
Walk less, pick more:
choosing optimal batches of orders in a
warehouse

Master’s thesis in Computer Science and Engineering

CHRISTIAN PERSSON
MARTIN SIGVARDSSON

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2020

Master’s thesis 2020

Walk less, pick more:
choosing optimal batches of orders in a

warehouse

CHRISTIAN PERSSON
MARTIN SIGVARDSSON

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2020

Walk less, pick more: choosing optimal batches of orders in a warehouse
CHRISTIAN PERSSON
MARTIN SIGVARDSSON

© CHRISTIAN PERSSON, MARTIN SIGVARDSSON, 2020.

Supervisor: Peter Damaschke, Computer Science and Engineering
Advisor: Johan Härdmark, Ongoing Warehouse
Examiner: Carl-Johan Seger, Computer Science and Engineering

Master’s Thesis 2020
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Description of the picture on the cover page (if applicable)

Typeset in LATEX
Gothenburg, Sweden 2020

iv

Walk less, pick more: choosing optimal batches of orders in a warehouse
CHRISTIAN PERSSON
MARTIN SIGVARDSSON
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Most warehouses employ a picker-to-parts strategy, where humans (termed pickers)
traverse the warehouse to collect items. It is common for pickers to collect items
for several orders at once. Such a set of orders is called a batch. Two optimization
problems arise from this strategy. The picker routing problem refers to finding routes
through the warehouse to minimize the distance traveled. The batching problem
refers to selecting a combination of orders that minimizes the distance traveled.
These problems are the focus of this thesis.

To solve the optimization problems in the context of a real-world warehouse, a
graph model representing a warehouse was created. In addition, a model was created
for representing orders and batches as sets of nodes in such a graph. Additionally,
a collection of algorithms was designed to solve the optimization problems.

The models and the algorithms were implemented in code in the form of a library
for the C# programming language. The library is accompanied by a suite of tests to
help verify the correctness of the implementations. Furthermore, a suite of bench-
marks was created based on real-world warehouse data supplied by the company
Ongoing Warehouse. These benchmarks were used to evaluate the models and algo-
rithms in terms of quality and runtime. Based on the evaluation, a recommendation
was presented to Ongoing Warehouse of algorithms to use for integration into their
warehouse management system.

Keywords: warehouse, optimization, picker routing, order batching, travelling sales-
person problem, benchmarks, C#.

v

Acknowledgements
We would like to thank Peter Damaschke for support, guidance, and rapid feedback
in the role of our supervisor. We would also like to thank Johan Härdmark, our
advisor at Ongoing Warehouse, for teaching us details about warehouse operations
as well as guiding us in collecting data for the benchmarks. Additionally, we want
to thank Carl-Johan Seger for being our examiner. Finally, we want to thank On-
going Warehouse for letting us use their offices as well as for the delicious shrimp
sandwiches.

Christian Persson, Martin Sigvardsson, Gothenburg, July 2020

vii

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Notation and conventions . 1
1.2 Problem statement . 2

1.2.1 Informal descriptions . 2
1.2.2 Shortest Hamiltonian path problem 2
1.2.3 Batch optimization problem 3

1.3 Research questions . 5
1.4 Contributions . 5

2 Theory 7
2.1 The travelling salesperson problem 7

2.1.1 Reducing the shortest Hamiltonian path problem to the trav-
elling salesperson problem . 8

2.1.2 Classes of the travelling salesperson problem 8
2.2 Induced subgraphs . 9

3 Method 11
3.1 Abstract model of warehouse . 11

3.1.1 Graph representation . 11
3.1.2 Orders . 12
3.1.3 Creating a complete graph . 13

3.2 Considered algorithms . 14
3.2.1 Algorithms for the shortest Hamiltonian path problem 14

3.2.1.1 Held-Karp . 14
3.2.1.2 Held-Karp successive approximation 15
3.2.1.3 Nearest neighbor . 16
3.2.1.4 Tree doubling . 17
3.2.1.5 Christofides . 19

3.2.2 Algorithms for the batch optimization problem 20
3.2.2.1 Relative algorithms 20
3.2.2.2 Relative brute force algorithm 21
3.2.2.3 Relative greedy algorithm 22
3.2.2.4 Relative randomized algorithm 23

ix

Contents

3.3 Problem instances . 23
3.3.1 Instances of the shortest Hamiltonian path problem 24

3.3.1.1 TSPLIB instances 24
3.3.1.2 Induced instances . 25

3.3.2 Instances of the batch optimization problem 26
3.3.2.1 Creating snapshots of databases 26
3.3.2.2 Using snapshots to create sets of available orders . . 26
3.3.2.3 Description of warehouse 27
3.3.2.4 Full instances from warehouse data 28
3.3.2.5 Random subinstances 29

4 Implementation 31
4.1 Unimplemented algorithms . 31
4.2 The Graph namespace . 31

4.2.1 The IUndirectedGraph interface 32
4.2.2 The WeightArrayGraph class 33
4.2.3 The GridGraph class . 34
4.2.4 The ShortestPathCompleteGraph function 35
4.2.5 The IsConnected function . 36

4.3 The Shpp namespace . 36
4.3.1 The IShppSolver interface . 36

4.3.1.1 The ShppInstance class 36
4.3.1.2 The ShppSolution class 37

4.3.2 The HeldKarpSolver class . 37
4.3.3 The NearestNeighborSolver class 37
4.3.4 The TreeDoublingSolver class 38
4.3.5 The CachingSolver class . 38

4.4 The Bop namespace . 39
4.4.1 The IBopSolver interface . 39

4.4.1.1 The BopInstance class 40
4.4.1.2 The BopSolution class 40

4.4.2 The GreedySolver class . 41
4.4.3 The BruteForceSolver class 41
4.4.4 The RandomSolver class . 41

4.5 Evaluation program . 42
4.6 Concorde toolkit . 43

4.6.1 Motivation . 43
4.6.2 The Concorde solver . 44
4.6.3 Caching mechanism . 45
4.6.4 Examples of scripts in the toolkit 46

4.6.4.1 The generate-random-index-sets script 46
4.6.4.2 The solve-shpp script 47
4.6.4.3 The solve-bop script 47

4.7 Test suite . 48
4.7.1 Property-based testing . 48
4.7.2 The FsCheck library . 49

x

Contents

4.7.3 Examples of tested properties 49
4.7.4 Regression tests . 50

4.8 Benchmark suite . 51
4.8.1 Quality benchmarks . 52
4.8.2 Runtime benchmarks . 54

5 Results 57
5.1 Quality benchmarks . 57

5.1.1 Shortest Hamiltonian path problem solvers 57
5.1.2 Batch optimization problem solvers 59

5.2 Runtime benchmarks . 62
5.2.1 Shortest Hamiltonian path problem solvers 62
5.2.2 Batch optimization problem solvers 62

6 Discussion 65
6.1 Results for shortest Hamiltonian path problem 65

6.1.1 Quality benchmarks . 65
6.1.2 Runtime benchmarks . 66

6.2 Results for batch optimization problem 66
6.2.1 Quality benchmarks . 66
6.2.2 Runtime benchmarks . 67

6.2.2.1 General analysis . 67
6.2.2.2 Effect of using a cache 68

6.3 Importance of start and end points 69
6.4 Limitations . 69

6.4.1 Limitations of the model . 69
6.4.2 Limitations of the benchmarks 71

7 Conclusions 73
7.1 Recommendation of solvers . 73
7.2 Answers to research questions . 73
7.3 Future work . 75

7.3.1 Real-world warehouse deployment 75
7.3.2 More extensive benchmarking 75
7.3.3 Faster optimal algorithm . 76

7.4 Ethical considerations . 76

8 Related work 79

Bibliography 81

A Raw benchmark results I
A.1 Quality benchmarks . I
A.2 Runtime benchmarks . V

xi

Contents

xii

List of Figures

1.1 Example instance of the shortest Hamiltonian path problem, along
with its optimal solution. 3

1.2 Example instance of the batch optimization problem with N = 2.
The shaded nodes in Figure 1.2b, Figure 1.2c, and Figure 1.2d mark
the nodes that are included in the corresponding subsets. 4

1.3 Subgraphs induced by each batch of size N = 2 combined with the
start and end nodes. 5

2.1 An example of an original graph and a subgraph created from it. . . . 9
2.2 An example of an original graph and an induced subgraph created

from it using a set of nodes V ′. 10
2.3 An example of an original graph and an induced subgraph created

from it using a set of edges E ′. 10

3.1 The three steps taken in order to model a warehouse as a graph. . . . 12
3.2 Three different combinations of orders presented in the grid model

from Figure 3.1b. 12
3.3 Example of one calculation of paths of minimal distance, and the

resulting edges in what will become a complete graph. 14
3.4 An approximate birdseye view map of the warehouse, modeled from

the shelf layout. 28

4.1 An example of how a graph is represented by a WeightArrayGraph. . 33
4.2 An example of a simple warehouse layout and its representation in a

GridGraph. 34

5.1 Values of the quality benchmarks for the shortest Hamiltonian path
problem described in Section 4.8.1 and listed in Table 4.1. Lower is
better. 58

5.2 Calculated approximation ratios of the benchmarked solvers. The
approximation ratios were calculated using the value of the concorde
solver as baseline. Lower is better. 59

5.3 Values from the quality benchmarks for the batch optimization prob-
lem, based on the full instances, described in Section 4.8.1. Lower is
better. 60

xiii

List of Figures

5.4 Average approximation ratios of combinations of batch optimization
problem solver and shortest Hamiltonian path problem solvers, cal-
culated for the random subinstances. The ratios are calculated based
on the optimal solution obtained by brute-force combined with
concorde. Lower is better. 61

5.5 Average runtime for invocations of the Solve method of the nn and
td solvers. Lower is better. 62

5.6 Average runtime for invocations of the Solve method for different
combinations of batch optimization problem solvers, shortest Hamil-
tonian path problem solvers, and enabled/disabled cache. Lower is
better. 63

xiv

List of Tables

3.1 List of TSPLIB instances that were used to test and benchmark al-
gorithms for the shortest Hamiltonian path problem. 25

3.2 List of instances created from randomly selected induced subgraphs. . 26
3.3 List of instances of the batch optimization problem, created from

snapshots of a customer’s database. 29

4.1 Solvers used for quality benchmarks for the shortest Hamiltonian path
problem. The highlighted row marks the solver whose solutions acted
as baselines when calculating approximation ratios. 52

4.2 Combinations of solvers used for quality benchmarks based on the
instances listed in Table 3.3. 53

4.3 Combinations of solvers used for quality benchmarks based on the
random subinstances described in Section 3.3.2.5. The highlighted
row marks the combination of solvers whose solutions acted as base-
lines when calculating approximation ratios. 53

4.4 Solvers used for runtime benchmarks for the shortest Hamiltonian
path problem. 54

4.5 Combinations of solvers used for runtime benchmarks for the batch
optimization problem. 55

A.1 Results of quality benchmarks for the shortest Hamiltonian path
problem solvers. I

A.2 Results of quality benchmarks for the batch optimization problem
solvers on the full instances. III

A.3 Results of quality benchmarks for the batch optimization problem
solvers on the random subinstances. IV

A.4 Results of runtime benchmarks for the shortest Hamiltonian path
problem solvers. V

A.5 Results of runtime benchmarks for the batch optimization problem
solvers. VII

xv

List of Tables

xvi

1
Introduction

Warehouses are a vital part of logistics throughout the world today. One of the
most common styles of warehouse operations is the so-called picker-to-parts which
essentially means that items are stored in shelves and a picker needs to walk around
the shelves and isles collecting the items that are part of an order. This gives rise
to the problem of picker routing. Picker routing is the problem of deciding in what
order to visit each shelf and what paths to choose for traveling between the shelves
while collecting all the items for an order.

To further improve the rate at which items can be picked, most warehouses
equip their pickers with trolleys allowing them to collect more than one order at a
time when traveling through the warehouse. This gives rise to the problem of order
batching i.e., what orders to be combined to create a batch that can be picked as
efficiently as possible.

Modern warehouses generally use a warehouse management system which is es-
sentially a software application used to help manage operations on a day to day basis,
keeping track of for example what items are in stock and what orders that need to
be picked. Ongoing Warehouse is a company that develops a warehouse manage-
ment system and as such has access to their customers’ data, allowing hypothetical
experiments to be performed using real data.

By using Ongoing Warehouse’s insights this thesis evaluates different algorithms
for the routing and batching problems with the use of real-world warehouse data.

1.1 Notation and conventions
Some mathematical notation and concepts are used repeatedly throughout this re-
port. For consistency and clarity, the following conventions are used.

• Graphs. Unless specified otherwise, graphs are considered to be complete,
weighted, and undirected. Graphs are defined as G = (V,E) where V is the
set of nodes and E is the set of edges. Nodes are generally referred to using
the letter u, v, and w. The most common exceptions are the start and end
nodes in the optimization problems, where s refers to the start node and t
refers to the end node. An edge between nodes v and u is referred to as ev,u.
The weight of the edge ev,u is referred to as w({v, u}) and is a positive integer
unless specified otherwise. Note that since graphs are generally undirected, it
holds that ev,u = eu,v and w({v, u}) = w({u, v}).

• Orders and batches. In the context of the batch optimization problem

1

1. Introduction

(described below in Section 1.2.3), the set L refers to the set of available
orders. L is defined in the context of a graph G = (V,E). Each order in L is
a subset of V . A batch B is a set of orders, and therefore B ⊆ L. The set LN

refers to the set of subsets of L with size N . In other words, LN is the set of
batches with size N .

1.2 Problem statement
The thesis treats two optimization problems: the s-t shortest Hamiltonian path
problem and the batch optimization problem. The following sections first give an
informal description of them and the connection to warehouse operations, as well as
formal definitions of them.

1.2.1 Informal descriptions
In warehouse management terms, an order is a collection of items that are to be
picked and then packed together before being sent to a customer. As such, an order
represents an indivisible unit of work for a picker—they have to pick all items in
the order during a single tour of the warehouse. The pickers are assumed to start
their tour at some fixed location, pick all items, and then deliver the picked items
to some fixed location (which can be different from where they started).

An order can be represented as a set L of locations in the warehouse, at which
the items of the order can be picked. The picker travels along some path, visiting
each location in L exactly once to pick the required items. In this context, the s-t
shortest Hamiltonian path problem (henceforth simply referred to as the shortest
Hamiltonian path problem) can be described as the problem of finding a tour of
minimum length that starts in s, visits all locations in L exactly once, and ends in
t. The name relates to the concept of Hamiltonian paths, which are paths that visit
each node in a graph exactly once.

Furthermore, it is common for pickers to use trolleys with N compartments when
picking orders. Each compartment is assumed to have sufficient capacity to hold
all items in a single order, allowing a picker to pick up to N orders simultaneously
during a single tour of the warehouse. Such a set of orders is called a batch. In
most cases, picking a batch of N orders during a single tour yields a shorter total
distance traveled compared to doing N tours picking a single order at a time. In
this context, the batch optimization problem can be described as finding a batch B
of exactly N orders, where the orders are selected from a set L of available orders,
such that the distance of a single tour picking all orders in B is minimal among all
possible batches.

1.2.2 Shortest Hamiltonian path problem
The shortest Hamiltonian path problem is formally defined as follows. Given are
the following:

• A complete, undirected graph G = (V,E), where V is the set of vertices, and
E is the set of edges.

2

1. Introduction

• Edge weights w({v, u}) for all v, u ∈ V .

• Two vertices s, t ∈ V .

Let V ′ = V \ {s, t} and let Π(V ′) be the set of permutations of V ′. The shortest
Hamiltonian path problem is then a minimization problem defined as finding

min
(v1,...,vn)∈Π(V ′)

(
w({s, v1}) +

(
n−1∑
i=1

w({vi, vi+1})
)

+ w({vn, t})
)
.

Figure 1.1 contains an example instance of the shortest Hamiltonian path prob-
lem on a graph with 5 nodes. Figure 1.1a contains the complete, weighted, and
undirected graph, as well as the start and end nodes. Figure 1.1b contains the op-
timal solution to the example instance, showing the path through the graph with
minimum length.

t

s
7 3

92 3

10
5 6

8

1

(a) The graph in the instance. s
and t denote the start and end
nodes, respectively.

t

s
7 3

8

1

(b) The optimal solution, with a
length of 19.

Figure 1.1: Example instance of the shortest Hamiltonian path problem, along
with its optimal solution.

1.2.3 Batch optimization problem
The batch optimization problem is formally defined as follows. Given are the fol-
lowing:

• A complete, undirected graph G = (V,E), where V is the set of vertices, and
E is the set of edges.

• Edge weights w({v, u}) for all v, u ∈ V .

• Two vertices s, t ∈ V .

• A set L of subsets of V ′, where V ′ = V \ {s, t}.

• A positive integer N .

3

1. Introduction

Let LN be the set of subsets with size N of L. More precisely, LN is defined as

LN = {B | B ⊆ L, |B| = N}.

Define a function U that given a set of sets returns the union of the sets. More
precisely, U is defined as

U(S) =
⋃

S∈S
S.

Finally, for any Q ⊆ V such that s, t ∈ Q, define G[Q] to be the induced subgraph
of G by Q. Then define D∗(Q) to be the minimum distance of a path starting in s,
visiting each vertex in G[Q] exactly once, and ending in t. Equivalently, D∗(Q) is
the length of an optimal solution to the instance of the shortest Hamiltonian path
problem on the graph G[Q], the weight function w, and the vertices s, t. The batch
optimization problem is then a minimization problem defined as finding

min
B∈LN

D∗(U(B) ∪ {s, t}).

Figure 1.2 contains an example instance of the batch optimization problem where
N = 2. The subsets depicted in Figure 1.2b, Figure 1.2b, and Figure 1.2b together
form the set L = {A,B,C}.

t

s
7 3

92 3

10
5 6

8

1

(a) The graph in the instance. s and t denote the start and end nodes, respectively.

t

s

(b) Subset A.
t

s

(c) Subset B.
t

s

(d) Subset C.

Figure 1.2: Example instance of the batch optimization problem with N = 2. The
shaded nodes in Figure 1.2b, Figure 1.2c, and Figure 1.2d mark the nodes that are
included in the corresponding subsets.

The set LN = L2 = {{A,B}, {A,C}, {B,C}} is depicted in Figure 1.3, where
each batch is combined with the start and end nodes, and a corresponding induced
subgraph is created. The optimal solution is the batch {A,B}, depicted in Fig-
ure 1.3a.

4

1. Introduction

t

s
7

2 3
5 6

1

(a) Subgraph induced by
{A,B}. Minimum path
length is 13. This is the
optimal solution.

t

s
7 3

3

10
6

(b) Subgraph induced by
{A,C}. Minimum path
length is 19.

t

s
7 3

92 3

10
5 6

8

1

(c) Subgraph induced by
{B,C}. Minimum path
length is 19.

Figure 1.3: Subgraphs induced by each batch of size N = 2 combined with the
start and end nodes.

1.3 Research questions
The work done in this thesis was guided by seeking answers to the following ques-
tions.

1. Can abstract models and algorithms from the existing literature on warehouse
optimization, as well as combinatorial optimization, be modified, adapted, or
combined to solve the optimization problems as defined in Section 1.2?

2. How well do such algorithms perform when applied to real-world warehouse
data, when considering measurements such as running time, memory require-
ments, and approximation ratios? How does this compare to theoretical results
such as average-case and worst-case scenarios?

3. Are such models and algorithms suitable to solve the batch optimization prob-
lem in a real-world warehouse? If not, what assumptions and delimitations
need to be lifted for the models and algorithms to become suitable?

1.4 Contributions
The main contribution of the thesis is a flexible software library for solving the
shortest Hamiltonian path problem and the batch optimization problem, written in
the C# language. It has few dependencies to avoid unnecessary complications with
version handling and complex configuration management. The library includes im-
plementations of several different algorithms, to be used under a common interface.

Along with the library comes a set of problem instances with optimal solutions
for the shortest Hamiltonian path problem and approximate solutions for the batch
optimization problem. The library also includes a testing suite with property-based
tests and regression tests, as well as a benchmarking suite implementing benchmarks
for each of the aforementioned problem instances.

5

1. Introduction

6

2
Theory

The purpose of this chapter is to give a more detailed description of two topics that
are important for the rest of this report: the travelling salesperson problem, and
induced subgraphs.

The travelling salesperson problem is important due to being closely related
to the shortest Hamiltonian path problem. Section 2.1 gives a description of the
travelling salesperson problem, how it is related to the shortest Hamiltonian path
problem (including a reduction from the shortest Hamiltonian path problem to the
travelling salesperson problem), and a description of some important types of special
cases.

Induced subgraphs are important due to being a part of the definition of the
batch optimization problem. Section 2.2 gives a description of subgraphs as well as
how induced subgraphs are created from a set of nodes or a set of edges.

2.1 The travelling salesperson problem

The travelling salesperson problem is a classical problem in combinatorial optimiza-
tion. In informal terms, it can be described as follows:

Given a set of cities and the distances between them, find the shortest
route that starts in some city, visits all cities exactly once, and returns
to the starting city.

A tour of a graph that visits all nodes exactly once and returns to the starting node
is called a Hamiltonian cycle. This hints at the close relation between the travelling
salesperson problem and the shortest Hamiltonian path problem: in the former a
Hamiltonian cycle is sought; in the latter a Hamiltonian path where the first and
last nodes are distinct is sought. As such, one can view the travelling salesperson
problem and the shortest Hamiltonian path problem as variations of one another.

The travelling salesperson problem (and therefore, also the shortest Hamiltonian
path problem) has many practical applications outside warehouses. For example,
finding a route for a drill machine that should drill a set of holes in an electronic
circuit, moving the drill as little as possible. Another example appears in astronomy,
where a telescope should be moved between a set of sources, minimizing the amount
of movement.

