
Deep Learning Models for Data
Integration and Surrogate Models for
Interpretable Predictions with
Applications in Integromics and
Recommender Systems
Master’s thesis in Mathematical Sciences

OSKAR LIEW
PER EDWARDSSON

Department of Mathematical Sciences
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2020

MASTER’S THESIS IN MATHEMATICAL SCIENCES

Deep Learning Models for Data Integration and Surrogate Models for
Interpretable Predictions with Applications in Integromics and Recommender

Systems

OSKAR LIEW
PER EDWARDSSON

Department of Mathematical Sciences
Division of Applied Mathematics and Statistics

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2020

Deep Learning Models for Data Integration and Surrogate Models for Interpretable Predictions with Applications
in Integromics and Recommender Systems
OSKAR LIEW
PER EDWARDSSON

c© OSKAR LIEW , PER EDWARDSSON, 2020

ISSN 1652-8557
Department of Mathematical Sciences
Division of Applied Mathematics and Statistics
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone: +46 (0)31-772 1000

Cover:
Raw data on the left and the reconstructed matrix using the latent factors learned by dCMF on the right.

Chalmers Reproservice
Göteborg, Sweden 2020

Deep Learning Models for Data Integration and Surrogate Models for Interpretable Predictions with Applications
in Integromics and Recommender Systems
OSKAR LIEW
PER EDWARDSSON
Department of Mathematical Sciences
Division of Applied Mathematics and Statistics
Chalmers University of Technology

Abstract

Many tasks require the simultaneous analysis of multiple heterogeneous data sets, also known as integrative
data analysis. In the past, most data integration methods made linear assumptions in the shared latent
representations between the data sets. Recently, Deep Collective Matrix Factorization (dCMF) was proposed
as a matrix completion algorithm that can utilize auxiliary data sources without making any assumptions
about the data, by modelling non-linearities using deep learning. In this thesis, we examine the performance
and versatility of dCMF and propose a framework to interpret the predictions of the model, based on Linear
Interpretable Model-agnostic Explanations (LIME), that we call dCMF-LIME. The explanations give variable
importance measures for an individual prediction and can be used to gain trust or to troubleshoot a model. We
also propose a method for unsupervised data translation that we call a Data Translation Network (DTN) that
can learn to transform data from one set of data to another by first encoding them to a shared latent domain
and then reconstructing any of the learned data from said latent domain. We saw that dCMF outperformed
our baseline methods on simulated data and a recommendation task, but it showed poor performance on our
gene-disease association test, where it was outclassed by all other methods. DTN displayed the third best
performance in the same test and shows promise for future work.

Keywords: Integrative data analysis, Deep learning, dCMF, CMF, Integromics

i

ii

Acknowledgements

We wish to express our deepest gratitude for our supervisors, Rebecka Jörnsten and Felix Held, for your
incredible support during our thesis work, despite the unfortunate circumstances. It has been greatly appreciated
and the thesis is better for it.

Thank you Erik Kristiansson, for being our examiner. Without you this master thesis could not have
happened.

Thank you Martin Raum, for allowing us to use Gantenbein for running our simulations. It has been
instrumental in keeping running times down.

We also want to thank to Oskar Allerbo, for his assistance with deep learning specific questions.
Lastly we want to pay special regards to the teachers and professors that we have had the fortune of meeting

during our studies, as well as the program directors Jana Madjarova for Engineering Physics, Julie Rowlett for
MPENM and Mats Granath for MPCAS. We have learned incredibly much these last five years and we have
you to thank for it.

iii

Acronyms

aSDAE Additional Stacked Denoising Autoencoder. 1

CMF Collective Matrix Factorization. 1–4, 8–11, 15–17, 23, 24, 26, 27

dCMF Deep Collective Matrix Factorization. i, 1–5, 7–11, 13–20, 23–27

DTN Data Translation Network. i, 2, 3, 7, 8, 10, 11, 16–18, 24–27

FPR False Positive Rate. 20

GAN Generative Adversarial Network. 27

gCMF Group-wise sparse Collective Matrix Factorization. 1, 2, 8–11, 15–17, 23, 24, 27

GSEA Gene Set Enrichment Analysis. 27

LIME Linear Interpretable Model-agnostic Explanations. i, 2, 3, 5, 13, 14

MM-PCA Multi-group Multi-view Principal Component Analysis. 1, 2, 8–11, 15–17, 23, 24

NMF Non-negative Matrix Factorization. 1, 3

pRMSE predicted Root Mean Square Error. 9, 10, 23

RMSE Root Mean Square Error. 4, 5

SHAP Shapely Additive Explanations. 5

SVD Singular Value Decomposition. 1, 3

TCGA The Cancer Genome Atlas. 11, 12

TPR True Positive Rate. 20

iv

Contents

Abstract i

Acknowledgements iii

Acronyms iv

Contents v

1 Introduction 1

2 Background 3
2.1 Matrix Factorization . 3
2.2 Deep Collective Matrix Factorization . 3
2.3 Explainable Models . 5

2.3.1 Local Interpretable Model-agnostic Explanations . 5

3 Method 7
3.1 Using Neural Networks for Data Integration . 7
3.2 Baselines . 8
3.3 Simulated data . 9

3.3.1 Data simulation . 9
3.3.2 Evaluation . 9
3.3.3 Data Integration Analysis . 10

3.4 MovieLens100k . 10
3.4.1 Preprocessing . 10
3.4.2 Evaluation metric . 10

3.5 Omics data . 11
3.5.1 Preprocessing . 12
3.5.2 Evaluation metric . 12

3.6 Interpretability . 13
3.6.1 dCMF-LIME . 14
3.6.2 Movielens100k . 14
3.6.3 Omics data . 14

4 Results 15
4.1 Simulated data . 15

4.1.1 Data Integration Analysis . 16
4.2 MovieLens100k . 16
4.3 Omics data . 17
4.4 Interpretability . 18

4.4.1 MovieLens100k . 18
4.4.2 Omics data . 20

5 Discussion 23
5.1 Simulated data . 23
5.2 MovieLens100k . 23
5.3 Omics data . 24
5.4 Interpretability . 24

5.4.1 MovieLens100k . 24
5.4.2 Omics Data . 24

5.5 Data Translation Network . 25
5.5.1 Implementation . 25
5.5.2 Data Integration Analysis . 25

v

5.5.3 Omics data performance . 26

6 Conclusion and future work 27

References 28

A Model Hyperparameters 30
A.1 dCMF . 30
A.2 CMF and gCMF . 30
A.3 MM-PCA . 30
A.4 DTN . 30

B LIME-dCMF Movielens Test Subjects 31

C Patient features 32

vi

1 Introduction

In large scale studies it has become more common to jointly analyze several data sets; public databases,
in-house experiments, data from different technological platforms or molecular level data. These so called
data integration tasks pose challenges due to the heterogeneous nature of the data sets, large quantities of
missing values and a costly overhead of preprocessing, aligning and normalizing the data. Data is often pairwise
relational and can therefore be represented as matrices. Unknown entries in the data can then be predicted using
matrix completion methods by assuming that sufficient information may be hidden in latent substructures, that
can be found through factorization of the data. However, classical linear methods, e.g. Non-negative Matrix
Factorization (NMF) or SVD-based methods, only handle a single matrix at a time. Recently, Deep Collective
Matrix Factorization (dCMF) [MR19] was proposed as a method to enable more flexible data integration.
dCMF utilizes deep neural network autoencoders to find shared latent information in multi-view data.

Figure 1.1: Different data settings are visualized above. Each matrix X is a view and each e is a data entity.
The green matrix (X1,2 in the single-view data a), X1,3 in the others) is considered the main matrix which is
of interest to supplement. In multi-view data b), additional side information matrices are available that overlap
with each other on at least one axis. In augmented multi-view data, the additional side information matrices
can have side information matrices of their own, as in c), and there can be matrices that share both of its
entities with two other matrices, creating a three dimensional relation between matrices, as in d).

When multiple partially related data sets are available, predictive models can benefit by using the information
in the shared structure of the data. This data setting is commonly referred to as multi-view data. Each matrix
represents a view and the relationship between two entities along the rows and columns of the matrix. The first
example, Figure 1.1 a) depicts a single view X1,2 with row entity e1 and column entity e2. The second example,
Figure 1.1 b) shows a multi-view data setup with three views and four entities. This setting is very common for
recommender systems where X1,3 are user ratings for the different items and the side information matrices X2,3

and X1,4 are item features, e.g. genres, titles and run-time for movies, and user features, like age and gender,
respectively. The entities are users e1, item features e2, items e3 and user features e4. The third example,
Figure 1.1 c) is called an Augmented Multi-View setup and is often recognized by the side information matrices
having side information matrices of their own, but it can really be any arbitrary collection of matrices where all
matrices share at least one axis with another matrix in the setup [KBT14], such as in Figure 1.1 d) where X4,3

share both its column and row entity with other views. Continuing the recommender setup example using c),
the matrix X2,5 could include information about the genres of movies, including average length, common actors,
and such. Another example of an augmented multi-view setup could include an additional matrix relating e3 to
e4, resulting in a three dimensional matrix structure.

In the past, algorithms for integrative data analysis on augmented multi-view data were commonly linear
methods, e.g. Collective Matrix Factorization (CMF) and Group-wise sparse Collective Matrix Factorization
(gCMF), that were limited to finding linear interactions of the latent factors. These restrictions made the model
lack in flexibility compared to modern non-linear methods like Additional Stacked Denoising Autoencoder
(aSDAE) that uses neural networks to improve multi-view (not augmented) learning. Other recent models, like
Multi-group Multi-view Principal Component Analysis (MM-PCA) [Kal+19] can find linear latent factors but
with regularization to make the factors interpretable. dCMF combines the benefit of analysing augmented
multi-view data as well as being able to model non-linear relations through the use of autoencoders, at the cost
of becoming more opaque than the linear models. A common concern when working with neural networks is

1

over- and under-fitting, which dCMF is able to minimize by employing automated hyperparameter selection.
It does, however encounter issues when confronted with data of mixed sparsity levels and it is therefore not
guaranteed to outperform the older methods.

The opaque nature of dCMF and other deep learning based methods can be a large deterring factor for some
applications, e.g. in medicine and automotive industry. To help humans understand the models better, we
implement a framework for interpreting the predictions of dCMF based on Linear Interpretable Model-agnostic
Explanations (LIME) [RSG16], that we call dCMF-LIME. By using dCMF-LIME it is possible to get variable
importance measures for predictions from a trained dCMF model, allowing the user to gain intuition for the
model’s decisions.

We also examine the situations where dCMF excels and fails by comparing its performance to the similar,
linear methods, CMF, gCMF and MM-PCA. Three different data sets are used; A simulated dataset, the
MovieLens100k [HK15] recommender dataset, and medical data collected from The Cancer Genome Atlas
[Wei+13] and DisGeNET [Piñ+15], that we refer to as the omics dataset. These datasets were chosen because
they were similar to those used in Mariappan, Rajan (2019) [MR19] and are therefore easy to compare to
their results. We also propose a model that we call a Data Translation Network (DTN), that is based on the
work of [LBK17] on unsupervised image-to-image translation. DTN uses neural networks to translate data
between two or more data entities by first encoding the views into a shared latent domain. This method should
theoretically be more general than any of the other methods mentioned here, because it would learn what
information is shared between the views more directly. How well two data entities can be translated can be
found by observing the distance between points in the latent domain. An example application of this method
could be to translate between gene expression profiles collected using traditional bulk-analysis techniques and
modern single-cell techniques allowing their joint analysis, saving resources for medical laboratories.

The aims for this thesis is to i) compare the importance of preprocessing of data for linear and neural
network based data integration methods; ii) implement an interpretability framework for the dCMF [MR19]
method; and iii) introduce a new data integration method based on deep learning.

