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Distributed Training for Deep Reinforcement Learning Decoders on the Toric Code
Adam Olsson & Gabriel Lindeby
Department of Physics
Chalmers University of Technology

Abstract
We distribute the training of a deep reinforcement learning-based decoder on the
toric code developed by Fitzek et al. [9]. Reinforcement learning agents asyn-
chronously step through multiple environments in parallel and store transitions in
a prioritized experience replay buffer. A separate process samples the replay buffer
and performs backpropagation on a policy network. With this setup, we managed
to improve wall-clock training times with a factor ≥ 12 for toric code sizes of d = 5
and d = 7. For d = 9, we were unable to reach optimal performance but improved
the decoder’s success rate using a network with a parameter reduction of factor
20. We argue that these results pave the way for optimal decoders, correcting er-
rors close to what is theoretically possible, based on reinforcement learning for toric
code sizes ≥ 9. The complete code for the training and toric code environment can
be found in the repository https://github.com/Lindeby/toric-RL-decoder and
https://github.com/Lindeby/gym_ToricCode.

Keywords: Deep Reinforcement Learning, Distributed, Toric Code, Quantum Error
Correction, Ape-X.
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1
Introduction

The quantum computer’s counterpart to bits in a classical computer are called
qubits. Qubits are inherently fragile and susceptible to noise[26]. The qubits’ frag-
ile nature result in unavoidable qubit errors during quantum computations, making
the results unusable. Surface codes[7, 14, 11, 28] are a structure of physical qubits
located on a two-dimensional grid that provides topological protection to a logical
qubit. Only chains of errors from end to opposite end on the grid cause logical
bit-flips. Therefore, increasing the grid size results in greater protection. However,
even though surface codes provide protection against disturbances, these codes still
need to be monitored and corrected to prevent logical bit-flips. The difficulty in
correcting these errors lie in that they can not be measured directly. Instead, quan-
tum error correction algorithms observe the results of parity checks over the grid
and incorporate statistics during the correction process.

Deep Reinforcement Learning has recently been suggested as a tool for quantum
error correction because of its ability to learn advanced control policies from sen-
sory input[17]. An agent learns to manipulate a quantum device and apply quantum
logical operations to negate the errors. These Reinforcement Learning algorithms
have proven to be more accurate than the benchmark algorithm Minimum Weight
Perfect Matching[8, 10, 5] for error correction on surface codes[9, 6]. However, to
learn these advanced control policies, large parts of the state-space need to be ex-
plored. Deep learning frameworks such as Tensorflow[2] and Pytorch[21] support
distributed training methods that allow for faster exploration of the state-space.
Previous work state that for a surface code of size d = 9, the correction algorithm
was unable to converge to its theoretical optimal performance and suggest that the
training method is inefficient[9]. Various optimization techniques to combat ineffi-
cient training by making more use of data and explore the state-space faster have
been developed[13, 4] but never applied in a quantum error correction context. The
main interest in applying these methods to the quantum error correction context
lies not only in a faster convergence rate, but also if convergence can be reached on
larger surface codes, d ≥ 9. The latter would enable more robust quantum compu-
tations.

This Master’s thesis is a continuation of the worked developed by Fitzek et al.
[9]. Here, the quantum error correction algorithm’s training process is improved
by allowing for a distributed training approach. The work is inspired by the Ape-
X[13] framework with minor modifications to better fit the quantum error correction
context. The aim is to expand the training framework for quantum error correc-
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1. Introduction

tion algorithms based on deep reinforcement learning with a more efficient training
method. Current work use a sequential training approach where generation of data
and training are interweaved[9, 3]. The interweaving results in the computational
resources not being used to its fullest potential because of the differences in compu-
tational intensity. By separating the concerns of data generation and training, we
find that the wall-clock time for training can be decreased by a minimum of factor
12 without sacrificing error correction performance. Finally, the work here has been
limited to only improve the training method. We do not consider means to improve
the overall error correction performance, such as new neural network architectures
or reward schemes. Instead, any increase in the correction performance should come
through a more efficient exploration of the state-space.
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2
Background

2.1 Toric Code Decoder
Error correction on qubits uses some concepts that are similar, if not the same, as
some concepts in error correction on classical bits. These concepts are easier to
grasp in the context of classical error correction. Therefore, the necessary concepts
will first be explained using error correction on classical bits followed by the toric
code for quantum error correction.

2.1.1 Error Corrections and Detection on Classical Bits
The smallest possible code that can correct errors in a classical computer is the
three-bit code where three physical bits are encoded as a single logical bit.

