
Traffic Classification of 5G Packet Traces

Master’s thesis in Computer science and engineering

JOSE ARMANDO TESEN MARAÑON

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2023

Master’s thesis 2023

Traffic Classification of 5G Packet Traces

JOSE ARMANDO TESEN MARAÑON

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2023

Traffic Classification of 5G Packet Traces
JOSE ARMANDO TESEN MARAÑON

© JOSE ARMANDO TESEN MARAÑON, 2023.

Supervisor: Romaric Duvignau, Department of Computer Science and Engineering
Examiner: Risat Pathan, Department of Computer Science and Engineering

Master’s Thesis 2023
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2023

iv

Traffic Classification of 5G Packet Traces
José Armando Tesén Marañón
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
With the usage of mobile phones, privacy concerns have been a long-standing issue,
and the recent advancement of 5G technology has only amplified these concerns.
While encryption is a crucial method for protecting user privacy, studies indicate
that machine learning techniques can identify web and mobile applications even
though the traffic is encrypted.

To explore this problem, this project aims to investigate the potential for identifying
mobile applications during encrypted communication on a 5G network. The project
utilizes three machine learning models, namely k-Nearest Neighbors (k-NN), Random
Forest, and Long Short-Term Memory (LSTM). To achieve this goal, various factors
are analyzed, including the type of traffic, packet size, and timing information, to
identify specific mobile applications.

This project’s results show that it is possible to identify an app over a 5G network
with an accuracy of 85% approximately, raising privacy concerns on communications
over a 5G network. Under this context, this job updates the current State of Art
regarding the private communications over an encrypted network, showing how
privacy is vulnerable in 5G networks.

Keywords: 5G, Communication encryption, Mobile apps, Privacy, Security.

v

Acknowledgements
I would like to thank my thesis supervisor Romaric Duvignau for his continuous
support and guidance throughout my research.

Finally, I would like to thank my family for all the support during my studies.

José Armando Tesén Marañón, Gothenburg, 2023-08-01

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Context . 2
1.2 Problem description . 2
1.3 Goals and Challenges . 3
1.4 Limitations . 3
1.5 Ethical Considerations . 3
1.6 Report Structure . 4

2 Background 5
2.1 5G . 5
2.2 Fingerprinting . 6

2.2.1 Flow . 7
2.2.2 Burst . 7
2.2.3 Bursts Detection . 8

2.3 Encryption . 9
2.4 TLS and HTTPS . 10
2.5 Mobile App Network Communication 11
2.6 Machine Learning . 12

2.6.1 K-Nearest Neighbors (k-NN) 13
2.6.2 Random Forest . 15
2.6.3 Recurrent Networks . 16
2.6.4 Long short-Term Memory . 17

2.7 Security and Privacy . 19
2.8 Related Work . 20

3 Methods 23
3.1 Methodology overview . 23
3.2 Intuition behind burst based traffic detection 24
3.3 Environment Setup . 25
3.4 Data Gathering . 27
3.5 Data Processing . 30
3.6 Model Parameters . 32

ix

Contents

3.7 Evaluation and Testing . 34

4 Results 35
4.1 Enviroment Setup . 35
4.2 Data Gathering Results . 36
4.3 Data Processing Results . 37
4.4 Classification Results . 38

5 Conclusion 45
5.1 Discussion . 45
5.2 Conclusion . 46

Bibliography 47

x

List of Figures

2.1 Example of burst Network Traffic. 8
2.2 TLS 1.3 Handshake [16]. 11
2.3 K-Nearest Neighbors model [23]. 14
2.4 Random Forest model [25]. 16
2.5 Recurrent Network model [26]. 17
2.6 LSTM cell architecture [29]. 18

3.1 Project Process. 23
3.2 Sample of Wikipedia link layer traffic flow. 24
3.3 Sample of Tiktok link layer traffic flow. 24
3.4 E-Lins H685 Router111. 26
3.5 Traffic sniffing & Data Gathering. 26
3.6 Traffic sniffing & Data Gathering (internal view). 27
3.7 Data Gathering Process. 27
3.8 Network Traffic Gathering. 29
3.9 Representation of link layer traffic flow in kbits per second. 30
3.10 Link layer traffic flow without zero values. 31
3.11 Burst detection process . 31

4.1 Lab Setup. 36
4.2 Instagram link layer traffic flow. 36
4.3 Average of transmitted kbits per second. 37
4.4 Total amount of transmitted bits. 38
4.5 Confusion Matrix k-NN. 39
4.6 Accuracy over different parameters. 40
4.7 Confusion Matrix Random Forest. 40
4.8 Accuracy over different parameters. 41
4.9 Confusion Matrix LSTM. 42
4.10 Accuracy over different parameters. 43

xi

List of Tables

3.1 List of tested mobile applications. 28
3.2 Application link layer traffic flow generation. 29
3.3 Statistical Parameters. 32
3.4 k-NN Parameters. 33
3.5 Random Forest Parameters. 33
3.6 LSTM Parameters. 33

4.1 Internet data rate. 35
4.2 Amount of samples captured. 37
4.3 k-NN Parameters. 39
4.4 Random Forest Parameters. 41
4.5 LSTM Parameters. 42
4.6 Summary of results. 43

xiii

1
Introduction

Navigating over the Internet has always been a common cyber security concern. With
the rising usage of 5G, privacy is becoming an increasingly relevant topic. Historically,
traffic encryption has helped solve this problem in a wired or wireless connection;
however, big data and machine learning techniques have played an important role in
solving different types of problems that were hard to solve. This brings the question
of whether machine learning techniques can infer the type of application sending
traffic in an encrypted channel.

Traffic classification over an encrypted is a challenging task because, in an encrypted
channel, there is no clear-text information that can allow an easy way of filtering data.
Many researchers have focused on analyzing security issues in 5G at the physical
layer; meanwhile, others have mainly targeted their research on finding vulnerabilities
at the encrypted Network Layer. This project’s objective is to perform an analysis
without considering any Layer 3 or higher data. Therefore, it would not be possible
to deduce any information from the IP addresses or TCP/UDP port of the services,
similar to passively eavesdropping on the link channel.

An important point to consider is that performing flow classification in an encrypted
channel is more difficult without considering any Network Layer parameters. Because
when analyzing packets using data from Layer 3 or higher, the packets still contain
information about the IP addresses, and sometimes TCP/UDP ports in clear text.
However, in an encrypted channel at the Link Layer, only the MAC addresses are in
clear text, making it a challenge to recognize this type of traffic.

In this project, the focus is on communication over a 5G network. It is known that
the communication between the user (endpoint) and the remote server is typically
encrypted, so this project aims to investigate if it is possible to recognize this
communication using machine learning techniques and evaluate the type of service
based on its patterns.

This project aims to investigate possible privacy issues in communication protocols
so that they can be improved. Also, it aims to design a traffic classification technique
and evaluate the type of service based on its patterns, so it does not depend on
whether it is working at the Link Layer or is encrypted.

The analysis is made on popular mobile applications such as Youtube, Facebook,
Instagram, Twitter, LinkedIn, Spotify, TikTok, and Wikipedia because these services
tend to have diverse network flow patterns.

1

1. Introduction

1.1 Context
Currently, almost every mobile application is connected one way or another to the
internet, using a Wi-Fi connection or a mobile network, such as 4G or 5G devices.
Developers use encrypted channels for these communication standards to protect the
end-user’s privacy, so it can be assumed that nobody can identify what the user is
doing over the network.

However, there have been some studies where this assumption has been proven wrong.
Some researchers have focused their efforts on identifying video/streaming services
over a Wi-Fi connection or a conventional internet connection, as shown by Reed et
al. [1], or identifying mobile applications, as shown by Wang et al. [2]. While others
have focused on revealing the weaknesses of the 5G network at their physical level
[3].

Researchers have used different techniques to find their results, such as statistical
analysis or machine learning techniques. Machine learning has demonstrated its
effectiveness, with reported accuracies exceeding 99%, as illustrated by the work of
Taylor et al. [4].

This project aims to develop a machine-learning model for identifying mobile appli-
cations on an encrypted 5G network without relying on any information about the
IP addresses of the communicating parties. This analysis can also be observed in
VPN or ToR connections, which have been examined in previous studies, such as the
work of Ren et al. [5].

1.2 Problem description
As new technologies emerge, so do research threats; this time, on 5G networks,
privacy is the concern to be evaluated. Several studies show that even though the
communication between the end user and the application server is mostly encrypted
by using HTTPS, such as YouTube, Facebook, etc., this service can still be inferred
by finding its fingerprint using Machine Learning techniques; however, this analysis
has mainly been done at in different types of networks, such as over Wi-Fi or a
typical wired network connection; like the studies made by Wang et al. [2], Ren et
al. [5], or Dimopoulos et al. [6].

At the Link Layer, the 5G communication between an end user and a base station is
encrypted, so the source and destination of IP addresses are encrypted along with the
data transferred over the network. This encryption makes the data traffic analysis
even harder from an attacker’s point of view, which is good for the end user; however,
5G still has some existing problems from its predecessor, 4G. For example, 5G is
vulnerable to jamming, spoofing, and sniffing attacks, as pointed out by Lichtman et
al. [3].

The lack of studies combining these two research domains, encrypted traffic analysis
and avoiding the Layer 3 information on a 5G network, motivates this project to
explore the possibilities of finding new vulnerabilities in modern 5G communications.

2

1. Introduction

1.3 Goals and Challenges
The first goal is to investigate the possibility of recognizing mobile phone applications
from encrypted traffic over a 5G communication network; without the need for Layer
3 data or higher, using data analysis and Machine Learning techniques. For instance,
find out if it is possible to recognize different mobile application services such as
YouTube, Facebook, or similar; and measure the accuracy of these machine learning
models.

To initiate the analysis process, acquiring data is crucial. Therefore, this project
aims to implement an environment to gather packets of 5G communication between
an end user and a remote server. This project uses a 5G link, a firewall, and a
sniffer. Thus, just the desired service is captured using existing tools, similar to the
experimental setup made by Ajaeiya et al. [7].

1.4 Limitations
This project is limited to filtering or classifying mobile applications over a 5G network,
not identifying any password or id account, or decrypting any data type. Also, this
project is limited to the datasets that are identified as relevant to the current project.

Additionally, the goal is limited to finding the possibility to identify mobile applica-
tions over an encrypted channel, not the classification algorithm’s efficiency. Hence,
the project uses existing techniques and tools and adapts them to pursue the present
goal, and not on developing new tools.

Finally, this project does not cover any analysis of application communication
protocol; however, it must be mentioned that it could be useful since analyzing the
protocols could reveal important details about how data is transmitted, processed,
and protected.

1.5 Ethical Considerations
Regarding the project’s scope, it is important to clarify that it is only focused on
academic purposes, even though it may also be used for malicious ends, such as
privacy invasion. So, it is recommended that the reader evaluates this project and its
limitations before making any conclusion or decision based on the information that
is presented. The objective is to show possible vulnerabilities in encrypted commu-
nication over a 5G network and develop awareness to improve the communications
protocols.

