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Abstract
Streaming-based applications that process unbounded continuous streams of data,
such as user activity on the web or sensor data, can be designed to detect critical
events. With such an event, an application can benefit from maintaining the asso-
ciated source data for further analysis. This can be achieved by fine-grained data
provenance, which links each event back to the source data contributing to it.

In this thesis, the focus is on the current state-of-the-art data provenance technique
called GeneaLog, which collects fine-grained data for cyber-physical systems and
maintains it with low overhead. Generating provenance could be a heavy operation
in certain applications, where the overhead produced will not always be negligi-
ble. Adjusting GeneaLog to become operational with the occurrence of a critical
event, as opposed to always being operational, can be beneficial as it can reduce the
unnecessary provenance generation.

The goal is to extend GeneaLog to generate provenance information interactively and
evaluate during what conditions such an extension becomes beneficial. With this,
GeneaLog and consequently data provenance techniques could be further introduced
to a wider range of devices and applications, as it might reduce processing and
memory overhead.

In this thesis, an extension for GeneaLog is proposed called Twins. To be able to
activate and deactivate GeneaLog, Twins introduces a system which consists of two
queries and a pair of special operators. The first query is equipped with standard
operators and the second query with operators that generates provenance informa-
tion. Initially, the first query processes tuples until a critical event is produced,
which initiates a transition to the other query. With an absence of critical events
after a transition, a transition is made back to the first query. This is performed
by the special operators called the Ward operators, which are responsible to trigger
and perform a transition between the queries.

A prototype of GeneaLog was used and extended in this thesis, which was built for
the Stream Processing Engine Apache Flink. During the evaluation, the observed
throughput of Twins resembled that of GeneaLog when provenance was active and
that of a baseline query with no provenance generation when provenance was in-
active. The preliminary results indicate that Twins can be beneficial in scenarios
where generating provenance is not a negligible operation in terms of overhead.

Keywords: data provenance, streaming, apache flink, data analytics.
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1
Introduction

The adoption of streaming analysis applications has increased over the recent years
with the growth of Internet of Things (IoT) devices, as they have introduced new
ways of collecting and processing data [1].

Streaming analytics works with real-time data, where it involves different mecha-
nisms, as compared to working with historical data. Namely, it processes constantly
updating data and does not necessarily maintain it [2]. Streaming-based analysis
applications which are designed to detect unusual or critical outputs might benefit
from saving the associated source-data, for further analysis.

When analyzing an unusual or critical output, answers to the following questions
are of interest: Where is the source(s) that contributed to the output? What has
been done to the data that produced it and by whom? Answers to these questions
provide trust in the data by being able to verify the origin and understandability
for a certain output. Additionally, they may also allow reproducibility, in order to
recreate the behavior to further analyze it.

Finding relations between data in order to draw conclusions is advantageous from
an analytical point of view. By being able to track the lineage of data, it makes it
possible to discover the undergone transformation done to the data.

Data provenance or simply provenance is a concept that refers to the documentation
of where a piece of data comes from and the processes/methodology by which it was
produced [3].

Large scientific experiments can generate enormous amounts if data. For example
the ATLAS experiment at CERN, where the amount of data produced was accumu-
lated to be around 100 petabytes (PB) of data (both raw and processed)[4]. They
concluded that provenance was needed to preserve both the data and its processing
history, since it became difficult to analyze the result. Machine learning applications
have used provenance data to build models for anomaly detection to prevent stealthy
impersonation malware attacks in operating systems [5]. In relational databases,
large portions of data is not entered manually by a user. Understanding such data
can be hard without extensive knowledge about the data’s origin and processing
history, without additional information [6].

1



1. Introduction

1.1 Problem definition
The current state-of-the-art provenance technique for data streaming, GeneaLog, is
designed to always generate provenance information throughout the entirety of a
data stream [7]. A streaming-based analysis application consists of several opera-
tors which creates, forwards and transforms data-points and potentially creates an
output. To be able to use GeneaLog, the operators of GeneaLog are used, which are
extended with extra functionality, as opposed to operators found in common SPEs.
These operators annotates the data-points with metadata, as they progress through
the system. This is later used to distinguish contributing or non-contributing data-
points for a produced output.

However, if no output is produced, the data-points will still be annotated, resulting
in extra overhead. Regardless if the overhead is considered to be minimal, without
the presence of an output, there is no provenance to be generated and thus unwanted
computational power and memory have been used.

1.1.1 Motivation
It could be beneficial for data provenance techniques in data streaming to generate
provenance information interactively, namely activate the generation of provenance
information with the occurrence of an output and later deactivate with an absence
of output, as this could lower the computational power- and memory requirements.
However, an interactive functionality comes with a cost. When the provenance
generation becomes activated with the occurrence of an output, it will reduce the
total amount of generated provenance information.

1.1.2 Research questions
In this thesis, the goal is to extend the GeneaLog framework to be able to generate
provenance information interactively and evaluate if it results in a reduction in
overhead, since the procedure of annotating the data-points is only performed when
needed.

This thesis will answer three research questions:

Q1: Can GeneaLog be extended to become activated and deactivated automatically
for arbitrary portions of a data stream?

Q2: When provenance information is not generated continuously, the total amount
of provenance will be decreased, as opposed to a continuous generation. How
much provenance is lost?

Q3: By introducing an additional functionality to GeneaLog, does the performance
become affected? Does the overhead produced from the procedure of acti-
vating/deactivating GeneaLog atone for the potential reduction of overhead,
achieved from the procedure?
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1.2 Challenges

By extending GeneaLog, a new functionality will be introduced, which will allow
the framework to interactively become enabled and disabled, with the occurrence of
an output. This will imply the following requirements, to realize such an extension.

• Design: The design of a model, where the functionality of activating and
deactivating provenance can be applied, using GeneaLog.

• Preserve correctness: At a certain point in time, the generation of provenance
information will either start or stop. To preserve correctness, the ongoing
computations that are taking place in the pipeline will either have to finish
or be recomputed. This means that the approach is required to guarantee no
loss nor duplication of output.

• Special operator: To activate and deactivate provenance generation, the oper-
ators in a query will be required to change their behavior. This means that
there has to be a special operator which decides whether provenance gener-
ation should be active or inactive, based on the information carried by the
data-points.

• Operator communication: The special operator will eventually decide whether
provenance generation should become active or not, which requires that the
remaining operators change their behavior. This means that when Genea-
Log should become active, the special operators requires to propagate this
instruction to the remaining operators, i.e., communication both upstream
and downstream between the operators will be required.

• Avoid circumlocution: To achieve an interactive behavior, GeneaLog will be
extended. As previously mentioned, new operators and a protocol for pre-
serving the correctness will be required. This means that by satisfying the
requirements, the extension will contribute with overhead. The additional
overhead that is created from the extension should not atone for the poten-
tially reduced overhead that is possibly achieved by extending GeneaLog in
this matter. Furthermore, while provenance is active, the performance should
be equal to GeneaLog and while inactive, it should be equal the performance
when GeneaLog is not used.

1.3 Scope

The scope of this thesis is to extend a prototype of GeneaLog, implemented for
the Stream Processing Engine (SPE) Apache Flink. The prototype is extended to
be able to interactively activate the generation of provenance information with the
occurrence of an output and later deactivate with the absence of output.

3
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1.3.1 Limitations
In this thesis, the following limitations are set in order to limit the scope:

• Triggers for activation and deactivation: With different analysis applications,
triggers for activation and deactivation can vary and thus will be user-defined.
In this thesis, the triggers will be defined as general as possible, as the thesis
focuses more on the functionality of activating/deactivating provenance gener-
ation as opposed to optimizing the triggers for when to activate and deactivate.

• Determinism: The GeneaLog framework is designed to work for deterministic
streaming applications, since determinism is crucial to identify the source data
contributing to each output event [7]. Therefore, the tuples are assumed to
arrive in timestamp order.

• Distributed execution: The GeneaLog framework is designed to work for single
node deployments as well as distributed deployments. In this thesis, the focus
lies on singe node deployments.

1.4 Contribution
The overall contribution of this thesis is an extension to the current state-of-the-art
data provenance framework, GeneaLog. The extension is called Twins and allows
the framework to interactively activate and deactivate the generation of provenance
information, for streaming-based analysis applications deployed within a single node.

Twins involves transitioning between two queries, where one is equipped with non-
instrumented operators while the other is equipped with GeneaLogs instrumented
operators. To guarantee that no loss-, incorrect- nor duplicated output is produced
during a transition, two special operators are introduced called the Ward Operators.
They consists of a pair, namely a Sentry and an Observer, which are responsible for
the activation and the deactivation of GeneaLog, as they coordinate the transition
between the two queries.

Furthermore, Twins was evaluated for several different scenarios to evaluate its be-
havior during different conditions. Twins showed to be beneficial for scenarios which
involved a high processing rate of tuples, where it matched the performance of Ge-
neaLog when active and inactive.

1.5 Outline
The report is organized as follows. Chapter 2 provides the theoretical background
to the subject of this thesis, followed by methodology in Chapter 3. Chapter 4
covers the implementation of the methodology presented in the previous chapter
followed by an evaluation of the implementation in Chapter 5. Chapter 6 provides a
discussion regarding the evaluation and the implementation followed by Chapter 7,
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which discusses related work for this thesis. Lastly, Chapter 8 concludes the thesis.
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2
Preliminaries

This chapter contains the required background regarding the subject of the thesis.
It covers the terminology used throughout the report, the basic building blocks of
stream processing, Apache Flink, data provenance and finally, a detailed description
of the GeneaLog framework.

2.1 Stream processing
Stream processing is a programming paradigm where the processing of data is done
while the data is in motion, i.e., computing on data as it is produced or being
received. Unlike batch processing, which stores the data and then performs compu-
tations, the data does not necessarily need to be stored in streaming applications
[2].

The basic building blocks of stream processing are streams and transformations.
Each stream processing pipeline starts with one or more source(s) and ends in one
or more sink(s), i.e., one or more entry point(s) and one or more end point(s).

As data continuously flows within the pipeline, transformations can be made on the
data, such as computing statistical operations to, e.g., extract valuable information.

2.1.1 Data streams
A data stream, denoted S, can be characterized as an unbounded continuous flow of
data. The elements of the data stream are referred to as tuples or events, denoted
t. Thus, an unbounded stream can be denoted as:

S = t1, t2, t3, . . . (2.1)

The tuples can be defined as records within different categories of information, where
each tuple has the same set of attributes, a1, a2, ..., an and a timestamp ts. Thus, a
tuple can be denoted as:

t =< ts, a1, a2, . . . , an > (2.2)
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As tuples undergo transformations, they will eventually reach a sink, where the
tuples are referred to as sink tuples. These tuples are considered to be the output
of a pipeline, and are referred to as critical events.

2.1.2 Stream operators
The entities responsible for transforming, creating and forwarding tuples are called
operators.

The standard operators commonly found in SPEs such as [8] and [9], can be cat-
egorized in two groups, stateless operators and stateful operators. The stateless
operators processes input tuples one by one while the stateful operators processes
several input tuples as a group.

The most common standard stateless operators that are native in common SPEs
are the following:

• Map, produces one or more output tuple(s) for each input tuple, by selecting
one or several of its attributes, to optionally use in functions.

• Filter, drops tuples from the stream depending on a boolean condition.

• Multiplex, copies the tuples of one stream to multiple streams.

• Union, takes multiple input streams and merges them into one.

With stateful operators producing an output tuple that depends on multiple input
tuples, a window is required to define a scope for its computation. The most common
stateful operators are the following:

• Aggregate, takes several input tuples and produces one output tuple. The
input tuples are grouped by a key, such as a common attribute. The group of
tuples are aggregated with functions such as min, max or sum within a given
window.

• Join, combines the tuples from two streams, based on their attributes and
satisfying a predicate which is within a given window.

2.1.3 Queries
Pipelines are user-defined queries that contain a chain of operators with the purpose
of producing a specific output. In data streaming, queries are defined as continu-
ous, i.e., they are permanently installed and not executed once, as in relational
databases [2].

An example query

An example use case for a streaming-based analysis application would be a pipeline
which monitors the temperatures of racks in a data center. Data racks often have a

8



2. Preliminaries

high power consumption, which can result in them being overheated [10]. Thus, it is
important to monitor each rack, to ensure that they maintain a stable temperature.

A query for this example is illustrated in the Figure 2.1, where each rack sends their
temperature along with their unique id to the stream. To calculate the average
temperature for each individual rack, the input tuples are grouped by their id, to
be able to separate different rack’s tuples.

When they reach the Aggregate operator, the average temperature of the last 60
seconds for each rack is calculated every 20 seconds. A Filter then checks if a rack’s
average temperature is above a certain threshold, as it would indicate that the rack
is about to overheat, which would require cooling to reduce the temperature. With
the occurrence of a sink tuple, it indicates that a rack requires cooling.

Source Aggregate Filter Sink

average(rack.temp)
window size = 60s
group by : rack.id

avg_temp > threshold
Tuple

timestamp : long
rack.id : int
rack.temp : int

Tuple
timestamp : long
rack.id : int
avg_tmp : int

Figure 2.1: Illustration of an example query which detects overheated data racks.

2.1.4 Windows
Stateful operators require a scope to produce a tuple. The scope is referred to as
windows which can either be time-based or data-driven.

A window’s time frame (if it has one) progresses at all times, though a window is
only created as soon as the first tuple that should belong to it arrives, and is complete
when either the time has passed or when the maximum number of tuples is reached.
The exact start and end point of, e.g., 30 minute windows is set in the following
manner: 00:00:00.000 - 00:29:59.999, 00:30:00.000 - 00:59:59.999, etc [11].
The progression of windows can also vary, as they can either be sliding windows or
tumbling windows. The length of a window is called window size, denotes as WS.

Sliding Windows

The sliding windows starts a new window every few tuples, thus overlapping the
windows and in effect "sliding" with the data stream. The time between when two
windows start, is called window advance, denoted WA. As windows overlap, tuples
will be part of multiple windows. On completion of a window, all the tuples that
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are not referenced in other windows will be dropped [12]. The progression of sliding
windows is illustrated in Figure 2.2.

TIME

W1

W2

W3

W4

window size

window advance

Figure 2.2: Illustration of sliding windows.

Tumbling Windows

Tumbling windows drops all tuples when filled or time is exceeded and immediately
starts refilling a new window. The windows are not allowed to overlap, as illustrated
in Figure 2.3.

TIME

W1

W2

window size

Figure 2.3: Illustration of tumbling windows.

2.1.5 Watermarks
As queries can be executed in parallel and tuples might arrive out-of-order, there is
no way of knowing if each operator of the pipeline has processed all tuples or that
tuples have arrived at all.

A mechanism that solves this are watermarks, which are unique and identifiable
timestamps, W , which measure the event time progress of the stream, based on the
timestamp of the tuples. Watermarks define a lower bound on the event time that
have been processed by the current operator, this bound then acts as an allowed
lateness for each tuple. Thus, if any tuple with timestamp lower than W should
arrive, it will be discarded [12].

This is illustrated in Figure 2.4, which shows how tuples and its timestamp can arrive
in a stream, both in-order and out-of-order. In the figure, a watermark is created
with timestamp 10, W (10), and placed on the stream, declaring that the stream has
progressed to timestamp 10. This is then incremented to 20, W (20), and attached
to the stream in the same manner. Meaning that if a tuple with lower timestamp
should arrive, it will be too late and consequently be dropped. An example of this is
illustrated with the crossed-out tuple in the out-of-order stream in the figure, which
has timestamp 19 while the watermark is W (20).
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TIME

688101315171820232427

W(20) W(10)

tupletimestamp

TIME

6111013 151718 2023 19 27

W(20) W(10)

tupletimestamp

12

Stream (out-of-order)

Stream (in-order)

Figure 2.4: Illustration of watermarks in both in-order and out-of-order streams.
In both of the streams, the tuple with timestamp 6 is the first tuple processed.

