Aleatoric, Epistemic and Combined) are presented
in Table 4.1. Based on those results the Uncertainty Error plots for the parameters
with the lowest (best) MUEs for combined uncertainty for the three different scor-
ing methods are visualized in Figures 4.16 - 4.18. In Figure 4.19 the UE plot for
the model and parameter with the highest (worst) MUE is visualized. Additional
Uncertainty Error plots can be found in Figures A.8 - A.19 in Appendix A.
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Figure 4.15: Calibration plots of all the 3D variables for the model UN F1 Laplace.
The model is consistently over-confident seen by that the curves are below the perfect
calibration line y = x.
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Table 4.1: Laplacian Minimum Uncertainty Error (LMUE) for the model UN F1
Laplace when considering different IoU scoring functions (2D, 3D and BEV) and
uncertainties (Aleatoric, Epistemic and Combined). The lowest (best) LMUE for
a specific scorer and uncertainty is highlighted in bold, i.e. the LMUE for the
parameter(s) that best separates true positives from false positives for a specific
scorer and uncertainty.

Laplacian Minimum Uncertainty Error
Scorer 2D IoU 3D IoU BEV IoU

Uncertainty Alea Epi Comb. Alea Epi Comb. Alea Epi Comb.
2DBBOX in x .403 .428 .406 .344 .368 .346 .395 .405 .396
2DBBOX in y .335 .382 .353 .342 .355 .354 .421 .426 .423
2DBBOX .380 .382 .385 .351 .365 .358 .411 .414 .409
Height .293 .332 .317 .446 .450 .457 .386 .420 .392
Length .402 .347 .349 .489 .474 .488 .457 .472 .459
Width .343 .338 .331 .406 .459 .414 .375 .458 .383
Dimensions .266 .336 .286 .437 .462 .448 .392 .445 .398
X .265 .244 .251 .353 .398 .366 .354 .373 .350
Y .215 .237 .217 .423 .447 .437 .405 .439 .414
Z .305 .288 .283 .482 .472 .473 .445 .434 .438
Location .249 .218 .216 .447 .443 .437 .407 .400 .395
Rotation .316 .438 .366 .485 .480 .482 .462 .472 .471
Dimensions,
Location,
Rotation

.238 .262 .218 .415 .449 .452 .403 .404 .391

Length,
Width, X, Z,
Rotation

.251 .251 .241 .465 .443 .459 .410 .419 .403

X, Z .264 .231 .234 .456 .443 .446 .413 .404 .397
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Figure 4.16: Uncertainty Error plot
for the location parameters with scoring
function 2D IoU and a combination of
aleatoric and epistemic uncertainty. This
is the parameter with lowest LMUE for
the specific scorer.
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Figure 4.17: Uncertainty Error plot for
the X parameter with scoring function
BEV IoU and a combination of aleatoric
and epistemic uncertainty. This is the pa-
rameter with lowest (best) LMUE for all
scorers.
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Figure 4.18: Uncertainty Error plot
for the 2DBBOX x-edges with scoring
function 3D IoU and a combination
of aleatoric and epistemic uncertainty.
This is the parameter with lowest (best)
LMUE for the specific scorer.
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Figure 4.19: Uncertainty Error plot
for the length parameter with scoring
function 3D IoU and a combination of
aleatoric and epistemic uncertainty. This
is the parameter with highest (worst)
LMUE for all scorers.
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4.3 Model comparison
In this section a comparison between different models will be done for the various
uncertainty metrics. For the different models, assumptions are made regarding what
distribution the outputs belong to and thus what distribution that the uncertainties
characterizes. The output noise is either assumed to be Gaussian or Laplacian. Fur-
thermore the models have been stopped on either lowest validation loss or highest F1
score on the validation set, which naturally has an impact on both the performance
and the uncertainty estimates.

4.3.1 Area Under Sparcification Error
The sparcification error curves for the combined aleatoric and epistemic uncertainty
for the UN F1 Laplace model was presented in Figure 4.14. The same plot for
the three remaining models (UN Val Laplace, UN F1 Gauss and UN Val Gauss)
is presented in Figures 4.20 - 4.22 respectively. What can be seen in these figures
is that the AUSE score does not differ substantially between the models except for
the AUSE score for the rotation parameter which is exceptionally bad for UN Val
Gauss and exceptionally good for UN Val Laplace.

The minimum, maximum and average AUSE values for each model is presented
in Table 4.2 to simplify the process of ranking the models AUSE-wise. What can
be seen is that the average error is slightly lower for UN F1 Laplace compared to
the other models. The lowest AUSE was obtained for rotation by UN Val Laplace.

Sparcification curves for some of the extreme parameters for different models can
be seen in Figures 4.23 - 4.26. The uncertainty quality, AUSE-wise, for rotation, Z
and 2D bounding box xmax is good (low AUSE) as can be seen in the Figures 4.23
- 4.25. However, the rotation parameter for UN Val Gauss has a very high AUSE,
as can be seen in Figure 4.26.

Table 4.2: Table containing Area Under Sparcification Error for different models.
The lowest values are highlighted in bold.

Area Under Sparcification Error
Parameter set Metric \Model UN F1 Lapl. UN Val Lapl. UN F1 Gauss UN Val Gauss

All
Min 0.1806 0.1444 0.2064 0.2623
Max 0.6061 0.6221 0.6150 0.9474

Average 0.3595 0.3550 0.3626 0.4455

3D
Min 0.1833 0.1444 0.2074 0,2623
Max 0.6061 0.6221 0.6150 0.9474

Average 0.4133 0.3958 0.4180 0.5219
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Figure 4.20: Sparcification Error curves for UN Val Laplace.
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Figure 4.21: Sparcification Error curves for UN F1 Gauss.
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Figure 4.22: Sparcification Error curves for UN Val Gauss.
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Figure 4.23: Sparcification curves for
the rotation parameter for the model UN
Val Laplace. This parameter has, by far,
the lowest value for AUSE for the com-
bined uncertainty.
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Sparci�cation Curve for Z

Figure 4.24: Sparcification curves for
the Z parameter for the model UN F1
Laplace. This parameter has the second
lowest value for AUSE.
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Figure 4.25: Sparcification curves for
the 2D bounding box xmax (right edge)
parameter for the model UN F1 Laplace.
This parameter has the lowest AUSE
value for the 2D bounding box parame-
ters.
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Figure 4.26: Sparcification curves for
the rotation parameter for the model UN
Val Gauss. This parameter has, by far,
the highest value for AUSE.
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4.3.2 Calibration
Calibration plots for the length parameter is compared in Figure 4.27 where two
different models were both stopped on best F1 score. One model is assumed having
Laplacian, and the other Gaussian, observation noise, thus being trained with L1 and
L2 loss respectively. Both models were, furthermore, both evaluated as a Gaussian
and as a Laplacian distribution, thus using Equation (2.23) and (2.24). This is
done with the ambition to analyze what distribution the output follows better. The
length parameter is rather well calibrated when evaluated as Laplacian but the
models evaluated as Gaussian results in an exceptionally well calibrated estimate
for the length parameter.

The dimension for cars has a relatively small variance (cars are typically the same
size) and the estimates are rather well calibrated. A variable where the variance is
much higher is the depth to the object along the Z axis. This estimate is however not
as well calibrated in general. A comparison of the calibration for the Z parameter for
the four models (Gaussian/Laplace stopped on F1/Val) evaluated as their respective
assumed density is done in Figure 4.28. The models that have been stopped on best
F1 score (left) are overconfident (curves below perfect calibration). The models
that have been stopped on lowest validation loss (right) are under-confident for
the aleatoric uncertainties and the combined uncertainties whereas the epistemic
uncertainty alone is quite well calibrated.

