
Lesson Design and Evaluation of
Programming in Mathematics Education
A Study of Experiences and Opinions about Using Program-
ming for Teaching Integral Concepts in a High School Setting

Master’s thesis in Learning and Leadership

VIDAR ERICSON
MOHAMMAD FUAD JAWEER

DEPARTMENT OF COMMUNICATION AND LEARNING IN SCIENCE

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2022

Master’s thesis 2022

Lesson Design and Evaluation of Programming in
Mathematics Education

A Study of experiences and opinions about using
programming for teaching concepts of integrals in a high

school setting

Master’s thesis in Learning and Leadership

VIDAR ERICSON
MOHAMMAD FUAD JAWEER

Department of Communication and Learning in Science
Chalmers University of Technology

Gothenburg, Sweden 2022

Lesson Design and Evaluation of Programming in Mathematics Education
A Study of Experiences and Opinions about Using Programming for Teaching
Concepts of Integrals in a High School Setting
VIDAR ERICSON, MOHAMMAD FUAD JAWEER

© VIDAR ERICSON, MOHAMMAD FUAD JAWEER 2022.

Supervisor: Henrik Imberg, Department of Mathematical Sciences,
Chalmers University of Technology and University of Gothenburg

Co-supervisors: Kristina Nilsson, NTI gymnasiet Johanneberg
Mattias Börjesson, NTI gymnasiet Johanneberg

Examiner: Philip Gerlee, Department of Mathematical Sciences,
Chalmers University of Technology and University of Gothenburg

Master’s Thesis 2022
Department of Communication and Learning in Science
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX, template by Kyriaki Antoniadou-Plytaria
Printed by Chalmers Digitaltryck
Gothenburg, Sweden 2022

iv

Lesson Design and Evaluation of Programming in Mathematics Education
A Study of Experiences and Opinions about Using Programming for Teaching
Concepts of Integrals in a High school Setting
VIDAR ERICSON, MOHAMMAD FUAD JAWEER
Department of Communication and Learning in Science
Chalmers University of Technology

Abstract
Programming has been known to be an effective tool for mathematical problem
solving since the advent of computers and programming. Dramatic developments
in digital technology and computers as well as the fourth industrial revolution has
led to a demand for employees with increased digital competence across varying
fields, which has prompted educational institutions to adapt. Consequently, many
countries in the EU were motivated to start using programming in mathematics
teaching and therefore there is a need to know how programming can become an
efficient part of mathematics education. This study investigates how programming
can be integrated in mathematics to teach concepts of integrals. It was implemented
by creating, conducting and evaluating two lessons where programming was used as a
means for teaching students about two aspects of integrals, namely the fundamental
theorem of calculus, and solids of revolution. Data was gathered through a survey
among participating students and interviews with both students and teachers in
conjunction with the eleven lessons that were held. It was found that in this context,
programming can be valuable by deepening understanding and facilitating work while
challenges arise in the form of increased cognitive load, unclear purpose and varying
knowledge. Previous experience of programming correlated with finding the code
easy to use and the programming enjoying, as well as a small positive correlation
with learning something that would have been harder without programming.

Keywords: mathematics education, programming, teaching, integrals, solid of revolu-
tion, fundamental theorem of calculus.

v

Acknowledgements
First and foremost, we would like to thank our supervisor Henrik Imberg for his
tireless support, guidance and interest in our project. His statistical analysis of
the data and guidance regarding keeping an academic mindset and language were
invaluable and gave many insights into the world of research. Without his support
and encouragement, it would have been next to impossible to complete this thesis.

We would also like to thank Kristina Nilsson and Mattias Börjesson, our co-supervisors
at NTI Johanneberg, where much of our work was conducted. Their experience
and insight into the field of teaching helped us shape both lessons and surveys. At
Hulebäcksgymnasiet we would like to thank Fredrik Nordling for organising the
schedule for our time there.

Finally, we would like to thank all participating teachers and students for their
valuable reflections and feedback.

Vidar Ericson and Mohammad Fuad Jaweer, Gothenburg, May 2022

vii

Contents

List of Tables xi

List of Figures xi

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 2
1.3 Research Questions . 2
1.4 Scope . 3

2 Theory 5
2.1 Lesson Design and the 5E Model . 5
2.2 Learning Theory . 6

2.2.1 Constructivism . 6
2.2.2 Social Perspective on Learning 7
2.2.3 Constructionism - Social Development Theory 7
2.2.4 Bandura’s Social Learning Theory 8
2.2.5 Active Learning . 9
2.2.6 Peer Discussion . 10

2.3 Programming in Mathematics Education 10

3 Method 13
3.1 Lessons . 13

3.1.1 Fundamental Theorem of Calculus 13
3.1.2 Solids of Revolution . 17
3.1.3 Programming Language and Environment 20

3.2 Study Population . 20
3.3 Survey Design and Analysis . 21

3.3.1 Statistical Methods . 21
3.3.2 Analysis of Free-Text Answers 22

3.4 Interview Design and Analysis . 22
3.4.1 Student Interviews . 22
3.4.2 Teacher Interviews . 23
3.4.3 Thematic Analysis . 23

ix

Contents

4 Results 25
4.1 Previous Programming Experience 25

4.1.1 Sufficient Programming Knowledge to Understand 25
4.1.2 Correlates of Previous Programming Experience 25

4.2 Understanding of the Lesson . 26
4.2.1 Code and Mathematics were Easy 26
4.2.2 Code was Fun . 26
4.2.3 Strengths and Weaknesses of the Lesson Plan 26

4.3 Lesson Effect on Learning . 27
4.3.1 Effect on Understanding of Mathematics 27
4.3.2 Takeaway from the lesson . 29
4.3.3 Programming as a Facilitator of Knowledge 30

4.4 Difficulties of Programming in Mathematics 33
4.4.1 Most Difficult Part of the Lesson 33
4.4.2 Cognitive Load . 35
4.4.3 Varying Prior Knowledge . 35
4.4.4 Unclear Purpose . 35
4.4.5 Additional Difficulties . 36

4.5 Possibilities of Programming in Mathematics 36
4.5.1 Deeper Understanding . 36
4.5.2 Facilitation of Mathematical Work 37

5 Discussion 39
5.1 Previous Programming Experience 39
5.2 Difficulties in Using Programming . 40

5.2.1 Cognitive Load . 41
5.2.2 Varying Prior Knowledge . 42
5.2.3 Unclear Purpose . 44
5.2.4 Additional Difficulties . 44

5.3 Possibilities in Using Programming 45
5.3.1 New Perspective . 46
5.3.2 Visualisation and Experimentation 46
5.3.3 Tool for Problem Solving . 47
5.3.4 Automation and Focus on Mathematics 47

5.4 Limitations and Future Research . 48

6 Conclusion 49

Bibliography 51

APPENDICES

A Student Survey I

B Interview Questions for Students IX

C Interview Questions for Teachers XI

x

List of Tables

Table 3.1 Lesson plan on fundamental theorem of calculus (Lesson 1) 16
Table 3.2 Lesson plan on solids of revolution (Lesson 2) 19

Table 4.1 Descriptive statistics of survey results and comparison between groups . 32
Table 4.2 Categorisation of free text answers from surveys. 34

List of Figures

Figure 3.1 Some visual aids from Lesson 1 . 14
Figure 3.2 Solid of revolution from Lesson 2 . 17

Figure 4.1 Correlations between student ratings on statements about the lesson . . 27
Figure 4.2 Lesson effect on understanding of mathematics 28
Figure 4.3 Uniqueness of programming’s contributions on mathematics learning . . 30
Figure 4.4 Challenges of using programming in mathematics education 33
Figure 4.5 Benefits of using programming in mathematics education 37

Figure 5.1 3D illustration of two intersecting solids of revolution 42

xi

List of Figures

xii

1
Introduction

1.1 Background

In 1969, Feurzeig and Papert visualised a future where students of all ages learn the
basic concepts of mathematics and methods through the newly developed program-
ming language Logo, which they co-invented in 1967 (Eckert & Hjelte, 2021). In the
1980s, Seymour Papert, now a university lecturer and researcher at the Massachusetts
Institute of Technology (MIT), argued that computational thinking ought to be
used in mathematical education. Computational thinking can be defined as a set of
problem-solving methods which explain a problem and its solution in such a way
that a computer — human or machine — can effectively carry out the operations
needed (Wing, 2014).

The idea of using computational thinking in mathematics education could not be
widely applied in learning and teaching, because digital technology and tools had
not been developed to the extent that they are today. In addition, digital tools were
not available to general public as they currently are. The tremendous advances in
computer science led to the idea being brought up again thirty years later. Jeannette
Wing revived the term computational thinking in contemporary society, stressing
that it should be taught in schools (Bråting et al., 2020).

In 2006, the European Parliament and the European Union proposed digital literacy
as one of eight key competencies for lifelong learning (European Union, 2006). Based
on that recommendation, most countries in the European Union started calling for
the introduction of programming in school education. In addition, results from a
review by the Swedish Schools Inspectorate (Skolinspektionen) in 2012 led to the
introduction of digital competencies in curricula at both primary and high school.
The Swedish Schools Inspectorate claimed that even though schools invest much
money in buying digital equipment, not all teachers know how to use that equipment
(Hellmark Knutsson & Nilsson, 2015).

On the other hand, the National Agency for Education (Skolverket) pointed out that
the large difference in the use of information technology in the country’s schools was
considered so prominent that it infringes on everyone’s right to an equal education.

1

1. Introduction

They further argued that digital skills should therefore be included in the curricula
in order to encourage all schools to teach digital competencies (Hellmark Knutsson
& Nilsson, 2015).

In 2017, the Swedish National Agency for Education updated the Mathematics
syllabus for all primary and high school education such that it includes programming
in addition to traditional mathematical content. Since the start of the school year
2018-2019, these changes are supposed to be implemented in mathematics courses
(Helenius et al., 2018), but difficulties have arisen since many teachers lack both
knowledge and experience regarding programming (Jahnke, 2020; Stigberg & Stigberg,
2020). Due to this lack of knowledge and experience, there is a joint interest between
teachers and the National Agency for Education to explore how programming can
be integrated effectively into the mathematics curriculum.

ULF (Utbildning Lärande Forskning) is a research-based project that was established
by the Swedish government to strengthen the scientific foundation that Swedish
education is supposed to be built upon according to law (SFS 2010:800). This project
emerged from the need for a stronger connection and increased cooperation between
research and education. In this way, the government is attempting to broaden
collaboration between universities researching educational sciences and the schools
where education takes place (Wiberg, 2020).

NTI Johanneberg, a technology-oriented high-school in Gothenburg, has conducted
several learning studies on the use of programming in mathematics education the
past few years. Topics addressed include different representations of functions and
integrals, with focus on how to use programming to teach and learn mathematical
concepts. In contrast, the main focus of programming in mathematics according
to the national curriculum is on problem solving (Skolverket, 2021). Results from
previous studies at NTI Johanneberg indicate positive effects of programming also for
learning mathematical concepts, but possibly mainly for students with a high level
of prior knowledge in programming, and emphasises the need for further research in
the topic (Lärteam matematik, NTI Johanneberg, 2020).

1.2 Purpose
The aim of this project is to study students’ and teachers’ experiences and opinions
about using programming for teaching mathematical concepts of integrals in a high
school setting through lesson design and evaluation.

1.3 Research Questions
The main question which this master thesis intends to answer is:

What are students’ and teachers’ experiences and opinions in applying programming
as a means for teaching mathematical concepts about integrals?

2

1. Introduction

This question is clarified by the following specific questions:

1. Which possibilities do teachers and students envision and experience while
utilising programming as a means for teaching integrals?

2. What challenges do students and teachers anticipate and experience while
utilising programming as a means for teaching integrals?

3. How does previous programming experience affect students’ learning about
integral concepts when programming is used as a means for teaching integrals?

1.4 Scope
The project’s lessons are performed on Swedish high school students who study
the course Mathematics 3c or Mathematics 4 in both the Science and Technology
Programs. The lessons focus on integrals by dealing with either the Fundamental
Theorem of Calculus or Solids of Revolution.

3

1. Introduction

4

2
Theory

This chapter presents theories which were used in different parts of this project.
Firstly, lesson design and the 5E model are presented as a starting point to design
and plan two lessons to teach students about some particular integral concepts.
Secondly, some aspects of learning theory are presented. Above all, Bandura’s social
learning theory and active learning were used as a basis for increased cooperation
and learning when actualising lessons in the classroom. In addition, peer discussion
is presented as a method to increase students’ understanding. This method was
frequently used during the lesson implementation to realise student activities. Finally,
some knowledge of how programming was previously used in mathematics education
and how it can be applied to learning situations is discussed. This was considered
in order to avoid the errors that can occur when teachers attempt to combine
mathematics and programming.

2.1 Lesson Design and the 5E Model

Kimberly Tanner (2010) presents one model which can be used to plan lessons.
Tanner explains certain aspects which must be considered when the teacher plans
the lesson. The model is called the 5E model and was first introduced by Bybee et al.
(2006). The model emphasises that the students should be interested in what is going
on in the lesson. They must participate and be active during the lesson by discussing
the new concepts which are displayed in the lesson and compare new knowledge with
old to improve understanding of the material. Merrill (2002) presents the importance
of teaching new knowledge by revising the old understandings. The author means
that students ought to see how the new knowledge relates or changes the old one.

Tanner (2010) believes that students must have a chance to apply what they have
learned during the lesson. Therefore, she recommends using the 5E model to facilitate
lesson planning and students’ learning. The model consists of five concepts: Engage,
Explore, Explain, Elaborate and Evaluate.