Watermarks are often generated at the source operators, and sent downstream. The
other operators then utilize these to guarantee progression and completeness. If a
watermark, W , appears (from upstream) at an operator, it sets its internal event
time to W and then sends it along the stream, it then drops all late tuples with
lower timestamp.

2.2 Apache Flink
Apache Flink is an open-source distributed processing engine and framework for
stateful computations of bounded and unbounded data (i.e., batch and streaming),
developed by the Apache Software Foundation [12].

When distributed, i.e., working within multiple servers (a cluster), it integrates with
common cluster resource managers (i.e. software for managing clusters of servers),
but can also be setup to run as a stand-alone cluster. It is also designed to scale and
can utilize a virtually unlimited amount of CPUs, main memory, disk and network.
The memory usage is optimized for local main memory access and if needed has a
access-efficient on-disk data structure for extra memory.

Flink also provides fault tolerance and failure recovery through several features: con-
sistent and efficient check-pointing of states, guarantees that data is only written out
once, load balancing in case of node crashes and high-availability setup that elim-
inates all single-point-of-failures. It also has features to update, migrate, suspend,
resume, monitor and control applications during execution.

Some use cases for Flink are: Event-driven applications, which are stateful queries
that react on incoming events, Data Analytics applications, where information is
extracted and presented continuously from a stream and Data Pipeline applications,
which is a common way of converting and moving data between storage systems.

Flink also uses watermarks to synchronize operators throughout the pipeline, send-

11



2. Preliminaries

ing sporadic watermarks that traverse trough operators unhindered and reaches all
parts of the pipeline.

2.2.1 Levels of interaction

Flink provides three levels of APIs for interacting with Flink and building applica-
tions [12]:

• SQL and Table API - Highest level of abstraction. The Table API is a declar-
ative domain-specific language (DSL), centered around tables and can seam-
lessly be converted to DataStreams/DataSets (i.e., to lower level abstractions.
See below.). The SQL level allows users to define SQL queries for both stream
and batch processing, which closely interact with the Table API.

• DataStream API (and DataSet API for batch) - This is considered the core
API and in practice is where most developers interact with Flink. It provides
the coding primitives used in all common stream processing operations, such
as: windowing, Aggregate, Filter, Join, etc, and is available for both Java
and Scala via functions such as: map(), reduce(), filter(), aggregate(),
etc. These functions can either take lambda expressions, inner anonymous
classes or a class as arguments where the logic for the operator is located.

• Stateful Stream Processing - It is the lowest level and most expressive function
interface. It is a building block, embedded into the DataStream API and
accessed via Process Functions, e.g., KeyedProcessFunction<...>{}, making
it possible to integrate this level of abstraction for certain operations when
coding in a higher level. It provides the most freedom to fully process events
and gives full control of time and state.

2.2.2 Tasks

In Flink, a task is referred to as the basic unit of execution, which is responsible for
a query’s operators. Each task exists within a single process and consequently has
its own process memory allocated. In order to execute queries more efficiently, a
query can be split into several tasks, which will be several separate processes located
at either the same node or distributed across different nodes [12].

When a query is divided in to two or more tasks (and/or nodes), the Send & Receive
operators are used in order to forward tuples between the tasks (and/or nodes). As
illustrated in Figure 2.5.
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Task 2 / Node 2Task 1 / Node 1

Source Aggregate Filter SinkReceiveSend

average(rack.temp)
window size = 60s
group by : rack.id avg_temp > threshold

Figure 2.5: Illustration of a query divided into two tasks (and/or nodes).

A task is also split into several parallel instances for execution and each parallel
instance processes a subset of the task’s input data [13]. Defining the amount of
parallel instances can either be done for individual operators or the entire task.

2.2.3 Programming model
In Listing 2.1, the example query from Section 2.1 is implemented, using the DataS-
tream API.
Listing 2.1: Flink example

1import org.apache.flink.∗;
2

3public class RackTemperature{
4public static void main(String[] args) throws Exception {
5int threshold = 75;
6StreamExecutionEnvironment env =
7StreamExecutionEnvironment.
8getExecutionEnvironment();
9DataStream<RackTuple> dataStream = env
10.keyBy(t −> t.rackID)
11.window(SlidingEventTimeWindows
12.of(Time.seconds(60), Time.seconds(20)))
13.aggregate(new AverageAggregate())
14.filter(t −> t.temp >= threshold)
15.addSink(new Sink());
16env.execute("Rack Temperature");
17}
18}

Flink is first initialized and its input is set up, at lines 1 through 8. Then the stream
is declared, called dataStream, at line 9, after which transformations can be applied.

To calculate the average temperature for each rack, the Aggregate operator requires
the stream to be keyed, as is done at line 10, where keyBy() groups the tuples by
an identifier, here by rackID.

Then the Aggregate operator requires a window to work with, which is declared at
line 11 and 12, where a sliding window of length 60 seconds and a new window is
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started every 20 seconds, is set. The timeWindow() method also requires a window
function, i.e. a stateful operator, to follow it. Thus the aggregate() method is
declared at line 13, which takes in a class, new AverageAggregate(), which has
all the aggregation logic and will calculate the average temperature. Because the
stream is a keyed-stream the aggregate will take the average for each rack separately
but within the same window.

At line 14, the Filter operator is applied with the method filter(), which can
simply check if any of the average temperatures are above the given threshold.

The stream will now only contain critical events and so a sink operator can be
added, which is done at line 15 with the method addSink() which, again, takes in
a class new Sink() which does have the sink logic, where it can print, log, activate
cooling, etc. Line 16 is the initiation of the environment and so the query will begin
to execute.

Figure 2.6 is an illustration of how the code for the example query correlates to the
graph used to illustrate the query.

Source Aggregate Filter Sink

average(rack.temp)
window size = 60s
group by : rack.id

avg_temp > threshold

Figure 2.6: Illustration of the correlation between the graph and the code.

2.3 Data provenance
Data provenance or just provenance, refers to a record which contains information
such as the origin of a piece of data, together with an explanation of the production
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process. Data provenance techniques consists of generating metadata on individual
pieces of data, which is referred to as provenance information. The provenance data
is then created by collecting the individual pieces of contributing data using the
provenance information.

In Figure 2.7, provenance for the example query from Section 2.1.3 is illustrated.
As tuples are transformed throughout a query, provenance can be used to derive
the relation of a sink tuple to its contributing source tuples, using the provenance
information. The dotted arrow (the red arrow) shows the relation between the sink
tuple and the source tuples, while the non-dotted arrow (the blue arrow) shows the
relation to the intermediate tuples.

Source Aggregate Filter Sink

average(rack.temp)
window size = 60s
group by : rack.id

avg_temp > threshold

Figure 2.7: Illustration of provenance on the example query.

2.4 GeneaLog
GeneaLog is the current state-of-the-art data provenance framework for data stream-
ing [7]. The aim of GeneaLog is to lower the requirements of provenance for resource-
constrained devices, by addressing issues that were present with prior techniques,
such as variable-size annotations and temporarily storing all of the input tuples
[14]. With data streaming being introduced to a more wider range of devices, the
requirement for provenance needs to be decreased as well [7].

GeneaLog relies on small, fixed-size annotations and makes use of memory pointers
in order to distinguish contributing tuples, i.e., no need to temporarily save every
input tuples and distinguish them later on.

2.4.1 Provenance information
Provenance information generated by GeneaLog consists of four attributes.

• Type (T )
• Upstream1 (U1)
• Upstream2 (U2)
• Next (N)
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The meta-attribute Type describes the origin of the tuple, i.e., the operator that
created it. The remaining three attributes are memory pointers, which are used to
link back a tuple to a contributing tuple, which is explained in Section 2.4.2.2.

2.4.2 Instrumented operators

GeneaLog is based on a technique called operator instrumentation, which extends
the operators with functionality to generate provenance information. With this
functionality, each operator is able to annotate its output tuple with provenance
information, based on the provenance annotations of its input.

The relations between an input tuple and an output tuple is defined as follows [7]:

Definition 1. An input tuple tIN to an operator, OP , contributes to an output
tuple, tOUT of OP, depending on OP , if:

i. OP is a Filter, Union or Receive and tOUT = tIN

ii. OP is a Map, Send or a Multiplex and tOUT is created upon the processing of
tIN .

iii. OP is an Aggregate and if tIN is in the window of tuples whose aggregation
results in the creation of tOUT .

iv. OP is a Join and tIN is a tuple from a pair of tuples within time distance WS
for which the Join predicate holds.

Each of the operators mentioned in Section 2.1.2 are extended to generate prove-
nance in the following way.

Source, creates tuples which does not depend on any other tuple. Since the source
is the entry point for the tuples, the memory pointers are not set, as listed in Figure
2.8a.

• T = SOURCE
• U1 = N/A
• U2 = N/A
• N = N/A

(a) Meta-data attributes.

Source t

(b) Illustration of the Source opera-
tor.

Figure 2.8: Source operator.

Map, takes an output tuple, to, and points it to the input tuple t1, which contributes
to it with U1, as listed in Figure 2.9a and illustrated in Figure 2.9b.
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• T = MAP
• U1 = t1
• U2 = N/A
• N = N/A

(a) Meta-data attributes.

Map to

U1

t1

(b) Illustration of the Map operator.

Figure 2.9: Instrumented Map operator.

Multiplex, creates a copy of each input tuple to one or several output streams.
Similarly to Map, each output tuple, to points to the tuple that contributes to it
using U1, as listed in Figure 2.10a and illustrated in Figure 2.10b.

• T = MULTIPLEX
• U1 = t1
• U2 = N/A
• N = N/A

(a) Meta-data attributes.

Multiplex
to

U1

tn

t1

...

U1

(b) Illustration of the Multiplex oper-
ator.

Figure 2.10: Instrumented Multiplex operator.

Join, produces an output tuple, to in which has exactly two contributing tuples, TR

and TS. Assuming that TR.ts > TS.ts, as listed in Figure 2.11a and illustrated in
Figure 2.11b.

• T = JOIN
• U1 = TR

• U2 = TS

• N = N/A
(a) Meta-data attributes.

Join

TR

TS

U1

to

U2

(b) Illustration of the Join operator.

Figure 2.11: Instrumented Join operator.

Aggregate, takes several input tuples, t1, . . . , tn and produces an output tuple, to,
where t1 refers to the earliest tuple. For the tuples in between, it sets U1 = tn and
U2 = t1, and if n > 1. It also sets ti.N = ti+1 for i = 1, . . . , n − 1, as listed in
Figure 2.12a and illustrated in Figure 2.12b.
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• T = AGGREGATE
• U1 = t1
• U2 = tn

• N = ti+1

(a) Meta-data attributes.

Aggregate to

U1

t1 ... tn...

U2

N N N

(b) Illustration of the Aggregate op-
erator.

Figure 2.12: Instrumented Aggregate operator.

Filter & Union, does not create new tuples but rather forwards them, thus no
instrumentation is defined for them.

Send & Receive, are used to forward tuples between different processes or nodes.
The Send operator will set T to REMOTE as long as it is not a source tuple. The
reason behind this is to locally distinguish tuples produced at other tasks.

2.4.2.1 Contribution Graph

By linking tuples together with memory pointers, a path from a sink tuple to one
or several source tuples can be made. This implies the existence of a contribution
graph, where the edges represent the contributing source tuples of a sink tuple. By
traversing the graph according to the provenance method listed in Appendix A.1,
the originating tuple(s) can be retrieved.

An originating tuple is defined as the following [7]:

Definition 2. A tuple, t′, is referred to as being an originating tuple of t, if t′ is
returned by the provenance method in Appendix A.1 as contributing to t.

This is illustrated in the table in Figure 2.13a and the graph in Figure 2.13b, which
shows the example query from Section 2.1.3.

timestamp rack_id temperature
13:00:10 1 80
13:00:20 1 84
13:00:30 1 80
13:00:40 1 87
13:01:00 2 76
13:01:30 2 72

timestamp rack_id avg_temp
13:00:00 1 82.75
13:00:00 2 74

timestamp rack_id avg_temp
13:00:00 1 82.75

U 2

U 1

N N

U
1

U
2

(a) Relation between tuples.

U
2

U 1

N

NN

(b) Contribution graph.

Figure 2.13: Illustration of the relation between the contribution graph and the
table of tuples.
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2.4.2.2 Distinguishing contributing tuples

The attributes, U1, U2, N represent the edges in the contribution graph of a sink
tuple, as well as being actual memory references. GeneaLog takes advantage of
the automatic memory management found in languages such as Java or C++ for
distinguishing contributing tuples [15].

GeneaLog prevents the contributing tuples from being reclaimed as long as they are
(potentially) part of a sink tuple. This means that the contributing source tuples
will have a reference count greater than zero, while the non contributing tuples will
have a reference count of zero (sooner or later), which will be safely reclaimed by
the garbage collector [16].

2.4.3 Intra-task provenance
With the operators being responsible for generating provenance information, Ge-
neaLog has a custom operator called the single unfolder operator, which is used to
retrieve the provenance data.

Single Unfolder operator: SU

The single unfolder operator, denoted as SU , is an operator in GeneaLog which
provides provenance in a query. It takes a single stream as input, S1, and produces
two output streams, S0 & U , as illustrated in Figure 2.14b.

• S1, input data stream
• S0, an exact copy of S1
• U , an unfolded stream of S1

(a) Parameters for the SU -operator.

SU

U

S1 So K

...
(b) Illustration of the SU operator.

Figure 2.14: Illustration of the SU operator and its parameters.

By placing a SU operator prior to each sink (with S0 feeding the sink), provenance
is provided through the unfolded stream.

Definition 3. An unfolded stream is defined as a stream where each tuple t ∈ S is
replaced by its originating tuples combined with t’s attributes.

The unfolded stream can either be forwarded to another stream or consumed, e.g.,
storing it to disk.

Implementation using standard operators

SU can be implemented using the standard operators, Map & Multiplex as illus-
trated in Figure 2.15. The Multiplex is used for duplicating S1, into So and SM and
the Map is then used to transform SM into U , by applying the provenance method
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(see Appendix A.1). This will produce, for each sink tuple, tSINK , a tuple carrying
tSINK ’s attributes and the originating source tuples.

Multiplex

U

S1 So

SM Map

Sink

...

Figure 2.15: Implementation of the SU operator.

2.4.4 Inter-task provenance
For multi-task deployment, relying on memory pointers is no longer sufficient. Since
tasks can be placed at different machines, shared memory is no longer present, thus
providing provenance through the SU operator needs to be adjusted accordingly.

GeneaLog provides two different methods for inter-task deployments, explicit inter-
task provenance and implicit inter-task provenance, where the provenance method
is modified accordingly.

Additionally, the meta-data attributes described in Section 2.4.1 are extended by
one additional meta-attribute, ID, which is an unique identifier for each tuple.

2.4.4.1 Explicit inter-task provenance

For explicit inter-task provenance, additional instrumented operators are added to
be responsible for sharing each respective task’s source tuples. Similar to intra-
task provenance, these operators are combined in order to create the multi-stream
unfolding operator, which is used to achieve provenance in multi-task deployments.

Multi-stream unfolding operator: MU

Themulti-stream unfolding operator, denoted MU , is an operator in GeneaLog which
provides provenance for multi-task deployments. It takes one derived stream and an
arbitrary number of upstream unfolded delivering streams and produces one output
stream as illustrated in Figure 2.16.

• Unfolded delivering streams, which initially are streams that either feeds a sink
or is created by a Send operator as input. Then, processed by an SU -operator.