2

2 Background

In this section we aim to supply the reader with a sufficient theoretical background to understand the methods
discussed in this thesis. The section starts with a definition of matrix factorization. After that we give a
description of Collective Matrix Factorization (CMF), to give a deeper understanding of Deep Collective
Matrix Factorization (dCMF), that is described shortly thereafter. The reasoning behind explainable models in
machine learning is discussed and a few different approaches are highlighted, as well as the Linear Interpretable
Model-agnostic Explanations (LIME) method for interpretable machine learning, which is used in this thesis.
Lastly, the Data Translation Network (DTN) neural network architecture is described.

2.1 Matrix Factorization

In linear algebra, a matrix factorization aims to find a factorization of a matrix X ∈ Rm×n into a product
of lower ranked matrices U ∈ Rm×k and V ∈ Rn×k such that X ≈ f(UV T) for some function f . Singh and
Gordon [SG08] define a matrix factorization algorithm as consisting of a set of choices:

1. A link function f : Rm×n → Rm×n, that enables transformations in the factorization.

2. A loss function L(X, f(UV T)) ≥ 0, as a dissimilarity measure between X and its prediction f(UV T).

3. An optional matrix of data weights W ∈ Rm×n+ , that are arguments to the loss.

4. Strict constraints on the latent factors U, V ∈ A, where A is some closed set.

5. And a regularization term R(U, V) ≥ 0.

As such, a matrix factorization algorithm finds a factorization X ≈ f(UV T) by solving

argmin
U,V ∈A

(
L(X,W, f(UV T)) +R(U, V)

)
. (2.1)

2.2 Deep Collective Matrix Factorization

Most common matrix factorization methods such as Singular Value Decomposition (SVD) and Non-negative
Matrix Factorization (NMF) find factorizations of a single matrix and are unable to generalize to a multi-view
setting. Unlike these methods, CMF proposed by [SG08], aims to find joint low-rank factorizations of a set of
M matrices (X(1), . . . , X(M)) relating to each other through NE entities (e1, . . . , eNE

) where each entity has
dimension dei .

Figure 2.1: Illustration of the reconstruction of a matrix X(m) from the latent factors of its row and column
entities rm and cm.

Let rm be the row entity of the m:th matrix and cm be its column entity. Then the m:th matrix can be

approximated by X(m) ≈ U (rm)U (cm)T where U (ei) ∈ Rdei×k is a latent low-rank representation for entity ei,
where k is the rank of the latent space. These low rank representations are found by solving the optimization
problem

argmin
{U(ei)∈Rdei

×k}
ei∈{1,...,NE}

M∑
m=1

L
(
X(m), U (rm)U (cm)T

)
+

NE∑
i=1

R
(
U (ei)

)
, (2.2)

3

where L is some loss function andR is a regularization function. There are many choices of loss and regularization
functions, e.g. Bouchard, Guo and Yin [BGY13] have successfully used a negative log-likelihood loss and a
squared Frobenius norm for the regularization.

dCMF [MR19] aims to extend the CMF framework by including non-linearity in the low rank representations
such that U (ei) = feiθ ([X]ei). Here feiθ denotes a non-linear transformation unique to the entity ei, parameterized
by θ and [X]ei corresponds to all the matrices related to entity ei. Similar to CMF, the entity-specific latent
representations are found by solving the optimization problem

argmin
θ,{U(ei)∈Rdei

×k}
i∈{1,...,NE}

M∑
m=1

L
(
X(m), frmθ ([X]rm) (f cmθ ([X]cm))

T
)

+

NE∑
i=1

R
(
U (ei)

)
. (2.3)

In dCMF, f is modelled using fully-connected autoencoder neural networks [Kra91]. A neural network
consists of layers of neurons that are connected to the neurons of the adjacent layers. Each neuron performs a
weighted sum of the outputs of the previous layer and applies an activation function. Each weight is associated
with a connection and is a parameter that can be modified to change the behaviour of the network in order to
minimize some objective function. An autoencoder network, visualized in Figure 2.3, consists of two parts; an
encoder E and a decoder D. The network tries to learn the unit function D(E(x)) = x but is restricted by an
hourglass shape in the layer sizes, meaning it has to learn to encode the data E(x) into a lower dimension and
then restore it to its original dimension using the decoder D(E(x)).

Figure 2.2: Illustration of how the con-
catenated views are constructed from a
multi-view data grid consisting of three
matrices. These concatenated views
C(ei) are then used as input for the au-
toencoders used in dCMF.

Figure 2.3: In order to extract latent features, the input
view C(ei) is compressed into a lower dimensional latent
representation U (ei) by way of an encoder. Conversely,
translating latent features back into the data ei is done in a

decoder. This produces a re-creation of C(ei) called C(ei)
′
,

denoted by the prime. This type of network is commonly
referred to as an autoencoder.

Entities can be shared over multiple matrices and to enable the autoencoders to share information between
matrices, a set of NE concatenated matrices C(ei) are created, one for each entity ei, by concatenating all
matrices containing ei along their shared dimension, i = 1, ..., NE . This process is visualized in Figure 2.2. Then
NE autoencoders are used to extract the latent substructures U (ei) from each concatenated matrix C(ei). For
the autoencoder whose input is C(ei) the decoding is D(E(C(ei))) = C(ei)′, and the middle layer, or encoding,
becomes the latent factor E(C(ei)) = U (ei) after training, which is equivalent to feiθ ([X]ei) in Equation (2.3).
The autoencoders are trained together by solving the optimization problem

argmin
{U(ei)∈Rdei

×k}
i∈{1,...,NE}

M∑
m=1

lR

(
X(m), X(m)′

)
+

NE∑
i=1

lE

(
C(ei), C(ei)′

)
(2.4)

Here lR is the matrix reconstruction loss measured by the Root Mean Square Error (RMSE) between the view

X(m) and the predicted matrix X(m)′ = U (rm)U (cm)T and lE is the autoencoder reconstruction loss measured

4

by the RMSE between the input C(ei) and the decoding C(ei)′. Hyperparameters for training and autoencoder
depth are iteratively selected using a special variant of Bayesian optimisation [Jas12] called multi-task Bayesian
optimization [SSA13], that is able to optimize multiple tasks (training of autoencoders, that are dependent due
to the concatenation, in the case of dCMF) simultaneously and transfer knowledge gained from one task to
another.

2.3 Explainable Models

While modern deep learning methods can achieve great performance in machine learning tasks such as
classification and clustering, their answers can never achieve 100% accuracy in all situations. These models
are mostly considered black boxes and it can be hard to know if the perceived performance is real even for
truly new data. When an eventual failure occurs, it can lead to catastrophical consequences, in the worst
case loss of life in industries such as medicine and automotive, where the uncertainty of black box models has
been a barrier for field deployment. Therefore, we applied an explainable framework to dCMF which provides
explanations as to why the model arrived at its conclusions, increasing trust or finding shortcomings in the
model’s predictions. There are two main approaches to interpretability and explainability of machine learning
models; integrated (transparent) and post-hoc [DBH18].

The best model explanations are of course the model itself, but that requires a model that is transparent,
meaning it is easy for a human to understand its inner workings [LL17]. These models are usually interpretable
by their mathematical structure such as linear regression, decision trees or general additive models [TG19].
Another way of creating transparent models is through pruning, through the use of l1-regularization. An
example of such a method is the group lasso [YL06] that has successfully been used to create sparse and
interpretable neural network models [Tan+17]. The downside with integrated explainable models is that the
transparency of a model and its predictive performance often are conflicting objectives and there exists a
trade-off between the two [WFM15].

Post-hoc interpretability methods instead extract information from an already trained model and commonly
treat the original model as a black-box. Because this approach does not depend on how the model works,
the performance of the model is not affected [DBH18]. Examples of post-hoc interpretation methods include
variable importance measures through perturbation of input data, such as in [ZF14] or through surrogate
models as in Shapely Additive Explanations (SHAP) [LL17] or LIME [RSG16]. The explainable framework for
dCMF that we propose in this thesis is based on LIME.

2.3.1 Local Interpretable Model-agnostic Explanations

LIME [RSG16], tries to find an interpretable model that is locally faithful to a supervised learning model. The
supervised learning model is treated as a black box and can be trained using any kind of data. This is achieved
in four steps that are described in more detail in the following paragraphs.

1. Creation of an interpretable representation of a data point.

2. Local exploration through perturbation of the interpretable representation.

3. Computation of black box model response on the original representation of the perturbed samples.

4. Training of the explainer model using the black box model response as the dependent variable and the
interpretable samples as the independent variables.

The model of interest f : X → Y might be trained on data in a domain X that is hard or impossible for a
human to understand, such as word embeddings for text classification or three color channels per pixel for
images. Interpretable representations of these two cases could be a binary vector that indicates whether a
word exists in the input or the presence of a contiguous patch of similar pixels for image recognition. Given an
instance x ∈ X that we want to explain, we create an interpretable representation of x by transforming the data
with a function h : X → {0, 1}d′ such that h(x) = x′, where the dimension of the interpretable representation d′

is usually lower than the dimension of X . There should exist an approximate inverse transformation h−1(x′) ≈ x
for h so that the data can be restored to the original representation. The function h has to be designed by
the user according to their own sense of what is an interpretable representation of the data. Because of the

5

existence of a fidelity and interpretability trade-off, the interpretable representation h(x) = x′ has to be selected
with care.

The instance x with interpretable representation x′ is explored by sampling a random number non-zero
elements from x′ and setting the rest of the elements of x′ to zero, resulting in a perturbed sample on
the interpretable representation x̂′ ∈ {0, 1}d′ . This is repeated N times to create a training set for the
exploration model. Then, for each perturbed sample x̂′i, i = 1, . . . , N the original representation of that sample
h−1(x̂′i) = x̂i ∈ X is recovered. The samples are now in a domain where the model output f(x̂i) can be
computed and its output used as a target values for the explanation model.

The explanation model g : {0, 1}d′ → Y is trained using the target values f(x̂i) as the dependent variable
and the corresponding interpretable representations x̂′i as independent variables. This way, the model g becomes

an approximation of f defined on the interpretable domain {0, 1}d′ . The models are usually sparse linear models,
like a regularized linear model [HK70] where the coefficients can be used as variable importance measures. The
explainer models are then trained on the locally weighted loss

L (f, g, πx) =

N∑
i=1

πx(x̂i) (f(x̂i)− g(x̂′i))
2
. (2.5)

where πx(x̂i) = exp
(
−D(x, x̂i)

2/σ2
)

is an exponential kernel defined on some distance measure D(x, x̂) e.g.
l2-distance or cosine distance. This loss ensures that samples closer in proximity to the local point x are more
important for the training which makes the explainer model g more locally faithful to f .

6

3 Method

In this section we outline the experimental setups of this thesis starting with an introduction to the Data
Translation Network (DTN) and a description of the ideas behind it. After that we give a summary of the
baseline methods that Deep Collective Matrix Factorization (dCMF) and DTN are compared to. Following
that comes an explanation of the benchmarking datasets, how they were preprocessed and/or simulated and
which evaluation metrics were used. Lastly, the dCMF-LIME interpretability is described as well as the two
test case setups with the MovieLens100k and omics data.

3.1 Using Neural Networks for Data Integration

By using embedding networks to compress data into latent representations, the problem of data integration can
be tackled without using matrix factorization. The network introduced in this thesis is the Data Translation
Network that has been designed to integrate data by translating between different data cohorts. It is inspired
by the work of Liu et al. on unsupervised image to image translation [LBK17].

DTN, illustated in Figure 3.1, is constructed by one set of networks for each input data matrix. For a set
of M input matrices Xi ∈ Rni×mi , i = 1, ...,M , one set of embedding networks Ei and one set of generating
networks Gi are created. Ei is a fully connected feed forward neural network with input size mi and output
size k < mi ∀ i, with an adjustable number of layers. The generator Gi is also a fully connected feed forward
neural network which has the same number of layers, but the reverse order, taking an input of size k and
producing an output of size mi. The number of neurons on each layer is interpolated between input and output
sizes, creating a cone-shaped layer structure like an autoencoder.