Logic(0) = 000
Logic(1) = 111

The three-bit code is robust enough to withstand a single bit error by letting the
majority value of the physical bits determine the logical bits value. As an example,
consider the following two recoverable single bit errors:

Correction(100) = 000 = Logic(0)
Correction(101) = 111 = Logic(1)

Should a majority of the bits have an error, the value of the logical bits can no
longer be recovered, which causes a bit-flip. The recoverable number of errors can
be generalized to any code length. A code length of n can recover from (n − 1)/2
errors. This metric is also known as code-distance. Furthermore, should the three-
bit code be transmitted over a network, a receiver needs to be able to detect if any
errors occurred during the transmission. A method for detecting errors is by adding
a bit to the far left of the original data so that the total number of 1’s transmitted
is even:

Original data = 010→ Transmitted data = 1010
Original data = 110→ Transmitted data = 0110

The receiver then checks if the number of 1’s in the data is even or odd and reports a
successful or failed transmission respectively. This type of check is known as parity
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2. Background

check and it is a method for detecting errors. Error correcting codes on qubits,
however, works in quite different ways but the notion of code-distance and parity
checks provides a foundation to understand them.

2.1.2 Error Corrections and Detection on Qubits
Just like a classical bit, a qubit can only measure a logical state value of 0 or 1.
Unlike a classical bit, qubits have a superposition of 0 and 1, where the state is nei-
ther 0 or 1 but a combination of both. A superposition can be held until a qubit’s
logical state is measured, which causes a collapse into a logical value of 0 or 1 [20].
This quantum phenomena cause difficulties in the quantum error correction process
because it is not possible to measure the error directly. Doing so would destroy the
superposition of the qubit and ruin the computation.

Kitaev’s toric code[7, 14, 11, 28] is a surface code that provides topological pro-
tection to logical qubits. A square lattice with periodic boundaries represents a
single logical qubit and embed physical qubits along its edges. The number of em-
bedded physical qubits depends on the size of the lattice. A lattice of width d has
2d2 physical qubits embedded into the logical qubit, as shown in Figure 2.1. The
logical qubit’s state is protected by local disturbances because operations on the
logical qubit require global changes to the physical qubits.

Figure 2.1: (Left): The toric code uses a d × d (here 5×5) lattice with edges,
plaquettes and vertices. On each edge, a circle represents the embedded physical
qubit. (Right): 3D Visualization of the same 5×5 toric-code showing the periodic
boundaries

Errors on physical qubits come in three forms; bit-flip, phase-flip, and a combination
of the two which are represented as X, Z, and Y respectively. These errors can not be
measured directly because it causes the collapse of the superposition. Instead, par-
ity checks can be performed on groups of physical qubits to provide non-destructive
detection of errors. These parity checks are divided into two categories, plaquette
and vertex operators. Any parity check which has been violated is referred to as
a plaquette or vertex defect. As shown in Figure 2.2, X and Z errors produce two
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2. Background

defects on neighboring plaquettes or vertices respectively and Y errors produce both
types of defects. Neighboring errors cause chains in the code where only the ends of
the chain show a defect. Because of these error chains, the defects do not provide
a unique picture of the underlying error since multiple error chains have the same
appearing defects. Figure 2.3 display two appearing defects and three examples of
possible underlying error chains.

Figure 2.2: Visualization of a X, Z and Y errors and the defects they produce.

Figure 2.3: Two defects (left) do not uniquely determine the underlying error.
Three examples of possible underlying errors that produce the same appearing de-
fects.

Errors are removed by applying the corresponding quantum operator X, Z, or Y
to the erroneous physical qubit. The three quantum operators have the same effect
as their respective error: an X operator performs a bit flip, Z operator phase-flip,
and Y operator a combination of X and Z. However, the quantum correction algo-
rithm, called decoder, does not observe the underlying error. Because of the parity
checks, the decoder observes the code in terms of its defects, known as syndrome.
Whilst observing the syndrome and applying various operators, the defects can be
seen traversing the code in different directions, disappearing or appearing due to the
change in the underlying error. From the perspective of the decoder, a syndrome
is corrected by removing all remaining defects. Two defects are removed once they
have been moved onto the same plaquette or vertex.

Once a syndrome is corrected, there are three possible outcomes: (1) all underlying
errors are removed, (2) the underlying errors have formed a chain that does not span
from end to opposite end, referred to as trivial loop, (3) the underlying errors have
formed a chain that spans from end to opposite end, referred to as non-trivial loop
2.4. The former two outcomes are considered a successful error correction where the
state is preserved and the non-trivial loop a fail that caused a bit-flip on the logical
qubit. The minimum amount of errors needed for a non-trivial loop to form is the
code-distance, which here is d. A larger code-distance offers greater protection to the
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2. Background

Figure 2.4: Outcome after corrected syndromes. (Left): No error’s, (Middle): two
trivial loops, (Right): non-trivial loop

logical qubit but also comes with a larger state space. A larger state space means a
larger set of possible error combinations that the decoder needs to consider. Because
the decoder base its operations on the syndrome, it needs to incorporate statistics
into the correction process. A larger code-distance would, therefore, lead to a larger
error distribution, which can be difficult to model. However, recently a method for
modeling this distribution has emerged using deep reinforcement learning.