• A derived stream, contains tuples that are forwarded to the output stream, if
T = SOURCE. Alternatively, it is replaced by the sequence: t1, . . . , ti, . . . , tn

found in any of the upstreams for which ti.ID = t.ID0
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... MU

Output Stream

Derived Stream

Upstream 
streams

Figure 2.16: Illustration of the MU -operator and its parameters.

Implementation using standard operators

When implementing the MU operator, the Join operator is used, which, in the
simplest scenario, merges one upstream stream SD and one single derived stream
ST that does not contain any tuples with T = SOURCE. The predicate of which is
used to match a tuple tD ∈ SD and tT ∈ ST if tD.ID == tT .ID0. This is illustrated
in Figure 2.17.

Process 1 Process 2

Source SU SU... ...

MU

JOIN on ID

Provenance

SD ST

Figure 2.17: Illustration of providing provenance with a query split at two pro-
cesses.

More than two processes

Depending on the number of upstream streams and the value of T on the tuples in
the derived stream, the MU operator have to be extended with additional operators.

For two or more upstream streams, an additional Union operator is used. The Union
operator deterministically merges the tuples into one stream before passing it to
the Join operator. Additionally, if the derived stream contains tuples where T =
SOURCE, a Multiplex operator, two Filter operators and an additional Union is
used. The Multiplex operator feeds the tuples from the derived stream into both
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of the Filter operators, which allows (filter2) the tuples where T = SOURCE to
the Union operator and the remaining to the Join operator. This is illustrated in
Section 2.18, where the optional operators are surrounded in gray.

Union

Join Filter1 Filter2

Multiplex

Union

...Several 
upstream streams

Derived stream
where T = SOURCE

Output stream

Figure 2.18: Extended MU operator for more than two processes/nodes.

By extending the MU operator with these additional operators, with more than two
processes, a tree of MU-operators is created, where they are feeding each other as
illustrated in Figure 2.19. Though, depending on the query and the deployment,
the amount of operators can become very large.

Source SU SU... ...

MU

SU...

MU

...

Figure 2.19: A tree of MU operators.

2.4.4.2 Implicit inter-task provenance

For implicit inter-task provenance, the goal is to solely rely on the query’s operators
to perform the additional operations to share source tuples among tasks instead of
adding additional operators. These operators are the Send & the Receive operator.

By integrating the traversal of the contribution graph (previously used in the SU
operator, see Section 2.4.3) each tuple with T = REMOTE is serialized locally
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in each Send operators task together with its contributing source tuples. At the
corresponding Receive operator located at a different task, it will be received and
then deserialized.

Upon deserialization, the remote tuple is reduced down to its source tuples, using
the attributes U1 & U2 to point to the earliest and latest source tuple.

When more than one source tuple is found in the contribution graph, the source
tuples’ N meta-attribute is used, similarly to GeneaLog’s Aggregate operator (See
2.4.2). Thus, the provenance method is altered in such a way that tuples with T =
REMOTE and T = AGGREGATE follow similar semantics, see Appendix A.2.
This is illustrated in the Figure 2.20.

U1

U1U1

U2

U2 U2

N N N N N N

U1
U2

SEND RECEIVE

NN N N N N N

Figure 2.20: Illustration of the changed behavior of Send & Receive operator.
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Method

This chapter covers the methodology on how to activate and deactivate GeneaLog
and the solutions to the anticipated requirements presented in Section 1.2. This
chapter will be more theoretical while the following chapter, Chapter 4, will contain
more technical details regarding the implementation and the usage of Apache Flink’s
API.

In Section 3.1, the architectural model for activating and deactivating provenance is
described. In Section 3.2, the special operators with the required functionality for
activating and deactivating provenance are described. In Section 3.3, a technique
for preventing loss and duplicated output is described. In Section 3.4, the procedure
of activating and deactivating provenance is described, using the special operators
and the technique for preserving correctness. In Section 3.5, an extension of the
methodology is described to potentially minimize the amount of lost provenance, as
mentioned in Section 1.1.2.

3.1 Twin query approach

GeneaLog creates provenance information via instrumented operators, which use
up to four meta-data attributes depending on the operator (see Section 2.4.2). In
the example application presented in Section 2.1.3, a critical event is defined as the
average temperature of a rack exceeding a certain threshold. With the occurrence
of an output, provenance becomes of interest and should be activated. This means
that until provenance becomes desirable, the tuples should be processed by non-
instrumented operators, and then by instrumented operators.

By having two identical queries, one using non-instrumented operators and another
using instrumented operators, activating provenance can be achieved by manipu-
lating the direction of the source tuples from the non-instrumented query to the
instrumented query. Figure 3.1 illustrates the twin query approach by using the
example application presented in Section 2.1.3.

Initially, the source tuples will be sent to the non-instrumented query and when
a critical event is produced, the source tuples will be directed towards the instru-
mented query instead. This will require a protocol to ensure correctness of the
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stateful computations, this will be further explored in Section 3.3.

Source

Aggregate Filter

Sink

Aggregate Filter

Figure 3.1: Design of the twin query approach. The upper query (colored in
green) uses non-instrumented operators while the lower query (colored in yellow)
uses instrumented operators.

Transition between the two queries
At first, tuples will be directed towards only one query e.g, the non-instrumented
query, and if an output is produced, the tuples will be directed towards the in-
strumented query. Additionally, at some point, the tuples will be re-directed back
towards to the non-instrumented query.

When only one query is ingesting tuples, it is considered to be active while the other
query is considered to be inactive. During a transition, the deactivated query will
start to ingest tuples and will be referred to as a activating query while the former
query will eventually stop ingesting tuples, and is referred to as a deactivating query.

Definition 4. A query, qA, is considered to be activating if it has previously been
inactive i.e., it starts to ingest tuples.

Definition 5. A query, qD, is considered to be deactivating if it has previously been
active i.e., it stops ingesting tuples.

To achieve such a transition, a mechanism will be required which decides whether
the next tuple should be sent to one query or the other (or both). This mechanism
can be incorporated into a pair of special operators, which will mainly be responsible
for the transitions. These special operators will be referred to as the Ward operators.

3.2 Ward operators
In this section, the Ward operators are presented. They handle the direction of the
tuples and the transition between the queries.

As shown in Figure 3.1, both of the queries will share the same source, meaning the
source tuples will be duplicated and sent to both of the queries. To ensure that only
one query ingests tuples at a time, an operator will be placed in each query, allowing
or denying tuples. By allowing tuples in one query while denying in the other, the
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direction of the source tuples can be controlled. This operator is referred to as the
Sentry operator, the first Ward operator. A Sentry operator has two states, active
(allow tuples) or inactive (deny tuples). A transition between the queries is a change
in their state.

As mentioned in Section 1.1.1, the generation of provenance information should
become active with the occurrence of an output and then later become deactivated.
For a transition to occur, it would require an additional operator that observes
tuples throughout both of the queries and informs the respective Sentry operators
to change their state. This operator is referred to as the Observer operator, the
second Ward operator.

During a transition between the queries, there will be a reconfiguration time, which
will have an impact on the amount of generated provenance information. By in-
fluencing the reconfiguration time, it could lower the amount of lost provenance
information but increase the overhead.

Definition 6. The reconfiguration time, Tc, represent the time interval starting at
the point in time from when a transition has been requested and ending at the point
in time when a transition has been completed.

Tc could be influenced by the placement of the Ward operators. The placement for
Sentries will be discussed in Section 3.2.1 and for Observers in Section 3.2.2. By
increasing the amount of Ward operators in several positions in a query, a query can
be partially activated preemptively. This could also influence the reconfiguration
time. This will be further discussed in Section 3.5.

3.2.1 Sentry operators
The Sentry operator’s task is to either allow tuples or deny them depending on its
state, see Figure 3.2 and Listing 3.1. Both of the queries will be equipped with
either one or several Sentry operators, and their placement can vary. A sentry can
be defined as the following.

Definition 7. A Sentry, S, takes a tuple as its input, t, and depending on its state,
Sstate, it will either allow or deny the tuple. The value of Sstate can either by True
or False, which allows or denies the tuples respectively.
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1boolean state
2

3function allowtuple()
4function denytuple()
5function changestate()

Listing 3.1: Sketch of the basic func-
tionality of a Sentry operator

Sentryt ...t

Sentryt ...

State: Active

State: Inactive

Figure 3.2: Illustration of a Sentry op-
erator.

Placement of the Sentry ward

Notice that the placement of a Sentry could be in several positions throughout
a query. By placing a Sentry close to a source, the remaining operators of the
query fall under its control, i.e., they will not process any tuples unless the Sentry
is activated. Furthermore, a Sentry can even be placed prior to the Sink, simply
allowing or denying the output from reaching the sink.

Placing a Sentry after the source would decrease the processing overhead and result
in a longer reconfiguration time, due to the type and amount of operators. If the
transition is from the non-instrumented to the instrumented query, it would also
result in less amount of provenance. By placing a Sentry closer to a sink, fewer
operators will be dependent on its state, thus more provenance information would
be generated but result in an increase of processing overhead.

For the example query presented in Section 2.1.3, the placement of a Sentry operator
could be succeeding the source, as illustrated in Figure 3.3.

Source

Aggregate Filter

Sink

Aggregate Filter

Sentry

Sentry

Figure 3.3: Placement of two Sentry operators, succeeding the source in both
queries.

3.2.2 Observer operators
The Observer operator’s task is to trigger the transition between the non-instrumented
and the instrumented query. By observing incoming tuples, the Observer operator

28



3. Method

should inform the Sentry operators to change their state accordingly, see Figure 3.4
and Listing 3.2. An Observer is defined as the following.

Definition 8. An Observer, O, takes a tuple as its input, t, and forwards the tuple
to the subsequent operator(s). Depending on the tuple, an Observer will change its
state, Ostate, and trigger a transition to the other query.

1boolean state
2

3function changeState()
4function informSentry()

Listing 3.2: Sketch of the basic func-
tionality of an Observer operator.

Observert ...t

Figure 3.4: Illustration of an Ob-
server operator.

Placement of the Observer ward

Depending on the query, the placement of the Observer operator can vary. For the
example query found in Section 2.1.3, placing the Observer operator prior to the
sink would mean that the existence of the tuples themselves would be enough for
the Observer to trigger a transition, as it is the end of the analysis pipeline. This
placement is illustrated in Figure 3.5.

Other potential positions would be prior to the Filter operator or the Aggregate
operator. When it is not placed prior to a sink, the Observer naturally can not
detect critical events (sink tuples).

Assumption: The further tuples progress (or are produced) in the pipeline, the more
likely it is for a critical event to happen. By placing an Observer early in the pipeline,
it might imply switching query prior to the production of a sink tuple. This will be
further explored in Section 3.5.

Source

Aggregate Filter

Sink

Aggregate Filter

Sentry

Sentry

Observer

Observer

Figure 3.5: Two Observer operators placed prior to the sink in both queries.

User-defined logic for activation and and deactivation

As mentioned in Section 1.3.1, the functionality of observing tuples throughout the
pipeline have to be user-defined, since with different applications, conditions for
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activating provenance varies. Conditions for deactivation follows the same pattern,
since with the absence of tuples, provenance should be deactivated. This is further
explored in Section 3.4.2.

3.3 Correctness of output
Due to stateful operators and their associated windows, if a transition would take
place without a protocol, it would result in incorrect calculations, i.e., duplicated
and/or missing output. This means that the combined output from both the queries
has to be the same as if every tuple was processed by just one query.

For the example query presented in Section 2.1.3, a new window is created every 20
seconds and completed after 60 seconds, which means that if a transition without
any form of coordination would occur, the windows would be incomplete and could
produce an incorrect output tuple (i.e., the windows would not receive the same
amount of tuples that it normally would if the query would continue to ingest tuples).

Note: The windows of both queries will progress in parallel, i.e., start and end at
the same time, even if there are no tuples in the pipeline (see Section 2.1.4).

In Figure 3.6, an illustration is provided to demonstrate the consequences of a tran-
sition without coordination. The illustration shows the Aggregate operators of the
respective queries, where three windows are created. Each of the tuples are carrying
the temperature of a data rack, which are aggregated to produce a tuple carrying
the average temperature over a period of time.

W1

W2

W3

 W1: average temp = 36.3
 W2: average temp = 39    
 W3: average temp = empty    

W1: average temp = empty 
W2: average temp = 53.5 
W3: average temp = 59.3

Instrumented AggregateNon-instrumented Aggregate

tuple

time34 33 32 46
W1

W2

W3

time 50 57 60 70

temp.

Figure 3.6: Illustration of possible miscalculations.

If a transition would occur when one or several windows are incomplete, it would
result in one of the queries having the complete input for the first window, W1,
while the other having the complete input for the third window, W3. The second
window, W2, will not be correct in any query. To prevent these miscalculations,
qD is required to ingest enough tuples for the ongoing windows to be completed
while qA is required to drop the windows which has not received enough tuples to
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complete its ongoing windows. Furthermore, the first complete window in qA should
correspond to the first incomplete window of qD.

3.3.1 Overlapping ingestion of tuples
Whenever a Sentry in qA changes its state, it will immediately start to allow tuples.
This means that every tuple prior to the first tuple processed by a Sentry has already
been- or is being processed by a stateful operator. Thus, the tuples resides in one
(or more) ongoing window(s) in qD. These ongoing windows need to be allowed to
finish before fully transitioning to qA, to ensure that no potential output is lost or
duplicated.

Since windows can overlap (see Section 2.1.4), when a window is considered to
be complete, there will still be windows present that are incomplete. During a
transition, qD will stop ingesting tuples as soon as a window is complete. However,
there will still be residual tuples in the pipeline that contribute to one or several
incomplete windows. Since the query is considered to be deactivated, whenever these
windows are completed, the output that is potentially produced should be dropped.
Simultaneously, there will be early tuples ingested in qA which will contribute to
one or several windows. These early windows needs to be dropped as well and only
when the transition is complete will the output created by the windows no longer be
dropped, i.e., output from windows in qA are only allowed when the last complete
window in qD is finished. This means that during a transition, both of the queries
will ingest tuples in parallel and potentially produce duplicated or incorrect output.

This is illustrated in Figure 3.7, which shows a transition from the non-instrumented
query to the instrumented query and their respective windows. The box which
covers W1, W2 and W3 in the non-instrumented query (the green box) represents
the windows handled by the non-instrumented query, the box which covers W4, W5
and all future windows in the instrumented query (the blue box) represents the
windows handled by the instrumented query and the red boxes are the windows
that are dropped.
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Instrumented query

Non-instrumented query

TIME

W1

W2

W3

TIME

W1

W2

W3

W4
W5

...

parallel
period

W4
W5

...

Start of
transition

Transition is
done

Residual output
(potentially incorrect)

Early output
(potentially incorrect)

Last correct output

First correct output

Figure 3.7: Overlapping windows from the perspective of both queries, with mark-
ings for when a transition starts and ends, as well as the last correct output and all
residual output for the non-instrumented query and the first correct output and all
early output for the instrumented query.

A transition which fulfills these requirements of preserving the correctness during a
transition is referred to as a safe transition.

Definition 9. A safe transition is a transition from one query to another with no
lost-, incorrect-, or duplicated output.

To achieve a safe transition, the usage of timestamps can be utilized to indicate if
both queries have processed the same amount of data. As mentioned in Section 1.3.1,
determinism is assumed i.e., the streams are timestamp-sorted.

3.3.2 Achieving a safe transition
As previously mentioned in Section 2.1.4, windows will be completed before even
time strokes, e.g., 00:29:59.999. Additionally, the timestamp of each tuple created
by a stateful operator will be the value of the point in time when the window it
has contributed to has finished. This means if the point in time when a window is
completed is 00:29:59.999, the tuple created by that window will have the timestamp
00:29:59.999.

