

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden, January 2012

Analysis of software and hardware configuration
management for pre-production vehicles

– A case study at Volvo Car Corporation

Master of Science Thesis in Software Engineering and Technology

VOLHA BORDYK

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Analysis of software and hardware configuration management for pre-production vehicles
– A case study at Volvo Car Corporation

VOLHA BORDYK

© VOLHA BORDYK, January 2012.

Examiner: JOACHIM VON HACHT

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden January 2012

Abstract

Modern vehicles are no longer just mechanical; most of the car’s functionality is
controlled by software, embedded into electronic control units (ECUs). The func-
tionality of a vehicle is driven by customer expectations and leads to product variety
since customers want their own personalized and unique car. ECU configurations
consisting of different software and hardware play a vital role in providing the vari-
ability. In the automotive industry there is a tendency for shorter development
cycles and several parallel projects. This combined makes keeping track of software
and hardware configurations challenging, especially in pre-production vehicles where
changes are introduced very often. There is also a risk that testing is performed on
the wrong vehicle configuration. This can potentially lead to increasing costs and
time losses. In this case study existing systems, tools and process work flows have
been investigated and analysed at Volvo Car Corporation. An existing software and
hardware configuration management system, used in the after market, was evaluated
to what extent it could be reused. Based on the analysis, a software and hardware
configuration prototype tool has been designed and implemented. The results have
shown that it is possible to minimize the time necessary for preparing test setups
(vehicle configurations), however limitations were found in both current processes
and systems.

i

Acknowledgements

I would like to thank Volvo Car Corporation for the opportunity to perform my
master thesis there. I would also like to thank David Sabeti Rad who have been my
supervisor and all the people who have helped and supported me.

Furthermore I would like to thank the people from the Testing and Verification
group and its group manager Magnus Rundgren for the support and optimism that
they have given to me. I would also like to thank Gunilla Karlsson and Jonas Eriks-
son who came up with the idea for this thesis.

Many thanks to my supervisor at Chalmers, Joachim von Hacht, for his valuable
advice and support during the work.

Thank you all!

ii

Abbreviations and terms

Deviation Part Number - a temporary part number, used during the develop-
ment phase

ECU - Electronic Control Unit

HW - HardWare

KDP - KonstruktionsData Personvagnar, product management system

Part Number - alphanumeric designation assigned to a component or product,
used to identify it.

PIE - Product Information Exchange system

PP - Pilot Production

SDA - Software Download Application

SOP - Start Of Production

SSS - Software System Structure

Structure Week - production start date

SW - SoftWare

SWBL - Secondary Boot Loader

SWCE - SoftWare Configuration Element

SWLM - SoftWare Load Module

SWP - SoftWare Parameter

VBF-file - Versatile Binary Format file

VCATS - Vehicle Configuration And Test System

VCC - Volvo Car Corporation

VIDA - Volvo Information and Diagnostic Aftermarket system

VIN - Vehicle Identification Number

VP - Verification Prototype

WSDL - Web Service Definition Language

iii

Table of contents

1 Introduction 1
1.1 Background . 1
1.2 Problem . 3
1.3 Purpose . 3
1.4 Method . 4

2 Technical background 5
2.1 Vehicle electrical system . 5

2.1.1 The electronic control unit . 5
2.1.2 Vehicle networks . 6
2.1.3 Test architecture . 7
2.1.4 The software download process 7

2.2 Product structure . 7
2.2.1 Software system structure . 8

3 Analysis of existing processes, systems and tools 11
3.1 Current process . 11
3.2 Requirements elicitation . 12
3.3 Information systems . 12

3.3.1 Product management system 12
3.3.2 Product Information Exchange system 13

3.4 Software download tools . 14
3.4.1 VIDA . 14
3.4.2 VCATS . 14
3.4.3 SDA . 15
3.4.4 Analysis . 15

3.5 System Architecture . 16
3.5.1 Limitations . 17

4 Prototype implementation 18
4.1 General design . 18
4.2 Iteration 1. The generation of the software system structure 18
4.3 Iteration 2. Interaction with the COM object 19
4.4 Iteration 3. Communication via web services 20
4.5 Iteration 4. Development of the graphical user interface 21

5 Results 22

6 Discussion 23

7 Recommendations for future work 24

iv

Bibliography 25

Appendices 26

A Software Requirements Specification 27
A.1 Introduction . 27

A.1.1 Purpose . 27
A.1.2 Scope . 27
A.1.3 Definitions, acronyms, and abbreviations 27

A.2 Overall description . 27
A.2.1 Product overview . 27
A.2.2 Product functions . 28
A.2.3 Operating environment . 28
A.2.4 Constraints . 28

A.3 Specific requirements . 29
A.3.1 Functional requirements . 29
A.3.2 Non functional requirements 31

B Database scheme 33

C Prototype demo 34

v

1. Introduction

1.1 Background

Because of the competitiveness in the automotive industry, companies must ensure
that their products are of high quality. Today’s modern vehicles are no longer
just mechanical; most of the car’s functionality is controlled by software. It is
software embedded into electronic control units (ECU), also known as nodes, that
provides the necessary features. Since the functionality of a car is driven by customer
expectations the number of features is growing at a constant pace, and as a result,
the number of ECUs is also increasing rapidly. Today a vehicle contains around 70
control units, but this number is expected to continue growing (see figure 1.1) [16].
In addition the complexity of the software embedded in an ECU is increasing [3].
Software testing is thus becoming one of the most important and crucial factors in
the car development life cycle. According to surveys, companies dedicate around
50% of the software development time and cost for testing [2, 3].

Figure 1.1: The trend of increasing the number of nodes in a vehicle

The main purpose of software testing is to improve quality. Software quality is hard
to define and can include to what extent software corresponds to specified require-
ments and satisfies customer needs. Customer satisfaction is often considered as the
main quality factor, but it is rather difficult to measure, since it usually comprises
company branding as well as quality of provided services [1]. One quantifiable mea-
surement that we can limit ourselves to is the number of defects.

Defects cause incorrect results or unexpected behaviour of the software. It is also
very important when defects are discovered; before or after release of the software
product. Post-release defects are usually detected by the end users and affect cus-
tomer satisfaction to a large extent. They are also more expensive for the companies,
since they should be fixed via updates or guarantee releases [14].