The first E, Engage, means that the teacher creates a certain activity to capture
students’ attention, stimulate thinking and help them establish access to previous
knowledge. The second E, Explore, aims to make students capable of exploring

5

2. Theory

ideas and finding out what knowledge they already possess and what new thoughts
can help them solve the tasks which are given during the lesson. For the third E,
Explain, the teacher explains the new concepts to students which develops their
previous knowledge to be able to accomplish the tasks. Under Elaboration, the
teacher broadens the students’ ability to use the new knowledge to solve exercises in
additional contexts. For the last E, Evaluate, the teacher helps students to reflect on
the lesson, to use the skills they have acquired and evaluate their understanding.

In this context, Namdar and Kucuk (2018) discovered that teachers found it difficult
to find criticism of the 5E principle for planning the lesson, but they say:

• It is very difficult to find examples from daily life related to the subject.
• It is difficult for teachers to design new problem contexts for students to explore.

Consequently, it is arduous for teachers to plan their lessons according to 5E at all
times (Namdar & Kucuk, 2018).

In any case, Tanner (2010) emphasises that when the teacher designs the lesson
according to 5E concepts, he builds a class climate in which most students are
active and pay attention. This results in a deep learning and understanding of the
knowledge which the teacher wants to teach.

2.2 Learning Theory
Learning theories concern how learning takes place when people learn something new
from parents, friends, teachers, leaders, school or society at large. These theories
focus on what conditions and behaviours the teacher needs and should employ, along
with what kind of roles the learners play in this process.

The theories presented in this section were chosen based on how influential they have
been and previous experience regarding programming in mathematics education. In
the authors’ experience, students display a large variety in programming competence.
Therefore, student collaboration was viewed as a central component of the lesson and
theories regarding collaboration were prioritised. Additionally, theories concerning
interactions between students and between students and teachers were prioritised
in order to maintain a high degree of communication. This aims to help teachers
evaluate student understanding and needs throughout the lesson.

2.2.1 Constructivism
Constructivism is one of the fields focusing on learning as changes in a person’s
mental schema. Jean Piaget was one of the most influential theorists in the subjects
of pedagogy and epistemology. For several decades, Piaget’s theory of children’s
developmental phases has influenced school systems around the world. Phillips and
Soltis (2015) highlight that Jean Piaget considered human action to be a consequence

6

2. Theory

of thinking and viewed the mind as a type of information processor. When information
arrives to the brain, it is processed, assimilated and accommodated.

Constructivism focuses on inner mental activities and sees knowledge as a schema
or symbolic mental construction. The schema is defined as “a pattern of repetitive
behaviour in which experiences are gradually internalised and coordinated”, (Phillips
& Soltis, 2015). Coordinating boosts the schema and repetition results in a more
powerful schema. Piaget claims that learning takes place when people take new
things and add them to the schema, in other words, learning is a changing in the
schema (Phillips & Soltis, 2015).

Tina Bruce, who also carried out research on schemas in the 1970s, considers schemas
a type of cognitive psychology which studies the internal mental processes inside
the brain. Thinking, attention, memory, language and learning are examples of
mental processes which accompany the learning process and development of child. In
addition, constructivism regards understanding as a necessary condition for learning.
Moreover, mistakes are necessary for learning. They are an opportunity that, by
overcoming, the knowledge that we consider correct is built. Finally, the society in
which the individual lives has a great impact on their construction of knowledge
(Phillips & Soltis, 2015).

2.2.2 Social Perspective on Learning
Social Learning theory takes into consideration the social contexts in which people
are constantly learning. Lev S. Vygotsky, who is considered as the creator of the socio-
cultural perspective, tried to describe human learning processes. He viewed learning
as initiating a social activity when the learner acts in an interactive environment.
Learning always occurs in the context of social groups, parents, brothers and sisters,
friends and classmates with whom the learner can communicate and socialise. They
can talk about things that worry them, engage in activities with their friends through
language that is a social medium, read books and magazines. Therefore, social
factors are very important in any learning process (Phillips & Soltis, 2015).

Learning new skills comes directly from experiencing the consequences of using that
skill, or the process of observing others and seeing the consequences of their behaviour.
Learning is also influenced by a person’s self-efficacy, which is their judgement about
whether they can successfully acquire knowledge and skills. Self-efficacy can be
increased by verbal persuasion, logical verification, observation of others and past
accomplishment (Phillips & Soltis, 2015).

2.2.3 Constructionism - Social Development Theory
Social development theory focuses on connections between people and also between
a person and the social context in which they act and interact. Vygotsky points out
that language is essential in the learning process. He considers speech, writing and
media to be very important tools in any education (Phillips & Soltis, 2015).

7

2. Theory

Constructionism claims that development takes place during interactions between
people and their surroundings. Vygotsky asserts that learners always have a zone
which is called the Zone of Proximal Development (ZPD). This zone is situated
between what the learner knows and understands now and how far he or she has the
opportunity to go. There is always such a zone of opportunity which learners fill in
different contexts by meeting other people with different perspectives and knowledge.
It becomes challenging for people to move forward in this zone. Constructionism
further asserts that learning is consciousness and cognition. Learning is the end
product of socialisation (Phillips & Soltis, 2015).

2.2.4 Bandura’s Social Learning Theory

Bandura’s Social Learning Theory describes how people can learn something new
by observing the behaviour of other people and applying rational mental behaviour.
Albert Bandura considers observational learning to be the first step in social learning.
Bandura’s social theory is based on three main ideas (Bandura, 1969):

• Firstly, people learn through observing role models. Bandura identified three
types of models in his experiment: a live model physically demonstrating an
action, a live model using language to display a behaviour verbally, and a
symbolic model showing behaviours in online media, movies, television programs
and books.

• Secondly, internal psychology influences the learning process. This means that
intrinsic reinforcements need to satisfy the psychological needs like a sense of
accomplishment, satisfaction, a form of success and pride.

• Thirdly, learning a behaviour does not automatically mean that the person
will execute it. Applying a new behaviour must be of value to the person for
them to want to apply what they have learned.

There are four steps in Bandura’s social learning Theory: attention, retention,
reproduction and motivation.

• Attention - the learner needs to pay attention to the behaviour. People
imitate behaviour that grabs their attention. Therefore, the more interesting
the behaviours, the more fully the learner wants to engage with learning.

• Retention - how one can store the learned information. Bandura suggests a
number of memory techniques such as repetition, writing it down and memory
devices.

• Reproduction- the ability to perform the behaviour which was learned. It
relies on the two first steps namely attention and retention. After attention and
retention, the learner may move towards performing the observable behaviour.
With further practice, the learner will undoubtedly improve and sharpen his or

8

2. Theory

her skills. Practice makes perfect.

• Motivation - students need to be motivated enough to imitate the behaviour
that was modelled (Bandura, 1969).

2.2.5 Active Learning

In a traditional class room, teaching occurs when a teacher stands in front of the
students and gives a lecture while the students listen and take notes. The teacher
asks questions and students answer. This method has been used in schools and
universities all over the world for a long time. However, research has shown that
traditional teaching has low learning efficiency. Many students hide themselves and
the teacher can only observe the abilities of a few individual students. In addition, it
does not enable students to use their knowledge in practice and most of them forget
the knowledge which they gained shortly after the exam (Felder & Brent, 2016).

Before the Second World War, social and pedagogical researchers Allport and Watson
suggested cooperative learning theory after finding that group work was more effective
in terms of quantity, quality, and productivity in general than individual work (Gillies
& Ashman, 2003). John Dewey expanded the cooperative learning principles by
suggesting that students ought to apply the taught knowledge in everyday life. This
is important since it helps students to find meaning in their learning by bridging
the gap between theoretical and practical knowledge, leading to students better
remembering the new information.

In their book, Felder and Brent (2016) claim that “true learning results from doing
things and reflecting on the outcomes, not from passively receiving information”.
Felder and Brent (2016) present another method called Active Learning, which is
based on cooperative learning. This method has shown successful results when it
comes to students’ long-term memory and deep learning. Active learning considers
the learner to be the central component of teaching and not the teacher as in
traditional learning. “Active learning involves providing opportunities for students to
meaningfully talk and listen, write, read and reflect on the content, ideas, issues, and
concerns of an academic subject” (Meyers & Jones, 1993).

Active learning is an alternative method to traditional learning. In active learning,
the teacher gives students tasks where they ask each other questions, discuss problems
and solve them together. This method helps students to link theory with things
in everyday life. In addition, active learning is one of the best methods of making
students capable of using their knowledge successfully in their future career. Moreover,
active learning is especially well suited towards education in mathematics, engineering
and technology, (Felder & Brent, 2016).

9

2. Theory

2.2.6 Peer Discussion
Michelle Smith et al. (2009) proved that discussion between classmates in the lesson
creates a deeper understanding of what is being taught. In her study, students were
asked to answer questions without discussion in groups. The answers were registered
without alerting students to whether they were correct, and students were then asked
to discuss the question in groups before answering again. The researchers note that
the number of correct answers increased even in groups that did not have any correct
answers at the first time (Smith et al., 2009).

Smith et al. (2009) demonstrated that discussion between classmates gives a deeper
understanding despite the teacher believing that their explanation is much better
than that of students. The teacher’s explanation is often not enough to make all
students understand the taught concepts.

In this context, Corrégé and Michinov (2021) argued that “there is a lack of consensus
about the effects of peer discussion on learning, and the issue about the optimal group
size remains largely open to debate in this field”. However, the author claimed that
small groups work much better than big groups. In big groups, every group member
assigns the responsibility for discussion to others (Corrégé & Michinov, 2021). The
authors suggest that groups ought to not contain more than three students.

2.3 Programming in Mathematics Education
H. Stigberg and S. Stigberg claim that one of the largest challenges of using pro-
gramming in mathematics teaching in Swedish schools is that a large part of the
teachers lack programming competence and experience Skolverket (hereafter short-
ened to NAE). In addition, they argue that the NAE needs to clarify the relationship
between mathematics and programming. Most mathematics teachers are convinced
that programming is effective in developing students’ problem-solving skills, but with
the new curriculum the NAE in Sweden will use programming to develop logical
thinking and not just problem solving (Stigberg & Stigberg, 2020).

Research is not conclusive on whether programming can develop-problem solving
or other mathematical skills. However, it is necessary to know how programming
can consolidate mathematical subjects in different mathematics courses, because
programming has been integrated into all mathematics syllabi (Stigberg & Stigberg,
2020).

Furthermore, Stigberg and Stigberg (2020) think that the NAE ought to create a
mathematical curriculum which is rich in programming materials. Teachers need
more resources detailing how to use programming in mathematics education. One-day
workshops do not provide teachers with sufficient knowledge and experience to use
programming in mathematics teaching (Ball et al., 2008). In addition, a strong
motivation is needed to show teachers and students why programming is relevant
to use in mathematics education. Otherwise, the process will not be serious and

10

2. Theory

meaningful (Stigberg & Stigberg, 2020).

Forsström and Kaufmann (2018) argued that all studies which support using program-
ming in mathematics education were based on three main themes: the motivation to
learn mathematics, student performance in mathematics, and the collaboration be-
tween students which results in a changed role for the teacher. The authors show that
in certain circumstances, programming increases students’ motivation to learn math-
ematics and their participation during mathematics lessons (Forsström & Kaufmann,
2018).

However, Forsström and Kaufmann (2018) argued that the relationships between
students, and teacher and students look different when programming is used in
mathematics teaching. The authors focus on the need for collaboration in the
classroom, which should be taken care of during the lesson design phase (Forsström
& Kaufmann, 2018).

Eckert and Hjelte (2021) argue that programming and mathematics can take different
positions in relation to each other. Programming can be used to learn mathematics
and mathematics can be used to learn programming. Therefore, the teacher ought
to be careful in choosing:

1. Mathematical learning objectives for the task - what the teacher thinks the
students should learn when working on the task,

2. An assignment presented to the student, either a mathematics assignment or a
programming assignment and

3. Tools the student uses to solve the task (Eckert & Hjelte, 2021).

Finally, Anette Jahnke (2020) demonstrates important perceived advantages of
applying programming in mathematics courses in Sweden:

• Teachers’ collaboration was strengthened,
• Lesson study strengthened the quality of collaboration,
• Teachers developed new and collective knowledge about programming,
• Increased knowledge of how programming can be used,
• Dissemination of knowledge through conferences and research articles,
• Students became more positive to programming instruction.

In addition, Jahnke (2020) calls attention to essential challenges when using pro-
gramming in mathematics education:

• Limited knowledge among teachers
• Difficult for teachers with limited knowledge to create lesson plans that can

also improve mathematical abilities
• Progression unclear in syllabus between levels in primary school.

11

2. Theory

12

3
Method

Two programming-based lessons were developed, implemented and evaluated during
this project. The chapter begins by presenting both created lessons, followed by
a description of the study population. Thereafter, the design and analysis of the
student survey is discussed. Finally, the design and analysis of the interviews is
discussed.

3.1 Lessons
Two different lessons were created, the first with a focus on the fundamental theorem
of calculus (later referred to as Lesson 1), and the second with a focus on solids of
revolution (later referred to as Lesson 2). Both lessons were created in collaboration
with a team of high-school mathematics teachers at NTI Johanneberg. Preliminary
versions were discussed and developed in accordance with their feedback. For the
complete lesson material presented to students, see the GitHub repository found on
https://github.com/evidar/thesis_lessons. A summary of both lessons as well as
their lesson plans are presented below.

The primary challenge in creating the lessons was in making them available to
students of very varying programming knowledge. In order to work toward this goal,
most of the work that the students were assigned to involved manipulating already
finished code instead of creating their own code.