The role of Ei is to embed the rows of Xi into a latent dimension k, creating a new matrix Zi ∈ Rni×k.
The rows in Zi represent the rows in Xi, but notably, each row in Zi is of the same size as the rows of
Zj ,∀ j = 1, ...,M . The role of generator Gi is to take a latent representation as input and produce an output
that matches the distribution of Xi. However, since all latent representations have the same size, Gi can take
any such representation as input.

Consider a sample row xi taken from matrix Xi. When translated into the latent domain, we represent
it by zi. Then, we can pass it through a generator Gj . We expect that if j = i, Gj(zi) ≈ xi, that is we can
reconstruct the input data using the generator of the same data type like an autoencoder would[WYZ16]. If we
use another generator, j 6= i, we now expect to receive something that looks like the distribution of the whole
matrix Xj , but has the characteristics of the specific row xi. We call this act data translation, akin to what is
called image translation in [LBK17].

Data that can be translated with minimal loss are data that we call integratable. If Xi and Xj are
integratable, we expect that for such data, the latent representations Zi, Zj are located close to each other in
the latent domain, ideally overlapping. If one region in the latent domain contain many points from both Xi

and Xj , this means that the autoencoder finds that location to be a good space to represent their respective
data entities, and that data can be translated accurately between the data entities.

Figure 3.1: An example of a Data Translation Network sketched above. X constitutes input matrices, E are
embedding networks, and G are generative networks. The latent domain Z = Rk is shared for all data, and any
latent representation Zi can be used with any generator Gj to produce an output matrix X ′ij . If i = j, this is a
reconstruction. Otherwise, this is a data translation.

Consider Figure 3.1. The input data sets Xi, Xj are compressed into the latent domain by their respective

7

embedding network. The latent representations can then be used as input in either generator. Using the
generator corresponding to the input matrix produces a recreation of the input matrix, matching the top and
bottom matrices of the right hand side. The two middle outputs X ′ij , X

′
ji follow the distribution of their last

index while retaining characteristics of their first index. Consider an example with two different results of an
experiment conducted in two different laboratories, one small scale with low resources and one large scale with
exact measurements. It is expected that if the result of the experiment are strong enough, the result from
the small scale can be translated to the large scale laboratory, creating an output that produces the same
experimental result, but as if it had been done in the large scale laboratory.

Since our goal for X ′ij is different from that of X ′ii, different loss functions have been used depending on
which output is being evaluated. In our implementation, the loss functions of the DTN is given by

Li=j(Xi, X
′
ij) = α

√
1

D

∑
n,m

(x(i)nm − x(ij)nm
′)2

Li 6=j(Xi, X
′
ij) = (1− α)

[∑
n,m

x(i)nm ln
x
(i)
nm

x
(ij)
nm
′

]2

L =

N∑
i=1

N∑
j=1

Lij + β
∑
wi

|wi|2

where D is the total number of elements contained in x and x′, α is a parameter that regulates the relative
importance of the two losses, β is a regularization factor and xnm contains the element on row n and column m
of matrix X. The first loss variant is a root mean squared error and the second is a Kullback-Leibler divergence.
The parameter α can be tuned to weigh data translation versus data reconstruction, or to make sure that the
losses are of equal magnitude, which will assist in data integration. The final loss function L is then iterated
through via back propagation until convergence, defined by when np epochs have been iterated through without
improvement. The parameter np is referred to as patience. The performance of DTN was measured using the
gene-disease test on the omics data.

3.2 Baselines

The dCMF and DTN algorithms were compared to two established multi-view matrix factorization methods;
Collective Matrix Factorization (CMF) [SG08] and Group-wise sparse Collective Matrix Factorization (gCMF)
[KBT14] as well as one recent algorithm; Multi-group Multi-view Principal Component Analysis (MM-PCA)
[Kal+19]. This was done to give perspective to the results of the new models.

Collective Matrix Factorization

Collective Matrix Factorization is described briefly in the beginning of Section 2.2. It finds low-rank factorizations
of a set of data matrices (X(1), . . . , X(M)) by solving the optimization problem in Equation (2.2).

Group-wise Sparse Collective Matrix Factorization

For CMF, if the individual matrices do not share their low-rank structure with each other, the algorithm will
mostly pick up noise and hardly any joint signal. To remedy this problem, gCMF [KBT14] has the ability to
learn separate private factors that are unique to a single entity type in the setup. If no such private factors can
be found, it is identical to regular CMF. These factors are learned using Variational Bayesian Inference, similar
to what was done by [IR10] and [KS12].

Multi-Group Multi-View Principal Component Analysis

The method MM-PCA, was proposed by [Kal+19]. It finds sparse low-rank factors that can be unique to a
single matrix or shared between two or more matrices by minimizing the loss function

8

min
D(e·),V (e·)

M∑
m=1

||M(m) �
(
X(m) − V (rm)D(rm)D(cm)V (cm)T

)
||2F + λ1

E∑
i=1

||D(ei)||1+ (3.1)

+λ2

k∑
c=1

√√√√ E∑
i=1

(D(ei))2cc +
λ3
E

E∑
i=1

||V (ei)D(ei)||1 +
λ4
E

E∑
i=1

di∑
d=1

||V (ei)D
(ei)
d· ||2, (3.2)

where V (ei) are orthogonal and D(ei) are diagonal K ×K matrices for all ei ∈ rm ∪ cm, m ∈ 1, . . . ,M , di is

the dimension of entity ei and || · ||F is the Frobenius norm. M(m) is a matrix where an element M(m)
ij = 0

if the corresponding element X
(m)
ij is unobserved and � is element wise multiplication. MM-PCA has four

regularization terms weighted by λ1, . . . , λ4. These aim to achieve data integration by identifying shared factors,
rank selection, sparse loadings and variable selection. The strength of MM-PCA compared to the other methods
explored in this thesis is that it is explainable by design, at the cost of being more expensive to compute.

3.3 Simulated data

An augmented multi-view data setting was simulated with the purpose of comparing the performance of the
four models dCMF, CMF, gCMF and MM-PCA with and without preprocessing of the data. Linear methods
typically require the data to be centered and scaled to function at their best. The hypothesis is that dCMF
is not as dependent on preprocessing as the other, linear methods, because of its more flexible design. Two
models of each type, with the same hyperparameters, were trained on the data. For the first model of each
type, no preprocessing was applied and for the second model the data was translated to zero mean and scaled
to unit variance. A full list of hyperparameters is available in Appendix A.

3.3.1 Data simulation

The simulated data was structured like the augmented multi-view data example in Figure 1.1 c). The data
setting was created by generating a latent factor matrix U (ei) for each ei, where i = 1, . . . , 5 and e1, e2 are the
row entities and e3, . . . , e5 are the column entities. The data matrices were then created using the outer matrix

product X(m) = U (rm)U (cm)T , where rm and cm are the row and column entities of matrix m. Similar to what

was done in [MR19], each element in U (ei) was simulated like U
(ei)
ij ∼ U(0, 1), where U(0, 1) is the uniform

distribution between 0 and 1. Each latent factor U (ei) had the same rank of 100 and row dimensions 800, 200,
300, 500 and 300 respectively. Then to impart sparsity in the matrices X(m), 30% of the elements in U (rm) and
U (cm) were set to zero.

3.3.2 Evaluation

To test each model’s performance on both raw and normalized data, a normalized variant of each matrix was

created using X
(m)
norm = (X(m) − E(X(m)))/

√
Var(X(m)), where E(X(m)) and Var(X(m)) is the empirical mean

and variance of matrix X(m). A test set T was created by extracting 5% of the element indices (i, j) from X(1).

A test and training matrix for X(1) and X
(1)
norm were then created the same way, using the same T , as follows:{

X
(1)
ij, test ← X

(1)
ij , (i, j) ∈ T

X
(1)
ij, test ← 0, (i, j) /∈ T

,

{
X

(1)
ij, train ← X

(1)
ij , (i, j) /∈ T

X
(1)
ij, train ← 0, (i, j) ∈ T

. (3.3)

The models were trained using X
(1)
train for both the raw and preprocessed data. The matrix X(1) was

approximated by X(1)′ = U (r1)′U (c1)′T . The errors were measured by their predicted Root Mean Square Error
(pRMSE):

pRMSE =

√√√√ 1

|T |
∑

(i,j)∈T

(
X

(1)
ij, test −X

(1)′
ij

)2
(3.4)

The training was repeated five times for each model and raw/preprocessed data, using the same training and
test set and the same settings. Different local minima in the model loss would be found each time and the

9

pRMSE was averaged over the five runs. To improve the interpretability of the results, the pRMSE values were
scaled by the empirical standard deviation of X(1).

3.3.3 Data Integration Analysis

To investigate the ability to translate one data type to another, a data set of two matrices from the simulated
data was created. The two matrices were both X(1), so even without any constraints to be identical, the two
encoders should create overlap in the latent representations, which indicates translatability. This means that
DTN finds them to be similar in the latent domain and can therefore be translated with minimal loss.

A DTN that used a latent domain of rank k = 5 was trained until convergence on the dataset described in
the previous paragraph. The latent representations of the dataset of the encodings, Z,Z ′ ∈ Rn×k, were then
observed. If the points in Z ′ could be moved closer to the points in Z by multiplying one of the columns with
-1, this was done. This could be done because the networks are sign invariant.

3.4 MovieLens100k

The dataset MovieLens100k [HK15] is a common benchmarking dataset for recommender systems, consisting of
three matrices and four entities. The main feature of MovieLens100k are the 100000 ratings from 943 users
on 1682 movies. The ratings are complemented by two side information matrices. The first with information
about the age, gender, zip code and occupation of the users and the second with information about the titles,
release dates and genres of the different movies. Table 3.1 contains a summary of the dataset.

3.4.1 Preprocessing

The ratings are given on a scale of 1 to 5, and to simplify the problem of finding new movies that a user would
like, the ratings were dichotomized such that ratings of 4 and above were set to 1 and ratings lower than 4
were set to 0. Unrated entries were set to ”NA” to differentiate between unrated movies and disliked movies,
which could be utilized by CMF, gCMF and MM-PCA. For dCMF, unrated entries were set to 0.

The user information matrix was encoded by creating seven age groups, with roughly the same number
of users in each, and creating separate columns for the genders, age groups, zip codes and occupations. All
categories were one-hot encoded to create a matrix of binary values with 943 users and 808 user features. The
movie information matrix was encoded in a similar way by one-hot encoding the genres and release dates of the
movies. Resulting in a matrix of binary values with 1682 movies and 259 movie features. This encoding is
similar to that of [MR19] and [Don+17], but with lighter encoding of the movie features.

Table 3.1: Movielens100k information. Sparsity is the proportion of zeros in the data

Matrix Row entity Column entity Row dim Col dim Sparsity Data type

X(1) User User features 943 808 0.9951 Binary

X(2) User Movies 943 1682 0.9652 Binary

X(3) Movie features Movies 259 1682 0.9895 Binary

3.4.2 Evaluation metric

Predictions are obtained through matrix completion by multiplying the latent representations learned by the

models X(2)′ = U (User) · U (Movies)T ∈ Rm×n. The most important predictions from a recommender system are
those with the highest values, which correspond to the top recommended items for a certain user. A full list
of hyperparameters of the four models can be viewed in appendix Appendix A. Training and test data was
randomly sampled for each run such that 95% of the positive ratings appeared in the training set and the
remaining 5% in the test set, just like for the simulated data Equation (3.3).

The performance of a recommender system can be evaluated by comparing the top k predicted items to a
user’s known liked items. We used recall as the evaluation metric, which is good for implicit feedback. Other
metrics, such as precision, are not suited because a zero rating can occur either because a user is uninterested

10

in that item or they are unaware of it [MR19]. The matrix X(2)′ contains the predicted ratings and X
(2)′
i· are

the predicted ratings for user i, corresponding to the i-th row of X(2)′. We sort X
(2)′
i· and call the indices of

the k largest elements Ski and let Stest
i be the indices of the liked items in the test set for user i. Then the

recall at k Ri(k) for a user i can be defined as

Ri(k) =
|Ski ∩ Stest

i |
|Stest
i |

=
Number of items in test set user i likes of the top k predictions

Total number of items user i likes in the test set
.