1

Volvo Car Corporation (VCC) performs most of its product development in the
form of a project(see figure 1.2). Project starts approximately 40 months before
the first car leaves the plant (milestone G1). The project includes several phases:
Product Development and Manufacturing Engineering (ME). In the Product De-
velopment phase different technical solutions are created. This includes the overall
design together with the internal communication networks, requirements specifica-
tion, etc. At the end of the phase project strategy is conformed (G2). After this
stage, VCC involves suppliers, who performs system and component development.
Part of these components are ECUs. This phase is usually performed in several
iterations. When acceptance and integration testing is finished, Manufacturing En-
gineering begins (G4). The goal of this phase is to tune and verify that the plant
will be able to manufacture cars without delays; for example that all software can be
downloaded into a car within 6 minutes. The final milestone is Start of Production
(SOP) when everything is ready for manufacturing.

Figure 1.2: Project development plan

Several vehicle models are built on top of the same technical platform. The plat-
form represents the development context in which vehicles share the same functions,
components and suppliers. This reduces the cost of design and manufacturing.

Testing is usually performed on two different kinds of test objects, a boxcar or
a regular car. Boxcars are created in the early stages of development, mainly for
electrical verification. A boxcar contains just the ECUs, sensors and wires without
any body parts, engine or transmission. The first car prototype (X1) is built to
demonstrate system specific functionality, the body part for this prototype may not
have been specified. The first full prototype X2 is build around 24 months before
the start of production. The verification prototype (VP) and pilot production (PP)
prototype are build at the plant to verify that the process is ready for production
and after sales support.

As mentioned before, VCC outsources software development to suppliers and only
performs integration and testing of software components. To be sure that the func-
tionality corresponds to the requirement specification and legal requirements, VCC
performs extensive testing on several different levels: unit, integration, functional
and system testing. The trend is to start testing in the early phases of prototype cars

2

development (Testing 1-4, see figure 1.2). This puts new demands on testing effi-
ciency since test configurations are more volatile. Müller et al.[22] mentions research
by Wehlit indicating that up to 100 changes per development day may be introduced.

In addition to actual testing, test engineers also spend a lot of time keeping track
of software and hardware configurations when updating their test cars. Depending
on which market a car model will we sold to, a standard car configuration can dif-
fer a lot, for example, right or left hand drive, engine type, language displayed on
the screen, etc. A customer can also add extra features when buying a car; cruise
control, rear park assistance, a city safety system. All these features define what
hardware and software the car should contain. In addition, the same car models,
produced during different period of time, can have different hardware. Software is
developed for each generation of hardware and may not be compatible with the pre-
vious one. If the wrong software is downloaded into a car, it can lead to malfunction
of the recipient ECUs. Because each variant needs to function properly, including
all combinations, ”testing and release constitute complex tasks within the overall
development process”[22].

Currently test engineers have to manually configure software packages before down-
loading them to a test object. Before the test engineer can download a package, she
also needs to manually check multiple databases for what configurations that are
required for the intended test object depending on what hardware is connected to
it. The information about software and hardware configurations are also manually
entered into the databases by ECU managers. Both processes are time consuming
and errors in these processes can potentially cause a lot of problems later, e.g. if
further testing is performed on an incorrect configuration.

1.2 Problem

Today it is complicated and time consuming to update test cars with correct soft-
ware. The current situation is not satisfactory and VCC tries to simplify the routines
used for updating test cars.

1.3 Purpose

The purpose of the thesis is to automate configuration and distribution of the correct
software packages to a test object. By doing so we will minimize the risk of verifying
the wrong software and unnecessary delays during test setup. More time can thus be
spent on the testing itself and consequently the number of defects detected during
development will increase. As a result fewer post-release defects will reach the
customer.

3

1.4 Method

To solve the problem existing systems, tools and process work flows will be analysed.
Since some systems do not have updated technical documentation, the project will
be based on close interaction with people who are responsible for their development
and maintenance.

Based on the analysis, a prototype of the software and hardware configuration tool
will be designed and implemented. The prototype will be of throw away nature and
used only as a proof of concept to investigate what limitations exist in the systems
and what changes are needed to create an efficient tool. Further improvements will
be proposed as well.

Throughout the project we will use an iterative software development process instead
of more traditional like the waterfall model.

4

2. Technical background

2.1 Vehicle electrical system

2.1.1 The electronic control unit

An electronic control unit (ECU) is an embedded computer system that is used
to control and regulate various functions in a vehicle. The ECU consists of both
hardware and software and is connected to a network (see section 2.1.2), and other
components such as sensors and actuators. Sensors are responsible for converting a
physical input (e.g. speed, temperature) to electrical signals which can be processed
by ECUs. Whereas actuators are devices which convert an electronic signal to mo-
tion.

We can consider ECU hardware as a micro-controller which contains two kinds of
memory: flash and RAM memory (see figure 2.1). The flash memory is non-volatile,
i.e. it does not lose data when the power is switched off. It contains the primary boot
loader that can not be overwritten, but other parts of this memory can be erased
and reprogrammed. It is here the program code which defines the behaviour of the
ECU is stored [5]. The other kind of memory, random access memory (RAM), is a
temporary storage that provides better performance when programming the ECU
[6].

Figure 2.1: ECU hardware memory map

When starting, the ECU first executes the boot loader. The boot loader is divided
into two separate parts: a primary boot loader (PBL) and a secondary boot loader
(SBL). When the ECU is started in a default mode, PBL loads the application
software stored in the flash memory (see figure 2.2a). Since PBL has several re-
quirements placed on it, such as small memory size (16k) and that it can not be
modified after the unit is produced, it is not suitable to be used for programming
or updating data in the flash memory. The SBL is instead used for these purposes.
The SBL is downloaded by the primary loader into RAM and is then activated.

5

After that it becomes responsible for the management of the flash memory (erasing
or reprogramming) and the software download process [6], as shown on the figure
2.2b.

(a) default mode (b) programming mode

Figure 2.2: ECU’s execution modes

2.1.2 Vehicle networks

ECUs communicate with each other via networks (busses). In a vehicle there are
several types of networks; CAN, MOST and LIN (see figure 2.3).

Figure 2.3: Vehicle’s network scheme

Controller Area Network (CAN) is a communication network introduced by Bosch
GmbH specificly for the automotive industry in 1985. CAN is a message-based
broadcast protocol [4].

Since CAN has maximum bandwidth 1 Mbit/s, it is not enough to transfer video
and audio data, Media Oriented Systems Transport (MOST) is used for these pur-
poses [7]. MOST is a fiber-optic ring network, designed for efficient transmission of
large amount of data in automotive systems [8, 9]. Nodes in a MOST network can
not be accessed directly, just via special CAN ECUs that acts as gateways.

To reduce CAN load,Local Interconnect Network (LIN) is used to create a sub-
network on CAN for communication of low-performance ECUs. The access to LIN
is done via the CAN master node that controls slave nodes in this network [10].