During a transition, in qD every tuple that is created at (or after) the start of the
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first correct window of qA will be considered to be residual, i.e., too late, and has to
be dropped. Similarly in qA, every tuple that is created prior (to the same window),
is considered to be early and has to be dropped. The responsibility of dropping these
tuples lies in the Observers, for both qD and qA, which will compare the timestamp
of the (potential) tuples it ingest against tsfirst as expressed in Equation 3.1, which
represents the point in time when the first window in qA has finished.

Determining residual and early tuples utilizes that the timestamp of the first tuple
ingested in qA, ts, the largest window size, WSmax and largest window advance,
WAmax, is known. As mentioned in Section 3.3.1, early and residual tuples will
potentially be present due to overlapping windows. The Observers determine the
point in time where the first correct window is completed by following Equation 3.1.

tsfirst = (ts + (WAmax − (ts mod WAmax))) + WSmax (3.1)

With this, residual and early tuples are defined as following.

Definition 10. A tuple, t, is considered to be a residual tuple, tr, if it has arrived at
an Observer, O, after the point in time when the first correct window has finished
in qA, ts >= tsfirst, as expressed in Equation 3.1 and illustrated in Figure 3.7.

Definition 11. A tuple, t, is considered to be an early tuple, te, if it has arrived at
an Observer, O, before the point in time when the first correct window has finished
in qA, ts < tsfirst, as expressed in Equation 3.1 and illustrated in Figure 3.7.

Furthermore, the Sentry in qD must keep ingesting tuples until the last correct
window is complete, which will be up until tslast, as expressed in Equation 3.2. The
right side of the Equation finds the end of the nearest new window from ts.

tslast <= (ts + (WAmax − (ts mod WAmax))) + (WSmax −WAmax) (3.2)

This is illustrated in Figure 3.8, where the top query (colored in green) is the de-
activating query and the bottom query is the activating (colored in yellow). Note
that when transitioning back from the bottom query to the top query the logic is
reversed.
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Source

Aggregate Filter

Sink

Aggregate Filter

Sentry

Sentry

Observer

Observer

Drop tuples with ts:
 >= (ts + (WA - (ts mod WA))) + WS

Drop tuples with ts: 
 < (ts + (WA - (ts mod WA))) + WS

Allow tuples with ts:
<= (ts + (WA - (ts mod WA))) + (WS -WA)

Allow tuples with ts:
 >= ts

Activating query

Deactivating query

Figure 3.8: Allowed and dropped tuples based on timestamps in order to make a
safe transition between the queries.

This ensures that the ongoing windows are completed and neither lost nor duplicated
output is present during a transition. Furthermore, if several stateful operators are
present in a query, a safe transition is achieved by utilizing the largest window size
and its corresponding window advance in Equation 3.1 and 3.2.

Observation. Given a query, Q, equipped with two or more stateful operators,
W1, W2, . . . , Wn, the overlapping period required to achieve a safe transition can
be defined using the largest window size, WSmax and window advance, WAmax of
the respective stateful operators.

Example. During a safe transition, one last correct window needs to be finished in
qD before qA can be considered active and reliably start to process tuples, without
the possibility of producing either duplicated nor incorrect output. Assume two
stateful operators, W1 and W2. Let the window size of W1 be 120 and the window
size of W2 be 30.

If two or more stateful operators are placed subsequent of each other in a query,
the tuple created by the former operator will be the input of the latter and so on.
In this scenario, the point in time where one window of W1 has been completed,
three windows of W2 has been completed. Additionally, the point in time where the
second window of W1 is created, the fourth window of W2 will be created as well.
This means that a tuple that is produced by the first operator, W1 will be part of
the window that is produced at the same time in the second operator, W2 and so
on.

If WSmax, and consequently the last correct window, would be based on W2, it would
imply that W1 would never be allowed to be complete in neither qD nor qA. Thus
the produced tuple will be incorrect and be (incorrectly) considered residual in qD

and not early in qA. This is due to its production being after the period of what is
defined as the last correct window. Notice that this will be the case regardless of
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the order of the stateful operators, see Figure 3.9.

W1 first:

Operator W1:
WS = 30

Operator W2:
WS = 120

Operator W2:
WS = 120

Operator W1:
WS = 30

Time Time

W2 first:

= window output = window 

last correct window:
WS = 30

Produced after "last correct window"
 & incorrect!

last correct window:
WS = 30

Produced after "last correct window"
 & incorrect!

Figure 3.9: The leftmost illustration depicts W1 as the first operator, its produced
tuples will be the input of W2. The rightmost illustration depicts W2 as the first
operator, its produced tuples will be the input of W1. Both scenarios will produce
incorrect tuples that are after WSmax and thus not part of the last correct window.

By basing WSmax on the largest window size, it allows qD to create one last correct
output before qA can reliably take over. This is illustrated in Figure 3.10.

Produced within the "last correct window" 
& correct!

Time

= window output = window 

W1 first:

Operator W2:
WS = 120

Operator W1:
WS = 30

Time
W2 first:

Operator W2:
WS = 120

Operator W1:
WS = 30

last correct window:
WS = 120

last correct window:
WS = 120

Produced within the "last correct window" 
& correct!

Figure 3.10: The leftmost illustration depicts W1 as the first operator, its produced
tuples will be the input of W2. The rightmost illustration depicts W2 as the first
operator, its produced tuples will be the input of W1. Both scenarios will produce
correct tuples that are within WSmax, and thus part of the last correct window.

The last correct window will also be dependent on a window advance as it will
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set how often windows are finished and how many windows run in parallel, thus it
changes how windows are aligned, no matter the size of them.

Note: When all operators window advance (and size) are multiples of each bigger
advance (and window), then the bigger advance will always end at the same time
as one with smaller advance. The smaller will always finish one or more windows
before the bigger finishes one.

Thus to ensure that windows still ends at the same time, in the same manner as
Figure 3.10 illustrates, the same logic for choosing the largest window size holds for
window advance as well; setting the WAmax to the largest window advance ensures
that tuples from the shorter windows advance are part of a bigger and the bigger is
allowed to finish.

Note: In this thesis, the use cases used in the evaluation does not involve window
sizes nor window advances which are not multiples of each bigger size and advance
respectively. Therefore, Theorem ?? does not cover such a scenario either.

3.4 Activating and deactivating provenance
By using the Twin query approach together with the Ward operators (Sentry &
Observer), activating/deactivating provenance can be achieved by transitioning be-
tween the non-instrumented and the instrumented query. To preserve the correctness
of the potential output produced during a transition, the safe transition technique
presented in Section 3.3.2 is used.

In this section, the required steps of activating and deactivating provenance are
presented. The placement of the Sentry operators will be succeeding the source,
while the Observer operators will be prior to the Sink. This is referred to as the
default scheme.

3.4.1 Activating provenance
Regardless of the placement of the Ward operators, activating provenance, i.e., tran-
sitioning to the instrumented query will consist of three steps. Initially, the Sentry
located in the non-instrumented query will allow tuples while the Sentry located in
instrumented query will deny tuples.

First, whenever an Observer is triggered (based on its user-defined condition) in the
non-instrumented query, it will notify a Sentry placed in the instrumented query
to start allowing tuples. At this point, a transition between the queries will begin.
Secondly, the Sentry operators will communicate at which point in time the latter
query should stop ingesting tuples, to achieve a safe transition without loss nor du-
plication of potential output. Lastly, the Observer operators placed in both queries
will determine which tuples are considered to be residual/early and deny them.
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3.4.2 Deactivating provenance
By activating provenance with the occurrence of an output, deactivation should oc-
cur with the absence of output. A user-defined condition can be used to decide when
provenance is no longer required, e.g., after a given time. Furthermore, an Observer
in the instrumented query can delay the transition back to the non-instrumented
query, if output continues to be present. This will be dependent on how the condition
is defined, and will naturally be different depending on the type of applications.

Deactivation will occur when the used-defined condition in an Observer placed in the
instrumented query is met. It will notify a Sentry in the non-instrumented query to
start to allowing tuples. Similarly to the activation procedure, the Sentry operators
will communicate to achieve a safe transition and the Observers will determine which
tuples are defined as early/residual in both of the queries.

Adjusting the example query presented in Section 2.1.3, to be able to both activate
and deactivate provenance is illustrated in Figure 3.11.

Source

Aggregate Filter

Sink

Aggregate Filter

Sentry

Sentry

Observer

Observer

Figure 3.11: Query which can both activate and deactivate provenance by hav-
ing Sentry- and Observer operators placed in both the non-instrumented- and the
instrumented query.

3.5 Partial activation and deactivation
As tuples progress further through a pipeline, i.e., appearing closer to a sink, it
becomes more likely for a tuple to actually reach a sink. This means that it might
be more likely for a critical event to become produced.

This can be utilized to make the activation and deactivation of the instrumented
query more dynamic and in a partial manner. Parts of the instrumented query can
be activated preemptively, i.e., before a sink tuple is produced, if it seems likely that
a critical event is about to happen, and reversely, parts can be deactivated as the
situation changes and a critical event seems less likely.

Note that either the non-instrumented query or the instrumented query has to be
active at all time, thus whenever the entire instrumented query is not active, the
entire non-instrumented query has to be active.
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This might mean that some instrumented operators might run in vain and slightly
increase the hardware demand, but it could lower the reconfiguration time, and
consequently increase the amount of provenance enough to motivate it.

3.5.1 Partial activation
Partial activation can be achieved by adding more than one Observer to the non-
instrumented query. The instrumented query will then be split into parts, where a
Sentry is responsible for each part. Each Observer is then connected to a Sentry in
the instrumented query, which is responsible for allowing or denying tuples to one
or several operators. Thus, each Observer activates one part of the query, until the
entire query is active and only then deactivate the entire non-instrumented.

The placement of the Sentries does not necessarily have to be at the corresponding
Observer placement in the opposite query.

For the example query in Section 2.1.3, an Observer can be added after the Aggregate
operator, NI_Obs1 in Figure 3.12, which observes tuples in that part of the query
depending on a user-defined logic. NI_Obs1 will then activate the first instrumented
Sentry, I_Sentry1, which will allow tuples to reach the instrumented Aggregate op-
erator. Then NI_Obs2, will activate the remaining part with I_Sentry2. When the
entire instrumented query is activated and ready to take over, the non-instrumented
will be deactivated, as illustrated in Figure 3.12.

Source

Aggregate Filter

Sink

Aggregate Filter I_Obs1

NI_Sentry1

I_Sentry1

NI_Obs2NI_Obs1

I_Sentry2

Figure 3.12: Illustration of multiple Observers being distributed in a query. The
arrows points towards which Sentry each Observer control.

With this, the activation latency can be significantly lowered and be done in a partial
manner, where if the Observer is placed nearer the sink in a query, it indicates that
the chance of a tuple reaching a sink, i.e., a critical event, is more likely. Thus the
placement of the Observers becomes a function of how likely a critical event is and
how long the reconfiguration time becomes.

Reverting activated parts

When the instrumented query is not fully active and the tuples do not traverse
further in to the instrumented query fast enough, or some other user-defined condi-
tion says that a critical event is unlikely, then one or more Sentries that had been
activated temporarily can be deactivated again.
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3.5.2 Partial deactivation
The core idea of partially activating the instrumented query is to minimize lost
provenance by lowering the reconfiguration time. Partially activating the non-
instrumented query when deactivating the instrumented query will not affect the
reconfiguration time with regards to lost provenance. Minimizing lost provenance
can only be achieved by having parts of the instrumented query already active when-
ever it should be activated.

Thus, there is nothing to gain in partial deactivation, i.e., partially activating the
non-instrumented query preemptively when the instrumented query is about to de-
activate. A lower reconfiguration time from instrumented to non-instrumented will
not affect the reconfiguration time from non-instrumented to instrumented, instead
it would only add unnecessary overhead, i.e., more processing and memory usage
that does not lead to gained provenance.
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4
Algorithmic implementation

This chapter covers the implementation of the methodology presented in the previous
chapter. The implementation of the Ward operators will be described as well as how
a safe transition is achieved. In this thesis, a prototype of GeneaLog is used [7], in
order for it to be extended for the methodology presented in the previous chapter.

In Section 4.1, communication among the Ward operators is explained with the us-
age of shared variables. In Section 4.2, the implementation of the Ward operators
is described with the usage of Apache Flinks API. In Section 4.3, the implementa-
tion on a safe transition between the queries is described followed by illustrations
presenting the transition of states when activating and deactivating provenance. In
Section 4.4, implementation optimizations are discussed.

4.1 Communication between the Ward operators
In Flink, a task is split into several parallel instances, by adjusting the parallelism-
parameter for either an entire query or separate operators (see Section 2.2.2). Since
each parallel instance is a copy of the same object (such as operators or global
variables), the initial objects will be deserialized and then serialized, resulting in
additional instances of it, depending on the degree of the parallelism [17].

References assigned to the initial objects will not work as intended, since the ac-
tual objects that are being used are the ones that have been serialized, while the
references belongs to the initial objects (which have been deserialized).

Furthermore, as of Apache Flink 1.10.0 [12], there is no upstream or downstream
communication functionality between the operators. In this implementation, the
communication between the Ward operators is done via a centralized entity using
shared variables. Note that this restrains the extent of achievable distributed exe-
cution.

To allow the Ward operators to communicate with each other via shared variables,
a class is used to hold the variables, which follows the singleton design pattern to
ensure that only one instance of the class is created [18]. Furthermore, to ensure
that the shared variables are only allocated memory once and that there will not be
several instances of it, they are declared static.
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4.1.1 Shared variables
The shared variables used in this implementation consists of maps and boolean
variables, which are used for the Ward operators to share their state and timestamp
of specific tuples.

Observer states

Initiating a transition between the two queries will depend on the state of the Ob-
servers. The state of an Observer is represented as an ObserverState object, con-
taining two boolean variables, initTransition and initTransitionAcknowledge.
It is used for the Ward operators to differentiate whether a transition should take
place or not. The functionality of initiating and acknowledging a transition will be
further explain in Section 4.2.2.

The state of the Observers is stored into a shared map, called observerStates, where
the key will be the ID of the Observer and the value will be their ObserverState.

Sentry states

When a Sentry notices a change in state in its Observers state, a transition to the
other query has been requested. The Sentries in each respective query will have
to coordinate to achieve a safe transition. They require to know the timestamp of
the latest processed tuple and the state of each Sentry, as describe in Section 3.3.1.
With this, two additional maps are required, sentryStates and timestamps, which
contains the state of each Sentry and the timestamp of its first processed tuple upon
activation, startTS.

Direction variables

Activation and deactivation shares the same semantics, but their respective proce-
dure needs to be distinguishable, as a transition can either be from the instrumented
to the non-instrumented query or vice versa.

This is due to the uncertainty of sink tuples with the placement of an Observer being
prior to the sink in the instrumented query. Thus, an Observer can not solely be
responsible for deactivating provenance, this is further explained in Section 4.3.2.
This means that the Ward operators have to be able to distinguish between an
activation of provenance and a deactivation, when executing a transition.

To distinguish whether a transition is activating or deactivating, two global vari-
ables, isProvActivating and isProvDeactivating are used. Both variables are
represented as TransitionState objects containing two boolean variables, early
and residual, representing if early and/or residual tuples are potentially present in
any of the two queries. Thus, if both early and residual are false, the state of a
direction variable is false and that a transition in that "direction" is not ongoing.

When a transition is initiated, the state of both early and residual is set to true,
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and as long as at least one of them remain true, the whole state will remain true
as well. This meaning that as long as there might be residual and/or early tuples
left in qD the transition is still considered ongoing.