The MSE for each parameter, each type of uncertainty (aleatoric, epistemic and
combined) and for all models evaluated as both Laplacian and Gaussian is presented
in Table 4.3. The lowest MSE for each parameter and type of uncertainty is high-
lighted in bold. Furthermore also the average MSE across the parameters for each
model and type of uncertainty is presented, with the lowest average MSE for each
type of uncertainty highlighted in bold. The model UN F1 Gauss evaluated as a
Gaussian has the lowest average MSE for the aleatoric and epistemic uncertainties
separately but not for the combined uncertainty where the same model but evaluated
as a Laplacian has a lower average MSE.

In Table 4.4 the average MSE for all the 3D parameters (H, L, W, X, Y, Z, θ) for
the different models evaluated as either a Laplacian or as a Gaussian distribution
is presented. The calibration plots for these parameters for UN F1 Laplace can be
seen in Figure 4.15 and for the remaining models (UN Val Laplace, UN F1 Gauss
and UN Val Gauss) in Figures A.3, A.6 and A.7 in Appendix A.
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Figure 4.27: Calibration plots for the length parameter for two different models,
that were stopped on best F1 score, evaluated as two different distributions; UN F1
Laplace evaluated as Laplace (top left); UN F1 Laplace evaluated as Gaussian (top
right); UN F1 Gauss evaluated as Laplace (bottom left); UN F1 Gauss evaluated as
Gauss (bottom right). The length estimates are better calibrated when the models
are evaluated as if the length has a Gaussian distribution compared to a Laplacian
distribution.
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Figure 4.28: Calibration plots for the Z world coordinate for four different models
either trained with assumed Laplacian or Gaussian observation noise and that were
stopped on two different criteria, either on lowest validation loss or best F1 score.
All four models are evaluated as their assumed density; UN F1 Laplace (top left);
UN F1 Gauss (top right); UN Val Laplace (bottom left); UN Val Gauss (bottom
right). The length estimates are better calibrated when the models are evaluated as
if the length has a Gaussian distribution compared to a Laplacian distribution.
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Table 4.3: The Mean Squared Error (MSE) to perfect calibration for all parameters,
models and types of uncertainties. The lowest MSE for each parameter and type of
uncertainty is highlighted in bold. Lapl./Lapl. means that the model was trained
as a Laplacian and evaluated as a Laplacian. Similarly Lapl./Gauss means that the
model was trained as a Laplacian and evaluated as a Gaussian.

Param Model
Uncert.

UN F1
Lapl./Lapl.

UN F1
Lapl./Gauss

UN Val
Lapl./Lapl.

UN Val
Lapl./Gauss

UN F1
Gauss/Gauss

UN F1
Gauss/Lapl.

UN Val
Gauss/Gauss

UN Val
Gauss/Lapl.

X
Aleatoric .0553 .0351 .0013 .0069 .0180 .0356 .0058 .0201
Epistemic .1243 .1065 .1410 .1253 .0708 .0906 .0606 .0812
Combined .0378 .0191 .0012 .0086 .0067 .0205 .0013 .0105

Y
Aleatoric .1009 .0806 .0611 .0373 .012 .0298 .0032 .0176
Epistemic .1290 .1112 .1355 .1192 .0656 .0857 .0488 .0695
Combined .0659 .0439 .0422 .0196 .0027 .0157 .00001 .0077

Z
Aleatoric .1202 .1031 .0367 .0210 .0051 .0011 .0213 .0037
Epistemic .0451 .0263 .0145 .0032 .0013 .0117 .0003 .0071
Combined .0285 .0128 .0024 .0014 .0208 .0034 .0400 .0118

θ
Aleatoric .0717 .0519 .0119 .0024 .0132 .0284 .0421 .0551
Epistemic .0834 .0626 .0427 .0241 .0536 .0752 .1332 .1497
Combined .0354 .0187 .0024 .0021 .0047 .0144 .0375 .0488

H
Aleatoric .0240 .0078 .0049 .0008 .0010 .0042 .0098 .0035
Epistemic .0939 .0736 .1237 .1032 .0732 .0915 .1368 .1551
Combined .0129 .0012 .0032 .0026 .0042 .0023 .0122 .0036

L
Aleatoric .0066 .0002 .0054 .0002 .0001 .0064 .0017 .0034
Epistemic .1700 .1586 .1970 .1860 .1633 .1766 .1573 .1719
Combined .0052 .0005 .0046 .0004 .0004 .0050 .0025 .0027

W
Aleatoric .0108 .0011 .0051 .0002 .0009 .0111 .0055 .0009
Epistemic .1610 .1496 .1873 .1747 .1580 .1722 .1365 .1517
Combined .0084 .0004 .0043 .0004 .0003 .0088 .0070 .0008

2d box
xmin

Aleatoric .0014 .0049 .0323 .0747 .0202 .0036 .0280 .0073
Epistemic .0332 .0146 .0576 .0365 .0004 .0087 .0025 .0143
Combined .0022 .0145 .0352 .0790 .0383 .0113 .0440 .0149

2d box
xmax

Aleatoric .0013 .0062 .0241 .0639 .0110 .0017 .0306 .0084
Epistemic .0269 .0100 .0680 .0444 .0041 .0179 .0001 .0069
Combined .0029 .0176 .0269 .0683 .0263 .0061 .0493 .0180

2d box
ymin

Aleatoric .0147 .0022 .0017 .0127 .0210 .0038 .0276 .0060
Epistemic .0286 .0105 .0108 .0009 .0012 .0109 .0003 .0096
Combined .0023 .0024 .0074 .0300 .0373 .0107 .0456 .0143

2d box
ymax

Aleatoric .0045 .0003 .0103 .0385 .0121 .0019 .0372 .0105
Epistemic .0188 .0052 .0081 .0002 .0017 .0139 .0009 .0040
Combined .0011 .0097 .0192 .0554 .0292 .0072 .0578 .0217

Average
MSE

Aleatoric .0374 .0267 .0177 .0235 .0104 .0116 .0193 .0124
Epistemic .0831 .0662 .0897 .0743 .0539 .0686 .0616 .0746
Combined .0184 .0128 .0135 .0243 .0155 .0096 .0297 .0141

Table 4.4: All calibration Mean Squared Error results averaged over all 3D pa-
rameters for different models. For all evaluations the 2D scorer is used and the
only filtering done is for Cars. This is evaluated for both combined uncertainties
and for epistemic and aleatoric uncertainties separately. The model UN F1 Gauss
evaluated as a Gaussian has the lowest average MSE for the aleatoric and epistemic
uncertainties and the second lowest for the combined uncertainties.