6

2.1.3 Test architecture

Communication between a tester and a vehicle can be considered as a client-server
model. The information exchange between a tester (client) and an ECU (server)
is performed through massages, called diagnostic services [11]. A tester can obtain
different information and change an ECU state, by sending request messages. When
an ECU receives a request message from a tester, it should send a response. The
ECU sends a positive response if the received message was processed successfully,
otherwise, a negative response is sent.

The ECU can be in different modes (sessions) that define available services; to read
out information, the ECU should be in default session, whereas ECU programming
is done in programming session.

2.1.4 The software download process

To download data, the ECU should be put in programming mode. First the SBL is
downloaded into RAM by means of PBL (see section 2.1.1). After SBL is activated,
a tester sends a service to clear the flash memory. The next step is the download of
data files. Finally the ECU is reset to erase RAM and put back in default mode.

2.2 Product structure

To be competitive in the market, companies aim to develop products that on one
side ”meets or even exceeds customers expectations”, and on the other side is easy
to produce and maintain [12]. In order to satisfy today’s customer needs, companies
try to deliver a unique and custom made product for each customer. As a result the
variety of products increases, which in turn leads to the growth of product complex-
ity and design costs. VCC has solved this problem by using a product structure in
their production.

The product structure shows components, systems, products and relationships be-
tween them that are included in a final product, in our case, a vehicle. An example
of a component can be a front door which is assembled at the plant. Whereas a
GPS navigator can be an example of a product purchased from another vendor.

The structure is represented as a tree, where branches are systems or subsystems
(see figure 2.4). Each level in the tree represents an abstraction level; as the size of
the tree grows so does the complexity of the product.

7

Vehicle

SafetyInfotainmentPowertrainBody

Engine Transmission Active Passive

SeatbeltAirbag

US_SBELT 2US_SBELT

… …

…

Adaptive
cruise control

…

Figure 2.4: Example of a product structure

Branches are used to divide the product into standardized modules that can be
reused and combined in different ways to achieve variety. In addition, a part of
existing components can be used during development of new products that will
reduce the cost and time-to-market [13].

2.2.1 Software system structure

Besides a product structure VCC uses a separate Software System Structure (SSS),
which is a variant of the product structure for keeping track of ECU hardware and
software components, also called parts. In order to introduce the reader to the con-
text of the thesis work, this section describes the SSS in more detail.

Each year VCC introduces new changes in hardware and software because of cus-
tomer demands to existing car models. Each change brings the car model to a new
version, as time passed the number of ECUs increased and it became difficult to
keep track of the software configurations (see figure 2.5).

Figure 2.5: Example of component variability of the S60-car model, produced during
different years

The SSS was developed for the customer service to support correct software upgrades
in service shops. The structure connects hardware components with the appropri-
ate software components (files) in an orderly manner. It consists of the following
segments: a generic structure and a part structure.

8

The generic structure connects hardware and software components using part types.
Since data downloaded to an ECU may contain different kinds of information, e.g.
configuration or communication settings, there are several types of software compo-
nents. There are also different hardware part types depending on if the hardware
is an assembly part or a spare part. See table 2.1 for description of both hardware
and software part types.

Part
type

Description

HWND this type of hardware is used both for assembly and spare parts

HWN2 this type of hardware is used if there is a variant of the spare part that contains
other software files than the original one

SWBL Software Bootstrap Loader, also called Secondary Bootloder is downloaded into
a node in order to enable download of other files.

SWLM Software Load Module file includes executable application software. When
the node is running in the default mode, this software is executed, realising
specified functions

SWCE Software Configuration Element contains information about the parameters
used for communication between nodes in the relevant for an ECU network
(e.g. CAN or MOST)

SWP Software Parameter file contains information about parameters used locally by
SWLM file in the ECU, e.g language settings

Table 2.1: The description of part types

The generic structure is created in the early stages of development. First, it is
defined which ECUs will be included in the specific platform. Then for each ECU
it is specified, which hardware and software part types it should have, as shown in
figure 2.6.

Figure 2.6: Example of the generic structure

The part structure includes part numbers (alphanumerical designations), qualifiers
and time intervals during which part number is valid. This information is required
when assembling vehicles at the plant. Since vehicles that belong to the same plat-
form can vary, e.g a vehicle can have either a petrol or a diesel engine, left or right

9

side steering wheel, there can be several part numbers for the same HW or SW
part type. A qualifier is an attribute that defines which part number is valid for
a particular vehicle configuration. When new part numbers are introduced, they
are connected to the generic structure and we get the complete SSS, as shown in
table 2.2).

For example, the driver door module shares the same HW part number (111111)
independently if the vehicle is a left- or right-hand driven, as indicated by the HW
qualifier (LHD,RHD). The same is true for the SWBL and SWCE software part
types (222222 and 333333). Whereas for the SWLM software part type the qualifier
specifies two different software part numbers, 444444 and 555555 for LHD and RHD
respectively.

ECU Year Level HW
Part
No

HW
Part
Type

HW Qual-
ifier

SW
Part
No

SW
Part
Type

SW Quali-
fier

ECU1 2011 prod 111111 HWND LHD,RHD 222222 SWBL LHD,RHD

ECU1 2011 prod 111111 HWND LHD,RHD 333333 SWCE LHD,RHD

ECU1 2011 prod 111111 HWND LHD,RHD 444444 SWLM LHD

ECU1 2011 prod 111111 HWND LHD,RHD 555555 SWLM RHD

Table 2.2: An example of the complete SSS for the driver door module, where RDH
and LHD are right- and left-hand drive respectively

The SSS has two maturity levels; verify and production. The verify level is used
for verification purposes in the later stages of development. The other level is used
when the structure is actually released to production.

10

3. Analysis of existing processes, systems
and tools

In this chapter we analysed the existing processes, systems, tools and elicited the
requirements for the future tool. The analysis resulted in the creation of a basic
idea for a future design.

3.1 Current process

Today the information regarding software configurations, test orders and actual
software files are stored in several places; in Lotus Notes, on network shares or the
Software Archive (see figure 3.1). Lotus Notes is a document management system
developed by IBM to enable information spread within the company [21]. Both
on the network shares and Lotus Notes the information regarding software config-
urations and test orders is saved as Word or Excel documents. As mentioned in
section 1.1, car configurations can differ, thus each test vehicle has a specific config-
uration file, called CarConfig, which is also stored there.