User-defined condition for deactivation

In this implementation, the user-defined condition for deactivating the instrumented
query consist of transitioning back to the non-instrumented query, if there is no
output produced within a user-defined amount of event time, called timeTrigger.
If an output is present in the Observer, the deactivation will occur when a Sentry
has processed a tuple with a timestamp greater than the timestamp of the latest sink
tuple added with timeTrigger. The timestamp of the latest sink tuple is represented
as a global variable called latestSinkTuple, which initially is set to 0 and will be
updated if the Observer in the instrumented query processes a tuple.

Concurrency control

With multiple threads that will try to access the maps simultaneously, synchroniza-
tion is required to make it thread-safe. This is achieved by using an alternative
implementation of the map data structure, namely ConcurrentHashMap [19].

Additionally, to prevent inconsistency, threads must be guaranteed to read the lat-
est updated value. When multiple threads are reading from/writing to the same
variable, they may copy it from main memory into a CPU cache, for performance
reasons. As threads can belong to different CPUs, these values can in turn also re-
side at different CPU cache. Thus, there is no guarantee that the value that reside
in the different CPU caches, is the same value as the one stored in main memory.
Declaring the variables as volatile, will ensure that the threads will read and write
the value of the variable from/to main memory ,instead of the CPU caches [20].

4.2 Ward operators
The Ward operators are both based on the Filter operator in Apache Flink. In
Flink’s API, a custom operator-function can be declared Rich, to be able to use
additional methods for initialization and tear-down. The open()-method is called
prior the actual working-method (e.g. filter, map), which makes it suitable for ini-
tialization for the Ward operators. For each respective Ward operator, the open()-
method is used to insert its initial state into the maps. As both of them require the
open()-method, they both extend the abstract class RichFilterFunction [21].

Note: In Flink, Filter operators are stateless operators, however in this imple-
mentation they will be considered active or inactive (meaning allowing or dropping
tuples), which will be represented as a change in state. Thus, the Ward operators
can be considered stateful in this implementation.

As tuples will eventually be transformed throughout a query, they will be represented
as different Java objects. Since the location of the Ward operators are not set, an
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operator will need to handle different tuple types. In Flink, generics are used to
reference the tuple types, thus the Ward operators are declared as generic.

4.2.1 Sentry operators
A Sentry operator is created by defining a new instance of the Sentry class. It is
then placed in a query, acting as a custom Filter operator.

When creating a new instance of a Sentry, it is assigned an ID and an initial state.
The ID will be used as the key in the shared maps, which the Ward operators will use
to retrieve the state and timestamp of a specific Sentry, to achieve a safe transition.

If a Sentry is located prior to one or several stateful operators, they will be depen-
dent on the Sentry’s state, since the Sentry controls the progression of tuples for
the remaining operators in a query. Thus, to achieve a safe transition, the Sentry
operators (in each query) are responsible for these stateful operators and will have
to coordinate at which point in time they should start and stop ingesting tuples
respectively. This means that a Sentry requires the ID of another Sentry, defined as
a neighboring Sentry, as well as its Observer and its neighboring Observer.

Furthermore, the Sentry operator requires to know the largest window size and its
window advance of the stateful operator(s) under its control.

4.2.2 Observer operators
An Observer is created by defining a new instance of the Observer class. Similarly
to a Sentry, it is placed in a query as a custom Filter operator.

The Ward operators communicate with each other by using their unique ID, which
is required for an Observer as well. Furthermore, an Observer requires an initial
state, which is represented as an ObserverState object.

ObserverState

An Observer’s state is represented as an object which consists of two boolean vari-
ables, initTransition and initTransitionAcknowledge. Both of these two vari-
ables are used when transitioning between the queries by the Sentry operators. The
initTransition variable is initially set to false and set to true when a transition
is requested, and set back to false when the request has been acknowledged. Sim-
ilarly, initTransitionAcknowledge is initially set to false and set to true when a
transition has been acknowledged by a Ward operator in the other query, and set
back to false when the transition is underway.

A Sentry knows if a transition have been requested with a change of state in
initTransition, and only then will change the value of initTransitionAcknowledge
to true, to inform the Sentry in the opposite query that it has acknowledged and
started the initiation of a transition.
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Dropping residual and early output

During a safe transition, the Observers are responsible for dropping the (potential)
residual or early outputs produced in their respective query (See Section 3.3). An
Observer needs to know the ID of the closest upstream Sentry in the same query,
to know whenever if it has changed its state. Additionally, it needs to know the ID
of a neighboring Sentry, to find the timestamp of the first processed tuple. Lastly,
to fully be able to drop residual or early tuples, an Observer requires to know the
largest window size and the largest window advance.

Observable tuples

An Observer operator should be able to observe each of its incoming tuples and
depending on the information it is able to derive from the tuple, change its state.
With several different tuple types present in a query, an Observer needs to be able
to observe them separately, since different tuple types will require different observe
logic (since they are produced at different stages in a pipeline).

To achieve this, an interface is used containing one method called observe(). By
extending each of the tuple classes with this interface, each of them can have user-
defined logic for the Observer to use, to decide whether to change its state.

The observe()-method is then used in an Observers Filter function.

4.3 Safe transition between the queries
Initially, the application will run the non-instrumented query and then transition to
the instrumented query, when an Observer placed in the former query changes its
state. Depending on the condition defined in an Observer placed in the instrumented
query, a transition back to the non-instrumented query could happen.

When transitioning from one query to the other, a deactivated Sentry will start
ingesting tuples as soon as it sees a change in the opposite query’s Observer state.
Simultaneously, it will communicate with its neighboring Sentry by informing it of
the timestamp of the first tuple it ingested. With this, the Sentry in the former
query will define its scope, as presented in Section 3.3.2, to ensure that its stateful
operators produce correct results. Based on the scope, the Observers in both queries
will determine what tuples are residual or early respectively.

With transitions being changes in the direction variables and the Sentry operators
state, a safe transition can be illustrated as a state machine, see Figure 4.1. As shown
in the Figure, the instrumented Sentry is denoted as I_S and the non-instrumented
Sentry as NI_S. State 1 to State 3 represent the states for activating provenance,
while State 5 to State 7 represent the states for deactivating provenance. State
0 represents the state when the provenance is deactivated while State 4 represents
the state when provenance is active.
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I_S.state = false
NI_S.state = true

isProvActivating = false
isProvDeactivating = false

I_S.state = false
NI_S.state = true

isProvActivating = true
isProvDeactivating = false

I_S.state = true
NI_S.state = true

isProvActivating = true
isProvDeactivating = false

I_S.state = true
NI_S.state = false

isProvActivating = true
isProvDeactivating = false

I_S.state = true
NI_S.state = false

isProvActivating = false
isProvDeactivating = false

I_S.state = false
NI_S.state = true

isProvActivating = false
isProvDeactivating = true

I_S.state = true
NI_S.state = true

isProvActivating = false
isProvDeactivating = true

I_S.state = true
NI_S.state = false

isProvActivating = false
isProvDeactivating = true

Figure 4.1: Representation of the possible states in the transition state machine.

In the following sections, achieving a safe transition with the progression of states will
be explained when activating and deactivating for the default scheme presented in
Section 3.4. To ease the explanation, the Ward operators located in the instrumented
query will be denoted as SI for the Sentry and OI for the Observer, for the non-
instrumented query, SNI and ONI .

4.3.1 Activating provenance
As soon as ONI receives an input (sink tuple), a transition to the instrumented
query will happen. Before transitioning to the first state of activating provenance,
State 1, ONI checks the following conditions to ensure that its in the correct state,
State 0, see Listing 4.1.

1instrumentedSentry.state = false
2nonInstrumentedSentry.state = true
3isProvActivating = false
4isProvDeactivating = false

Listing 4.1: Conditions for State 0.

When the following conditions are met, the initiation of a transition can start.

4.3.1.1 Initiating a transition: Non-instrumented query

Before ONI initiates a transition (while still in State 0), it has to verify that there
is no other transition that has been requested, or that itself already has requested
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a transition. If not, ONI will initiate a transition by changing the state of both
initTransition and isProvActivating, see Listing 4.2 and Figure 4.2.

1o_ni = NonInstrumentedObserver.observerState
2

3if (in State 0)
4if( !o_ni.initTransition
5&& !o_ni.initTransitionAcknowledge)
6o_ni.initTransition = true
7isProvActivating = true

Listing 4.2: Pseudocode for initiating a transition re-
quest to the instrumented query. This is only executed
by ONI in State 0.

Initiation of a transition 0

1

I_S.state = false
NI_S.state = true

isProvActivating = false
isProvDeactivating = false

I_S.state = false
NI_S.state = true

isProvActivating = true
isProvDeactivating = false

Figure 4.2: Initiation of
a transition. State 0 −→
State 1.

With this, the transition changes it state from State 0 to State 1.

4.3.1.2 Initiating a transition: Instrumented query

When in State 1, SI will notice that ONI has requested a transition, with the change
in state of initTransition. Furthermore, it has to verify that it has not already
acknowledged the transition, initTransitionAcknowledge. If not, it will acknowl-
edge the transition request, by changing the state of initTransitionAcknowledge
and initTransition.

When the transition has been acknowledged, SI will change its own state and start
to ingest tuples. The timestamp of the first tuple it processes will be written to the
shared map, timestamp, which is accessible to the Ward operators in the opposite
query, see Listing 4.3 and Figure 4.3.
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1o_ni = nonInstrumentedObserver.observerState
2s_i= instrumentedSentry.state
3ts = timestamps
4startTS = firstTupleProcessed.timestamp
5

6if(in State 1)
7if(o_ni.initTransition
8&& !o_ni.initTransitionAcknowledge)
9o_ni.initTransition = false
10o_ni.initTransitionAcknowledge = true
11s_i = true
12ts.put(startTS)

Listing 4.3: Pseudocode for acknowledging the tran-
sition request. This is only executed by SI in State
1.

Acknowledging the
transition

1

2

I_S.state = false
NI_S.state = true

isProvActivating = true
isProvDeactivating = false

I_S.state = true
NI_S.state = true

isProvActivating = true
isProvDeactivating = false

Figure 4.3: Acknowl-
edging the initiation of a
transition. State 1 −→
State 2.

Now, with both queries processing tuples, the transition changes it state from State
1 to State 2, and the procedure of achieving a safe transition can begin.

4.3.1.3 Safe transition: Deactivating the non-instrumented query

In State 2, SNI will notice that SI has become active, with the change of state in
initTransitionAcknowledge. SNI resets the state of initTransitionAcknowledge,
thus completing the initiation of the safe transition. Simultaneously, it deactivates
itself with the occurrence of a timestamp exceeding the defined threshold (see Equa-
tion 3.2), see Listing 4.4 and Figure 4.4.

Note: In both State 0 & State 3, the value of both initTransition &
initTransitionAcknowledge is false. This is the condition for initiating a new
transition (to instrumented query), however the Observer will not be able to start
a new transition, as it also requires the transition to be in State 0.
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1o_ni = nonInstrumentedObserver.observerState
2s_ni = nonInstrumentedSentry.state
3startTS = instrumentedSentry.startTS
4tuple = current tuple
5

6if (in State 2)
7if(o_ni.initTransitionAcknowledge
8&& !o_ni.initTransition
9&& canDeactivate(tuple))
10o_ni.initTransitionAcknowledge = false
11s_ni = false
12

13boolean canDeactivate(tuple t)
14return (t.timestamp
15>= startTS
16+ (windowAdvance
17− (startTS mod windowAdvance))
18+ (windowSize − windowAdvance))

Listing 4.4: Pseudocode to mark that a transition has
been acknowledged and initiated. This is only executed
by SNI in State 2.

Deactivating the non-
instrumented sentry

2

3

I_S.state = true
NI_S.state = true

isProvActivating = true
isProvDeactivating = false

I_S.state = true
NI_S.state = false

isProvActivating = true
isProvDeactivating = false

Figure 4.4: Deactivat-
ing SNI . State 2 −→
State 3.

With this, SNI has stopped ingesting tuples and SI has started ingesting tuples. This
means that the transition will progress to State 3 and the potentially produced early
tuples in the instrumented query- and the residual tuples in the non-instrumented
query needs to be dropped.

Note: When SI starts to ingest tuples in State 2, the potentially early output can be
produced before or during the production of the last correct window in qD. Similarly,
tuples will be considered residual after the last correct window is completed, when
reaching State 3. This means that even though the early tuples are dropped in qA,
there might still be residual tuples present in qD. Thus, dropping early tuples can
occur both in State 2 and State 3, while dropping residual tuples only occurs in
State 3.

4.3.1.4 Safe transition: Dropping early tuples in the instrumented query

The early output produced in qA has to be dropped, since the initial output might
be incorrect (see Section 3.3).

OI determines if a tuple is considered to be early by following Equation 3.1 (pre-
sented in Section 3.3.2). If the timestamp of the incoming tuples is lower than the
timestamp of the first complete window in the qA, the tuples are considered to be
early and are dropped, see Listing 4.5 and Figure 4.5.
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1startTS = instrumentedSentry.startTS
2tuple = current tuple
3

4if (in State 2 || State 3)
5if isEarlyTuple(tuple.timestamp)
6drop tuple
7

8boolean isEarlyTuple(tuple t)
9return t.timestamp < startTS
10+ (windowAdvance
11− ( startTS mod windowAdvance))
12+ windowSize

Listing 4.5: Pseudocode for determining and
dropping early tuples. This is executed by OI in
both State 2 and State 3.

Dropping early tuples

2

3

I_S.state = true
NI_S.state = true

isProvActivating = true
isProvDeactivating = false

I_S.state = true
NI_S.state = false

isProvActivating = true
isProvDeactivating = false

Figure 4.5: Dropping early
tuples. Starts in State 2 and
is ongoing during State 3.

Note: By placing the Observer prior to the sink, the Observers actions are dependent
on the (potential) sink tuples. Since there is no guarantee that sink tuples are
produced, the transition might not progress further than State 3. This means that
a transition back to the non-instrumented query would not be possible. Thus, to
ensure the progression to State 4, the Observers utilize watermarks (see Section
2.1.5). This will be further explained in Section 4.3.1.6.

Before progressing to State 4, all residual tuples has to be dropped.

4.3.1.5 Safe transition: Dropping residual tuples

ONI determines if a tuple is considered to be residual by following Equation 3.1
(presented in Section 3.3.2). If the timestamp of the incoming tuples is larger or
equal to the timestamp of the first complete window in qA, the tuples are considered
to be residual and are dropped, see Listing 4.6 and Figure 4.6.
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1startTS = instrumentedSentry.startTS
2tuple = current tuple
3

4if (in State 3)
5if (isResidualTuple(tuple.timestamp))
6drop tuple
7

8boolean isResidualTuple(Tuple t)
9return t.timestamp >= startTS
10+ (windowAdvance
11− (startTS mod windowAdvance))
12+ windowSize

Listing 4.6: Pseudocode for dropping residual
tuples. This is executed by ONI in State 3.

3
I_S.state = true
NI_S.state = false

isProvActivating = true
isProvDeactivating = false

Dropping residual
tuples

Figure 4.6: Dropping resid-
ual tuples. Occurs in State
3.

4.3.1.6 Ensuring progression to State 4

Due to the potential lack of tuples in the Observers, to ensure progression of state,
watermarks can be utilized as they will progress through a query, regardless of if a
query is active or inactive. The goal of watermarks is to synchronize the operators,
which means that watermarks are not processed as normal tuples. This means that
even if no sink tuples are produced, watermarks will still reach the Observers.

The functionality of watermarks can be used by the Observers to ensure that the
transition progresses to State 4, even if no sink tuples are produced. If the
timestamp of a watermark indicates that all early and residual tuples are done,
then the Observers in each query changes the state of early and residual in
isProvActivating respectively, and the transition progresses to State 4.