Model
Uncertainty

UN F1
Lapl/Lapl

UN F1
Lapl/Gauss

UN Val
Lapl/Lapl

UN Val
Lapl/Gauss

UN F1
Gauss/Gauss

UN F1
Gauss/Lapl

UN Val
Gauss/Gauss

UN Val
Gauss/Lapl

Aleatoric 0.0556 0.0400 0.0181 0.0098 0.0072 0.0167 0.0128 0.0149
Epistemic 0.1152 0.0983 0.1202 0.1051 0.0837 0.1005 0.0962 0.1123
Combined 0.0277 0.0138 0.0086 0.0050 0.0057 0.0100 0.0168 0.0123
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4.3.3 Uncertainty Error
A comparison between models, scoring functions, type of uncertainties and combi-
nations of parameters is presented in Table 4.5 that contains minimum uncertainty
errors (MUE) for these different combinations. What can be seen from the table
is that the model with lowest (best) MUE does not differ between the different
uncertainties (aleatoric, epistemic and combined) nor between the parameter sets.
However, it appears to be the scoring function that determines what model will give
the lowest uncertainty error. When using the 2D scoring method, UN F1 Laplace
induces the lowest (best) MUE for all evaluated combinations of models and pa-
rameters. For the 3D scoring function UN F1 Gauss yields the lowest MUE. For
the bird’s-eye-view scoring function it is harder to determine what model yields the
lowest minimum uncertainty error. However, UN F1 Laplace has the highest (worst)
average MUE for the bird’s-eye-view scoring function and the parameter configura-
tions used in the table. Uncertainty Error plots for the parameters that are used
to calculate the IoU for the bird’s-eye-view scoring function (L,W,X,Z, θ) are vi-
sualized in Figure 4.29. Note that by only changing the scoring functions all of the
detections will have the same uncertainty estimates and will therefore not change
location in the plot, it is only the classification of the detections as true positives or
false positives that might change when changing scoring function.
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Table 4.5: Table containing minimum uncertainty error for different IoU scoring
methods (2D, 3D and BEV) and uncertainties (Aleatoric, Epistemic and Combined).
The model where a specific parameter set is best at separating true from false
positives for a specific scorer and uncertainty, are highlighted in bold.

Minimum Uncertainty Error
Param. set Scorer Uncert.\Model UN F1 Lapl. UN Val Lapl. UN F1 Gauss UN Val Gauss

2D params:

2D BBOX

2D
Aleatoric .380 .404 .428 .465
Epistemic .382 .360 .453 .470
Combined .385 .409 .438 .471

3D
Aleatoric .351 .365 .289 .295
Epistemic .365 .340 .306 .311
Combined .358 .360 .287 .295

BEV
Aleatoric .411 .431 .393 .327
Epistemic .414 .419 .427 .361
Combined .409 .428 .401 .329

3D params:

Dimensions,
Location,
Rotation

2D
Aleatoric .238 .266 .252 .257
Epistemic .262 .273 .314 .334
Combined .218 .258 .256 .259

3D
Aleatoric .415 .433 .393 .425
Epistemic .449 .424 .412 .442
Combined .452 .427 .390 .431

BEV
Aleatoric .403 .359 .353 .367
Epistemic .404 .367 .392 .423
Combined .391 .360 .355 .372

BEV params:

Length,
Width,

X,
Z,

Rotation

2D
Aleatoric .251 .276 .262 .267
Epistemic .251 .268 .298 .326
Combined .241 .259 .266 .266

3D
Aleatoric .465 .423 .397 .422
Epistemic .443 .421 .407 .449
Combined .459 .415 .395 .437

BEV
Aleatoric .410 .371 .357 .350
Epistemic .419 .365 .386 .417
Combined .403 .364 .359 .371
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Figure 4.29: The Uncertainty Error plots for different models and scoring func-
tions. The models are UN F1 Laplace, UN Val Laplace, UN F1 Gauss and UN Val
Gauss from top to bottom and the scoring methods are 2D, Birds Eye View and 3D
IoU from left to right. Note that by only changing scoring function (left to right) it
is only the classification of the detections as true positives (blue) or false positives
(red) that changes. All of the dots are located on exactly the same place.
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4.4 Performance metrics

The performance metrics are used for evaluating the pure performance of the object
detection task. This is evaluated for the different networks and the metrics used are
average precision and detection statistics.

4.4.1 Average Precision

The metric used in the KITTI benchmark is Average Precision (AP), described in
Section 2.5.5. AP is calculated for all networks, KITTI difficulty levels, different
scoring functions and different corresponding scoring thresholds. AP is however,
only presented for cars since the amount of cars in the data set is substantially
larger. The results for the scoring functions 2D, 3D and bird’s-eye-view (BEV) are
presented in Tables 4.6, 4.7 and 4.8 respectively.

Table 4.6: Table containing 2D Average Precision values for cars for the different
networks, scoring thresholds and KITTI splits.

Metric Average Precision
Scorer 2D
Scoring threshold 0.3 0.5 0.7
Kitti Split E/M/H E/M/H E/M/H
Baseline .9081/.9040/.8122 .9054/.8978/.8071 .8965/.7936/.7028
Baseline
+ Homoscedastic .9051/.8992/.8767 .9031/.8931/.8043 .8795/.7806/.6922

UN F1 Laplace .9090/.8990/.8071 .9088/.8939/.7989 .9001/.7933/.6946
UN Val Laplace .9043/.8380/.7604 .8941/.7711/.6890 .7930/.6075/.4877
UN F1 Gauss .9090/.8851/.7978 .9082/.8605/.7730 .8820/.6795/.5837
UN Val Gauss .9085/.8576/.7807 .9048/.7882/.7021 .8130/.5761/.4951

Table 4.7: Table containing 3D Average Precision values for cars for the different
networks, scoring thresholds and KITTI splits.

Metric Average Precision
Scorer 3D
Scoring threshold 0.3 0.5 0.7
Kitti Split E/M/H E/M/H E/M/H
Baseline .5035/.4493/.4009 .1927/.1597/.1318 .0051/.0071/.0080
Baseline
+ Homoscedastic .4629/.4218/.3756 .1247/.1256/.1044 .0031/.0045/.0049

UN F1 Laplace .6979/.5259/.4586 .2595/.2108/.2034 .0111/.0084/.0093
UN Val Laplace .5066/.4013/.3472 .1390/.1129/.1137 .0030/.0044/.0052
UN F1 Gauss .5730/.4295/.3660 .1600/.1275/.1243 .0035/.0046/.0052
UN Val Gauss .3733/.3010/.2551 .1092/.0849/.0840 .0021/.0027/.0027
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Table 4.8: Table containing Birds Eye View Average Precision values for cars for
the different networks, scoring thresholds and KITTI splits.

Metric Average Precision
Scorer BEV
Scoring threshold 0.3 0.5 0.7
Kitti Split E/M/H E/M/H E/M/H
Baseline .5893/.4786/.4241 .2941/.2432/.2105 .0357/.0321/.0338
Baseline
+ Homoscedastic .5504/.4643/.4100 .2612/.2298/.1936 .0266/.0255/.0250

UN F1 Laplace .7197/.5478/.4748 .4373/.3373/.2809 .0766/.0783/.0792
UN Val Laplace .5377/.4248/.3656 .2977/.2383/.2260 .0224/.0314/.0245
UN F1 Gauss .6212/.4659/.3881 .2955/.2255/.1790 .0274/.0318/.0190
UN Val Gauss .4504/.3345/.3116 .1715/.1412/.1329 .0205/.0194/.0202

4.4.2 Detection Statistics
The detection statics metric is a common way of representing the quantities of cor-
rectly and incorrectly detected objects as well as missed objects, i.e. true positives,
false positives and false negatives (see Section 2.5.3). It is evaluated for all networks,
KITTI difficulty levels and for the different scoring functions. The results can be
seen in Tables 4.9, 4.10 and 4.11 corresponding to scoring function 2D, 3D and BEV.

Table 4.9: Table containing all 2D Detection Statistics for Cars for all different
network setups for scoring threshold 0.7.