2.2 Deep Reinforcement Learning

In reinforcement learning[27] we consider an agent performing actions a ∈ A in an
environment. At every time step t, the agent evaluates its current state st and
performs an action at. After each action, the agent receives a scalar reward rt from
the environment and progress to state st+1. The goal is to learn a optimal policy π∗,
a mapping function from states to probabilities of selecting actions, that maximizes
the discounted future reward in a finite Markov Decision Process. The notion of how
’good’ an action is in a given state can be measured through action-value functions.
Action-value functions are defined by the expected value of taking action a at time
step t in state s, receiving reward Rt and thereafter following policy π using a
discount factor γ ≤ 1:

Qπ(s, a) = Eπ[
∞∑
k=0

γtRt+k+1|St = s, At = a] , (2.1)

The optimal action-value function Q∗ is defined by the maximal achievable expected
reward by following any policy after encountering state s and taking action a. Q∗
can be derived from estimating Qπ using iterative updates of a Bellman equation. A
Bellman equation expresses relationships between the values of states and successor
states. Once Q∗ has been estimated, the optimal policy π∗ can be derived by taking
the maximizing action over each state in Qπ.

In one-step Q-learning[30], Qπ is estimated through the Bellman equation given
by Equation 2.2 which in this case also directly approximates Q∗.

Q(st, at) = rt + γmax
a

Q(st+1, a). (2.2)
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2. Background

For each iteration, the algorithm observes a new state st, selects action a according
to at = maxaQ(st, a) using an ε-greedy policy and updates action-value function by

Q(st, at) = Q(st, at) + α[ rt + γmax
a

Q(st+1, a)−Q(st, at)] . (2.3)

where α is the learning rate. The ε-greedy policy introduces the notion of exploration
by randomly selecting a non-maximizing action with a probability of ε. Exploration
allows the algorithm to visit new states that could lead to Q∗. However, this gives
rise to a dilemma: From any state, we seek to learn action-values conditional on
future optimal behavior but need to behave after a non-optimal policy in order to
explore all actions. How can we learn about an optimal policy by only taking actions
according to a non-optimal policy? A solution to the dilemma would be to separate
behavior and learning into two policies: one policy we try to learn, target policy, and
one policy that creates a behavior, behaviour policy. By the separation, the target
policy observes and learns from actions taken by a behavior policy which can be
exploratory. This type of learning is called off-policy learning.

In environments where the state space is relatively small, the action-value func-
tion can be a table or a linear function approximator. However, these two methods
can quickly become unfeasible when the state space increases. Instead, non-linear
function approximators, such as neural networks, have become popular due to their
ability to learn advanced policies. Training of neural networks in Q-learning tries to
minimize the loss given by

L(θ) = Loss( rt + γmax
a

Q(st+1, a, θ
−)−Q(st, at, θ)) , (2.4)

where θ and θ− are two sets of network parameters know as policy network and
target network respectively. These two networks are fundamentally the same, but
the target network is held constant and occasionally updated to match the policy
network whereas the policy network is constantly updated through backpropaga-
tion. Stability during training is provided by having the slow-moving network θ−
provide target values when using supervised learning[18]. Furthermore, the measure
of the difference between the target and policy network is known as Temporal Dif-
ference error, TD-error, and is an important notion of how ’surprising’ the return
was. Large TD-errors imply that the estimate by the policy network was far from
target value which in turn gives a high loss. Finally, training of neural networks
assumes independent data samples which is not the case in reinforcement learning.
States are highly dependent on previous states because to reach state st, st−1 must
always precede. To train a neural network in a reinforcement learning setting these
dependencies need to be broken.

2.2.1 Prioritized Experience Replay
To break the dependencies between states, an experience replay buffer[15, 25] store
transitions between states in memory. At the core of the prioritized experience replay
buffer is a criterion of how important each transition is, known as priority. Here,
the TD-error is used because higher TD-errors imply that there exists information
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2. Background

Figure 2.5: Example of an underlying error with a subset of the perspectives. The
red line marks the centered qubit.

in the transition that yet has not been learned. Moreover, because the replay buffer
contains states from a distribution generated by the behavior policy, they can not
directly be used to obtain Qπ. It is important to note that the distribution over
the behavior policy is completely different from the target policy we try to learn. A
general technique for estimating values in a distribution using values from another
distribution is importance sampling[27]. Returns from the environment are weighted
according to the relative probability of occurring under the target and behavior
policies. The weights are given by

wi = ( 1
N

1
P (i)) β (2.5)

where P (i) is the probability of sampling transition i, N the current size of the replay
buffer and scaling of how much to compensate β between the two distributions.

2.2.2 Network Representation
Due to the periodic boundaries of the toric code, a syndrome can be represented
using an arbitrary qubit in its center [3, 9]. With qubit ei centered, all other qubits
are displayed in their relative positions in the syndrome and defines perspective Pi,
as shown in Figure 2.5. The set of perspectives for a state st is keyed observation Ot.
An agent will be given the option to apply an X, Z or Y operator to the centered qubit
in each of the perspectives in the observation 2.6. The number of perspectives vary
with the number of defects. However, observations can be fed as batches of different
sizes to the network which allows for a fixed number of output nodes independent
of the observation size 2.7. Additionally, the perspectives make the decoder work
on only qubits who are adjacent to a defect. This avoids unnecessary computations
of action-values for qubits who are not causing the defect.
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2. Background

Figure 2.6: All possible perspectives are generated form state St, and keyed obser-
vation Ot and feed to a neural network. The network outputs a q-value table with
one row for each perspective and one column for each operation, X, Y, and Z, where
the action is done on the center qubit with blue marked edges. The highest q-value
is the best action for state St according to the network. The q-values suggested by
the network are not fully converged to optimal q-values. However, it is clear that
the best action is an X operation in perspective P2, which gives the highest reward.
Note that all perspectives for this state are not included in the figure.