Early tuples finished

OI will stop consider the tuples to be early with the occurrence of a watermark. As
mentioned in Equation 3.1, every tuple processed before the point in time where the
first correct window has finished in qA, tuples are considered early, and are dropped.
When a watermark arrives with a value representing the point in time where the
first correct window in qA have been completed, the tuples are no longer considered
to be early. With this, the transition is complete from qA’s point of view and the
state of early in isProvActivating is changed, see Listing 4.7 and Figure 4.7.
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1startTS = instrumentedSentry.startTS
2var timeTrigger = user−defined

deactivation condition in event time
3wm = current watermark
4

5if (in State 3)
6if (isEarlyTuplesFinished(wm))
7isProvActivating.early = false
8

9boolean
isEarlyTuplesFinished(Watermark
w)

10return w.timestamp >= startTS
11+ (windowAdvance
12− ( startTS mod windowAdvance))
13+ windowSize

Listing 4.7: Pseudocode to ensure that the
transition can move into State 4. This is only
executed by OI in State 3.

3

4

I_S.state = true
NI_S.state = false

isProvActivating = true
isProvDeactivating = false

I_S.state = true
NI_S.state = false

isProvActivating = false
isProvDeactivating = false

Early tuples done

Residual tuples done

Figure 4.7: With an ab-
sence of early tuples, the
transition progressed to its fi-
nal state. State 3 −→ State
4.

However, the transition can not move to the final state of activating provenance,
State 4, until the state of residual in isProvActivating is changed.

Residual tuples finished

Similarly, ONI determines that no more residual tuples will arrive with the occur-
rence of a watermark. As mentioned in Equation 3.1, every (potential) tuple which
arrives at ONI after the point in time where the first correct window in qA is com-
plete, are considered residual and needs to be dropped. This means that there will
be either one or several windows which will contribute to potential residual tuples.

When a watermark arrives with the value representing the point in time where every
ongoing windows that contributes to residual tuples are complete. With this, the
transition is complete from the qD’s point of view and the state of residual in
isProvActivating is changed, see Listing 4.8 and Figure 4.8
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1startTS = instrumentedSentry.startTS
2var timeTrigger = user−defined deactivation

condition in event time
3watermark = current watermark
4

5if (in State 3)
6if (isResidualTuplesFinished(watermark))
7isProvActivating.early = false
8

9boolean
isResidualTuplesFinished(Watermark w)

10return w.timestamp >= startTS
11− (startTS mod windowAdvance))
12+ 2 ∗ windowSize

Listing 4.8: Pseudocode to ensure that the tran-
sition can progress to State 4. This is only exe-
cuted by ONI in State 3.

3

4

I_S.state = true
NI_S.state = false

isProvActivating = true
isProvDeactivating = false

I_S.state = true
NI_S.state = false

isProvActivating = false
isProvDeactivating = false

Early tuples done

Residual tuples done

Figure 4.8: Transitioning to
State 4, with the absence of
residual tuples.

Note: In Listing 4.8, the method isResidualTuplesFinished() finds the start of the
last correct window in qD and adds two whole windows sizes, in order to find the
end of last window with potential tuples in it, i.e., one whole window after the last
correct window in the qD.

With a state change in both early and residual, the transition is finished and
provenance has become activated.

4.3.1.7 Summary

In conclusion, activating provenance is the shift from State 0 to State 4, as illus-
trated in Figure 4.9, which includes all necessary steps to perform a safe transition
from the non-instrumented query to the instrumented query.
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0

1

2

3

4

I_S.state = false
NI_S.state = true

isProvActivating = false
isProvDeactivating = false

I_S.state = false
NI_S.state = true

isProvActivating = true
isProvDeactivating = false

I_S.state = true
NI_S.state = true

isProvActivating = true
isProvDeactivating = false

I_S.state = true
NI_S.state = false

isProvActivating = true
isProvDeactivating = false

I_S.state = true
NI_S.state = false

isProvActivating = false
isProvDeactivating = false

Initiation of a transition

Acknowledging the
transition

Deactivating the non-
instrumented sentry

Early tuples done

Residual tuples done

Dropping residual
tuples

Dropping early tuples

Figure 4.9: The transition in states to activate provenance and achieving a safe
transition.

4.3.2 Deactivating provenance
With the occurrence of an output, the query should naturally keep ingesting tuples
and delay the transition. With the absence of output, a transition back to the
non-instrumented query should happen.

To deactivate, the transition has to be in State 4, see Listing 4.9.

1instrumentedSentry.state = true
2nonInstrumentedSentry.state = false
3isProvActivating = false
4isProvDeactivating = false

Listing 4.9: Conditions for State 4.

Note: The procedure of activating and deactivating provenance is symmetrical ex-
cept for the triggers in the respective Observers, ONI and OI . ONI will trigger a
transition with the occurrence of a tuple, while OI will trigger a transition with
the absence of tuples. With this, OI is required to have different behavior which
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is not dependent on tuples. As mentioned in Section 4.3.1.6, Observers can utilize
watermarks to perform actions with the absence of tuples. Furthermore, aside from
Section 4.3.2.1, the procedure explain in the remaining sections are identical to those
presented from Section 4.3.1.2 to Section 4.3.1.6.

4.3.2.1 Initiate a transition: Instrumented query

A transition back to the non-instrumented query should occur if no tuple has been
processed by OI for a certain period of time, which will be known utilizing water-
marks.

The period of time before it deactivates is set by the timestamp of the latest pro-
cessed tuple in OI , latestSinkTuple and the user-defined condition triggerTime.
If no tuples arrive at OI , latestSinkTuple will never be set, then the condition
will instead be based on the first tuple processed by SI , startTS, together with the
user-defined condition triggerTime.

If the timestamp of a watermark indicates that no sink tuple has been processed
by OI during the user-defined period of time, a transition to the non-instrumented
query is initiated, see Listing 4.10 and Figure 4.10.

1o_i = instrumentedObserver.observerState
2startTS = instrumentedSentry.startTS
3st = instrumentedObserver.latestSinkTuple
4var timeTrigger = user−defined deactivation

condition in event time
5watermark = current watermark
6tuple = current tuple
7

8if (in State 4)
9st = tuple
10

11if(!o_i.initTransition
12&& !o_i.initTransitionAcknowledge
13&& deactivateCondition(watermark))
14o_i.initTransition = true
15isProvDeactivating = true
16

17boolean deactivateCondition(watermark w)
18return (w.timestamp > (st.timestamp +

timeTrigger))
19&& (w.timestamp > (startTS +

windowSize + timeTrigger))

Listing 4.10: Pseudocode for initiating the de-
activation of the instrumented query. This is only
executed by OI in State 4.

4

5

I_S.state = true
NI_S.state = false

isProvActivating = false
isProvDeactivating = false

I_S.state = true
NI_S.state = false

isProvActivating = false
isProvDeactivating = true

Initiation of a transition

Figure 4.10: Initiation of a
transition. State 4 −→ State
5.
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Note: The following sections include the procedure for performing a safe transition
from the instrumented query to the non-instrumented query. This is identical to the
procedure explained in Section 4.3.1.2 to Section 4.3.1.6.

4.3.2.2 Initiate a transition: Non-instrumented query

When in State 5, SNI will notice that a request for a transition has been made by
the instrumented query.

To transition into State 6, SNI will change its own state and acknowledge the
request by changing the state of initTransitionAcknowledge. Additionally, it will
save the timestamp of the first tuple it processes, see Listing 4.11 and Figure 4.11.

1o_i = instrumentedObserver.observerState
2s_ni = nonInstrumentedSentry.state
3ts = timestamps
4startTS = firstTupleProcessed.timestamp
5

6if (in State 5)
7if( o_i.initTransition
8&& !o_i.initTransitionAcknowledge)
9o_i.initTransition = false
10o_i.initTransitionAcknowledge =

true
11s_ni = true
12ts.put(startTS)

Listing 4.11: Pseudocode to acknowledge the
transition request and starting to ingest tuples.
This is only executed by SNI in State 5.

5

6
I_S.state = true
NI_S.state = true

isProvActivating = false
isProvDeactivating = true

I_S.state = true
NI_S.state = false

isProvActivating = false
isProvDeactivating = true

Acknowledging the
transition

Figure 4.11: Acknowledg-
ing the initiation of a transi-
tion. State 5 −→ State 6.

4.3.2.3 Safe transition: Deactivating the instrumented query

In State 6, SI will notice that SNI has become active. SI resets the state of
initTransitionAcknowledge, thus completing the initiation of the safe transition.
With the occurrence of a timestamp of a tuple exceeding the defined threshold (See
Equation 3.1), SI changes its state, see Listing 4.12 and Figure 4.12.
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1o_i = instrumentedObserver.observerState
2s_i = instrumentedSentry.state
3startTS = instrumentedSentry.startTS
4tuple = incoming tuple
5if (in State 6)
6if(o_i.state.initTransitionAcknowledge
7&& !o_i.initTransition
8&& canDeactivate(Tuple))
9s_i = false
10initTransitionAcknowledge = false
11

12boolean canDeactivate(Tuple t)
13return (t.timestamp
14>= startTS
15+ (windowAdvance
16− (startTS mod windowAdvance))
17+ (windowSize − windowAdvance))

Listing 4.12: Pseudocode to mark that a transition
has been acknowledged and initiated. This is only ex-
ecuted by SNI in State 6

6

7
I_S.state = false
NI_S.state = true

isProvActivating = false
isProvDeactivating = true

I_S.state = true
NI_S.state = true

isProvActivating = false
isProvDeactivating = true

Deactivating the
instrumented sentry

Figure 4.12: Deactivat-
ing the SNI . State 6 −→
State 7.

Similarly to the activation procedure, dropping the (potential) early tuples will occur
in both State 6 & 7 and for the (potential) residual tuples in State 7, as described
in Section 4.3.1.4 and Section 4.3.1.5. Similarly to Section 4.3.1.6, the state machine
will progress to State 0 with the absence of early and residual tuples.

4.3.2.4 Safe transition: Dropping early tuples in the non-instrumented
query

When the transition has reached State 6, both of the queries are active and are
processing tuples. As previously mentioned, the (potential) early tuples produced
in the non-instrumented query needs to be dropped.

ONI determines if a tuple is considered to be early by following Equation 3.1, pre-
sented in Section 3.3.2. If the timestamp of the incoming tuple is lower than the
timestamp of the first complete window in the non-instrumented query, the tuples
are considered to be early and are dropped, see Listing 4.13 and Figure 4.13.
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1startTS = firstTupleProcessed.timestamp
2tuple = current tuple
3

4if (in State 6 || State 7)
5if isEarlyTuple(tuple.timestamp)
6drop tuple
7

8boolean isEarlyTuple(tuple t)
9return t.timestamp <
10+ (windowAdvance
11− (startTS mod windowAdvance))
12+ windowSize

Listing 4.13: Pseudocode to find and drop early
tuples. This is executed by ONI in both State 6
and State 7.

6

7
I_S.state = false
NI_S.state = true

isProvActivating = false
isProvDeactivating = true

I_S.state = true
NI_S.state = true

isProvActivating = false
isProvDeactivating = true

Dropping early tuples

Figure 4.13: Dropping
early tuples. Starts in
State 6 and is ongoing
during State 7.

4.3.2.5 Safe transition: Dropping residual tuples in the instrumented
query

OI determines if a tuple is considered to be residual by following Equation 3.1,
presented in Section 3.3.2. If the timestamp of the incoming tuple is larger or equal
to the timestamp of the first complete window in the non-instrumented query, the
tuples are considered to be residual and are dropped, see Listing 4.14 and Figure
4.14.

1startTS = nonInstrumentedSentry.startTS
2tuple = current tuple
3

4if (in State 7)
5if (isResidualTuple(tuple.timestamp))
6drop tuple
7

8boolean isResidualTuple(tuple)
9return t.timestamp >= startTS +
10(windowAdvance − (startTS

mod
11windowAdvance)) + windowSize

Listing 4.14: Pseudocode to find and drop resid-
ual tuples. This is executed by OI in State 7.

7
I_S.state = false
NI_S.state = true

isProvActivating = false
isProvDeactivating = true

Dropping residual
tuples

Figure 4.14: Dropping
residual tuples. Runs in
State 7.

4.3.2.6 Ensuring progression to State 0

As explained in Section 4.3.1.6, to ensure the progression of state, the Observers uti-
lize watermarks to determine when the residual and early tuples have been dropped.
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If the timestamp of a watermark indicates that all early and residual tuples are
done, then the Observers in each query changes the state of early and residual in
isProvDeactivating respectively, and the transition can progress to State 0.

Early tuples finished

ONI will stop treating the tuples as early when a watermark arrives with a value
representing the point in time where the first window in qA have been completed,
see Listing 4.15 and Figure 4.15.

1startTS = instrumentedSentry.startTS
2var timeTrigger = user−defined deactivation

condition in event time
3watermark = current watermark
4

5if (in State 7)
6if (isEarlyTuplesFinished(watermark))
7isProvActivating.early = false
8

9boolean isEarlyTuplesFinished(Watermark
w)

10return w.timestamp >= startTS
11+ (windowAdvance
12− ( startTS mod windowAdvance))
13+ windowSize

Listing 4.15: Pseudocode to ensure that the
transition can progress to State 0. This is only
executed by ONI in State 7.

0

7

I_S.state = false
NI_S.state = true

isProvActivating = false
isProvDeactivating = false

I_S.state = false
NI_S.state = true

isProvActivating = false
isProvDeactivating = true

Residual tuples done

Early tuples done

Figure 4.15: Dropping
early tuples. Runs in State
7.

However, the transition can not move to the final state of activating provenance,
State 0, until the state of residual in isProvDeactivating is changed.

Residual tuples finished

Similarly, OI determines that no more residual tuples will be present when a wa-
termark arrives with the value representing the point in time where every ongoing
window that will potentially contribute to the residual tuples are complete, see
Listing 4.15 and Figure 4.15.
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1startTS = instrumentedSentry.startTS
2var timeTrigger = user−defined deactivation

condition in event time
3watermark = current watermark
4

5if (in State 7)
6if (isNotEarlyTuple(watermark))
7isProvActivating.early = false
8

9boolean
isResidualTuplesFinished(Watermark w)

10return w.timestamp >= startTS
11− (startTS mod windowAdvance))
12+ 2 ∗ windowSize

Listing 4.16: Pseudocode to ensure progression
to State 0. This is only executed by OI in State
7.

0

7

I_S.state = false
NI_S.state = true

isProvActivating = false
isProvDeactivating = false

I_S.state = false
NI_S.state = true

isProvActivating = false
isProvDeactivating = true

Residual tuples done

Early tuples done

Figure 4.16: Completed
dropping the residual tuples.
Runs in State 7.

Summary

Deactivating provenance is achieved by shifting from State 4 to State 0, which
includes all necessary steps to perform a safe transition from the instrumented query
to the non-instrumented. Thus, combining all states, as in Figure 4.1 in Section 4.3,
and all state changes for both activating and deactivating provenance is illustrated
in Figure 4.17.
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Figure 4.17: The full transition of states of activating provenance and deactivating
provenance.

4.4 Implementation optimization
The communication between theWard operators is based on reading/writing to/from
variables placed in a centralized class (Singleton). As mentioned in Section 4.3, the
location of both Sentry operators is succeeding the source, which means that both
of the operators will make a decision on whether to allow or deny a tuple, for every
source tuple. Notice that for every tuple, the Sentries will poll the state of the
Observer and the other Sentry, to check if it should initiate a transition. This could
introduce a bottleneck in the implementation, which introduces extra overhead and
affects the performance of the approach.

4.4.1 Passive polling
Polling the state of the Observer for every incoming tuple will contribute to extra
overhead, since a function call will be made to fetch the state from the Singleton-
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class, for every tuple. By lowering the level of aggressiveness of the polling, less
function calls will be made and thus generate less amount of overhead. This was
done by introducing a variable, frequency, which controls how often the Sentries
should check the state of the Observer.