Metric Detection Statistics
Scorer 2D
Kitti Split Easy Moderate Hard
Number of TP/FP/FN TP/FP/FN TP/FP/FN
Baseline 3104/1073/45 7615/2531/1106 9106/2531/3194
BL + Homosc. 3110/1628/39 7673/3454/1048 9193/3454/3107
UN F1 Laplace 3017/310/132 6406/503/2315 7369/503/4931
UN Val Laplace 2082/421/1067 3409/476/5312 3883/476/8417
UN F1 Gauss 2961/750/188 5693/1201/3028 6524/1201/5776
UN Val Gauss 2676/715/473 4439/799/4282 5065/799/7235
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Table 4.10: Table containing all 3D Detection Statistics for Cars for all different
network setups for scoring threshold 0.7.

Metric Detection Statistics
Scorer 3D
Kitti Split Easy Moderate Hard
Number of TP/FP/FN TP/FP/FN TP/FP/FN
Baseline 297/8228/2852 573/12414/8148 669/12414/11631
BL + Homosc. 248/9335/2901 513/14006/8208 565/14006/11735
UN F1 Laplace 335/6206/2814 610/7991/8111 700/7991/11600
UN Val Laplace 149/4381/3000 229/4500/8492 269/4500/12031
UN F1 Gauss 192/6979/2957 327/8176/8394 377/8176/11923
UN Val Gauss 105/6230/3044 150/6500/8571 163/6500/12137

Table 4.11: Table containing all bird’s-eye-view Detection Statistics for Cars for
all different network setups for scoring threshold 0.7.

Metric Detection Statistics
Scorer BEV
Kitti Split Easy Moderate Hard
Number of TP/FP/FN TP/FP/FN TP/FP/FN
Baseline 682/7489/2467 1276/11536/7445 1477/11536/10823
BL + Homosc. 647/8632/2502 1222/13167/7499 1344/13167/10956
UN F1 Laplace 819/5276/2330 1474/6943/7247 1663/6943/10637
UN Val Laplace 477/3755/2672 751/3873/7970 841/3873/11459
UN F1 Gauss 626/6228/2523 983/7394/7738 1087/7394/11213
UN Val Gauss 393/5767/2756 578/6033/8143 619/6033/11681
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Discussion

5.1 Results

In this section we will discuss the results presented in Chapter 4. Firstly discussions
regarding the visualizations are presented. Secondly, the results for the uncertain-
ties and the different metrics describing them are thoroughly discussed followed by
finishing comments regarding the performance results.

In the KITTI benchmark, described in Section 2.5.1, today’s standard way of
classifying detections as either true positives (TPs) or as false positives (FPs) in
object detection is used, i.e. that a detection should have (3D, BEV or 2D) IoU to
a ground truth box over a certain threshold to be classified as a TP, otherwise it
becomes a FP. This notation of a TP is based solely on the estimated mean boxes
and is thus strongly tied to the pure performance of the network. In other words,
our uncertainty estimates can, with today’s way of distinguishing TPs from FPs not
be used to increase performance, except for that it might help during training to
attenuate for outliers which, by extension, might lead to that the network learns
better. For a 3DOD machine learning algorithm to be used optimally in a safety
critical application some notion of uncertainty is needed about the estimates. This
motivates the need to find some other way of classifying detections into TPs and FPs
to also include the uncertainties that the network indicates. By reformulating this,
the uncertainty estimates could naturally be used to boost the performance of the
network, thus yielding yet another way of analyzing the quality of the uncertainty
estimates, in addition to the uncertainty metrics. This reformulation is further
discussed in Section 5.3.1.

5.1.1 Visualizations

The top view figures with the joint uncertainty visualized (Figures 4.6, 4.8 and 4.10)
in Section 4.1 clearly shows that some of the boxes, where the BEV IoU is not 0.7, as
required for a TP in the KITTI benchmark, to a ground truth box is indeed covered
within one standard deviation. In the sample images that we have looked at it is
most often the Z estimate that is off and which causes the mean box to not overlap
with the ground truth box enough to be classified as a TP, however, the network
typically also indicates that it is uncertain by increasing the uncertainty estimate
for these objects.
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5.1.2 Calibration
In this section the calibration results for the UncertaintyNet stopped on highest F1
score and trained under the assumption of Laplacian observation noise corrupting
the outputs (UN F1 Laplace) model will be discussed.

As briefly mentioned in Section 4.2.2 the model is consistently over-confident
about its predictions for the 3D parameters. This can be seen in Figure 4.15 from
that the calibration curves lies below the perfect calibration line y = x. From these
figures it is quite clear that the output from the UN F1 Laplace model does not
follow a Laplacian distribution characterized by the estimated mean and estimated
variance. However, the outputs might still follow, for instance, a Laplacian dis-
tribution with some other variance or perhaps a Gaussian distribution. An initial
step for analyzing if the outputs seem to follow some other distribution is done by
treating the outputs from UN F1 Laplace as if they were to characterize a Gaussian
distribution and evaluating the calibration under this assumption. This is discussed
further in Section 5.1.3.

A final note here is that we do not expect the epistemic uncertainties to be cali-
brated as these uncertainties should, theoretically, vanish as we observe more data
and become more certain about what model that generated our data. That we find
a better approximation for the function that generated our data could, potentially,
lead to that the distribution of our mean predictions becomes sharper and thus are
closer to the ground truth targets at a higher rate. This could result in that our
model becomes better calibrated as the aleatoric uncertainties are supposed to de-
scribe uncertainty in the data and we should not be able to reduce this uncertainty
by observing more data.

5.1.3 Calibration comparison
In this section the comparison between models done in Section 4.3.2 will be discussed.
First off the calibration for the length parameter was compared in Figure 4.27. This
was done for two models that both stopped on highest F1 score but where the
observation noise was assumed to be either Laplacian or Gaussian. The models
were evaluated as if their predictions characterized first a Laplacian distribution and
then a Gaussian distribution. A Laplacian distribution and a Gaussian distribution
are quite similar in shape but the Laplacian probability density function (PDF)
has more of its area closer to its mean and longer tails compared to a Gaussian
distribution. The effect that this has can clearly be seen in Figure 4.27 as the
same model evaluated as both Laplacian and Gaussian has similar calibration curves
for probabilities higher than 0.8 and before that the Laplace-evaluation curve is
consistently lower than the Gaussian-evaluation curve. This is, again, as the interval
for which e.g. 20% of the area under the PDF is covered is at ≈ ±0.25σ for the
Gaussian distribution compared to ≈ ±0.15σ for the Laplacian distribution. Which
means that when σ is fixed the interval, for which the ground truth should lie within
in 20% of the cases, is wider for the Gaussian distribution compared to the Laplacian
distribution. The length parameter for both models stopped on F1 loss seems to
be described by a Gaussian distribution characterized by the estimated mean and
the estimated variance quite accurately, as seen in Figure 4.27, however this claim
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would need further analysis to be established. It could also be that the length
parameter for UN F1 Laplace can be accurately modelled by the estimated mean
and the estimated variance if the variance were to be scaled by some constant value.
However, no such experiments were conducted.

A parameter such as the length parameter, where the variance in the ground
truth targets is small, the network will be able to learn this quite quick and thus
quickly make the error to ground truth small. However, for a parameter where the
variance in the parameter is large, as for the Z parameter, the network will not learn
this as quick and thus the error to the ground truth target will remain larger for
longer. When a model is trained under the assumption of Gaussian observation noise
corrupting the outputs the loss function which the model is trained contains an L2
norm as opposed to an L1 norm for the Laplacian assumption, see Equation (2.10),
(2.11) for details. When the error between the estimate and the ground truth data
can be large, as for the Z variable, it might be troublesome to use an L2 loss as the
squared error will push the learnable σ to become large to reduce the total loss. This
might be the reason as to why the models trained under the assumption of Gaussian
observation noise are under-confident in Figure 4.28. Moreover, the Gaussian model
stopped on lowest validation loss is more under-confident compared to the Gaussian
model stopped on F1 score, which points towards the same conclusion as that model
has been trained for substantially fewer epochs and yet the frequency for which the
ground truth lies within certain multiples of σ is higher for that model, indicating
that the network outputs larger uncertainties.