7

2. Theory

2.1.1 Reducing the shortest Hamiltonian path problem to
the travelling salesperson problem

It is possible to reduce an instance of the shortest Hamiltonian path problem to an
instance of the travelling salesperson problem in polynomial time. The reduction is
as follows. Let G = (V,E) be the graph in the shortest Hamiltonian path problem
instance, and let s and t be the start and end nodes, respectively. An instance of the
travelling salesperson problem can be constructed by augmenting G with an extra
node v0 and constructing a new graph G′ = (V ′, E ′), where V ′ is defined as

V ′ = V ∪ {v0}

and E ′ is defined as
E ′ = E ∪ {ev0,v | v ∈ V }.

The weights of the new graph are updated so that

w({v0, v}) =


0 if v = s

0 if v = t

∞ otherwise

for all nodes v ∈ V . A travelling salesperson problem instance can now be defined
for G′ using v0 as the starting node.

Once a solution to the travelling salesperson problem instance has been found,
it can be transformed into a solution of the shortest Hamiltonian path problem. An
optimal solution O′OPT to the travelling salesperson problem instance will be of the
form

O′OPT = (v0, s, . . . , t, v0).

No other node than s or t can appear as second to first or second to last node
of an optimal solution, since the weight from v0 to any other weight is ∞, and
therefore the solution would not be optimal. An optimal solution OOPT to the
shortest Hamiltonian path problem instance can now be found by removing v0 from
the beginning and the end of O′OPT. The length of OOPT will be equal to O′OPT,
since

w({v0, s}) = w({t, v0}) = 0.

Note that it is possible that O′OPT instead has the form

O′OPT = (v0, t, . . . , s, v0)

in which case one can simply reverse O′OPT and follow the same argument as above.

2.1.2 Classes of the travelling salesperson problem
The general case of the travelling salesperson problem places very little constraints
on the input, other than that a solution should exist. (A solution does not exist
if the graph has two or more components.) However, for many practical problems,
certain special cases of the travelling salesperson problem are sufficient.

8

2. Theory

One such special case is the symmetric travelling salesperson problem, in which all
distances are symmetric: the distance from city i to city j is equal to the distance
from city j to city i, for all i and j. This case is commonly used for practical
applications of the travelling salesperson problem.

Another special case is the metric travelling salesperson problem, in which all
distances fulfill the triangle inequality. The triangle inequality states that going
directly from city i to city j is never longer than going from city i to city k and then
from city k to city j. More formally, the triangle inequality states that

w({v, u}) ≤ w({v, w}) + w({w, u})

for any v, u, w ∈ V .

2.2 Induced subgraphs

From a graph G = (V,E), a subgraph can be created. A subgraph is a graph
G′ = (V ′, E ′) such that V ′ ⊆ V and E ′ ⊆ E. Obviously, it must hold that E ′ only
contains edges between nodes in V ′. Figure 2.1 contains an example of a graph G
and a subgraph G′ created from it.

(a) The original graph. (b) The subgraph.

Figure 2.1: An example of an original graph and a subgraph created from it.

There exists a certain kind of subgraph, called an induced subgraph. An induced
subgraph is created from an original graph G = (V,E) and a set of nodes V ′ ⊆ V .
The set of edges E ′ of the induced subgraph is defined as all edges in E that connect
two nodes in V ′. More formally, E ′ is defined as

E ′ = {ev,u | ev,u ∈ E ∧ v, u ∈ V ′}.

The notation G[V ′] denotes an induced subgraph of G by the set of nodes V ′.
Figure 2.2 contains an example of an original graph and an induced subgraph created
from it.

9

2. Theory

(a) The original graph. The shaded
nodes are in the set of nodes V ′ to in-
duce by.

(b) The induced subgraph.

Figure 2.2: An example of an original graph and an induced subgraph created
from it using a set of nodes V ′.

It is also possible to induce a subgraph by a set of edges, instead of by a set of
nodes. The principle is similar: the set of nodes in the induced subgraph is then
defined to be all nodes that are an endpoint to at least one edge in the set of edges.
More formally: given a graph G = (V,E) and a set of edges E ′, an edge-induced
subgraph is a graph G′ = (V ′, E ′) where

V ′ = {v | ∃eu,w ∈ E ′ : (v = u ∨ v = w)}.

(a) The original graph. The thick edges
are in the set of edges E ′ to induce by.

(b) The induced subgraph.

Figure 2.3: An example of an original graph and an induced subgraph created
from it using a set of edges E ′.

10

3
Method

To approach the shortest Hamiltonian path problem and the batch optimization
problem in the context of warehouses, a set of models and algorithms were created.
To evaluate them, sets of instances for the two optimization problems were created.
This chapter gives theoretical descriptions of the models, the algorithms, and the
instances.

Section 3.1 describes the abstract models used to represent warehouses and orders
to be picked within them, as well as how those models related to the definition of
the batch optimization problem. Section 3.2 describes the algorithms that were
considered for implementation. Finally, Section 3.3 describes the instances of the
shortest Hamiltonian path problem and the batch optimization problem that were
used to evaluate the implemented algorithms.

3.1 Abstract model of warehouse

In order to consolidate the abstract description of the batch optimization problem
with concrete data from a warehouse, an abstract model of a warehouse and its
orders is needed. A warehouse is represented as an undirected, unweighted graph,
describing the layout of the warehouse. Orders are represented as subsets of nodes
within that graph. This section gives a more detailed description of these models,
along with a description of a method for converting the warehouse graph into a com-
plete, weighted, undirected graph suitable for use in a batch optimization problem
instance.

3.1.1 Graph representation

The initial representation of a warehouse as a graph is based on the simple intuition
of looking down at the shelf layout from above. A simple example can be seen in
Figure 3.1a, the white space represent aisles and the blue space represent shelves.

Onto this view a simple 2D grid is then added, this representation can be seen
in Figure 3.1b. Every white square in the constructed view of the warehouse then
corresponds to a node in a graph and any parts covered by shelves or walls are
considered blocked spaces limiting the connection between the nodes. As all nodes
are considered connected to each of the neighboring nodes sharing a full side this
translates into the common graph representation that can be seen in Figure 3.1c.

11

3. Method

(a) A model of a small
warehouse as seen from
above.

(b) The model from Fig-
ure 3.1a, with an added
grid.

(c) The resulting graph
representation of the
model from Figure 3.1a.

Figure 3.1: The three steps taken in order to model a warehouse as a graph.

3.1.2 Orders
An order in a real warehouse consists of one or more order lines, where each order line
represents a specific item, the ordered quantity of that item and one or more locations
where the items are placed (if the full quantity is not matched at a single location
there can be multiple). The warehouse locations usually follow a naming convention
intended to make them easy to find, for example “A-01-04” corresponds to aisle A,
shelf 1 and the fourth compartment from the bottom. In order to use the orders
together with the aforementioned 2D warehouse representation the height dimension
is disregarded while the rest of the name is translated into the corresponding row
and column mapping to the node from where the compartment would be accessed.
An example of this can be seen in Figure 3.2 where Figure 3.2a and Figure 3.2b
display two different orders, each containing one location with different placements.

Since an order is represented by the set of nodes corresponding to the locations
that need to be visited, the model discards the ordered quantity of each item. As
such, the model makes a simplification to more easily consolidate the abstract batch
optimization problem with a real-world warehouse. As a consequence, a batch is
then a set of orders where the union of all included orders correspond to the locations
necessary to visit in order to collect all the items in the batch. This is displayed in
Figure 3.2c, where the union of order A and B corresponds to the combination of
their separate locations. With this representation, the orders correspond to that of
the formal definition of the batch optimization problem found in Section 1.2.3.

(a) Order A. (b) Order B. (c) Union of A and B.

Figure 3.2: Three different combinations of orders presented in the grid model
from Figure 3.1b.

12

3. Method

3.1.3 Creating a complete graph

In order to bridge the existing gap between the warehouse model with the theoretical
problem descriptions mentioned in Section 1.2, the graph representation need more
updates. Currently the representation consists of the 2D graph with unit weight
edges presented in Section 3.1.1, while the theoretical problems require complete
graphs. If the graph is connected (which is a reasonable assumption for a ware-
house) such an adaptation can be performed with the help of Dijkstra’s famous
algorithm [10].

Running the algorithm with each node in the graph as input will sequently
produce the shortest path between the input node and every other node: by adding
an edge with the calculated weight between the source node and each of the targets
subsequently a complete graph is produced. An example of the first step can be seen
in Figure 3.3a, where the distance from the top left node to every other node in the
graph has been calculated, Figure 3.3b then illustrates the addition of edges with
corresponding weight to the graph representation. The resulting complete graph
is then a representation of the warehouse where every edge weight corresponds to
the shortest path between two nodes, and as such it follows the triangle inequality
explained in Section 2.1.2. And matches the complete graph in the formal description
of the batch optimization problem that is found in Section 1.2.3

Proposition 3.1. The weights of the complete graph fulfill the triangle inequality.

Proof. Define Pv,u to be a shortest path between any pair of distinct nodes v and
u. Furthermore, let d(Pv,u) denote the length of Pv,u. Now, assume that for some
choice of nodes v, u, w the triangle inequality does not hold, i.e., there exists shortest
paths Pv,w, Pv,u, Pu,w such that

d(Pv,w) > d(Pv,u) + d(Pu,w).

It would then be possible to create a path P ′v,w by concatenating Pv,u and Pu,w.
Clearly, it holds that

d(P ′v,w) = d(Pv,u) + d(Pu,w).

Furthermore, d(Pv,w) > d(P ′v,w). This is a contradiction, since Pv,w was defined to
be a shortest path between v and w, and therefore no path exists that is shorter
than Pv,w. Thus, the assumption is false, and it holds that the triangle inequality
holds for any choice of nodes v, u, w.

13

3. Method

5

0 5

1 2 3 4

2

(a) Calculated distances from the first
node to every other node.

2

2

4

3

5
5

1

(b) The calculated edges in Fig-
ure 3.3a added to the graph represen-
tation displayed in Figure 3.1c.

Figure 3.3: Example of one calculation of paths of minimal distance, and the
resulting edges in what will become a complete graph.

3.2 Considered algorithms
This section treats algorithms for the shortest Hamiltonian path problem and the
batch optimization problem that were considered for implementation and evaluation.
The algorithms are treated with a description of their origins, some details about
how they work, as well as what their performance characteristics are in terms of
approximation ratio, time complexity, and space complexity.

3.2.1 Algorithms for the shortest Hamiltonian path prob-
lem

Since the shortest Hamiltonian path problem is so closely related to the travelling
salesperson problem, there exists many algorithms for the travelling salesperson
problem that can be adapted for the shortest Hamiltonian path problem. This
section presents a selection of such algorithms, with a brief description of each
algorithm along with their time and space complexities.

3.2.1.1 Held-Karp

The Held-Karp algorithm [15] is a dynamic programming algorithm that solves the
symmetric travelling salesperson problem optimally. The algorithm is an early ap-
plication of the dynamic programming approach, and was discovered independently
by Bellman [1] as well as Held and Karp in 1962. It is simple and arguably the most
well-known algorithm for solving the symmetric travelling salesperson problem op-
timally.

The algorithm is based on the following property: if P is a path of minimum
distance between two nodes in a graph then every subpath of P is also of mini-
mum distance. This property can be used to solve a subproblem of the travelling
salesperson problem: finding a path of minimum distance that visits a subset of

14

3. Method

the nodes in the graph exactly once, and ending in a specific node. Solutions to
such subproblems can then be used in a recursive fashion to find a solution for the
original problem.

In the authors’ description of the algorithm the nodes of a graph are represented
by numbers {1, . . . , N}. The node denoted by 1 is then considered to be the start
node of the tour. However, the authors do not prescribe a specific method for
creating such a numbering; it is just used for convenient notation. A solution is
then a permutation (1, i2, . . . , iN) where i2, . . . , iN ∈ {2, . . . , N} and ij 6= ik for
j 6= k.

The core of the algorithm is a function called C. It is defined for all S ⊆
{2, . . . , N} and all l ∈ S, and denotes the minimum cost of starting in node 1,
visiting each node in S, and ending in node l. Formally, it is defined as follows:

C(S, l) =
{
w({1, l}) for |S| = 1
minm∈S\{l}[C(S \ {l},m) + w({m, l})] for |S| > 1 (3.1)

The algorithm to find a path of minimum distance is a two-phase computation.
In the first phase, the values of the function C are calculated recursively for all
values of S and l. Finally, the minimum path cost is calculated as

C∗ = min
l∈{2,...,N}

[C({2, . . . , N}, l) + w({l, 1})]. (3.2)

In the second phase, a path of minimum cost is calculated. First, the value of l that
gives a minimum value of C∗ in (3.2) is determined. That gives the last node in
the tour, iN . Knowing iN , it is possible to calculate iN−1 in a similar fashion based
on the definitions in (3.1), and repeat that calculation recursively until the full tour
has been calculated.

The algorithm is proven by its authors to have a time complexity of O(2NN2)
and a space complexity of O(2NN). As such, the execution time and the required
space grow exponentially, and it is infeasible to use for even moderately large values
of N . However, it still has value as a simple, deterministic algorithm to find an
optimal solution.

Since the algorithm solves the travelling salesperson problem, it needs to be
adapted slightly to solve the shortest Hamiltonian path problem. For the shortest
Hamiltonian path problem, it is assumed that the tour starts in node 1, visits each
node, and ends in node N . The C function is defined as in (3.1), however, the S
argument is now defined to be S ⊆ {2, . . . , N − 1}. The minimum path cost is then
calculated as

C∗ = min
l∈{2,...,N−1}

[C({2, . . . , N − 1}, l) + w({l, N})].

The adapted version of the algorithm can easily be seen to retain the complexities
of the original algorithm.

3.2.1.2 Held-Karp successive approximation

Since the optimal Held-Karp algorithm (described in Section 3.2.1.1) has exponential
complexities in both time and space, Held and Karp recognized that it was infeasible

15

3. Method

to use for larger problem instances. Therefore, in the same paper [15], Held and Karp
also describe an approximation algorithm. Furthermore, Held and Karp describe a
computer program that implements the approximation algorithm, and found that
in many cases it was able to find an optimum tour (or what is believed to be an
optimum tour).

The main idea of the algorithm is to from a given tour P try to construct a
tour P ′ that is shorter than P . If successful, then P ′ can be the basis for a new
application of the algorithm: from P ′, try to construct a tour P ′′ that is shorter
than P ′. Using this successive approach, one can hope to eventually construct a
tour that is close to an optimal tour.

The approximation algorithm is carried out by optimally solving the travelling
salesperson problem on an instance of smaller size, and using the solution for the
smaller instance to construct a solution for the original problem. A tour P is par-
titioned into subpaths, where the number of subpaths is given by an additional
parameter q. Then, an instance of the travelling salesperson problem consisting of
q nodes is defined where the weight between one subpath (ij, . . . , ik) and another
subpath (il, . . . , im) is given by w({ik, il}). Using the optimal algorithm described
in Section 3.2.1.1, a solution to the q-node travelling salesperson problem instance
is acquired, and the subpaths are then joined to form a complete tour of the original
graph.

Partitioning the path P into q segments gives rise to the problem of how to
choose a partition that leads to a better solution. Held and Karp describe two types
of partitions that have, in their experience, proven to be useful: a local partition
and a global partition. In the local partition, q − 1 subpaths consist of a single
node each, and the remaining subpath consists of the rest of the nodes. In the
global partition, all q subpaths are of nearly equal size. Held and Karp recommend
that, when employing the successive approach, alternate phases of local and global
partitions tend to be desirable [15].

The complexities of the algorithm depends largely on the choice of q. The optimal
algorithm used to solve the q-node has a time complexity of O(2qq2) and a space
complexity of O(2qq). Doing k iterations of the successive approach then yields a
time complexity of O(k · 2qq2) and a space complexity of O(2qq).

3.2.1.3 Nearest neighbor

The nearest neighbor algorithm is heuristic algorithm for the travelling salesperson
problem. There appears to be no clear origin for the algorithm, although it has been
described in a paper by Bellmore and Nemhauser from 1968 [2]; as such, the origin
of the algorithm can be said to be “folklore”.

The algorithm is based on a simple greedy rule: from the current node select the
closest node that has not yet been visited Application of this rule is repeated until
all nodes in the graph have been visited. Algorithm 3.1 contains a full description
of the nearest neighbor algorithm.

There is no bound on the approximation ratio achieved by the nearest neigh-
bor algorithm for the general travelling salesperson problem. In fact, it is possi-
ble to specifically craft instances of the travelling salesperson problem where the
nearest neighbor algorithm yields the worst route [14]. However, while there is no

16

3. Method

Algorithm 3.1 The nearest neighbor algorithm for the travelling salesperson prob-
lem on a graph G = (V,E).

1: Let Q be the set of unvisited nodes. Q is initialized to V \ {s}.
2: Let T be the sequence of nodes in the tour. T is initialized to [s].
3: Let v be the current node. Initialize v to s.
4: while there are nodes in Q do
5: Find u ∈ Q such that w({v, u}) is minimized.
6: Remove u from Q.
7: Append u to T .
8: Set v to u.
9: end while

10: Return T .

theoretical bound of the approximation ratio, the nearest neighbor algorithm may
produce good results in practice. Furthemore, for instances of the metric travel-
ling salesperson problem it can be shown that the worst-case approximation ratio
is O(log |V |) [27]. This makes the nearest neighbor algorithm interesting for the
purposes of this thesis, where the graphs will have weights fulfilling the triangle
inequality (see Section 3.1.3).

The time complexity of the algorithm is O(|V |2). There is one iteration of the
loop in step 4 for each node in V . In each loop, finding the closest node in step 5
takes O(|V |) time. Therefore, the total complexity of the algorithm is O(|V |2).

The space complexity of the algorithm is O(|V |) since both Q and T require
O(|V |) space each, and finding the minimum element in step 5 can be done in O(1)
space. All other operations can clearly be done in O(1) space, yielding a final space
complexity of O(|V |).

Adapating the nearest neighbor algorithm for the shortest Hamiltonian path
problem is straightforward. The greedy rule is unmodified, but the setQ is initialized
to also not contain the end node vt. Finally, there is an extra operation after the
loop that adds the end node to the tour. Algorithm 3.2 contains a full description of
the adapted nearest neighbor algorithm for the shortest Hamiltonian path problem.
The adapted algorithm can easily be seen to retain the time and space complexities
of the original algorithm.

3.2.1.4 Tree doubling

The tree doubling algorithm is a simple approximation algorithm for the metric
travelling salesperson problem (see Section 2.1) that achieves an approximation ratio
of 2 [3]. The algorithm does not appear to have a single, clear origin; it appears to
be “folklore” [3; 29, pp. 31–32].

The algorithm is described in Algorithm 3.3. An Eulerian tour is a tour of a graph
that visits each edge exactly once. Not all graphs have Eulerian tours; therefore,
a graph where at least one Eulerian tour exists is called an Eulerian graph. A
multigraph is a graph where there may exist several edges between a pair of nodes.

In order to prove the approximation ratio, one first needs to prove the following
lemma.

17

3. Method

Algorithm 3.2 The nearest neighbor algorithm for the shortest Hamiltonian path
problem on a graph G = (V,E).

1: Let Q be the set of unvisited nodes. Q is initialized to V \ {s, t}.
2: Let T be the sequence of nodes in the tour. T is initialized to [s].
3: Let v be the current node. Initialize v to s.
4: while there are nodes in Q do
5: Find u ∈ Q such that w({v, u}) is minimized.
6: Remove u from Q.
7: Append u to T .
8: Set v to u.
9: end while

10: Append t to T .
11: Return T .

Algorithm 3.3 Tree doubling algorithm for the travelling salesperson problem on
a graph G, as described by Bläser [3].

1: Compute a minimum spanning tree T ∗ of G.
2: Duplicate each edge of T ∗ and obtain an Eulerian multigraph T ′.
3: Compute an Eulerian tour of T ′. Whenever a node is visited in the Eulerian

tour that was already visited, this node is skipped and one proceeds with the
next unvisited node along the Eulerian tour. Return the resulting Hamiltonian
tour H.

Lemma 3.1. Let G be an undirected, weighted graph, and let P ∗ be a tour of
minimum length that visits each node in G exactly once (i.e., an optimal solu-
tion to the travelling salesperson problem). Define cost(E) to be the sum of the
weights of the edge set E. Finally, let T ∗ be a minimum spanning tree of G. Then
cost(T ∗) ≤ cost(P ∗).

Proof. Obtain T by removing an arbitrary edge from P ∗. Then T is a spanning
tree, and cost(T) ≤ cost(P ∗). Since T ∗ is a minimum spanning tree, it holds that
cost(T ∗) ≤ cost(T). Then cost(T ∗) ≤ cost(T) ≤ cost(P ∗).

Using Lemma 3.1, it is possible to prove the approximation ratio of Algorithm 3.3.

Theorem 3.1. Let G be an undirected, weighted graph, and let P ∗ be a tour of
minimum length that visits each node in G exactly once (i.e., an optimal solution to
the travelling salesperson problem). Let H be a tour output by Algorithm 3.3. Then
cost(H) ≤ 2 · cost(P ∗).

Proof. Let T ∗ be the minimum spanning tree computed in step 1. By Lemma 3.1,
cost(T ∗) ≤ cost(P ∗). Since T ′ is obtained by doubling every edge in T ∗, it fol-
lows that cost(T ′) = 2 · cost(T ∗) ≤ 2 · cost(P ∗). Let H be the Hamiltonian
tour output computed in step 3. When skipping already visited nodes, a path
(ij, ij+1, . . . , ik−1, ik) is replaced by an edge {ij, ik}. The triangle inequality ensures
that w({ij, ik}) ≤ cost(ij, ij+1, . . . , ik−1, ik). It then follows that cost(H) ≤ cost(T ′)
and therefore cost(H) ≤ 2 · cost(P ∗).

18

3. Method

The proofs of both Lemma 3.1 and Theorem 3.1 are adaptations of the proofs
given by Vazirani [29].

The complexities of Algorithm 3.3 are dominated by the complexities of the algo-
rithm creating the minimum spanning tree in step 1. For example, if using Kruskal’s
algorithm [20] and using Mergesort to sort the edges by weight as a pre-computation
step, step 1 has a time complexity ofO(|E| log |E|) and a space complexity ofO(|E|).
The other steps can trivially be seen to have a time complexity of O(|E|) and space
complexity of O(|E|), where |E| is the number of edges in the graph.