A Sentry operator is required to know both the largest windowSize and the largest
windowAdvance of the stateful operator(s), to perform a safe transition. This means
that the Sentry is able to determine the periodicity of when an output tuple will
potentially be produced by a stateful operator. If a stateful operator is placed
prior to an Observer, the input of the Observer will be the output of the stateful
operator. This means that the value of frequency can be configured in such a way
that the Sentry will poll whenever it knows there is a possibility that the Observer
has changed state, which is every time a window finishes. This is how the frequency
is set for this implementation.
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Evaluation

In this chapter, the evaluation of the Twin query implementation described in Chap-
ter 4 is presented.

The goal of this thesis (see Section 1.1.2) is to extend GeneaLog to be activated/de-
activated and evaluate if such extension could contribute to lower overhead.

As mentioned in Section 1.2, the procedure of activating/deactivating will produce
overhead and should not atone for the possible overhead that is lowered. The purpose
of the evaluation is to determine under what conditions an interactive behavior
is beneficial, by measuring the approach against GeneaLog with a set of metrics
and under different variants of three different use cases. Lastly, as opposed to
having GeneaLog generating provenance information continuously, the amount of
provenance information will be decreased.

5.1 Experiments
To evaluate the Twin query approach, different types of experiments are conducted.
Each experiment is based on a use case that have been used during the evaluation
of GeneaLog [7].

As previously mentioned, the goal of the evaluation is to explore the different sce-
narios where an interactive behavior is beneficial. With this, the use cases presented
in Section 5.2 are modified to introduce different scenarios which will be important
to determine under what conditions it becomes beneficial. The results from these
experiments are compared to experiments without any modifications. The different
scenarios include the following modifications.

• Different trigger conditions: Depending on how the trigger for deactivation
is defined, it will have an impact on the amount of provenance generated as
well as the number of transitions. By increasing the duration of the condition
(timeTrigger), it could result in an increase of provenance and a less amount
of transition as opposed to an decrease of provenance and a higher number of
transitions. This can in turn can have an impact on the performance, since
achieving a safe transition will contribute to overhead.
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• Increasing the workload of the query: Every use case presented in Section 5.2
is lightweight, with regards to the complexity the analysis. Due to this, the
source becomes a bottleneck, as the production of source tuples, serialization
and deserialization is what consumes most of the CPU. Similarities in the
use cases are that succeeding the source, a Filter is used which will only
allow tuples to progress from the source if they meet a certain condition. By
removing the the Filter in every variant, more tuples will progress the pipeline
which shifts the bottleneck from the source to the Aggregate instead. With
this, more tuples will be annotated and introduces a scenario where provenance
becomes a heavy operation.

• Different hardware: As GeneaLog is originally designed for resource con-
strained devices, evaluating the twin query approach on a more powerful ma-
chine such as a laptop would produce inaccurate results. By using a more
powerful machine, tuples will be processed faster, as more resources are avail-
able for Flink and its threads. With this, the reconfiguration time will be
affected which in turn affects the amount of provenance which is lost during a
transition. The experiments are conducted on two devices, namely an Odroid
and a laptop.

5.1.1 Hardware setup
The experiments are performed on two different machines, namely: An embedded
device, Odroid-XU4 with a Samsung Exynos5422 Cortex-A7 Octa core CPU 2Ghz
with 2 GB of memory, running Ubuntu 16.04.4. The second machine is a laptop,
ThinkPad X240 with a Intel i3-4030U (4) @ 1.900 GHz CPU and 8 GB of memory,
running Manjaro Arch Linux. See Table 5.1 for the configuration of the cluster. See
Table 5.1 for the configuration of the cluster.

Each experiment is executed on a locally deployed Flink cluster, with the configu-
ration presented in Table 5.1.

Apache Flink version 1.10 Stable
Heap size 1024 Mb
Memory process size 2000 Mb
Task slots 1
Parallelism 1

Table 5.1: Flink cluster configuration.

5.1.2 Evaluation metrics
To evaluate the Twin query approach, the following measurements are of interest.

1. Throughput: The average number of tuples per second that both queries can
process.
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2. Latency: The average time between the production of each sink tuple and the
reception of the latest source tuple contributing to it.

3. Reconfiguration time: The average time between the initiation of a transition
and its completion, between the two queries.

4. Memory: The average and maximum size of memory used by the process
running both queries.

5. Provenance: The amount of sink tuples that are produced, together with their
respective contributing source tuples.

6. Lost provenance: The amount of sink tuples that are lost by transitioning
between the two queries.

5.1.3 Experimental setup
Each experiment will consist of at least three different variants of a use-case, namely:

1. No provenance, NP: Only using standard operators.
2. GeneaLog, GL: Only using instrumented operators.
3. Twins, TW: Two queries where one is equipped with standard operators while

the other with instrumented operators.

As mentioned in Section 4.3.2.1, the user-defined condition for deactivating prove-
nance is if no sink tuple has been present within the time of the completion of four
windows, a transition back to the non-instrumented query happens. In order to de-
termine during which conditions an interactive behavior is feasible, different trigger
conditions are evaluated, to observe the differences between on how much time is
spent in the instrumented query as opposed to the non-instrumented query.

The following different trigger conditions is evaluated.

1. Two windows: With an decrease in the amount of time Twins remains in the
instrumented query, it would result in an higher amount of transitions and a
decreased amount of generated provenance information.

2. Four windows: Baseline condition.
3. Eight windows: With an increase would result in a lower amount of transition

and an larger amount of generated provenance information.

The experiments performed on the Odroid are at least five minutes long and the
results are averaged on at least five runs, while the experiments on the laptop are
at least one minute long and the results are averaged on at least five runs.

5.2 Use cases
In this section, the different use-cases, their structure and the results from the
experiments are presented.

The first two use cases, broken-down cars and car accidents are based on theLinear
road benchmark, a standard for studying SPE performance. It simulates vehicu-
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lar traffic on linear expressways, composed of predefined segments [22]. Every 30
seconds, position reports are forwarded by the cars traveling in the highway, and
carries a timestamp, unique id of the car, its speed and position.

< timestamp, carid, speed, position > . (5.1)

The third use-case, long-term blackout detection is based on a real-world Smart grid
infrastructure. Each source tuple are simulated measurements forwarded by smart
meters, every hour that carries a timestamp, unique id of the smart meter and its
consumption.

< timestamp, meterid, consumption > (5.2)

5.2.1 Broken-down cars query
The first query aims to detect broken-down vehicles. A car is considered to be
stopped if at least four consecutive position reports from the same car which report
zero speed and the same position.

The query consists of a Filter, which only forward tuples which contain speed == 0.
In order to determine that a car has stopped, an Aggregate is placed subsequently,
which groups each computation by the carid. The Aggregate maintains a window
size of 120 seconds and a window advance of 30 seconds. Lastly, a Filter is placed
which forwards tuples that contain a count of four in the same unique position.

To adjust the query for the methodology presented in Chapter 3, a Sentry is placed
succeeding the source and an Observer is placed prior to the sink, similarly to the
example query presented in Section 2.1.

This is illustrated in Figure 5.1, where the lower operators, colored in yellow, rep-
resent the instrumented operators while the upper operators, colored in green, rep-
resented non-instrumented operators.

Source

Aggregate Filter

Sink

Aggregate Filter

Sentry

Sentry

Observer

Observer

Filter

Filter

Figure 5.1: Query for detecting broken down cars.
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Experiment 1 - No modifications

(a) Box plot representation.

(b) Graph representation.

Figure 5.2: Results from evaluating the first use case with no modifications to the
query.

In Figure 5.2, the results from the first experiment for the first use case is presented.
Notice that in Figure 5.2b, TW show oscillating behavior in terms of throughput,
which is expected, since in theory it should transition between NP and GL. However,
it has a lower throughput compared to NP and GL. The overall provenance generated
by TW is approximately 60%, compared with GL.
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Experiment 2 - Increasing the workload

(a) Box plot representation.

(b) Graph representation.

Figure 5.3: Results from evaluating the first use case where the first Filter have
been removed, to increase the workload.

In Figure 5.3, the results from the second experiment is presented, where a higher
workload has been introduced to the query. As opposed to the previous experiment,
TW shows to oscillate between NP and GL, rather than below them, which is a more
desirable behavior. Notice that this change of behavior emerged by introducing a
heavier workload to the query. The overall provenance generated by TW is approx-
imately 75%, compared with GL. From Figure 5.3b, the amount of transitions can
be observed, which shows that the total amount of transitions performed is two, i.e.,
provenance is activated, deactivated and then activated again.
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Experiment 3 - Different hardware

(a) Box plot representation.

(b) Graph representation.

Figure 5.4: Results from re-running experiment 2 but on the a laptop instead of
an embedded device.

In Figure 5.4, the results from third experiment is presented. Here, the setup of the
second experiment is used again, but executed on a laptop instead of the Odroid.
Unalike the previous behavior, the oscillating behavior of TW cannot be observed
and the overall throughput is continuously decreased until the end of the experi-
ment, where it converges with GL. The total amount of provenance generated is
approximately 74%, compared with GL.
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Experiment 4 - Different trigger conditions

(a) Box plot representation.

(b) Graph representation.

Figure 5.5: Results from evaluating the first use case where the trigger condition
for deactivating is decreased from four windows to two windows.

In Figure 5.5, the results from the fourth experiment is presented. In this exper-
iment, the workload has been increased as well a decrease in the amount of time
before provenance becomes deactivated. Similarly to the previous experiment, TW
shows oscillating behavior between NP and GL, and the same amount of transitions
occur. By lowering the trigger condition, an increase in the number of transitions
back to the non-instrumented query can be expected, but comparing the results
with Figure 5.3, the same amount of transitions occurred. The amount of prove-
nance generated by TW is approximately 78% compared with GL, which is an 3%
increase as opposed to previous experiment.

Note: Notice that the last transition to the non-instrumented query occurs earlier as
opposed to the previous experiment, but results in the same amount of provenance.

70



5. Evaluation

(a) Box plot representation.

(b) Graph representation.

Figure 5.6: Results from evaluating the first use case where the trigger condition
for deactivating is increased from four windows to eight windows.

By increasing the duration, TW would generate provenance information for a longer
period of time, as opposed to the previous experiment. This can be observed in
Figure 5.6b, as a single transition to the instrumented query has taken place. This
resulted in an increased amount provenance, which is approximately 90% compared
with GL, which is an 12% increase compared with the previous experiment.

5.2.2 Car accidents query
The second query is an extension of the previous query, which aims to detect car
accidents. An accident is defined if at least two broken-down cars are found in the
same position at the same time. It has the same structure of operators, with an
additional Aggregate and Filter. The Aggregate groups each computation by the
tuples position attribute, with a window size and advance of 30 seconds. The output
produced carries the number of stopped vehicles observed for each position in the
same time window. In order to detect at least two broken-down cars, the Filter
only forwards tuples carrying a count value of at least 2.
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Similarly to the previous query, the Ward operators are placed alike. This is illus-
trated in Figure 5.7.

Source

Aggregate Filter

Sink

Aggregate Filter

Sentry

Sentry

Aggregate

Aggregate

Observer

Observer

Filter

Filter

Filter

Filter

Figure 5.7: Query for detecting car accidents.

Experiment 1 - No modifications

(a) Box plot representation.

(b) Graph representation.

Figure 5.8: Results from evaluating the second use case with no modifications to
the query.

In Figure 5.8, the results from the first experiment is presented. As previously
observed in Figure 5.2, TW shows the same behavior by oscillating below both
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GL and NP rather than between them. The amount of provenance generated is
approximately 54% compared with GL.

Experiment 2 - Increasing the workload

(a) Box plot representation.

(b) Graph representation.

Figure 5.9: Results from evaluating the second use case where the first Filter is
removed, to increase the workload.

In Figure 5.9, the results from the second experiment is presented. As observed in
Figure 5.9b, TW shows oscillating behavior between NP and GL rather than below
then, when the workload of the entire query is increased. Notice that this occurred
for the first experiment as well, as observed in Figure 5.3. The amount of provenance
generated by TW is approximately 73%, compared with GL.
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5.2.2.1 Experiment 3 - Different hardware

(a) Box plot representation.

(b) Graph representation.

Figure 5.10: Results executing the second use case with modifications, on a laptop
instead of an embedded device.

In Figure 5.10, the results from the third experiment is present. Similar to the
results from the previous use case, TW does not produce oscillating behavior as
the previous experiment, but rather a continuous decrease. The total amount of
provenance generated is 70%, compared with GL.
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Experiment 4 - Different trigger conditions

(a) Box plot representation.

(b) Graph representation.

Figure 5.11: Results from evaluating the second use case where the trigger condi-
tion for deactivation is decreased from four windows to two windows.

In Figure 5.11, the trigger condition has been lowered from four windows to two
windows. Notice in Figure 5.11b, TW achieves an earlier transition but generates
approximately the same amount of provenance as in Figure 5.9, which is 73%, com-
pared with GL.
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(a) Box plot representation.

(b) Graph representation.

Figure 5.12: Results from evaluating the second use case where the trigger condi-
tion for deactivation is increased from four windows to eight windows.

As observed in Section 5.2.1, by increasing the trigger condition to eight windows,
only one transition to the instrumented query will occur. With this, the total amount
of provenance is increased, which is approximately 88% compared with GL, which
is an 15% increase compared with the previous experiment, as seen in Figure 5.6.

5.2.3 Blackout detection query
The third query aims to detect blackouts in Smart Grid systems. Initially, the source
data is grouped by each smart meter which are forwarded every hour. The tuples are
then summed throughout each day by an Aggregate. Following, a Filter forwards
the tuples with zero consumption to a second Aggregate, where the window size
and advance is one day. An output is produced if there are more than seven meters
which report zero consumption for a whole day.
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Source

Aggregate

Sink

Sentry ObserverFilter Aggregate Filter

AggregateSentry ObserverFilter Aggregate Filter

Figure 5.13: Query for detecting a long-term blackout.

Experiment 1 - No modifications

(a) Box plot representation.

(b) Graph representation.

Figure 5.14: Results from the first experiment of the third use case where no
modifications is made to the query.

In Figure 5.14, the results from the first experiment is presented. Unalike the first
experiment of the use cases based on the LinearRoadBenchmark, TW oscillates
between NP and GL rather than below them, as observed in Figure 5.14a. With
this, the query is already characterized as a heavy, thus only two experiments are
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conducted for this use case, i.e., where different trigger conditions are used. The
amount of provenance generated by TW is approximately 89% compared with GL.

Experiment 2 - Different Hardware

(a) Box plot representation.

(b) Graph representation.

Figure 5.15: Results executing the third use case with no modifications, on a
laptop instead of an embedded device.

In Figure 5.15, the results from the second experiment is presented. Similarly to the
former experiments performed on the laptop, TW does not show oscillating behavior
but rather a continuous decreased, which converges with GL at the end. The total
amount of provenance generated is 95%, compared with GL.
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Experiment 3 - Different trigger conditions

(a) Box plot representation.

(b) Graph representation.

Figure 5.16: Results from evaluating the third use case where the trigger condition
for deactivation is decreased from four windows to two windows.

In Figure 5.16, the results from the third experiment is presented. Similarly to the
previous experiment, only one transition occurs and approximately the same amount
of provenance is generated. With no change in behavior with a lower trigger value,
performing an experiment with an increased trigger condition would not show any
difference. Thus, the next experiment will the trigger condition be decreased further,
to one window to observe if more than one transition occurs.
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(a) Box plot representation.

(b) Graph representation.

Figure 5.17: Results from evaluating the third use case where the trigger condition
for deactivation is decreased from two windows to one window.

By decreasing the trigger condition from two windows to one window, the amount
of transition increased significantly from one transition to six transitions, as seen in
Figure 5.17. This shows a more oscillating behavior, as observed in both Figure 5.2
and Figure 5.8. The total amount of provenance generated is approximately 55%,
compared with GL.