As discussed in Section 4.2.2 the outputs from the UN F1 Laplace model can not,
accurately, be described by a Laplacian distribution characterized by the estimated
mean and the estimated variance. However, from Table 4.3 we see that, for all the
3D parameters, the UN F1 Laplace model evaluated as Gaussian is better calibrated
than the UN F1 Laplace model evaluated as Laplace. As these variables were over-
confident as Laplacian distributions it is quite obvious, with the previous discussion
about confidence intervals for the two distributions, that this would be the case.
From these results further analysis is needed to conclude what distribution that
most accurately describes the variable. Again, the model might become less over-
confident by simply observing more data to make the predictions sharper whilst
the aleatoric uncertainties should stay rather constant, or it could be that a simple
scaling of the estimated variance could turn out to make the model well calibrated.
We leave this analysis for future research.

5.1.4 Area Under Sparcification Error
In this section the Area Under Sparcification Error results for the UncertaintyNet
stopped on highest F1 score and trained under the assumption of, in short the UN
F1 Laplace, model will be discussed.

What can be observed in Section 4.2.1 is that length, width and Y have the
highest and Z, depth, 2DBBOX xmin and 2DBBOX xmax the lowest values for Area
Under Sparcification Error. The sparcification curves for the length parameters (see
Figure 4.12) are flat and sometimes even have a positive derivative. This indicates
that network has no ability to sort its uncertainties according to actual error for the
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length parameter and could be compared to a homoscedastic uncertainty being a
constant uncertainty for a parameter instead of varying with the input. The reason
for this might be due to that uncertainties about these parameters are in general of
small magnitude and the variance of the uncertainty estimates is also quite small
(See uncertainties for length and width in the top view visualization in Figure 4.5).
However, even though the uncertainty estimates for these parameters seem to make
no sense when evaluating AUSE the uncertainty estimates may still be valuable (e.g.
in distinguishing TPs from FPs) and well calibrated even though they are generally
unsorted.

In Figure 4.11 the sparcification curves for the rotation parameter is visualized.
The curve for the aleatoric uncertainty initiates with a negative derivative in the
start, but turns exponential towards the end where a big fraction of the detections
have been removed. This appear to happen for aleatoric but not to epistemic un-
certainty to the same extent. One idea behind this phenomena is that the network
might be estimating very small aleatoric uncertainties for objects turned 180 de-
grees, resulting in a large error to ground truth but yet small uncertainties. This
would then cause a big increase in average error when the flipped estimates remains
with only a few other detections towards the end of the curve. This phenomena
has not been extensively analyzed and further analysis is required to establish the
reason for it.

To draw some general conclusion regarding the Area Under Sparcification Error
and different parameters one might argue that parameters with larger values that
varies substantially, such as Z, are better at estimating well sorted uncertainties,
i.e. resulting in a lower AUSE value, than parameters with opposite qualities. The
uncertainties for variables like the dimension variables, where the uncertainties are
typically small, results in poorly sorted uncertainty estimates and thus a high AUSE.
However, this is probably due to noise in the uncertainties rather than that the
uncertainty predictions are bad, as the dimension parameters are generally more
calibrated than some other parameters which have a lower AUSE. This highlights
one of the aspects where the evaluation metrics are inadequate on their own but
meaningful in combination.

5.1.5 Area Under Sparcification Error comparison
From the comparison between the different models with respect to Area Under
Sparcification Error, what may concluded is that there is no substantial general
difference between the models. The parameters that the different models are good
at sorting in the order of actual error varies quite much. UN F1 Laplace is good for
Z and 2D bounding box and UN Val Laplace is exceptionally good at rotation. In
Table 4.2 we see that overall the Laplacian models have a lower AUSE compared to
the Gaussian models.

As discussed in Section 5.1.1, no comprehensive evaluation of what parameter
that affects performance metrics the most has been done, but based on empirical
observations the Z parameters appears to do so. One could, therefore, argue that
UN F1 Laplace would be the preferred model with respect to AUSE performance as
that model has quite well-sorted uncertainties for the Z parameter.
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5.1.6 Uncertainty Error
In this section the uncertainty error results for the UncertaintyNet stopped on high-
est F1 score and trained under the assumption of Laplacian observation noise cor-
rupting the outputs (in short, the UN F1 Laplace) model will be discussed.

What can be concluded from the results in Section 4.2.3 is that, since the Min-
imum Uncertainty Error never reaches zero, the model is not able to distinguish
TPs from FPs by the uncertainty estimates. If a threshold, for which the uncer-
tainty estimates can differentiate TPs from FPs, would be found then an extra step
in filtering detections could be added. This filtering step would require all of the
detections that pass the classification threshold to also have an uncertainty entropy
below this threshold to be accepted as an output. If this further filtering of out-
puts would be flawless it would result in zero false positives, which is extremely
valuable in a safety critical system where actions based on false detections could be
unpleasant and in some situations dangerous.

From Table 4.5 in Section 4.3.3 we see that the lowest Minimum Uncertainty Error
is approximately 0.22. It is hard to tell whether this is a good value or not, with
zero being the lowest achievable value and 0.5 being the worst possible MUE, 0.22
is slightly below the middle. The following toy example might give some intuition
as to what a MUE value of 0.22 might mean. Pose that the MUE value is reached
for an entropy threshold for which all false positives are above, then 44 % of all true
positives would also be above this threshold. This toy example can be calculated as

0.22 = MUE(δ) = 1
2

(
#TP > δ

#TP + #FP < δ

#FP

)
=
{
#FP < δ

#FP = 0
}

= 1
2
#TP > δ

#TP ⇒

⇒ 0.44 = #TP > δ

#TP ⇒ 44% of all TPs have entropy above δ

where δ is the entropy threshold.
For the different scoring functions used one might think that the parameters that

are used to calculate the IoU for the specific scorer would be the best parameters to
discriminate TPs from FPs. However, this is not the case for the MUEs presented in
Table 4.1. For instance the uncertainties for the Y world coordinate is the parameter
that best discriminates TPs from FPs for the 2D scoring function. This might be
since the uncertainty for Y is derived from uncertainties in the 2d bounding box’s
upper and lower edge.

An example is used to reason as to why the uncertainties in Y tell us more about
false positives for the 2D scoring function compared to what the uncertainties for
the 2D bounding box estimates tell us. Pose that the network detects an object
close to the camera. The network might not be able to distinguish at exactly what
pixel the object’s top and bottom edge, respectively, is located, and for objects close
to the camera the edge itself might cover multiple pixels. However, it is highly
unlikely that the network would not be able to predict a 2D bounding box that have
a certain 2D IoU overlap with the ground truth box, even if its uncertainty about
the edges might be quite big (many pixels). This uncertainty is then unprojected
into the world but as the object is close this big uncertainty about the bounding
box edges will be translated to small uncertainties about the Y coordinate as each
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pixel, for objects this close, might correspond to centimeters in world coordinates.
If the network were to predict the 2D bounding box for an object that is far away it
would probably be easier to determine at what pixel the object’s edges are located,
and the estimated uncertainties might only be a few pixels. However, when these
pixels are unprojected into the world the small difference in pixels could correspond
to much larger distances in meters. Moreover, as objects far away look small in the
image the area to calculate the 2D IoU with is drastically smaller. Thus a few pixels
off might be enough for the IoU to become too small to be accepted as a TP. All
of this reasoning boils down to that the uncertainties for the Y coordinate actually
contains some information about how far away the object is located. This is as it
is propagated from the 2D bounding box uncertainties, through the camera model
and the resulting rays are cut at the Z distance to the object.