The tree doubling algorithm can easily be adapted to instead solve the shortest
Hamiltonian path problem with fixed start and end points. The adapted algorithm
proceeds as in Algorithm 3.4.

Algorithm 3.4 Tree doubling algorithm for the shortest Hamiltonian path problem
on a graph G with start point s and end point t.

1: Compute a minimum spanning tree T ∗ of G.
2: Duplicate each edge of T ∗ and obtain an Eulerian multigraph T ′.
3: Compute an Eulerian tour of T ′ starting in s. Whenever a node is visited in the

Eulerian tour that was already visited, this node is skipped and one proceeds
with the next unvisited node along the Eulerian tour. The only exception is t,
which is always skipped, and finally appended to the end of the tour. Return
the resulting Hamiltonian path H.

The approximation ratio of Algorithm 3.4 is 2, and the proof of the approxima-
tion ratio is similar to the proof for the original algorithm.

Theorem 3.2. Let G be an undirected, weighted graph, and let P ∗ be a path of
minimum length that starts in node s, visits each node in G exactly once, and ends
in node t (i.e., an optimal solution to the shortest Hamiltonian path problem). Let
H be a path output by Algorithm 3.4. Then cost(H) ≤ 2 · cost(P ∗).
Proof. Let T ∗ be the minimum spanning tree computed in step 1. Since P ∗ is a
Hamiltonian path, it follows that P ∗ is a spanning tree. Therefore, cost(T ∗) ≤
cost(P ∗). The remainder of the proof is analogous to the proof of Theorem 3.1,
without the use of Lemma 3.1.

3.2.1.5 Christofides

Christofides’s algorithm is an approximation algorithm for the metric travelling
salesperson problem. It was described in a technical report in 1976. The approxima-
tion ratio achieved by Christofides’s algorithm is 3/2 [5], which remains the currently
best known approximation ratio for the metric travelling salesperson problem.

It is similar to the tree doubling algorithm described in Section 3.2.1.4. How-
ever, instead of doubling every edge in order to obtain an Eulerian multigraph, a
minimum weight perfect matching is computed for nodes with an odd degree in the
minimum spanning tree. The matching is then merged with the minimum spanning
tree, creating an Eulerian multigraph. Then, an Eulerian tour is calculated on the
resulting graph, and the practice of skipping already visited nodes is employed in
order to obtain a Hamiltonian tour [3].

19

3. Method

The complexities of Christofides’s algorithm are dominated by the step of finding
a minimum weight perfect matching. There exist algorithms for finding such a
matching whose time complexity is O(|V |3) [12; 18], making the time complexity of
Christofides’s algorithm equivalent.

For the shortest Hamiltonian path problem, where the start and end points are
fixed and different from one another, the Christofides algorithm can be adapted.
The adapted algorithm achieves an approximation ratio of 5/3 [17], and retains the
time complexities of the original algorithm. For certain special cases, there exist
algorithms that improve this bound slightly. For example, for the special case where
each edge in the underlying graph has unit distance, there exists an algorithm that
improves the bound to 1.586 [24].

3.2.2 Algorithms for the batch optimization problem

This section describes a set of relative algorithms for the batch optimization problem.
The concept of relative algorithms is described in Section 3.2.2.1, and three such
algorithms then follow in the subsequent sections.

The notation in this section is consistent with the notation in Section 1.2.3. Let
L be the set of all orders, let LN be the set of batches of size N , and let U be the
union function. Then let |Bmax| be the size of the batch where the union of the
included orders has maximum size. More precisely,

|Bmax| = max
B∈LN

|U(B)|.

3.2.2.1 Relative algorithms

The considered algorithms for the batch optimization problem are all what has been
dubbed relative algorithms. They use an evaluation algorithm that evaluates (par-
tial) solutions by assigning an integer number to the solution. The main algorithm
then makes decisions based on that number. In other words, the main algorithm is
“relative” to the evaluation algorithm; hence the name “relative algorithms”.

For the relative batch optimization problem algorithms, a (partial) solution is a
batch of orders. To evaluate a batch, a set of nodes is created by taking the union of
the start node, the end node, and the nodes in all included orders. The set of nodes
is then used to create an induced subgraph, which combined with the start and end
nodes defines an instance of the shortest Hamiltonian path problem. Therefore, an
evaluation algorithm for the relative batch optimization problem algorithms is an
algorithm for the shortest Hamiltonian path problem.

The notation used in this report is that F denotes an evaluation algorithm, and
F (B) denotes the integer value assigned to the batch B by F . Note that F (B)
is defined in the context of a specific instance of the batch optimization problem,
meaning a specific graph and start and end nodes. Furthermore, OT

F (n) and OS
F (n)

denote the time and space complexities of the evaluation algorithm for an instance
of size n, respectively.

20

3. Method

3.2.2.2 Relative brute force algorithm

As with any combinatorial optimization problem, one can always do a brute force
search for an optimal solution. In the case of the batch optimization problem, a rel-
ative brute force search algorithm will yield an optimal solution if combined with an
optimal evaluation algorithm for the shortest Hamiltonian path problem. However,
it may also be the case that a brute force search combined with an approximating
evaluation algorithm will yield good (but not necessarily optimal) solutions.

The relative brute force algorithm is straightforward. Let F (B) be the value
returned by the evaluation algorithm for some batch B. Then, find

B∗ = arg min
B∈LN

F (B) (3.3)

by complete enumeration of all B ∈ LN .
The quality of the solution returned by the brute force search depends, as men-

tioned above, on the choice of evaluation algorithm. More specifically, if the evalua-
tion algorithm solves the shortest Hamiltonian path problem with an approximation
ratio of α, then the brute force search solves the batch optimization problem with
an approximation ratio of α. This is formalized as the following theorem.

Theorem 3.3. Let B∗ be the batch returned by the brute force search for some
evaluation algorithm. Let BOPT be an optimal solution to the batch optimization
problem, meaning that D∗(U(BOPT)) ≤ D∗(U(B)) for all B ∈ LN . Finally, let α
be the approximation ratio of the evaluation algorithm, meaning that D∗(U(B)) ≤
F (B) ≤ α ·D∗(U(B)) for all B ∈ LN . Then D∗(U(B∗)) ≤ α ·D∗(U(BOPT)).

Proof. By the definition of B∗ in (3.3) it holds that

∀B ∈ LN : F (B∗) ≤ F (B)

and specifically
F (B∗) ≤ F (BOPT). (3.4)

By definition of the approximation ratio it holds that

F (BOPT) ≤ α ·D∗(U(BOPT))

and in combination with (3.4) it then follows that

F (B∗) ≤ α ·D∗(U(BOPT)). (3.5)

By definition of the approximation ratio, it also holds that

D∗(U(B∗)) ≤ F (B∗)

which in combination with (3.5) yields

D∗(U(B∗)) ≤ α ·D∗(U(BOPT)).

21

3. Method

The time complexity of the brute force search is

O(|LN |) · OT
F (|Bmax|).

The algorithm invokes the evaluation algorithm |LN | times, with each invocation
having complexity OT

F (|Bmax|). Note that |LN | =
(
|L|
N

)
, and as such, the brute force

search has a time complexity that is worse than exponential.
The space complexity of the brute force search is OS

F (|Bmax|). The brute force
search algorithm itself requires O(1) space: it only needs to keep track of the cur-
rently best known batch.

3.2.2.3 Relative greedy algorithm

One can construct a simple greedy algorithm that is also relative to an evaluation
algorithm, similar to the brute force search described in Section 3.2.2.2. The greedy
algorithm builds a batch by repeatedly adding the order that causes the least in-
crease in the total distance travelled. The algorithm is described more precesily in
Algorithm 3.5. It should be noted that B0 may be chosen before the execution of

Algorithm 3.5 A greedy approximation algorithm for the batch optimization prob-
lem.

1: B ← B0 . B0 is some initial solution.
2: while |B| < N do
3: L∗ ← arg minL∈L\B F (B ∪ {L})
4: B ← B ∪ {L∗}
5: end while
6: return B

the algorithm. The simplest possible choice is to set B0 = ∅, but it may also be
feasible to choose it according to some other heuristic, such as finding an optimal
batch of size k � N .

At the time of writing, it is unknown whether the algorithm can provide any ap-
proximation ratio guarantees; it is suspected that the algorithm can yield arbitrarily
bad solutions.

The time complexity of the algorithm is

O(N |L|) · OT
F (|Bmax|).

Assume that B0 is set to ∅. In the first iteration of the loop, |L| orders are evaluated
using the evaluation algorithm (from the minimization in step 3). In the second
iterations, |L| − 1 orders are evaluated. This scheme continues for N iterations,
resulting in

N−1∑
i=0
|L| − i ≤ N |L|

invocations of the evaluation algorithm.
The space complexity is O(N) +OS

F (|Bmax|). The algorithm needs to keep track
of which orders are currently selected, hence the O(N) term. Each invocation of
the evaluation algorithm can be made in sequence and the occupied space can be
reused among invocations, hence the constant OS

F (|Bmax|) term.

22

3. Method

3.2.2.4 Relative randomized algorithm

It is easy to imagine in a randomized approach to the batch optimization prob-
lem: from the set of available orders, select randomly a number of batches. Of the
randomly selected batches, return the batch that yields the shortest path through
the warehouse. Algorithm 3.6 describes such a randomized approach more formally.
The number k is given as an input parameter to the algorithm.

Algorithm 3.6 A randomized algorithm for the batch optimization problem.
1: Let L be the set of available orders.
2: Let N be the batch size.
3: Let F be an evaluation algorithm.
4: Select uniformly at random B1, . . . ,Bk ∈ LN such that Bi 6= Bj for i 6= j.
5: Return Bi such that F (Bi) ≤ F (Bj) for all j = 1, . . . , k.

It is assumed that randomly selecting a single element in L has a time complexity
of O(1). Randomly selecting a batch of size N then has a time complexity of
O(N), and thus randomly selecting k such batches has a time complexity of O(kN).
The evaluation algorithm will be invoked for each of the k batches, leading to a
overall time complexity of O(k) · OT

F (|Bmax|) to evaluate all batches. The final time
complexity is therefore

O(kN) +O(k) · OT
F (|Bmax|).

The space complexity of the algorithm is similar. It is again assumed that
randomly selecting a single element in L has a space complexity of O(1). The space
required to store all randomly selected batches is then O(kN). The evaluation
algorithm will be invoked for each of the k batches, but the space required by
one invocation can be re-used for the next invocation. Therefore, the total space
complexity of all invocations of the evaluation algorithm is OS

F (|Bmax|), and the total
space complexity of the algorithm is

O(kN) +OS
F (|Bmax|).

Clearly, there is no worst-case approximation ratio of the algorithm described in
Algorithm 3.6: there is no guarantee that any randomly selected batch is better than
the worst possible batch. The value of the algorithm lies instead in its relatively low
time and space complexities. For the purposes of this thesis, a randomized algorithm
is mostly interesting as a baseline comparison: how do the algorithms described in
Section 3.2.2.2 and Section 3.2.2.3 perform when compared to a simple randomized
approach?

3.3 Problem instances
To evaluate the considered algorithms, a set of problem instances were needed. One
set of instances was created for the shortest Hamiltonian path problem, and another
set was created for the batch optimization problem. This section describes in more
detail how these sets were created.

23

3. Method

3.3.1 Instances of the shortest Hamiltonian path problem

An instance of the shortest Hamiltonian path problem can be created on any com-
plete, weighted, undirected graph by designated two nodes vs, vt where vs 6= vt to
act as the start and end nodes. This section describes a set of instances of the
shortest Hamiltonian path problem that were chosen to be of different kinds and
sizes, and which were used for testing and benchmarking the algorithms described
in Section 3.2.1.

The set of instances was created based on two sources: an existing set of instances
for the travelling salesperson problem called TSPLIB [26], and a set of randomly
chosen induced subgraphs based on a graph describing a warehouse. Section 3.3.1.1
describes the instances from TSPLIB, and Section 3.3.1.2 describes the instances
created from the induced subgraphs.

3.3.1.1 TSPLIB instances

There exists a collection of instances of the travelling salesperson problem (and
problems that are related to the travelling salesperson problem) called TSPLIB.
It was first described in a paper by Reinelt published in 1991 [26], and has since
become well-known in the research community. TSPLIB has commonly been used
to benchmark solvers for the travelling salesperson problem [7; 16; 11].

The problem instances contained in TSPLIB are diverse. Several of the instances—
such as brazil58, brd14051, and usa13509—are based on cities in specific countries
or other geographical regions. Other instances are based on randomly generated
graphs (e.g., dsj1000) or points on an electronic circuit where holes must be drilled
(e.g., d493).

An advantage of using a diverse set of problem instances is that it may surface
subtle characteristics of a solver. A solver could for example have different running
times for problem instances of approximately equal sizes. An example is the Con-
corde solver for the travelling salesperson problem: the TSPLIB instance ali535
containing 535 nodes was solved in 9.50 seconds by Concorde, while the instance
si535 also containing 535 nodes was solved in 21.73 seconds [7]. Having different
performance characteristics (such as running time) for different types of problem
instances of similar size could be an indication that an algorithm works well for
certain kinds of graph, but less so for other kinds.

Table 3.1 contains a subset of instances from the TSPLIB collection of instances.
These instances were selected based on their size: the number of nodes should not be
much more than 1000, and should be fairly evenly distributed among the instances.
In all instances, the start and end nodes were set to be the first and second node,
respectively, as determined by the order of the nodes in the corresponding data files
containing the instances. The instances were reduced to instances of the shortest
Hamiltonian path problem using the reduction described in Section 2.1.1.

24

3. Method

Instance Size (|V |)
burma14 14
ulysses22 22
att48 48
pr76 76
bier127 127
d198 198
a280 280
gr431 431
u574 574
vm1084 1 084

Table 3.1: List of TSPLIB instances that were used to test and benchmark algo-
rithms for the shortest Hamiltonian path problem.

3.3.1.2 Induced instances

The algorithms for the shortest Hamiltonian path problem are for the purposes
of this thesis intended to be run on graphs representing warehouses. However, it
will rarely be the case that the algorithms are applied to a graph representing an
entire warehouse; rather, the algorithms would be applied to induced subgraphs
(see Section 2.2), only containing the locations that a picker would need to visit in
order to collect the items in a batch. Therefore, it would be interesting to test and
benchmark the algorithms on such induced subgraphs of different sizes.

Starting from a graph representing a full warehouse layout (see Figure 3.4), a
set of induced subgraphs was created. The full warehouse graph contains 1423
nodes. Each induced subgraph was of a different size, where the sizes were chosen
to have approximately the same distribution as the sizes of the TSPLIB instances
described in Section 3.3.1.1. For each size, a subset of nodes were selected uniformly
at random from the full set of nodes in the graph. Then, an induced subgraph was
created based on the selected subset of nodes.

Table 3.2 contains a list of instances of the shortest Hamiltonian path problem
that were created in the fashion described above. For each instance the start and
end nodes were selected to be the first and second node, respectively, as determined
by a fixed, arbitrary numbering of the nodes.

25

3. Method

Instance Size (|V |)
induce10 10
induce15 15
induce25 25
induce50 50
induce75 75
induce100 100
induce150 150
induce200 200
induce300 300
induce400 400
induce600 600
induce800 800

Table 3.2: List of instances created from randomly selected induced subgraphs.

3.3.2 Instances of the batch optimization problem
This section describes two sets of instances used for evaluation of the batch opti-
mization problem algorithms. One set of instances was created from snapshots from
the database belonging to one of Ongoing Warehouse’s customers. These instances
therefore contain real-world warehouse data. Another set of instances was derived
from the aforementioned set of instances, by randomly selecting subsets of the sets of
available orders. These instances therefore also contain real-world warehouse data,
but are of a much smaller size.

3.3.2.1 Creating snapshots of databases

Ongoing Warehouse has the ability to retroactively create snapshots of their cus-
tomers’ database. More precisely, Ongoing Warehouse has the ability to specify a
point of time in the past and make a copy of a database’s state (e.g., its schema and
data) at that point in time. This copy is what is referred to as a snapshot for the
purposes of this report.

Snapshots can be created by an internal tool which lets the user specify a
database and a timestamp given with a granularity of one minute, and then cre-
ates a copy of that database’s state for the given timestamp. A snapshot can be
created for points in time that are generally not more than 6 months in the past.
The snapshots can be deployed as separate database instances, allowing Ongoing
Warehouse to interact with the system at a specific point in time without affecting
the current state of the system.

3.3.2.2 Using snapshots to create sets of available orders

The ability to create snapshots (see Section 3.3.2.1) was used to create sets of avail-
able orders. A set of available orders corresponds to the set L as described in

26

3. Method

Section 1.2.3. The sets of available orders were created based on batches that al-
ready existed in the database, i.e., batches that had actually been picked by a picker
in the warehouse. To determine the set of available orders at the time of creation
for such a batch, a snapshot was created at a point in time one minute before the
batch was created. It was also verified that no new orders arrived between the time
of the snapshot and the creation time of the batch. All orders with the status of
pickable were included in the set of available orders.

The status pickable means that the warehouse has a sufficient number of all
item included in the order, meaning that the entire order can be picked. However,
a single item could be placed in different locations in the warehouse. Therefore, an
order must then be allocated, which means that each item in the order is allocated
a specific location in the warehouse from where it should be picked. All pickable
orders can be allocated, and all allocated orders are pickable.

After the snapshot had been created, all orders that were included in the set
of available orders were allocated. The result was a set of sets of locations in the
warehouse that a picker must visit to pick all items in an orders, which is then the
set L.

3.3.2.3 Description of warehouse

The data used for creating instances of the batch optimization problem from real
world warehouse data was collected with the help of one of Ongoing Warehouse’s
customers. The customer is based in Norway and is a large retailer of kitchen
supplies. The warehouse used for the model and collection of data has a total of
around 4000 storage spaces. This results in a total of 866 potential item locations
when disregarding height as in the model described in Section 3.1.

As can be seen in Figure 3.4, the shelf layout does not follow a strictly rectangular
shape. The reason behind the model structure is due to taking the amount of shelf
compartments into account rather than their physical length into account, due to the
length information being unknown for the thesis. The actual shelf-placement and
their correlation to the packing stations (displayed as the grey area in the bottom
left corner) is an estimation corresponding to the actual warehouse layout, and is
based on information from Ongoing Warehouse.

Figure 3.4 also contain two small dark grey squares (in the top and bottom left
corner respectively), they correspond to the start and end points necessary in order
to create an instance of the batch optimization problem as described in Section 1.2.3.

27

3. Method

Figure 3.4: An approximate birdseye view map of the warehouse, modeled from
the shelf layout.

3.3.2.4 Full instances from warehouse data

From the database of the customer described in Section 3.3.2.3 a total of six batches
were selected. The batches were originally created on different dates during the first
four months of 2020. No particular method was used to select these six batches;
they were chosen mostly arbitrarily.

For each original batch, a set of available orders was created using the method
described in Section 3.3.2.2. The sizes of the sets of available orders varied from 60
to more than 5000. As such, the sizes of the sets hint towards how the workload
in a single warehouse can be very different at different points in time. Each set of
available orders was combined with the graph of the warehouse (see Section 3.3.2.3)
as well as the size of the original batch to create a corresponding instance of the
batch optimization problem. These instances were named full instances due to
containing the full sets of available orders. Table 3.3 lists the names assigned to the
aforementioned instances, the sizes of the sets of available orders, as well as the size
of the originally batches.

28

3. Method

Instance Size (|L|) Batch size (N)
orders60 60 16
orders107 107 15
orders223 223 16
orders769 769 16
orders1531 1 531 20
orders5176 5 176 16

Table 3.3: List of instances of the batch optimization problem, created from snap-
shots of a customer’s database.

3.3.2.5 Random subinstances

It is easy to observe that for larger instances of the batch optimization problem, a
brute force search is infeasible. For example, for the orders5176 instance above,
the number of possible batches is equal to(

5176
16

)
≈ 1.239× 1046.

To put this number into perspective: suppose that there are 1 billion computers
that are checking 1 billion combinations per second each. It would then take ap-
proximately 3.93×1020 (393 quintillion) years to check all combinations. As such, it
is infeasible to acquire optimal solutions using the brute force algorithms for all in-
stances in Table 3.3. The lack of optimal solutions makes it more difficult to evaluate
how well the relative randomized and greedy algorithms approximate a solution.

In an attempt to tackle this problem, it was assumed that the relative randomized
and greedy algorithms achieve similar approximation ratios for small as well as large
instances. Therefore, a large number of small subinstances was created based on the
instances in Table 3.3. A total of 100 subinstances were created for each instance.
Each subinstance was created by selecting 20 orders from the full order set. For
each subinstance, the batch size was 16.

For each subinstance, the relative brute force algorithm was applied together
with an exact algorithm for the shortest Hamiltonian path problem. As such, an
optimal solution could be found for each subinstance, which acted as the basis for
calculating approximation ratios for the other relative algorithms.

29

3. Method

30

4
Implementation

This chapter cover the details of everything that has been implemeneted throughout
the thesis. The majority of the thesis has been implemented in the C# programming
language, with the exception being the Concorde toolkit described in Section 4.6.
The chapter starts with descriptions of the library containing classes for working
with graphs, the shortest Hamiltonian path problem and the batch optimization
problem. The library has been split into three namespaces: Graph, Shpp and Bop,
which are described in Section 4.2, Section 4.3, and Section 4.4 respectively.

Following the description of the library namespaces is an introduction to the
evaluation program that uses the library and has been used to solve instances of the
problems throughout the thesis. This is followed up by a motivation and description
of the aforementioned Concorde toolkit. The chapter is then summed up with the
descriptions of the testing suite and the benchmarking suite.

For the remainder of this report, the terms algorithm and solver refer to dif-
ferent things. Algorithm refers to a theoretical algorithm, such as those described
in Section 3.2. Solver refers to an implementation of an algorithm, such as the
HeldKarpSolver described in Section 4.3.2.