ECU managers are responsible for entering and updating information for differ-
ent projects both in Lotus Notes and on network shares. After the software have
been approved at the Change Request Board, files are manually moved to the Soft-
ware Archive, a storage for software files used in production and by the aftermarket.
The manual handling process results in human errors, e.g. different software files
can be assigned the same part number. In addition, the distributed storing causes
information inconsistency, since the information can be not updated on time or in
the right places.

Figure 3.1: Current process overview

Before each test, a test engineer gets a test order. The test engineer reads out
data from a test vehicle to identify if a test vehicle has the right configuration.
If needed a CarConfig file is edited by means of the CarConfig Edit application.

11

The Test engineer also checks if the correct version of hardware is mounted in the
test vehicle and retrieves software files specified in a test order. Both Lotus Notes
and the network shares have a folder structure and does not provide a good search
functionality. After CarConfig and software files have been downloaded to the test
vehicle, the test engineer can start to perform tests. The described actions are
time consuming and causes time delays and thus results in extra costs during the
development process.

3.2 Requirements elicitation

As it was mentioned before, the project was based on close interaction with test
engineers and people responsible for the development and maintenance of existing
systems and tools. During meetings the requirements of the SW and HW config-
uration tool were elicited. Further the requirements were analysed and Software
Requirement Specification (SRS) was created (see Appendix A).

3.3 Information systems

3.3.1 Product management system

VCC uses a product management system which is called Konstruktionsdata Person-
vagnar (KDP). KDP was developed in the 70’s when a vehicle was more mechanical
than electrical. The system runs on an IBM mainframe and includes DB2 databases
and a Query Management Facility (QMF) interface for SQL queries [18]. The query
results can also be exported as text or Microsoft Excel files.

The system is intended to manage and keep track of products during different stages
of their lifecycle; design, development and maintenance. KDP is also a provider of
information for other systems in factories, to suppliers, retailers and the aftermar-
ket. The system is divided in a number of modules, but we analysed only two of
them; Parts and SSS.

The Parts module contains data about parts that will be assembled in the fac-
tory (the part structure); what raw materials and components are needed and their
quantity to mount a car. To minimize assembly time some parts are arranged in
so called delivery units. For example, software can already be downloaded into an
ECU before it will be mounted into a car. Thus software can be a stand alone unit
or a part of a delivery unit in the Part structure.

When the number of ECUs increased, part structure was not appropriate to keep
track of SW and HW configurations for software updates in the aftermarket. For
this reason, the SSS module was introduced in 2003. The SSS structure is created
based on the information from the part structure and generic structure, as described
in section 2.2.1. A complete SSS structure is available around 3 weeks before start
of production and is transferred to the PIE system (see section 3.3.2) on a weekly

12

basis via internally developed communication tools. The complete SSS contains just
so called “start of production” (SOP) part numbers, permanent part numbers that
cannot be changed after the production starts. In the development phase deviation
(temporary) part numbers are frequently used.

3.3.2 Product Information Exchange system

The Product Information Exchange (PIE) system is an aftermarket IT system for
SW storage and vehicle’s software update handling. It is a web-based application
built on J2EE and an Oracle database. It provides communication with other sys-
tems via web services using, as described in the Web Services Description Language
(WSDL).

The PIE system has a module structure and consists of the following subsystems:
Software Archive (SWA), Vehicle database (VEH), Software Product (SWP) and
coordination module (SAFE) (see figure 3.2).

Figure 3.2: PIE system structure

The Vehicle Database contains information about HW and SW configuration for
each particular car. The information about a car configuration is transferred from
the factory when a car is produced. Moreover, the history of configuration changes
is stored in this database each time when new software is downloaded or an ECU
is replaced at the service station. The SSS is stored in the SWP subsystem (see
chapter 2.2.1). The Software Archive is a storage area for all software files.

At a service station the car is connected to the PIE system via the VIDA application
(see figure 3.3). Each car has a unique identifier, known as the vehicle identification
number (VIN). When the vehicle is connected to VIDA, VIN is read from the vehicle
and sent to PIE to check if the vehicle is registered in the VEH database (1). To get
the software files, the technician should also provide a so called Software Product
(SP) number that represents what kind of modifications will be performed, e.g. a
software upgrade or ECU replacement (2). According to the provided SP number
a recipe is retrieved from the SWP module. The recipe specifies which software file
types should be loaded for this particular modification. The correct software file
numbers are retrieved by checking the SSS in SWP (3). Then the correct software
files are found in the SWA module and downloaded to the car using VIDA. If the
modification is successful, changes are registered in the VEH database.

13

Figure 3.3: Software update process in the PIE system

3.4 Software download tools

At VCC today, the download of software files is managed using the following tools;
VCATS, VIDA, SDA. By analysing different tools and their pros and cons, a suitable
software download tool was chosen for the prototype.

3.4.1 VIDA

Volvo Information and Diagnostic Aftermarket (VIDA) is an application which is
used to support the repairment and service of Volvo cars at service stations. The
application includes the following functionality; information about spare parts, de-
scriptions of repair procedures, vehicle diagnostics and software updates. VIDA is
a client application. Some information like a spare parts catalogue and repairment
descriptions are stored locally during installation and works without internet con-
nection. But connection is required in order to perform software updates. In that
case VIDA connects to PIE via VPN over the internet to get software files (see
section 3.3.2).

To assist the diagnostic technician and reduce the service time, VIDA automati-
cally sends necessary diagnostic services to the vehicle and presents the information
regarding faults in a simple way on the screen. The software update process is also
automated; a technician should only choose an ECU and an action which should be
performed, e.g ECU upgrade or replacement. Then VIDA itself will send all nec-
essary information to the PIE system and perform a complete software download.
When the download is completed the new status of the car is reported back to PIE.

3.4.2 VCATS

Vehicle Configuration And Test System (VCATS) is used specifically just for soft-
ware download and diagnostic testing at the production plant. It was developed to
assist plants in building cars. The system is also used by test engineers at a later
stage of the development to verify that the download process is ready for starting
of production.

14

The system has a client/server architecture. The server is connected to test stations
(clients) and the production plant data system. The plant data system process
a customer order, generating a unique control data string for every car, which is
transferred to the VCATS server. Based on the received data, the server retrieves
download scripts and software files. The server also generates a test sequence. Then
this information is sent to a test station, where the operator downloads software and
performs tests. Tests are performed to verify that download process went well and
all ECUs are working.

VCATS is a fully automated tool; download scripts are created in advance and
stored on the server. The user just need to read out the car id (VIN) and press a
button to start the download process; the system will perform the whole job auto-
matically. In addition, the tool has the capability of downloading files much faster,
because of parallel downloads, than the development (SDA) and the aftermarket
(VIDA) tools. However, the tool is not used for software updates of test objects
during the development, since a lot of time is required to create download scripts.