For the UN F1 Laplace model and the KITTI easy split a change of scoring
function from 2D to 3D or BEV results in that the number of TPs drops from 3110
to 335 and 819, respectively, as can be seen in Tables 4.9, 4.10 and 4.11. We see from
Table 4.1 that the X parameter is best at distinguishing TPs from FPs for the BEV
scoring function and that the x and y 2D bounding box edges best distinguishes TPs
from FPs for the 3D scoring function. Again, the uncertainty in X is propagated
from uncertainty in the 2D bounding box edges. Given the drastic drop in TPs for
the 3D and BEV scoring functions a lot of relatively close objects (most close to
semi-close objects are TPs for 2D scorer, reasoning above) have now become FPs.
As the 3D center point is derived from the 2D bounding box and the depth estimate
a slight offset of the 2D bounding box will result in that the center point is not in
the center of the object. This offset does not seem to matter when calculating IoU
in the image plane but in 3D this offset has a much bigger impact. Furthermore, if
the depth estimate is slightly off this 2D box offset might easily result in that the 3D
or BEV IoU drops below 0.7, which is the required IoU for a detection to become a
TP. Therefore, it might be more important for the 3D and BEV scoring functions
that we are certain about the location of the 2D bounding box compared to when
using the 2D scoring function.

The above reasoning can be summarized in a conclusion that the uncertainty
estimates induce valuable information that can be used to distinguish true from
false positives to some extent. In other words, the results from the UE indicate that
there is a correlation between the uncertainty estimates and if the object is a TP
or a FP. This information could, for example, be used in a post processing step to
further remove detections based on their regression parameter uncertainties rather
than only accepting or dismissing detections based on the classification score.

5.1.7 Uncertainty Error comparison

As described in Section 4.3.3 it appears to be the scoring function alone that de-
termines what model will give the lowest uncertainty error. When using the 2D
scoring method, UN F1 Laplace induces the lowest (best) MUE for all evaluated
combinations of models and parameters. For the 3D scoring function UN F1 Gauss
yields the lowest MUE. For the bird’s-eye-view scoring function it is not as clear
as to what model that performs the best MUE-wise. However, UN F1 Laplace has

68



5. Discussion

the highest (worst) average MUE for the bird’s-eye-view scoring function and the
parameter configurations used in Table 4.5.

What might be concluded from this is that the UN F1 Laplace model is a good
choice of model for the task of 3D Object Detection with uncertainty estimates.
The reason for that is that, as was discussed in Section 5.1.1, with the accompanied
uncertainties our detections might be able to cover objects that the pure mean would
not be able to. This applies especially for the bird’s-eye-view and 3D scenarios where
the number of true positives drop substantially in comparison to 2D, which may be
seen in the Detection Statistics Section 4.4.2. Therefore it is of big interest that
these true positives remain true even if the estimated 3D mean might be a bit off
also since the rate of false positives are low for UN F1 Laplace in 2D.

5.1.8 Uncertainty summary
In this section the discussions regarding the specific metrics will be merged into
one brief discussion. For the UN F1 Laplace model neither of the outputs were
particularly calibrated compared to other models. However, when considering all
the parameters this model has the lowest (best) average AUSE, meaning that, on
average, this model is best at sorting the uncertainties according to their error to
ground truth. Furthermore, the uncertainty estimates can be used to, to some
extent, discriminate TPs from FPs according to the UE metric.

The UN Val Laplace model appears to both be good in AUSE and calibration for
the rotation parameter, thus indicating that this parameter is actually well learned.
The arguably more valuable Z parameter is, however, better AUSE-wise for UN
F1 Laplace, even though it is not especially calibrated. There is the possibility to
calibrate a model in a post processing step, but how one would go about to lower
the Area Under Sparcification Error in a post processing step is not obvious.

5.1.9 Performance
In this section the results from the performance metrics for the different models
will be discussed. The metrics discussed are Average Precision (AP) and Detection
Statistics.

The results presented in the performance Section 4.4 indicate that the uncer-
tainty estimates does not affect the performance negatively, but rather boosts the
performance. For the task of 2D object detection the AP for the baseline model and
the models with uncertainties are comparable. However, for the harder task of 3D
object detection the uncertainties seem to boost the pure performance of the model,
possibly due to the ability for the network to attenuate for outliers during training
and thus find a better local minimum.

As can be seen in 4.7 the AP for our model increases from about 1% to about 70%
for the KITTI easy split when the 3D IoU threshold for a TP is lowered from 0.7
to 0.3. This further demonstrates that our mean predictions are fairly close to the
ground truth boxes and that a quite small translation or rotation of the boxes would
cause them to overlap with the GT boxes. Arguably, decreasing the IoU threshold
can be compared to what would happen if we account for the uncertainties in the
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predictions. Thus it is very likely that we would cover substantially more objects
than what we do without the uncertainties.

A decrease in IoU threshold results in that a number of objects that were previ-
ously FPs become TPs. One may argue that accounting for the uncertainties would
result in that at least the boxes that went from FPs to TPs would be covered.

The volume for which the estimated 3D box must lie within when decreasing the
IoU threshold is an expanded version of the original threshold volume in all direc-
tions. That fact that our uncertainty estimates are, reasonably, calibrated means
that the network can estimate within what interval the GT lies. Thus, instead of
lowering the IoU threshold, and therefore expanding the volume that the estimated
box must lie within in all directions, the original threshold volume can be preserved
and the estimated box can be moved in the directions where we are uncertain. This
way the estimated box should lie within the original threshold volume, and thus be
classified as a TP, at some point. Arguably, this should be true in at least the cases
where an IoU threshold decrease causes the estimated box to become a TP.

5.2 Approximations
In this section some of the approximations made in the project will be discussed. The
approximation that will be discussed are propagation of uncertainties, potential cor-
relation between estimates, world coordinate parameter estimation and pretrained
gaussian models.

5.2.1 Propagation of uncertainties
The final 3D parameters were not estimated right way from the network but rather
derived from estimates that lives closer to the raw data. This means that the
estimated uncertainties have to also be propagated from the network output to the
final parameters. The analytical expressions for how the uncertainties propagate
from some variables to others could have been derived. However, this would require
extensive derivations and ultimately computing power. Approximations were used
instead to allow for more time to be spent on analysis of the outputs.

The uncertainty for the X and Y parameter is derived through the pseudo-inverse
of the camera matrix to obtain two rays in the world. These rays were cut at the
Z estimate and the variance in the X and Y direction was calculated, respectively.
As the rays forms a cone in the world the variance in X and Y depends extensively
on the depth estimate, which in itself is uncertain. Another way of propagating the
uncertainties would be to cut the rays not only at the Z estimate but also perhaps at
one standard deviation away from the Z estimate, Z± = Z ± σz, and then calculate
some mean variance in X and Y respectively. This way uncertainty about the depth
Z would be taken into account.

5.2.2 Potential correlation between estimates
The variables are assumed to be independent of each other, However, some of them
are clearly not independent. One example of this is the actual width of a car (in
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meters) and the width of the 2D bounding box in the image plane. There should,
in fact, be a strong correlation between these estimates depending on how the car is
oriented. An alternate way of choosing network outputs to not have this correlation
would be to estimate the center point of the object in the image rather than the 2D
bounding box. However, we decided to still estimate the 2D bounding box to be
able to use the 2D scoring function as a scoring function in our experiments.