4.1 Unimplemented algorithms

Two algorithms described in Section 3.2.1 were not implemented. They are the
Held-Karp successive approximation algorithm and Christofides’s algorithm. The
former was not implemented simply due to time constraints. The latter was not
implemented as it appeared very difficult to correctly implement an algorithm for
the minimum weight perfect matching problem, which is a subproblem solved as
part of Christofides’s algorithm.

4.2 The Graph namespace

This section covers the interfaces and algorithms that can be found in the Graph
namespace. It includes a description of the common interface IUndirectedGraph as
well as descriptions of some concrete implementations of the interface, namely the
WeightArrayGraph, GridGraph and SubGraph classes.

31

4. Implementation

4.2.1 The IUndirectedGraph interface

The main graph abstraction considered in the library is an interface called IUndirectedGraph.
As the name implies, it is an interface that represents undirected graphs. It gen-
erally represents weighted graphs, and an unweighted graph can be represented by
having unit weights. Listing 4.1 contains the definition of the IUndirectedGraph
interface.

Listing 4.1 The definition of the IUndirectedGraph interface.
public interface IUndirectedGraph<TNodeId>

where TNodeId : IEquatable<TNodeId>
{

// Returns a collection of node identifers for all nodes
// in the graph.
IEnumerable<TNodeId> GetNodes();
// Returns a collection of all edges in the graph.
IEnumerable<UndirectedEdge<TNodeId> GetEdges();
// Returns a collection of edges adjacent to the given `node`.
IEnumerable<UndirectedEdge<TNodeId> GetEdges(TNodeId node);
// Returns the weight of the given `edge`.
long GetWeight(UndirectedEdge<TNodeId> edge);

}

The IUndirectedGraph interface has a type parameter for a node identifier type.
A node identifier is some value that is used to refer to a specific node in a graph.
For example, a node identifier can be an integer, a string, or an ordered tuple
of integers. Only types that implement the IEquatable interface (defined in the
standard library) can be used as identifiers, meaning that values of that type can
be compared for equality among themselves as well as provide a hash value for
themselves. Constraining the node identifier type in this way is not strictly necessary
for representing graphs, but it simplifies implementations of some algorithms on
graphs. Furthermore, classes implementing the IUndirectedGraph interface must
ensure that all node identifiers are unique within an instance of the class.

Accompanying the IUndirectedGraph interface is a class called UndirectedEdge
that represents an edge between two nodes in the graph. The class is a simple
class that contains the node identifiers associated with the two nodes connected by
the edge. An instance of the UndirectedEdge class is created by passing the two
node identifiers to the constructor. UndirectedEdge implements the IEquatable
interface, and additionally ensures that two instances that were created with the
same node identifiers are considered equal, regardless of in which order the node
identifiers were passed to the constructor.

A limitation of the IUndirectedGraph interface is that it cannot represent multi-
graphs, i.e., graphs where there can be multiple edges between a pair of nodes.

32

4. Implementation

4.2.2 The WeightArrayGraph class
The WeightArrayGraph class is an implementation of the IUndirectedGraph inter-
face. The node identifiers of a WeightArrayGraph are integers 0, . . . , |V | − 1. A
further semantic constraint of the WeightArrayGraph class is that it does not allow
for self-edges. The reason for this constraint is that self-edges were not needed for
the algorithms in which the WeightArrayGraph class was intended to be used.

As the name hints, the WeightArrayGraph class represents a graph using a weight
array. The idea is similar to that of using a weight matrix, but the weights are stored
in a one-dimensional array instead of a two-dimensional matrix. The reason for using
a weight array is based on the fact that the graph is undirected. When using a weight
matrix w to represent an undirected graph, it holds that wi,j = wj,i. Therefore, each
weight is duplicated, leading to unnecessary memory usage. With a weight array,
each weight is stored once.

The weight array stored in a WeightArrayGraph is interpreted according to a
“lower row” scheme. The weights are arranged from beginning to end row-wise in a
triangular shape to form the lower-right half of a weight matrix. Each row represents
a node in the graph, as does each column. The element at row i, column j represents
the weight of an edge from vi to vj. A null value encodes that there is no edge
between vi and vj. As there are no self-edges in a WeightArrayGraph, there are
no values on the diagonal, i.e., there are no elements at row i, column i for any
value of i. Figure 4.1 contains an example graph along with its representation in a
WeightArrayGraph.

A B

C D

6

(x)
1

(y)

4

2

(a) An example graph.
The dashed edges are not
present in the graph, but
need to be represented in
the weight array.

D (y) 2 4 ·
C (x) 1 · 4
B 6 · 1 2
A · 6 (x) (y)

A B C D

(b) Weight matrix rep-
resentation of the exam-
ple graph. The gray el-
ements are copies of the
black elements and will
not appear in the weight
array.

(x) (y)
[6,null, 1, null, 2, 4]

(c) The weight array
as it is stored in a
WeightArrayGraph.

Figure 4.1: An example of how a graph is represented by a WeightArrayGraph.

As with all data structures, the WeightArrayGraph has a certain set of trade-
offs with regards to computational complexity. To represent a graph with n nodes,
the weight array needs n(n−1)

2 elements. Therefore, the space complexity of the
WeightArrayGraph is O(|V |2), regardless of the number of edges. As such, the
WeightArrayGraph is ill-fitted for representing sparse graphs. However, the advan-
tage of using a weight array is that it allows accessing specific edge weights in O(1)

33

4. Implementation

time. Furthermore, accessing all edges adjacent to a specific node takes O(|V |) time
since the weight array has to be accessed O(|V |) times.

The WeightArrayGraph class exposes several methods in addition to those re-
quired by IUndirectedGraph. Two of those are the methods InduceByNodes and
InduceByEdges. The methods are called on an existing instance of WeightArrayGraph,
and are used to create induced subgraphs from it. The induced subgraphs are cre-
ated from a set of nodes or a set of edges, respectively, as described in Section 2.2.
For both methods, a new instance of WeightArrayGraph is returned along with
a mapping of node identifiers from the original graph to the corresponding node
identifiers in the new graph.

4.2.3 The GridGraph class
The GridGraph class is a special-purpose implementation of the IGraph interface.
It is special-purpose in the sense that it cannot be used to represent arbitrary undi-
rected, weighted graphs. Instead, it is focused on efficiently representing a specific
type of graphs where the nodes are arranged in a 2D grid, and a node has edges
with unit weights to its orthogonal neighbors. The node identifiers of a GridGraph
are ordered pairs (r, c) of two integers. r and c corresponds to the row and column,
respectively, of the identified node. Zero-based indexing is used for both r and c.

Internally, the GridGraph class uses a two-dimensional array (i.e., a matrix) of
booleans to represent the graph. If m is the two-dimensional array of booleans and
m[i, j] == true, then there is a node at row i, column j. Conversely, if m[i,
j] == false then there is no node. Figure 4.2 contains an example of a simple
warehouse layout and how it is represented internally in GridGraph.

(a) A grid representa-
tion of a simple ware-
house layout.

1 0 0 1

1 1 1 1

1 0 0 1

(b) The two-dimensional
array of booleans used to
represent the warehouse
in a GridGraph.

Figure 4.2: An example of a simple warehouse layout and its representation in a
GridGraph.

The GridGraph class is intended to be a direct implementation of the graph
model of a warehouse, as described in Section 3.1.1. As such, the GridGraph class
is designed to be the “entrypoint” for solving the batch optimization problem in
the context of a real-world warehouse. For example, after creating an instance of
GridGraph that represents the warehouse, one can use the ShortestPathCompleteGraph

34

4. Implementation

(see Section 4.2.4) function to acquire a complete graph containing the shortest paths
among all pairs of nodes in the warehouse.

Along with implementing the operations specified by IUndirectedGraph, the
implementation of GridGraph also includes code to parse a textual representation of
a 2D grid into a corresponding instance of GridGraph. The textual representation
allows only two characters: a full stop (.) representing a node, and a hash (#)
representing a wall. A text file consisting of n lines each with exactly m characters
can be parsed into an instance of GridGraph with n rows and m columns. The first
line in the file corresponds to row 0, the second line corresponds to row 1, and so
forth. Likewise, the first character on each line corresponds to column 0, the second
character corresponds to column 1, and so forth.

The advantage of the GridGraph graph is that it can efficiently be queried.
Determining whether there is an edge between two nodes can be done in O(1) time:
there are edges between all orthogonally adjacent nodes, so by comparing the node
identifiers of the two nodes, which is a O(1) operation, one can determine whether
there is an edge between them. Furthermore, accessing all edges adjacent to a
specific node can also be done in O(1) time: one simply needs to check whether the
orthogonally adjacent positions in the graph contain nodes, and if so, there is an
edge to the adjacent node.

The space complexity of a GridGraph instance with R rows and C columns is
O(RC). Note that the space complexity is independent of the number of nodes in
the graph. As such, whether a complexity of O(RC) is good or not depends on the
graph. For a graph with few nodes, i.e., |V | � RC, then the space complexity is
bad since a lot of space is wasted to store the absence of nodes. Conversely, for a
graph with many nodes, i.e., |V | ≈ RC, the space complexity can be considered
good since very little space is wasted to store the absence of nodes.

4.2.4 The ShortestPathCompleteGraph function

The ShortestPathCompleteGraph function is a static function (i.e., a function that
is not tied to a specific instance of a class) in a class called Algorithms. The
function takes as parameter an instance of IUndirectedGraph and calculates for
each pair of nodes the length of a shortest path between those nodes. A necessary
pre-condition is therefore that the input graph is connected, which is checked by the
function before doing any calculations. ShortestPathCompleteGraph implements
Dijkstra’s algorithm [10] to calculate the shortest paths. The function returns two
values: a WeightArrayGraph representing a complete graph where the edge weights
are the aforementioned lengths; and a mapping from the original node identifiers to
the node identifiers of the WeightArrayGraph.

The primary use case for ShortestPathCompleteGraph is to take a GridGraph
describing the layout of a warehouse and return a complete graph that contains
the shortest distances between any two points in the warehouse, as described in
Section 3.1.3. The complete graph can then be used as the graph in an instance of
the batch optimization problem.

35

4. Implementation

4.2.5 The IsConnected function
Similarly to the ShortestPathCompleteGraph function, the IsConnected function
is a static function in the class called Algorithms. The function takes as parameter
an instance of IUndirectedGraph and returns a boolean denoting whether the graph
is connected or not. The main use case of IsConnected is to verify that a graph
that has been passed to ShortestPathCompleteGraph (see Section 4.2.4) fulfills the
pre-condition of being connected.

The property of being connected is defined as there existing a path between any
pair of nodes v, u. Since the context is undirected graphs, it then holds that if there
exists a path from v to u, then there also exists a path from u to v.

The implementation of IsConnected is a simple breadth-first search starting
from an arbitrary node in the input graph. When a node is visited for the first
time, it is marked as visited and all its adjacent nodes are added to the queue of
nodes to visit. When visiting a node that has already been marked as visited, it is
skipped. IsConnected returns true if all nodes have been marked as visited when
the breadth-first search terminates.

4.3 The Shpp namespace
The Shpp namespace contains interfaces and classes related to representing and
solving instances of the shortest Hamiltonian path problem. This section contains
descriptions of these interfaces and classes: what their purposes are, how they are
used, and some details about their implementations.

4.3.1 The IShppSolver interface
The IShppSolver interface is used to represent algorithms that solve the shortest
Hamiltonian path problem. Along with the IShppSolver interface are two classes,
ShppInstance and ShppSolution, that are described in Section 4.3.1.1 and Sec-
tion 4.3.1.2, respectively. Listing 4.2 contains the definition of the interface.

Listing 4.2 The definition of the IShppSolver interface.
public interface IShppSolver
{

// Solves an instance of the shortest Hamiltonian path problem.
ShppSolution Solve(ShppInstance instance);

}

4.3.1.1 The ShppInstance class

The ShppInstance class represents an instance of the shortest Hamiltonian path
problem. It holds all information that defines an instance of the shortest Hamilto-
nian path problem: a graph together with node identifiers specifying the start and
end nodes. It is a simple class in the sense that it only holds data and provides
access to it, but does not provide any operations on the data.

36

4. Implementation

ShppInstance requires that the graph is specified using a WeightArrayGraph,
and therefore the start and end nodes are specified using integer node identifiers.
In theory, any implementation of the IUndirectedGraph interface could have been
used. The choice to specifically use WeightArrayGraph was made since instances
of the shortest Hamiltonian path problem requires that the graph is complete, and
WeightArrayGraph provides an efficient way to represent complete graphs.

4.3.1.2 The ShppSolution class

The ShppSolution class represents a solution to a instance of the shortest Hamil-
tonian path problem. Like ShppInstance, the class is only used to hold data and
provide access to it, and does not provide any operations on the data. Currently, the
ShppSolution class holds only an integer containing the path length of the solution.
The reason for having a class instead of simply using integers directly is that in the
future it should be possible to extend the ShppSolution class to also hold more
information, such as the actual path found.

4.3.2 The HeldKarpSolver class
The HeldKarpSolver class is an implementation of the IShppSolver interface. It
implements the adapted Held-Karp algorithm described in Section 3.2.1.1.

The implementation is a rather direct translation of the description of the algo-
rithm. Internally, arrays of booleans are used to represent the subsets S, where a
true value indicates that a node is included in the subset, and a false value indi-
cates that the node is not included. The C function is represented using a dictionary
C. The keys of C are the boolean arrays, corresponding to the S argument of the
function. The values of C are integer arrays, where the l argument of the function is
used as an index into the integer array. As such, the value of C(S, l) can be accessed
using C[S][l], where S is a boolean array and l is an integer.

The C dictionary is built in a bottom-up fashion. All subsets are placed in a
queue that is processed one element at a time. Initially, subsets containing only a
single node (i.e., boolean arrays with a single true value) are added to the queue.
Processing the queue is done in the following fashion. First, a subset S is removed
from the head of the queue. If the key S has already been stored in C, then S is
skipped. Otherwise, all values of C[S][l] are calculated in the fashion described in
Section 3.2.1.1 using values that has been previously been stored in C. Finally, new
subsets are created by adding one additional node to S. The new subsets are then
added to the tail of the queue. After all elements in the queue have been processed,
the length of the shortest path can be calculated.

4.3.3 The NearestNeighborSolver class
The NearestNeighborSolver class is another implementation of the IShppSolver
interface. It implements the adapted nearest neighbor algorithm described in Sec-
tion 3.2.1.3.

Internally, the implementation stores the path so far, along with a boolean array
indicating which nodes have been visited. Furthermore, the node identifier of the

37

4. Implementation

current node is stored. Iterating in a loop, the implementation finds all edges adja-
cent to the current node, and order them in an ascending order according to their
weights. The edges are then filtered so that only edges leading to unvisited nodes
that are not the end node are considered. After this, the first edge is picked as the
edge to travel along, as it is the edge with the lowest weight. The node that the
edge leads to is added to the end of the path, is marked as visited, and set as the
current node.

When the loop terminates, there are no more nodes to visit except the end node.
The end node is therefore added to the end of the path, and the length of the path
is returned as the solution.

4.3.4 The TreeDoublingSolver class
The TreeDoublingSolver class is another implementation of the IShppSolver
interface. It implements the adapted tree doubling algorithm described in Sec-
tion 3.2.1.4.

The implementation of TreeDoublingSolver follows the description of the algo-
rithm rather directly. There are two important functions implemented in TreeDoublingSolver:
MinimumSpanningTree and ShortcutTour. These functions are used together to
eventually build the path whose length is returned.

The MinimumSpanningTree function builds a minimum spanning tree of the
graph in instance. It returns a set of edges that corresponds to the minimum span-
ning tree. Internally, MinimumSpanningTree implements Prim’s algorithm [25] for
building a minimum spanning tree. A hash set is used to keep track of unvisited
nodes. Another hash set is used to keep track of the edges included in the min-
imum spanning tree. As long as the set of unvisited nodes contains elements, an
edge of minimum weight is found that connects the partially constructed minimum
spanning tree with an unvisited node. That edge is then added to the minimum
spanning tree and the node is marked as visited. The set of edges returned by
MinimumSpanningTree is used to create an induced subgraph containing only those
edges. The induced graph then contains all the nodes in the original graph but only
the edges that comprise the minimum spanning tree.

The induced graph is passed to the ShortcutTour function, which constructs a
Eulerian path that visits all nodes in the graph. The Eulerian path is constructed
using a simple depth-first search. The search starts at the start node. During the
search, a list of nodes contains the partially constructed path. When visiting a
node, the list of nodes is searched for the node. If the node is found, it is skipped.
Otherwise, the node is appended to the path and the node’s children is searched.

When the Eulerian path is returned from ShortcutTour, the end node is moved
to the end of the list, regardless of where in the path it was located earlier. The
length of this new path is then returned as the solution.

4.3.5 The CachingSolver class
The CachingSolver class is an implementation of the IShppSolver interface. How-
ever, instead of directly implementing some algorithm for the shortest Hamiltonian

38

4. Implementation

path problem, it wraps another IShppSolver and provides a caching mechanism.
The caching mechanism uses instances of the shortest Hamiltonian path problem
as keys, and stores solutions to those instances as values. The intent is to solve
instances of the shortest Hamiltonian path problem only once and be able to reuse
the solutions later to save time.

When constructing a CachingSolver, another implementation of the IShppSolver
interface must be supplied to the constructor. This other IShppSolver is referred
to as the inner solver.

The caching mechanism is provided by using a dictionary where ShppInstance
values are used as keys and ShppSolution values are used as the corresponding val-
ues. When the Solve method of a CachingSolver instance is called, the dictionary
is first checked to see whether the instance given as the argument to Solve has al-
ready been stored in the dictionary. If so, the value is retrieved from the dictionary
and immediately returned. Otherwise, the CachingSolver calls the Solve method
of the inner solver. When the solution is returned from the inner solver, it is stored
in the dictionary, and subsequently returned.

The purpose of the CachingSolver class is to be used in a context where there is
a significant possibility that equivalent instances of the shortest Hamiltonian path
problem needs to be solved multiple times. One such context is the context of
solving the batch optimization problem. It is entirely possible that the algorithms
described in Section 3.2.2 will evaluate different combinations of orders that result
in equivalent sets of nodes to visit. If so, the corresponding instance of the shortest
Hamiltonian path problem would be solved several times. In those situations, the
CachingSolver can be used to reduce computation time.

4.4 The Bop namespace

This section covers the Bop namespace. It includes descriptions of the interfaces and
classes within, used for representing and solving instances of the batch optimization
problem: what their specific purposes are, how they are used, and some details
about their implementations.

4.4.1 The IBopSolver interface

The IBopSolver interface is used to represent algorithms that solve the batch op-
timization problem. It is similar in design to the IShppSolver interface, in that it
specifies a single method and is accompanied by the two classes BopInstance and
BopSolution that are described in Section 4.4.1.1 and Section 4.4.1.2, respectively.
Listing 4.3 contains the definition of the IBopSolver interface.

39

4. Implementation

Listing 4.3 The definition of the IBopSolver interface.
public interface IBopSolver
{

// Solves an instance of the batch optimization problem.
BopSolution Solve(BopInstance instance);

}

4.4.1.1 The BopInstance class

The BopInstance class represents an instance of the batch optimization problem.
Much like the ShppInstance holds all information that defines an instance of the
shortest Hamiltonian path problem, BopInstance holds all information that defines
an instance of the batch optimization problem: a graph, node identifiers specifying
the start and end nodes, an integer representing the batch sizeN , and a list of orders.
In the list of orders, each order is represented by a collection of node identifiers.

BopInstance mandates using a WeightArrayGraph to represent the graph, and
therefore all node identifiers (start node, end node, orders) are integers. Like with
the ShppInstance class, any implementation of IUndirectedGraph could have been
used in theory.

Unlike ShppInstance, the implementation of BopInstance contains operations
on the data it holds. BopInstance has a method called Evaluate which is used to
evaluate a batch of orders in the context of a specific instance of the batch opti-
mization problem. The Evaluate method takes a reference to an implementation
of IShppSolver and a set of indices. The indices refer to orders in the list of orders
held by the BopInstance. The Evaluate method uses the indices to retrieve the cor-
responding orders, and then creates a set of all nodes covered by those orders, along
with the start and end nodes also held by the BopInstance. From this set of nodes,
an induced subgraph is created from the graph held by the BopInstance. The in-
duced subgraph is combined with the start and end nodes to create a ShppInstance.
The ShppInstance is then used as argument to the Solve method of the referenced
IShppSolver, and the solution is returned to the caller of Evaluate.

4.4.1.2 The BopSolution class

The BopSolution class represents a solution to an instance of the batch optimization
problem. Like BopInstance, it is a simple class that only holds and provides access
to its data.

A solution to an instance of the batch optimization problem is a batch of orders.
Therefore, an instance of BopSolution should represent such a batch. Currently,
however, the only data held by an instance of BopSolution is an integer. The
integer is the length of a path that visits all nodes included in the batch. Therefore,
it is currently not possible to access the batch that constitutes a solution, but it is
possible to use the path length to evaluate the quality of the solution.

40

4. Implementation

4.4.2 The GreedySolver class
The GreedySolver class is an implementation of the IBopSolver interface. It im-
plements the relative greedy algorithm described in Section 3.2.2.3.

As the greedy algorithm is relative to some algorithm for solving the shortest
Hamiltonian path problem, an instance of GreedySolver needs a reference to an
implementation of IShppSolver. This is enforced by requiring an argument of type
IShppSolver in the constructor for GreedySolver.

Internally, GreedySolver refers to orders using their indices into the order list
held by the BopInstance. Two sets of indices are used for each invocation of the
Solve method. One set of indices selected to be part of the solution, and one set
of indices that are available to choose from. Initially, the set of selected indices
is empty, and the set of available indices contains all indices. The main work of
the algorithm is implemented in a loop. In each iteration of the loop, each of
available indices are combined with the current set of selected indices to create a
candidate set of selected indices. The candidate sets are then used as arguments to
the BopInstance’s Evaluate method together with the IShppSolver given in the
constructor to GreedySolver. The index that resulted in the candidate set with
the lowest value returned from Evaluate is determined to be the “best index”. The
best index is then added to the set of selected indices, as well as removed from the
set of available indices. Afterwards, the loop begins its next iteration. The loop
terminates when the size of the set of selected indices is equal to the batch size of
the BopInstance.