3

1. Introduction

1.6 Report Structure
This project is organized into five chapters:

In Chapter 2, the background is presented where is shown the definitions and
related work of communication encryption identification.

Chapter 3 presents the methods used in the project. This chapter describes the
environment setup, the data gathering and processing, and the machine learning
modeling used to develop the project.

The results are presented in Chapter 4, where a summary of the data collected and
processed, and the accuracy of classification are shown.

The final section, Chapter 5, presents the discussion and conclusions of the thesis.

4

2
Background

This chapter offers a foundation of basic definitions necessary for understanding the
steps involved in the implementation process. While the level of detail provided may
be limited, it is essential to be familiar with the terminology presented in this project
as it facilitates the comprehension of subsequent sections.

2.1 5G
5G is the fifth generation of wireless network technology, succeeding the current
4G LTE standard. It is designed to offer faster internet speeds, lower latency, and
greater connectivity than previous generations of wireless technology. With 5G, users
can expect faster download and upload speeds, more stable connections, and the
ability to connect more devices simultaneously [8].

One of the key features of 5G is its use of higher frequency radio waves than previous
wireless technologies. This allows for greater capacity and faster data transfer rates,
but it also requires more network infrastructure to be deployed to ensure reliable
coverage. 5G networks use a combination of low-band, mid-band, and high-band
frequencies to provide coverage over different distances and areas.

In addition to faster speeds and lower latency, 5G promises to support new ap-
plications and use cases, such as smart cities, autonomous vehicles, and virtual
and augmented reality. This is possible by using advanced technologies such as
beamforming and massive MIMO, which allow more precise and efficient use of the
available spectrum.

5G also includes enhanced security features compared to previous wireless technologies.
For example, 5G networks use more robust encryption and authentication methods,
including features such as secure boot and remote stations to ensure the integrity of
devices connecting to the network. Additionally, 5G networks support network-based
security, which allows for more efficient and effective monitoring and management of
security threats [9].

Overall, while 5G promises to offer significant improvements in network speed and
connectivity, operators and organizations must take steps to ensure the security of
these networks. This includes implementing strong encryption and authentication
measures, monitoring potential security threats, and educating users about best
practices for staying safe on 5G networks.

5

2. Background

5G technology operates on radio frequency (RF) ranges between 24 and 86 GHz.
The higher frequency ranges of 5G have been designated millimeter-wave (mmWave)
frequencies. These frequencies can transmit data at extremely high speeds of up to
10 Gbps compared to 4G speeds, with a maximum speed of 1 Gbps.

The 5G frequency bands are divided into three main bands: low-band, mid-band,
and high-band. Low-band ranges from 600 MHz to 700 MHz. Mid-band ranges from
2.5 GHz to 3.7 GHz. High-band ranges from 24 GHz to 40 GHz and in some regions,
reaching up to 86 GHz.

The low-band range has a wider coverage area but lower speeds. Mid-band range
provides a balance between coverage and speed, while the high-band range offers
the highest speeds but has limited coverage distance as the signal has difficulty
penetrating obstacles such as walls and buildings. This project is centered on the
usage of mid-band range, since it deals with some video-related mobile applications.

5G technology’s frequency range enables various applications such as autonomous
vehicles, remote surgery, and virtual reality. Nevertheless, 5G technology is expected
to continue expanding and evolving as more applications require higher speeds and
lower latency.

2.2 Fingerprinting

An important part of the implementation is packet trace analysis and fingerprinting,
which are used to analyze the encrypted network traffic. First, packet trace analysis
is the process of examining the data packets that are transmitted over a network.
This process can be done using a packet sniffer, such as Wireshark or tcpdump. Once
packets are captured, they can be classified by size, source or destination address,
service, delays, etc.

Fingerprinting is a technique that can be used to identify unique characteristics in
encrypted communication. This information can be used to identify unencrypted
messages or network communications. It can be used either for attackers or security
purposes, such as detecting malicious software [10].

Fingerprinting can be achieved through various methods, such as port scanning,
banner grabbing, protocol analysis, DNS interrogation, and web application fin-
gerprinting. Active and passive are the two main ways to conduct fingerprinting.
In active fingerprinting, custom packets are sent to the target network, and the
responses are analyzed to determine their characteristics. On the other hand, passive
fingerprinting involves sniffing network traffic to create a digital fingerprint of the
network without sending any packets. Both methods have advantages and disadvan-
tages, and the choice of which one to use depends on the specific circumstances and
goals of the fingerprinting process [11].

6

2. Background

2.2.1 Flow
In order to gain a comprehensive understanding of the network fingerprinting process,
it is essential to establish well-defined descriptions of flows and bursts. This enables
a more precise interpretation and analysis of the network behavior.

In the literature, Taylor et al. [4] define a flow as a unidirectional sequence of packets
that are transmitted by a source to a destination over a communication network and
that share the same characteristics, such as the same protocol, source IP address,
and destination IP address. The analysis of data flow plays a vital role in identifying
fingerprints within network traffic.

Link layer traffic flow is essential for understanding how data is moving through
their network, the source of the traffic, the destination of the traffic, and how much
traffic is being exchanged between devices. This information can be used to manage
network performance, optimize bandwidth usage, and improve security.

In order to capture and analyze link layer traffic flows, specialized tools are used,
such as flow analyzers or flow collectors. These tools collect data about each flow,
including its start and end times, the amount of data transmitted, the packet sizes,
and other metadata. This information is then used to identify traffic patterns, detect
anomalies, and optimize network performance.

There are several types of traffic flows, including unidirectional, bidirectional, and
multicast flows. Unidirectional flows move data packets in one direction from the
source device to the destination device. Bidirectional flows move data packets in
both directions, while multicast flows are used to send data packets to multiple
devices simultaneously.

In this project, traffic flow is referred to as the volume of downloaded and uploaded
bits (downlink and uplink) at the Link Layer from the end user’s (mobile phone)
point of view. A flow is a sequence of packets sharing the same pair of MAC addresses
(bidirectional flow). Packets are represented as 4-tuples, the source and destination
MAC address, the size of the packet, and the arrival time. By examining the flow
of downlink and uplink traffic, we can find fingerprint patterns and identify mobile
apps. And by analyzing the data link layer traffic flow, we can also gain insights into
the behavior of network applications.

2.2.2 Burst
As stated by Taylor et al. [4], the burst is a way of analyzing network traffic by
grouping packets that are sent in the same direction with a short time interval
between them. This can help identify patterns and features of different applications
or protocols that generate traffic.

Bursts can occur at different levels within a network, including at the application
level, transport level, and network level. At the application level, bursts can occur due
to spikes in user activity or increased demand for a particular service or application.
At the transport level, bursts can be caused by the use of larger data packets or by
the transmission of multiple packets at the same time. At the network level, bursts

7

2. Background

can occur due to congestion, high bandwidth usage, or even denial-of-service (DDoS)
attacks.

Peaks in Figure 2.1 correspond to sudden increases in activity, or bursts, in the packet
trace extracted from Tiktok usage for 30 seconds approximately. These bursts can be
seen as spikes in the graph, indicating periods of high link layer traffic. This figure
represents the data rate of the downloaded (green) and uploaded (red) packets; this
way of representing the link layer traffic flow is used across the rest of the document.

10 12 14 16 18 20 22 24
Time (s)

0

1000

2000

3000

4000

Do
wn

lin
k

&
Up

lin
k

da
ta

ra
te

 (k
bp

s)

Sample of Tiktok Downlink and Uplink flow
Downlink
Uplink

Figure 2.1: Example of burst Network Traffic.

Dividing the network traffic into bursts and analyzing only the sections containing
genuine communication can significantly improve the efficiency of traffic analysis.
Furthermore, analyzing burst peaks separately helps to have a more comprehensive
understanding of the link layer traffic and usage trends. This can help identify
improvement areas and optimize the machine learning model performance.

2.2.3 Bursts Detection
Burst detection is the process of identifying and analyzing bursts of traffic within a
network. This process involves the use of specialized tools and techniques to monitor
network traffic and detect sudden increases in data volume. The purpose of burst
detection is to identify anomalies or abnormal behavior within network traffic, which
can be an indicator of network problems, security threats, or extract fingerprints.

There are several techniques used to detect bursts in network traffic, including
threshold-based detection, statistical analysis, and machine learning. Threshold-
based detection involves setting a specific threshold value for network traffic and
triggering an alert if the traffic volume exceeds that value. Statistical analysis involves
analyzing the distribution of network traffic over time and identifying sudden changes
in that distribution. Machine learning algorithms can also detect bursts by analyzing
patterns and trends within network traffic.

8

2. Background

Kleinberg’s algorithm is used in this project. Kleinberg’s algorithm is a burst detection
algorithm that identifies periods in which a target event is uncharacteristically
frequent or “bursty”. It can be used to detect bursts in a continuous stream of events
(i.e. video streaming) or in discrete batches of events (i.e. web surfing). It was
introduced by Jon Kleinberg in 2002 [12].

The algorithm is based on the idea that a bursty event is likely to be followed by other
bursty events and that they are likely to be related to each other. The algorithm uses
a probabilistic model to identify these bursts and to distinguish them from random
fluctuations in the data.

When the algorithm detects a deviation in the flow that exceeds a certain threshold,
it signals a burst. The algorithm then looks for the end of the burst by searching for
a point where the activity level returns to the background level.

2.3 Encryption

Encryption is the process of converting data into an unreadable or encrypted format
to protect its confidentiality, integrity, and authenticity during transmission or
storage. This is achieved by using an algorithm that converts the plaintext message
into an encrypted ciphertext message, which can only be decrypted using a specific
key or password.

There are two types of encryption: symmetric encryption and asymmetric encryption.
In symmetric encryption, the same key is used for encryption and decryption, while
in asymmetric encryption, different keys are used for encryption and decryption.
Asymmetric encryption is often used for secure communication between two parties,
while symmetric encryption is used for protecting data at rest [13].

Some popular encryption algorithms include:

• Advanced Encryption Standard (AES): This symmetric encryption algorithm
is widely used for protecting data at rest. It is a block cipher that uses a fixed
block size of 128 bits and key sizes of 128, 192, or 256 bits.

• RSA: This asymmetric encryption algorithm is widely used for secure commu-
nication between two parties. It uses a public key for encryption and a private
key for decryption.

• Triple DES: This symmetric encryption algorithm is used for protecting data
at rest. It is a block cipher that uses a key size of 168 bits.

Encryption is not invulnerable, and it can be vulnerable to attacks. Some common
attacks include brute force attacks, in which an attacker tries to guess the encryption
key by trying all possible combinations, and side-channel attacks, a topic that is
expanded in section 2.7.

9

2. Background

2.4 TLS and HTTPS

Before introducing the characteristics of mobile app network communication, it is
important to establish the concepts of Transport Layer Security (TLS) and Hypertext
Transfer Protocol Secure (HTTPS).

TLS is a cryptographic protocol that provides secure communication over the Internet.
It was formerly known as SSL (Secure Socket Layer) until SSL 3.0, after which it
was renamed TLS. TLS is used to establish a secure communication channel between
two parties over the internet, such as a web browser and a web server. The most
common application of TLS is HTTPS, the secure version of HTTP [14].