The Ri(k) was then averaged over all users i with liked items in the test set |STi | > 0, to get the mean recall
R(k) for the model at a certain k. Like [MR19] and [Don+17], we measured the average performance over 5
runs (except for MM-PCA which was only trained once because of its slow computation time).

3.5 Omics data

The performance of dCMF, DTN and dCMF-LIME on omics data was explored using data collected from the
global collaborative project The Cancer Genome Atlas (TCGA) [Wei+13] and the DisGeNET [Piñ+15] curated
gene-disease associations. The TCGA data that was used consisted of 3599 patients with clinical features and
RNA sequencing values for over 16000 genes. The clinical features consisted of mixed data types like patient
cancer cohort (Table 3.2), gender, age at diagnosis and a number of pre-computed summary statistics such as
clusters for copy numbers, gene mutations, and the like, see Appendix C for the full list. To connect genes to a
set of diseases, the DisGeNET data set was used to extract correlations between genes and diseases. Through
it, a binary table that indicates interactions between 9411 genes and 10370 diseases - not only cancer diseases -
was attained. The full list of diseases can be found at the DisGeNET web page https://www.disgenet.org.

This data was used for two tasks. The first task was to benchmark the ability of dCMF and DTN to predict
gene-disease association pairs in the DisGeNET matrix, compared to the baseline methods CMF and gCMF.
MM-PCA was omitted because of its unfeasibly long computation time for the size of this problem. Similar
to what was done for the previous benchmarks, 5% of the gene-disease associations were removed from the
training data and placed in a test set, and replaced with 0’s. For evaluation we used the metric probability at
k, denoted P (k) defined below in Section 3.5.2. In the past, dCMF has shown poor performance when the
sparsity of two views deviate too greatly [MR19], since this creates a concatenated matrix with regions of
greatly varying sparsity. To test if this makes any difference, a sparse variant of the omics data setting was used
in addition to the one described in the previous paragraph. For this modification, the RNA sequencing data
was replaced by the much sparser gene mutation matrix, with 2828 patients as the row entity and mutations of
2000 genes as the column entity. This matrix is also taken from TCGA and contains binary values if a mutation
was observed for a certain gene for each patient.

The second task was instead to use the data to predict the cancer cohort of the patients and explain the
predictions using dCMF-LIME. To accomplish this, the patients were split into a 90% training group and a
10% test group, where a dCMF model was used to predict the cancer cohort for each patient in the test group.
After which explanations were computed for every prediction. The procedure is explained in more depth in
Section 3.6.3.

11

https://www.disgenet.org

Table 3.2: Types, counts and proportion of cancer cohorts in the TCGA data.

Cancer cohort counts Proportion
Acute Myeloid Leukemia 173 0.0481
Bladder Cancer 122 0.0339
Breast Cancer 840 0.2334
Colon Cancer 190 0.0528
Endometrioid Cancer 370 0.1028
Formalin Fixed Paraffin-Embedded Pilot Phase II 12 0.0033
Glioblastoma 166 0.0461
Head and Neck Cancer 303 0.0842
Kidney Clear Cell Carcinoma 476 0.1323
Lung Adenocarcinoma 352 0.0978
Lung Squamous Cell Carcinoma 258 0.0717
Ovarian Cancer 265 0.0736
Rectal Cancer 72 0.0200

3.5.1 Preprocessing

For the clinical features, any duplicate columns were removed and categorical features were replaced with their
one-hot encodings. The patients that were not present in the RNAseq matrix were filtered out. To reduce the
dimensionality of the gene expression data, the 2000 genes with the highest variance in their RNA sequencing
values were selected and missing values were replaced by the mean for that specific gene. The DisGeNET
gene-disease associations were filtered out such that only diseases associated to any of the selected genes were
included, reducing the total number of diseases to 4796. Lastly, the columns of each matrix were scaled by their
maximum absolute value to bring the data into the range [−1, 1]. This resulted in three matrices, described in
Table 3.3.

The sparse variant of the data setting with the mutation data instead of the RNAseq, used the same 2000
genes with the highest variance in their RNA sequence expressions and the gene-disease matrix was therefore
left unchanged. The patients were once again filtered out so only patients present in both X(1) and X(2) were
included. This data is described in Table 3.4.

Table 3.3: Omics data features. Although the data set includes few matrices, they are rather heterogeneous.

Matrix Row entity Column entity Row dim Col dim Data Type Sparsity

X(1) Patient Clinical features 2828 118 Mixed 0.8835

X(2) Patient Gene (RNA) 2828 2000 Continuous 0

X(3) Disease Gene 4796 2000 Binary 0.9975

Table 3.4: A more homogeneous sparse data set.

Matrix Row entity Column entity Row dim Col dim Data Type Sparsity

X(1) Patient Clinical features 2828 118 Mixed 0.8835

X(2) Patient Gene (Mutation) 2828 2000 Binary 0.9904

X(3) Disease Gene 4796 2000 Binary 0.9975

3.5.2 Evaluation metric

A suitable evaluation metric for the gene-disease association task is probability at k, P (k), as discussed in
[ND14]. To compute it, each gene is ranked by its model predicated score for every disease. The empirical
cumulative probability that a gene-disease pair is found below a threshold k is referred to as P (k). It is averaged
over all diseases to get a single value for the model at each k.

12

Consider a binary matrix X ∈ {0, 1}m×n that is predicted by a matrix X ′ ∈ Rm×n from a matrix completion
algorithm. To compute P (k), determine the necessary permutations to sort the rows of X ′ in descending order
and place them in the matrix R. Iterating row-wise through the index pairs (i, j), where Xij = 1, record the
corresponding values Rij in a vector r of length nnz, where nnz is the number of non-zero entries in X. Finally,
we let

Pi(R) = Number of i’s in R

P (k) =
1

nnz

k∑
i=1

Pi,

where P (k) is the average probability at k over all columns in R. The algorithm is implemented in pseudo code
below.

P (k) reveals a few things. First, we note that a good algorithm would produce a high P (k) for low values
of k, and that all probabilities converge to 1 for high values of k. Since k denotes the genes, it is possible that
not all genes are correlated to diseases to begin with, so we do not expect any algorithm to perfectly predict
diseases for low k. Regardless, having a high value of P (k) for low k means fewer incorrect predictions.

Algorithm 1 Algorithm to produce the probability at k metric

1: X binary matrix, X ′ real valued matrix
2: Let r ∈ Rnnz

3: l← 1
4: for each (i, j) such that Xij = 1 do
5: sort row i of X ′ in descending order, store the indices in R
6: rl ← the index at which l is found in R
7: l← l + 1
8: end for
9: Let p ∈ Rk

10: for i = 1...k do
11: pi ← the number of i’s in r normalized by nz
12: end for
13: Return cumulative sum of p

Note that P (k) requires an matrix prediction from an algorithm. In this thesis, when calculating P (k), the
algorithms have been trained using a training set, as described in section 3.5. When P (k) was calculated, the
reconstructed training set (X ′ in the description above) was compared to the test set (X above). This meant
that the model had to learn what the missing elements in the training set were supposed to be.

3.6 Interpretability

To create explanations for the predictions of the dCMF algorithm we have used the Linear Interpretable
Model-agnostic Explanations (LIME) [RSG16] framework, described briefly in Section 2.3.1. Because dCMF is
not a classification or regression algorithm, for which LIME was originally intended, some special considerations
are required. Only a single value in the output matrix can be explained at once, so in order to explain multiple
predictions the same number of sparse linear models need to be trained. For this task we determined that
the simulated data would not be as intuitive as the movie recommendation task, as most people have a fairly
good grasp on why one movie would be recommended based on another. In addition, the data is already in an
interpretable format, meaning it consists only of binary features that correspond to a user’s features, liked
movies or movie ratings, which are easy to interpret. This relieves the need to manipulate the data further to
make it intuitive for a human. Once the LIME framework was implemented it was also tested using the Omics
data to see if it could give any insights into that more complex problem.

13

3.6.1 dCMF-LIME

Once a dCMF model had been trained and the networks extracted we could put new data in conjunction with
the old training data through the networks to get new predictions. This was used to create factorizations
without having to retrain the networks. To create explanations for the prediction of an instance x, that instance
is fed to the dCMF-LIME algorithm together with a function that creates interpretable samples x̂′ and the
same samples in the original data representation x̂. An example of such a function is given in Section 3.6.3.
Predictions y that are used as target values for the explainer model are computed using the extracted networks
and the samples x̂. The explainer is a linear ridge regression model [HK70] that is trained using the targets y
as the dependent variable and the interpretable samples x̂′ as the independent variables.

3.6.2 Movielens100k

The MovieLens100k data set, described more in detail in Section 3.4, had been encoded such that all features
were binary and indicated simple things such as if a person belongs to a certain age group or if they have
watched and liked a certain movie. Therefore the data was already in an interpretable format and LIME could
be easily applied. Hyperparameters of the dCMF model can be viewed in Appendix A.

The input data for the explanations consisted of three persons filling in the movies they themselves have
liked as well as their their age group, gender, occupation and a random zip-code. These three people are
referred to as person A, B and C. See Appendix B for a complete list of their features. The data was already
easily interpretable in its original representation, meaning no special manipulation was required to make it
interpretable and we could simply say that x = x′. The top ten recommendations were computed for each
person and the predicted rating of the top recommended item was explained.

To do this, two hundred samples x̂ were drawn by setting a uniformly random number of non-zero elements to
zero and targets y were computed by forwarding the x̂ vectors through the respective networks and multiplying
with the corresponding latent matrices. A ridge regression model was trained with regularization parameter
α = 1 and the locality was implemented by weighted sampling using the kernel

πx(x̂i) = exp
(
−D(x, x̂i)

2
)
, (3.5)

where D(x, x̂i) is the cosine distance between x and x̂i, i = 1, ..., 200.

3.6.3 Omics data

The omics dataset and the RNA sequence data in particular, was not in a suitable format for LIME, unlike
MovieLens100k and some special measures were required in order to format the data. The original data
is described in more detail in Section 3.5. The input data consisted of rows from the patient features and
RNA-sequence data that were withheld from the training data set, each row corresponding to one patient. The
patient features were then reconstructed using the latent representations of the input data and explanations
were made for the top predicted cancer cohort of that patient.

The main issue laid within RNA-sequence data. For the interpretable representation x′ of x, the the highest
expressed 100 and lowest expressed 100 genes of the patient, with respect to the RNAseq values, were picked
out and labeled as 1 and 0 respectively resulting in a binary list of 200 genes. This was done to reduce the
dimensionality of the data. The new data x′ was perturbed in the same way as for the MovieLens100k data set
by selecting a random number of positive elements and setting them to 0 to get x̂′. The perturbed interpretable
data was transformed back into the original data representation x̂ by first returning all ones to their original
value and setting the value of the zeros to 0 if their original value was larger than 0 and setting them to their
original value otherwise. This was done in order to ensure that x̂ would have both high and low gene expression
values. The genes that were removed during the selection were set to 0. The target values y were computed
using the data x̂. Then the targets y and the interpretable representation of the perturbed data x̂′ were used
to train the linear ridge regression explainer model with regularization coefficient α = 1. The data was sampled
during training with weighted probability using the same kernel as for MovieLens100k (Equation (3.5)) and the
same cosine distance measure.

14

4 Results

This section contains the results for the experiments in this thesis. First the benchmarking results from three
data sets, the simulated data, MovieLens100k and the omics data are shown, followed by the explanations
extracted from the Deep Collective Matrix Factorization (dCMF) models.