In order to keep data collection as reliable as possible, attempts were made to keep
the lessons similar between different occasions. A time plan was created and lessons
were practised between the two members of this thesis to form consensus regarding
the overall execution and what parts to emphasise. For practical reasons and due
to difference in schedule between classes, the lessons varied in length from 70 to 90
minutes.

3.1.1 Fundamental Theorem of Calculus
Lesson 1 was based on a lesson on the fundamental theorem of calculus previously
developed, implemented and tested at NTI Johanneberg. The lesson was created

13

https://github.com/evidar/thesis_lessons

3. Method

to fit the material in the course Mathematics 3c, where students for the first time
encounter derivatives and integrals. Students were expected to possess basic prior
knowledge of Riemann sums, primitive functions and the concept of integrals as an
area under the graph of a function (Table 3.1 and Figure 3.1).

(a) (b)

Figure 3.1: Figures from Lesson 1. Figure (a)illustrates a visualisation of Riemann
sum, area function and the integrand. Figure (b) illustrates the algebraic proof
shown at the end of the lesson. The graph of the integrand f(x) is the blue line in
(a) while the graph of the area function, A(x), is the red line. A(x) represents the
area function. Note that the functions graphed in (a) and (b) are not the same.

Lesson Description

Aim: To understand the Fundamental Theorem of Calculus and the connection
between Riemann sums, integrals and primitive functions.

Outline:

• Introduction of lesson aim and structure.

• Students work in pairs to calculate Riemann sum of one function in a handout.

• The teacher presents code that calculates the Riemann sum. Students think
about the code and discuss it with their programming partner. The teacher
summarises and changes the value of parameters to show students how they
affect the result.

• Students use the code to do the same thing which they have done manually in
the handout, but with the option of increasing the number of rectangles in the
Riemann sum. This illustrates the benifts of programming. Students discuss
how the code works and what it does. A few minutes are devoted for students
to manipulate the code.

• The teacher presents the area function, what it means and how it is calculated
using the Riemann sum (Area function A(x): is a function to calculate area
between integrand and x-axis in the range [0, x]).

• Students experiment with how accumulated area varies depending on function.

14

3. Method

Students discuss the relation between area function and integrand. The teacher
summarises discussion, concluding that the area function appears to be the
same as the primitive function. The idea is reinforced by fitting a polynomial
to the values A(x) of the area function.

• Algebraic proof of the fundamental theorem of calculus.

• Teacher and students summarise the lesson.

• Students answer the survey.

15

3. Method

Table 3.1: Lesson plan on fundamental theorem of calculus (Lesson 1)

Element Content Purpose Time

1. Introduction Explanation of the format of the lesson. Rep-
etition of Riemann sums, primitive functions
and the concept of integrals.

Evoke thoughts from previous
lessons.

5

2. Coding 25
2.1 Estimate of

Riemann sum
Students receive a handout with the graph of
a polynomial and are tasked with estimating
the value of the definite integral by hand.

Doing it by hand may increase
understanding of the program.

2.2 Program
specification

Students think about what the program is sup-
posed to do and receive the following ques-
tions:

• What should the program be able to
do?

• Which input will it require?
• Which output will it produce?

Increase understanding of the
program that will be
presented later.

2.3 Summary The teacher leads a summary of 2.2 and
presents the structure for the code.

2.4 Share code Students receive code and discuss how it works.
Thereafter students are tasked with modifying
the code so that it solves the problem on the
handout in 2.1 but with a more precise answer.

Students understand the
purpose of using programming
in mathematics.

3. Area
Function

18

3. The Area
Function

The teacher motivates the existence of the area
function and explains its properties.

It should be explained since it
is not obvious for everyone
that there exists an area
function.

3.2 Plotting Students are presented with code that plots co-
ordinates in a graph. They use their program
from 2.4 to plot x-values alongside each value’s
accumulated area.

Connection to the handout,
students see how
programming can be valuable.

3.3 Conclusions From the graphs, students attempt to form
conclusions about how the area function is may
be related to the base function.

Challenge students thinking
through experimental work.
Attempting to first make the
connection themselves
increases engagement in the
task.

3.4 Regression The teacher demonstrates that the area func-
tion appears to be the primitive function of the
base function through regression of the plotted
points. The teacher further explains what this
means: that the derivative of the area function
is the base function.

Seeing that their hypothesis is
correct may increase
engagement in the upcoming
proof.

4. Proof 10
4.1 A(b)−A(a) Our program can only calculate the area be-

tween 0 and x. What can we do to calculate it
between 3 and 4? Discuss.

Broaden the concept.

4.2 Growth of
Area Function

How does the area function increase? One way
of calculating this is through the area between
2 and 2.1. Students use their programs to do
this.

If students are engaged and
contributing in the proof their
understanding of it may
increase.

4.3 Alternative
Growth

The teacher shows students a different method
for approximating the increase in an interval -
creating a rectangle with width h and calcu-
lating h · f(x). This method is motivated in-
tuitively by an illustration and shown to give
the same answer as the previous method.

A step in understanding the
proof, where numerical and
abstract aspects are
connected.

4.4 Proof The teacher now writes the equation in its gen-
eral form, A(x+ h)− A(x) = h · f(x), divides
by h and takes the limit where limh→ 0. We
have now proven that the derivative of the area
function and the base function are the same
thing.

Connection between lesson
activities and the formal
mathematical proof, making
abstract mathematics more
understandable

5. Summary The teacher and students summarise what
they have discovered. It is important to re-
mark that all three representations are of the
same thing. The limit of the Riemann sum =
the integral between a and b = F (b) − F (a).
Students then answer the survey.

Tie the lesson together and
make conclusions common to
everyone in the classroom.

12

16

3. Method

3.1.2 Solids of Revolution
In accordance with the decided scope, the second lesson also had to cover some aspect
of integrals. After examining the curriculum and mathematics textbook of the course
Mathematics 4, some potential subjects were defined. Thereafter, a discussion with
experienced teachers was held to explore which area students could benefit most of an
additional, programming-based, lesson. This resulted in choosing solids of revolution
as the subject for Lesson 2. Preliminary versions of the lesson were discussed with
a group of high school teachers in mathematics and developed according to their
feedback (Table 3.2 and Figure 3.2).

Figure 3.2: Example of the visualisation of solids of revolution that Lesson 2
provides. The figure shows the solid that is created between the two functions
f(x) = 2 cos(x) and g(x) = ex−1

2π when they rotate around the x-axis for x ∈ [0, 1.345],
from two different perspectives. Four cross-sections of the solid are also illustrated.
Interactive visualisation software were used that enabled students to rotate and zoom
in or out in the figures.

Lesson Description

Aim: increased understanding of solids of revolution. Understand the formula for
calculating the volume obtained by two functions that are rotated around around a
coordinate axis.

Outline:

• The teacher presents code which draws axes in a three-dimensional coordinate
system. Students reflect, discuss and experiment with the code to find out how
the code work.

• The teacher presents code to draw a function in the x − y plane of a three
dimensional coordinate system. Students are tasked with creating a new
function and manipulating the code and the 3D-graph.

17

3. Method

• Students work in pairs to answer how the area between two functions can be
calculated. If time permits, algebraically calculate an integral between two
functions of their choice. Thereafter, the question is discussed in the entire
class and summarised by the teacher.

• The lesson moves from 2D to 3D and drawing solids of revolution. Students
discuss what a figure looks like when a graph of a constant and a linear function
is rotated around the x-axis.

• The teacher presents the code that generates the solid of revolution of one
function. Students discuss the code, change the mathematical function and
parameters to get different 3D-graphs.

• The teacher present code that generates the solid of revolution created from
rotating the region between two functions. Students discuss the code, change
the mathematical functions and modify the code to get different 3D-graphs

• The teacher explains the concept of a cross section and shows a piece of
code that draws a cross section. Students discuss the cross section and the
related piece of code, change the mathematical functions and modify the code
to illustrate one cross section.

• The teacher presents a piece of code that draws draw a multiple cross sections.
Students experiment with how cross sections are shown.

• Students work in pairs to determine a formula for the area of each cross section
and attempt to generalise it to arbitrary functions. Thereafter, the question is
discussed in the entire class and summarised by the teacher.

• The teacher summarises how the area of an arbitrary cross section can be
calculated, deriving the formula. The teacher shows students where they
should write the formula in the code to calculate cross section area. Students
experiment to get the area of a cross section between a pair of functions of
their choice.

• Students work in pairs to answer: how can the value of the volume of rotation
be determined by the area of the cross section? Thereafter, the question is
discussed in the entire class and summarised by the teacher.

• The teacher summarises how the value of a volume can be calculated via
integrating area of the cross-section. The teacher writes a piece of code to
calculate the integral and students experiment with functions of their choice.

• The teacher and students repeat and summarise the lesson.

• Students answer the survey.

18

3. Method

Table 3.2: Lesson plan on solids of revolution (Lesson 2)

Element Content Purpose Time
1. Introduction Introduction of teachers and the project that

the lesson is a part of. The teacher provides an
overview of the lesson structure - programming
will be done in pairs, lots of discussion and a
survey at the end.

Capture students’ interest and
make them comfortable in
participating in the lesson.
Introduce the structure of the
lesson.

3

2. Solids of Revolution 54
2.1 Repetition Question: What is a solid of revolution? Stu-

dents discuss and the teacher summarises.
Refresh knowledge and prime
students for learning more
about solids of revolution.

3

2.2 Introduction
to Code

Summary of what the code will be able to do
at the end of the lesson.

Task: what does the code do? Discuss
with your programming partner.

The teacher summarises discussion.

Demystify code, build
familiarity with the code base
which later programs are built
upon.

5

2.3 Integrals
in 2D

Students are presented with code that draws
the integral of a function in the xy-plane.

Task: Change the functions to those pre-
sented.

The teacher presents code which graphs two
functions and the area between these.

Task: Define a new function and draw the
area between your two functions.
Task: How can you determine the integral
between these two functions algebraically?
Discuss with your partner.

Code-along of realisation in code.

Make students comfortable
with manipulating
programming through familiar
mathematics. Building
understanding of
programming functions for
future use.

13

2.4 Visualise solids
of revolution

Students attempt to visualise some solids of
revolution with pen and paper.

Task: What do the following solids of
revolution look like?

Get students thinking about
properties of solids of
revolution. Emphasise
difficulty of visualising 3D
figures without digital tools.

3

2.5 Draw Solids
of Revolution

The teacher presents code with which
students can draw the solid of revolution for
a given function.

Task: Change the function being rotated
to those introduced earlier or to an
arbitrary one.

Thereafter, code is presented to draw the
solid that is created from rotating the area
between two functions.

Task: experiment with different
functions, either from a list of
suggestions or arbitrarily chosen ones.

Assist students in visualising
solids of revolution. Students
learn to easily experiment
with what function is used
and how that affects the solid
of revolution.

8

2.6 Cross sections Code is presented which draws a cross section
at a specific value or multiple cross sections
of the solid of revolution.

Task: Determine a formula for the area
of a cross section. Attempt to generalise
it to arbitrarily chosen functions.

The teacher summarises the solution through
an illustration.

Important building block for
students to later understand
the formula for volume of a
solid of revolution between
two functions.

8

2.7 Volume of a
Solid of
Revolution

Task: How can the volume of the solid of
revolution be determined through
knowledge of the cross section’s area?
Discuss.

The teacher summarises on the whiteboard
with the help of an illustration and writes the
mathematical formula.

Task: Complete area_func(x) and
replace volume in order to be able to
calculate the volume with the created
program.

Increase student
understanding of the formula
for volume of a solid of
revolution and what its
components represent.

14

3. Summary Discussion in pairs and together about what
the lesson was about, which mathematics was
involved and how programming could be use-
ful. Students answer the survey.

Summarising and repeating
knowledge so that students
better remember the lesson.

15

19

3. Method

3.1.3 Programming Language and Environment
Both lessons were implemented and taught using the Python programming language
(Van Rossum & Drake, 2009) and the Google Colaboratory programming environment
(Google Colab, 2022). 3D-plots used for illustration and teaching solids of revolution
(Lesson 2) were implemented using Plotly version 5.5.0 (Plotly, 2022).

Python is easy to learn and have been using in many fields of education because
it offers an interactive environment in which students can easy explore and learn
functions, procedures, data structure and syntax. Python has a large numbers of
libraries which make it very suitable to cover and perform most of programming
applications, (Chen & Liu, 2022).

In addition, Chen and Liu (2022) says that “the Python language abandons complex
syntax and chooses one that is clear and rarely ambiguous”. Moreover, simplicity of
Python helps the learner to focus on the problem instead of focus on programming
language, it facilitates the learning process. Finally, Python is considered as high-
level language which can be used without thinking in underlying details (Chen &
Liu, 2022).

Google Colaboratory or “Colab” for short, is used as a programming environment.
It is a very simple platform which allows any Google user to write and execute
Python code and is especially well suited to education, data analyses and machine
learning, (Tock, 2019). Google Colab facilitates students work to write the code and
to bring ready programmes from the Google Drive. Moreover, it allows the teacher
to hide certain parts of the code which students do not need to see.

3.2 Study Population
Eight classes from two different schools were included in the study. Five of the classes
participated in one programming lesson, while three of the classes from one of the
school participated in both lessons. Thus, a total of eleven lessons were held. Two
classes attended the second year of the Science Program and were presented only
with Lesson 1, three classes attended the third year of the Science Program and were
presented only with Lesson 2, and three classes attended the Technical Program and
were attended both lessons. The three Technical Classes were studying the course
Mathematics 3c were solids of revolution are not normally an element but they had
some lessons devoted to this as advanced studies before Lesson 2 was presented.