After the loop has terminated, the Evaluate method is called with the final set
of selected indices as an argument. The integer value of the solution is used to create
a BopSolution which is then returned.

4.4.3 The BruteForceSolver class
The BruteForceSolver class is an implementation of the IBopSolver interface. It
implements the relative brute force algorithm described in Section 3.2.2.2.

Like with the GreedySolver class, the constructor of BruteForceSolver takes
as parameter a reference to an implementation of IShppSolver.

Internally, BruteForceSolver uses a lazy iterator to build all possible batches
of orders. The iterator is then traversed over, and each batch is evaluated using the
Evaluate method together with the IShppSolver given in the constructor. The
minimum value returned by Evaluate is then used for constructing the solution.

4.4.4 The RandomSolver class
The RandomSolver class is an implementation of the IBopSolver interface. It im-
plements the relative randomized algorithm described in Section 3.2.2.4.

Like with the GreedySolver and BruteForceSolver classes, the constructor of
RandomSolver takes as argument a reference to an implementation of IShppSolver.

The randomly selected batches are created based on a list of integers 0, . . . , |L|−1,
acting as indices into the list of orders. The list is randomly shuffled, and the first

41

4. Implementation

Listing 4.4 Example invocation of the evaluation program for an instance of the
shortest Hamiltonian path problem.
BatchOptimizationEvaluation.exe \

Path to a JSON file containing an instance of the
shortest Hamiltonian path problem.
--instance path/to/shpp_instance.json \
The shortest Hamiltonian path problem solver to use.
`nn` corresponds to the `NearestNeighborSolver`.
--shpp-solver nn \
Path to where the solution should be written.
--output path/to/output.txt

N elements of the shuffled list is used to create a batch of N orders. This process is
repeated until k batches have been created.

When the batches have been created, a simple loop evaluates them using the
Evaluate method. The minimal value returned from Evaluate is then used to
create a BopSolution which is then returned from the Solve method.

4.5 Evaluation program

The library described in Section 4.2 through Section 4.4 provides implementations
of various concepts but does not provide a convenient way to execute the imple-
mentations for arbitrary inputs. For this purpose, a simple evaluation program was
created. The evaluation program is a command-line interface (CLI) that links with
the library and uses it to solve instances of the shortest Hamiltonian path problem
and the batch optimization problem. Command-line options given to the program
are used to specify the problem instance, which solver(s) to use, whether to use
caching, and where the output should be written.

The evaluation program uses JSON1 to encode an instance. The path to a
JSON file is used as a command-line option to specify which instance the evaluation
program should use, regardless of whether it is a shortest Hamiltonian path problem
instance or a batch optimization problem instance. The format of the JSON files
closely (but not exactly) match the structure of the ShppInstance and BopInstance
classes, respectively.

The output of the program is a single number that contains the path length of
the solution returned (either ShppSolution or BopSolution). The path length is
written to a file whose path is specified as a command-line option.

Listing 4.4 contains an example invocation of the evaluation program for an
instance of the shortest Hamiltonian path problem. Similarly, Listing 4.5 contains
an example invocation for an instance of the batch optimization problem.

1https://www.json.org

42

https://www.json.org

4. Implementation

Listing 4.5 Example invocation of the evaluation program for an instance of the
batch optimization problem.
BatchOptimizationEvaluation.exe \

Path to a JSON file containing an instance of the
batch optimization problem.
--instance path/to/bop_instance.json \
The batch optimization problem solver to use.
--bop-solver greedy \
The shortest Hamiltonian path problem solver to use.
`td` corresponds to the `TreeDoublingSolver`.
--shpp-solver td \
Whether to enable caching by wrapping the shortest
Hamiltonian path solver in a `CachingSolver`.
--cache true \
Path to where the solution should be written.
--output path/to/output.txt

4.6 Concorde toolkit
Over the course of the thesis, a toolkit was built for more conveniently working with
a travelling salesperson problem solver by the name of Concorde [8]. The toolkit
started as a single script that constructed a travelling salesperson problem instance,
used it as input to Concorde, and then parsed the length of the solution from
Concorde’s output. Eventually, more scripts were added, resulting in a collection of
scripts to work with the travelling salesperson problem and the batch optimization
problem. This collection of scripts is what is referred to as the Concorde toolkit.

The toolkit is implemented in the Go programming language2 and (more or less)
specific to the Linux operating system. It is therefore not directly compatible with
the library described in Section 4.2 through Section 4.4. However, the toolkit uses
JSON files formats similar to those described in Section 4.5.

4.6.1 Motivation
The HeldKarpSolver was implemented in an early stage of the thesis, since optimal
solutions to the shortest Hamiltonian path problem were needed for calculating
approximation ratios. The implementation of HeldKarpSolver turned out to be
very slow: during experimentation, an instance with 22 nodes took 9 minutes to
solve for HeldKarpSolver. It was deemed infeasible to improve the efficiency of
HeldKarpSolver significantly enough for it to be used to acquire optimal solutions.

The inefficieny of HeldKarpSolver would be an even larger problem when solving
the batch optimization problem, since the algorithms in Section 3.2.2 would all
require solving a large number of instances of the shortest Hamiltonian path problem
for a single instances of the batch optimization problem. As such, there existed a

2https://golang.org/

43

https://golang.org/

4. Implementation

need for some other tool that could be used to optimally solve instances of the
shortest Hamiltonian path problem. Furthermore, it was determined early in the
thesis that there was a need for the random subinstances described in Section 3.3.2.5,
and a tool for acquiring optimal solutions to them. The combination of these needs
motivated the search for an efficient travelling salesperson problem solver and a
set of tools for interacting with it, automating the task of invoking it and reading
solutions from its output.

The search for an efficient travelling salesperson problem solver quickly yielded
Concorde as a promising candidate. Concorde does expose an interface for interact-
ing with it from software in the form of a callable library. Unfortunately, using ths
interface requires significant experience with the C programming language; some-
thing the authors do not possess. However, invoking the Concorde exectuable does
not require complicated command-line arguments, and its debugging output follows
a fairly consistent format. Therefore, it was simple to write scripts for Concorde,
and eventually it was decided that the scripts should be combined into a more
comprehensive toolkit.

4.6.2 The Concorde solver
The Concorde solver is a solver for the travelling salesperson problem developed
primarily by Cook at the University of Waterloo [8]. It is written in the ANSI C
programming language. The most recent version was released in 2003 [9]. Even
though the code is old, Concorde still runs reliably on modern computers and oper-
ating systems.

Concorde uses several algorithmic techniques to optimally solve the travelling
salesperson problem, such as a branch-and-bound search. Furthermore, the code is
heavily optimized to minimize execution time. The benchmarks for Concorde [7]
shows that Concorde can solve instances of the travelling salesperson problem con-
taining hundreds of nodes in a short amount of time.

The Concorde executable takes a file in the TSPLIB format [26] containing an
instance of the symmetric travelling salesperson problem. It produces output in
several ways: for example, an optimal tour in the form of an output file, as well as
debugging output written to the Concorde process’ standard output stream. The
debugging output contains the length of the optimal tour.

Listing 4.6 contains an example of how the Concorde executable is invoked.

Listing 4.6 Example invocation of the Concorde executable.
./concorde \

Path to a file where the optimal tour should be written.
-o path/to/solution.sol \
Delete temporary files on completion.
-x \
Path to a file containing a travelling salesperson problem
instance in the TSPLIB format.
path/to/instance.tsp

44

4. Implementation

Listing 4.7 contains the output produced by the Concorde executable for an
example invocation. The input file a280.tsp contains the a280 instance from
TSPLIB [26]. The length of an optimal solution can be found on line 23.

Listing 4.7 Example debugging output from an invocation of the Concorde exe-
cutable. The file a280.tsp contains the a280 instance from TSPLIB. The length of
the optimal solution can be found on line 23.

1 ./concorde -o a280.sol -x a280.tsp
2 Host: hostname Current process id: 1061383
3 Using random seed 1590855753
4 Problem Name: a280
5 drilling problem (Ludwig)
6 Problem Type: TSP
7 Number of Nodes: 280
8 Rounded Euclidean Norm (CC_EUCLIDEAN)
9 Set initial upperbound to 2579 (from tour)

10 LP Value 1: 2557.000000 (0.04 seconds)
11 LP Value 2: 2575.300000 (0.11 seconds)
12 LP Value 3: 2576.750000 (0.17 seconds)
13 LP Value 4: 2578.000000 (0.24 seconds)
14 LP Value 5: 2578.000000 (0.38 seconds)
15 LP Value 6: 2578.117450 (0.52 seconds)
16 LP Value 7: 2578.171429 (0.62 seconds)
17 LP Value 8: 2578.171429 (0.73 seconds)
18 New lower bound: 2578.171429
19 Final lower bound 2578.171429, upper bound 2579.000000
20 Exact lower bound: 2578.171429
21 DIFF: 0.000000
22 Final LP has 347 rows, 556 columns, 2202 nonzeros
23 Optimal Solution: 2579.00
24 Number of bbnodes: 1
25 Total Running Time: 0.84 (seconds)

4.6.3 Caching mechanism
To decrease execution times, a caching mechanism similar to that of CachingSolver
was implemented in the Concorde toolkit. The purpose of the cache is to reduce
the number of times Concorde is invoked, since each such invocation can incur a
significant amount of execution time.

Concorde is a travelling salesperson problem solver, and therefore the keys of
the cache were defined to be travelling salesperson problem instances. For ease of
implementation, a travelling salesperson problem instance was considered to be a
weight array (see Section 4.2.2) representing the graph for which a tour should be
found. A constraint of Go’s builtin dictionaries is that arrays cannot be used as
keys. To work around this problem, the array was converted to a “stable” string

45

4. Implementation

representation, since strings can be used as dictionary keys. The string representa-
tion is stable in the sense that two arrays that are element-wise equal will result in
equal string representations.

4.6.4 Examples of scripts in the toolkit
This section contains descriptions of three scripts from the toolkit. Each script is
described in terms of how it should be invoked, what format the input should be, and
some other technical details. An example invocation is included for each described
script.

4.6.4.1 The generate-random-index-sets script

In the toolkit, index sets are frequently occurring. The definition of an index set is
a set of indices, i.e., non-negative integers. An index set is not very useful on its
own. Instead, it is intended to be used together with a data structure that can be
accessed using indices, such as an array. In the context of the shortest Hamiltonian
path problem and the batch optimization problem, an index set could, for example,
be a set of node identifiers used for inducing a graph, or be a set of indices into a
list of orders.

The toolkit contains a script called generate-random-index-sets that can be
used to generate index sets. The purpose of the script is to allow the creation of
many index sets of different sizes with a single invocation.

Listing 4.8 contains an example invocation of the generate-random-index-sets
script. The output of the invocation in Listing 4.8 would yield a total of 18 index
sets, distributed over 3 set sizes. These index sets could, for example, be used to
create subinstances of a batch optimization problem instance by interpreting the
indices as indices into a list of orders.

Listing 4.8 Example invocation of the generate-random-index-sets script in
the Concorde toolkit. This invocation will generate a total of 18 sets: 6 with 10
elements, 6 with 15 elements, and 6 with 30 elements.
./toolkit generate-random-index-sets \

The lower bound for indices. Inclusive.
--start 0 \
The upper bound for indices. Exclusive.
--end 25 \
Generate sets that have 10 elements, 15 elements,
and 30 elements.
--sizes 10,15,30 \
For each size specified above, generate 6 index
sets.
--count 6 \
Path to a file where the output should be written
in JSON format.
--output index_sets.json

46

4. Implementation

4.6.4.2 The solve-shpp script

The solve-shpp script was one of the first scripts written for the Concorde toolkit.
It takes an instance of the shortest Hamiltonian path problem and reduces it to an
instance of the travelling salesperson problem as described in Section 2.1.1. The
travelling salesperson problem instance is then used as input to the Concorde exe-
cutable, and the length of an optimal solution is returned.

The shortest Hamiltonian path problem instance is given as a set of command-
line options. One option defines the graph by specifying a path to a JSON file
containing a weight matrix. Two options are then used to specify the node identifiers
of the start and end nodes. The weight matrix is combined with the start and end
nodes to reduce the shortest Hamiltonian path problem instance to an instance of the
travelling salesperson problem, which is then formatted in the TSPLIB format and
written to a temporary file. The Concorde executable is then called with the path
of the temporary file as input, and the length of an optimal solution is parsed from
the Concorde’s debugging output (see Section 4.6.2). The length is then written to
an output file.

Listing 4.9 contains an example invocation of the solve-shpp script.

Listing 4.9 Example invocation of the solve-shpp script.
./toolkit solve-shpp \

Uses the first node as start node.
--start 0 \
Uses the second node as end node.
--end 1 \
Specifies a path where the optimal length
should be written.
--output path/to/solution.txt \
Specifies the path where the weight matrix
should be read from.
path/to/matrix.json

4.6.4.3 The solve-bop script

The solve-bop script implements the brute force and greedy algorithms from Sec-
tion 3.2.2.2 and Section 3.2.2.3, respectively. These implementations use Concorde
as the underlying shortest Hamiltonian path problem solver. A batch optimization
problem instance is specified using a set of command-line options. The output is the
length of a shortest path that visits all nodes in the batch constructed by the batch
optimization problem solver. In the case of the brute force algorithm, the solution
is optimal, and therefore so is the path length.

The solve-bop takes the same command-line options as the solve-shpp script
described in Section 4.6.4.2. Three additional command-line options are required
for the solve-bop script: one to specify the list of orders, one to specify the batch
size, and one to specify which batch optimization problem algorithm to use. The list
of orders is specified using a path to a JSON file containing a list of orders, where

47

4. Implementation

each order is a list of node identifiers of the nodes that the order requires must be
visited.

Listing 4.10 contains an example invocation of the solve-bop script.

Listing 4.10 Example invocation of the solve-bop script.
./toolkit solve-bop \

Specifies the path where the weight
matrix should be read from.
--matrix path/to/matrix.json \
Uses the first node as start node.
--start 0 \
Uses the second node as end node.
--end 1 \
Specifies the path where the order list
should be read from.
--order-list path/to/orders.json \
Uses 16 as the batch size.
--batch-size 16 \
Uses the greedy algorithm for the batch
optimization problem.
Using "brute_force" instead causes the
brute force algorithm to be used.
--solver greedy \
Specifies a path where the path length
should be written.
--output path/to/solution.txt

4.7 Test suite
The library is equipped with a suite of tests for the different classes in the library.
The test suite consists of mainly property-based tests but also contain a couple
of regression tests. This section introduces property-based testing and the FsCheck
library that has been used for the implementation in C#. It also includes a couple of
examples of the tested properties. This is followed by an introduction to regression
tests and how they are used in the library.

4.7.1 Property-based testing
Property-based testing of software is a style of automatic software testing. Tradi-
tional software testing often uses unit tests (essentially a pair of a specific input
and the expected output) as opposed to property-based testing. In property-based
testing test cases are generated randomly and makes sure that different properties
are asserted for the output of every function call using the generated data. The
main value proposition of using property-based testing is that by generating many

48

4. Implementation

random test cases it is likely to find corner cases that normal unit tests would not
have found.

As an example of how property-based testing can be used, consider a function
reverse that reverses a list. A property of list reversal is that if a list is reversed and
then reversed again, the original list is returned. This is a property that is suitable
for use in property-based testing: if xs is a list, then reverse(reverse(xs)) should
be equal to xs.

4.7.2 The FsCheck library
The FsCheck library is essentially a port of the QuickCheck [6] library to the .NET
platform. Originally it was implemented in the F# language3, however as F# pro-
vides interoperability with C# it is also usable for this thesis. Similar to QuickCheck
FsCheck has support for custom test data generation, conditional properties, test
case shrinking and more.

Consider again the reverse function from Section 4.7.1, and the property that
reversing a list twice should return the original list. Listing 4.11 contains an example
of how FsCheck can be used to test this property.

Listing 4.11 Example of a property-based test written using FsCheck. The test
verifies that calling reverse twice on any array of integers returns the original array.
[TestMethod]
public void Reverse_Twice_ReturnsOriginal()
{

// `arrays` generates non-null integer arrays of any length.
var arrays = Arb.Default.Array<int>()

.Filter(array => array != null);
// Generates 100 arrays at random and verifies that
// applying `reverse` twice yields an array that is
// element-wise equal to the original array.
Prop.ForAll(arrays, array =>

reverse(reverse(array)).SequenceEqual(array))
.QuickCheckThrowOnFailure();

}

4.7.3 Examples of tested properties
The test suite consists of a total of 46 test methods, out of which 42 are property-
based. Following will be a brief description of a couple of tests in order to give a grasp
of what they might look like. Listing 4.12 containing the New_NonEmptyArray_Ok
method is a simple property-based test method. It makes sure that the WeightArrayGraph
constructor sucessfully creates graphs when randomly generated data of the expected
size is given as input.

3https://fsharp.org/

49

https://fsharp.org/

4. Implementation

Listing 4.12 The New_NonEmptyArray_Ok test method.
[TestMethod]
public void New_NonEmptyArray_Ok()
{

// WeightArrayGen generates random weight arrays with correct size
var arb = WeightArrayGen().ToArbitrary();
// Generats 100 tests using random data and makes sure that
// the WeightArrayGraph constructor does not throw an error.
Prop.ForAll(arb, weights => new WeightArrayGraph(weights))

.QuickCheckThrowOnFailure();
}

Listing 4.13 contains the IsConnected_AtLeastTwoComponents_IsFalse method
which is another property-based test method. It is similar to the New_NonEmptyArray_Ok
in structure but differs on a few points. In this scenario a more complex generator
is necessary in order to avoid mirroring the functionality of the tested method in
the generation of test data. For this scenario the input graphs are constructed from
two separately generated graphs that are combined into a single WeightArrayGraph
instance while not adding any edges between the two. This guarantees that the
graph contains at least two separate components. The test also differs from the
New_NonEmptyArray_Ok test in that it tests the expected functionality of the IsConnected
method rather than that of a constructor.

Listing 4.13 The IsConnected_AtLeastTwoComponenets_IsFalse test method.
[TestMethod]
public void IsConnected_AtLeastTwoComponents_IsFalse()
{

// DisconnectedWeightArrayGraphGen randomly generates
// disconnected graphs.
var disconnectedGraphArb = DisconnectedWeightArrayGraphGen(

WeightArrayGraphTest.WeightArrayGraphGen()).ToArbitrary();
// Generats 100 tests using random data and makes sure that
// the IsConnected method always returns false.
Prop.ForAll(disconnectedGraphArb, disconnectedGraph =>
!Algorithms.IsConnected(disconnectedGraph))

.QuickCheckThrowOnFailure();
}

4.7.4 Regression tests
In addition to the property-based tests, a set of regression tests was created. The
regression tests are in the style of traditional unit tests, where an input is paired
with an expected output.

The property-based tests and the regression tests complement each other by
having different purposes. The purpose of the property-based tests is to help verify

50

4. Implementation

the correctness of most classes in the library. The regression tests are only for
the solver classes, and their purpose is different: to detect changes in the solver’s
behaviors that do not violate the correctness of the solvers.

For example, consider the NearestNeighborSolver class. If, at some point,
there are two or more nodes which are of minimal distance from the current node,
then there is a tie which must be broken in order to pick one of the nodes. The logic
for breaking such a tie is left as an implementation detail, and does not affect the
correctness of the NearestNeighborSolver class. However, the outcome of the tie
may affect the subsequently constructed solution. The regression tests are designed
to detect such changes the implementation details, where the solution is affected
but not necessarily incorrect.

The set of regression tests is divided by solver. There is one set of regression tests
for NearestNeighborSolver, one set of regression tests for TreeDoublingSolver,
and so forth. Each set of tests is based on the sets of instances for the shortest Hamil-
tonian path problem and batch optimization problem described in Section 3.3.1 and
Section 3.3.2.4, respectively. The instances were solved with the corresponding solver
using the evaluation program described in Section 4.5. The instance and the solu-
tion are then used to create a pair of input and expected output, respectively. In the
execution of a set of regression tests, the instance is solved with the corresponding
solver and the output is compared to the expected output. If the output differs from
the expected output, it is an indication that some behavior has changed.

As stated earlier, the regression tests are not designed to help verify the cor-
rectness of the solvers, but rather to help detect changes in their behavior. If a
regression test fails, it is not necessarily an indication that the solvers contain bugs.
The value proposition of the regression tests is to make a maintainer of the library
aware that behavior has changed. The expected outputs of the regression tests can
be updated at any time, if the change in behavior was intended, or are for some
other reason acceptable. For example, the tiebreaking logic described above may be
purposely changed, in which case the behavior may change as a result.

4.8 Benchmark suite
The library is accompanied by a benchmarking suite, used to measure the perfor-
mance of the library. The performance is measured in terms of quality and runtime.

Quality corresponds to the path length returned by a solver. It is measured
both as the path lengths themselves, as well as the approximation ratio achieved by
comparing the path lengths with an exact solution. Section 4.8.1 describes how the
quality benchmarks were implemented, as well as the exact set of benchmarks that
were run.

Runtime corresponds to the execution time of a solver. It is measured as elapsed
“wall-clock” time for an invocation of the Solve method for a solver. Section 4.8.2
describes BenchmarkDotNet, the benchmarking framework used to create runtime
benchmarks, as well as lists the exact set of benchmarks that were run.

For the remainder of the report, the following notation is used:

• nn refers to NearestNeighborSolver.

51

4. Implementation

• td refers to TreeDoublingSolver.

• concorde refers to the Concorde solver.

• ss refers to a pseudo-solver for the shortest Hamiltonian path problem that
returns a path according to an S-shape scheme (i.e., always traverse through
an aisle that has been entered). This solver is not implemented in code. Its
solutions was found by manually creating paths as needed.