4.1 Simulated data

Figure 4.1 shows the benchmarking results on the simulated data. The first, most obvious thing to note, is
that the prediction errors for Collective Matrix Factorization (CMF) and Group-wise sparse Collective Matrix
Factorization (gCMF) extend outside the borders of the plot. From Table 4.1 we see that their normalized
errors were 5435 and 108 for CMF and gCMF, respectively. Before limiting the maximum gradient magnitude
(see Table A.3 for hyperparameters), their errors would be astronomically larger, especially for CMF (∼ 10150),
suggesting that the algorithms run into numerical difficulties without preprocessing on this data. On the
normalized data, CMF and gCMF performed similarly, with CMF performing slightly better. Multi-group
Multi-view Principal Component Analysis (MM-PCA) performed better than both CMF and gCMF even on
the raw data (relative to the standard deviation of the normalized and raw data) and dCMF performed better
still, with lower pRMSE/σ than all the other models. The last row of table 4.1 shows the relative improvement
of the pRSME/σ. Of the two algorithms that did not fail without preprocessing, dCMF and MM-PCA, we see
that dCMF benefited the most from normalizing the data, with a relative reduction of around 17%, where the
error for MM-PCA decreased less, with around 8%.

Table 4.1: Errors for the four algorithms on the raw data with and without scaling of the standard deviation
(σ ≈ 1.972 for the raw data and σ ≈ 1 for the normalized data) and error on the normalized data. The last row
shows the relative change in pRMSE/σ.

gCMF CMF dCMF MM-PCA

pRMSE 212.24 10715 1.2934 1.6078

pRMSE/σ 107.64 5434.6 0.6560 0.8155

pRMSE/σ (normed data) 1.0488 0.9672 0.5447 0.7487

Relative pRMSE/σ change 0.0097 0.0001 0.8303 0.9181

0.0

0.5

1.0

1.5

2.0

2.5

CMF
dCMF

gCMF

MMPCA

Algorithm

p
R

M
S

E
/σ Normalization

Normalized

Not normalized

predictive root mean square error scaled by standard deviation

Simulated Data

Figure 4.1: The results from the benchmark of the simulated data. The error of the algorithms on the raw
data has been scaled by its empirical standard deviation, to show the relative improvement after preprocessing.
Errors for CMF and gCMF on the raw data are of higher orders of magnitude than the rest of the errors. The
plot is zoomed in to better show the more interesting results.

15

4.1.1 Data Integration Analysis

A Data Translation Network (DTN) that used a latent domain (k = 5) with a data set containing two identical
matrices was trained until convergence. The latent representation of the data set according to each network
was then considered. The resulting two groups of latent representations can be found in Figure 4.2.

Do note that this training was done with a latent dimension of 5, and the data was simulated using a higher
dimension than that. Regardless, we expect that any data integration can be equally easy to do regardless of
chosen latent dimension size.

If the peaks of the histogram could be moved closer by way of switching the sign of a column, that was done.
The overlap in most - but not all - dimensions is considerable. It is also notable that the different encoders
produced point clouds of similar shapes, even if they do not completely overlap each other. E.g the plot with
horizontal axis z4 and vertical axis z3 overlaps less than most other pairs, with both clouds having a crescent
shape with different tilts.

z1 z2 z3 z4 z5

z
1

z
2

z
3

z
4

z
5

Pair plots of latent representations

Figure 4.2: Pair plots of the latent representations produced by a DTN trained on the same data for both
encoders with a 5 dimensional latent domain. In the off-diagonal plots, each point represents one of these
dimensions, and color and shape differentiate the encoders. Diagonal plots are density distributions of the
dimension for the two networks. If the peaks of the histogram could be moved closed by way of switching the
sign of a column, that was done.

4.2 MovieLens100k

We see from the benchmarking results on the MovieLens100k dataset in Figure 4.3 that dCMF outclasses all
the other algorithms by a large margin. It is interesting to see that CMF outperforms gCMF even though
Klami et. al. [KBT14] vouch that gCMF should always be better or equal to CMF. These results are very
much in line with those of [MR19] so they can be believed to be accurate. MM-PCA performed very well in
this task as well, outperforming both CMF and gCMF.

16

0.0

0.2

0.4

0.6

0 50 100 150 200

k

R
e
c
a
ll

a
t
k

Algorithm

MMPCA

dCMF

CMF

gCMF

for four algorithms

MovieLens100k Benchmarking

Figure 4.3: Benchmarking results of the four algorithms MM-PCA, dCMF, gCMF and CMF. The recall at
k R(k) is a measure of how correct the algorithm was in the top k results. It always increases with k and it
should ideally be as large as possible even for small k. dCMF performs very well in this run, nearly doubling
the next best alternative at k = 200.

4.3 Omics data

In order to evaluate the performance of DTN, we attempted to recreate the disease-gene matrix X(3) from
Table 3.3, using the matrices from the same table as supplementary matrices. The evaluation used the P (k)
evaluation metric, described in Algorithm 1. For this test it is best if the P (k) is large for small k, which means
that a gene can be associated with a disease with a high probability. When k gets larger it becomes harder to
say if there exists a strong correlation between that gene-disease pair. DTN was compared to the previously
established algorithms CMF, gCMF and dCMF. The result can be found in Figure 4.4.

0.0

0.2

0.4

0.6

0 100 200 300

Top k

P
ro

b
a

b
ili

ty

variable

dCMF

DTN

gCMF

CMF

on TCGA data

Benchmarking

Figure 4.4: The P (k) metric is plotted for 4 different algorithms. In this plot, the algorithms rank which genes
correlate with a given disease. Since most genes do not correlate with most diseases, and some genes are not
correlated with any disease at all, we do not expect any algorithm to reach high probabilities at low values of k.
The max k allowed here is 2000, at which all probabilities converge at 1. However, it is much more important
to have a high probability at low k. CMF is the top contender, followed closely by gCMF, then DTN, at the
bottom we find dCMF.

To examine the lower performance of dCMF more closely, a modified data set was used, described in
Table 3.4. For this comparison, only DTN and dCMF were included because they are the most interesting in
the context of this thesis. The result can be found in Figure 4.5.

17

0.0

0.2

0.4

0.6

0 100 200 300

Top k

P
ro

b
a
b
ili

ty

variable

dCMF

dCMF (sparse)

DTN

DTN (sparse)

dCMF vs DTN on sparse data

Figure 4.5: DTN and dCMF are compared more directly, both with the heterogeneous data set from Table 3.3
and from the more homogeneous sparse data set from Table 3.4. Some improvement can be seen for dCMF,
while DTN seems to have lost some accuracy for larger values of k.

4.4 Interpretability

In this section we showcase the performance of dCMF-LIME on two problems; The MovieLens100k recommender
problem and a cancer prediction problem using the omics data. The top ten explanations are shown in bar
charts where blue bars correspond to features that increase prediction scores and red bars correspond to features
that decrease the prediction scores.

4.4.1 MovieLens100k

The tables 4.2, 4.3 and 4.4 show the top ten recommendations for person A, B and C respectively and the
corresponding figures 4.6, 4.7 and 4.8 show explanations for the top recommendation for each person. The
recommended items are somewhat similar for all three test subjects. Table 4.5 was created by getting the
recommendations for an input consisting of only zeros, meaning no watched movies or user features. This is
often referred to as the cold-start problem. The table can be compared to the other three to find which items
are biased by the model and which items are user specific. We see that most of the top recommended items for
each person are present in Table 4.5, showing the presence of a strong bias in the model. This can also be
seen by comparing the magnitude of the explanations to the recommendation scores. The explainer model
coefficients are mostly in the range of 0.0005 to 0.002 and the recommendations for the zero-input are around
0.13 to 0.10. This implies that a movie that is not naturally favourably scored by the model would require the
presence of many contributing features to be moved to the top of the recommendations.

Recommendations, person A Score

Silence of the Lambs, The (1991) 0.1487332
Psycho (1960) 0.1441530
Return of the Jedi (1983) 0.1376552
Rear Window (1954) 0.1193775
Graduate, The (1967) 0.1181024
When Harry Met Sally... (1989) 0.1161001
Dances with Wolves (1990) 0.1160568
Fugitive, The (1993) 0.1144019
Forrest Gump (1994) 0.1134828
GoodFellas (1990) 0.1118130

Table 4.2: Top 10 recommended movies for
person A. Viewed movies are filtered out
from the recommendations.

Hercules (1997)

Lion King, The (1994)

Mars Attacks! (1996)

78390

age1

Full Metal Jacket (1987)

Taxi Driver (1976)

Empire Strikes Back, The (1980)

Jurassic Park (1993)

2001: A Space Odyssey (1968)

0.0000
0.0005

0.0010
0.0015

0.0020

Value

E
x
p
la

n
a
ti
o
n

Contribution

Negative

Positive

Silence of the Lambs, The (1991)

Figure 4.6: Explanations for the top recommendation, The Si-
lence of the Lambs (1991), for person A. Blue bars indicate that
the feature has a positive contribution to the prediction and the
red bars indicate the opposite.

18

Recommendations, person B Score

Star Wars (1977) 0.1325764
Silence of the Lambs, The (1991) 0.1322694
Psycho (1960) 0.1296078
Return of the Jedi (1983) 0.1256587
Raiders of the Lost Ark (1981) 0.1208767
Empire Strikes Back, The (1980) 0.1122722
Rear Window (1954) 0.1118609
2001: A Space Odyssey (1968) 0.1116455
Graduate, The (1967) 0.1089866
Fugitive, The (1993) 0.1053607

Table 4.3: Top 10 recommended movies for per-
son B. Viewed movies are filtered out from the
recommendations.

Annie Hall (1977)

engineer

Aladdin (1992)

Pulp Fiction (1994)

20784

Age 30−38

Male

Shawshank Redemption, The (1994)

Koyaanisqatsi (1983)

Hunchback of Notre Dame, The (1996)

0.0000
0.0005

0.0010
0.0015

0.0020

Value

E
x
p
la

n
a
ti
o
n

Contribution

Negative

Positive

Star Wars (1977)

Figure 4.7: Explanations for the top recommendation, Star
Wars (1977), for person B. Blue bars indicate that the feature
has a positive contribution to the prediction and the red
bars indicate the opposite.

Recommendations, person C Score

Psycho (1960) 0.1484594
Silence of the Lambs, The (1991) 0.1473105
Raiders of the Lost Ark (1981) 0.1338543
Dances with Wolves (1990) 0.1206117
Rear Window (1954) 0.1199470
Graduate, The (1967) 0.1165255
When Harry Met Sally... (1989) 0.1156397
Fugitive, The (1993) 0.1150441
Shawshank Redemption, The (1994) 0.1133415
North by Northwest (1959) 0.1131875

Table 4.4: Top 10 recommended movies for per-
son C. Viewed movies are filtered out from the
recommendations.

Terminator, The (1984)

Alien 3 (1992)

Men in Black (1997)

Star Wars (1977)

scientist

Alien (1979)

2001: A Space Odyssey (1968)

Pulp Fiction (1994)

Jackie Brown (1997)

Toy Story (1995)

0.0000
0.0005

0.0010
0.0015

Value

E
x
p
la

n
a
ti
o
n

Contribution

Negative

Positive

Psycho (1960)

Figure 4.8: Explanations for the top recommendation, Psy-
cho (1960), for person C. Blue bars indicate that the feature
has a positive contribution to the prediction and the red
bars indicate the opposite.

Table 4.5: Top 10 recommended movies for an input of only zeros, i.e no liked movies and no user features.
These recommendations can gives an idea about which items are biased by the models and which items are
user specific by comparing to previous tables.

Recommendations, zeros Score
Silence of the Lambs, The (1991) 0.1315258
Psycho (1960) 0.1287898
Raiders of the Lost Ark (1981) 0.1213705
Rear Window (1954) 0.1089659
Fugitive, The (1993) 0.1082732
Graduate, The (1967) 0.1056070
Shawshank Redemption, The (1994) 0.1040959
Dances with Wolves (1990) 0.1037529
GoodFellas (1990) 0.1019981
When Harry Met Sally... (1989) 0.1018460

Because the recommended items are so similar for the three persons, another dCMF model was trained on
the same data but with fewer epochs to prevent overfitting. Besides The English Patient from 1996 being the
top recommended item for all three persons (by a large margin) the predicted recommendations deviate more
from each other than than those given by the first model. Some items are present in the recommendations for
more than one person, but the order they appear in differs more than for the first model, even though this
model shows signs of the same problem of recommending similar items to different people.