Also the X and Y world coordinates is correlated to the depth estimate by the
way we propagate the information from the image plane to world coordinates. If
the world coordinates are not to be estimated directly from the network this is
inescapable due to the scale ambiguity that monocular vision algorithms suffers
from.

5.2.3 World coordinate parameter estimation

With the network structure used in this project a mix of parameters belonging to
the image plane and the world coordinates are estimated. Examples of parameters
in the image plane are the 2D bounding box parameters and examples of parameters
in the world coordinates are Z, dimensions and orientation. There is no answer to
whether it is better to use a mix of parameters or stick to either parameters from
the image plane or in world coordinates. For the task of 3D object detection with
accompanying uncertainty estimates the need for conversion from image plane pa-
rameters to world coordinate parameters could be discarded. Since the conversion,
at least for the uncertainties, induce approximations it would be interesting to see
the results from estimating world coordinates straight away. One potential draw-
back, regarding immediate world coordinate parameter estimation, is that the world
coordinate estimates are less connected to the raw data, i.e. an image, resulting in
that the network might have to learn a more complex function.

5.2.4 Pretrained Gaussian models

One problem that we experienced with the Gaussian models was that the L2 loss
caused problems quite rapidly as some errors between estimate and GT can be
quite big (2D bounding box, depth, X, Y) and by applying an L2 loss functions they
become even bigger. The network simply increased the aleatoric uncertainties dras-
tically to attenuate for the big error, thus preventing, to some extent, the network
from learning what it was supposed to. This could potentially be fixed by training
the models without the uncertainty estimates for a number of epochs to allow the
network to reduce the errors to make the L2 loss reasonable small before adding
the uncertainty estimates. Even if this would make the model perform better it is
not clear what it would imply theoretically as the original loss function is derived
from the negative log likelihood of a Gaussian distribution, it could potentially be
reasoned to be yet another approximation.
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5.3 Future work

In this section topics for future research is suggested. The topics handle incor-
poration of uncertainties in performance benchmarks, calibration post processing
step, replacement of non-maximum-suppression, correlation between uncertainties
and training data, active learning, performance boost using entropy and different
methods for uncertainty extraction.

5.3.1 Framework to incorporate uncertainties in performance
benchmarks

In this project uncertainty estimates have been added to the predicted mean value
in object detection. The common approach is to work towards a network outputting
flawless predictions. However, reaching perfection is tedious to both do and prove.
Uncertainties are a clever way of working with an opposite approach. Instead of
improving performance to perfection uncertainties give information about what the
network does not yet know. An imperfect 3DOD network with perfect uncertainty
estimations would, in theory, be able to provide sufficient information for being ap-
plied in a safety critical system, such as an autonomous vehicle. Perfect uncertainty
estimates are also tedious to both do and prove, but how well does an imperfect
network and its accompanied imperfect uncertainty estimates perform? Currently
there is no way of evaluating this, but we strongly believe that it is the next step
forward.

Firstly a method for determining the joint uncertainty volume for an object in
which it with 68% certainty is inside needs to be produced. This joint volume would
be so much more complex than a simple 3D box in its most accurate layout. An
initial idea for creating it is to simply scale, rotate and translate the mean 3D box
into a joint volume, similarly to what is done in this project for visualizing joint
uncertainties.

Currently 3D IoU is used to distinguish true from false positives. But to simply
compare the 3D IoU of the joint volume to the ground truth 3D box with this volume
is not appropriate as the union between the two volumes would, probably, be too
big to achieve an IoU above the TP threshold. To compare only the intersection of
the volume with the ground truth box is also troublesome as by simply increasing
the uncertainties to be infinite then all of the ground truth boxes could easily be
covered, resulting in perfect recall. Therefore, a new scoring function needs to be
created in which the above joint uncertainty volume gets top score for including the
object volume and being as small as possible simultaneously.

Once this is done Average Precision may be evaluated for this new determination
of true versus false positives. The ability to calculate detection statics and find
out precision and recall would have been available. The entire process would result
in a good framework for performance benchmarking of models with incorporated
uncertainties for 3DOD.
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5.3.2 Calibration post processing step
As discussed in Section 5.1.2 no further analysis of the distribution affiliation for
the uncertainties can be made, since they are not calibrated to be of the correct
magnitude. If all parameters would have been calibrated into having the minimum
mean squared error to the perfect calibration line (y = x) then it would be possible
to compare which one of the Laplacian or Gaussian distribution that the specific un-
certainty follows best. By implementing a calibration post processing step this could
be achieved. Calibration might be reached by simply multiplying each uncertainty
with a task specific constant set to reach calibration.

5.3.3 Replace non-maximum-suppression with clustering al-
gorithm

A lot of information is thrown away in the used non-maximum-suppression (NMS)
algorithm presented in 2.4.4. It would be interesting to see if this information could
be used to instead update mean and variance of estimates, to obtain some measure
of epistemic uncertainty in a single forward pass as suggested in the BayesOD paper
by Harakeh et. al [10]. The estimates in each pixel is instead seen as a measurement
of the same variables. The variance derived from these pixel estimates does not
necessarily account for all of the epistemic uncertainty, since the estimates would be
from one forward pass with one set of network weights. If NMS is to be used, ad-
ditional information could be used to distinguish, more accurately, what detections
that are likely to correspond to the same object compared to when using only the
2D bounding box. For example, by also including the depth estimate in the NMS
algorithm it is likely that the correct detection that was suppressed in the example
seen in Figures 2.4 and 2.4 would not be suppressed.

5.3.4 Correlation between uncertainties and rate of which
objects occurs in training data

As the uncertainties are obtained from a neural network that has learned from
training data there is a possibility that there is a strong correlation between the
number of training samples with a specific attribute and the estimated uncertainty.
For example, the uncertainty for the depth estimates might have a strong correlation
with the number of training examples at different depths. This could be examined
by e.g. creating a number of bins (0-10m, 10-20m, etc) and comparing the average
uncertainty for objects within a bin with the number of objects in each bin. These
type of experiments could give further insights into what the network has learned
and about how to improve the training data set.

5.3.5 Active Learning
For the subject of active learning, the induced uncertainty estimations might be
used for finding cases where the network indicates high epistemic uncertainty. Since
epistemic uncertainty are uncertainties due to imperfections in the model, objects
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with high epistemic uncertainty are likely to be from scenarios that the network
is not well trained for. Extending the training data set with images from such
scenarios might have a much larger impact on the learning than by adding random
images to the training data. Since annotation of images is time consuming, and
thus expensive, this could be a cost effective and sophisticated way of improving the
network performance and data set coverage.

5.3.6 Average Precision for detection split based on entropy
As discussed in Section 5.1.6 the entropy threshold derived for finding the minimum
uncertainty error constitutes the threshold where false positives are most efficiently
separated from true positives. It would be very interesting to extract the specific
threshold for different sets of parameters, dismiss all detections above this threshold
and evaluate how this affects the performance, i.e. Average Precision or Detection
statistics.