• greedy refers to GreedySolver.

• brute-force refers to BruteForceSolver.

• random1000 refers to RandomSolver with k = 1000, i.e., a total of 1000 random
batches were evaluated.

• original refers to a pseudo-solver for the batch optimization problem that
always returns the originally created batch for the instances in Table 3.3. This
solver was not implemented in code.

4.8.1 Quality benchmarks
The quality benchmarks were implemented in a semi-manual fashion. Using shell
scripts, the evaluation program and the Concorde toolkit were used to acquire path
lengths of solutions for various combinations of instances and solvers.

For quality benchmarks for the shortest Hamiltonian path problem, the instances
listed in Table 3.1 and Table 3.2 were used. The evaluation program was used to
run each solver listed in Table 4.1 for each instance, with the exception of concorde.
For concorde, the Concorde toolkit was used. The outputs (i.e., the lengths of the
constructed paths) were used as data points. The concorde solver is guaranteed to
produce optimal solutions, and therefore its solutions were used as baselines when
calculating approximation ratios.

Solver
concorde
nn
td

Table 4.1: Solvers used for quality benchmarks for the shortest Hamiltonian path
problem. The highlighted row marks the solver whose solutions acted as baselines
when calculating approximation ratios.

Note that HeldKarpSolver was not included for the quality benchmarks. The
reason is that it was deemed infeasible to solve even moderately large instances
using it. For example, during experimentation a 22-node instance of the shortest
Hamiltonian path problem was solved using HeldKarpSolver, which took 9 minutes.
Since the execution time grows exponentially for HeldKarpSolver, clearly larger
instances would not be solved before the deadline of the thesis.

52

4. Implementation

For quality benchmarks for the batch optimization problem, the instances listed
in Table 3.3 were used. The evaluation program was used to run each combination
of solvers listed in Table 4.2 for each instance. The exceptions are the combinations
containing concorde, for which the Concorde toolkit was used. The outputs (i.e., the
lengths of the constructed paths) were used as data points. It should be noted that
no combination of solvers in Table 4.2 can be used as a baseline when calculating
approximation ratios, since none of them are guaranteed to produce an optimal
solution.

BOP solver SHPP solver
greedy nn
greedy td
greedy concorde
random1000 nn
random1000 td
random1000 concorde
original nn
original td
original concorde
original ss

Table 4.2: Combinations of solvers used for quality benchmarks based on the
instances listed in Table 3.3.

Furthermore, the subinstances described in Section 3.3.2.5 were also used for
quality benchmarks for the batch optimization problem. The evaluation program
and the Concorde toolkit was used to run each combination of solvers listed in Ta-
ble 4.3 in the same fashion as described above. The combination of the brute-force
and concorde solvers is guaranteed to produce optimal solutions, and therefore its
solutions were used as baselines when calculating approximation ratios.

BOP solver SHPP solver
brute-force nn
brute-force td
brute-force concorde
greedy nn
greedy td
greedy concorde

Table 4.3: Combinations of solvers used for quality benchmarks based on the
random subinstances described in Section 3.3.2.5. The highlighted row marks the
combination of solvers whose solutions acted as baselines when calculating approx-
imation ratios.

53

4. Implementation

4.8.2 Runtime benchmarks

The runtime benchmarks were written using the BenchmarkDotNet framework. It is
a framework for conveniently creating robust runtime benchmarks. The framework
is well established and used, for example, to benchmark the .NET Runtimes4 as well
as the C# compiler5. The framework automatically scales the amount of iterations
to run for each benchmark and helps with, for example, running warmups, removing
outliers, and removal of unnecessary overhead.

The BenchmarkDotNet framework is based around writing methods for which
benchmarks will be run. The methods should perform some work, and BenchmarkDotNet
will measure the amount of time it took to run the method. A method is marked as
a benchmark method by adding a special annotation. For the runtime benchmarks
created for this thesis, one benchmark method was used for the shortest Hamiltonian
path problem, and another benchmark method was used for the batch optimization
problem. The benchmarked methods more or less only calls the Solve methods
of the solvers, resulting in a benchmark that measures the runtime of the Solve
methods with little overhead.

Furthermore, BenchmarkDotNet provides allows specifying a set of parameters
for a benchmark method. A developer writing benchmarks provides a list of values
for each parameter, and BenchmarkDotNet then creates one benchmark for each
combination of parameters. For the runtime benchmarks created for this thesis,
the parameters were used to specify which instances to run benchmarks for, which
solver(s) to use, and (in the case of the batch optimization problem solvers) whether
caching should be enabled.

For runtime benchmarks for the shortest Hamiltonian path problem, the in-
stances listed in Table 3.1 and Table 3.2 were used. Each instance was combined
with each solver listed in Table 4.4 to create one benchmark.

Solver
nn
td

Table 4.4: Solvers used for runtime benchmarks for the shortest Hamiltonian path
problem.

For runtime benchmarks for the batch optimization problem, the instances listed
in Table 3.3 were used. Each instance was combined with each combination of solvers
listed in Table 4.5 to create one benchmark.

4https://github.com/dotnet/performance
5https://github.com/dotnet/roslyn

54

https://github.com/dotnet/performance
https://github.com/dotnet/roslyn

4. Implementation

BOP solver SHPP solver Cache
greedy nn yes
greedy td yes
random1000 nn yes
random1000 td yes
greedy nn no
greedy td no
random1000 nn no
random1000 td no

Table 4.5: Combinations of solvers used for runtime benchmarks for the batch
optimization problem.

55

4. Implementation

56

5
Results

This chapter contains the results acquired from running the benchmarks described
in Section 4.8. The results are primarily presented as plots for convenient visual
comparison, and the underlying data are presented in tabular form in Appendix A.

Section 5.1 contains the results for the quality benchmarks. For all quality
benchmarks, plots with approximation ratios are provided. Additionally, the actual
path lengths are provided for some problem instances.

Section 5.2 contains the results for the runtime benchmarks. The average ex-
ecution times are plotted against the size of the problem instances. The runtime
benchmarks were executed with compiler optimizations enabled, on a computer with
a Intel® Core™ i7-8650U processor clocked at 1.90 GHz, 32 GB of memory, running
a 64-bit build of Windows 10.

5.1 Quality benchmarks

This section presents the results from the quality benchmarks for the shortest Hamil-
tonian path problem solvers and the batch optimization problem solvers respectively.

5.1.1 Shortest Hamiltonian path problem solvers

Figure 5.1 contains the values (i.e., path lengths) acquired for the quality bench-
marks for the shortest Hamiltonian path problem, as described in Section 4.8.1 and
Table 4.1. As can be seen by the different scales of the path length axes, the values
varied significantly in magnitude between the TSPLIB instances and the induced
instances, as well as among the TSPLIB instances. Therefore, they were separated
into two plots to provide a somewhat clearer comparison among each group of in-
stances.

57

5. Results

bu
rm

a1
4

ul
ys

se
s2

2
at

t4
8

pr
76

bi
er

12
7

d1
98

a2
80

gr
43

1
u5

74

vm
10

84
0

100 000

200 000

300 000
Pa

th
le

ng
th

TSPLIB instances

in
du

ce
10

in
du

ce
15

in
du

ce
25

in
du

ce
50

in
du

ce
75

in
du

ce
10

0

in
du

ce
15

0

in
du

ce
20

0

in
du

ce
30

0

in
du

ce
40

0

in
du

ce
60

0

in
du

ce
80

0
0

500

1 000

1 500

Pa
th

le
ng

th

Induced instances

nn td concorde

Figure 5.1: Values of the quality benchmarks for the shortest Hamiltonian path
problem described in Section 4.8.1 and listed in Table 4.1. Lower is better.

From the values presented in Figure 5.1, approximation ratios were calculated.
For each instance, the approximation ratio was calculated by dividing the path
length of the td and nn solvers by the path length of the concorde solver. Figure 5.2
contains the calculated approximation ratios.

58

5. Results

bu
rm

a1
4

ul
ys

se
s2

2
at

t4
8

pr
76

bi
er

12
7

d1
98

a2
80

gr
43

1
u5

74

vm
10

84
1.00

1.20

1.40

1.60

1.80

2.00
A

pp
ro

xi
m

at
io

n
ra

tio
TSPLIB instances

in
du

ce
10

in
du

ce
15

in
du

ce
25

in
du

ce
50

in
du

ce
75

in
du

ce
10

0

in
du

ce
15

0

in
du

ce
20

0

in
du

ce
30

0

in
du

ce
40

0

in
du

ce
60

0

in
du

ce
80

0
1.00

1.20

1.40

1.60

1.80

2.00

A
pp

ro
xi

m
at

io
n

ra
tio

Induced instances

nn td

Figure 5.2: Calculated approximation ratios of the benchmarked solvers. The
approximation ratios were calculated using the value of the concorde solver as
baseline. Lower is better.

5.1.2 Batch optimization problem solvers

Figure 5.3 contains the values (i.e., path lengths) of the quality benchmarks defined
for the full instances of the batch optimization problem, as described in Section 4.8.1
and listed in Table 4.2. There is one plot per benchmarked batch optimization prob-
lem solver, and each plot contains bars for the shortest Hamiltonian path problem
solvers it was combined with.

59

5. Results

0

200

400

600
Pa

th
le

ng
th

original solver

0

200

400

600

Pa
th

le
ng

th

random1000 solver

or
de

rs
60

or
de

rs
10

7

or
de

rs
22

3

or
de

rs
76

9

or
de

rs
15

31

or
de

rs
51

76
0

200

400

600

Pa
th

le
ng

th

greedy solver

nn td concorde ss

Figure 5.3: Values from the quality benchmarks for the batch optimization prob-
lem, based on the full instances, described in Section 4.8.1. Lower is better.

Figure 5.4 contains average approximation ratios calculated from the quality

60

5. Results

benchmarks defined for the random subinstances, as described in Section 4.8.1 and
listed in Table 4.3. The subinstances were grouped by the full instance they were cre-
ated from. For each subinstance, an optimal solution was found using brute-force
combined with concorde. The approximation ratios were then calculated for the
other combinations of solvers by dividing the path lengths of their solutions with
the path length of the optimal solution. The calculated approximation ratios were
then averaged within each group of subinstances. The standard deviations of the
approximation ratios are available in Table A.3.

1.00

1.05

1.10

1.15

1.20

1.25

Av
er

ag
e

ap
pr

ox
im

at
io

n
ra

tio brute-force solver

or
de

rs
10

7

or
de

rs
15

31

or
de

rs
22

3

or
de

rs
51

76

or
de

rs
60

or
de

rs
76

9
1.00

1.05

1.10

1.15

1.20

1.25

Av
er

ag
e

ap
pr

ox
im

at
io

n
ra

tio greedy solver

nn td concorde

Figure 5.4: Average approximation ratios of combinations of batch optimization
problem solver and shortest Hamiltonian path problem solvers, calculated for the
random subinstances. The ratios are calculated based on the optimal solution ob-
tained by brute-force combined with concorde. Lower is better.

61

5. Results

5.2 Runtime benchmarks

This section presents the results from the runtime benchmarks for the shortest
Hamiltonian path problem solvers and the batch optimization problem solvers re-
spectively. The results for the shortest Hamiltonian path problem solvers are pre-
sented together as to allow for easy comparison. The results for the batch optimiza-
tion problem solvers are presented separately for each of the solvers together with
their specific available configurations.

5.2.1 Shortest Hamiltonian path problem solvers

Figure 5.5 contains the values of the runtime benchmarks (i.e., average runtime as
measured by BenchmarkDotNet) described in Section 4.8.2 and listed in Table 4.4.
The runtimes are plotted against the size (i.e., number of nodes) of the instances.
Note that no distinction is made between the TSPLIB instances and the induced
instances.

0 100 200 300 400 500 600 700 800 900 1 000 1 1000

200

400

600

Size (|V |)

Av
er

ag
e

ru
nt

im
e

(m
s)

nn
td

Figure 5.5: Average runtime for invocations of the Solve method of the nn and
td solvers. Lower is better.

5.2.2 Batch optimization problem solvers

Figure 5.6 contains the values of the runtime benchmarks described in Section 4.8.2
and listed in Table 4.5. The runtimes are plotted against the size (i.e., number of
available orders) of the instances. The figure contains one plot each for the greedy
and random1000 solvers, solely for the purpose of reducing the amount of visual
clutter.

62

5. Results

0

500

1 000

1 500

2 000
Av

er
ag

e
ru

nt
im

e
(m

s)
greedy solver

0 500 1 000 1 500 2 000 2 500 3 000 3 500 4 000 4 500 5 000 5 500

500

1 000

1 500

2 000

Size (|L|)

Av
er

ag
e

ru
nt

im
e

(m
s)

random1000 solver

nn, w/o cache td, w/o cache
nn, w/ cache td, w/ cache

Figure 5.6: Average runtime for invocations of the Solve method for different com-
binations of batch optimization problem solvers, shortest Hamiltonian path problem
solvers, and enabled/disabled cache. Lower is better.

63

5. Results

64

6
Discussion

This chapter analyzes the results from Chapter 5. Interesting parts of the results are
highlighted, such as which solvers appears to perform well (or not so well), and in
which situations. Possible explanations for irregular or unexpected results are also
discussed. In addition to analyzing the results, limitations of the abstract models
and the benchmarks are discussed.

Section 6.1 and Section 6.2 analyze the results of benchmarks for the shortest
Hamiltonian path problem and the batch optimization problem, respectively. Sec-
tion 6.3 discuss the effect the choice of start and end points has on the result. Finally,
Section 6.4 discusses limitations of the warehouse model, the order model, and the
benchmarks.

6.1 Results for shortest Hamiltonian path prob-
lem

In this section the results for the shortest Hamiltonian path problem benchmarks
presented in the previous chapter are discussed. This is done in regards to the ap-
proximation ratios for the quality benchmarks and time complexities for the runtime
benchmarks.

6.1.1 Quality benchmarks
As the worst-case approximation ratio of td is bounded, it is of interest to compare
the measured approximation ratios with this bound. As stated in Section 3.2.1.4,
the worst-case approximation ratio is 2. From Figure 5.2 it is apparent that td
generally achieves significantly better approximation ratios than 2. For the TSPLIB
instances, the achieved approximation ratio is less than approximately 1.4. For
the induced instances, the achieved approximation ratio is slightly worse: less than
approximately 1.6.

Even so, it is apparent that nn performs better than td in almost all cases. There
are a few exceptions, though. For the ulysses22 instance, nn performs significantly
worse; for burma14, pr76 and u574, nn performs slightly worse. In all other cases,
nn performs slightly or significantly better.

It is particularly interesting that nn generally performs better than td, seeing
as the worst-case approximation ratio of nn (O(log |V |)) depends on the number
of nodes, which the worst-case approximation ratio of td does not. Perhaps the

65

6. Discussion

instances where nn produces the worst results are unlikely to appear in practice
(though this is just speculation).

6.1.2 Runtime benchmarks
As can be seen in Figure 5.5, both td and nn exhibit a quadratic growth in execution
time as the size of the instance grows. The quadratic growth is a confirmation of
the time complexities of the respective solvers, which are found to be O(|V |2) for
both solvers as described in Section 3.2.1.3 (for nn) and Section 3.2.1.4 (for td).

It continues to be the case that nn performs better than td, since nn achieves
a lower average execution time in all runtime benchmarks. However, this is not
necessarily an indication that the nn solver will always be faster than td. The im-
plementation of nn is very simple, and it is easier to use optimal data structures that
perform well. The implementation of td, on the other hand, is more complicated.
When implementing td, the main focus was to achieve correctness, and less effort
was spent on achieving efficiency. It is entirely possible td could be significantly
more efficiently implemented than what has been done for this thesis.

Furthermore, the implementations of both nn and td exclusively use the stan-
dard library accompanying the C# language. The standard library is most likely
of high quality, offering efficient implementations of many data structures. How-
ever, it is possible that there exist third-party implementations of equivalent data
structures that are more heavily optimized. In that case, it might be possible to
affect the runtime performance of both nn and td by utilizing these third-party
implementations.

Using third-party code comes with an increase in complexity of the software,
though. A maintainer of the nn and td implementations would need to keep the
third-party code updated when new patches are released by its maintainers. There is
also the risk that the maintainers of the third-party code stops supporting it, mean-
ing that bug fixes and updates will not be released, which increases the maintenance
burden on the maintainer of the nn and td implementations.

6.2 Results for batch optimization problem
This section contains discussion of the results for the batch optimization problem
benchmarks presented in the previous chapter. The quality benchmarks section con-
tain separate discussions for the full instance benchmarks and the random subin-
stances as the full instances are compared to the originally created batches, while
the random subinstances are compared to the optimal solutions created with the
brute force algorithm together with the Concorde solver. This is followed by discus-
sion about the runtime benchmarks, with special focus on the inconsistency of the
results and the effect of the cache mechanism.

6.2.1 Quality benchmarks
It is directly apparent from Figure 5.3 that both random1000 and greedy generally
yield better solutions than the originally created batches. random1000 yields a better

66

6. Discussion

solution in four out of six cases, although the difference is not very large. greedy, on
the other hand, yields significantly better solutions in all cases. For the orders1531
and orders5176 instances, greedy yields a solution that is 7-8 times shorter than
the originally created batch.

Looking at the solutions created by greedy, it can also be seen that using either
nn or td yields in all cases but one a solution that is equivalent to using concorde.
This is a promising result, since it indicates that, in a real-world warehouse context,
an approximation algorithm for the shortest Hamiltonian path problem can in many
cases achieve as good results as an optimal algorithm. The sample size is a bit small,
though; more benchmarks are required before such a conclusion can be drawn.

Turning the attention to the random subinstances, Figure 5.4 shows that greedy
continues to yield good results. Using greedy together with nn or td yields solutions
that are on average within approximately 12 % to 20 % of an optimal solution.
It can also be seen that nn continues to perform slightly better than td in these
benchmarks. Using concorde instead yields solutions that are on average within
approximately 5 % of an optimal solution. If brute-force is used instead of greedy,
then using nn or td yields solutions that are with approximately 5 % to 15 % of an
optimal solution. nn performs better than td here as well.

Assuming that the approximation ratios for the full instances are approximately
the same as the approximation ratios for the random subinstances, these results are
encouraging. If a batch found by an approximation algorithm is 20 % worse than a
batch found by an optimal algorithm, but is several times better than the originally
created batch, then it will still be a significant improvement. Perhaps such a batch
is “good enough”, meaning that the extra effort required to find an optimal batch
is not worth it.

6.2.2 Runtime benchmarks
This section begins in Section 6.2.2.1 with a general analysis of the results of the
runtime benchmarks for the batch optimization problem. It is followed by Sec-
tion 6.2.2.2 which gives a more in-depth analysis on the effects of using a cache
when running a batch optimization problem solver.

6.2.2.1 General analysis

While the runtime benchmarks for the shortest Hamiltonian path problem solvers
yielded results that were in line with the predictions, the runtime benchmarks for
the batch optimization problem solvers yield inconsistent results. It is expected from
the time complexities of the relative algorithms that the execution time will grow
as the size of the instance grows. However, the results of the runtime benchmarks
do not show this behavior.

Examples of this inconsistency can be found in Figure 5.6. With greedy, and
regardless of whether nn or td is used, the orders769 instance has a significantly
higher average execution time compared to the orders1531 instance (which is twice
as large), and a similar average execution time compared to the orders5176 in-
stance (which is several times larger). With random1000, an opposite relation exists
between orders769 and orders1531.

67

6. Discussion

With such a small sample size it is difficult to draw any conclusions. In hindsight,
more instances should have been used for the runtime benchmarks, with a more even
size distribution. For example, subinstances of varying size could have been created
from orders5176 by randomly selecting subsets of the set of available orders. These
subinstances could then have been used for, hopefully, more accurately showing the
relation between instance size and execution time.

What is consistent, though, is that nn again performs better than td. Using
greedy and not using a cache, solving the orders769 instance using nn is approxi-
mately 50 % faster than using td; for orders5176, nn is approximately twice as fast
as td. For random1000, the difference is less significant but still apparent.

6.2.2.2 Effect of using a cache

It can be seen that using a cache is quite effective for greedy. Using nn together
with a cache is almost twice as fast compared to not using a cache. With td, the
speedup is even more significant, where using a cache is approximately 2-3 times
faster compared to not using a cache. What is interesting is that using a cache
results in a markedly less significant difference between using nn and td. With a
cache, using nn is only slightly faster than using td. This is an important result,
as it means that the choice of whether to use nn or td can be made with much less
concern for runtime.

On the other hand, using a cache does not improve the average runtime of
random1000. In fact, using a cache actually increases the average runtime. This is
an indication that the overhead of maintaining the cache outweighs the potential
speedups; most likely, the number of cache hits is very low compared to the number
of cache misses.

A possible explanation for the apparent inefficiency of the cache for random1000
is that it is very unlikely that randomly selecting batches yield equal sets of nodes.
Since the keys to the cache are instances of the shortest Hamiltonian path problem
on induced subgraphs, two batches would have to result in the exact same of nodes
to induce by, which is highly unlikely. It might be the case that a batch has a
majority of its nodes in common with many other batches, but since the sets of
nodes are not exactly equal, the cache cannot be used.

A related argument can be made to possibly explain the efficiency of using a
cache for greedy. greedy constructs batches one order at a time, starting from an
empty batch. When selecting the first order to include in the batch, it is likely that
two or more orders will contain the exact same set of nodes. For example, a small
subset of items that are more popular than other may frequently occur in orders
with only a few items. This will result in many cache hits when selecting the first
order. When selecting the second or later orders, it is likely that many one of the
available orders contain only nodes that are already covered by the orders in the
batch, resulting in many cache hits.