19

Table 4.6: Recommendations for the three test subjects on a model that was trained for fewer epochs to reduce
overfitting. The recommendations deviate more from one another with this model than for the first one. The
items are still similar but their order differentiates more for the different persons.

Recommendations, person A Recommendations, person B Recommendations, person C

English Patient, The (1996) English Patient, The (1996) English Patient, The (1996)
Back to the Future (1985) Good Will Hunting (1997) Raiders of the Lost Ark (1981)
Silence of the Lambs, The (1991) Raiders of the Lost Ark (1981) Silence of the Lambs, The (1991)
Monty Python and the Holy Grail (1974) Schindler’s List (1993) Godfather, The (1972)
Schindler’s List (1993) Casablanca (1942) One Flew Over the Cuckoo’s Nest (1975)
Jerry Maguire (1996) Star Wars (1977) Schindler’s List (1993)
One Flew Over the Cuckoo’s Nest (1975) Monty Python and the Holy Grail (1974) Casablanca (1942)
Groundhog Day (1993) Godfather, The (1972) Back to the Future (1985)
Blues Brothers, The (1980) Citizen Kane (1941) Gandhi (1982)
Casablanca (1942) Gandhi (1982) Citizen Kane (1941)

4.4.2 Omics data

For the cancer prediction problem using the omics data, the dCMF algorithm resulted in a 84.4 % prediction
accuracy on our test data. Table 4.7 shows statistics over the predictions of the model. Over all, the algorithm
is biased towards predicting the more common cancer cohorts and it never predicts the less common bladder
cancer, formalin fixed paraffin-embedded pilot phase II, lung squamous cell carcinoma and rectal cancer. The
exceptions to this are head and neck cancer which is predicted twice as often as it occurs in the data, even
though it is only a little more common than lung squamous cell carcinoma, and acute myeloid leukemia, which
is correctly predicted every time even though it only occurs 15 times in the test set. Almost all cases of bladder
cancer and lung squamous cell carcinoma are falsely predicted to be head and neck cancer and rectal cancer is
always predicted to be colon cancer which intuitively could share similarities. In Figure 4.9 the explanations
for colon cancer and rectal cancer are compared and it becomes apparent why the model predicts colon cancer
over rectal cancer, because most of the same features are present for both cohorts, but with much larger
magnitudes for colon cancer. The explanations in the figure are only from clinical features of the patients and
the RNAseq-values did not appear after around the top 20 predictions and that the different classes in the
clinical features are very strong predictors. We also notice how the boxes in the box-plot are very narrow for
the clinical features (they are significantly larger for individual genes RNAseq-values), again reinforcing that
the clinical features are powerful predictors.

Table 4.7: The table shows number of predictions the model made of each cohort, as well as the number of
occurrences in the test data that the predictions were made on (very similar distribution in the training data).
It also shows the True Positive Rate (TPR) and False Positive Rate (FPR) of the predictions, computed on the
test set. The most common mistake is also given for each cohort in the cases where such mistakes were made
by the model.

Acute
Myeloid
Leukemia

Bladder
Cancer

Breast
Cancer

Colon
Cancer

Endometrioid
Cancer

Formalin Fixed
Paraffin-Embedded
Pilot Phase II

predictions 15 0 85 23 32 0
in test set 15 14 82 15 31 1
TPR 1 0 0.9878 1 0.9677 0
FPR 0 0 0.1220 0.3478 0.0625 0
Commonly
mistaken for

-
Head and
Neck Cancer

Head and
Neck Cancer

-
Ovarian
Cancer

Kidney Clear
Cell Carcinoma

20

Glioblastoma
Head and
Neck Cancer

Kidney Clear
Cell Carcinoma

Lung
Adenocarcinoma

Lung Squamous
Cell Carcinoma

Ovarian
Cancer

Rectal
Cancer

22 64 46 47 0 25 0
22 32 44 42 28 25 8
1 1 1 0.9524 0 0.96 0
0 0.5 0.0435 0.1490 0 0.04 0

- - -
Endometrioid
Cancer

Head and
Neck Cancer

Endometrioid
Cancer

Colon
Cancer

sample_type_id

Female

_TIME_TO_EVENT

_RFS_IND_0

Male

_mutation_cluster_9

_UNC_RNAseq_K16_squamous_like_c4

_RPPA_PANCAN_K8_squamous_c3

_Cluster_C2_Squamous_like

_RPPA_K8_BRCA_nonbasal_like_c8

0.001 0.002 0.003 0.004

value

E
x
p

la
n

a
ti
o

n

Contribution

Negative

Positive

Explanations for colon cancer

Age at diagnosis

_RFS_IND_missing

RFS_IND_0

_TIME_TO_EVENT

_CNA_K8_High

_mutation_cluster_9

_RPPA_PANCAN_K8_squamous_c3

_Cluster_C2_Squamous_like

Male

_RPPA_K8_BRCA_nonbasal_like_c8

.0005 .0010 .0015

value

E
x
p

la
n

a
ti
o

n

Contribution

Negative

Positive

Explanations for rectal cancer

Figure 4.9: Comparison between the explanations for colon cancer and rectal cancer for all patients in the test
set, with 0s excluded. RNAseq values of genes do not appear in the explanations until around top 20. The
model mistook rectal cancer to be colon cancer in every case. From these explanations we can see that most
of the important features are the same for both cohorts, but with larger values for colon cancer. Zeros are
excluded from the explanations. Note that the x-axes are different for the two figures.

Below, in Figure 4.10 and Figure 4.11, the predictions for patients A and B are explained using the dCMF-
LIME framework described in Section 3.6.1. Patient A was correctly predicted to have ovarian cancer and
from Figure 4.10 we can see an approximation of what features the model most strongly correlates with ovarian
cancer. Some features such as the patient being female and the probability increasing with age are intuitive
contributors, but it is also possible to see less obvious contributing factors, such as a missing RFS IND-value
for the patient or OV-like c16 methylation. A few genes also appear in the top ten contributing factors but
with a negative contribution, meaning these genes suggest that ovarian cancer is less likely.

From Table 4.7 we saw that head and neck cancer had a high number of false positives. Patient B was
wrongly predicted to have head and neck cancer by the model when they actually had lung adenocarcinoma.
Figure 4.11 shows explanations to why the model gave the prediction it did. Unlike for patient A there are no
sanity check features such as ovarian cancer being correlated with female patients and the results are therefore
harder to analyze without field expertise. A method for analyzing gene feature importance is suggested in the
discussion chapter Section 5.4.2 but it was deemed outside the scope of the thesis.

21

COLEC11

_mutation cluster 5

EN2

CA8

_Cluster_PANCAN_C9−OV

_UNC_RNAseq_K16_OV−like c16

Age at diagnosis

_DNAMethyl_OV−like c1

Female

_RFS_IND_missing

0.000 0.005 0.010

Value

E
x
p
la

n
a
ti
o
n

Contribution

Negative

Positive

Explanations for Ovarian Cancer for patient A

Figure 4.10: Patient A was correctly predicted to have ovarian cancer. The explanation for that prediction are
described by the figure. Blue bars indicate that the feature has a positive contribution to the prediction and
the red bars indicate the opposite. Features with a leading underscore indicate clinical features.

_EVENT

IGF2BP3

_miRNA cluster 5

NEFH

HEPACAM2

TLX1

_CNA_K8_Squamous

_UNC_RNAseq_K16_RNA cluster 12

KIF1A

SEMA3D

0.000 0.001 0.002 0.003 0.004

Value

E
x
p
la

n
a
ti
o
n

Contribution

Negative

Positive

Explanations for Head and Neck Cancer for patient B

Figure 4.11: Patient B was erroneously predicted to have head and neck cancer, when they actually had lung
adenocarcinoma. The explanation to that prediction are described in the figure. Blue bars indicate that the
feature has a positive contribution to the prediction and the red bars indicate the opposite. Features with a
leading underscore indicate clinical features.

22

5 Discussion

In this section we will discuss the results from the previous section, why the results came out as they did,
remaining questions as well as possible improvements for future work. First the benchmarking results will
be discussed for the three benchmarking datasets, the simulated data, MovieLens100k and the omics data.
Following that, the interpretability of the Deep Collective Matrix Factorization (dCMF) models is discussed
and the section concludes with a discussion about the data translation networks that were introduced in this
thesis.

5.1 Simulated data

The results we saw for the effects of preprocessing in Figure 4.1, in this case a normalization of the data to
zero mean and unit variance, were quite aligned with our initial predictions. The expectation was that the
linear methods would perform significantly better when the data was normalized, which we saw was the case,
especially for Collective Matrix Factorization (CMF) and Group-wise sparse Collective Matrix Factorization
(gCMF), that failed to find a good factorization at all when the data was not preprocessed. What we did not
expect however, was that dCMF would benefit more from preprocessing than Multi-group Multi-view Principal
Component Analysis (MM-PCA), which is a linear model. One hypothesis as to why dCMF performed worse
when the data was not centered and normalized, relates to the use of neural networks and the vanishing gradient
problem that is an effect of the chain-rule, that occurs when training deep neural networks using gradient
methods. Because the activation functions in each layer in the autoencoders are all tanh, their derivatives
become very small for inputs far from zero. This makes the networks take longer to train, than if the gradients
were larger, which eventually happens with time. But this time can be significantly shortened by normalizing
and centering the input data before training the network. This could mean that, when the data was not
preprocessed, the autoencoders were underfitted and the performance was worse because of that.

CMF and gCMF failed when the data was not normalized, as pointed out earlier. The errors showed in
Table 4.1 were after a hard limit had been set on the maximum magnitude of the gradients during training.
Without it, the errors were even larger, suggesting a numerical failure in the case of CMF, where the predicted
Root Mean Square Error (pRMSE) reached around 10150. gCMF, which is supposed to be more stable [KBT14],
still had issues during training, but with significantly smaller errors around 105. The gradient limit improved
the performance significantly for both algorithms, but it was still evident that no good factorization could be
found. According to [KBT14], CMF breaks down when there exists latent factors that are not shared by all
matrices. Which is the case here with U (e4) and U (e5) only being present in one matrix respectively. gCMF
should not have this same problem because it can find individual or partially shared latent features, which
could explain why it works better when the data is not normalized. The reason it does not find a very good
factorization either, despite being much better, could be because the variational Bayesian inference it uses to
find the separate factorizations can get stuck in a local optima during training. On the normalized data, both
CMF and gCMF performed fairly well, although worse than the other methods analyzed in this thesis. It is
curious that CMF slightly outperformed gCMF, however, when gCMF should have the advantage of being able
to find separate low-rank structures. This is odd since the preprocessing should not change the fact that the
data is constructed using some private factors which CMF is not supposed to handle well.

MM-PCA performed around 25% better than CMF and gCMF on the normalized data. This is despite
being restricted to five principal components, due to computational constraints, when the other methods were
set to the real rank of the latent factors of 100. MM-PCA could have an advantage because it attempts to find
sparse latent structures and the factors we simulated had around 30% sparsity.

5.2 MovieLens100k

In this section we discuss the benchmarking results on the MovieLens100k data results from Figure 4.3. It is
noteworthy how CMF performs better than gCMF when the authors of gCMF [KBT14] say it should always be
better than CMF or equal in the worst case, since if no group-wise sparse data is found it should be identical.
The fact that they perform differently indicates that group-wise sparse structures could be found in the data,
but that it did not make for any improvement in the recall of the movie recommendations. These results,
including the R(k) for dCMF fall in line with those from [MR19], which indicates that they are trustworthy.

23

In this test we saw that MM-PCA performed very well once again. The MovieLens100k data is very sparse,
and because MM-PCA has an additional sparsity assumption, that neither CMF or gCMF have, it might be
a better fit for this problem. When R(k) is calculated, we simply sort the predictions in descending order,
which means that sparsity in the predicted ratings is not a problem. It might even improve the performance by
suppressing items that the model deem unimportant.

dCMF on the other hand is leagues ahead of the competition for this problem. All three matrices, ratings,
user features and movie features, are also similarly sparse, so no problems arise due to that either.