3.4.3 SDA

The Software Download Application (SDA) is used by test engineers for software
downloads during the development phase. SDA is a desktop application built in
Visual Basic. The application is standalone and has no connection to any other
systems.

The application has two download modes. An automatic mode where the process is
defined in a configuration script, following the description in section 2.1.3, and the
other where the user manually performs the download steps. In the latter case, the
test engineer can control and follow the download process.

The application also provides the functionality to read out data from a vehicle,
using predefined read services. Since it is only possible to send one service at a
time, this functionality is rarely used by test engineers. For example, a test engineer
might need to read out information about all hardware part numbers in the vehicle,
then she needs to send the same service to each ECU.

The application provides an external interface (API) using Microsoft component
object model (COM) [20]. The API exposes methods that represents different diag-
nostic services.

3.4.4 Analysis

In previous sections we looked upon different software download applications cur-
rently utilised at VCC. In this section we analysed applications pros and cons con-
cerning the requirements as specified in appendix A, while choosing the appropriate
tool to be used for software download.

15

As mentioned before VCATS requires the preparation of download scripts. Since
there are several software releases during the development phase, it will require a
lot of human effort. It was not appropriate in our case, since one of our goals was
to minimize the maintenance workload. Thus we decided not to use the VCATS
application for software download.

In most cases test engineers just want to update software in a car and then per-
form tests. But in some cases they need to control the download process to identify
a problem or to verify that the the process is going according to the specification.
The main advantage of SDA over the VIDA application is that it provides both an
automatic and manual software download functionality, whereas the VIDA applica-
tions is fully automated. In addition, VIDA requires a constant online connection
with the PIE system during the software update, since it sends confirmations back
to PIE. It is a drawback for off-line testing, when test engineers are e.g. on expedi-
tions. In that case, files should be obtained in advance and downloaded when needed.

Due to the reasons mentioned above, we decided to use SDA as a software download
application in our prototype.

3.5 System Architecture

Based on the specified requirements, we defined two areas for the implementation
work; the first one was to generate the SSS including deviation part numbers and
import it to the PIE system, the other one was to integrate the PIE system and
SDA tool to get the application that will be used directly by test engineers (see
figure 3.4).

Figure 3.4: Architecture overview

We also defined the flow of data between the PIE and SDA (see figure 3.5). The
information about hardware part numbers and car identification number (VIN) will
be read out from a test object, using diagnostic services via SDA tool. This infor-
mation will be sent to the PIE system to receive software files and access codes.
Later, files will be downloaded to a test object via SDA.

16

PIE
SDAVIN, HW list

Application

VIN, HW list, SP list

Vbf files, AccessCodes

Vbs, AccessCodes

List of ECUs

Figure 3.5: The data flow

3.5.1 Limitations

Since the main purpose of the prototype is the proof of concept we decided to put
some limitations:

• The prototype will support just one platform that includes the following car
models; S60, V60 and XC60.

• The prototype should generate a valid SSS starting from VP series (see sec-
tion 1.1).

• The SSS will not include information about accessories parts.

• The tool will work just inside the VCC Intranet.

• No changes will be introduced to existing systems.

17

4. Prototype implementation

Java technology was chosen as a platform for the prototype implementation. The
choice was made based on that Java is a platform-independent and open-source
technology. Furthermore, there are a lot of open-source projects that promote the
integration of Java with other technologies [17]. As a development tool we used the
Eclipse IDE. During the implementation we followed the principles of the object-
oriented programming (OOP).

4.1 General design

We started from the design of the application that will integrate PIE and SDA.
We defined two package roots; ecuswhandling and webservice (see figure 4.1). The
ecuswhandling package groups the packages and classes for the client. It follows the
Model View Controller pattern. The webservice package contains the stub for the
webservice interaction.

ecuswhandling

gui

+ApplicationView

model

+Ecu

+SoftwareProduct

+HwTableModel

+SwTableModel

+DataEncryptor

+CompressSoftwares

+VehicleCode

+Configurations

+Sda

+Model

+AesEncryptionHelper

+Base64Coder

controller

+Controller

webservice

interface

safeservice

Figure 4.1: Application package architecture diagram

4.2 Iteration 1. The generation of the software

system structure

The initial idea was to generate the SSS inside the KDP system using query man-
agement facility (QMF) (see section 3.3.1). This however turned out to be both
risky and costly. Each QMF-query costs money to execute on the mainframe and
there was no budget allocated to our project. KDP is also a truly critical system
that Volvo could not let us access. Thus we decided to create a solution that will
be compatible with KDP but external to it.

18

As mentioned before, the results of SQL queries from KDP can be stored as Mi-
crosoft Excel files. We made a decision to take one of such files with the part
structure and deviation numbers that is generated on a weekly basis. We developed
a desktop application that takes the file as an input, process it and generate the
file with the SSS that can be easily imported into the PIE system. We used a local
SQLite database to process data using SQL queries.

Since the data in the file had a tree structure which was not suitable for direct
importing into the relational database, we needed first to filter it. For this we used
the Java API for Microsoft documents developed within Apache POI project [19].
After the data was imported, SOP part numbers in the PartStructure table were
updated with deviation numbers.

The generation of the SSS was performed in two stages. The first one consisted
of getting valid part numbers for the hardware and software types defined in the
generic structure. For this reason a database schema was created to store the cope of
the generic structure (see appendix B). Two views were created, HwPartNoView and
SwPartNoView, based on retrieving information from the PartStructure, NodeHw
and NodeSw tables. During the second stage hardware and software were merged
based on the qualifiers in the MergeSwHw view and output file with the SSS was
generated.

During this iteration a simple graphical user interface (GUI) for the application
was also developed using Java Swing. The main window contains fields where the
user specifies for which structure week, project and series the SSS will be generated.
Using the File menu the user opens the input file with the Part structure and chooses
a location to store the generated file with the SSS.

4.3 Iteration 2. Interaction with the COM object

As mentioned before, the SDA tool provides an API using COM (see section 3.4.3).
There are both commercial (EZ-JCom, Java2COM) and open-source projects (JAWIN,
JACOB, COM4J) that enable the integration of Java and COM technologies. Since
our project did not have a budget we investigated just open-source projects and
chose the JAWIN implementation. During the investigation of different projects
JAWIN was easy to get started with because of good documentation. It also showed
good results in memory consumption and fulfilled all our requirements. The library
contains the implementation of Java Native Interface (JNI) that automatically con-
verts Java classes into native code, thus no additional compilations are needed [15].
JAWIN provides the library as a jar file that can be easily added to the Java project.