One thing not demonstrated by the runtime benchmarks is that a single cache can
be reused among many instances of the batch optimization problem. For example,
suppose that a batch of 16 orders has been selected for the orders5176 instance, and
that a cache was used. Now, a second batch should be created from the remaining
5160 orders. Invoking a batch optimization problem solver with the same cache

68

6. Discussion

would most likely result in very many cache hits, decreasing the runtime significantly.
The biggest disadvantage of using a cache for many subsequent batch optimization
problem instances is that the cache in its current design grows endlessly. Eventually,
the memory required by the cache may exceed the amount of available memory,
leading to a crash. If the cache should be reused, either a policy should be deployed
for evicting entries from the cache, or it should be verified that the available memory
is large enough that the cache cannot feasibly occupy it.

6.3 Importance of start and end points
The solutions returned by greedy for orders1531 and orders5176 can be verified
to be optimal using a special argument. In the concrete model of the warehouse
for which orders1531 and orders5176 is defined, the path length of the solutions
for the aforementioned instances is 33 (see Table A.2). The shortest path between
the start and end nodes is 31, as can be seen in Figure 3.4. There are no nodes
on the shortest path between the start and end node that can be included in any
order, since the path contains no locations where an item can be collected. However,
adjacent to the path there are nodes where items can be collected. Being adjacent
to the path, the distance from some node in the path to some node where items can
be collected is therefore 1. As such, an optimal solution must have a path length of
at least 33.

This indicates that the position of the start and end nodes can significantly affect
which orders are included in a solution. For example, with the start and end nodes
positioned as shown in Figure 3.4, orders whose items are all located towards the
left ends of the upper-left shelves are “prioritized”. Had the end node instead been
placed in, e.g., the bottom-right corner of the warehouse, an entirely different type of
orders would have been “prioritized”, and the solutions could have been significantly
different.

6.4 Limitations
This section discusses in Section 6.4.1 characteristics of the warehouse model and
the order model that limit their usefulness in a real-world warehouse scenario. Then
follows in Section 6.4.2 a discussion of the limitations of the benchmarks that make
it more difficult to draw decisive conclusions from the results.

6.4.1 Limitations of the model
Using an undirected grid graph is a simple and flexible way to model a warehouse.
It imposes no restrictions on the layout on the warehouse, making it suitable for
a variety of warehouse types. However, being as simple as it is, the grid graph
model makes it difficult to model constraints that may be relevant for a real-world
warehouse. An example is the direction that a picker may be moving in. The grid
graph model assumes, by virtue of being undirected, that a picker can move in any
direction. This is not always true in practice: picking may be conducted with a

69

6. Discussion

trolley or some other vehicle that makes it impossible to turn around once an aisle
has been entered, forcing the picker to traverse the entire aisle.

The model used for orders—i.e., modelling an order as a subset of nodes—is also
very simple. Similarly to the grid graph model, this simplicity makes it difficult to
model constraints relevant for a real-world warehouse. Below are some examples of
such constraints.

• Zero cost of picking items. It is assumed that picking any number of items
at a single location has a zero cost (i.e., takes a zero amount of time). This is
obviously not the case in a real-world warehouse: picking a single small and/or
light item (such as a kitchen knife) is clearly less costly than picking several
large and/or heavy items (such as ten large cooking pots).

• Space and weight constraints. The order model carries no information
about the space occupied by the items, or what their weight are. For this
thesis it was assumed that a picker always has the space and weight capacity
to pick all items, as long as those items belonged to at most N different orders.
In a real-world warehouse, though, a trolley may not have the capacity to pick
N different orders, all consisting of many large and heavy items. In that case,
less than N orders can be placed on the trolley.

• Precedence constraints. Some items may be more fragile than others, and
should therefore not be picked so that they risk being damaged by other items.
A strategy for picking fragile items could be to pick them last, putting a
precedence constraint between the picked items. No such constraint is modeled
by the order model: all items are treated equally and can be picked in any
order.

• Tardiness constraints. It may be the case that some orders should be picked
earlier than other orders. For example, orders where the customer has paid
extra for express delivery, or orders that, if not picked, will not be delivered
within the deadlines the retailer guarantees their customers. In the order
model, the set of available orders is not ordered in any way, and the included
orders are all considered equal.

Some of these constraints can be taken into account by modifying the set of available
orders. For example, for the space, weight, and precedence constraints, the set of
available orders can be limited so that each order contains only items that are small
(space), light (weight), and non-fragile (precedence). As another example, the set
of available orders can be filtered to orders that have a priority status (e.g., when a
customer has paid extra for express delivery), or orders that are at least d days old
(e.g., orders that must be delivered soon to not violate delivery guarantees to the
customer).

Another simplification made for this thesis is that the warehouse is static, in
the sense that the only obstacles are the shelves and the walls. This is an implicit
assumption that a picker is alone in the warehouse when picking a batch of orders.
Having multiple pickers means that some paths may not be possible to take, due to
another picker blocking the way. For example, an aisle may be so narrow that two

70

6. Discussion

pickers cannot pass each other. A real-world warehouse, where multiple simultane-
ously working pickers is common, is therefore more dynamic than can be captured
by the current model.

Finally, by using the lengths of shortest paths between locations in the ware-
house as the weights in the complete graph (as described Section 3.1.3), an implicit
assumption is made that a human picker is “smart enough” to always choose such
a shortest path. While not unreasonable for an experienced picker that knows the
warehouse well, it is still a very strong assumption. If an optimal batch is con-
structed on the premise that the shortest path will always be used, but the picker
picking the batch chooses a non-optimal path, there might exist a batch that is
better suited to the picker’s non-optimal path.

6.4.2 Limitations of the benchmarks
As touched upon in Section 6.2, the sample size is a bit small for the benchmarks for
the batch optimization problem. This makes it more difficult to draw conclusions
from the results.

For example, only data from a single warehouse was used for the quality bench-
marks. It would be interesting to use data from other warehouses to create a more
diverse set of benchmarks. Other warehouses could be different in a number of ways,
for example:

• different layout;

• different placement of items (e.g., grouping items by popularity, by category,
or similar);

• or different distribution of items among orders (e.g., some items that are highly
popular and make up a majority of the orders, or a more even distribution of
all items).

Using more warehouses could have surfaced more subtle characteristics of the
solvers. For example, although greedy appears to work well for the quality bench-
marks that were run, it might not necessarily work well in other benchmarks. Find-
ing benchmarks were greedy works less well could provide more insight into the
type of warehouses where it works better or worse.

The small sample size stems from the time-consuming and manual-labor-intensive
process of creating the instances from snapshots, as described in Section 3.3.2.2, as
well as general time limitations. If more time was available, more instances would
have been created and used for quality benchmarks.

Furthermore, if more time was available, random1000 would have been used for
the quality benchmarks based on the random subinstances. Creating the quality
benchmarks for the random subinstances was a time-consuming process. For the
quality benchmarks to be fair, the set of random batches should be the same inde-
pendent of which shortest Hamiltonian path problem solver was used. This would
have been simple if only the evaluation program or only the Concorde toolkit was
used, since both the C# standard library and the Go standard library provide ways

71

6. Discussion

to set a specific seed for the random number generator. However, using a spe-
cific seed for one random number generator provides no guarantees about using the
same seed for a different random number generator. Therefore, the set of randomly
generated batches was created once and stored to files. Using these files for the
quality benchmarks turned out to be somewhat cumbersome, which made running
the benchmarks time-consuming.

Finally, there is one important piece of functionality that is missing from the
quality benchmarks, and that is the ability to visualize the solutions. The function-
ality is missing since, with the current implementation, it is not possible to map
from an integer node identifier (belonging to the complete graph) to a row-column
pair node identifiers (belonging to the grid graph). As such, it is not possible to vi-
sualize which nodes were included in a batch, or which path through the warehouse
was used. Having such a visualization may grant additional intuition for and insight
into how the various solvers perform for certain types of instances.

72

7
Conclusions

This chapter is devoted to summarizing the thesis. Section 7.1 considers the results
from Chapter 5 and the discussions from Chapter 6, and makes a recommendation as
to which solvers should be used for a real-world warehouse deployment. Section 7.2
attempts to answer the research questions posed in Section 1.3. Finally, Section 7.3
points to future work that may be carried out using this thesis as a basis.

7.1 Recommendation of solvers
As stated repeatedly in the discussion, nn performs better than td in almost all
cases. For the quality benchmarks, nn achieves lower approximation ratios, with
exception for a few instances where td achieves slightly lower approximation ratios.
For the runtime benchmarks, nn achieves a shorter average execution time. An
additional advantage (in the authors’ opinion), from the perspective of a software
engineer, is that nn is easier to understand and implement than td, both in terms
of correctness and efficiency. As such, the implementation of nn is easier than td to
maintain over a long timespan.

As also stated repeatedly in the discussion, greedy appears to perform well. The
only situation where random1000 performs better is in the runtime benchmarks.
However, the runtime advantage of random1000 is negligible as both solvers are
“fast enough”, according to Ongoing Warehouse. As such, it appears that greedy
is the superior solver.

Furthermore, using a cache in the form of CachingSolver shortens the average
execution times significantly when using greedy. The final recommendation to
Ongoing Warehouse is then to use greedy together with a CachingSolver wrapping
nn. However, it might be desirable to limit the cache’s growth so as to not exhaust
the available memory.

7.2 Answers to research questions
Based on the results of this thesis, this section attempts to give concrete answers to
the research questions posed in Section 1.3.

1. Can abstract models and algorithms from the existing literature on
warehouse optimization, as well as combinatorial optimization, be
modified, adapted, or combined to solve the optimization problems
as defined in Section 1.2?

73

7. Conclusions

The idea to use a graph model for representing warehouses is fairly natural,
and is commonly occurring in the existing literature in various forms. The
grid graph model is (as far as the authors are aware) novel, at least within
the literature that was researched prior to this thesis. The algorithms for
the shortest Hamiltonian path problem were adapted from algorithms for the
travelling salesperson problem that were found in existing literature. On other
hand, the algorithms for the batch optimization problem are (again, as far
as the authors are aware) novel. The exception is the relative brute force
algorithm, as brute force algorithms are generally trivial and closely related
to the actual definition of the problem. Taking the above into account, the
answer to this question appears to be “yes”.

2. How well do such algorithms perform when applied to real-world
warehouse data, when considering measurements such as running
time, memory requirements, and approximation ratios? How does
this compare to theoretical results such as average-case and worst-
case scenarios?

Generally, the algorithms and their implementations perform “well enough”.
For the shortest Hamiltonian path problem, the approximation algorithms
achieved good approximation ratios, considering the worst-case bound for
them. For the batch optimization problem, the approximation algorithms
performed well when compared to the originally created batches. Addition-
ally, forr two of the instances—orders1531 and orders5176—the solutions
produced by greedy could be verified to be optimal. In terms of runtime, the
longest average execution time for a batch optimization problem instances was
less than 2 seconds, which is well within what Ongoing Warehouse considers
acceptable. As such, the answer to this question is “well enough”.

3. Are such models and algorithms suitable to solve the batch optimiza-
tion problem in a real-world warehouse? If not, what assumptions
and delimitations need to be lifted for the models and algorithms to
become suitable?

As discussed in Section 6.4.1, the models of the warehouse and the orders
make assumptions that are somewhat unrealistic for a real-world warehouse
scenario. Some of the assumptions can be adapted, such as filtering the set of
available orders to take into consideration constraints such as precedence or
tardiness constraints. Other assumptions are more difficult to adapt, such as
the assumption that a picker is alone in the warehouse, or that the picker will
always choose the shortest path between two locations. Without evaluating
the model and the algorithms by using them for actual warehouse operations,
it is difficult to tell which of the assumptions are most important to lift or
adapt; it might also differ from warehouse to warehouse. The answer to the
first part of this question is then “probably not”. The answer to the second
part of this questions is “it depends”.

74

7. Conclusions

7.3 Future work
This section discusses three directions for which future work based on this thesis can
be carried out. Section 7.3.1 discusses what is needed for deploying the implemented
models and algorithms in real-world warehouse operations. Section 7.3.2 discusses
some aspects through which the current set of benchmarks can be improved and
extended. Finally, Section 7.3.3 discusses the need for an optimal algorithm for the
batch optimization problem that is faster than the relative brute force algorithm.

7.3.1 Real-world warehouse deployment
This thesis has focused on doing evaluation using historical data. It would therefore
be interesting to compare the results from historical data with results from live
warehouse operations.

For example, the combination of greedy, nn and CachingSolver could be inte-
grated into the warehouse management system and used by one of Ongoing Ware-
house’s customers for, say, a week. The results could then be measured with metrics
such as number of orders picked or time to pick a batch. However, such an exper-
iment is a “high risk, high reward” investment. It is possible that the warehouse
increases its efficiency during the course of the experiment, but it is also possible
that the opposite occurs, in which case experiment could quickly become costly.

Regardless, for such an experiment to be feasible, the implementations of the
models and algorithms need to be improved. Both shortest Hamiltonian path prob-
lem solvers and batch optimization problem solvers need to be updated to return
the constructed path and batch, respectively. This is not a change that is difficult
to make or takes a long time to do, but it needs to be made nonetheless. As with
the visualizations described in Section 6.4.2, a missing piece of functionality is being
able to convert integer node identifiers back to the actual locations in the warehouse.
Furthermore, the orders included in a batch need to be correlated with the order
identifiers as they are stored in the database of the warehouse management system.
This change is also not difficult to make, but will require a significant amount of
time and effort.

7.3.2 More extensive benchmarking
A fairly straightforward to carry out future work based on this thesis is to perform
more extensive benchmarks. As discussed in Section 6.4.2, there are a number of
ways in which the existing benchmarks can be improved upon. For example, the au-
thors identified the following, major aspects through which the existing benchmarks
could be extended:

1. Increasing the sample sizes. For the shortest Hamiltonian path problem,
there are many more instances in TSPLIB that can be used for both quality
and runtime benchmarks of nn and td. For the batch optimization problem,
subinstances of varying sizes can be created from a large instance, as described
in Section 6.2.2.1. Furthermore, more instances can be created from snapshots,

75

7. Conclusions

both from the warehouse used for the existing benchmarks and from other
warehouses.

2. Vary other parameters. The most obvious parameter to vary is the batch
size for the batch optimization problem, as it varied very little in the instances
used for the existing benchmarks. For example, the time complexity of greedy
depends on the batch size, and it would be interesting to see how the average
execution time varies as the batch size is varied. However, it is unlikely that
a real-world warehouse would have a trolley that can carry large numbers of
orders, so benchmarks with high values for batch size would then be interesting
primarily from a scientific perspective.
For the shortest Hamiltonian path problem, the most significant parameter is
the size of the instances (i.e., the number of nodes), but there are also other,
more indirect parameters.
For example, the “shape” of the input graph can be varied. Assume that the
nodes are points in a plane, and that Euclidean distances are used as weights.
How well do the algorithms perform when the points are evenly distributed
within some fixed area? How well do they perform when the points are grouped
into a few clusters?
Another indirect parameter is the magnitude of the weights. Is there any
difference in the performance—both quality and runtime—of the algorithms
when applied to a graph whose weights lie in the range [0, 100] compared to a
similar graph where the weights lie in the range [10 000, 20 000]?

7.3.3 Faster optimal algorithm
A major improvment over the results of this thesis would be to find an optimal
algorithm for the batch optimization problem that is faster than relative brute force
algorithm combined with an optimal shortest Hamiltonian path problem algorithm.
The brute force algorithm has a time complexity of at least O(|L|!), so even an
optimal algorithm that has an exponential time complexity would be a significant
improvement. Such an algorithm could provide optimal solutions for larger instances
than the brute force algorithm in “semi-feasible” time: short enough time to be used
as the baseline for quality benchmarks (i.e., run only once), but not short enough
to be used in a real-world warehouse scenario.

7.4 Ethical considerations
Warehousing is a common business throughout the world due to their importance
in logistic flows. Due to the often repetitive and straightforward tasks of a picker,
it is a job available to many people as it does not require any higher education. As
such it serves as an important opportunity for almost anyone just entering the labor
market.

As most business fields warehouseing has a focus on efficiency and profitability.
However big leaps in efficiency may reduce the amount of work necessary and as a

76

7. Conclusions

direct effect reduce the amount of available jobs. This could potentially affect a lot
of people as warehouses exists everywhere.

Another aspect of an algorithm centered solution to a problem like this is that it
might be a better fit for robots than humans. This could lead to humans successively
being replaced also yielding fewer work opportunities. Another issue with algorithms
could be that yielded paths might seem unreasonable, which in turn could lead to the
directives not being followed at all. Essentially rendering the attempted optimization
useless.

In order to avoid such a situation it is important to thoroughly test solutions
and continously interact with the warehouse personnel intended to use the system
to get valuable input on the human perspective.

It should be stated explicitly that the above arguments are based purely on
speculation, and not backed by research.

77

7. Conclusions

78

8
Related work

The field of warehouse optimization has been covered through many different per-
spectives throughout the years and as such it has yielded a lot of different focus
areas. Some classifications of different areas with focus on warehouse operations
can be found in a review paper by Gu, Goetschalckx, and McGinnis [13] which gives
insight into the complexity of the problem areas encountered.

Koster, Le-Duc, and Roodbergen [19] gives a thorough introduction to the dif-
ferent methods used in order picking. They also cover related areas like warehouse
layout design and storage assignment, giving a broad perspective of the field and its
respective theories and problems.

The joint picker routing and batching problem appears in a paper by Won and
Olafsson [30]. The problem combines choosing the picker’s route through the ware-
house, with choosing which orders to pick. This is similar to the combination of
the shortest Hamiltonian path problem and the batch optimization problem con-
sidered for this thesis. Won and Olafsson consider the combined problem with the
addition of a focus on customer demand responsiveness. They present two heuristic
algorithms as potential effective solutions to the problem.

Another take on the joint picker routing and batching problem is presented by
Matusiak et al. [23] who additionally take precedence constraints into consideration.
This results in a solution containing two subalgorithms: an optimal A*-algorithm
for routing, and a simulated annealing algorithm for batching.

Scholz and Wäscher [28] take a step away from commonly assumed picker routing
schemes (e.g., the S-shape scheme) and attempt to solve the problem by integrating
different routing algorithms into an iterated local search algorithm used for creating
batches.

In recent years there have also been attempts at using heuristic algorithm tech-
niques to solve the combined problem. Chen et al. [4] attempt to solve the combined
order batching, sequencing, and routing problem by using a combination of a ge-
netic algorithm together with an ant-colony algorithm for solving the travelling
salesperson problem, reaching the conclusion that runtime might become an issue
in practice.

Kulak, Sahin, and Taner [21] also present an interesting take on the joint picker
routing and batching problem. They present a heuristic solution based on a combi-
nation of a cluster-based tabu search algorithm together with the nearest neighbour
and 2-opt algorithms.

Lin et al. [22] attempt to solve the joint picker routing and batching problem
with the aid of particle swarm optimization, giving each order a virtual order center
that is used to combine similar orders into batches.

79

8. Related work

80

Bibliography

[1] Richard Bellman. “Dynamic Programming Treatment of the Travelling Sales-
man Problem”. In: Journal of the ACM (JACM) 9.1 (Jan. 1962), pp. 61–63.
issn: 0004-5411. doi: 10.1145/321105.321111.

[2] Mandell Bellmore and George L. Nemhauser. “The Traveling Salesman Prob-
lem: A Survey”. In: Operations Research 16.3 (June 1968), pp. 538–558. issn:
0030-364X. doi: 10.1287/opre.16.3.538.

[3] Markus Bläser. “Metric TSP”. In: Encyclopedia of Algorithms. Ed. by Ming-
Yang Kao. Boston, MA: Springer US, 2008, pp. 517–519. isbn: 978-0-387-
30770-1. doi: 10.1007/978-0-387-30162-4_230.

[4] Tzu Li Chen et al. “An efficient hybrid algorithm for integrated order batch-
ing, sequencing and routing problem”. In: International Journal of Production
Economics 159 (2015), pp. 158–167. issn: 09255273. doi: 10.1016/j.ijpe.
2014.09.029.

[5] Nicos Christofides. Worst-Case Analysis of a New Heuristic for the Travelling
Salesman Problem. Tech. rep. RR-388. Carnegie-Mellon Univ Pittsburgh Pa
Management Sciences Research Group, 1976.

[6] Koen Claessen and John Hughes. “QuickCheck”. In: Proceedings of the fifth
ACM SIGPLAN international conference on Functional programming - ICFP
’00. ICFP ’00. New York, New York, USA: ACM Press, 2000, pp. 268–279.
isbn: 1581132026. doi: 10.1145/351240.351266.

[7] William Cook. Benchmark Information. 2003. url: http : / / www . math .
uwaterloo.ca/tsp/concorde/benchmarks/bench.html (visited on 03/31/2020).

[8] William Cook. Concorde TSP Solver. 2015. url: http://www.math.uwaterloo.
ca/tsp/concorde/index.html (visited on 06/03/2020).

[9] William Cook.Download Information. 2005. url: http://www.math.uwaterloo.
ca/tsp/concorde/downloads/downloads.htm (visited on 06/03/2020).

[10] Edsger Wybe Dijkstra. “A note on two problems in connexion with graphs”.
In: Numerische Mathematik 1.1 (Dec. 1959), pp. 269–271. issn: 0029-599X.
doi: 10.1007/BF01386390.

[11] Marco Dorigo and Luca Maria Gambardella. “Ant colony system: a cooperative
learning approach to the traveling salesman problem”. In: IEEE Transactions
on Evolutionary Computation 1.1 (Apr. 1997), pp. 53–66. issn: 1089778X.
doi: 10.1109/4235.585892.

81

https://doi.org/10.1145/321105.321111
https://doi.org/10.1287/opre.16.3.538
https://doi.org/10.1007/978-0-387-30162-4_230
https://doi.org/10.1016/j.ijpe.2014.09.029
https://doi.org/10.1016/j.ijpe.2014.09.029
https://doi.org/10.1145/351240.351266
http://www.math.uwaterloo.ca/tsp/concorde/benchmarks/bench.html
http://www.math.uwaterloo.ca/tsp/concorde/benchmarks/bench.html
http://www.math.uwaterloo.ca/tsp/concorde/index.html
http://www.math.uwaterloo.ca/tsp/concorde/index.html
http://www.math.uwaterloo.ca/tsp/concorde/downloads/downloads.htm
http://www.math.uwaterloo.ca/tsp/concorde/downloads/downloads.htm
https://doi.org/10.1007/BF01386390
https://doi.org/10.1109/4235.585892

Bibliography

[12] Harold N. Gabow. “An Efficient Implementation of Edmonds’ Algorithm for
Maximum Matching on Graphs”. In: Journal of the ACM (JACM) 23.2 (Apr.
1976), pp. 221–234. issn: 0004-5411. doi: 10.1145/321941.321942.