5.3.7 Evaluate different methods for estimating uncertain-
ties in 3DOD

Aleatoric can be modelled in real time as it only requires the network to estimate
twice as many regression parameters, however, the way we model epistemic uncer-
tainty is probably too expensive in real time and thus some other way of modelling
this has to be found. Ilg et. al. present a network producing multiple hypotheses
in a single forward pass which would have been interesting to evaluate[9]. Further-
more, as discussed briefly in Section 5.3.3, epistemic uncertainty could perhaps be
modelled by simply replacing the NMS algorithm with some clustering algorithm
as the different estimates for the same object might differ, thus indicating that the
network is uncertain about the detection.
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In this thesis, we studied two methods for estimating uncertainties in machine learn-
ing and applied them to a machine learning algorithm for monocular 3D object de-
tection to enable per prediction uncertainty estimates. Furthermore, a method for
propagating uncertainties to the global coordinate system was presented.

We show that a machine learning algorithm for monocular 3D Object Detec-
tion can successfully estimate the uncertainties in its predictions. Furthermore, a
framework for evaluating uncertainties in 3D Object detection machine learning al-
gorithms was proposed constituting of multiple complementary evaluation metrics.
The different evaluation metrics give valuable information regarding the quality of
the uncertainties in different aspects and are thus meaningful in combination but
inadequate on their own. We reasoned, and gave intuitions about what the different
metrics tell us for different parameters and scoring functions, to be able to compare
models against each other. Lastly, we motivated as to why a new way of determin-
ing true positives is needed to be able to further evaluate the performance gain and
usefulness of the uncertainty estimates in a safety critical system.
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A
Appendix 1

This appendix contains visualizations of the 3D parameters for the uncertainty met-
rics, calibration, area under sparcification error and uncertainty error. A number of
additional parameter combinations are presented for the uncertainty error metric.
The plots further visualize the metrics for the four main models used in this project.
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Model: UN F1 Gauss
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Figure A.1: Calibration plots of all the 3D variables for the model UN F1 Gauss.
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Model: UN Val Gauss
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Figure A.2: Calibration plots of all the 3D variables for the model UN Val Gauss.
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Model: UN Val Laplace
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Figure A.3: Calibration plots of all the 3D variables for the model UN Val Laplace.
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Model: UN F1 Laplace
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Figure A.4: Sparcification Curve plots of all the 3D variables for the model UN
F1 Laplace.
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Figure A.5: Sparcification Curve plots of all the 3D variables for the model UN
Val Laplace.
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Figure A.6: Sparcification Curve plots of all the 3D variables for the model UN
F1 Gauss.
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Figure A.7: Sparcification Curve plots of all the 3D variables for the model UN
Val Gauss.
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Figure A.8: Uncertainty Error plots for the 3D location and the (X, Y, Z) param-
eters separately with combined aleatoric and epistemic uncertainty. The model is
UN F1 Laplace and the scoring functions are 2D, BEV and 3D, from left to right.
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Figure A.9: Uncertainty Error plots for L,W,H, θ with combined aleatoric and
epistemic uncertainty. The model is UN F1 Laplace and the scoring functions are
2D, BEV and 3D, from left to right.
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Figure A.10: Uncertainty Error plots for the combinations: (H,W,L,X, Y, Z, θ),
(L,W,X,Z), (Z,X) and the 2D bounding box parameters. The uncertainty is
combined aleatoric and epistemic uncertainty, the model is UN F1 Laplace and the
scoring functions are 2D, BEV and 3D, from left to right.
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Figure A.11: Uncertainty Error plots for the 3D location and the (X, Y, Z) pa-
rameters separately with combined aleatoric and epistemic uncertainty. The model
is UN Val Laplace and the scoring functions are 2D, BEV and 3D, from left to right.
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Figure A.12: Uncertainty Error plots for L,W,H, θ with combined aleatoric and
epistemic uncertainty. The model is UN Val Laplace and the scoring functions are
2D, BEV and 3D, from left to right.
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Figure A.13: Uncertainty Error plots for the combinations: (H,W,L,X, Y, Z, θ),
(L,W,X,Z), (Z,X) and the 2D bounding box parameters. The uncertainty is
combined aleatoric and epistemic uncertainty, the model is UN Val Laplace and the
scoring functions are 2D, BEV and 3D, from left to right.
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Figure A.14: Uncertainty Error plots for the 3D location and the (X, Y, Z) pa-
rameters separately with combined aleatoric and epistemic uncertainty. The model
is UN F1 Gauss and the scoring functions are 2D, BEV and 3D, from left to right.
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Figure A.15: Uncertainty Error plots for L,W,H, θ with combined aleatoric and
epistemic uncertainty. The model is UN F1 Gauss and the scoring functions are 2D,
BEV and 3D, from left to right.
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Figure A.16: Uncertainty Error plots for the combinations: (H,W,L,X, Y, Z, θ),
(L,W,X,Z), (Z,X) and the 2D bounding box parameters. The uncertainty is
combined aleatoric and epistemic uncertainty, the model is UN F1 Gauss and the
scoring functions are 2D, BEV and 3D, from left to right.
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Figure A.17: Uncertainty Error plots for the 3D location and the (X, Y, Z) pa-
rameters separately with combined aleatoric and epistemic uncertainty. The model
is UN Val Gauss and the scoring functions are 2D, BEV and 3D, from left to right.
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Figure A.18: Uncertainty Error plots for L,W,H, θ with combined aleatoric and
epistemic uncertainty. The model is UN Val Gauss and the scoring functions are
2D, BEV and 3D, from left to right.
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Figure A.19: Uncertainty Error plots for the combinations: (H,W,L,X, Y, Z, θ),
(L,W,X,Z), (Z,X) and the 2D bounding box parameters. The uncertainty is
combined aleatoric and epistemic uncertainty, the model is UN Val Gauss and the
scoring functions are 2D, BEV and 3D, from left to right.

XX


	List of Figures
	List of Tables
	Introduction
	Machine Learning
	3D Object Detection
	Uncertainties
	Thesis Objectives
	Contributions
	Related Work
	Thesis Outline

	Theory
	Bayesian deep learning
	Uncertainties
	Aleatoric Uncertainties
	Epistemic Uncertainties

	Traditional computer vision
	Projecting 3D points onto the image plane

	3D Object Detection
	3D Parameters
	Network outputs
	Pixel-wise estimations
	Box-selection through Non-Maximum-Suppression
	Derive 3D parameters from 2D estimates

	Performance evaluation
	KITTI benchmark
	Intersection over union
	Detection statistics
	Precision, recall and F1 score
	Average Precision

	Uncertainty evaluation
	Area under sparcification error (AUSE)
	Calibration plots
	Minimum Uncertainty Error (MUE)


	Method
	Network structure
	Baseline network
	Our network - UncertaintyNet
	Deriving 3D variables
	Propagating uncertainties to 3D

	Implementation
	Evaluation
	Uncertainties
	Performance


	Results
	Visualizations / Images
	Uncertainty metrics
	Area Under Sparcification Error
	Calibration
	Uncertainty Error

	Model comparison
	Area Under Sparcification Error
	Calibration
	Uncertainty Error

	Performance metrics
	Average Precision
	Detection Statistics


	Discussion
	Results
	Visualizations
	Calibration
	Calibration comparison
	Area Under Sparcification Error
	Area Under Sparcification Error comparison
	Uncertainty Error
	Uncertainty Error comparison
	Uncertainty summary
	Performance

	Approximations
	Propagation of uncertainties
	Potential correlation between estimates
	World coordinate parameter estimation
	Pretrained Gaussian models 

	Future work
	Framework to incorporate uncertainties in performance benchmarks
	Calibration post processing step
	Replace non-maximum-suppression with clustering algorithm
	Correlation between uncertainties and rate of which objects occurs in training data
	Active Learning
	Average Precision for detection split based on entropy
	Evaluate different methods for estimating uncertainties in 3DOD


	Conclusion
	Bibliography
	Appendix 1