HTTPS is a combination of HTTP and TLS. It provides encrypted communication
between a web browser and a web server. When a user accesses a website using
HTTPS, the web browser first establishes a TLS connection with the server. The TLS
protocol provides authentication, confidentiality, and integrity to the communication
channel. This means that the data exchanged between the browser and the server is
encrypted and cannot be intercepted or modified by any third party [15].

The TLS protocol works by using a combination of symmetric and asymmetric
encryption techniques. When a TLS connection is established, the server and the
client negotiate a shared secret key that is used to encrypt and decrypt the data
exchanged between them. The shared secret key is generated using asymmetric
encryption, which is a technique that uses a pair of keys, a public key, and a private
key. The server sends its public key to the client, and the client uses it to encrypt a
random number, which is sent back to the server. The server uses its private key to
decrypt the random number, and both parties use the random number to generate
the shared secret key.

TLS also provides authentication and integrity to the communication channel. The
server sends its digital certificate to the client during the TLS handshake process.
The digital certificate contains the server’s public key and some other information,
such as the server’s domain name and the name of the organization that issued the
certificate. The client verifies the authenticity of the digital certificate by checking
whether it was issued by a trusted Certificate Authority (CA) and whether the
domain name in the certificate matches the domain name of the server.

TLS handshake is an exchange of information between a client and a server that
establishes a secure connection using cryptographic algorithms. The handshake
involves negotiating the protocol version, selecting cryptographic algorithms, authen-
ticating each other with digital certificates, and generating a shared secret key for
encrypting subsequent messages [16]. Figure 2.2 shows a representation of the TLS
handshake.

10

2. Background

Figure 2.2: TLS 1.3 Handshake [16].

In summary, TLS and HTTPS provide a secure communication channel over the
internet by using encryption, authentication, and integrity mechanisms. These
mechanisms ensure that the data exchanged between the client and the server is
protected from eavesdropping, tampering, and forgery.

2.5 Mobile App Network Communication
Even though the benefits of mobile apps are undeniable, there are several concerns
surrounding data privacy and security in mobile app network communications. First,
sensitive user information, such as login credentials, browsing history, location data,
and contact lists, are often exchanged between the app and servers. This data
interchange is necessary for delivering the app’s services, but it also raises concerns
about data privacy and the potential for this information to be at risk if it is not
adequately protected.

Unsecured networks are a risk for privacy breaches as mobile app network communi-
cations might be intercepted on them, or in this project, encrypted communications,
disclosing sensitive user data to malicious actors.

Mobile applications are different from typical web applications in how they download
data from the servers, a web application downloads more data to provide the correct
information to the end user, for instance, the HTML, CSS, and Javascript libraries.
Instead, mobile applications have all the basic visual structures built-in into the app,
so it only needs to download a fraction of that data, such as updated user posts as
described by Al-Naami et al. [17], since mobile applications interact with the server
by the use of APIs.

11

2. Background

HTTPS is essential for securing data transmitted over the internet, including data
exchanged between mobile apps and servers. Mobile apps communicate with servers
using Application Programming Interfaces (API), which often rely on HTTPS to
ensure the confidentiality and integrity of the data transmitted between the app and
the server.

Mobile apps that communicate with servers using HTTP instead of HTTPS are
vulnerable to various attacks, such as man-in-the-middle attacks, in which an attacker
intercepts and modifies the data exchanged between the app and the server. Attackers
can also intercept the app’s authentication credentials, such as usernames and
passwords, and use them to gain unauthorized access to the server.

Libraries and frameworks, such as OpenSSL, can be utilized by mobile app developers
to incorporate HTTPS into their applications. OpenSSL, an open-source software
library, offers various cryptographic functions and tools and implements the SSL and
TLS protocols that enable secure communication on the Internet. With OpenSSL,
data can be encrypted and decrypted, digital signatures can be created, and the
validity of digital certificates can be verified [18].

2.6 Machine Learning
Machine learning is a subfield of artificial intelligence that focuses on developing
algorithms and statistical models that can analyze and interpret large sets of data
and make predictions or decisions based on that analysis without being explicitly
programmed [19].

Machine learning aims to enable computers to learn from data, adapt to new
situations, and improve performance on a specific task. To achieve this, machine
learning algorithms are designed to automatically identify patterns and relationships
within data and use that knowledge to make predictions or take actions [20].

There are three main types of machine learning: supervised learning, unsupervised
learning, and reinforcement learning. In supervised learning, the algorithm is trained
on labeled data, where the correct outputs are already known. In unsupervised learn-
ing, the algorithm is given unlabeled data and must find patterns and relationships
on its own. In reinforcement learning, the algorithm learns by receiving feedback in
the form of rewards or penalties for its actions [21].

Although this project employs machine learning models as tools, they are not the
central focus. This section only briefly defines each technique used during the
implementation stage. These definitions help readers understand the models used
and their role in the project’s methodology.

Data classification can be made manually so that the raw data can be classified by
statistical mechanisms using network communication characteristics such as delay,
size, or other network parameters. However, data classification can also be done
using machine learning techniques that are precise and relatively easy to implement.
For instance, k-Nearest Neighbors (k-NN) is a simple but powerful algorithm that
can be used in several applications; on this occasion, it could be used to classify the

12

2. Background

data collected for this project. Some other algorithms, such as Random Forest, Long
short-term memory (LSTM) are also considered.

2.6.1 K-Nearest Neighbors (k-NN)

K-Nearest Neighbors (k-NN) is a machine learning algorithm that is used for classifi-
cation or regression tasks. The k-NN algorithm works by finding the k closest data
points in a training dataset to a new data point and then predicting the label or
value of the new data point based on the labels or values of its nearest neighbors.

The "k" in k-NN represents the number of considered neighbors. For example, if k is
equal to 3, then the algorithm will look for the 3 closest neighbors to the new data
point in the feature space. Once the k neighbors are identified, the predicted label
or value for the new data point is based on the majority class or average value of
the K neighbors. The algorithm assigns the most common class among its k-nearest
neighbors for classification and the average of the k-nearest neighbors for regression
[22].

To find the k-Nearest Neighbors to a new data point, the algorithm needs a way to
measure the distance between data points in the feature space to find the K-nearest
neighbors to a new data point. The most commonly used distance metric is Euclidean
distance, which is simply the straight-line distance between two points in space,
which could be calculated as the equation 2.1.

d(xi, xj) =
√√√√ n∑

k=1
(xik − xjk)2

=
√

(xi1 − xj1)2 + (xi2 − xj2)2 + · · · + (xin − xjn)2 (2.1)

One of the strengths of k-NN is that it is a non-parametric algorithm, which means
that it does not make any assumptions about the underlying distribution of the
data. This makes it more flexible than other machine learning algorithms that make
assumptions about the data, such as linear or logistic regression. However, there are
also some limitations of the k-NN algorithm. One of the main limitations is that it
can be computationally expensive, especially for large datasets or high-dimensional
feature spaces. This is because the algorithm has to calculate the distance between
the new data point and every point in the training set to find the k-Nearest Neighbors.
Figure 2.3 shows a simple representation of classification based on distances, where
it shows how a sample is classified in a cluster.

13

2. Background

Figure 2.3: K-Nearest Neighbors model [23].

In the k-Nearest Neighbors model, the tuning parameter is typically the value of
k, which represents the number of nearest neighbors to consider when making a
prediction. Choosing the optimal value for k is critical in achieving good performance
with k-NN.

The value of k can have a significant impact on the performance of the algorithm. If
k is too small, the algorithm may be sensitive to noise or outliers in the data. The
model may overfit the training data and fail to generalize well to new data. While if
k is too large, the algorithm may over-generalize and miss essential patterns in the
data, resulting in poor performance.

Other parameters that can be tuned in a k-NN model include:

The distance metric determines the distance between two data points in a dataset.
It is a critical parameter that helps the algorithm identify the nearest neighbors of a
given data point. Different distance metrics can be used, depending on the nature of
the data and the problem being solved. For instance:

• Euclidean distance. Calculated as the square root of the sum of the squared
differences between the corresponding features of two data points, as shown in
the equation 2.1.

• Manhattan distance. Calculated as the sum of the absolute differences between
the corresponding features of two data points, as shown in equation 2.2.

d(xi, xj) =
n∑

k=1
(|xik − xjk|)

= |xi1 − xj1| + |xi2 − xj2| + · · · + |xin − xjn| (2.2)

• Minkowski distance. A generalization of Euclidean distance and Manhattan
distance. It takes a parameter "p" which determines the degree of the distance
metric. When p=2, it is equivalent to Euclidean distance, and when p=1, it is
equivalent to Manhattan distance, as shown in equation 2.3.

14

2. Background

d(xi, xj) = (
n∑

k=1
(|xik − xjk|p)

1
p

= (|xi1 − xj1|p + |xi2 − xj2|p + · · · + |xin − xjn|p)
1
p (2.3)

The weighting scheme parameter is the method used to assign weights to the
neighboring data points during the classification or regression process. When making
a prediction, the algorithm considers the distance (or similarity) between the new
data point and the neighboring points. The weighting scheme can be used to adjust
the importance of nearby data points based on their distance from the new point.
There are several common weighting schemes used in k-NN; for example:

• Uniform weighting. All of the neighboring data points are given equal weight
in the classification or regression process.

• Distance-weighted. Weights to neighboring points are based inversely on their
distance from the new data point, with closer points being given more weight.

• Kernel-weighted. Weights are based on a kernel function, which can take into
account the distance or other properties of the neighboring points.

Finally, leaf size determines the number of training samples assigned to a leaf
node in the data structure. The leaf size parameter controls the granularity of the
partitioning process. Smaller values of leaf size lead to finer partitions, which can
capture more local variations in the data and increase the computation time and
memory requirements. Larger values of leaf size, on the other hand, result in coarser
partitions that are more efficient but may miss some important details. In general,
the optimal leaf size depends on various factors, such as the size and dimensionality
of the dataset, the required precision of the predictions, and the computational
resources available.

2.6.2 Random Forest
Random Forest is an ensemble learning method for classification and regression that
constructs a multitude of decision trees at training time and outputs the class that
is the mode of the classes (classification) or the mean prediction (regression) of
the individual trees. The key idea behind Random Forest is to combine multiple
decision trees, each trained on a different subset of the training data and a random
subset of the features, to reduce the model’s variance and improve its generalization
performance [24].

Random forests start by randomly selecting a subset of the data. This subset will be
used to train the first decision tree. The tree is trained using a splitting algorithm,
such as Classification and Regression Trees (CART). The splitting algorithm chooses
the best feature to split the data on at each node in the tree.

Once the first decision tree is trained, it is used to make predictions on the remaining
data. These predictions are then used to train the second decision tree. This process

15

2. Background

is repeated for a large number of decision trees. The final prediction is the average
of the predictions of all the trees.

Random forests have some advantages over other machine learning algorithms. They
are relatively easy to implement and can be used on various data sets. They are also
robust algorithms that can handle noise and outliers in the data, and they can be
used for both classification and regression tasks. Figure 2.4 shows a representation of
decision-making based on trees, where it is represented an input produces different
responses on a tree.