The SDA API provides methods for communication with a vehicle by means of
diagnostic services. To initiate the communication, the initialisation method was
called that specifies the application setup. The SDA tool uses a configuration xml
file that contains information about different platforms, bus types and ECUs, spec-

19

ified for each platform. We decided to use this file so that we can later get the
information required to call the API method that represents the read out service.
Calling this method, we got VIN and HW part numbers in a hexadecimal format
for the ECUs that are present in the vehicle. After parsing and converting into the
decimal format, the data were stored as an object to pass via web services to the
PIE system (see section 4.4).

To access nodes in the MOST network, it is necessary to open the gateway us-
ing the method that implements the remote activation of routines in the MOST
node. Calling this method we did not get the stable result, so during one of the
meetings it was decided to exclude MOST nodes from the prototype implementation.

To download software files into a vehicle, the download method was used. The
method provides the opportunity to download both single file and a sequence of
files. Since several files are needed to update an ECU we decided to always down-
load the sequence of files. Before performing the actual download, most of the ECUs
require us to provide a security access code. By doing so, we gained access to ma-
nipulate the flash memory in the ECUs.

We also used information related methods to report errors. All error messages
were saved in a log file. We used the Apache log4j library to create the log file. In
addition, the SDA tool has its own log file, thus checking both log files the user can
faster identify a problem.

4.4 Iteration 3. Communication via web services

The PIE system provides several environments: production, acceptance and testing.
Usually test engineers are working in the acceptance environment. The interaction
with other systems are performed be means of web services. From the PIE de-
velopment team we got the Web Services Description Language (WSDL) file that
describes the information required to use the web services. Because we only con-
sume web services, we let Eclipse generate stub classes from the WSDL file.

To get the software files, the web service requires us to provide VIN, HW part
numbers and SP numbers. SP numbers were stored in the XML file that has the
following schema:

<?xml version=”1.0” encoding=”UTF-8”? >
< SoftwareProduct >

<Configuration Name=” ” >
<ECU Name=” ” Address=” ” SP=” ” >
<ECU Name=” ” Address=” ” SP=” ” >

< /Configuration >
<Configuration Name=” ” >

<ECU Name=” ” Address=” ” SP=” ” >
<ECU Name=” ” Address=” ” SP=” ” >

20

< /Configuration >
< /SoftwareProduct >

Software files are transferred over the network both zipped and encrypted. After
receiving the files, they were extracted and decrypted using a library. After that
the files are ready to be downloaded into the vehicle. We identified a bug in this
process but for obvious reasons no further detail will be provided.

4.5 Iteration 4. Development of the graphical

user interface

During this iteration the graphical user interface (GUI) of the application was de-
veloped. The functional requirements were defined and written down to the specifi-
cation as described in appendix A. During the requirements elicitation stakeholders
did not put specific requirements regarding how the GUI should be designed; it was
up to us to decide on the application appearance. We decided to include all infor-
mation in one screen since it should be easy for the user to access and view all the
information about a test vehicle. One of the negative aspects of putting all infor-
mation in one screen is that the user can be overwhelmed. Since there was not so
much information, we did not face this problem. The users will also become experts
by using it very frequently. More information about the main screen is provided in
appendix C.

The menu tool bar was developed to provide functionality for saving software files
and choosing connected devices. A traditional save function was implemented using
the Java Swing API. The application also includes a status bar, dialogue and info
windows to provide error messages or warnings to the end user.

21

5. Results

The following results were presented at the end of the thesis work.

One of our problems was to minimize the time necessary for preparing test se-
tups (update test vehicles with correct software). Based on our empirical study of
the current process (see section 3.1) it takes on average three minutes for a test
engineer to extract and download software files for one ECU. While using our new
automated prototype we can cut down the required time to less than one minute.
Updating the whole CAN network would then save approximately 20 minutes.

Another problem was to lower the number of mistakes done by ECU managers dur-
ing the creation of software configurations. By generating the SSS automatically, we
minimized the required preparation time and potential for human generated errors.

22

6. Discussion

The prototype shows that the PIE system provides benefits for improving efficiency
in collecting data, such as software configurations, test object configurations and
software files from different sources. Since the PIE system will be used in earlier
stages of the development, all software files can be placed directly in the Software
archive. By unifying the storage of software files, we solved the problems related to
inconsistency as described in section 3.1.

A potential problem can be that information used for building the SSS may not
be inserted or updated on time in KDP. For example, we found out that deviation
numbers for preloaded software are often not updated in KDP and stored locally
by ECU Managers. In that case, it is not possible to fully automate the process of
generating the SSS. One way to solve this problem is to introduce a step in the pro-
cess were all necessary data will be entered and verified in KDP before generating
the SSS. Another possible solution is that the SSS will be verified and edited after
it was imported into the PIE system by ECU Managers. This has the disadvantage
that SSS containing errors might propagate to other systems.

At the end of the project we did not deliver a fully functional tool. During the
prototype development and testing we discovered a number of limitations in the
way both SDA application and the PIE system works. All findings have been doc-
umented and discussed during meetings with stakeholders. The major issues are
listed below:

• As mentioned in section 4.4, it is not possible to read out data from nodes on
the MOST network.

• A test object should have at least three hardware components to be considered
a vehicle in PIE. In that case, currently the PIE system can not be used for
single component testing.

• A vehicle and information about its configuration shall be registered in PIE.
Today the information about test vehicles produced at the plant is automat-
ically transferred to the system. The information regarding test objects such
as boxcars should be entered manually.

• Each vehicle shall have an identifier (VIN). Nowadays early prototype cars
(boxcars) does not have a VIN number. Since a VIN number is not just a ran-
dom generated number, it caries the information about the vehicle, this prob-
lem should be further investigated and a process for generating VIN numbers
for boxcars should be introduced.

23

7. Recommendations for future work

Recommendations for future work include such things as continued investigation of
discovered problem limitations and implementation of a fully functional tool.

In the beginning of the project it was decided that no changes will be introduced to
existing systems. We think it would be beneficial to extend the SSS in the future.
One of the possibilities would be to include information regarding projects and series
(i.e. releases), since this information is associated with important milestones in the
pre-production development phase. This would not affect the after market system
because it ignores excessive data.

Introduction of more maturity levels could be another possible extension. Cur-
rently the SSS has just two maturity levels, verify and production. For example,
levels when software is approved for component-, integration- and functional testing.
Software for integration testing should be available only after it passed component
testing. By introducing these levels and enforcing that the are done in order, by
putting up process gateways, we could minimise the cases when testing is performed
in the wrong order.