Figure 2.7: Observations can be feed as batches to the network to improve effi-
ciency. The number of perspectives for an observation Ot depends on the underlying
syndrome for state St and can be different from one observation to another. The
network outputs one q-value table for each observation.
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3
Methods

The system is built from processes having one out of three distinct roles which all run
in parallel on a single machine. In the first process, reinforcement learning agents
step through their copy of the environment to generate data, referred to as acting.
In the second process, a replay memory stores data generated from the actor referred
to as IO. Finally, the third process trains the policy network using the data stored in
the replay memory, referred to as learning. Figure 3.1 shows a visual overview of the
system. The data flow between processes is created using queues from pythons built-
in multiprocessing library and all machine learning aspects are implemented using
Pytorch[21]. Additionally, Numba[1] has been used where applicable to compile
python code into optimized machine code.

Figure 3.1: An overview of the architecture.
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3. Methods

3.1 Actor

Algorithm 1 Actor
1: θ ← SharedMemory.Read()
2: envs← InitializeEnviroments()
3: St ← envs.Reset()
4: while True do
5: Ot ←GenPerspectives(St)
6: at, qt ← SelectActions(θ, ε, Ot) . Select one action/enviroment
7: St+1, rt, terminal← envs.Step(at) . Take a step in each enviroment
8: transition← (at, rt, St, St+1, terminal)
9: LocalStorage← (St, at, qt, rt, transition)

10: if LocalStorage.Size() > B then . Send transitions to I/O
11: priorities← ComputePriorities(LocalStorage : a, r, q)
12: ReplayMemory.Send(priorities, LocalStorage : transition)
13: end if
14: if NewPolicyNetAvaliable() then
15: θ ← SharedMemory.Read() . Update policy net
16: end if
17: St ← St+1
18: end while

The actor process steps through its copy of the environment. In each iteration,
the actor encounters a syndrome in state st and generates observation Ot. The
observation is forward propagated through the actor’s copy of the policy network
and returns state-action values for the X, Z, and Y operator on each perspective.
From the action-values, an ε-greedy policy selects action at, which consists of an
operator and perspective. The action is performed on the centered qubit of the
perspective which results in progression to state st+1 and the agent receiving reward
rt. See Algorithm 1 for a pseudo-code description. The reward scheme is designed
to assume that the most likely error chain is the shortest. It is given by

rt =

100 if st+1 has no defects
Et − Et−1 otherwise

(3.1)

where Et is the number of defects left in the syndrome by time step t. Four circular
local buffers store st, at, rt and Q(st, ∗). Once these buffers are full, transition tuples
(st, at, rt, st+1, terminal) are formed, where terminal is a boolean variable indicating
if st+1 is a terminal state, i.e. no remaining defects. From Q(st, ∗), initial priori-
ties are computed and coupled with respective transition tuple. The transitions and
their priorities are then sent to the replay memory in batch. After the data has been
sent, the buffers are overwritten and the actor cycle repeated. Note that the local
buffers can be increased in size to lower the strain on the communication channel.
Establishing communication is a time-consuming process but once a connection has
been done, sending large amounts of data is relatively cheap.

12
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Moreover, to further increase the rate at which transitions are generated each actor
synchronously performs steps in multiple environments independently. Due to bet-
ter scaling with larger batch sizes, it is more efficient to run multiple environments
in a single actor process compared to a single environment in multiple actor pro-
cesses. Therefore, whenever the actor extracts q-values, the latest observation from
each environment is concatenated into a single batch and then propagated through
the network. By doing so, the memory consumption is lowered because the addi-
tional networks that would have been needed for each actor process can be avoided.

Figure 3.2: On the left, the rate of transitions generated from a single actor on
a 16 core CPU for different number of environments. On the right, the rate of
transitions generated for a single actor using 100 environments on the GPU (blue).
Additionally on the right, the rate of consumed transitions by the learner on the
GPU (orange).

Originally, the Ape-X framework ran its actor networks on CPUs. But due to
hardware limitations to 16 CPU cores, it was unfeasible to run the actor policy
networks on CPUs. Figure 3.2 displays a comparison between transitions generated
per second when running the actor policy networks on the CPU and GPU. On the
left, the best possible case, i.e. no other processes competing for resources, for a
single actor is shown against the number of environments running in parallel. The
most amount of transitions that can be generated per second is just above 42 when
4 environments are used. On the right, the worst case, i.e. there exist processes
that compete for resources, for a single actor network running on the GPU. Here,
the competing process is the learner that performs forward and backpropagations
on the policy and target networks. The number of transitions generated per second
from the actor on the GPU is stable around 350, using 100 environments in paral-
lel. Letting the actor share resources with the learner results in the most amount
of transitions generated per second. Therefore, the actor networks are running on
the GPU. Additionally, running the actor on the CPU would not generate enough
transitions for the learner to consume. This can be seen by the orange line in the
right plot of Figure 3.2.
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3.2 IO Buffer