The Science students did not have programming as an ordinary compulsory part of
their education, although a few students had chosen programming as one of their
elective courses. Most of the Science students had only encountered programming
within isolated lessons in mathematics during high school, along with some varied
knowledge from their earlier education. The Science students had finished and
already been tested on their knowledge of integrals, whereas the Technology students
were still studying this chapter.

20

3. Method

All of the Technology students had at least started a programming course based in
the Ruby programming language, which is similar to Python. Students from the
Technical high school were familiar with programming and had some experience of
writing their own code for problem solving.

In addition, eleven teacher-interviews were conducted with six different mathematics
teachers in both Technical and Science schools. Some teachers have been interviewed
more than once because they teach multiple classes.

3.3 Survey Design and Analysis
Survey questions were created based on the previously defined research questions in
section 1.3. These questions were discussed and improved with focusing on getting
answers to all relevant questions while keeping the survey short to get a high response
rate, a methodology endorsed by Esaiasson et al. (2017). As a part of keeping the
response rate high, only the rating questions were made obligatory while the longer
free-text questions were not.

Generally, Rating questions had the same scale of 1 - strongly disagree, 2 - disagree,
3 - neutral, 4 - agree, 5 - strongly agree. Questions were also posed in such a way
that giving a high rating equates to having a positive impression of the lesson. To
the extent possible questions were posed in a neutral way.

The survey contained three different types of questions:

1. Previous programming experiences;
2. Lesson implementation and understanding of the material;
3. Outcome in the form of increased understanding of concepts and the benefits

of using programming for this purpose.

The survey was concluded by asking students if they wanted to participate in a short
interview. A full list of the survey questions can be found in Appendix A.

3.3.1 Statistical Methods
Data are presented descriptively as numbers and percentages of survey answers, and
analysed using non-parametric statistical methods. Comparisons between groups were
performed using Wilcoxon rank sum or van Elteren test (i.e., stratified Wilcoxon test)
(Wild, 1997). Associations between responses to different survey items were analysed
using Cochran-Maentel-Haenzel test, and the strength of association summarised
using Spearman partial correlation coefficient (Agresti, 2003). The partial Spearman
correlation coefficient describes the strength of monotone association between two
variables x and y, while controlling for one or more background variables, as a
real number r ∈ [−1, 1] (Artusi et al., 2002). A coefficient r > 0 corresponds to a
positive association (increase in x associated with increase in y), r < 0 to a negative

21

3. Method

association (increase in x associated with decrease in y), and r = 0 to no (monotone)
association (Artusi et al., 2002). All tests with p < 0.05 were considered statistically
significant, where the p-value is the probability to obtain a result that is at least as
extreme as the observed outcome given that no association exists.

Statistical comparisons were stratified on school, lesson, or school and lesson, as
appropriate. Stratification was used to ensure that comparisons were made between
similar groups of students, e.g., to account for differences between lessons when
comparing schools, or account for differences between schools and lessons when
analysing correlations between survey items. Further, stratification can be used as a
non-parametric method to account for repeated measurements on the same subjects,
which in our case was present since three of the classes participated in both lessons.

Statistical analyses were performed using R software for statistical computing, version
4.1.0 (Venebles & Smith, 2022). Non-parametric tests were performed using the
coin package, version 1.4-2 (Hothorn et al., 2021), and partial Spearman correlation
coefficients calculated using the ppcor package, version 1.1 (Kim, 2015).

3.3.2 Analysis of Free-Text Answers
In order to better analyse the Free-text answers to survey question that students gave,
these were categorised into groups with similar answers. To decide which categories
were relevant and interesting, both authors started looking through answers in order
to get an idea of what they were about. Thereafter potential categories were discussed
until these were decided, followed by each author going through half of the answers
and categorising them, marking any answers that were difficult to group. Potential
new categories were discussed and each difficult answer was discussed, either placed
in a category or marked and discarded if they did not fit into any categories and
only one or very few students expressed the same sentiment.

3.4 Interview Design and Analysis
Questions for the interviews were constructed to be neutral and ordered in such a way
that general questions were asked before more specific ones. The purpose of this was
both to get an idea of what left strong impressions and to lessen interviewer effects
such as the respondent being affected by the interviewer’s prejudices. Additionally all
interviews started with some easy-to-answer warm-up questions about the student’s
previous knowledge and experience in programming. Both of these methods are
espoused in Essiasson et al Metodpraktikan (2017).

3.4.1 Student Interviews
Among the students that were willing to participate in an interview, two were
randomly chosen after each lesson. The goal was for one student to have a relatively
large amount of programming experience, and the other one to have a relatively small
amount of experience. However, since only a few student volunteered, sometimes

22

3. Method

both students had relatively high programming experience. For all interviews, the
instructor who had held the lesson was responsible for taking notes while the other
instructor was responsible for conducting the interview.

At the start of the interviews the privacy of opinions that students voiced was made
clear - teachers and peers would not know what had been said during the interview
while any quotations used would be anonymous. During the interviews students
were actively encouraged to name areas of improvement or bad aspects of the lesson
emphasising that negative opinions are valuable. This was done since there may
otherwise be a risk of students mostly discussing good things about the lesson in
order to avoid uncomfortable situations.

3.4.2 Teacher Interviews
Teacher interviews mostly followed the same principles as student interviews, starting
with broad questions and gradually narrowing them down. These interviews were
generally longer than student interviews and teachers mostly had more feedback
to give than students. In addition to questions relating to their own experience of
the lesson, teachers were also asked in general about classroom climate and their
perception of student understanding and attitudes towards the lesson.

Teachers were also asked about the possibilities of programming in mathematics
class, their own experience and the difficulties of working with programming in
mathematics for teachers and students alike.

3.4.3 Thematic Analysis
In order to condense the immense amounts of data that interviews with students
and teachers gave, a thematic analysis of the interviews was conducted around the
two central phenomena benefits of using programming in mathematics and
difficulties existing when introducing programming into mathematics. In
a thematic analysis, the researcher attempts to identify all aspects of a phenomenon,
see Metodpraktikan (Esaiasson et al., 2017), page 281-282 for a short summary of this
thematic analysis. Note that the project did not undertake a full thematic analysis.
In contrast to a full thematic analysis, interviews were not fully transcribed but
summarised in notes twice: once during the initial note taking of the interview and
then a second time while listening through all audio recordings of the interviews.
Interviews regarding different lessons were combined because both lessons were
examples of using programming to teach some aspect of integrals, but with different
implementations.

23

3. Method

24

4
Results

This chapter presents the findings of the study by summarising data gathered
through surveys and interviews. In general, subjects are discussed in the same order
as related questions were asked on the survey. After presenting Table 4.1 and Table 4.2
which summarise survey answers, the chapter continues with Previous Programming
Experience (Section 4.1) and Understanding of the Lesson (Section 4.2). Thereafter,
Difficulties During the Lesson (Section 4.4) and Possibilities of Programming in
Mathematics (Section 4.5) are presented, finally ending in Lesson Effect on Learning
(Section 4.3).

4.1 Previous Programming Experience
Results which are presented in Table 4.1 show that Technology students had much
better previous programming experience than Science students. Table 4.1 shows that
44% of Technology students versus 89% of Science students claimed that they had
not programmed in their leisure time. Survey results showed that 97% of Technology
students versus 17% of Science students (Table 4.1) claimed that they had previous
experience of programming through studying certain programming courses in the
school.

4.1.1 Sufficient Programming Knowledge to Understand
Results from Table 4.1 showed that only 67% of Technology students versus 30% of
Science students considered themselves to have enough knowledge in programming
before the lessons. Consequently, 30% of the Technology students, who had studied a
course in programming at school, thought that they did not have enough programming
knowledge for the lesson. On the other hand, at least 13% of Science students, who
think that they do not have a good previous programming knowledge in the school,
say that they have enough programming knowledge to understand the lesson.

4.1.2 Correlates of Previous Programming Experience
There was a strong positive correlation (r = 0.54, p < 0.0001) between “enough prior
knowledge in programming” and “the code was easy to use and understand”, see

25

4. Results

Figure 4.1. In addition, four moderate positive correlations were noticed between
different categories. There was a moderate positive correlation between “enough
prior knowledge in programming” and “fun to use programming” (r = 0.35, p <
0.0001), “previous programming in school” and “the code was easy to understand”
(r = 0.19, p = 0.011), “programming on leisure time” and “the code was easy to
understand” (r = 0.31, p = 0.0003) and between “programming on leisure time” and
“fun to use programming” (r = 0.28, p = 0.0006).

4.2 Understanding of the Lesson

4.2.1 Code and Mathematics were Easy
Table 4.1 shows that 64% of Technology students versus 43% of Science students
agreed with that the code was easy to use and understand. In addition, 70% of
Technology students versus 75% of Science students (see Table 4.1) agreed that the
mathematical content was easy to follow.

From Figure 4.1 some correlations between high rankings in different statements
were observed. High rating of both the statement “Code was easy to use and
understand” and “Mathematics was easy” have a moderate correlation to “The lesson
increased understanding of integrals” (r = 0.31 and r = 0.27 respectively, both with
p < 0.0001).

The aspect of having to understand both the mathematics and the code is also
something that students had brought up in the interviews:

I understood what it [the code] did and it was good for me that I was
comfortable with it, because that helped me to focus more on the maths
when I understood the code anyway.

4.2.2 Code was Fun
Slightly less than half of Technology students and Science students (48% and 42%
respectively) considered the programming used during the lesson to be fun (see
Table 4.1). Moreover, Figure 4.1 shows moderate correlation (r = 0.46; p < 0.0001)
between “The code was easy to use and understand” and “It was fun to use program-
ming in the class”.

4.2.3 Strengths and Weaknesses of the Lesson Plan
Exactly half of all answers in Lesson 1 and 62% of all answers in Lesson 2 considered
the structure of the lesson to be good. In addition, 9% and 14% of answers in
Lesson 1 and Lesson 2 respectively claimed that the experimentation that the lesson
provided was one of its primary strengths, see Table 4.2.

Regarding weaknesses, 39% of answers in Lesson 1 and 49% of answers in Lesson

26

4. Results

Figure 4.1: Correlations between student ratings on statements about the lesson.
Dark blue represent no correlation, whereas a more intense red colour represents
a stronger positive correlation. A correlation coefficient r > 0 corresponds to a
positive association (increase in x associated with increase in y), r < 0 to a negative
association (increase in x associated with decrease in y), and r = 0 to no (monotone)
association. All tests with p < 0.05 are considered statistically significant, where
the p-value is the probability to obtain a result that is as least as extreme as the
observed outcome given that no association exists.

2 stressed that it would be appropriate to have more time. Furthermore, 14% of
answers in Lesson 1 and 18% in Lesson 2 considered the lesson to pose too little of a
challenge to students (Table 4.2).

4.3 Lesson Effect on Learning

4.3.1 Effect on Understanding of Mathematics
More students in Lesson 1 agreed than disagreed with the statement "the lesson
increased my understanding of integrals" (48% versus 23% and 38% versus 20% for
Technical and Science Schools, respectively). However, a large amount of students
did not gain an increased understanding (Table 4.1). 33% of total answers felt that
they already knew most of the mathematics that was presented in the lesson which

27

4. Results

Figure 4.2: Perceived effect of the lesson on student understanding of integrals
(Lesson 1) or solids of revolution (Lesson 2). The data in this figure is also found in
Table 4.1 where some categories were merged. All tests with p < 0.05 are considered
statistically significant, where the p-value is the probability to obtain a result that is
as least as extreme as the observed outcome given that no difference exists.

was also the primary reason as to why they felt that the lesson did not increase their
understanding (Table 4.2).

The situation in Lesson 2 resembled that of Lesson 1. The proportion of students
who agreed versus disagreed was 44% versus 29% and 42% versus 9% for Technical
and Science Schools respectively. There was a smaller proportion of students who
disagreed in the Science classes (Table 4.1).

Moreover, 8% of students felt that programming itself was a hinder to their under-
standing (Table 4.2). Some students perceived programming as difficult and may
even have had an innate fear or loathing of the subject, which one teacher pointed
out is difficult to treat during a single class:

You can’t really reach students who have a deep-founded fear of program-
ming [in a 70 minutes lesson, who think] “this is hard, I can’t understand
any of it” even though they may very well understand or there is no need
for them to understand and they only have to think about the maths but
their thoughts freeze on “I don’t understand this”.

For Lesson 2 another category of no-answers was identified as “pace too high”. 4%
of answers in this lesson felt that the high pace was a hindrance to increasing their

28

4. Results

understanding of solids of revolution (Table 4.2). However, several interviewed
students independently described the tasks as relatively easy even though they felt
rushed.

52% of students in Lesson 2 named visualisation as the reason for increasing of their
understanding (Table 4.2). This is one of the main differences in relation to Lesson
1, where visualisation was not even identified as a category. The former lesson had
a much larger focus on constructing visual 3D-graphs that aid in understanding
aspects of solids of revolution while the latter had a broader approach, meaning that
this discrepancy was not unexpected.

Of the students that motivated their answer to the statement of having learned
something during Lesson 1, 56% were categorised as Deeper understanding. None
of the students had proved or seen proof of the fundamental theorem of calculus in
class previously although some students had worked with the proof in their spare
time. The categorisation of Deeper understanding mostly contains answers regarding
the proof or its meaning, namely the connection between integrals and derivatives.
Mathematical proofs are not a main part of mathematics until later courses in high
school, and therefore most students found this unfamiliar.