[13] Jinxiang Gu, Marc Goetschalckx, and Leon F. McGinnis. “Research on ware-
house operation: A comprehensive review”. In: European Journal of Opera-
tional Research 177.1 (Feb. 2007), pp. 1–21. issn: 03772217. doi: 10.1016/j.
ejor.2006.02.025.

[14] Gregory Gutin, Anders Yeo, and Alexey Zverovich. “Traveling salesman should
not be greedy: domination analysis of greedy-type heuristics for the TSP”. In:
Discrete Applied Mathematics 117.1-3 (Mar. 2002), pp. 81–86. issn: 0166218X.
doi: 10.1016/S0166-218X(01)00195-0.

[15] Michael Held and Richard M. Karp. “A Dynamic Programming Approach to
Sequencing Problems”. In: Journal of the Society for Industrial and Applied
Mathematics 10.1 (Mar. 1962), pp. 196–210. issn: 0368-4245. doi: 10.1137/
0110015.

[16] Keld Helsgaun. “An effective implementation of the Lin–Kernighan traveling
salesman heuristic”. In: European Journal of Operational Research 126.1 (Oct.
2000), pp. 106–130. issn: 03772217. doi: 10.1016/S0377-2217(99)00284-2.

[17] J.A. Hoogeveen. “Analysis of Christofides’ heuristic: Some paths are more dif-
ficult than cycles”. In: Operations Research Letters 10.5 (July 1991), pp. 291–
295. issn: 01676377. doi: 10.1016/0167-6377(91)90016-I.

[18] Bernhard Korte and Jens Vygen. “Weighted Matching”. In: Combinatorial Op-
timization: Theory and Algorithms. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2002, pp. 235–260. isbn: 978-3-662-21711-5. doi: 10.1007/978-3-662-
21711-5_11.

[19] René de Koster, Tho Le-Duc, and Kees Jan Roodbergen. “Design and con-
trol of warehouse order picking: A literature review”. In: European Journal
of Operational Research 182.2 (Oct. 2007), pp. 481–501. issn: 03772217. doi:
10.1016/j.ejor.2006.07.009.

[20] Joseph B. Kruskal. “On the Shortest Spanning Subtree of a Graph and the
Traveling Salesman Problem”. In: Proceedings of the American Mathematical
Society 7.1 (Feb. 1956), pp. 48–50. issn: 00029939. doi: 10.2307/2033241.

[21] Osman Kulak, Yusuf Sahin, and Mustafa Egemen Taner. “Joint order batching
and picker routing in single and multiple-cross-aisle warehouses using cluster-
based tabu search algorithms”. In: Flexible Services and Manufacturing Jour-
nal 24.1 (Mar. 2012), pp. 52–80. issn: 1936-6582. doi: 10.1007/s10696-011-
9101-8.

[22] Chun Cheng Lin et al. “Joint order batching and picker Manhattan routing
problem”. In: Computers and Industrial Engineering 95 (2016), pp. 164–174.
issn: 03608352. doi: 10.1016/j.cie.2016.03.009.

82

https://doi.org/10.1145/321941.321942
https://doi.org/10.1016/j.ejor.2006.02.025
https://doi.org/10.1016/j.ejor.2006.02.025
https://doi.org/10.1016/S0166-218X(01)00195-0
https://doi.org/10.1137/0110015
https://doi.org/10.1137/0110015
https://doi.org/10.1016/S0377-2217(99)00284-2
https://doi.org/10.1016/0167-6377(91)90016-I
https://doi.org/10.1007/978-3-662-21711-5_11
https://doi.org/10.1007/978-3-662-21711-5_11
https://doi.org/10.1016/j.ejor.2006.07.009
https://doi.org/10.2307/2033241
https://doi.org/10.1007/s10696-011-9101-8
https://doi.org/10.1007/s10696-011-9101-8
https://doi.org/10.1016/j.cie.2016.03.009

Bibliography

[23] Marek Matusiak et al. “A fast simulated annealing method for batching precedence-
constrained customer orders in a warehouse”. In: European Journal of Oper-
ational Research 236.3 (Aug. 2014), pp. 968–977. issn: 03772217. doi: 10.
1016/j.ejor.2013.06.001.

[24] Tobias Mömke and Ola Svensson. “Approximating Graphic TSP by Match-
ings”. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer
Science. IEEE, Oct. 2011, pp. 560–569. isbn: 978-0-7695-4571-4. doi: 10 .
1109/FOCS.2011.56. arXiv: 1104.3090.

[25] Robert C. Prim. “Shortest Connection Networks And Some Generalizations”.
In: Bell System Technical Journal 36.6 (Nov. 1957), pp. 1389–1401. issn:
00058580. doi: 10.1002/j.1538-7305.1957.tb01515.x.

[26] Gerhard Reinelt. “TSPLIB—ATraveling Salesman Problem Library”. In:ORSA
Journal on Computing 3.4 (Nov. 1991), pp. 376–384. issn: 0899-1499. doi:
10.1287/ijoc.3.4.376.

[27] Daniel J. Rosenkrantz, Richard Edwin Stearns, and Philip M. Lewis. “Ap-
proximate algorithms for the traveling salesperson problem”. In: 15th Annual
Symposium on Switching and Automata Theory (swat 1974). IEEE, Oct. 1974,
pp. 33–42. doi: 10.1109/SWAT.1974.4.

[28] André Scholz and Gerhard Wäscher. “Order Batching and Picker Routing in
manual order picking systems: the benefits of integrated routing”. In: Central
European Journal of Operations Research 25.2 (June 2017), pp. 491–520. issn:
1435-246X. doi: 10.1007/s10100-017-0467-x.

[29] Vijay V. Vazirani. Approximation Algorithms. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003. isbn: 978-3-642-08469-0. doi: 10.1007/978-3-662-
04565-7.

[30] Jaeyeon Won and Sigurdur Olafsson. “Joint order batching and order pick-
ing in warehouse operations”. In: International Journal of Production Re-
search 43.7 (Apr. 2005), pp. 1427–1442. issn: 0020-7543. doi: 10 . 1080 /
00207540410001733896.

83

https://doi.org/10.1016/j.ejor.2013.06.001
https://doi.org/10.1016/j.ejor.2013.06.001
https://doi.org/10.1109/FOCS.2011.56
https://doi.org/10.1109/FOCS.2011.56
https://arxiv.org/abs/1104.3090
https://doi.org/10.1002/j.1538-7305.1957.tb01515.x
https://doi.org/10.1287/ijoc.3.4.376
https://doi.org/10.1109/SWAT.1974.4
https://doi.org/10.1007/s10100-017-0467-x
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1080/00207540410001733896
https://doi.org/10.1080/00207540410001733896

Bibliography

84

A
Raw benchmark results

A.1 Quality benchmarks

Table A.1: Results of quality benchmarks for the shortest Hamiltonian path prob-
lem solvers.

Instance Solver Path length Approx. ratio
induce10 concorde 177 —
induce10 nn 183 1.0339
induce10 td 275 1.5537
burma14 concorde 3 170 —
burma14 nn 3 688 1.1634
burma14 td 3 661 1.1549
induce15 concorde 249 —
induce15 nn 289 1.1606
induce15 td 307 1.2329
ulysses22 concorde 6 679 —
ulysses22 nn 10 874 1.6281
ulysses22 td 8 825 1.3213
induce25 concorde 329 —
induce25 nn 361 1.0973
induce25 td 401 1.2188
att48 concorde 10 095 —
att48 nn 13 923 1.3792
att48 td 14 269 1.4135
induce50 concorde 425 —
induce50 nn 583 1.3718
induce50 td 585 1.3765
induce75 concorde 595 —
induce75 nn 725 1.2185
induce75 td 753 1.2655
pr76 concorde 107 739 —
pr76 nn 152 032 1.4111

I

A. Raw benchmark results

Table A.1 – continued from previous page.
pr76 td 145 026 1.3461
induce100 concorde 677 —
induce100 nn 799 1.1802
induce100 td 849 1.2541
bier127 concorde 117 834 —
bier127 nn 129 693 1.1006
bier127 td 157 482 1.3365
induce150 concorde 718 —
induce150 nn 870 1.2117
induce150 td 938 1.3064
d198 concorde 14 641 —
d198 nn 17 627 1.2039
d198 td 18 133 1.2385
induce200 concorde 803 —
induce200 nn 1 065 1.3263
induce200 td 1 125 1.4010
a280 concorde 2 559 —
a280 nn 3 126 1.2216
a280 td 3 552 1.3880
induce300 concorde 945 —
induce300 nn 1 171 1.2392
induce300 td 1 371 1.4508
induce400 concorde 1 015 —
induce400 nn 1 219 1.2010
induce400 td 1 453 1.4315
gr431 concorde 169 965 —
gr431 nn 208 730 1.2281
gr431 td 226 727 1.3340
u574 concorde 36 858 —
u574 nn 50 327 1.3654
u574 td 49 465 1.3420
induce600 concorde 1 112 —
induce600 nn 1 320 1.1871
induce600 td 1 708 1.5360
induce800 concorde 1 214 —
induce800 nn 1 396 1.1499
induce800 td 1 806 1.4876
vm1084 concorde 238 723 —
vm1084 nn 304 432 1.2753

II

A. Raw benchmark results

Table A.1 – continued from previous page.
vm1084 td 315 767 1.3227

Table A.2: Results of quality benchmarks for the batch optimization problem
solvers on the full instances.

Instance BOP Solver SHPP Solver Path length
orders60 greedy concorde 113
orders60 greedy nn 113
orders60 greedy td 113
orders60 original concorde 339
orders60 original nn 349
orders60 original ss 485
orders60 original td 393
orders60 random1000 concorde 257
orders60 random1000 nn 287
orders60 random1000 td 313
orders107 greedy concorde 95
orders107 greedy nn 95
orders107 greedy td 97
orders107 original concorde 341
orders107 original nn 407
orders107 original ss 397
orders107 original td 381
orders107 random1000 concorde 231
orders107 random1000 nn 253
orders107 random1000 td 255
orders223 greedy concorde 101
orders223 greedy nn 101
orders223 greedy td 127
orders223 original concorde 403
orders223 original nn 443
orders223 original ss 605
orders223 original td 487
orders223 random1000 concorde 275
orders223 random1000 nn 313
orders223 random1000 td 321
orders769 greedy concorde 87
orders769 greedy nn 87
orders769 greedy td 87
orders769 original concorde 205
orders769 original nn 205

III

A. Raw benchmark results

Table A.2 – continued from previous page.
orders769 original ss 261
orders769 original td 205
orders769 random1000 concorde 179
orders769 random1000 nn 183
orders769 random1000 td 189
orders1531 greedy concorde 33
orders1531 greedy nn 33
orders1531 greedy td 33
orders1531 original concorde 199
orders1531 original nn 207
orders1531 original ss 261
orders1531 original td 207
orders1531 random1000 concorde 307
orders1531 random1000 nn 351
orders1531 random1000 td 351
orders5176 greedy concorde 33
orders5176 greedy nn 33
orders5176 greedy td 33
orders5176 original concorde 225
orders5176 original nn 225
orders5176 original ss 249
orders5176 original td 283
orders5176 random1000 concorde 261
orders5176 random1000 nn 295
orders5176 random1000 td 289

Table A.3: Results of quality benchmarks for the batch optimization problem
solvers on the random subinstances.

Full instance BOP Solver SHPP Solver Avg. approx. ratio
orders107 brute-force concorde —
orders107 brute-force nn 1.0627
orders107 brute-force td 1.0879
orders107 greedy concorde 1.0570
orders107 greedy nn 1.1440
orders107 greedy td 1.1711
orders1531 brute-force concorde —
orders1531 brute-force nn 1.0794
orders1531 brute-force td 1.1342
orders1531 greedy concorde 1.0386
orders1531 greedy nn 1.1546

IV

A. Raw benchmark results

Table A.3 – continued from previous page.
orders1531 greedy td 1.1949
orders223 brute-force concorde —
orders223 brute-force nn 1.0939
orders223 brute-force td 1.1348
orders223 greedy concorde 1.0368
orders223 greedy nn 1.1782
orders223 greedy td 1.2067
orders5176 brute-force concorde —
orders5176 brute-force nn 1.0801
orders5176 brute-force td 1.1154
orders5176 greedy concorde 1.0376
orders5176 greedy nn 1.1611
orders5176 greedy td 1.1925
orders60 brute-force concorde —
orders60 brute-force nn 1.0880
orders60 brute-force td 1.1254
orders60 greedy concorde 1.0299
orders60 greedy nn 1.1418
orders60 greedy td 1.1889
orders769 brute-force concorde —
orders769 brute-force nn 1.0349
orders769 brute-force td 1.0632
orders769 greedy concorde 1.0648
orders769 greedy nn 1.1326
orders769 greedy td 1.1829

A.2 Runtime benchmarks

Table A.4: Results of runtime benchmarks for the shortest Hamiltonian path
problem solvers.

Runtime (ms)
Instance Solver Avg. Std. dev.

induce10 concorde — —
induce10 nn 0.0276 0.0006
induce10 td 0.0536 0.0008
burma14 concorde — —
burma14 nn 0.0511 0.0015
burma14 td 0.0946 0.0013

V

A. Raw benchmark results

Table A.4 – continued from previous page.

induce15 concorde — —
induce15 nn 0.0660 0.0036
induce15 td 0.1109 0.0020
ulysses22 concorde — —
ulysses22 nn 0.1482 0.0029
ulysses22 td 0.2329 0.0043
induce25 concorde — —
induce25 nn 0.1836 0.0027
induce25 td 0.3039 0.0090
att48 concorde — —
att48 nn 0.6780 0.0099
att48 td 1.0302 0.0182
induce50 concorde — —
induce50 nn 0.8038 0.0146
induce50 td 1.1952 0.0267
induce75 concorde — —
induce75 nn 1.8827 0.0287
induce75 td 2.6710 0.0412
pr76 concorde — —
pr76 nn 1.8612 0.0292
pr76 td 2.7539 0.0794
induce100 concorde — —
induce100 nn 3.3030 0.0687
induce100 td 4.7568 0.1331
bier127 concorde — —
bier127 nn 5.2136 0.1524
bier127 td 7.2544 0.1320
induce150 concorde — —
induce150 nn 7.6542 0.1037
induce150 td 10.7168 0.2839
d198 concorde — —
d198 nn 12.6624 0.2066
d198 td 17.7469 0.2874
induce200 concorde — —
induce200 nn 14.2563 0.2757
induce200 td 19.3187 0.5030
a280 concorde — —
a280 nn 25.8199 0.4383
a280 td 36.3313 0.9853

VI

A. Raw benchmark results

Table A.4 – continued from previous page.

induce300 concorde — —
induce300 nn 32.1902 0.5644
induce300 td 44.2235 0.5809
induce400 concorde — —
induce400 nn 60.0223 0.9050
induce400 td 78.5651 0.7326
gr431 concorde — —
gr431 nn 63.6226 1.1183
gr431 td 88.9238 2.2934
u574 concorde — —
u574 nn 118.2385 1.4502
u574 td 162.1611 1.2603
induce600 concorde — —
induce600 nn 162.8426 1.5506
induce600 td 181.5653 1.9214
induce800 concorde — —
induce800 nn 240.9934 2.2008
induce800 td 323.1154 1.8290
vm1084 concorde — —
vm1084 nn 464.3692 1.3664
vm1084 td 620.2350 12.0491

Table A.5: Results of runtime benchmarks for the batch optimization problem
solvers.

Runtime (ms)
without cache with cache

Instance BOP solver SHPP solver Avg. Std. dev. Avg. Std. dev.
orders60 greedy concorde — — — —
orders60 greedy nn 23.1631 0.3339 10.9326 0.1221
orders60 greedy td 42.3346 0.2511 16.0978 0.1083
orders60 original concorde — — — —
orders60 original nn — — — —
orders60 original ss — — — —
orders60 original td — — — —
orders60 random1000 concorde — — — —
orders60 random1000 nn 427.1704 1.9523 440.1575 1.1847
orders60 random1000 td 652.8562 4.6928 677.7756 1.7451
orders107 greedy concorde — — — —

VII

A. Raw benchmark results

Table A.5 – continued from previous page.
orders107 greedy nn 49.7403 0.6913 38.5130 0.3528
orders107 greedy td 88.5420 0.6858 62.5354 0.7389
orders107 original concorde — — — —
orders107 original nn — — — —
orders107 original ss — — — —
orders107 original td — — — —
orders107 random1000 concorde — — — —
orders107 random1000 nn 204.7135 1.5489 212.1029 1.1829
orders107 random1000 td 326.8217 2.5275 336.2013 0.7780
orders223 greedy concorde — — — —
orders223 greedy nn 182.2618 1.8502 140.2121 0.5095
orders223 greedy td 263.6376 2.3911 175.9792 0.8859
orders223 original concorde — — — —
orders223 original nn — — — —
orders223 original ss — — — —
orders223 original td — — — —
orders223 random1000 concorde — — — —
orders223 random1000 nn 427.0813 1.2968 438.0867 1.4155
orders223 random1000 td 673.7034 3.0283 671.3524 3.0032
orders769 greedy concorde — — — —
orders769 greedy nn 928.1278 6.2639 500.7164 1.4056
orders769 greedy td 1 565.3835 7.5620 750.7682 1.7795
orders769 original concorde — — — —
orders769 original nn — — — —
orders769 original ss — — — —
orders769 original td — — — —
orders769 random1000 concorde — — — —
orders769 random1000 nn 224.5199 2.1913 233.4668 1.8433
orders769 random1000 td 359.9413 3.1072 370.6562 2.0535
orders1531 greedy concorde — — — —
orders1531 greedy nn 324.7300 3.3597 173.5984 1.1849
orders1531 greedy td 642.9733 7.4783 194.6437 1.2925
orders1531 original concorde — — — —
orders1531 original nn — — — —
orders1531 original ss — — — —
orders1531 original td — — — —
orders1531 random1000 concorde — — — —
orders1531 random1000 nn 592.5162 3.9704 607.7865 3.0803
orders1531 random1000 td 902.8181 20.6404 919.9067 4.4830
orders5176 greedy concorde — — — —
orders5176 greedy nn 800.8034 2.9596 459.1361 1.6740
orders5176 greedy td 1 624.7831 10.1797 511.5910 0.9987
orders5176 original concorde — — — —

VIII

A. Raw benchmark results

Table A.5 – continued from previous page.
orders5176 original nn — — — —
orders5176 original ss — — — —
orders5176 original td — — — —
orders5176 random1000 concorde — — — —
orders5176 random1000 nn 354.7399 3.1616 369.8379 1.5883
orders5176 random1000 td 547.2488 4.1344 559.2276 1.1916

IX

	List of Figures
	List of Tables
	Introduction
	Notation and conventions
	Problem statement
	Informal descriptions
	Shortest Hamiltonian path problem
	Batch optimization problem

	Research questions
	Contributions

	Theory
	The travelling salesperson problem
	Reducing the shortest Hamiltonian path problem to the travelling salesperson problem
	Classes of the travelling salesperson problem

	Induced subgraphs

	Method
	Abstract model of warehouse
	Graph representation
	Orders
	Creating a complete graph

	Considered algorithms
	Algorithms for the shortest Hamiltonian path problem
	Held-Karp
	Held-Karp successive approximation
	Nearest neighbor
	Tree doubling
	Christofides

	Algorithms for the batch optimization problem
	Relative algorithms
	Relative brute force algorithm
	Relative greedy algorithm
	Relative randomized algorithm

	Problem instances
	Instances of the shortest Hamiltonian path problem
	TSPLIB instances
	Induced instances

	Instances of the batch optimization problem
	Creating snapshots of databases
	Using snapshots to create sets of available orders
	Description of warehouse
	Full instances from warehouse data
	Random subinstances

	Implementation
	Unimplemented algorithms
	The Graph namespace
	The IUndirectedGraph interface
	The WeightArrayGraph class
	The GridGraph class
	The ShortestPathCompleteGraph function
	The IsConnected function

	The Shpp namespace
	The IShppSolver interface
	The ShppInstance class
	The ShppSolution class

	The HeldKarpSolver class
	The NearestNeighborSolver class
	The TreeDoublingSolver class
	The CachingSolver class

	The Bop namespace
	The IBopSolver interface
	The BopInstance class
	The BopSolution class

	The GreedySolver class
	The BruteForceSolver class
	The RandomSolver class

	Evaluation program
	Concorde toolkit
	Motivation
	The Concorde solver
	Caching mechanism
	Examples of scripts in the toolkit
	The generate-random-index-sets script
	The solve-shpp script
	The solve-bop script

	Test suite
	Property-based testing
	The FsCheck library
	Examples of tested properties
	Regression tests

	Benchmark suite
	Quality benchmarks
	Runtime benchmarks

	Results
	Quality benchmarks
	Shortest Hamiltonian path problem solvers
	Batch optimization problem solvers

	Runtime benchmarks
	Shortest Hamiltonian path problem solvers
	Batch optimization problem solvers

	Discussion
	Results for shortest Hamiltonian path problem
	Quality benchmarks
	Runtime benchmarks

	Results for batch optimization problem
	Quality benchmarks
	Runtime benchmarks
	General analysis
	Effect of using a cache

	Importance of start and end points
	Limitations
	Limitations of the model
	Limitations of the benchmarks

	Conclusions
	Recommendation of solvers
	Answers to research questions
	Future work
	Real-world warehouse deployment
	More extensive benchmarking
	Faster optimal algorithm

	Ethical considerations

	Related work
	Bibliography
	Raw benchmark results
	Quality benchmarks
	Runtime benchmarks