Algorithm 2 I/O
1: ReplayMemory ← InitializeReplayMemory()
2: while True do
3: while notActorInQueue.Empty() do . Receiveing batch of transitons
4: (priorities, transitions)← ActorInQueue.Get()
5: ReplayMemory.Save(priorities, transitions)
6: end while
7: if LearnerOutQueue.Size() < 10 then
8: idx, weights, transitions← ReplayMemory.Sample()
9: LearnerOutQueue.Send((idx, weights, transitions))

10: end if
11: while notLearnerInQueue.Empty() do . Receiveing batch of priorities
12: idx, priority ← LearnerInQueue.Get()
13: ReplayMemory.UpdatePrioritis(idx, priority)
14: end while
15: end while

The IO process is an experience replay buffer implemented using a SumTree data
structure. Algorithm 2 outlines the process in pseudo-code. Each node in the
SumTree contains the sum of both its children’s value, making the root node contain
the sum over the entire tree. Values in the leaf nodes represent a priority of a single
transition. Additionally, the SumTree is also a FIFO queue which allows for old
data to be overwritten once the buffer is full. Whenever data is added, the priority
of the corresponding leaf node to the new transition is overwritten and the parent
nodes recursively updated. Each transition has a probability of being sampled by

P (i) = pαi∑
k p

α
k

(3.2)

where P (i) is the probability of sampling transition i with priority p. The exponent
α controls how much prioritization should be used where α = 0 corresponds to the
uniform sampling probability over the memory. Finally, once the batch of data has
been sampled from the replay memory, the corresponding weights are computed in
the Sample() function using Equation 2.5.

3.3 Learner
The purpose of the learner process is to train the policy network. Algorithm 3 out-
lines the process in pseudo-code. Upon initialization, the learner creates two net-
works: the policy network and the target network. A copy of the parameters of the
policy network is written to shared memory for actors to access. The policy network,
therefore, acts as a behavior policy the actors base its actions upon. In the training
loop, batches of transitions (st, at, rt, st+1, terminal) are sampled from the replay
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Algorithm 3 Learner
1: θ, θ− ← InitializeNetwork()
2: SharedMemory.Write(θ) . Initial update of shared memory parameters
3: for t = 1, 2, . . . , T do
4: Periodically:
5: θ− ← θ . Update target network parameters
6: SharedMemory.Write(θ) . Update shared memory parameters
7: idx, weights, transitions← Replay.Sample()
8: target = r + γmax(transitions, θ−)
9: policy = max(transitions, θ)

10: loss = L
(
target, policy

)
11: θ ← UpdateParameters(loss, θ, weights)
12: Replay.UpdatePriorities(idx, weights, loss) . Send new priorities to I/O
13: end for

memory. The batch of st+1 is forward propagated through the target network and
st through the policy network to create the two-dimensional vectors Q(st+1, ∗, θ−)
and Q(st, ∗, θ). From Q(st+1, ∗, θ−), the maximum action-value is selected for each
sample in the batch to create the one-dimensional vector maxaQ(st+1, a, θ

−) accord-
ing to Equation 2.4. Likewise, Q(st, at, θ) is created by selecting the corresponding
action-values in Q(st, ∗, θ) using the batch of at. From Q(st+1, a, θ

−) and Q(st, at, θ)
the loss is computed and multiplied with their respective weights, calculated as in
Equation 2.5, to remove any bias. From this product, the network is backpropagated
using mini-batch gradient descent. Finally, the priorities of the sampled transitions
in the replay memory are updated using computed loss. Periodically, the target
network is updated with new parameters from the policy network and at the same
time, the parameters in the shared memory are updated.

3.4 Gym Environment
Open AI Gym is a toolkit for the standardized development of reinforcement learn-
ing environments that simplifies comparisons between algorithms through a common
interface. The interface consists of an initialization function for the setup of a new
instance of an environment, a step function that performs an action in the environ-
ment and returns the next state, and a reset function that resets the environment.
By using the Gym toolkit, the toric code environment used in [9] has been re-
implemented to provide a standardized environment for future use. The full code
can be found in repository https://github.com/Lindeby/gym_ToricCode.