19% of student answers to why the lesson increased their understanding of integrals
in Lesson 1 were categorised as Programming, meaning that they thought that some
direct aspect of programming increased their understanding of integrals (Table 4.2).
Some of these answers named programming in mathematics and its’ uses as a fresh
perspective and something that they had not often or at all encountered before
while some students viewed the introduction of programming into mathematics as a
different means of teaching. One student said:

Not everyone is good at thinking mathematically but if you try another
way of thinking more like that of a computer, step by step, then maybe it
is a bit weird for some people but maybe it is great for others. Education
should not be designed for one type of person.

Other students also concluded that having different ways of teaching something is
good since different people learn best in different ways.

For both lessons, only 6% of students answered that the Lecture or some part of
the given explanations were what increased their understanding of the mathematics
(Table 4.2). This categorisation is the only one which clearly doesn’t involve any
aspect of programming.

4.3.2 Takeaway from the lesson
When answering “What is your takeaway from today’s lesson”, most students (58%
of answers) said that they have learnt something related to integrals or mathematics,
see Table 4.2. There was a difference between lessons - for Lesson 1, 68% of answers

29

4. Results

Figure 4.3: Student perceptions of the uniqueness of the contributions that pro-
gramming had on mathematics understanding. The data in this figure is also found
in Table 4.1 but with some related categories merged. All tests with p < 0.05 are
considered statistically significant, where the p-value is the probability to obtain a
result that is as least as extreme as the observed outcome given that no difference
exists.

named integrals while for Lesson 2, 49% named mathematics. On the other hand,
37% of answers (32% for Lesson 1 and 42% for Lesson 2, see Table 4.2) point out
that they learnt programming or code with them. Some students in Lesson 1 (10%
of answers) emphasised that they had not learnt anything in the lesson. In contrast,
some students in Lesson 2 (20% of answers) said that their main takeaway was the
visualisation.

4.3.3 Programming as a Facilitator of Knowledge
There were 17% of Technology students versus 9% of Science students overall who
thought that they had learned something that would have been more difficult without
programming, see Table 4.1. Statistical significance (p = 0.027) points out that
students gave higher grades on this question in Lesson 2 than in Lesson 1. The
proportion of students who had not learned anything that would be difficult without
programming (disagree) was smaller in the second lesson than in the first (see
Table 4.1). In addition, qualitative analysis of free-text answers shows that the
students have learned visualisation, numerical calculations, concrete representation
and experimentation, see Table 4.2.

In this context, it should be noted that most students did not answer the question that
was asked (“What did you learn that would have been harder without programming?”)

30

4. Results

but instead explained how programming helped them to understand or gain additional
understanding of the concept of integral/solid of revolution. Most students who
answered this question (75% of answers, see Table 4.2), thought that the visualisation
helped them understand better. There were more students in Lesson 2 (solids of
revolution) who thought that visualisation helped them. Comparing the lessons, the
percentages were 83% for Lesson 2 and 64% for Lesson 1, see Table 4.2.

19% of answers to (“What did you learn that would have been harder without program-
ming?”) were defined as experimenting. Those students thought that experimenting
during the lessons created more understanding. Programming gives students the
opportunity to more easily change different values, functions, ranges and see how
that affects the results. In addition, interviewed students said that programming
facilitated work in mathematical subjects, see Figure 4.5. For example, two students
stated that:

Programming works as a tool in mathematics for problem solving, visual-
ising things and understanding why things behave the way they do.

You can solve challenging mathematical problems with algorithms that
you can code.

Some students (30% of all answers) answered that programming can be an effective
tool when applied to executing numerical calculations, see (Table 4.2). These students
have mentioned one of the traditionally most important uses of programming in
mathematical subjects.

Finally, some students (23% of answers in Lesson 1) thought that programming gave
a more concrete representation of the integral concepts. This perspective was not
found in Lesson 2.

Out of all students, 61% disagreed with the statement I learnt something that would
have been harder without programming (Table 4.1). The reasoning of one student
who thought this way is as follows:

The thing is that we had already understood how to calculate the integral
with the help of rectangles. The only thing programming did was to
visualise it even more but we had already seen a visualisation - so if I’m
being completely honest - I don’t quite see what programming did except
maybe make it easier for us to experiment and visualise. But I imagine
that most people - or at least my own opinion is that I already understood
that before the lesson. So for me the programming was not very helpful
in understanding the maths problem, it didn’t contribute a lot.

31

4. Results

Table 4.1: Descriptive statistics of survey results and comparison between groups.
Lesson 1: Riemann sums Lesson 2: Solids of revolution
School A,
Technical

School B,
Science

School A,
Technical

School B,
Science

School
A vs. B

Lesson
1 vs. 2

Total number of students 100 59 100 70
Number of participants 91 (91.0%) 55 (93.2%) 80 (80.0%) 55 (78.6%)
Mathematics course Ma3c Ma3c Ma3c Ma4
I do programming on my leisure
time∗

Never/almost never (<once a month) 45 (49.5%) 51 (92.7%) 30 (37.5%) 47 (85.5%)
Rarely 25 (27.5%) 2 (3.6%) 28 (35.0%) 5 (9.1%) A>B
Often (≥ once a week) 21 (23.1%) 2 (3.6%) 22 (27.5%) 3 (5.5%) p<.0001

I have previous experience of
programming in school∗

Never 0 (0.0%) 12 (21.8%) 0 (0.0%) 23 (41.8%)
Occasionally 2 (2.2%) 33 (60.0%) 3 (3.8%) 23 (41.8%) A>B
Course in programming 89 (97.8%) 10 (18.2%) 77 (96.2%) 9 (16.4%) p<.0001

I had enough prior knowledge in
programming†§

Disagree 17 (18.7%) 26 (47.3%) 8 (10.0%) 28 (50.9%)
Neutral 17 (18.7%) 13 (23.6%) 15 (18.8%) 10 (18.2%) A>B 2>1
Agree 57 (62.6%) 16 (29.1%) 57 (71.2%) 17 (30.9%) p<.0001 p=0.56

The code was easy to use and
understand†§

Disagree 13 (14.3%) 12 (21.8%) 6 (7.5%) 14 (25.5%)
Neutral 23 (25.3%) 21 (38.2%) 20 (25.0%) 16 (29.1%) A>B 2>1
Agree 55 (60.4%) 22 (40.0%) 54 (67.5%) 25 (45.5%) p=0.0002 p=0.14

The mathematical content was
easy to follow†§

Disagree 13 (14.3%) 3 (5.5%) 2 (2.5%) 6 (10.9%)
Neutral 20 (22.0%) 11 (20.0%) 15 (18.8%) 8 (14.5%) B>A 2>1
Agree 58 (63.7%) 41 (74.5%) 63 (78.8%) 41 (74.5%) p=0.74 p=0.060

It was fun to use programming in
class†§

Disagree 18 (19.8%) 19 (34.5%) 16 (20.0%) 14 (25.5%)
Neutral 25 (27.5%) 17 (30.9%) 29 (36.2%) 13 (23.6%) A>B 2>1
Agree 48 (52.7%) 19 (34.5%) 35 (43.8%) 28 (50.9%) p=0.083 p=0.60

The lesson increased my
understanding of integrals†§

Disagree 21 (23.1%) 11 (20.0%) 23 (28.8%) 5 (9.1%)
Neutral 26 (28.6%) 23 (41.8%) 22 (27.5%) 27 (49.1%) A>B 1>2
Agree 44 (48.4%) 21 (38.2%) 35 (43.8%) 23 (41.8%) p=0.58 p=0.95

I learnt something today that
would be difficult without
programming†§

Disagree 57 (62.6%) 41 (74.5%) 44 (55.0%) 29 (52.7%)
Neutral 22 (24.2%) 11 (20.0%) 19 (23.8%) 19 (34.5%) A>B 2>1
Agree 12 (13.2%) 3 (5.5%) 17 (21.2%) 7 (12.7%) p=0.53 p=0.027

Disagree = Strongly disagree or disagree, Neutral = Neither agree nor disagree, Agree = Agree or strongly agree.
All tests with p < 0.05 are considered statistically significant, where the p-value is the probability to obtain a result that is as least as
extreme as the observed outcome given that no difference exists.
∗Comparison between schools were performed using Wilcoxon rank sum test.
†Comparisons between schools were performed using val Elteren test, stratified by programming lesson.
§Comparisons between lessons were performed using val Elteren test, stratified by school.

32

4. Results

4.4 Difficulties of Programming in Mathematics
During interviews with students and teachers some potential difficulties with using
programming in mathematics were uncovered. These are presented in Figure 4.4.
The named potential difficulties were categorised into four main groups: cognitive
load, varying prior knowledge, unclear purpose and additional difficulties. In addition
to the interviews, students also answered what part of the lesson they found the
most difficult in the survey.

Figure 4.4: Potential challenges of working with programming in mathematics
education, identified by analysis of interviews with students and teachers.

4.4.1 Most Difficult Part of the Lesson
The most frequently named difficult part of the lesson was the programming and
code with 63% and 31% of student answers in Lesson 1 and 2 respectively, see
(Table 4.2). Most of the students had only used programming occasionally during
previous courses in mathematics, though there was a large variation between overall
prior programming experience between students. An additional difference between
the lessons was that 14% of students in Lesson 2 explicitly named the syntax as
problematic while students in Lesson 1 found other parts of the programming difficult.

Another difficulty for students was the mathematics involved in the lessons. The
percentage of students who thought that mathematics was the hardest part of the
lesson was relatively similar for both lessons, with 20% and 15% for Lesson 1 and 2
respectively (Table 4.2).

33

4. Results

Table 4.2: Categorisation of free text answers from surveys. Note that some answers
contained elements of multiple categories, meaning that the percentages do not add
up to 100%.

(a) Categorisation of free text answers regarding the survey
that students took after Lesson 1.

The lesson increased my understanding
of integrals N (%)

No: Already knew 38 (33.6%)
No: Easier without programming 8 (7.1%)
Yes: Deeper understanding 63 (55.8%)
Yes: Programming 21 (18.6%)
Yes: Lecture 5 (4.4%)
Total respondents 113

What did you learn that would have been
harder without programming?

Visualisation 25 (64.1%)
Numerical calculations 16 (41.0%)
More concrete representation 9 (23.1%)
Experimentation 8 (20.5%)
Total respondents 39

What did you find most difficult about
today’s lesson?

Programming/code 64 (63.4%)
Mathematics 20 (19.8%)
Instructions 20 (19.8%)
Lack of time 12 (11.9%)
Total respondents 101

What is your takeaway from today’s
lesson?

Integrals 75 (67.6%)
Programming/code 35 (31.5%)
Nothing 11 (9.9%)
Total respondents 111

What was good about the lesson plan?
Structure 55 (50.0%)
Variation 33 (30.0%)
Interactive 29 (26.4%)
Progression 16 (14.5%)
Experimentation 10 (9.1%)
Tempo 7 (6.4%)
Total respondents 110

What can be improved regarding the
lesson plan?

More time 31 (38.8%)
Clearer instructions 20 (25.0%)
Execution 18 (22.5%)
More challenging 11 (13.8%)
Less repetition 8 (10.0%)
Total respondents 80

(b) Categorisation of free text answers from the survey
regarding Lesson 2.

The lesson increased my understanding
of solids of revolution N (%)

No: Already knew 41 (32.8%)
No: Easier without programming 11 (8.8%)
No: Pace too high 5 (4.0%)
Yes: Visualisation 65 (52.0%)
Yes: New representation 24 (19.2%)
Yes: Lecture 9 (7.2%)
Total respondents 125

What did you learn that would have been
harder without programming?

Visualisation 47 (82.5%)
Numerical calculations 13 (22.8%)
Experimentation 10 (17.5%)
Total respondents 57

What did you find most difficult about
today’s lesson?

Programming 39 (31.0%)
Mathematics 19 (15.1%)
Lesson plan 19 (15.1%)
Programming syntax 17 (13.5%)
High pace 13 (10.3%)
Total respondents 126

What is your takeaway from today’s
lesson?

Mathematics 57 (48.7%)
Programming/code 49 (41.9%)
Visualisation 23 (19.7%)
Total respondents 117

What was good about the lesson plan?
Structure 69 (62.2%)
Execution 28 (25.2%)
Interactive 19 (17.1%)
Experimentation 16 (14.4%)
Progression 12 (10.8%)
Total respondents 111

What can be improved regarding the
lesson plan?

More time 44 (49.4%)
Clearer instructions 17 (19.1%)
More challenging maths 16 (18.0%)
Code/programming 13 (14.6%)
Variation 12 (13.5%)
Execution 8 (9.0%)
Lesson goal 4 (4.5%)
Total respondents 89

34

4. Results

Additional named difficulties concerned the planning and execution of the lessons
instead of content knowledge. These were made up of the categories Lack of time
(12% of answers in Lesson 1) and High pace (10% of answers in Lesson 2) along
with unclear Instructions (20% in Lesson 1) and Lesson plan (15% in Lesson 2), see
Table 4.2.

4.4.2 Cognitive Load

Cognitive load refers to the increased mental strain of incorporating more components
into the lesson. Students had to focus on programming in addition to the mathematics
which the lesson was primarily about. One quotation that was representative for
students and teachers regarding the cognitive load was the following:

I think that the [mathematical] concept is a bit difficult to understand
the first time and programming is also a bit difficult. So combining two
difficult things makes it extra difficult. However, I do think it is nourishing
for our development.

4.4.3 Varying Prior Knowledge

Varying prior knowledge refers to the problem of extreme variety in knowledge
between students. For example, in one class experiences ranged from students only
having experience of programming from the first programming course that they have
studied to one student who started programming when he/she was 6 years old and
who was employed part-time as a programmer in high school. This can cause a range
of problems, one of which was illustrated by the following quote from a student:

Many others didn’t quite understand the instructions. Several times you
asked “do you understand?” and I was the only one who answered “yes I
understand” but then my friends asked “what are we supposed to do?”