Figure 2.4: Random Forest model [25].

In a Random Forest model, several tuning parameters can be adjusted to optimize
the model’s performance. Some of the most important tuning parameters include:

Number of estimators: This parameter determines the number of trees to be built
in the forest. Increasing this parameter can improve the model’s performance but
also increase the computational cost.

Maximum depth: This parameter determines the maximum depth of each tree in
the forest. Increasing this parameter can improve the model’s performance but also
increase the risk of overfitting.

By tuning these parameters, we can adjust the model’s balance and achieve better
performance.

2.6.3 Recurrent Networks
Recurrent neural networks (RNNs) are a type of neural network that are designed to
process sequential data, such as time series or natural language. Unlike feedforward
neural networks, which process inputs in a fixed order, RNNs maintain an internal
state that allows them to process sequences of variable length and to use past inputs
to inform their processing of future inputs.

16

2. Background

The key feature of RNNs is the use of recurrent connections, which allow information
to be passed from one-time step to the next. This allows the network to maintain a
memory of past inputs and to use this information to make predictions about future
inputs [26]. Figure 2.5 shows a representation of a recurrent neural network.

Figure 2.5: Recurrent Network model [26].

2.6.4 Long short-Term Memory
Long Short-Term Memory (LSTM) is a recurrent neural network (RNN) architecture
designed to overcome the vanishing gradient problem in traditional RNNs. LSTMs
use memory cells and gates to selectively retain and forget information over long
periods, allowing them to capture long-term dependencies in sequential data [27].

LSTMs have become a popular architecture for various sequence prediction tasks
such as natural language processing, speech recognition, and time series analysis.

An LSTM cell has three main components: a cell state, an input gate, an output
gate, and a forget gate. The cell state is a long-term memory unit that can store
information from previous time steps, while the gates control the flow of data into
and out of the cell state.

The input gate determines which information from the current time step should be
allowed into the cell state. It takes the current input and the previous hidden state
as inputs and applies an activation function. This allows the network to store or
discard information based on its relevance selectively.

The forget gate determines which information from the previous time step should
be forgotten. It takes the current input and the previous hidden state as inputs
and applies a sigmoid activation function, which produces a value between 0 and
1 for each element of the previous cell state. This value represents how much of
the corresponding element should be retained or forgotten, and is multiplied by the
previous cell state to determine the updated cell state.

The output gate determines which information from the cell state should be used to
predict the current time step. It takes the current input and the previous hidden
state as inputs and applies an activation function. This value represents how much
of the corresponding element should be used for the output. The resulting value is
the hidden state for the current time step, which is used to make the prediction.

These gates are learned during training and adaptively regulate the memory cell’s
contents, enabling the LSTM to selectively remember or forget information based on
the input sequence.

17

2. Background

LSTMs have proven effective in capturing long-term dependencies in sequential
data, making them a valuable tool for many real-world applications. They are often
combined with other deep learning models, such as convolutional neural networks
(CNNs), for tasks such as image captioning and video analysis [28]. Figure 2.6
represents the LSTM cell architecture, where it is shown how the cells are connected
between them.

Figure 2.6: LSTM cell architecture [29].

Several tuning parameters can be adjusted for an LSTM model. Some of the most
important ones include the following:

Number of LSTM layers: This parameter determines how many layers of LSTMs
are stacked on top of each other. Adding more layers can improve the model’s ability
to capture complex relationships in the data and increase training time and potential
overfitting.

Number of nodes in each LSTM layer: This parameter determines the number
of LSTM nodes in each layer. The more nodes, the more complex the LSTM layer
and the better it can capture patterns in the data. However, this can also lead to
overfitting.

Dropout Rate: Dropout can be used to regularize the model and prevent overfitting.
It involves randomly dropping out nodes from the LSTM layer during training, which
makes the model more robust to different inputs. The dropout rate determines the
probability of dropping out of each node.

Learning rate: This parameter determines the step size used in optimizing the
neural network. A higher learning rate can lead to faster convergence during training
but may result in overshooting the optimal weights for the model.

Batch size: This parameter determines the number of training samples used in each

18

2. Background

step of the training. A smaller batch size may increase the amount of noise in the
gradient calculation but can lead to faster convergence and more accurate results.

Sequence length: This parameter determines the size of the input sequences fed
into the LSTM model. Longer sequences can capture more temporal dependencies
in the data but can also lead to memory issues and slow training times.

Activation function: The activation function determines how the LSTM model
processes input and generates output. The most common activation functions are
sigmoid, tanh, and ReLU, and different activation functions are better suited for
different types of data and models.

2.7 Security and Privacy
Several researchers have used this technique to extract information from encrypted
communication traffic (not decrypt); for instance, Wang et al. [2] use side-channel
information leaks to identify patterns in packets and detect smartphone applications
over Wi-fi channels.

Finally, privacy refers to the ability of an individual or group to keep certain
information, actions, or aspects of their lives out of public view and control. It
is the right to be free from unwanted or unwarranted intrusions, surveillance, or
interference in one’s personal affairs.

In the context of cybersecurity, privacy refers to the protection of personal and
sensitive information that is transmitted or stored electronically. This includes the
confidentiality, integrity, and availability of data and protecting user identities and
online activities.

Cybersecurity measures aim to prevent unauthorized access, disclosure, or misuse of
personal information, such as financial data, medical records, and login credentials.
Privacy protection in cybersecurity also includes using encryption, firewalls, and
other security technologies to safeguard data and prevent hacking, phishing, and
other cyber attacks.

In addition, privacy regulations and standards, such as the General Data Protection
Regulation (GDPR) and the California Consumer Privacy Act (CCPA), provide legal
protections for individuals’ data and establish guidelines for organizations to follow
in the collection, use, and disclosure of such data [30, 31].

Privacy in the context of cybersecurity refers to protecting personal information and
safeguarding individuals’ rights to control their own data and online activities.

Under this context, Side-channel attacks exploit the physical properties of cryp-
tographic devices to circumvent traditional security measures and recover secret
information. Side-channel attacks involve measuring and analyzing the physical
information leaked during cryptographic computations to deduce intermediate values
[32].

19

2. Background

2.8 Related Work
Currently, there are some studies about analyzing encrypted traffic, especially at
the Network Layer. These studies focus on finding fingerprints based on bandwidth
consumption using machine learning techniques, showing exciting results, such as
finding fingerprints of Video/Streaming usage and inferring its usage with very good
accuracy, as shown by Papadogiannaki et al. [33], and Wang et al. [2]. Wang et al.
focuses on the fact that despite the widespread use of encryption in mobile apps,
it is still possible to make inferences about the apps being used based on patterns
and characteristics of the encrypted data traffic. By analyzing the size, timing, and
meta-data of the encrypted data traffic, the researchers could accurately identify the
apps being used on the phone. They applied their method to 9 popular Android apps
and achieved an average accuracy of 86%. The implications of this study highlight
the importance of privacy concerns about app usage on mobile devices, even when
encryption is used.

Additionally, some studies identified applications over an encrypted channel over
a 3G and 4G channel based on fingerprints for each application, such as the one
made by Ren et al. [5]. This paper proposes a novel method to identify apps from
encrypted traffic using frequency distribution fingerprints, which can capture the
statistical characteristics of traffic streams more effectively than previous methods.
The paper also evaluates the system’s performance on real-world datasets and shows
that it can achieve high accuracy and efficiency even with multi-smartphone sources.

There are also some traffic analyses at the Link Layer, especially on Wi-Fi connections,
as demonstrated by Reed et al. [1]. Reed et al.’s work proposes a novel method
to identify DASH videos (Netflix) streamed over encrypted Wi-Fi connections by
analyzing traffic patterns. The method can achieve high accuracy and a low false
positive rate without decrypting or modifying packets. Still, it was only tested on
a small dataset of 25 samples, and it is unknown if it can scale to a large dataset.
This research is expanded in the work of Björklund et al. [34] and Duvignau [35],
who were able to demonstrate that their methods can be applied to larger datasets,
such as the Netflix dataset and the SVT Play dataset, with high accuracy.

A very important paper for this project is "AppScanner: Automatic Fingerprinting of
Smartphone Apps From Encrypted Network Traffic" by Taylor et al. [4]. The paper
proposes a tool called AppScanner that can automatically identify smartphone apps
based on their network traffic, even when the traffic is encrypted. The tool uses a
combination of machine learning and signature-based approaches to analyze network
traffic and identify which app is responsible for it. Overall, the paper demonstrates
the potential of machine learning and signature-based approaches for identifying
apps based on their network traffic. This project takes this analysis as a reference,
given that Wi-Fi connections are similar to 5G connections in some ways, such as
the connection between the end user and the access point being encrypted.

Furthermore, Kamal et al. [36] have shown that it is possible to classify network
traffic even if it is contained inside a VPN channel, so this gives the intuition that
it could be possible in a 5G network. This is a challenging problem because most

20

2. Background

Internet traffic is encrypted, and traditional methods of video identification rely on
inspecting packet headers or payloads, which are not feasible for encrypted traffic.
The paper uses a CNN to classify the traffic pattern plots generated from sniffing
network traffic.

Finally, other studies have shown that 5G is vulnerable at the physical layer as it
still carries some issues from 4G LTE that could be exploited and break the security
or privacy of the end user. For instance, Piqueras et al. [37] analyze the physical
downlink and uplink control channels and signals and identify the weakest links in
5G.

21

3
Methods

This chapter discusses the methodology of the proposed solution to address the
problem statement. This phase is a crucial stage in the project cycle as it involves
the actual execution of the solution. The focus is on the implementation plan, which
provides the roadmap for the solution in an organized and sequential manner. It also
discusses the resources needed for successful implementation, including the technical
considerations.

3.1 Methodology overview

The first step is to set up a lab environment. For this project, the data is collected
from a mobile Android phone using a 5G router over a 5G network. Once the
lab environment is set up, the next step is to gather and process the data for the
machine learning training stage. Then, the processing involves cleaning, filtering,
and detecting bursts to ensure that the data is of good quality and can be used for
training the machine learning model. This project chooses three machine learning
models, k-NN, Random Forest, and LSTM. Implementing the machine learning
model involves setting up the model architecture and its parameters. The next step
is to train the model using the processed data, this involves providing the model
with input data and the corresponding output or label data, allowing it to learn
from the examples and refine its internal parameters. Finally, the model is evaluated
and compared to determine its performance. The evaluation results are then used to
determine whether the model is effective and to identify the mobile apps.

As summary, the implementation process of this project can be represented as shown
in Figure 3.1.

Data
Gathering

Data
Processing

ML Model
Implementation

ML Model
Training

ML Model
Evaluation

Environment
setup

Figure 3.1: Project Process.

23

3. Methods

3.2 Intuition behind burst based traffic detection
Even though communication between a mobile phone and an application server is
encrypted in several layers, such as HTTPS or VPNs, there are characteristics in the
link layer traffic flow that could help infer which application a person is using.