3.5 Training
Network architecture and hyper-parameters were kept constant during the training
of toric code grid sizes d = 5 and d = 7. For a grid of size d = 9, the only change was
a decreased update rate of the target network. We used mean squared error as a loss
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function throughout the work. A complete table outlining the network, called NN11,
and hyper-parameters can be found in Appendix A. Furthermore, the exploration
parameter ε was linearly decreased throughout the training from 1 to a final value
selected individually for each environment. The final ε for each environment was
selected according to

εi = β1+ envi∗α
max(1,nenvs−1) (3.3)

where subscript i denote the environment number, nenvs the number of environ-
ments in an actor and α and β two tweakable constants. Moreover, syndromes were
generated using a depolarizing noise model where each error has an equal proba-
bility p of appearing, p = px = py = pz, at each physical qubits location. For
each new syndrome, p was randomly selected from an interval that grew in size over
the training period. Initially, p was selected from the interval [0.1, 0.1] to generate
easy syndromes but for each solved syndrome the interval size grew by 0.00005 until
reaching [0.1, 0.3]. The hardware used during training was single Nvidia Tesla V100
SMX2 GPU with 32GB of VRAM.
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4.1 Gorila
Gorila[19] was the first massively distributed architecture for deep reinforcement
learning. Here multiple actors and learners run asynchronously in parallel. Addi-
tionally, parameters for the policy network are stored in a distributed database. The
database receives gradients from the learners and each machine in the distributed
database maintains and updates a subset of parameters. These asynchronous up-
dates of parameters provide significant speedups in training and additional work has
proven that it can be achieved on a single machine using only CPU-cores[16]. How-
ever, the massively distributed approach creates a complex data flow when machines
are working asynchronously. A large network of machines that needs to communicate
also has the potential to be error-prone or not reach is full training speed capabil-
ities due to the overhead that comes with communication. Compare the massively
distributed approach with this work where the entire system can be implemented
on a single machine which removes a large portion of expensive communication that
would occur over the network.

4.2 Asynchronous n-step Q-learning
Asynchronous n-step Q-learning[16] uses a framework that takes the distributed
approach developed in Gorila and parallelizes it to a single machine. By running
multiple threads on a single machine, the overhead in communication can be re-
moved and enables Hogwild![24] style of network parameters updates. Furthermore,
because all actor-learner threads run different behavior policies, the experience re-
play buffer can be removed. Because multiple actor-learners perform online updates
of the parameter server, the overall changes are likely to not be correlated. Train-
ing stability is then provided by actor-learners running different behavior policies.
By removing the need for a replay buffer, the overall memory consumption of the
framework is reduced. However, by using a replay memory, transitions that rarely
occur have a chance to be included in the training step again if there is still infor-
mation to be learned. Without the replay buffer, an actor-learner process needs to
find the same state and perform the same action. Furthermore, the globally shared
policy network parameters can provide delays by threads waiting to access the pa-
rameters or by the read of the parameters before every gradient computation. By
instead sending transitions to a replay memory, as done in this work, these delays are
avoided since the only time the shared memory is read is when the actor networks
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are updated.

4.3 Ape-X
Following the Gorila architecture was the Ape-X[13] architecture. Much like in
this work, the Ape-X architecture uses multiple actors that generate experiences
that are sent to a replay buffer. A single learner samples the replay buffer and
performs backpropagation on the policy network. However, unlike Ape-x we make
use of the efficient scaling of batch sizes and have multiple environments running
in parallel on a single actor. We see that the rate of which the state space can
be explored is increased batching states from the environments and propagated at
once. Furthermore, the Ape-X architecture makes use of multiple actor machines
running in parallel which makes it a more scalable approach where our approach
is limited to a single machine. Finally, Ape-X makes use of a dueling network
architecture[29] that after the convolutional layers, splits into two data streams that
separately predict the value and advantage function. The split data stream results
in faster learning during the training and convergence at the same result as using a
single stream network.
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Results

The main results of the thesis can be found in Figure 5.1 where the mean Q-value
can be seen over the training period. The policy networks for d = 5, d = 7 and
d = 9 has converged after roughly 0.4, 5 and 9 hours respectively. After these points,
no significant improvements to the Q-value is seen. The initial spike for d = 5 is
most likely a result of syndromes being easy to solve. Once p increases the learned
pattern is not as useful anymore which causes the drop down to a Q-value of 70.
(Note that the mean Q-value for d = 9 is collected for a smaller set of p values due
to the excessive time to gather reliable statistics during training.)

Figure 5.1: Mean Q-value over the training period for different probabilities of
error, p and toric code sizes of d = 5, d = 7 and d = 9.

Table 5.1 displays the speedups in the training time of the decoder using the dis-
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Table 5.1: Speed ups using our distributed training approach versus the sequential
training.

d=5 d=7 d=9
Sequential Convergence Time 5h 96h -
Distributed Convergence Time 0.4h 5h 10h

Speed Up 12.5 19.2 -

tributed training approach compared to the sequential approach used in [9]. Training
times from the sequentially trained decoder on d = 9 is unavailable. The data in Ta-
ble 5.1 displays wall clock times which is sub-optimal. Variations in programming
techniques, hardware, and knowledge in the implementation language can cause
large differences in run times of the same program developed by different people.
However, because wall clock times are the only data available from the sequential
training, there are no other means of measuring speed up. Nevertheless, this does
not invalidate the results because of two reasons: (1) both the sequentially and
distributed trained decoders have been training on the same hardware, and (2) at
least an order of magnitude in speed up is a strong argument for the distributed
approach being faster. For future comparison, the mean q-values with respect to
training steps can be found in Appendix B.

Figure 5.2: Error correction success rates, Ps, versus probability of generating an
error, p. A comparison between the distributed training approach and sequential
training approach, RL.