4.4.4 Unclear Purpose

Another challenge when introducing programming in mathematics education was
the unclear purpose of programming perceived among both students and teachers,
see Figure 4.4. Many students and teachers found the role of programming in
mathematics education unclear. Teachers generally did not test student knowledge of
programming. One reason for this was that questions about programming have not
been included on the National mathematics tests (Nationella proven). One teacher
said:

When the National tests start evaluating programming, then we might see
a change in the mathematics courses.

35

4. Results

4.4.5 Additional Difficulties

The usage of programming in mathematics education has brought with it some
varying difficulties which do not belong to any previously defined categories. One
such difficulty was the different way of working that programming requires compared
to other mathematics teaching - there are often many different ways of arriving at the
correct answer and students must improve their code in iterations and be willing to
try and fail. Additionally, teachers found it difficult to make time for programming
lessons and fit them into the curriculum. The different way of working is highlighted
by one teacher with the following quote:

Programming is much more open in that way, sure you’re supposed to
arrive at an answer but the path there can look completely different and
you have to understand what you are doing in another way.

4.5 Possibilities of Programming in Mathematics

From a thematic analysis of interview summaries, five reasons as two why students
and teachers were positive to programming in mathematics education were identified:
Automation of a process; Tool for problem solving; Focus on mathematics instead of
calculations; Experiment and visualise; and New perspective (Figure 4.5). These can
be further grouped into the possibilities of programming to Deepen understanding
and to Facilitate work.

4.5.1 Deeper Understanding

Programming can deepen student understanding by broadening the possibility to
experiment and visualise, but also by providing a new perspective on the mathematics
that they are working on. With a finished program, it is easy to change certain
parts of the code and explore how that affects the result. This also holds true for
visualisations created with programming. One student said the following:

It may be easy to calculate a volume [of a solid of revolution], but maybe
you don’t really understand why it is the way it is. Actually seeing a
graph, moving it around and testing, that is better.

Student understanding of mathematics may also increase by giving students an
alternative perspective on the mathematics in question. It could be components such
as algorithmic thinking, seeing relations to other subjects or the different way of seeing
mathematical concepts that naturally accompanies the translation of mathematics
to code. A student quoted that:

I would say that programming is useful to gain a new perspective on
things, to increase understanding.

36

4. Results

Figure 4.5: Possible benefits of working with programming in mathematics educa-
tion, identified by analysis of interviews with students and teachers.

4.5.2 Facilitation of Mathematical Work
Programming can also facilitate mathematical work by serving as a Tool for problem
solving, Automating processes or by shifting Focus to the mathematics instead of
calculations. Programming is adaptable to different problems and some can only be
solved with numerical methods, making them very time-consuming to solve without
programming. A teacher expressed the following:

[Programming] works great for problem solving, you can solve problems
in different ways by changing a small part of the code. That increases
understanding and students have the opportunity to use while- and for-
loops which is impossible when working with pen and paper.

Programming can also help students by not spending unnecessary time on calculations.
One student phrased it as:

Most of the time, programming helps you skip the long, boring steps that
you already know since five years back and then it becomes more about
learning new things and not repeating old knowledge over and over again.

37

4. Results

38

5
Discussion

In this chapter, results from the study are discussed in relation to the three central
research questions presented in Section 1.3. The chapter is thereby divided into
three sections regarding Previous Programming Experience (Section 5.1), Difficulties
in Using Programming (Section 5.2) and finally Possibilities in Using Programming
(Section 5.3).

5.1 Previous Programming Experience
Results revealed that Technology students had much more experience in programming,
both from school and their own leisure time. Furthermore, one of the main factors
for a positive outcome of the lesson was that students found the code easy to use and
understand. Previous experience both in school and during leisure time correlated
with finding programming engaging and easy to use in the lesson, but was not found
to be a factor for increasing mathematical understanding.

More Technology students than Science students agreed with the statement the
code was easy to use and understand (64% vs 43%). The big difference between
both disciplines can be related to that the Technology students had studied at least
one programming course in the school where they may have been working with
similar codes. However, most Science students were unaccustomed to working with
programming.

A portion of Technology students who studied a programming course did not consider
themselves to have enough prior programming experience to understand the lesson. In
contrast, some Science students who never studied a programming course considered
themselves to have enough experience. This may be because Science students had
more knowledge about the mathematics involved. They were completely done with
the mathematics taught using programming while Technology students were in the
middle of working with this subject. Moreover, it may be that some Technology
students were unaccustomed to how programming was used during the lesson because
they had studied different programming languages. They may have been unfamiliar
with the Python syntax. Furthermore, differences between different lessons could
have some effects. An explanation as to why Science students who had not attended

39

5. Discussion

a course in programming considered themselves to have enough experience is that
lessons were designed to teach mathematics and not programming. Therefore,
students did not have to be good programmers, only to understand the code and
manipulate it. In any case, some programming knowledge was needed to keep up
and understand the lesson.

This result indicates that previous programming experience plays a role in mathemat-
ics education when programming is involved, but not a decisive role in the lessons
that were designed for this project.

5.2 Difficulties in Using Programming
The main difficulties of using programming in mathematics education that were
observed in this study were Cognitive load, Varying prior programming knowledge
between students and teachers, Unclear purpose of why programming ought to be
used in mathematics education, and a number of less specific Additional difficulties.

A small part of students believed that the use of programming was the reason that
the lesson did not increase their understanding of integrals. One potential reason for
this could be that many were uncomfortable in working with programming and that
uncertainty accompanies any work involving programming. The introduction of a
subject where they lack knowledge and experience into familiar mathematics creates
uncertainty that affects their perceived understanding of integrals overall.

The lesson component which the largest share of students found most difficult
was the programming and code involved. Significantly more students found the
programming/code hard for Lesson 1 than Lesson 2. This is likely because of the
different natures of the lessons - in Lesson 1, students were presented with the entire
complexity of the code. On the contrary, Lesson 2 hid a lot of its complexity inside
the help-functions that were created for students. This instead means that students
found it harder to understand how the commands worked and how the syntax was
formatted, but found the programming in itself easier.

The primary reason as to why students found programming to be hard seemed to be
that they lacked experience. Especially the Science students were lacking experience
since they only programmed during few and far between mathematics lessons, while
Technology students may have been unused to the mathematical context and Python
as a programming language.

Slightly more than half of students disagreed with the statement “I learnt something
that would have been harder without programming”. Bearing in mind that program-
ming was used as a means to teach mathematics rather than in the traditionally
supported ways of as a tool for solving problems or an end in itself, this is perhaps
not very surprising. An important distinction is that this is not the same as students
finding programming useless - these students simply felt that they did not learn
anything new that “ordinary” teaching would be worse suited towards teaching.

40

5. Discussion

Next, the four identified categories of difficulties Cognitive load, Varying prior
knowledge, Unclear purpose and Additional difficulties are discussed in detail.

5.2.1 Cognitive Load
There are numerous reasons as to why the cognitive load increases when adding
programming to the lesson. Students need to expend energy towards understanding
code in addition to the effort already spent on trying to understand the mathe-
matics. In contrast to the tools that students usually employ when working with
mathematics i.e. pen and paper, programming requires less intuitive tools in the
form of an integrated development environment (IDE) where they can execute code.
Additionally, students need to have a basic understanding of the specific syntax
that the programming language in question utilises, even if their only task is to
manipulate premade code. Any element that students do not fully understand may
cause uncertainty, frustration and stress. Programming can contain quirks that
have to do with how a computer works that are quite complex to explain to new
programmers, such as floating point rounding errors. Most of the time, it is desirable
that students try to understand as much of the lesson material as possible since this
creates a deeper understanding of the material, but it can become overwhelming and
lessen focus on the mathematics.

In addition, solving a problem with programming requires a deep understanding of
problem. Otherwise the student will not be able to construct a program to obtain
the solution. At the same time, when you create a program for solving a problem,
this increases your understanding of it and gives more familiarity of all its aspects.

Another perspective was expressed by some few students in Lesson 2 - that the pace
of the lesson was too high. This lesson had an ambitious amount of material to
cover which resulted in a relatively high pace and little time to discuss and reflect on
questions. However, most interviewed students agree that the tasks were relatively
easy. This should be a problem that can be fixed by adjusting the lesson plan as it
is not necessarily tied to programming. Even so, this problem may have a relation
to programming, since the amount of things that the student has to think about
increases naturally when programming is integrated. Thus, the amount of material
may increase, leading to an increased cognitive load.

A feature of using programming, or digital graphing tools in general is that graphs
or visualisations are generally fast to create and open to experimentation. In some
cases, students may choose functions or problems which do not match the situations
that the teacher has planned to address and possibly fall outside the purpose of the
lesson. This may confuse students that like to experiment, since the visualisations
can become needlessly complex. When students were experimenting with different
functions for solids of revolution, this became especially apparent. During the
visualisation of the solid that is created between two rotating functions defined on
an interval, students sometimes tested functions that intersected on the interval
(see Figure 5.1). The figure thus created is not something that might be seen in

41

5. Discussion

Figure 5.1: 3D illustration of two intersecting solids of revolution that students
may encounter when experimenting with the code. Although mathematically feasible
this kind of solid is not possible to observe in the physical world, which may cause
confusion among students.

the physical world but more abstract and confusing because the surface plot of the
rotating functions cross each other.

5.2.2 Varying Prior Knowledge
Another difficulty in utilising programming in mathematics is the large variation
in prior knowledge between students or teachers, or both. Concerning students,
programming has a steep initial learning curve which discourages students who are
just starting to learn programming. Infrequent usage makes it difficult to overcome
this threshold, which is unfortunate considering how infrequently programming is
oftentimes used in mathematics education. Some of the reasons for this high entry
threshold are: getting familiar with the integrated development environment (IDE),
knowing the basics of the programming syntax, having to learn the functions and
methods that programming offers, as well as having to think in a more algorithmic
way.

Several students may have a fear of or aversion to programming, perhaps founded
in their uncertainty in the subject or in stereotypes regarding programming or
programmers. These negative attitudes may be difficult to overcome, especially
during single programming lessons.

Some challenges regarding prior knowledge that affect students and teachers alike
are: that lessons are few and far between; that some teachers lack programming

42

5. Discussion

skills and experience; that programming is taught relatively late in their education;
difficulties in finding a balance between strong and weak students; and that many
students may need help at the same time.

Infrequent and far between lessons do not allow teachers to assume that students
have retained any programming experience since the last time they used program-
ming. During every programming lesson in mathematics, the teacher has to spend
time repeating basics that students likely would have learned if they used their
programming knowledge more frequently than once in every mathematics course,
which leaves less time for the material that is the actual focus for the lesson. This
long time between lessons also means that teachers lack opportunities to practice
and develop their programming skills and, like students, have to spend extra time
refreshing their knowledge. This compounds the problem of some teachers lacking
skills and experience in programming.

Aside from the apparent problem of not being able to teach as effectively that
come with teachers lacking experience in programming, there are multiple potential
problems that accompany this. Preparing for a lesson with programming will likely
take much longer compared to preparing for a traditional lesson, swallowing up
time from the teacher’s already cramped schedule. Even if teachers have sufficient
knowledge to teach programming, it is hard to create engaging lessons in programming
where the utility of programming is obvious without extensive knowledge on the
subject.

As previously mentioned, programming is a relatively new subject for many students
since they lack previous experience and they start learning about it relatively late in
their education. Programming is nowadays implemented as a part of mathematics
in Sweden from early grades but since the change is relatively recent, current high
school students have at most touched on programming in their later years of middle
school. They belong to a generation caught in the middle of this sweeping change to
the maths curriculum and therefore have less programming experience than future
high school students.

During a lesson where programming is utilised in conjunction with mathematics,
teachers have a challenging task to try to find a balance in the lesson such that
experienced students are challenged while inexperienced students are not left behind.
Since students have such differing amounts of prior knowledge - from essentially no
experience to having significantly more experience than the teacher - this is very
challenging.

Moreover, interviewed students and teachers pointed out that varying prior program-
ming knowledge among students as one of main difficulties to using programming in
mathematics education. Because of this, students in the classroom did the tasks at
different paces. Students with a lot of previous programming experience felt that
the tasks were easy and the lesson became boring, while those who lack experience
felt that the tasks were very difficult and they needed more time to do small tasks.

43

5. Discussion

Therefore, there are different perspectives, for instance some students say that the
lessons were run at a low pace while others claim that the lessons were run at a
very high pace. Programming experience plays a role in how much time it takes for
students to complete the tasks.

5.2.3 Unclear Purpose
One of the most important results which was noted during interviews is the unclear
purpose of programming perceived among both students and teachers. This difficulty
is related both to lessons in this project and in general when programming is used in
mathematics education. Many students and teachers wonder why programming is
needed at all in mathematics education. This may be because most students and
many teachers are unfamiliar with the kind of mathematics that require or is heavily
simplified with programming.

This result coincides with previous research conducted by Jahnke (2020), where the
purpose of programming was found to be unclear to teachers. She argues that the
National Agency for Education must clarify the purpose by coming up with a clear
curriculum, where students and teachers see how programming is used in mathematics
and how it plays an important role to increase understanding mathematical subjects.

Another problem is that students’ programming knowledge is not evaluated or tested.
For students with a goal of simply passing the course or getting high grades, there is
no motivation to learn any programming. Only students that either find it interesting
or perceive a usage of programming in their future education or work are likely to
expend energy trying to remember what is being taught.