For example, Figure 3.2 shows a link layer traffic flow sample of a user interacting
with the Wikipedia mobile app. It is easy to notice that when interacting with this
app, the traffic generated consists of small spikes of link layer traffic (around 1Mbps)
because the nature of the application is mainly based on text.

0 20 40 60 80 100 120
Time (s)

0

500

1000

1500

2000

2500

Do
wn

lin
k

&
Up

lin
k

da
ta

ra
te

 (k
bp

s)

Sample of Wikipedia Downlink and Uplink flow
Downlink
Uplink

Figure 3.2: Sample of Wikipedia link layer traffic flow.

Meanwhile, the Tiktok mobile app is predominantly video-based, as is evidenced by
the spikes in link layer traffic seen in Figure 3.3, which shows a sample link layer
traffic flow of a user interacting with the app. In the example, these spikes reach
a maximum of 6Mbps to 8Mbps, and more packets are transmitted than in the
previous example.

10 12 14 16 18 20 22 24
Time (s)

0

1000

2000

3000

4000

Do
wn

lin
k

&
Up

lin
k

da
ta

ra
te

 (k
bp

s)

Sample of Tiktok Downlink and Uplink flow
Downlink
Uplink

Figure 3.3: Sample of Tiktok link layer traffic flow.

24

3. Methods

Comparing these two figures, it is notable that there is more link layer traffic when a
user interacts with the Tiktok application. For example, some characteristics that
are evident for the human eye are the average, the maximum, and the total amount
of transmitted bits.

Following this reasoning, it could be possible to identify which application is being
used, even if the network traffic is encrypted. In the example, the difference between
the network traffic from Tiktok and Wikipedia is easy to identify. However, it would
be hard for a human to spot the difference between other applications like Facebook
and Instagram, which could be less evident to the human eye.

Thus, the approach is to implement a machine learning model to identify mobile
applications using statistical characteristics such as Standard Deviation, Mean,
Median, Kurtosis, etc.

3.3 Environment Setup

The implementation involves setting up a test environment to collect network infor-
mation from mobile apps. To accomplish this, a compact network circuit is created
to facilitate gathering this data, as described in Section 3.4.

Three main devices are utilized during this stage, a mobile phone, a sniffer, and a
5G router or gateway. A mobile phone generates network traffic using well-known
applications. This mobile phone is a regular Android phone, and the app interaction
is made by human behavior and automated script-based movements.

In addition, the sniffer is strategically positioned to intercept and analyze all the
data transmitted between the mobile phone and the 5G router. This is achieved by
utilizing software that enables the sniffer to capture and store all the network traffic
generated from the mobile phone in real-time, including programs like tcpdump, and
scripts in Python. Additionally, the sniffer also performs other functions, such as
blocking undesirable packets, such as ARP requests. To facilitate the setup process,
the mobile phone’s default gateway is the sniffer, ensuring that every bit of link layer
traffic flows through it.

And last, a 5G Router enables communication to the Internet over a 5G network.
This link is directly connected to the sniffer, and to avoid undesirable network traffic,
the sniffer has a firewall policy for blocking. This 5G Router is an E-Lins H685
Series, as shown in Figure 3.4. It is a compact 3G, 4G, and 5G cellular gateway
that connects a local area network, either wired or wireless (Wi-Fi) connection to a
cellular network1.

1https://www.e-lins.com/H685-4G-Router.html

25

3. Methods

Figure 3.4: E-Lins H685 Router1.

The technical specifications of this device are flexible, as it can communicate over
Frequency Ranges 1 and 2. Frequency Range 1 (FR1) covers the frequency range
from 450 MHz to 6 GHz, while Frequency Range 2 (FR2) covers the millimeter-wave
frequency range from 24.25 GHz to 52.6 GHz. This device can provide reliable
and high-speed connectivity for a wide range of applications by operating on both
frequency ranges. One of the key advantages of using millimeter-wave frequencies
is their ability to provide a high data rate throughput over a 5G link. Finally, the
circuit can be represented as shown in Figure 3.5.

Mobile phone Sniffer

Router

App Server

5G Gateway

5G Network

Figure 3.5: Traffic sniffing & Data Gathering.

The sniffer contains two virtual machines with an encrypted link between them as
shown in Figure 3.6. This link uses an OpenVPN link that adds a second layer of
encryption to the typical HTTPS/TLS communication. This encrypted link helps
the data gathering by avoiding any other network traffic generated by the host PC
and avoiding any information regarding the network traffic generated by the mobile
phone.

26

3. Methods

Mobile phone

OpenVPN Link

Router

App Server

5G Gateway

5G Network

Sniffing

VM1 VM2

Figure 3.6: Traffic sniffing & Data Gathering (internal view).

3.4 Data Gathering
Once the lab environment is set up, the next step is to collect the network traffic.
The process of data gathering and processing consists of the steps shown in Figure
3.7.

Traffic
Capture

.pcap
storage

Bursts
extraction

Statistical
parameters
calculation

Figure 3.7: Data Gathering Process.

Before capturing the traffic network, it is important to choose mobile applications.
The mobile applications used in this project are popular mobile applications from the
Android Play Store, and they are chosen to have different or similar characteristics.
For example, Facebook and Instagram are applications that are similar to one another.
In contrast, applications like Youtube and Wikipedia are very different. This way, it
is more likely to find different types of fingerprints in this stage of the process. Table
3.1 summarizes the mobile applications used in this project.

27

3. Methods

Mobile Description App Type
Application
Youtube A video-sharing platform where

users can upload, view, and share
videos.

video-based

Instagram A social media platform where users
can share photos and videos, follow
other users, and engage with content
through likes and comments.

video/picture-based.

Facebook A social networking platform where
users can connect with friends and
family, join groups, and share up-
dates and media.

video/picture-based.

Twitter A microblogging platform where
users can post short messages
(tweets) of up to 280 characters and
follow other users for real-time up-
dates.

mainly picture-based.

LinkedIn A professional networking platform
where users can connect with col-
leagues, showcase their skills and ex-
perience, and search for job oppor-
tunities.

mainly picture-based.

Tiktok A social media platform where users
can create and share short-form
videos set to music or other audio.

video-based.

Spotify A music streaming service that pro-
vides access to a vast library of songs
and podcasts for on-demand listen-
ing.

music stream-based.

Wikipedia A free, online encyclopedia that al-
lows users to create, edit, and con-
tribute to articles on a wide range of
topics.

text-based.

Table 3.1: List of tested mobile applications.

This project uses a Sony Xperia Z3 and a Motorola G7 (Android phones) to generate
network traffic from the applications. The traffic is generated by scrolling and
tapping arbitrary content from each application for approximately 60 seconds, using
the build-in random search function for content of the application if possible. This
scrolling and tapping generate network traffic from video and image downloads. For
example, on Youtube, the user scrolls over the application, randomly selects a video,
and starts watching it for approximately 60 seconds. Table 3.2 shows a summary of
the application link layer traffic flow generation while capturing the network traffic.

28

3. Methods

Application link layer traffic flow Generation
Youtube Scroll and play a random video.
Instagram Scroll over the "Home" tab or "Search" tab.
Facebook Scroll over the "News Feed" tab or the "Watch" tab (Reels

or Videos).
Twitter Scroll over the "For You" tab.
LinkedIn Scroll over the "Home" tab.
Tiktok Scroll over the "For you" tab and start watching any

random video.
Spotify Start playing a random song.
Wikipedia Open a random Wiki from the random link generator:

"https://en.wikipedia.org/wiki/Special:Random".

Table 3.2: Application link layer traffic flow generation.

During this stage, the sniffer recollects all the traffic from the mobile phone, which
is encrypted, so there is no information related to IP addresses or TCP ports. At
this point, the user can only run one application at a time; thus, traffic collected
only belongs to one application.

Then, all the network data is stored in a .pcap file, where the traffic collected is
saved. A .pcap file is a data file containing the link layer traffic flow transmitted and
received within a network.

In this scenario, a .pcap file contains only encrypted network traffic, so the infor-
mation that can be extracted is the size of each transmitted packet, and the timing
between packets. For example, Figure 3.8 shows a sample of packets transmitted
and received using the Youtube application. Every dot represents the length of a
packet downloaded (green) or uploaded (red). Even though this data could be used
for the analysis, it is still hard to distinguish between different statistical features,
such as mean, median, or maximum value. Therefore, the next step is to process
this raw network traffic and present in a more usable format.

0 20 40 60 80 100 120 140
Time (s)

1500

1000

500

0

500

1000

1500

Do
wn

lin
k

&
Up

lin
k

(b
its

)

Sample of packet size of Youtube Downlink and Uplink

Downlink
Uplink

Figure 3.8: Network Traffic Gathering.

29

3. Methods

3.5 Data Processing

Following the initial data collection, the next step is to transform the .pcap link layer
traffic flow based on packets into a flow based on total transmitted bits per second.
For example, Figure 3.9 shows the same packet link layer traffic flow of Figure 3.8 in
a way that it accumulates the number of bits transmitted every 50ms.

3 4 5 6 7 8 9
Time (s)

500

0

500

1000

1500

Do
wn

lin
k

&
Up

lin
k

da
ta

ra
te

 (k
bp

s)

Sample of Instagram Downlink and Uplink flow
Downlink
Uplink

Figure 3.9: Representation of link layer traffic flow in kbits per second.

After that, the next step in analyzing the traffic data is to identify and extract traffic
bursts for a more detailed analysis. This process involves using the Python library,
bursts_detection2, designed to detect bursts in large datasets. This package utilizes
Kleinberg’s burst detection algorithm, explained in subsection 2.2.2.

Additionally, during the burst detection process, any empty gaps (zero value gaps)
between bursts in the link layer traffic flow are eliminated. Each burst time is
subsequently followed by the next detected burst. This is done to prevent moments
where the user is not interacting with the app from being included in the analysis.
However, it is important to note that the original flow is not discarded, and both
flows are considered during the final analysis. Figure 3.10 shows an example of a
link layer traffic flow without zero values.

2http://github.com/nmarinsek/burst_detection

30

3. Methods

0 5 10 15 20 25 30
Burst sequence (s)

250

0

250

500

750

1000

1250

1500

1750

Do
wn

lin
k

&
Up

lin
k

da
ta

ra
te

 (k
bp

s)

Sample of Youtube Downlink and Uplink flow
Downlink
Uplink

Figure 3.10: Link layer traffic flow without zero values.

For instance, Figure 3.11 presents a comparison of the link layer traffic flow and
the detected bursts. The two graphs correspond to the same link layer traffic flow,
only that the second one only contains the detected bursts. Each detected burst is
surrounded by a rectangle with a different color, and after detection, each burst is
put one after the next. Finally, each arrow connects each burst detected in the first
plot to its corresponding position in the second.