Comparing performances between the distributed training approach against the se-
quential training approach, referred to as RL in following Figures, reveal that the
distributed performs just as well for d = 5 and d = 7. Figure 5.2 displays the result
of decoders correcting syndromes from a depolarized noise model where Ps is the
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success rate of correcting a syndrome and p the probability of generating an error.
For a syndrome to be counted as successfully corrected, the final state must not
only have all defects removed but must not have any non-trivial loops. From the
crossing of d = 5 and d = 7 the threshold of 16.5% can be observed, just as in the
sequential training. Below this threshold, an error correction can be guaranteed.
From this, we conclude that a more efficient training approach will likely not in-
crease the performance of the decoder. Instead, a new reward scheme needs to be
developed as discussed in [9]. However, even though the mean Q-value in Figure
5.1 for the d = 9 decoder seems to have converged, we note that its performance
is non-optimal, to a decoder with our reward scheme, from its crossing of d = 7 at
roughly p = 0.16. Moreover, a comparison between the distributed and sequentially
trained decoders for d = 9 shows that the distributed training approach performs
better. Here, the sequentially trained decoder used a ResNet34[12] model[9] that
has 21 million parameters whereas we used NN11 with roughly 900.000 parameters.
A ResNet18 model for d = 9 was also trained using the distributed approach but
was unable to converge. More on this in the Conclusion.

Figure 5.3: Fail rates PL of the distributed trained decoder and the sequentially
trained decoder, RL, for small error rates p.

The decoder is also benchmarked on small error rates by analytically deriving an
expression for the theoretical fail rates using a depolarising noise model to lowest
non-vanishing order of p [9]. This analytical expression is based on finding the short-
est correction chains, which is similar to the behavior of a decoder with our reward
scheme. Due to the difficulties in collecting statistics about failure rates for small
p, testing of the decoder consisted of generating syndromes with errors in a single
column or row that are likely to fail. Additional errors were then added to the syn-
drome with probability p. Figure 5.3 compares fail rates for the decoders trained in
a distributed and sequential approach. The distributedly trained decoder performs
just as well as the sequentially trained decoder which in turn performs ideally to our
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reward scheme[9]. Due to the excessive time needed to gather reliable statistics for
a decoder on d = 9, we have only compared this decoder for asymptotic fail rates.
Table 5.2 displays the results of the asymptotic fail rates, i.e. the fail rate for the
shortest error chains that can fail. Again, the decoder trained using a distributed
approach performs just as well as the sequentially trained decoder for d = 5 and
d = 7. Although the distributed training seems to be better than the sequential
training and the analytical expression for d = 9, we believe that these statistics are
not reliable. Mostly because of the reason previously stated; it is difficult to gather
reliable statistics due to excessive time the test needs to run.

Table 5.2: Comparison of the asymptotic fail rates PL.

Analytic Sequential Distributed
d=5 1.51e-3 1.45e-3 1.48e-3
d=7 2.12e-5 2.07e-5 2.05e-5
d=9 2.50e-7 4.30e-7 2.00e-07

As an attempt to improve the success rate on a decoder for size d = 9, a linearly
increasing p over the first 100.000 steps during training was tested. Figure 5.4 (left)
displays a comparison of the success rate Ps between the decoders trained using a
linear and a random strategy for p described in Method. Even though the perfor-
mance looks relatively similar to each other, the random strategy is significantly
better because of its result in Figure 5.4. Figure 5.4 (right) displays the result of
decoders correcting syndromes from a depolarized noise model and p the probability
of generating an error. Unlike Figure 5.2 we are here only interested in whether the
decoder can solve the syndrome, regardless of any resulting loops in the final state.
The decoder on d = 9 trained using a linear strategy for p has problems compared to
the decoder trained with a random strategy. For comparison, the decoder for d = 5
and d = 7 has been added. These results provide more evidence that our decoder
on d = 9 still behaves non-optimally.
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Figure 5.4: (Left) A comparison of success rates Ps between decoders trained using
a linear and random strategy for p on toric code size d = 9. (Right) A compari-
son between different decoders on how many syndromes they solve, regardless of
resulting loops in the final state.
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6
Conclusion

We have found that by distributing the training for a decoder based on deep rein-
forcement learning, the training time can be decreased with at least a factor of 12.
Performance of the decoders remain the same or slightly increase for system sizes
of up to d = 9. We used the same network across all grid sizes compared to [9] who
used NN11 for d = 5 and d = 7 and a ResNet34 model for d = 9. Despite NN11
having almost 20 times fewer parameters, NN11 performs better than ResNet34. We
believe the faster rate of exploration of the state-space using the distributed train-
ing approach managed to find patterns the sequential training method was unable
to find due to a time limit. We argue that these results pave the way for optimal
decoders on larger grid sizes due to the separation of the training method and the
decoder based on reinforcement learning. For example, evaluating new neural net-
work architectures or reward schemes is only a matter of substituting the respective
class or function.