5.2.4 Additional Difficulties
There were other difficulties that, while related to many of those previously discussed,
did not fit under their overarching categories. These difficulties were: the difficulty for
teachers to find time for programming, and the new way of working with mathematics
were it is more important for students to dare to test their answers and work with
trial and error.

One difficulty mentioned in the context of varying prior knowledge was that because
many teachers lack experience of programming, it takes more time and effort for
them to plan lessons that involve programming. Similarly, teachers explained that it
was challenging to make time for programming in the already packed curriculum, as
well as programming not being evaluated on the national tests. Thus, for teachers
inexperienced with code, programming elements are arduous to plan and steal precious
time from topics perceived as more important, leaving few reasons to integrate more
programming elements than necessary.

Although programming has many similarities with mathematics, it is also very
different in some aspects. Where mathematics is for students mostly about right

44

5. Discussion

and wrong, black and white, programming requires students to try solutions that
they are uncertain about, oftentimes initially being wrong but improving their code
in iterations. Many students dislike being incorrect, which can lead to them having
an idea on how to solve a problem but not wanting to test it. This is likely most
prevalent among students who perform well in other mathematics and often answer
teacher questions correctly but are inexperienced with programming.

5.3 Possibilities in Using Programming

Only 44% of the students overall found that the lesson increased their understanding
of the mathematical content involved. This result may be partly explained by the
placement of the lesson in relation to other parts of the syllabus - the Science
students in particular had already completed the topics on integrals of the course
curriculum while the Technology students were relatively close to the end of the
integral component, meaning that much of the material consisted of repetition.

A small number of students (6%) claimed that the Lecture was what increased their
understanding. This categorisation is the only one which clearly doesn’t involve any
aspect of programming, meaning that a traditional lesson could do equally well to
increase the understanding of integrals among students’ in this category. In this
context, it should be noted that lecture and lesson are different things. Lecture refers
to the teachers’ explanations, which is synonymous with Explain in the 5E-model.

There was a moderate correlation between students’ perceived understanding and
them finding the mathematical content easy to follow, or finding the code easy to use.
This implies that to learn something from a lesson that combines both programming
and mathematics, it is beneficial for students to find both the code easy and the
mathematical content easy to follow. If students find the programming difficult, it
stands to reason that it would be challenging for them to learn the mathematics
content because of the focus that programming demands.

During the interviews, many students considered it good that the code and mathe-
matics were mostly easy to understand. This is also the perhaps strongest argument
against using programming to teach mathematical concepts - the more complex
the concept becomes, the less students may understand when it is taught using
programming as a method of teaching.

Most students’ takeaway from the lesson were related to mathematics, while a smaller
portion of students named programming. The fact that most students focused on
the mathematics coincides well with the purpose of the lesson - using programming
to learn about integrals and mathematics. It may be that the students who instead
focused on programming thought that the purpose of the lesson was to become a
better programmer, or to learn how programming can be used in mathematics, thus
leading to their focus on programming.

45

5. Discussion

5.3.1 New Perspective
As presented in Section 4.5 and Figure 4.5, some students appear to think of pro-
gramming as an alternative representation or a different way of teaching. This stands
in stark contrast to the nature of previous mathematics education, where students
mostly solve problems with algebraic solutions and where numerical solutions are not
needed. Despite this, many students seem to have developed a broader perspective of
integrals and its applications during both lessons due to the programming involved.
During Lesson 1, these advantages were made explicit when students first had to
calculate the Riemann sum of six rectangles by hand. Later, they had to manipulate
code that did the same thing automatically but could also increase the accuracy by
increasing the number of rectangles for the given interval, which was much faster
than attempting the same task by hand. Similarly, the advantages of programming
were made clear during the second lesson when students had to visualise solids of
revolution, which is very difficult to do without digital tools.

5.3.2 Visualisation and Experimentation
As mentioned in Section 4.5, students appear to have answered the question “How
did programming help you understand?” instead of the actual question “What did
you learn that would have been harder without programming?”. In support of this
claim are the identified categories for the answers to the question; visualisation,
numerical calculations, experimentation and concrete representation. These are not
things you learn during a single lesson but instead ways in which programming can
support learning.

Programming helped some students understand the material through being a good
tool for visualisation and experimentation. These two categories often go hand in
hand with experimentation of code effecting a computer generated visualisation,
though they can also individually strengthen learning.

A slightly larger share of students named visualisation as the reason for their increased
understanding in Lesson 2 than in Lesson 1. This is likely because of the difference
in nature between the lessons - in Lesson 2 the visualisation of solids of revolution
was the focus for the lesson, while Lesson 1 utilised visualisations that students were
more familiar with (such as graphs in 2D) and that are easier to generate. Another
reason for this is that Lesson 2 focused on some of the first 3-dimensional graphs
that students have worked with, further increasing the importance of the graphical
representation. Through visualisation, students can see the matter from different
points of view, something which is difficult to do with traditional tools in the form
of pen and paper. Barring problems with the program, a digital visualisation is
exact and easily experimented upon, providing students with many opportunities for
variation in non-critical aspects in the vein of Variation theory (Ling Lo, 2012).

Thus far, visualisations generated through programming have only been discussed
as opposed to hand-drawn graphs but not in relation to visualisation programs
such as GeoGebra that also generate a digital visualisation. Programs such as these

46

5. Discussion

are often great for quickly generating graphs, although it is more difficult find out
how to generate less common visualisations such as Riemann sums or solids of
revolution. The ease of generating these visualisations is obviously a strength, but
it can also be a detriment because students may not stop to think about what the
visualisation represents. Programming, on the other hand, forces students slow down
and understand what they are changing before they are able to change it. This can
help them understand the problem on a deeper level while the increased complexity
may also pose a barrier to weaker students’ understanding.

5.3.3 Tool for Problem Solving
Many students and teachers considered programming to be a great tool for problem
solving, with numerical methods being the main benefit of using programming as
opposed to other methods of problem solving. Students rarely encountered problems
that had to be solved numerically in their earlier education which may undercut
the perceived importance of these methods. They may not have realised how many
problems can be solved with numerical methods.

Programming is a very versatile tool with multiple possible paths for solving a single
problem, which is nearly a requirement for tools to be useful for problem solving.
For it to be useful, the student has to be somewhat familiar with programming.
There is a level of freedom in choosing data structures and algorithms to complete
the task at hand, but the largest amount of freedom may come from the translation
of mathematics to code. This may also be one of the capital difficulties for new
programmers since it requires extensive knowledge about both programming and the
mathematics involved. However, if students manage to do this successfully, they can
gain a deeper understanding of the problem and its solution.

It should be noted that neither lessons consciously attempted to include problem
solving, since the focus for both lessons was increasing student understanding of
mathematical concepts using programming as a means. Utilising programming for
problem solving is generally more common and also how the National Agency for
Education in Sweden espouses using it (Skolverket, 2022). Using programming as
a tool for problem solving is a possibility that primarily teachers but also students
have expressed during interviews.

5.3.4 Automation and Focus on Mathematics
Aside from facilitating mathematical work through being a suitable tool for prob-
lem solving, programming can help students Focus on mathematics and Automate
processes.

Since a coded program executes all calculations for the user, less time is spent by
the student on tedious routine calculations that they have memorised and performed
dozens of times before. Instead, the student can spend time and energy on more
worthwhile elements that better improve learning. Accompanying this benefit is of

47

5. Discussion

course the initial difficulty of creating the program that executes these calculations.
Even so, according to the results of this thesis, students increase their mathematical
understanding by attempting to program the problem unless they get stuck on a
problem having to do purely with syntax or the code.

Similarly, programming can help automate processes. Constructing a program
to automatically do something with a calculation is exactly what makes loops in
programming so useful. Moreover, repeated and tedious calculations with multiple
steps become trivial when a program has been constructed to automatically handle
these intermediate steps.

5.4 Limitations and Future Research
Technology students had already started with the integral concept and knew many of
the components of the lesson, while the Science students had completed the subject
of integrals and solids of revolution. This is one of the main limitations which affects
the work in this project. One thing that would be interesting to test is how well
programming works to teach completely unfamiliar mathematics to students. In this
thesis, it was difficult to find such a situation.

Moreover, another limitation in this study is the focus on the results of teaching
only two programming lessons in integral subjects. It would be highly valuable to
see the effects of programming when using it to teach the entire chapter on integrals.
Another limitation is the lack of control group. Results of teaching integrals in the
traditional way should be compared with teaching integrals using programming.

Finally, future research should investigate the affects of programming when it is
a part of the course - tested and not only worked with on special occasions. New
teaching materials seem to include slightly more material on programming than
older versions, but most mathematics teachers leave out those assignments. Future
research should further explore why many teachers skip programming in mathematics
courses.

48

6
Conclusion

In this project, we have designed and evaluated two lessons to investigate the potential
and use of programming in high-school mathematics education. Eleven lessons were
held and data gathered in the form of survey responses along with student- and
teacher interviews.

In this study, we found that programming can be a valuable medium for mathematics
education in many different ways. It can provide a deeper understanding of integrals
through experimentation and visualisation, but also by providing new perspectives.
Moreover, programming facilitates working with mathematics. It is a suitable tool
for problem solving and an ideal way to realise long and complex calculations. Pro-
gramming can automate an enormous amount of repeated mathematical operations.
Lastly, some students found it engaging to utilise programming during the created
lessons.

Only a small part of students felt that the lessons did not increase their understanding
of integrals. However, most students also felt that traditional lessons could teach the
material at least as well as programming could. Only a small proportion of students
thought that they learned something that would have been more difficult without
programming.

The challenges of introducing programming in mathematics education can be sum-
marised as an increased cognitive load, an unclear purpose and varying prior knowl-
edge of students and teachers. However, the investigated study population had a
good grasp of the mathematics involved. Therefore, additional research is required
on the effectiveness of programming as a means for teaching when students are
unfamiliar with the mathematics content of the lesson.

Previous programming experience plays an important role in making students feel
that coding is easy and programming is fun to use in mathematics education. If
students find the code easy to understand, that helps to increase their understanding
of the mathematical content. In addition, a general interest and prior knowledge in
programming may show some positive affects on students regarding programming as
having a unique benefit when used in mathematics education.

49

6. Conclusion

In contemporary mathematics education in Sweden, programming is more of an
afterthought than a well-integrated component. This is problematic because many
of the uncovered difficulties of using programming in mathematics stem from its
infrequent usage. These difficulties can likely be overcome through motivating
teachers to more frequently include programming in mathematics education. This
may in turn be accomplished by evaluating students’ programming knowledge on
the National tests and clarifying its purpose in mathematics education. Teachers
will also need more time or space in the curriculum in order to implement more
programming in mathematics education.

50

Bibliography

Agresti, A. (2003). Categorical data analysis. John Wiley & Sons.
Artusi, R., Verderio, P., & Marubini, E. (2002). Bravais-pearson and spearman

correlation coefficients: Meaning, test of hypothesis and confidence interval.
The International journal of biological markers, 17 (2), 148–151.

Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching:
What makes it special? Journal of Teacher Education, 59 (5), 389–407.

Bandura, A. (1969). Social-learning theory of identificatory processes. Handbook of
socialization theory and research, 213–262.

Bråting, K., Kilhamn, C., & Rolandsson, L. (2020). Integrating programming in
swedish school mathematics: Description of a research project. MADIF12: the
twelfth research seminar of the Swedish Society for Research in Mathematics
Education, 14-15 Jan 2020, Linnaeus University, Växjö, Sweden.

Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Carlson Powell, J., West-
brook, A., & Landes, N. (2006). The BSCS 5E Instructional Model: Origins
and Effectiveness. Colorado Springs, Colorado, USA, BSCS. http://fremonths.
org/ourpages/auto/2006/9/7/1157653040572/bscs5efullreport2006.pdf
(accessed: 20.5.2022)

Chen, X., & Liu, W. (2022). The value of python programming in general education
and comprehensive quality improvement of medical students based on a
retrospective cohort study. Journal of Healthcare Engineering, 2022.

Corrégé, J.-B., & Michinov, N. (2021). Group size and peer learning: Peer discussions
in different group size influence learning in a biology exercise performed on a
tablet with stylus. Frontiers in Education, 6, 733663.

Eckert, A., & Hjelte, A. (2021). Positioning of programming in mathematics classrooms–
a literature review of evidence based didactical configurations. Sustainable
mathematics education in a digitalized world, 193.

Esaiasson, P., Gilljam, M., Oscarsson, H., Towns, A. E., & Wängnerud, L. (2017).
Metodpraktikan : Konsten att studera samhälle, individ och marknad. Wolters
Kluwer.

European Union. (2006). L394 Recommendation of the European Parliament and of
the Council of 18 December 2006 on key competences for lifelong learning.
Official Journal of the European Union, 49.

Felder, R. M., & Brent, R. (2016). Teaching and learning stem: A practical guide.
John Wiley & Sons.

51

http://fremonths.org/ourpages/auto/2006/9/7/1157653040572/bscs5efullreport2006.pdf
http://fremonths.org/ourpages/auto/2006/9/7/1157653040572/bscs5efullreport2006.pdf

Bibliography

Forsström, S. E., & Kaufmann, O. T. (2018). A literature review exploring the use of
programming in mathematics education. International Journal of Learning,
Teaching and Educational Research 17(12), 17 (12), 18–32.