Another possibility would be to extend the SDA application so that it will com-
municate directly with the PIE system. That is, to integrate our application into
SDA. By doing so we can exclude one unnecessary connection. It would enable a
test engineer to perform the whole software update process automatically from SDA;
read out information from a vehicle, get software files and download them to the
test object. It will give more freedom for a tester that will lead to a better testing
process as a whole.

24

Bibliography

[1] G. J. Myers, C. Sandler, The art of testing 2nd edition. Wiley, 2004

[2] K.Emam, The Roi From Software Quality. Auerbach Publications Boston, USA,
2005

[3] C. Ebert, C. Jones, Embedded Software: Facts, Figures, and Future, IEEE Com-
puter Society Press, 2009. Available at: http://www.computer.org/portal/

web/csdl/doi/10.1109/MC.2009.118, retrieved 2011-04-13.

[4] Robert Bosch GmbH, CAN Specification, Version 2.0 edition, 1991

[5] A. Weimerskirch, Secure Software Flashing. SAE International Journal of Pas-
senger Cars - Electronic and Electrical Systems, 2009

[6] Mentor Graphics, Vehicle system design, 2007. Available at: http:

//www.mentor.com/products/vnd/upload/VolcanoBootloader_DS.pdf, re-
trieved 2011-07-29

[7] P. Smith, Automotive gateways spearhead in-car network integration, EE Times,
2005. Available at: http://www.eetimes.com/design/automotive-design/

4011050/Automotive-gateways-spearhead-in-car-network-integration,
retrieved 2011-06-08

[8] MSDN, MOST network. Available at: http://msdn.microsoft.com/en-us/

library/ms859428.aspx, retrieved 2011-06-10

[9] MOST Cooperation, MOST network, 2011. Available at: http:

//www.mostcooperation.com/technology/most_network/index.html,
retrieved 2011-07-30

[10] STMicroelectronics, LIN (Local Interconnect Network) Solutions, 2002.
Availale at: http://www.st.com/stonline/books/pdf/docs/8130.pdf, re-
trieved 2011-06-10

[11] International Organization for Standardization, Road vehicles — Unified
diagnostic services (UDS), 2006. Available at: http://www.saiglobal.com/

PDFTemp/Previews/OSH/iso/updates2007/wk16/ISO_14229-1-2006.PDF,
retrieved 2011-06-20

[12] N. Snack, S. Chambers, R. Johnston, Operations management 5th edition, Pren-
tice Hall, 2007, pp 129-131

[13] DRM Associates, Product structure and bill of materials. Available at: http:

//www.npd-solutions.com/bom.html, retrieved 2011-08-01

25

[14] C. Stringfellow, A. Andrews, C. Wohlin, H. Petersson, Estimating the number of
components with defects post-release that showed no defects in testing. Software
Testing, Verification and Reliability, 2002, pp. 167–189.

[15] Sourceforge, Jawin - a Java/Win32 interoperability project, 2005. Available at:
http://jawinproject.sourceforge.net/, retrieved 2011-02-23

[16] E. Johansson, S. Romero Skogh, H. Svensson, Software management within
Product Development, Chalmers University of Technology, Göteborg, 2011.

[17] Oracle, Oracle and Java. Available at http://www.oracle.com/us/

technologies/java/java-se-405465.html, retrieved 2011-08-17

[18] IBM, DB2 Query Management Facility. Available at: http://www-01.ibm.

com/software/data/qmf/, retrieved 2011-08-20.

[19] Apache POI project, Apache POI - the Java API for Microsoft Documents.
Available at: http://poi.apache.org/, retrieved 2011-03-15

[20] Microsoft, Component Object Model Technologies. Availavle at: http://www.

microsoft.com/com/default.mspx, retrieved 2011-04-01.

[21] IBM, Lotus Notes Software. Availavle at: http://http://www-01.ibm.com/

software/lotus/products/notes/, retrieved 2011-10-15.

[22] D. Müller et al., IT Support for Release Management Processes in the Auto-
motive Industry, Fourth International Conference on Business Process Manage-
ment, 2006.

26

A. Software Requirements Specification

”Software and hardware configuration tool”

A.1 Introduction

A.1.1 Purpose

This document specifies the requirements for the prototype implementation of the
software (SW) and hardware (HW) configuration tool. The specification is meant
to be used to collect and describe requirements both for system developers and
stakeholders.

A.1.2 Scope

The purpose of the tool is to automate configuration and distribution of the correct
software packages to the test object. Currently, software handling process is manual
and time consuming. The SW and HW configuration tool is supposed to be used
by testers to quickly update test objects with the latest software.

A.1.3 Definitions, acronyms, and abbreviations

Term Description
Deviation number temporary part number used during development phase
ECU Electronic Control Unit
KDP Konstruktionsdata Personvagnar, product management system
PIE Product Information Exchange, Aftermarket IT system
SDA Software Download Application
SSS Software System Structure
Structure week production start date
VP Verification Prototype
Test object a car or a boxcar
User a test engineer

A.2 Overall description

A.2.1 Product overview

The SW and HW configuration tool should allow the user to generate the software
system structure (SSS) automatically based on the information received from the
KDP system. The generated SSS should be able to be imported into the PIE

27

system in an easy way. The tool should also be used directly by test engineers for
software updates of a test object. To achieve it, the PIE system and SDA should
be integrated, so the user will not realise their presence.

KDPPIE SSS

Application SDA

Figure A.1: The overview of the SW and HW configuration tool

A.2.2 Product functions

The SW and HW tool should handle the software update process in a test object
(a car or a boxcar). The user should be able to read out data from the test object
and get correct software files for current configuration. The user should be able to
download the chosen files automatically or manually. The user should be able to
update one or several ECUs. The tool should provide opportunity to safe software
files to update the test object during expeditions when the internet connection to
the server is not available.

The tool should facilitate the process for creation of the SSS. The structure should
be generated automatically for a specific structure week, based on the part structure
and deviation numbers. The structure should also include preloaded software. The
structure should be created starting from VP series.

A.2.3 Operating environment

The SW and HW configuration tool will require that the user will be connected to
the VCC Intranet to get software files. The user can read out data and download
previously received files in off-line mode.

Since the SDA external interface is closely connected to the SDA application, the
SDA application should be installed and work properly.

A.2.4 Constraints

Since the purpose of the prototype is the proof of concept, no security issues will be
considered.