However, even though our smaller network architecture performed better, we were
not able to reach the code threshold of 16.5% for d = 9. The linear strategy for
increasing p during the training turned out to perform worse. A possible expla-
nation for this could be that the rate of which p increased was too high, resulting
in the syndromes became too difficult too fast. Using the data for the number of
transitions generated per second from Figure 3.2(right) and the size of the replay
of according to Appendix A, the replay buffer was overwritten roughly every 47th
minute. After 100.000 steps, p reached 0.3 which by comparing Figure 5.1(d = 9)
and Appendix B(d = 9) roughly took 7h. This means that after about 7h and 47min
into a 24h training, the replay buffer was filled with syndromes generated using a
p = 0.3. Surprisingly, the 16h and 13min of training on syndromes generated using
a p = 0.3 were not enough to improve performance.

Additionally, to improve performance on a decoder for size d = 9, we tried training
a ResNet18 model to the task. But due to ResNet18 having almost 10 times more
parameters, the batch size and number of environments running in parallel had to
be restricted to avoid running out of VRAM on the GPU. In the end, a batch size of
16 and 16 environments in parallel was used. After 6 days of training, the ResNet18
model had not learned anything. To try to understand why we again trained the
ResNet18 model but on a fixed syndrome to evaluate if whether it was a limitation
to the training method or a bug in the model. The model did not either manage to
solve a fixed syndrome after 12h of training, indicating that there could be a bug in
our implementation of the ResNet18 model.
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During the development, we ran into a problem that caused the network to only
learn to apply a single operator, regardless of the syndrome. We observed that due
to the random initialization of the policy network, there was always a bias towards
one operator. At this time, instead of having a linearly decreasing ε, as described
in the Method, we had a fixed ε for each environment as in the Ape-X framework.
We believe that the ε-greedy policy, which uses the policy network, overflowed the
replay buffer with actions according to the random initialization. The transitions
sampled from the replay memory were then mostly of greedy origin which the policy
network learned from. This became a feedback loop when the actors update their
network from the policy network. To solve this problem we implemented the method
of decreasing ε every update of the network, where exploration is initially forced.

6.1 Future Work
Most of the future work to speed up the training requires expanding the computa-
tional resources with additional GPUs. However, future work to speed up training
without adding additional hardware would be to expand the neural network to ex-
ploit a dueling network architecture[29].

To run larger networks, such as ResNet18, and still utilize our efficient training ap-
proach, additional hardware needs to be incorporated. Training can be distributed
across multiple machines, similar to the Ape-X framework, or distributed locally
over multiple GPUs. By having access to more GPUs, the learner does no longer
need to compete for resources during the training. Additionally, increasing the en-
vironment count for training of the decoder on size d = 9 could be the key for an
optimal decoder. This was not possible during our work because of having only
access to computational nodes with a single GPU and CPU.

With potentially additional hardware, Pytorch’s Data Parallel[22] and Distributed
Data Parallel[23] libraries allows for easy distribution of the training. In the Data
Parallel library, the model is replicated on multiple local GPUs and the training
batches are then divided into chunks between the models. The Distributed Data
Parallel library allow training on multiple machines. But in order to do so, Pytorch
needs to be built with a MPI backend. However, we found the asynchronous fea-
ture of MPI to be lackluster due to not being able to provide non-synchronizing
asynchronous message passing. For future work, the communication of our training
approach would need to be expanded to distribute training on GPUs to multiple
machines.
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A
Training Parameters

Table A.1: Hyper-parameters for training of toric code sizes d = 5 and d = 7.

Learning rate 0.00025
Discount factor 0.95

Batch size 32
Update frequency of target network and actor policy network 50

Actor max steps per episode 75
Actor local buffer size 100

Actor no environments in parallel 100
Replay memory size 1 000 000
Replay memory α 0.6
Replay memory β 0.4

Replay memory size before sampling 5000
α for exploration parameter ε 7
β for exploration parameter ε 0.8

Table A.2: Hyper-parameters for training of toric code size d = 9.

Learning rate 0.00025
Discount factor 0.95

Batch size 32
Update frequency of target network and actor policy network 1000

Actor max steps per episode 75
Actor local buffer size 100

Actor no environments in parallel 100
Replay memory size 1 000 000
Replay memory α 0.6
Replay memory β 0.4

Replay memory size before sampling 5000
α for exploration parameter ε 7
β for exploration parameter ε 0.8
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A. Training Parameters

Table A.3: Network architecture for d = 5, d = 7 and d = 9. All convolutional
layers uses kernel size 3 and stride 1. Layer 2 and on uses zero-padding of 1.

Layer Type Size No. Parameters
1 Conv2d 128 2,432
2 Conv2d 128 147,584
3 Conv2d 120 138,360
4 Conv2d 111 119,991
5 Conv2d 104 104,000
6 Conv2d 103 96,511
7 Conv2d 90 83,520
8 Conv2d 80 64,880
9 Conv2d 73 52,633
10 Conv2d 71 46,718
11 Conv2d 64 40,960
12 Linear 3 1,731

899,320
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B
Mean Q-value Vs Training Steps

Figure B.1: Mean Q-value versus training steps for different probabilities of error
on toric code sizes of d = 5, d = 7 and d = 9. Note that d = 9 is has a different set
of p values due to the excessive time to test during the training.
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