10 15 20 25
Time (s)

1000

500

0

500

1000

1500

2000

D
o
w

n
lin

k
&

 U
p

lin
k

d
a
ta

ra
te

 (
kb

p
s) Packet Datarate over time

0 1 2 3 4 5 6 7
Burst sequence (s)

1000

500

0

500

1000

1500

2000

D
o
w

n
lin

k
&

 U
p

lin
k

d
a
ta

ra
te

 (
kb

p
s) Packet Datarate (only detected burst)

Downlink

Uplink

Downlink

Uplink

Figure 3.11: Burst detection process

This project uses k-NN, Random Forest, and LSTM to explore alternatives for traffic
identification. The implementation of k-NN and Random Forest is similar to the work
of Taylor et al. [4]; they extracted various statistical analysis parameters, including

31

3. Methods

Variance, Standard Deviation, Mean, and Kurtosis, before the actual classification.
Table 3.3 shows the parameters considered for the implementation. These parameters
are calculated from the complete flow and the filtered flow with no empty gaps.

Features (Downlink & Uplink) Mathematical Expression

Mean µ = 1
N

N∑
i=1

xi

Variance Var(X) = σ2 = 1
N

N∑
i=1

(xi − µ)2

Standard Deviation SD(X) = σ

Kurtosis K = κ = µ4

σ4 − 3

Skew S = γ = µ3
σ3

Maximum max
1≤i≤N

{xi}

Minimum min
1≤i≤N

{xi}

90% Percentile
80% Percentile
70% Percentile

60% Percentile Px = T (N ∗ x

100),
50% Percentile where T contains all xi

40% Percentile in ascending order.
30% Percentile
20% Percentile
10% Percentile

Total amount of packets N

Total amount of transmitted bits µN

Table 3.3: Statistical Parameters.

In the end, these features are calculated for the complete link layer traffic flow and
the flow without empty gaps. Then these two sets of features are concatenated for
being processed in the machine learning model. This approach accomplishes better
the classification results compared with a one-feature approach.

3.6 Model Parameters
This project tests three machine learning models, k-NN, Random Forest, and Long
short-Term Memory. The goal is to compare different approaches and see if mobile
app identification over a 5G network is possible.

a) k-NN

This machine learning model is simple, the main parameters are the number of
neighbors, leaf size, and the type of evaluation distance, as explained in Section
2.6.1. So, the parameters used in this project are shown in Table 3.4.

32

3. Methods

Parameters Values
Number of nearest neigh-
bors

5, 25, 50, 75, 100, 150, 200, 250, 300

Distance Euclidean, Manhattan, Minkowski
(p=3,4,5)

Leaf size 2, 5, 10, 25, 30

Table 3.4: k-NN Parameters.

The design is done with the usage of the Python library Sklearn KNeigh-
borsClassifier3 that gives a set of features to implement the machine learning
model.

b) Random Forest Classifier

This machine learning model is also simple, the main parameter is the number
of trees or estimator, which means the number of possible outcomes evaluated
by the model, as explored in Section 2.6.2. So, the parameters used in this
project are shown in Table 3.5.

Parameters Values
Estimators 5, 25, 50, 100, 150, 200, 250, 300
Max Depth 5, 10, 15, 20, 30, 50

Table 3.5: Random Forest Parameters.

Similar to k-NN, the machine learning model is made with the help of the Python
library, Sklearn KNeighborsClassifier4 that includes a set of customizable
parameters as the number of estimators, max depth, etc.

c) LSTM

This model needs more tuning. since this model requires the design of neural
network layers and the number of neurons on each layer. First, every sample is
split into small chunks, so it can be fed into the model.

Parameters Tentative model/values
Number of layer 2 4
1st layer LSTM: 64, 128, 256, 512,

1024 neurons
LSTM: 64, 128, 256, 512,
1024 neurons

2nd layer Dense (Output) Repeat: 5 times
3rd layer LSTM: 64, 128, 256, 512,

1024 neurons
4th layer Dense (Output)

Table 3.6: LSTM Parameters.
3https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
4https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

33

3. Methods

For this model, the implementation is done with the help of the Python library
Tensorflow LSTM5, along with other Tensorflow modules, it makes the design
of the neural network model easier.

3.7 Evaluation and Testing
In order to evaluate the performance of the models, the complete dataset is divided
into two distinct subsets. The first subset, which consists of 80% of the total samples,
is designated as the training set and is used to develop and optimize the models.
The remaining 20% of the data is reserved for testing the model’s generalization
ability and is referred to as the test set.

To ensure that the training process is unbiased and that the models’ performance on
the test set is not affected by the selection of training data, the split was performed
randomly. This ensures that the samples in the test set are not included in the
training set and that they are representative of the overall distribution of the data.
The use of a random split also helps to reduce the risk of overfitting, whereby the
model is overly specialized to the training data and performs poorly on new, unseen
data.

It is important to note that the choice of the split ratio can affect the model’s
performance. For instance, a larger training set may provide more opportunities
for the model to learn and generalize well, while a smaller training set may lead to
underfitting, where the model is too simplistic and cannot capture the underlying
patterns in the data. Therefore, the split ratio is chosen to balance the need for
sufficient training data and the desire to have a robust evaluation of the test set.

5https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM

34

4
Results

In this chapter, the results of the evalutation are presented. The initial focus is on
the characteristics of the environment setup, such as data rate, delay, signal strength,
and other relevant factors outlined in this section. By examining these variables, we
can gain insights into the conditions that may have influenced the project’s outcomes.
Next, the focus is on the data collected in the lab environments, highlighting various
statistics about the gathered data. Finally, a summary of the results of the machine
learning model is presented, which takes into account the data collected from both
simulated and real-world scenarios.

4.1 Enviroment Setup

Before showing results related to the data collected or the machine learning model,
some general characteristics of the environment setup are presented. Table 4.1 shows
the Internet data rate:

Internet Access Data rate(Mbps)
Download 162.36

Upload 30.04

Table 4.1: Internet data rate.

Although the Internet data rate is not constant, as it sometimes drops to 15 Mbps
download and 5 Mbps upload; however, this does not influence the results, because
the mobile phone uses at most 10 Mbps. Finally, Figure 4.1 shows an image of the
lab setup where it is shown the connections of the 5G router, the computer, and the
mobile phone that generates the network traffic.

35

4. Results

Figure 4.1: Lab Setup.

4.2 Data Gathering Results

The packets collected are preprocessed, so the evaluation is based on the number of
bits transmitted every 50ms as described in Section 3.4 and Section 3.5. So after
processing the network traffic, we obtain a flow as shown in Figure 4.2, an example
of the link layer traffic flow captured during the sniffing. This flow corresponds to
an Instagram traffic flow.

3 4 5 6 7 8 9
Time (s)

500

0

500

1000

1500

Do
wn

lin
k

&
Up

lin
k

da
ta

ra
te

 (k
bp

s)

Sample of Instagram Downlink and Uplink flow
Downlink
Uplink

Figure 4.2: Instagram link layer traffic flow.

The total amount of samples gathered for each application is shown in Table 4.2.

36

4. Results

Application Number of Samples
Facebook 237
Instagram 250
Linkedin 231
Spotify 246
Tiktok 236
Twitter 240

Wikipedia 247
Youtube 233

Total Samples 1920

Table 4.2: Amount of samples captured.

4.3 Data Processing Results
After extracting the bursts of the link layer traffic flow, some statistical values are
extracted as mentioned in Section 3.5. This section displays some relevant statistical
values such as mean, total, and median for the mobile app samples, which were
filtered through burst detection and extracted from the link layer traffic flow to
improve precision in the analysis.

For a general view of the link layer traffic flow, Figure 4.3 shows the distribution
of the mean of transmitted bits per second for every application. This figure is a
boxplot, which is a statistical visualization tool that displays the distribution of a
dataset. It consists of a box with whiskers extending from either end. The box in
the plot represents the interquartile range (IQR), which is the range between the
first quartile (Q1) and the third quartile (Q3) of the dataset. The median, or the
middle value of the dataset, is represented by a line inside the box. The whiskers
in the plot extend to the minimum and maximum values within a specified range,
typically 1.5 times the IQR. Any points outside this range are considered outliers
and are plotted as individual points beyond the whiskers.

facebook youtube instagram spotify wikipedia linkedin tiktok twitter
0

200

400

600

800

1000

1200

1400

1600

Do
wn

lo
ad

 d
at

ar
at

e
(k

bp
s)

Average download datarate (kbps) vs. App

Figure 4.3: Average of transmitted kbits per second.

37

4. Results

In the example, Wikipedia has a very low average data rate during its usage; instead,
video-related apps have a higher average data rate, such as Tiktok.

Another interesting statistical value is the number of bits transmitted during the
capture. Figure 4.4 shows some general view of the applications. Similar to the
previous example, Wikipedia has fewer bits transmitted compared to video-related
apps, such as Youtube or Instagram.

facebook youtube instagram spotify wikipedia linkedin tiktok twitter
0

100000

200000

300000

400000

500000

600000

700000

kb
its

Total downloaded kbits vs. App

Figure 4.4: Total amount of transmitted bits.

Additionally, both figures show a considerable amount of outliers, which can have
consequences on the model predictions, either positively or negatively.

4.4 Classification Results

This project uses three models: k-NN, Random Forest, and Long short-Term Memory.
This section shows a summary of the results found for each model. First, the models
are evaluated in a typical symmetric internet connection, a reference point for
comparison with the 5G connection.

a) k-NN Model

Figure 4.5 illustrates both the accuracy and the confusion matrix for the k-NN
model. The model’s accuracy was only able to achieve a maximum of 50.65%
over the entirety of the test dataset.

This suggests that the model could benefit from further refinement, and the
dataset may need to be optimized to enhance its performance.

38

4. Results

Fa
ce

bo
ok

Yo
ut

ub
e

In
st

ag
ra

m

Sp
ot

ify

W
ik

ip
ed

ia

Lin
ke

di
n

Ti
kt

ok

Tw
itt

er

Predicted label

Facebook

Youtube

Instagram

Spotify

Wikipedia

Linkedin

Tiktok

Twitter

Ac
tu

al
 la

be
l

50.00% 36.00% 0.00% 8.00% 0.00% 0.00% 0.00% 6.00%

32.56% 51.16% 0.00% 0.00% 0.00% 2.33% 0.00% 13.95%

5.17% 1.72% 43.10% 12.07% 8.62% 18.97% 3.45% 6.90%

0.00% 2.04% 10.20% 63.27% 10.20% 8.16% 2.04% 4.08%

0.00% 2.38% 11.90% 11.90% 59.52% 11.90% 2.38% 0.00%

9.76% 4.88% 12.20% 14.63% 0.00% 43.90% 7.32% 7.32%

0.00% 0.00% 9.80% 13.73% 5.88% 13.73% 56.86% 0.00%

12.24% 36.73% 4.08% 2.04% 0.00% 0.00% 6.12% 38.78%

Accuracy Score: 50.65%

Figure 4.5: Confusion Matrix k-NN.

Some additional conclusions can be extracted from the confusion matrix.
For instance, the accuracy of identifying Wikipedia is usually higher than
others. This happens because of the nature of Wikipedia which is a text-based
application and is very different from the others. It is worth to notice that
Spotify shows good accuracy; however, that is not consistent when testing
several times.

Table 4.3 shows the parameters of the best implemented model.

Parameters Values
Number of nearest neighbors 10
Distance Manhattan
Leaf size 30

Table 4.3: k-NN Parameters.