5.3 Omics data

In the low k domain the Data Translation Network (DTN) algorithm is outperforming its competitors, suggesting
that it can find the diseases that are strongly correlated with genetics. However, increasing k gives the linear
methods CMF and gCMF an advantage, suggesting perhaps that they can better harness the full data set.

It is surprising that dCMF does not perform better, although we suspect that it has to do with its difficulty
to deal with data sets that include different types of data. The data in this data set is quite heterogeneous,
with some fully dense continuous data and some sparse binary data. It is a known weakness of dCMF [MR19].

We also see once again that gCMF performed worse than CMF, likely for similar reasons as discussed in the
above two sections.

5.4 Interpretability

The models were interpreted using the dCMF-LIME method outlined in section Section 3.6.1 on the Movie-
Lens100k and omics datasets. In this section, the explanations from the dCMF-LIME models as well as the
explained models’ perceived rationale are discussed.

5.4.1 MovieLens100k

For the MovieLens100k data, it was immediately evident that the dCMF model did not generalize well for new
data. The predictions for all three subject were similar with only a few unique recommended items and the
differences were mostly because items already rated had been filtered out of the results. It should be noted
that the all three test subjects are quite similar: young men with occupations in engineering/academia and a
somewhat similar taste in movies. When observing the recommendations for the training data these tendencies
are not as evident, and our hypothesis is that this could be due to overfitting in the autoencoders. Another
dCMF model was trained for 100 epochs (as opposed to up to 2000 or until convergence of validation data) to
test if the effect was indeed from overfitting. The resulting predictions did differ more from each other, even
though most movies were recommended for more than one of the test subjects. This suggests that overfitting
likely plays a role, but that it is not the only problem, since the model gives more varied recommendations for
the data it was trained on. This raises the question if this way of using an already trained model is unsuitable
for dCMF and if it is necessary to train a new network if one wants to factorize new data. There is also the
possibility that the recommendations are similar due to the relatively small number of rated movies in the test
persons compared to that of the training data (where the minimum was 20 items).

When it comes to the explanations themselves it is actually surprisingly hard to determine if they are
reasonable. At a first glance they look fairly good, but at the same time we can see that family films, like
Toy Story giving a positive contribution to horror movies like Psycho for person C, and for person B most
explanations are negative for why Star Wars (1977) was recommended. For most of the top recommended
items for each person, the explanations were quite similar and by comparing the magnitude of the prediction
coefficients to the recommendation scores it is apparent that even by removing several of the contributing
factors, the recommendation would not change much. This once again reinforces that there is a large bias for
which movies are recommended and that that bias is hard to sway.

5.4.2 Omics Data

For the omics data, we saw a surprisingly high prediction accuracy of 84.4% and several cancer cohorts could
be detected without error. However, a few cancer cohorts were never predicted and head and neck cancer was
predicted twice as often as it occurred in the test data. Some of the cancer types that were wrongly predicted

24

did share some similarities to other cohorts, that the model often mixed them up with, such as rectal cancer
being mistaken for colon cancer and ovarian cancer being mistaken for endometrioid cancer and vice versa. It
is understandable that the model could have issues distinguishing between these cohorts and Figure 4.9 showed
what features were the most important for the model in order to diagnose a patient with colon- and rectal
cancer. From that figure it was evident that the model did in fact increase its prediction score for rectal cancer
but the same predictors were stronger for colon cancer, which led to rectal cancer never being predicted.

The explanations for the different cohorts were quite useful for giving a sanity check to the model performance,
i.e. did the model look at sensible features when making its predictions? For certain cohorts, like breast-
and ovarian cancer it was obvious that the gender of the patient should be an important predictor, which
was seen in Figure 4.10. In this sense the explanations of the more complex dCMF model were able to give
an intuition into how the model works, without having prior field knowledge. The explanations (especially
those in Figure 4.9 that included all patients in the test set) show that the clinical features are very important
for what cohort is predicted. Many of these clinical features are classes and clusters that had been found in
the RNA-sequencing, methylation, mutation, copy number, etc. of the patients genes, by the curators of the
dataset. Individual gene RNAseq-values did not appear in the explanations until around the top 20.

5.5 Data Translation Network

In this section, we discuss the implementation of DTN, its ability to integrate the simulated data and its
performance on the omics gene-disease prediction test.

5.5.1 Implementation

Implementing a more sophisticated network architecture than the fully connected feed forward model used in
dCMF was an ambition from the start during our thesis work. Finding inspiration in the networks used in
natural language processing was an early attempt at improving the network. However, the architectures can
not be transferred without thought. In natural language processing, data is homogeneous by design. However,
within data integration, data types can be heterogeneous. One matrix might be fully dense with continuous
values, whereas the next matrix might be binary with a high sparsity. The algorithm must work in all these
scenarios simultaneously. It seems plausible that a fully connected forward propagation model is the best
choice considering the need for flexibility, as any architecture that relies on remembering the last element for a
number of steps, like a recurrent neural network, would likely lose any advantage in very sparse matrices that
can appear in the data integration domain.

The role of DTN can be compared to the role of a STYLE-GAN[KLA18], which also attempts to recreate the
distribution of one data entity but with the features of another. A high level explanation of their architecture
also seems similar, in that both networks embed data in a latent domain and generate new data using latent
representations. However, like above, the heterogeneous matrices demand more flexibility in our domain.

The loss function defines what the goal of the network is, and it is likely that a more complex loss function
could be useful for the DTN. The more detailed specification of what is expected for the network, the better
loss function can be defined, and considering that it is not obvious what the translated data should look like, a
general distribution measure is perhaps a useful starting point. It is possible that adding a shared output layer
between the latent domain and the generators could help with integrating, like previous work [LBK17][KLA18].

5.5.2 Data Integration Analysis

Considering the latent representations of observations from the simulated dataset, shown in Figure 4.2, a few
observations can be made. Our initial hypothesis was that if the latent representation of two points from two
different datasets lie close to each other, then a generator should be able to reconstruct observations that look
like the original data corresponding to this generator regardless of which dataset the point originated from. In
turn, if each generator is good at turning a latent sample into a realistic one, two nearby latent representations
should produce similar but not equal reconstructed observations. That means that two points in close proximity
in the latent domain should be points that can be well translated from one domain to another. The findings in
Figure 4.2 agree with this sentiment, as we would expect that a network that takes two identical matrices as
input should be able to translate from one dataset to another.

As for why the latent representations do not overlap fully, we consider the problem of encoding an observation
of dimension n into a smaller dimension k a problem of compression with minimal loss. In particular, the

25

distribution of observations in the latent domain should be such that the the most prominent, if not each,
unique feature in each observation can be mapped to a region in latent space, creating feature-region pairs.
The encoder then attempts to learn that mapping. However, due to the high degree of freedom in a neural
network, there is bound to exist multiple satisfactory solutions that each compress the data with near equally
low loss. In our implementation, there are no restrictions on the encoders or decoders, so they will each learn
unique but similar mappings due to chance.

5.5.3 Omics data performance

The results presented in Section 4.3 show that the P (k) for low values of k is very much comparable to CMF,
which performed best in this task. It is slightly surprising that DTN performs as well as it does in this area, as
the algorithm has not explicitly been trained at performing matrix completion. However, it is not unreasonable
that the latent information can be useful in filling out the empty spots of a matrix.

Considering that not all diseases have a genetic origin, it is not obvious how high the highest probability
should be for low k, but it is not immediately obvious that any of the algorithms produce a particularly strong
result. Perhaps it is due to the side matrices not providing enough information to be of significant help. It is
encouraging, at least, that the relative performance of DTN looks to be comparable to the other algorithms.

The performance decrease for dCMF is notable, and it matches the hypothesis that the variable sparsity
remains problematic for the algorithm. Utilizing side information matrices makes the data harder to work with
and in its current state DTN can only translate from one view to another without using information present in
any of the other matrices. The model could be changed to translate between concatenated entity matrices, like
those used in dCMF, but that would increase the number of datasets to train and consequently the training
time and complexity of the model. In our implementation we prioritized simplicity over generality.

26

6 Conclusion and future work

Our initial hypothesis was that dCMF would outperform the linear baseline algorithms both with and without
preprocessing. We saw that this was indeed the case using a simulated multi-view data set and we also saw that
CMF and gCMF encountered numerical errors when the data was not preprocessed. On the MovieLens100k
benchmark dCMF once again significantly outperformed the other methods. On the omics data on the other
hand, dCMF performed the worst out of the four algorithms. The data for this test was highly heterogeneous
in sparsity, which is a known weakness for dCMF so to test this another omics dataset with more homogeneous
sparsity was created. On this data dCMF performed better, but still worse than the baseline methods.

We were able to create satisfactory explanations for the predictions of the dCMF algorithm for both the
MovieLens100k dataset and the omics data using dCMF-LIME. We saw that there was a strong bias toward
certain movies for the MovieLens100k model and we saw that the clinical features were very powerful predictors
in the cancer prediction task. Some explanations do however require field knowledge to effectively take advantage
of such as the RNAseq-values of genes in the omics data. The biological effect of changing a single gene can be
hard to predict, therefore certain tools can be very useful when analysing a set of genes. Gene Set Enrichment
Analysis (GSEA) [Sub+05], given a large set of genes, aims to find over-represented genes that might correlate
with diseases. GSEA could be used to gain a macro-understanding of the explanations by supplying the method
with the genes with the highest explaining power. Another way to analyze the explanations could be to attempt
to cluster them, to see if there are different types of gene-compositions that lead to the same types of cancer.

The network that we put forward in this thesis, the DTN, performed well in terms of matrix completion,
comparable to the baseline methods of CMF, gCMF and dCMF. We showed that unlike for dCMF, views
with different sparsity do not affect the result. We showed that given two matrices of the same data, it could
produce latent representations that overlapped almost entirely, which we interpret as the two matrices being
integratable, and that any two matrices that match this behaviour should be too. Future improvements in
this area could include a hyperparameter optimization scheme or finding parts of the Generative Adversarial
Network (GAN)-type architectures that can be included in this model. Overall, it seems that solutions based
on AI holds some promise in the domain of solving matrix factorization problems, and it is possible that it can
bypass the need of finding matrix factors to begin with.

27

References

[BGY13] G. Bouchard, S. Guo, and D. Yin. Convex collective matrix factorization. Journal of Machine
Learning Research 31 (2013), 144–152. issn: 15337928.

[DBH18] F. K. Dosilovic, M. Brcic, and N. Hlupic. Explainable artificial intelligence: A survey. 2018
41st International Convention on Information and Communication Technology, Electronics and
Microelectronics, MIPRO 2018 - Proceedings (2018), 210–215. doi: 10 . 23919 / MIPRO . 2018 .

8400040.
[Don+17] X. Dong et al. A hybrid collaborative filtering model with deep structure for recommender systems.

31st AAAI Conference on Artificial Intelligence, AAAI 2017 (2017), 1309–1315.
[HK15] F. M. Harper and J. A. Konstan. The movielens datasets: History and context. ACM Transactions

on Interactive Intelligent Systems 5.4 (2015), 1–19. issn: 21606463. doi: 10.1145/2827872.
[HK70] A. E. Hoerl and R. W. Kennard. Ridge Regression: Biased Estimation for Nonorthogonal Problems.

Technometrics 12.1 (1970), 55–67. issn: 15372723. doi: 10.1080/00401706.1970.10488634.
[IR10] A. Ilin and T. Raiko. Practical approaches to principal component analysis in the presence of

missing values. Journal of Machine Learning Research 11 (July 2010), 1957–2000. issn: 15324435.
[Jas12] {Ryan Jasper Snoek and Hugo Larochelle and Adams. P. “Practical Bayesian optimization of

machine learning algorithms”. 2012, pp. 2951–2959.
[Kal+19] J. Kallus et al. MM-PCA: Integrative Analysis of Multi-group and Multi-view Data (2019). arXiv:

1911.04927. url: http://arxiv.org/abs/1911.04927.
[KBT14] A. Klami, G. Bouchard, and A. Tripathi. “Group-sparse embeddings in collective matrix factoriza-

tion”. 2nd International Conference on Learning Representations, ICLR 2014 - Conference Track
Proceedings. Dec. 2014. arXiv: 1312.5921. url: http://arxiv.org/abs/1312.5921.