28

A.3 Specific requirements

A.3.1 Functional requirements

3.1.1. Read out data from the test object

Id: F.1
Description: The user should be able to read out HW numbers and VIN from the
test object.
Category: Functional
Classification: Mandatory
Priority: High

3.1.2 Display hardware information

Id: F.2
Description: The tool should display name, address and hardware number for ECUs
which are presented in the test object
Category: Functional
Classification: Mandatory
Priority: High

3.1.3 Selection of nodes

Id: F.3
Description: The user should be able to select one or several ECUs for which she
wants to get software files
Category: Functional
Classification: Mandatory
Priority: High

3.1.4 Total reload

Id: F.4
Description: The SW and HW configuration tool should provide opportunity to
update all ECUs at a time in the test object
Category: Functional
Classification: Optional
Priority: Low

3.1.5 Get software files

Id: F.5
Description: Providing VIN and hardware number(s), the user should be able to
get correct software files valid for structure week the test object belongs to
Category: Functional
Classification: Mandatory
Priority: High

29

3.1.6 Display software files

Id: F.6
Description: Received software files numbers shall be displayed on the screen
Category Functional
Classification: Mandatory
Priority: High

3.1.7 Selection of files

Id: F.7
Description: The user should be able to select one or several software files that she
wants to save locally or download into the test object
Category: Functional
Classification: Mandatory
Priority: High

3.1.8. Download files

Id: F.8
Description: The user should be able to download software files in the test object
Category: Functional
Classification: Mandatory
Priority: High

3.1.9 Get access codes

Id: F.9
Description: Providing VIN and hardware number(s), the user should be able to
get access code(s) to unlock ECU(s)
Category: Functional
Classification: Mandatory
Priority: High

3.1.10 Save files

Id: F.10
Description: The user should be able to save received software files
Category: Functional
Classification: Mandatory
Priority: High

3.1.11 Communication driver selection

Id: F.11
Description: The user should be able to select a communication driver (e.g. CAN
card, DICE)
Category: Functional

30

Classification: Mandatory
Priority: High

3.1.12 Generate SSS

Id: F.12
Description: The SSS should be generated automatically starting from VP series
Category: Functional
Classification: Mandatory
Priority: High

3.1.13 Deviation numbers

Id: F.13
Description: The SSS should include deviation numbers valid for the week when
it is generated
Category: Functional
Classification: Mandatory
Priority: High

3.1.14 Preloaded software

Id: F.14
Description: The SSS should include preloaded software
Category: Functional
Classification: Mandatory
Priority: High

3.1.15 Edit SSS

Id: F.15
Description: The user should be able to edit the SSS if necessary
Category: Functional
Classification: Optional Priority: Medium

3.1.16 Provide feedback

Id: F.16
Description: The tool should provide the user with feedback information such as
status and warnings
Category: Functional
Classification: Mandatory Priority: Medium

A.3.2 Non functional requirements

3.2.1 Authorization

Id: NF.1
Description: The user should be authorized

31

Category: NonFunctional
Classification: Mandatory Priority: High

3.2.2 Usability

Id: NF.2
Description: The user interface should be easy to understand
Category: NonFunctional
Classification: Mandatory Priority: High

32

B. Database scheme

Platform

id INTEGER

id_pie INTEGER

Node

name VARCHAR(10)

type VARCHAR(10)

network VARCHAR(10)

NodeHw

platform INTEGER

node VARCHAR(10)

hw_type VARCHAR(10)

gr INTEGER

pos INTEGER

post_from INTEGER

post_to INTEGER

NodeSw

platform INTEGER

node VARCHAR(10)

hw_type VARCHAR(10)

sw_type VARCHAR(10)

gr INTEGER

pos INTEGER

post_from INTEGER

post_to INTEGER

Software

type VARCHAR(10)

Hardware

type VARCHAR(10)

PlatformNodesView

platform INTEGER

node VARCHAR(10)

id_pie INTEGER

address VARCHAR(2)

PlatformNodesHwView

platform INTEGER

node VARCHAR(10)

id_pie INTEGER

address VARCHAR(2)

hw_part VARCHAR(10)

gr INTEGER

pos INTEGER

post_from INTEGER

post_to INTEGER

PartStructure

platform INTEGER

part_no INTEGER

part_type VARCHAR(10)

gr INTEGER

pos INTEGER

post INTEGER

variant VARCHAR(4)

start_time INTEGER

end_time INTEGER

Deviations

platform INTEGER

part_no INTEGER

dev_no INTEGER

part_type VARCHAR(10)

variant VARCHAR(50)

gr INTEGER

pos INTEGER

post INTEGER

VariantDesignation

variant VARCHAR(50)

qualifier VARCHAR(4)

PlatformNodes

platform INTEGER

node VARCHAR(10)

address VARCHAR(2)

HwPartNoView

platform INTEGER

node VARCHAR(10)

id_pie INTEGER

address VARCHAR(2)

hw_type VARCHAR(10)

part_no INTEGER

gr INTEGER

pos INTEGER

variant VARCHAR(4)

SwPartNoView

platform INTEGER

node VARCHAR(10)

hw_type VARCHAR(10)

sw_type VARCHAR(10)

part_no INTEGER

gr INTEGER

pos INTEGER

post INTEGER

variant VARCHAR(4)

MergeHwSw

platform INTEGER

node VARCHAR(4)

hw_part_no INTEGER

hw_part_type VARCHAR(4)

sw_part_no INTEGER

sw_part_type VARCHAR(10)

DeviationNumbers

platform INTEGER

gr INTEGER

pos INTEGER

post INTEGER

part_type VARCHAR(10)

pos_no INTEGER

dev_no INTEGER

variant VARCHAR(4)

Created Views

Figure B.1: Database Model Diagram

33

C. Prototype demo

Figure C.1: The main ap-
plication window that is
used by test engineers to
update software in the test
object

Figure C.2: Using the
drop down list the user
chooses the configuration
(platform) the test object
belongs to.

Figure C.3: Using ”Communication settings”
dialogue, the user can choose the driver for com-
munication with the test object. The dialogue
is called via menu ”Settings”

34

Figure C.4: Pressing the button ReadData the application starts to communicate
with the test object. As the result the ECUs and their hardware numbers are
presented in the Hardware table. The user can analyse the vehicle configuration.
For example, if all necessary ECUs are presented in the test object, if an ECU has
correct hardware. To get software files, the user should choose ECUs and press ”Get
vbf” button. The application sends the necessary information to the PIE system.

Figure C.5: The user should enter his client id.

Figure C.6: The received
software files are shown in
the Software table.

35

Figure C.7: The user have
the opportunity to down-
load software files directly
or to save them locally.
To download file the user
should choose one or sev-
eral files and press “Down-
load”. ”Save” function is
available via menu File ->
Save

36