The observed low accuracy of the k-NN model could potentially be attributed
to the presence of a significant number of outliers in the dataset, which may
have a negative impact on the model’s ability to make accurate predictions.

Figure 4.6 presents the variations in accuracy when different parameters are
tested for the k-NN model. The main parameter, apart from the number of
neighbors, is Minkowski distance which is a generalization of the Euclidean
as mentioned in Section 2.6.1. No significant changes in the accuracy of the
model are observed concerning other parameters, such as leaf size; therefore,
they are not shown in the figure.

39

4. Results

0 50 100 150 200 250 300
Number of neighbors

0

10

20

30

40

50

Ac
cu

ra
cy

 (%
)

k-NN: accuracy and parameters
Minkowski metric: 1
Minkowski metric: 2
Minkowski metric: 3
Minkowski metric: 4
Minkowski metric: 5

Figure 4.6: Accuracy over different parameters.

Interestingly, it is observed that as the number of neighbors increases, the
accuracy diminishes, which suggests that this model is sensitive to the presence
of outliers in the dataset.

b) Random Forest Model

The Random Forest model accomplishes an accuracy of 87.73%, showing that
it is possible to identify mobile applications even if the communication channel
on a 5G network is encrypted. Figure 4.7 shows the confusion matrix for the
Random Forest Model.

Fa
ce

bo
ok

Yo
ut

ub
e

In
st

ag
ra

m

Sp
ot

ify

W
ik

ip
ed

ia

Lin
ke

di
n

Ti
kt

ok

Tw
itt

er

Predicted label

Facebook

Youtube

Instagram

Spotify

Wikipedia

Linkedin

Tiktok

Twitter

Ac
tu

al
 la

be
l

89.74% 2.56% 5.13% 0.00% 0.00% 0.00% 2.56% 0.00%

8.93% 85.71% 0.00% 0.00% 0.00% 0.00% 0.00% 5.36%

2.27% 0.00% 75.00% 9.09% 0.00% 6.82% 6.82% 0.00%

0.00% 0.00% 1.82% 92.73% 1.82% 0.00% 3.64% 0.00%

0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00%

0.00% 0.00% 16.28% 0.00% 0.00% 79.07% 4.65% 0.00%

0.00% 0.00% 6.12% 2.04% 0.00% 0.00% 91.84% 0.00%

0.00% 2.27% 0.00% 4.55% 4.55% 2.27% 2.27% 84.09%

Accuracy Score: 87.73%

Figure 4.7: Confusion Matrix Random Forest.

40

4. Results

Table 4.4 shows the parameters of the best Random Forest model.

Parameters Values
Estimators 200
Max Depth 20

Table 4.4: Random Forest Parameters.

In contrast with the k-NN model, accuracy is not affected significantly as
parameters change. Figure 4.8 presents how accuracy changes as other param-
eters vary. Notably, accuracy does not change significantly after the number
of estimators reaches the value of 50. Other parameters, such as maximum
depth and weight, do not have much influence on the result. Figure 4.8 only
shows the accuracy when the number of estimators and the maximum depth is
changing.

0 50 100 150 200 250
Number of estimators

0

20

40

60

80

Ac
cu

ra
cy

 (%
)

Random Forest: accuracy and parameters

Max depth: 5
Max depth: 10
Max depth: 15
Max depth: 20
Max depth: 30
Max depth: 50

Figure 4.8: Accuracy over different parameters.

Finally, these results of the project also confirm the statement made in Section
2.6.2 that Random Forest models are less sensitive to outliers when compared
with the k-NN model.

c) Long short-Term Memory

In contrast to the k-NN or Random Forest model, LSTM does not utilize the
statistical data; instead, it takes a different approach by using sequential data
as input, as explained in Section 3.6. Even though the accuracy is lower than
the Random Forest model, there is room for improvement since the accuracy is
only 41%.

41

4. Results

Fa
ce

bo
ok

Yo
ut

ub
e

In
st

ag
ra

m

Sp
ot

ify

W
ik

ip
ed

ia

Lin
ke

di
n

Ti
kt

ok

Tw
itt

er

Predicted label

Facebook

Youtube

Instagram

Spotify

Wikipedia

Linkedin

Tiktok

Twitter

Ac
tu

al
 la

be
l

7.25% 14.49% 18.84% 7.25% 20.29% 23.19% 0.00% 8.70%

3.19% 15.96% 6.38% 1.06% 36.17% 21.28% 0.00% 15.96%

5.33% 2.67% 25.33% 26.67% 5.33% 24.00% 8.00% 2.67%

0.00% 3.16% 10.53% 64.21% 4.21% 3.16% 5.26% 9.47%

3.26% 8.70% 0.00% 5.43% 64.13% 10.87% 0.00% 7.61%

5.08% 5.08% 18.64% 3.39% 1.69% 55.93% 5.08% 5.08%

0.00% 1.33% 14.67% 17.33% 0.00% 1.33% 64.00% 1.33%

0.00% 6.35% 11.11% 15.87% 28.57% 11.11% 3.17% 23.81%

Accuracy Score: 41.00%

Figure 4.9: Confusion Matrix LSTM.

In contrast to the Random Forest confusion matrix, LSTM shows higher confu-
sion for Wikipedia and others like Facebook and Youtube; but it accomplishes
higher accuracy over Twitter or Instagram.

Table 4.5 shows the parameters of the LSTM model, to achieve best accuracy
in the evaluation dataset.

Parameters Values
Number of layer 2
1st layer LSTM: 256 neurons
4th layer Dense (Output)

Table 4.5: LSTM Parameters.

Two main parameters change the accuracy of this model, the number of neurons
and the number of layers. Figure 4.10 shows how the accuracy changes while
changing those two parameters. It is notable that not necessarily accuracy
improves when increasing the number of layers, or increasing the number of
neurons on the LSTM layer.

42

4. Results

200 400 600 800 1000
Number of neurons

20

25

30

35

40

Ac
cu

ra
cy

 (%
)

LSTM: accuracy and parameters

Number of Layers: 2
Number of Layers: 4

Figure 4.10: Accuracy over different parameters.

d) Summary of the results

The findings of this project indicate that it is possible to identify or classify
mobile applications over a 5G network, even if the traffic flow is encrypted,
especially from the results found on the Random Forest Model. Table 4.6 shows
a summary of the results.

Model Accuracy Paramenters

k-NN 50.65%
Neightbors:10
Leaf size: 30
Distance: Manhattan

Random Forest 87.73% Estimators: 200
Depth: 20

LSTM 41.00% Layers: 2
LSTM neurons: 256

Table 4.6: Summary of results.

Finally, Despite this project being focused on a small set of applications, these
outcomes suggest that the approach could be extended to a wider range of
applications.

43

5
Conclusion

This section provides a summary of the key findings and insights from the project,
as well as recommendations for future work.

5.1 Discussion
The present project demonstrates the feasibility of identifying mobile applications over
a 5G network, but there is room for improvement in terms of accuracy. Investigating
the mechanisms behind the application communications could enhance accuracy.
By gaining a deeper understanding of how applications function, data could be
preprocessed more effectively before training the machine models, leading to more
precise identification results.

Although the scope of this project is limited to analyzing a small set of applications,
it is possible to scale up the analysis to include a larger number of applications.
Additionally, it may be important to consider the nature of the application being ana-
lyzed, such as whether it is a text-based or social-media application when conducting
future analyses.

This project builds upon previous research by expanding the findings that 5G networks
are vulnerable to side-channel attacks and that applications can be identified over the
network. This is a useful contribution to the literature, given that 5G is a relatively
new technology.

It is worth noting that the Random Forest model reaches accuracy in the range
of 87%, which is similar to the values found in the research conducted by Taylor
et al. [4]. This indicates that these results are good, but there is also room for
improvement.

Also, other approaches could be useful, such as grouping the dataset by the type
of app. For instance, grouping video-type apps, social media, or text-based apps in
different categories, etc., so the classification could be easier, given that the features
are more distinguishable from one to another.

Additionally, this project also explored the effectiveness of FFT (Fast Fourier Trans-
form) in analyzing link layer traffic flow on the frequency domain. However, the
test results were not promising. Despite the initial expectation that the technique
would provide valuable insights, the preliminary analysis did not show any significant

45

5. Conclusion

differences in traffic classification. A similar scenario occurred when attempting to
analyze the delay between the arrival of packets. This analysis did not demonstrate
any improvement in the classification. Therefore, other techniques or methodologies
may need to be explored to achieve the desired results in link layer traffic flow
analysis.

It is important to note that while some approaches showed no success in this project,
there is still potential for improvement by taking a different filtering process. Future
studies could explore alternative methods for identification to maximize accuracy
and improve the effectiveness of the overall approach.

5.2 Conclusion
The project concludes that identifying mobile applications on a 5G network, despite
encrypted network traffic, is feasible. The results demonstrate that the accuracy of
app identification depends on the chosen machine learning model due to the diverse
nature of traffic flows. Notably, this project finds that the Random Forest machine
learning model performs the best among the tested models, given its resistance to
outlier values.

Furthermore, the k-NN machine learning model is susceptible to the presence of
numerous outliers, as shown in Figure 4.3. Additionally, this project suggests that
identifying applications with different characteristics is possible, such as text-based
and video-based applications like Wikipedia and Youtube. This could also expand the
application identification, allowing to perform the identification of different classes
of applications like Streaming, Social, Games, News, etc.

In summary, the project confirms that identifying mobile applications on a 5G network
with encrypted traffic is achievable, and the Random Forest machine learning model
is the most accurate approach. The research also suggests that the identification of
applications with different characteristics is feasible, providing implications for areas
such as network security and mobile application management.

46

Bibliography

[1] Andrew Reed and Benjamin Klimkowski. “Leaky streams: Identifying variable
bitrate DASH videos streamed over encrypted 802.11n connections”. In: 2016
13th IEEE Annual Consumer Communications & Networking Conference
(CCNC). Jan. 2016, pp. 1107–1112. doi: 10.1109/CCNC.2016.7444944.

[2] Qinglong Wang, Amir Yahyavi, Bettina Kemme, and Wenbo He. “I know what
you did on your smartphone: Inferring app usage over encrypted data traffic”.
In: 2015 IEEE Conference on Communications and Network Security (CNS).
Sept. 2015, pp. 433–441. doi: 10.1109/CNS.2015.7346855.

[3] Marc Lichtman, Raghunandan Rao, Vuk Marojevic, Jeffrey Reed, and Roger
Piqueras Jover. 5G NR Jamming, Spoofing, and Sniffing: Threat Assessment
and Mitigation. May 1, 2018. 1 p. doi: 10.1109/ICCW.2018.8403769.

[4] Vincent F. Taylor, Riccardo Spolaor, Mauro Conti, and Ivan Martinovic.
“AppScanner: Automatic Fingerprinting of Smartphone Apps from Encrypted
Network Traffic”. In: 2016 IEEE European Symposium on Security and Privacy
(EuroS&P). Mar. 2016, pp. 439–454. doi: 10.1109/EuroSP.2016.40.