[KLA18] T. Karras, S. Laine, and T. Aila. A Style-Based Generator Architecture for Generative Adversarial
Networks. CoRR abs/1812.04948 (2018). arXiv: 1812.04948. url: http://arxiv.org/abs/
1812.04948.

[Kra91] M. A. Kramer. Nonlinear principal component analysis using autoassociative neural networks.
AIChE Journal 37.2 (1991), 233–243. issn: 15475905. doi: 10.1002/aic.690370209.

[KS12] Y. J. Ko and M. Seeger. “Large scale variational Bayesian inference for structured scale mixture
models”. Proceedings of the 29th International Conference on Machine Learning, ICML 2012. Vol. 2.
2012, pp. 1567–1574. isbn: 9781450312851.

[LBK17] M. Y. Liu, T. Breuel, and J. Kautz. “Unsupervised image-to-image translation networks”. Advances
in Neural Information Processing Systems. 2017. arXiv: 1703.00848.

[LL17] S. M. Lundberg and S. I. Lee. “A unified approach to interpreting model predictions”. Advances
in Neural Information Processing Systems. Vol. 2017-Decem. May 2017, pp. 4766–4775. arXiv:
1705.07874. url: http://arxiv.org/abs/1705.07874.

[MR19] R. Mariappan and V. Rajan. Deep collective matrix factorization for augmented multi-view learning.
Machine Learning 108.8 (2019), 1395–1420. issn: 1573-0565. doi: 10.1007/s10994-019-05801-6.
url: https://doi.org/10.1007/s10994-019-05801-6.

[ND14] N. Natarajan and I. S. Dhillon. Inductive matrix completion for predicting gene-disease associations.
Bioinformatics 30.12 (2014), 60–68. issn: 14602059. doi: 10.1093/bioinformatics/btu269.

[Piñ+15] J. Piñero et al. DisGeNET: A discovery platform for the dynamical exploration of human diseases
and their genes. Database 2015 (2015). issn: 17580463. doi: 10.1093/database/bav028.

[RSG16] M. T. Ribeiro, S. Singh, and C. Guestrin. “”Why should i trust you?” Explaining the predictions of
any classifier”. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. Vol. 13-17-Augu. Association for Computing Machinery, Aug. 2016, pp. 1135–1144.
isbn: 9781450342322. doi: 10.1145/2939672.2939778. arXiv: 1602.04938.

[SG08] A. P. Singh and G. J. Gordon. Relational learning via collective matrix factorization. Proceedings
of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2008),
650–658. doi: 10.1145/1401890.1401969.

[SSA13] K. Swersky, J. Snoek, and R. P. Adams. “Multi-task Bayesian optimization”. Advances in Neural
Information Processing Systems. 2013, pp. 1–9.

[Sub+05] A. Subramanian et al. Gene set enrichment analysis: A knowledge-based approach for interpreting
genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United
States of America (2005). issn: 00278424. doi: 10.1073/pnas.0506580102.

28

https://doi.org/10.23919/MIPRO.2018.8400040
https://doi.org/10.23919/MIPRO.2018.8400040
https://doi.org/10.1145/2827872
https://doi.org/10.1080/00401706.1970.10488634
https://arxiv.org/abs/1911.04927
http://arxiv.org/abs/1911.04927
https://arxiv.org/abs/1312.5921
http://arxiv.org/abs/1312.5921
https://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1812.04948
https://doi.org/10.1002/aic.690370209
https://arxiv.org/abs/1703.00848
https://arxiv.org/abs/1705.07874
http://arxiv.org/abs/1705.07874
https://doi.org/10.1007/s10994-019-05801-6
https://doi.org/10.1007/s10994-019-05801-6
https://doi.org/10.1093/bioinformatics/btu269
https://doi.org/10.1093/database/bav028
https://doi.org/10.1145/2939672.2939778
https://arxiv.org/abs/1602.04938
https://doi.org/10.1145/1401890.1401969
https://doi.org/10.1073/pnas.0506580102

[Tan+17] A. Tank et al. An Interpretable and Sparse Neural Network Model for Nonlinear Granger Causality
Discovery. Nips (2017). arXiv: 1711.08160. url: http://arxiv.org/abs/1711.08160.

[TG19] E. Tjoa and C. Guan. A Survey on Explainable Artificial Intelligence (XAI): Towards Medical XAI.
2019. arXiv: 1907.07374 [cs.LG].

[Wei+13] J. N. Weinstein et al. The cancer genome atlas pan-cancer analysis project. 2013. doi: 10.1038/ng.
2764.

[WFM15] J. Wang, R. Fujimaki, and Y. Motohashi. Trading interpretability for accuracy: Oblique treed
sparse additive models. Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining 2015-Augus (2015), 1245–1254. doi: 10.1145/2783258.2783407.

[WYZ16] Y. Wang, H. Yao, and S. Zhao. Auto-encoder based dimensionality reduction. Neurocomputing 184
(2016). RoLoD: Robust Local Descriptors for Computer Vision 2014, 232–242. issn: 0925-2312. doi:
https://doi.org/10.1016/j.neucom.2015.08.104. url: http://www.sciencedirect.com/
science/article/pii/S0925231215017671.

[YL06] M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal
of the Royal Statistical Society. Series B: Statistical Methodology 68.1 (2006), 49–67. issn: 13697412.
doi: 10.1111/j.1467-9868.2005.00532.x.

[ZF14] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) 8689 LNCS.PART 1 (2014), 818–833. issn: 16113349. doi: 10.1007/978-3-
319-10590-1_53. arXiv: 1311.2901.

29

https://arxiv.org/abs/1711.08160
http://arxiv.org/abs/1711.08160
https://arxiv.org/abs/1907.07374
https://doi.org/10.1038/ng.2764
https://doi.org/10.1038/ng.2764
https://doi.org/10.1145/2783258.2783407
https://doi.org/https://doi.org/10.1016/j.neucom.2015.08.104
http://www.sciencedirect.com/science/article/pii/S0925231215017671
http://www.sciencedirect.com/science/article/pii/S0925231215017671
https://doi.org/10.1111/j.1467-9868.2005.00532.x
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53
https://arxiv.org/abs/1311.2901

A Model Hyperparameters

A.1 dCMF

Table A.1: Hyperparameters of the dCMF models. Parameters learned through Bayesian optimization left out.
PT means pretraining and BO is Bayesian optimization.

Dataset Activation Last layer Epochs PT threshold PT epochs # BO steps initial design size

Simulated data tanh False 6000 0.1 2 5 5
Movielens100k tanh False 2000 0.1 2 20 5
Omic data sigmoid True 2000 0.1 2 20 5

Table A.2: Hyperparameters ranges for Bayesian optimization.

Hyperparameter Type Domain

leanring rate Continuous [1e-6, 1e-4]
convergation threshold Continuous [1e-5, 1e-4]
weigth decay Continuous [0.05, 0.5]
kf Continuous [0.1, 0.5]
k Discrete {10, 100, 200}
chunks Discrete {1, 2}

A.2 CMF and gCMF

Table A.3: Hyperparameters of the CMF and gCMF models. Anything not mentioned in the table is set to the
standard value of the R CMF package.

Dataset Likelihood Iterations k Gradient max
Simulated data Gaussian 100 100 1000
Movielens100k Gaussian 100 200 ∞
Omic data Gaussian 200 80 ∞

A.3 MM-PCA

Table A.4: Hyperparameters of the MM-PCA models. Anything not mentioned in the table is set to the
standard value of the R mmpca package.

Dataset k
Simulated data 5
Movielens100k 5

A.4 DTN

Table A.5: Hyperparameters of the data translation networks.

Dataset k # Layers in autoencoder Patience Learning Rate α
TCGA 200 5 30 1× 10−3 0.3
TCGA sparse 80 3 30 1× 10−3 0.3
Simulated 5 3 50 5× 10−4 0.3

30

B LIME-dCMF Movielens Test Subjects

Person A

• Male

• Age 18-24

• Programmer

• 78390

• Toy Story (1995)

• Taxi Driver (1976)

• Star Wars (1977)

• Pulp Fiction (1994)

• Shawshank Redemption, The (1994)

• Lion King, The (1994)

• Jurassic Park (1993)

• Blade Runner (1982)

• Home Alone (1990)

• Fargo (1996)

• Godfather, The (1972)

• 2001: A Space Odyssey (1968)

• Empire Strikes Back, The (1980)

• Raiders of the Lost Ark (1981)

• Alien (1979)

• Full Metal Jacket (1987)

• Indiana Jones and the Last Crusade (1989)

• Mars Attacks! (1996)

• Hercules (1997)

Person B

• Male

• Age 30-38

• Engineer

• 20784

• Pulp Fiction (1994)

• Shawshank Redemption, The (1994)

• Aladdin (1992)

• Annie Hall (1977)

• Hunchback of Notre Dame, The (1996)

• Koyaanisqatsi (1983)

Person C

• Male

• Age 30-38

• Scientist

• 09645

• Toy Story (1995)

• GoldenEye (1995)

• Twelve Monkeys (1995)

• Seven (Se7en) (1995)

• From Dusk Till Dawn (1996)

• Braveheart (1995)

• Star Wars (1977)

• Pulp Fiction (1994)

• Forrest Gump (1994)

• Jurassic Park (1993)

• Blade Runner (1982)

• Terminator 2: Judgment Day (1991)

• Fargo (1996)

• 2001: A Space Odyssey (1968)

• Die Hard (1988)

• Willy Wonka and the Chocolate Factory (1971)

• Monty Python’s Life of Brian (1979)

• Reservoir Dogs (1992)

• Monty Python and the Holy Grail (1974)

• Empire Strikes Back, The (1980)

• Return of the Jedi (1983)

• Alien (1979)

• Full Metal Jacket (1987)

• Terminator, The (1984)

31

• Nikita (La Femme Nikita) (1990)

• Shining, The (1980)

• Fifth Element, The (1997)

• Lost World: Jurassic Park, The (1997)

• Men in Black (1997)

• Donnie Brasco (1997)

• Alien: Resurrection (1997)

• Jackie Brown (1997)

• Mission: Impossible (1996)

• Die Hard: With a Vengeance (1995)

• Alien 3 (1992)

• Jumanji (1995)

• Big Lebowski, The (1998)

• Underworld (1997)

• Big Bang Theory, The (1994)

C Patient features

• Patient cancer cohort

• Gender

• Age at diagnosis

• Event

• Time to event

• RFS

• RFS ind

• Sample type id

• CNA K8 class

• DNA-Methyl cluster

• RPPA class

• RNAseq cluster

• miRNA cluster

• Mutation cluster

• Gene set enrichment cluster

32

	Abstract
	Acknowledgements
	Acronyms
	Contents
	Introduction
	Background
	Matrix Factorization
	Deep Collective Matrix Factorization
	Explainable Models
	Local Interpretable Model-agnostic Explanations

	Method
	Using Neural Networks for Data Integration
	Baselines
	Simulated data
	Data simulation
	Evaluation
	Data Integration Analysis

	MovieLens100k
	Preprocessing
	Evaluation metric

	Omics data
	Preprocessing
	Evaluation metric

	Interpretability
	dCMF-LIME
	Movielens100k
	Omics data

	Results
	Simulated data
	Data Integration Analysis

	MovieLens100k
	Omics data
	Interpretability
	MovieLens100k
	Omics data

	Discussion
	Simulated data
	MovieLens100k
	Omics data
	Interpretability
	MovieLens100k
	Omics Data

	Data Translation Network
	Implementation
	Data Integration Analysis
	Omics data performance

	Conclusion and future work
	References
	Model Hyperparameters
	dCMF
	CMF and gCMF
	MM-PCA
	DTN

	LIME-dCMF Movielens Test Subjects
	Patient features