Gillies, R., & Ashman, A. (2003). Cooperative learning. Taylor & Francis.
Google Colab. (2022). Welcome to Colab! https://colab.research.google.com/?utm_

source=scs-index (accessed: 19.5.2022)
Helenius, O., Misfeldt, M., & Rolandsson, L. (2018). Om programmering i matem-

atikundervisningen. https://larportalen.skolverket.se/LarportalenAPI/api-
v2 / document / path / larportalen /material / inriktningar / 1 - matematik /
Gymnasieskola / 448_matematikundervisningmeddigitalaverktygII _ GY /
del_01/Material/Flik/Del_01_MomentA/Artiklar/MA2_Gy_01A_
01_omprogrammering.docx. (accessed: 28.4.2022)

Hellmark Knutsson, H., & Nilsson, F. (2015). Uppdrag att föreslå nationella it-
strategier för skolväsendet. Regeringsbeslut 1, 2.

Hothorn, T., Winell, H., Hornik, K., van de Wiel, M. A., & Zeileis, A. (2021). Package
’coin’. https://cran.r-project.org/web/packages/coin/coin.pdf (accessed:
20.5.2022)

Jahnke, A. (2020). Programmering i skolan: Vad, hur, när och varför?: Slutrapport
från fou-programmet programmering i ämnesundervisningen. IFOUS.

Kim, S. (2015). Package ’ppcor’. https://cran.r-project.org/web/packages/ppcor/
ppcor.pdf (accessed: 20.5.2022)

Lärteam matematik, NTI Johanneberg. (2020). Dokumentation av programmering i
matematik NTI Johanneberg. Available on request to: kristina.nilsson@ga.ntig.se.

Ling Lo, M. (2012). Variation Theory and the Improvement of Teaching and Learning.
Ineko AB.

Merrill, M. D. (2002). First principles of instruction. Educational technology research
and development, 50 (3), 43–59.

Meyers, C., & Jones, T. B. (1993). Promoting Active Learning: Strategies for the
College Classroom. Jossey-Bass.

Namdar, B., & Kucuk, M. (2018). Preservice science teachers’ practices of critiquing
and revising 5E lesson plans. Journal of Science Teacher Education, 29 (6),
468–484.

Phillips, D., & Soltis, J. F. (2015). Perspectives on learning. Teachers College Press.
Plotly. (2022). Python Figure Reference: Single-Page. https://plotly.com/python/

reference/ (accessed: 19.5.2022)
Regeringen. (2010). 5§ skollagen 2010:800.
Skolverket. (2022). Gymnasieskolan: Ämne - Matematik. https://www.skolverket.se/

undervisning/gymnasieskolan/laroplan-program-och-amnen-i-gymnasieskolan/
gymnasieprogrammen/amne?url=- 996270488%5C%2Fsyllabuscw%5C%
2Fjsp%5C%2Fsubject . htm%5C%3FsubjectCode%5C%3DMAT%5C%
26tos%5C%3Dgy&sv.url=12.5dfee44715d35a5cdfa92a3#anchor2 (accessed:
13.5.2022)

Smith, M. K., Wood, W. B., Adams, W. K., Wieman, C., Knight, J. K., Guild, N.,
& Su, T. T. (2009). Why peer discussion improves student performance on
in-class concept questions. Science, 323 (5910), 122–124.

52

https://colab.research.google.com/?utm_source=scs-index
https://colab.research.google.com/?utm_source=scs-index
https://larportalen.skolverket.se/LarportalenAPI/api-v2/document/path/larportalen/material/inriktningar/1-matematik/Gymnasieskola/448_matematikundervisningmeddigitalaverktygII_GY/del_01/Material/Flik/Del_01_MomentA/Artiklar/MA2_Gy_01A_01_omprogrammering.docx
https://larportalen.skolverket.se/LarportalenAPI/api-v2/document/path/larportalen/material/inriktningar/1-matematik/Gymnasieskola/448_matematikundervisningmeddigitalaverktygII_GY/del_01/Material/Flik/Del_01_MomentA/Artiklar/MA2_Gy_01A_01_omprogrammering.docx
https://larportalen.skolverket.se/LarportalenAPI/api-v2/document/path/larportalen/material/inriktningar/1-matematik/Gymnasieskola/448_matematikundervisningmeddigitalaverktygII_GY/del_01/Material/Flik/Del_01_MomentA/Artiklar/MA2_Gy_01A_01_omprogrammering.docx
https://larportalen.skolverket.se/LarportalenAPI/api-v2/document/path/larportalen/material/inriktningar/1-matematik/Gymnasieskola/448_matematikundervisningmeddigitalaverktygII_GY/del_01/Material/Flik/Del_01_MomentA/Artiklar/MA2_Gy_01A_01_omprogrammering.docx
https://larportalen.skolverket.se/LarportalenAPI/api-v2/document/path/larportalen/material/inriktningar/1-matematik/Gymnasieskola/448_matematikundervisningmeddigitalaverktygII_GY/del_01/Material/Flik/Del_01_MomentA/Artiklar/MA2_Gy_01A_01_omprogrammering.docx
https://cran.r-project.org/web/packages/coin/coin.pdf
https://cran.r-project.org/web/packages/ppcor/ppcor.pdf
https://cran.r-project.org/web/packages/ppcor/ppcor.pdf
https://plotly.com/python/reference/
https://plotly.com/python/reference/
https://www.skolverket.se/undervisning/gymnasieskolan/laroplan-program-och-amnen-i-gymnasieskolan/gymnasieprogrammen/amne?url=-996270488%5C%2Fsyllabuscw%5C%2Fjsp%5C%2Fsubject.htm%5C%3FsubjectCode%5C%3DMAT%5C%26tos%5C%3Dgy&sv.url=12.5dfee44715d35a5cdfa92a3#anchor2
https://www.skolverket.se/undervisning/gymnasieskolan/laroplan-program-och-amnen-i-gymnasieskolan/gymnasieprogrammen/amne?url=-996270488%5C%2Fsyllabuscw%5C%2Fjsp%5C%2Fsubject.htm%5C%3FsubjectCode%5C%3DMAT%5C%26tos%5C%3Dgy&sv.url=12.5dfee44715d35a5cdfa92a3#anchor2
https://www.skolverket.se/undervisning/gymnasieskolan/laroplan-program-och-amnen-i-gymnasieskolan/gymnasieprogrammen/amne?url=-996270488%5C%2Fsyllabuscw%5C%2Fjsp%5C%2Fsubject.htm%5C%3FsubjectCode%5C%3DMAT%5C%26tos%5C%3Dgy&sv.url=12.5dfee44715d35a5cdfa92a3#anchor2
https://www.skolverket.se/undervisning/gymnasieskolan/laroplan-program-och-amnen-i-gymnasieskolan/gymnasieprogrammen/amne?url=-996270488%5C%2Fsyllabuscw%5C%2Fjsp%5C%2Fsubject.htm%5C%3FsubjectCode%5C%3DMAT%5C%26tos%5C%3Dgy&sv.url=12.5dfee44715d35a5cdfa92a3#anchor2
https://www.skolverket.se/undervisning/gymnasieskolan/laroplan-program-och-amnen-i-gymnasieskolan/gymnasieprogrammen/amne?url=-996270488%5C%2Fsyllabuscw%5C%2Fjsp%5C%2Fsubject.htm%5C%3FsubjectCode%5C%3DMAT%5C%26tos%5C%3Dgy&sv.url=12.5dfee44715d35a5cdfa92a3#anchor2

Bibliography

Stigberg, H., & Stigberg, S. (2020). Teaching programming and mathematics in
practice: A case study from a swedish primary school. Policy Futures in
Education, 18 (4), 483–496.

Tanner, K. D. (2010). Order matters: using the 5E model to align teaching with how
people learn. CBE—Life Sciences Education, 9 (3), 159–164.

Tock, K. (2019). Google CoLaboratory as a platform for Python coding with students.
Robotic Telescopes, Student Research and Education Proceedings, 2 (1).

Van Rossum, G., & Drake, F. L. (2009). Python 3 reference manual. CreateSpace.
Venebles, W. N., & Smith, D. M. (2022). An Introduction to R. https://cran.r-

project.org/doc/manuals/r-release/R-intro.pdf. (accessed: 20.5.2022)
Wiberg, E. (2020). Försöksverksamhet med samverkan kring praktiknära forskning

(ULF), delredovisning 2020. https://www.ulfavtal.se/digitalAssets/709/c_
709236-l_3-k_delredovisning-ulf-2020-gu.pdf. (accessed: 9.5.2022).

Wild, C. (1997). The Wilcoxon Rank-Sum Test. https://www.stat.auckland.ac.nz/
~wild/ChanceEnc/Ch10.wilcoxon.pdf (accessed: 20.5.2022)

Wing, J. M. (2014). Computational thinking benefits society. 40th anniversary blog
of social issues in computing, 2014, 26.

53

https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf
https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf
https://www.ulfavtal.se/digitalAssets/709/c_709236-l_3-k_delredovisning-ulf-2020-gu.pdf
https://www.ulfavtal.se/digitalAssets/709/c_709236-l_3-k_delredovisning-ulf-2020-gu.pdf
https://www.stat.auckland.ac.nz/~wild/ChanceEnc/Ch10.wilcoxon.pdf
https://www.stat.auckland.ac.nz/~wild/ChanceEnc/Ch10.wilcoxon.pdf

Bibliography

54

A
Student Survey

I

A. Student Survey

VIII

B
Interview Questions for Students

I. How have you programmed before?

• How much have you programmed before?

– How much have you programmed on your leisure time versus in school?

– How long have you been programming?

– When did you start programming?

– Have you used Python or a similar programming language before?

• What have you used programming for?

• Have you used programming in mathematics before? How?

• What are the similarities and differences between how programming was used
during the lesson compared to how you are used to using it?

II. What do you think of today’s lesson?

• How difficult was the mathematical content?

• How much of the mathematical content did you recognise before? What did
you study through the lessons?

• How difficult or easy was the code to understand? Did you feel that you had
sufficient programming skills before the lesson?

• Were the programming tasks reasonably challenging?

• Was the information clear?

III. Did the lesson increase your understanding of the integral concept /

IX

B. Interview Questions for Students

solids of revolution?

• How did the programming contribute to your understanding of the integral
concept / solids of revolution?

IV. Do you think that programming and mathematics work well together?
How?

• How do you think that programming should be used in mathematics teaching?
(Can you mention different ways: for teaching about concepts, as a tool for
problem solving, for modeling the course of events, for different calculations,
for numerical analysis, etc.)

• How useful is programming compared to other digital tools?

X

C
Interview Questions for Teachers

I. What are your overall impression on the lesson?

• What do you think about the lesson plan?

• What do you think about the lesson realisation?

• Which things worked well and which worked less well?

II. How did you experience the classroom climate?

• How well do you think the students understood the lesson?

• How interested were the students?

• Did you experience any difference between different groups of students? If so,
which groups and why?

• Did you experience any difference between students with different programming
knowledge concerned understanding and interest in mathematics? Have you
experienced this before when you work with programming?

III. Do you find that programming helps students understand mathemat-
ics better?

• How well do you think the lesson plan was suitable to teach the integral concept
/ volume of revolution?

• In what way did the programming affect the students’ understanding of the
integral concept / volume of revolution during today’s lesson?

• What mathematics skills do you think programming can help develop?

IV. Do you often use programming in mathematics teaching at school?
How often?

XI

C. Interview Questions for Teachers

• What programming languages have you used in your teaching?

• In what way do you use programming in mathematics teaching?

– Do you use programming as a tool for problem solving?

– Do you use programming as a means of teaching concepts?

– What differences can arise when programming is used as a means for
teaching compared to as a tool for problem solving?

V. What is your previous programming experience?

• How long have you been programming?

VI. Do you find it difficult to introduce programming in math lessons?

VII. What difficulties are there when you as a teacher use programming
in mathematics education?

VIII. What attitude do you feel the students have to use programming
in mathematics education?

XII

DEPARTMENT OF COMMUNICATION AND LEARNING IN SCIENCE
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden
www.chalmers.se

www.chalmers.se

	List of Tables
	List of Figures
	Introduction
	Background
	Purpose
	Research Questions
	Scope

	Theory
	Lesson Design and the 5E Model
	Learning Theory
	Constructivism
	Social Perspective on Learning
	Constructionism - Social Development Theory
	Bandura’s Social Learning Theory
	Active Learning
	Peer Discussion

	Programming in Mathematics Education

	Method
	Lessons
	Fundamental Theorem of Calculus
	Solids of Revolution
	Programming Language and Environment

	Study Population
	Survey Design and Analysis
	Statistical Methods
	Analysis of Free-Text Answers

	Interview Design and Analysis
	Student Interviews
	Teacher Interviews
	Thematic Analysis

	Results
	Previous Programming Experience
	Sufficient Programming Knowledge to Understand
	Correlates of Previous Programming Experience

	Understanding of the Lesson
	Code and Mathematics were Easy
	Code was Fun
	Strengths and Weaknesses of the Lesson Plan

	Lesson Effect on Learning
	Effect on Understanding of Mathematics
	Takeaway from the lesson
	Programming as a Facilitator of Knowledge

	Difficulties of Programming in Mathematics
	Most Difficult Part of the Lesson
	Cognitive Load
	Varying Prior Knowledge
	Unclear Purpose
	Additional Difficulties

	Possibilities of Programming in Mathematics
	Deeper Understanding
	Facilitation of Mathematical Work

	Discussion
	Previous Programming Experience
	Difficulties in Using Programming
	Cognitive Load
	Varying Prior Knowledge
	Unclear Purpose
	Additional Difficulties

	Possibilities in Using Programming
	New Perspective
	Visualisation and Experimentation
	Tool for Problem Solving
	Automation and Focus on Mathematics

	Limitations and Future Research

	Conclusion
	Bibliography
	Student Survey
	Interview Questions for Students
	Interview Questions for Teachers