[5] Qiuning Ren, Chao Yang, and Jianfeng Ma. “App identification based on en-
crypted multi-smartphone sources traffic fingerprints”. In: Computer Networks
201 (Dec. 24, 2021), p. 108590. issn: 1389-1286. doi: 10.1016/j.comnet.
2021.108590.

[6] Yorgos Dimopoulos, Ilias Leontiadis, Pere Barlet-Ros, and Konstantina Papa-
giannaki. Measuring Video QoE from Encrypted Traffic. Nov. 14, 2016. 513 pp.
doi: 10.1145/2987443.2987459.

[7] Georgi Ajaeiya, Imad Elhajj, Ali Chehab, Ayman Kayssi, and Marc Kneppers.
“Mobile Apps identification based on network flows”. In: Knowledge and In-
formation Systems 55 (June 1, 2018), pp. 1–26. doi: 10.1007/s10115-017-
1111-8.

[8] 3GPP. 5G System Overview. url: https://www.3gpp.org/technologies/5g-
system-overview.

[9] ENISA. Security in 5G Specifications - Controls in 3GPP. url: https://www.
enisa.europa.eu/publications/security-in-5g-specifications.

[10] Guoqiang Shu and David Lee. “A Formal Methodology for Network Protocol
Fingerprinting”. In: IEEE Transactions on Parallel and Distributed Systems
22.11 (Nov. 2011), pp. 1813–1825. issn: 1558-2183. doi: 10.1109/TPDS.2011.
26.

[11] Timothy J. Shepard. “TCP Packet Trace Analysis”. PhD thesis. Feb. 1, 1991.

47

https://doi.org/10.1109/CCNC.2016.7444944
https://doi.org/10.1109/CNS.2015.7346855
https://doi.org/10.1109/ICCW.2018.8403769
https://doi.org/10.1109/EuroSP.2016.40
https://doi.org/10.1016/j.comnet.2021.108590
https://doi.org/10.1016/j.comnet.2021.108590
https://doi.org/10.1145/2987443.2987459
https://doi.org/10.1007/s10115-017-1111-8
https://doi.org/10.1007/s10115-017-1111-8
https://www.3gpp.org/technologies/5g-system-overview
https://www.3gpp.org/technologies/5g-system-overview
https://www.enisa.europa.eu/publications/security-in-5g-specifications
https://www.enisa.europa.eu/publications/security-in-5g-specifications
https://doi.org/10.1109/TPDS.2011.26
https://doi.org/10.1109/TPDS.2011.26

Bibliography

[12] Jon Kleinberg. “Bursty and Hierarchical Structure in Streams”. In: Data Mining
and Knowledge Discovery 7.4 (Oct. 1, 2003), pp. 373–397. issn: 1573-756X.
doi: 10.1023/A:1024940629314.

[13] Vipul Goyal. “Lecture Notes on Introduction to Cryptography”. In: (2020).
url: https://www.cs.cmu.edu/~goyal/15356/lecture_notes.pdf.

[14] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. Re-
quest for Comments RFC 8446. Internet Engineering Task Force, Aug. 2018.
doi: 10.17487/RFC8446.

[15] Eric Rescorla. HTTP Over TLS. Request for Comments RFC 2818. Internet
Engineering Task Force, May 2000. doi: 10.17487/RFC2818.

[16] IBM Corporation. IBM Documentation. Nov. 14, 2022. url: https://www.
ibm.com/docs/en/sdk-java-technology/8?topic=handshake-tls-13-
protocol.

[17] Khaled Al-Naami, Swarup Chandra, Ahmad Mustafa, Latifur Khan, Zhiqiang
Lin, Kevin Hamlen, and Bhavani Thuraisingham. Adaptive encrypted traffic
fingerprinting with bi-directional dependence. Dec. 5, 2016. 177 pp. doi: 10.
1145/2991079.2991123.

[18] Ivan Ristić. OpenSSL Cookbook. 3rd Edition. 2021. url: https : / / www .
feistyduck.com/library/openssl-cookbook/online/.

[19] Ethem Alpaydin and Francis Bach. Introduction to Machine Learning. 3rd
ed. Adaptive Computation and Machine Learning Ser. MIT Press, 2014. isbn:
978-0-262-32574-5.

[20] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. Adaptive
computation and machine learning. MIT Press, 2016. isbn: 978-0-262-03561-3.

[21] Christopher M. Bishop. Pattern recognition and machine learning. Information
science and statistics. Springer, 2006. isbn: 978-0-387-31073-2.

[22] Steven S. Skiena. “Distance and Network Methods”. In: The Data Science
Design Manual. Texts in Computer Science. Cham: Springer International
Publishing, 2017, pp. 303–349. isbn: 978-3-319-55444-0. doi: 10.1007/978-3-
319-55444-0_10.

[23] IBM Corporation. What is the k-nearest neighbors algorithm? url: https:
//www.ibm.com/se-en/topics/knn.

[24] Leo Breiman. “Random Forests”. In: Machine Learning 45.1 (Oct. 1, 2001),
pp. 5–32. issn: 1573-0565. doi: 10.1023/A:1010933404324.

[25] IBM Corporation. What is Random Forest? url: https://www.ibm.com/
topics/random-forest.

[26] Christopher Olah. Understanding LSTM Networks. url: https://colah.
github.io/posts/2015-08-Understanding-LSTMs/.

[27] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-term Memory”. In:
Neural computation 9 (Dec. 1, 1997), pp. 1735–80. doi: 10.1162/neco.1997.
9.8.1735.

[28] Klaus Greff, Rupesh Srivastava, Jan Koutník, Bas Steunebrink, and Jürgen
Schmidhuber. “LSTM: A search space odyssey”. In: IEEE transactions on
neural networks and learning systems 28 (Mar. 13, 2015). doi: 10.1109/TNNLS.
2016.2582924.

48

https://doi.org/10.1023/A:1024940629314
https://www.cs.cmu.edu/~goyal/15356/lecture_notes.pdf
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC2818
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=handshake-tls-13-protocol
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=handshake-tls-13-protocol
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=handshake-tls-13-protocol
https://doi.org/10.1145/2991079.2991123
https://doi.org/10.1145/2991079.2991123
https://www.feistyduck.com/library/openssl-cookbook/online/
https://www.feistyduck.com/library/openssl-cookbook/online/
https://doi.org/10.1007/978-3-319-55444-0_10
https://doi.org/10.1007/978-3-319-55444-0_10
https://www.ibm.com/se-en/topics/knn
https://www.ibm.com/se-en/topics/knn
https://doi.org/10.1023/A:1010933404324
https://www.ibm.com/topics/random-forest
https://www.ibm.com/topics/random-forest
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/TNNLS.2016.2582924
https://doi.org/10.1109/TNNLS.2016.2582924

Bibliography

[29] MIT Open Learning Library. Introduction to Machine Learning. Dec. 18, 2019.
url: https://openlearninglibrary.mit.edu/courses/course-v1:MITx+
6.036+1T2019/courseware/Week11/rnn/?activate_block_id=block-
v1%3AMITx%2B6.036%2B1T2019%2Btype%40sequential%2Bblock%40rnn.

[30] California Consumer Privacy Act (CCPA). State of California - Department
of Justice - Office of the Attorney General. Oct. 15, 2018. url: https://oag.
ca.gov/privacy/ccpa.

[31] GDPR. What is GDPR, the EU’s new data protection law? GDPR.eu. Section:
GDPR Overview. Nov. 7, 2018. url: https://gdpr.eu/what-is-gdpr/.

[32] Yang Li, Mengting Chen, and Jian Wang. “Introduction to side-channel at-
tacks and fault attacks”. In: 2016 Asia-Pacific International Symposium on
Electromagnetic Compatibility (APEMC). Vol. 01. May 2016, pp. 573–575.
doi: 10.1109/APEMC.2016.7522801.

[33] Eva Papadogiannaki and Sotiris Ioannidis. “A Survey on Encrypted Network
Traffic Analysis Applications, Techniques, and Countermeasures”. In: ACM
Computing Surveys 54.6 (July 13, 2021), 123:1–123:35. issn: 0360-0300. doi:
10.1145/3457904.

[34] Martin Bjorklund, Marcus Julin, Philip Antonsson, Andreas Stenwreth, Malte
Akvist, Tobias Hjalmarsson, and Romaric Duvignau. “I See What You’re
Watching on Your Streaming Service: Fast Identification of DASH Encrypted
Network Traces”. In: Nov. 2022.

[35] Romaric Duvignau. “Metainformation Extraction from Encrypted Streaming
Video Packet Traces”. In: 2022 International Conference on Electrical, Com-
puter, Communications and Mechatronics Engineering (ICECCME). Nov. 2022,
pp. 1–6. doi: 10.1109/ICECCME55909.2022.9988476.

[36] Ali Kamal, Syed Muhammad Ammar Hassan Bukhari, Muhammad Usman
Shahid Khan, Tahir Maqsood, and Muhammad Fayyaz. Traffic Pattern Plot:
Video Identification in Encrypted Network Traffic. Aug. 27, 2022.

[37] Roger Piqueras Jover. The current state of affairs in 5G security and the main
remaining security challenges. Apr. 18, 2019. doi: 10.48550/arXiv.1904.
08394. arXiv: 1904.08394[cs]. (Visited on 05/26/2023).

49

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week11/rnn/?activate_block_id=block-v1%3AMITx%2B6.036%2B1T2019%2Btype%40sequential%2Bblock%40rnn
https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week11/rnn/?activate_block_id=block-v1%3AMITx%2B6.036%2B1T2019%2Btype%40sequential%2Bblock%40rnn
https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/courseware/Week11/rnn/?activate_block_id=block-v1%3AMITx%2B6.036%2B1T2019%2Btype%40sequential%2Bblock%40rnn
https://oag.ca.gov/privacy/ccpa
https://oag.ca.gov/privacy/ccpa
https://gdpr.eu/what-is-gdpr/
https://doi.org/10.1109/APEMC.2016.7522801
https://doi.org/10.1145/3457904
https://doi.org/10.1109/ICECCME55909.2022.9988476
https://doi.org/10.48550/arXiv.1904.08394
https://doi.org/10.48550/arXiv.1904.08394
https://arxiv.org/abs/1904.08394 [cs]

	List of Figures
	List of Tables
	Introduction
	Context
	Problem description
	Goals and Challenges
	Limitations
	Ethical Considerations
	Report Structure

	Background
	5G
	Fingerprinting
	Flow
	Burst
	Bursts Detection

	Encryption
	TLS and HTTPS
	Mobile App Network Communication
	Machine Learning
	K-Nearest Neighbors (k-NN)
	Random Forest
	Recurrent Networks
	Long short-Term Memory

	Security and Privacy
	Related Work

	Methods
	Methodology overview
	Intuition behind burst based traffic detection
	Environment Setup
	Data Gathering
	Data Processing
	Model Parameters
	Evaluation and Testing

	Results
	Enviroment Setup
	Data Gathering Results
	Data Processing Results
	Classification Results

	Conclusion
	Discussion
	Conclusion

	Bibliography