5.2.4 Summary
To summarize, the Twin query approach has been evaluated for three different use
cases with different modifications to introduce contrasting scenarios, to determine
during which conditions it becomes feasible for such an approach. An outline of the
results is presented in Table 5.2 for the first use case, Table 5.3 for the second use
case and Table 5.4 for the last use case.
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Broken-down cars Throughput (t/s) Rate (s) Memory (MB) Provenance (t)
No modifications 42500 1.30 320 60%
Increased workload 8000 3.0 560 75%
Different hardware 50000 1.1 550 74%
Decreased trigger 9000 3.0 590 78%
Increased trigger 9000 2.5 590 90%

Table 5.2: Results for the use case, broken-down cars.

Car accidents Throughput (t/s) Rate (s) Memory (MB) Provenance (t)
No modifications 44200 1.4 320 53%
Increased workload 9000 3.0 590 73 %
Different hardware 50000 1.1 540 70 %
Decreased trigger 9000 2.0 590 73 %
Increased trigger 9000 1.5 590 88 %

Table 5.3: Results for the use case, car accidents.

Blackout detection Throughput (t/s) Rate (s) Memory (MB) Provenance (t)
No modifications 35000 1.0 520 89 %
Different hardware 250000 0.3 460 95 %
Decreased trigger 35000 0.8 550 88%
Decreased trigger 2 35000 0.8 550 55 %

Table 5.4: Results for the use case, long-term blackout detection.
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6
Discussion

In this chapter, a discussion regarding the evaluation and the implementation is pre-
sented. The methodology of Twins was implemented for single node deployments
which relies on shared memory, which becomes infeasible for distributed deploy-
ments. In Section 6.1, different implementation constraints and unexamined direc-
tions are discussed. Furthermore, the evaluation of Twins showed for most of the
scenarios that it is on par with GeneaLog in terms of memory consumption, which
originally was hypothesized to decrease. This will be discussed in Section 6.2.

6.1 Implementation
A prototype of GeneaLog was implemented for the SPE Apache Flink, which has
been used in this thesis. As mentioned in Section 1.2, to achieve an extension
which allows GeneaLog to interactively generate provenance information would re-
quire extra functionality, which is not present in Flink. In this section, different
implementation directions for future work are discussed.

6.1.1 Distributed execution
GeneaLog allows provenance generation for both non-distributed and distributed
deployments [7]. As mentioned in Section 4.1, there is no upstream or downstream
communicating functionality between operators in a query. Due to this constraint,
a limitation was set in the beginning of the thesis to evaluate enabling and dis-
abling the method for single node deployments, utilizing shared memory. The com-
munication between operators relies on shared variables using a centralized entity
(singleton). Such an approach is not feasible for distributed deployments, since the
singleton resides within a separate JVM than the other distributed tasks, where
references would be lost upon forwarding tuples across tasks.

An alternative for distributed deployments would be to substitute the Singleton class
with a database, where the shared variables is stored. Naturally, this would result
in a significant increase in the reconfiguration time, due to network latency. If an
application allows a more relaxed provenance generation, it would be an alternative.
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6.1.2 Reconfiguration time
Enabling and disabling the generation of provenance information naturally results in
a decrease of provenance. Additionally, since a transition cannot occur immediately,
the procedure of achieving a safe transition will result in lost provenance information
as well, with regards to the stateful operators and their ongoing computations.

If the tuples are read from a predefined data set in a file, the reconfiguration time
will be sensitive to the amount of tuples that are produced by the source, as it will
affect the progression in time between the Sentries and the Observers. Additionally,
the Sentries periodically poll the state of the Observer to detect if a transition has
been requested, which can result in a delay for when the transition request has been
noticed by a Sentry. All this accumulates into a latency between when provenance
is requested to when its actually achieved, which affects the reconfiguration time.

In a real-world scenario, where tuples are produced in real time and retrieved from
sensors (as opposed to a data set), the ingestion of tuples would be slower, which
would in turn lower the latency and thus lower the reconfiguration time during a
transition. This could result in a faster transition to the respective queries which in
turn could affect the throughput, memory consumption and generated provenance
in Twins, depending on the amount of transitions.

However, with a reduced reconfiguration time, the difference in performance could
still be insignificant. Since the reconfiguration time will for the majority of time
depend on the windows of the stateful operators, thus the reconfiguration time can
not be reduced lower than the windows themselves, for a safe transition to work.

In short, the reconfiguration time will affect the performance of Twins, but it is
anticipated that it would result in insignificant difference with the chosen placement
of the Ward operators, thus the reconfiguration time was never evaluated. However,
as discussed in Section 3.2.1, the reconfiguration time could be lowered or entirely
removed by relocating the Sentries so that the stateful operators are always ready
to take over execution, though this will add a lot of overhead.

6.1.2.1 Partial activation and deactivation

Partial activation as explained in Section 3.5, can (in theory) lower the amount of
lost provenance and decrease the reconfiguration time significantly as there is no
need to perform a safe transition. By allowing the stateful operators in both queries
to process tuples, there is no need for synchronization, as the transition could be
simpler. However, such a modification to the procedure would introduce significant
overhead, as both of the queries are required to run in parallel during a longer
period of time. There is a high possibility that the overhead generated with such a
modification, would result in a decreased performance for Twins.

In conclusion, by partially transition to the other query, the amount of prove-
nance could be increased, but result in a significant increased amount of overhead.
With Twins averaging on 12 % lower provenance generation and showed acceptable
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throughput, partial activation was not implemented and evaluated.

6.1.3 Aborting transitions
In the implementation presented in Section 4, the Observer operator is mainly re-
sponsible for initiating a transition. After a transition has been made to the in-
strumented query, a transition back to the non-instrumented will occur if there has
not been a sink tuple produced within the completion of four windows, which is
the baseline deactivation for the implementation (see Section 5.1.3) . Since the pos-
sibility exists that during the transition to the non-instrumented query, one final
output could be produced. Ideally, this would cancel the deactivation and remain in
the instrumented query, but due to restrain of an Observer not being able to either
cancel or initiate another transition, the deactivation will occur regardless.

An optimization, or rather extension‚ to the protocol would be to allow the Observer
in the instrumented query to potentially cancel a transition. If the production of a
sink tuple would occur after an initiation of a transition to the non-instrumented
query has happened, then the instrumented query should keep ruining and the
transitions should be canceled.

6.1.4 User interaction for deactivation
As this thesis explores the possibility of activating and deactivating provenance
based on tuples, another alternative direction would be to base the functionality on
user interaction. Detected outputs are used for notifying human supervisors that
undesired behavior has occurred, then the decision to activate provenance rests in
the hands of the user. This would result in extra functionality where the supervisors
themselves can control the amount of provenance, which could be desired.

6.2 Evaluation
The goal of this thesis is to evaluate whether GeneaLog can be extended to generate
provenance information interactively and if this will result in a reduced amount
of overhead, i.e., a lower memory consumption and an increase in throughput. As
observed in Section 5.2.4, the memory consumption of Twins compared to GeneaLog
shows to be on par for every use case, except when performing the experiments on
a more powerful device. Similarly, this is also the case in terms of throughput.

This was observed during the original evaluation of GeneaLog as well, as the authors
of GeneaLog mention that they did not notice any notable changes in the average
and maximum memory consumption when GeneaLog is enabled [7]. Furthermore,
they also mention that there were slightly no difference between the two different
LinearRoad use cases, but an increase was observed for the Smart grid use case. This
is due the amount of events produced and the size of the windows, which results in a
larger amount of tuples contributing to a window and thus an increase of provenance
data.
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During the evaluation, a modification was made to the use cases based on Linear-
Road, to introduce an increased workload by removing the first Filter and intro-
ducing a scenario where provenance becomes a heavier operation. This resulted in
a overall decrease in throughput for each variant (NP, GL and TW). Furthermore,
Twins shows a more desirable behavior, since it oscillates between NP and GL rather
than below them. However, even though an amplification to the amount of tuples
allowed to progress from the source was made, there were still no notable changes
in the average and maximum memory consumption for either use case and Twins
showed to be on par with GeneaLog in terms of throughput.

In theory, the memory consumption of Twins should be lowered compared with
GeneaLog, as the generation of provenance information is not continuous. Unable
to observe any notable changes in memory between the different variants, the original
hypothesis presented in Section 1.1.1 cannot be validated (Q3). This would require
further evaluation of GeneaLog and consequently Twins on other SPEs, to prove
this hypothesis.
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Related Work

In this chapter, past research and related works for data provenance will be dis-
cussed. To the best of our knowledge, there has not been any research conducted in
activating/deactivating provenance for data streams. However, there are still inter-
esting related research in other fields of data streaming that will be important for
this thesis.

In Section 7.1, research and works in data provenance techniques will be discussed.
As the objective of this thesis is to evaluate the cost of activating and deactivating
provenance throughout a data stream, analyzing prior techniques and their ap-
proaches is of interest.

In Section 7.2, related research in fault tolerance techniques for data streams and
load balancing by switching node mid-stream will be discussed. The approach de-
scribed in this thesis is based on having two identical queries, where switching from
one to the other should ensure the correct state. Research within fault tolerance
and load balancing for data streaming is of interest, as this thesis shares similar
functionality.

7.1 Data provenance techniques
In relational databases, the work by [6] present a system based on a technique called
query rewrite. Their approach is to generate provenance by rewriting queries. For a
given query, they would generate another query extended with additional attributes
used to store provenance data.

This approach was not applicable for streaming based applications, since there are
a number of challenges present for data streaming that are not addressed, as men-
tioned in the works by [23]. They proposed a new approach called Operator instru-
mentation, where provenance generation is added as an extension to the standard
operators found in stream processing engines. They realized this in Ariadne, a
provenance-aware extension which implements the technique.

As [23] addresses the challenges for provenance techniques for data streams, their
solution uses variable-length annotations which are represented as sets of tuple iden-
tifiers. Provenance is then later achieved by reconstructing the input tuples which
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contribute to an output tuple from these identifiers. In order for this to work, all
of the input tuples needs to be temporarily stored. For applications that run on
resource-constrained devices, this could become troublesome, since the annotations
could grow arbitrary large.

This thesis is a continuation of the works by [7], the current state-of-the-art data
provenance technique for data streaming. They proposed a new technique based on
operator instrumentation, which is more suitable for a wider range of devices, such
as cyber-physical systems (CPSs) which use resource-constrained devices. As their
annotations are fixed-size instead of variable-size, it also does not require to store all
of the input tuples, but uses memory pointers to distinguish the contributing tuples
only.

As discussed in Chapter 6, extending GeneaLog to be enabled and disabled through-
out a data stream showed to resemble the performance of GeneaLog while active,
and that of a baseline query with standard operators while inactive. By being able
to shift the throughput implies a more efficient usage of resources, which is a com-
mon research question for data analysis applications, as they range from high-end
servers to embedded edge devices (e.g., Odroid) [24], [25]. With this, GeneaLog
and consequently data provenance techniques can be extended to introduce a more
resource-flexible behavior and thus be introduced to a wider range of devices and
applications.

7.2 Synchronization between stateful operators
In this section, the works by [26] and [27] is discussed. The authors of both papers
encounter problems similar to Section 3.3, for synchronization of states between
parallel instances of the same stateful operator.

In [26], they propose active replication of their operators, where entire- or parts of
a query is replicated, in order to provide fault tolerance i.e., they route the source
into multiple identical operators. This adds fault tolerance when one operator fails,
since another can take its place. This means that each replica has to be in the exact
same state as the primary operator at all times.

To ensure consistency among all the replicas and solve synchronicity problems with
the stateful operators local states, events (tuples) must be processed in the same
order and at the same time, in all replicas where the computations must be de-
terministic. To solve this, they introduce requirements on the usage of an ordered
message delivering mechanism (e.g., atomic broadcast) to ensure all nodes agree on
the order of the messages and that they receive all messages. This adds significant
latency.

The synchronicity problem with stateful operators arises in [27] as well, where a new
parallel-distributed SPE, StreamCloud, is introduced. This SPE utilizes dynamic
load balancing, which offloads computations from a congested node, to another less
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congested node.

This involves changing to a parallel identical query, which will require their stateful
operators to synchronize, to preserve the correctness of the analysis. The author
suggested utilizing timestamps, startTS and endTS, which represents the start and
end of a window. These are communicated upstream to ensure a correct transition
to the other query.

This is illustrated in Figure 7.1, where the point marked as "1" is where the transfer
starts. startTS is then set to when the new query (or node) should start, with
the requirement that it is at the start of a new window. In the Figure this is the
point marked as "3". endTS is then set to when the current window ends, effectively
overlapping the two timestamps, i.e. the point marked as "2". All tuples with
timestamp, ts > startTS are sent to the new query, and all tuples with ts < endTS
are sent to the congested node. Thus, as the queries both handle the tuples during
the transition period, no windows that end in-between will be lost and the transfer
is complete. This is also illustrated in the figure, where the upper box (the green
box) illustrates all windows handled by the congested node, and all new windows
are handled by the less congested node, illustrated by the lower (blue box).

TIME

W1

W2

W3

W41
3

2

...

Figure 7.1: Illustration of the window synchronization problem.

This technique introduces a lower demand on hardware as well as a lower latency
than [26]. As Twins involves transitions between two queries, the transition is
required to be safe, to preserve correctness. Furthermore, as GeneaLog targets
resource-constraint devices, the transition technique requires to be efficient and not
resource-demanding.

In this thesis, the safe transition technique presented in Section 3.3.2 takes inspira-
tion from the usage of timestamps and windows to ensure a safe transition. However,
during a transition, the deactivating query does not terminate but rather becomes
idle, as a transition back could eventually occur. This means that tuples will still
reach both queries but is only processed in one, the active query, and the other
query is considered to be inactive. Furthermore, the technique proposed in this the-
sis introduces communication between the operators to detect whether incorrect or
duplicated output has been produced during a transition, as transitions could occur
back and forth.
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8
Conclusion

In this thesis, an extension to the current state-of-the-art data provenance technique,
GeneaLog, has been developed and implemented, called Twins. Twins simulates
activation and deactivation of GeneaLog by using two identical queries, one using
GeneaLogs instrumented operators while the other query uses non-instrumented
operators. By allowing only one query to be active and transitioning between them,
the generation of provenance information can be enabled and disabled. With this,
Q1 as presented in Section 1.1.2 is answered.

Enabling and disabling GeneaLog shows a decreased amount of generated prove-
nance, as opposed to generating provenance information continuously. Twins showed
to on average produce 12% less provenance (though this is subject to the user-defined
condition) than GeneaLog during its evaluation. With this, Q2 is answered.

During the evaluation, Twins was studied using three different use cases where
different contrasting scenarios were introduced, to evaluate during which conditions
the functionality of Twins showed to be beneficial. Twins showed to oscillate in
terms of both throughput and memory consumption, which was expected, as it
will simulate enabling and disabling GeneaLog. However, such behavior was only
present for the experiments which involved the use cases with an increased workload.
With this, the performance of Twins matches the performance of the original query
when provenance is inactive and matches GeneaLog when provenance is active.
Thus, to summarize and answer Q3, the performance does not become significantly
affected while using Twins, as long as the query is subjected to a high amount of
tuples. Namely, in scenarios where the procedure of recording provenance becomes a
resource-demanding operation, roughly 30% lower throughput compared to a query
with non-instrumented operators.
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Appendix 1

A.1 Traversal of the contribution graph

Listing A.1: Contribution graph traversal.
1Set findProvenance(root):
2Set provenance
3Set visited
4Queue q
5q.addLast(root)
6while(!q.isEmpty()) :
7Tuple t = q.removeFirst()
8switch(t.type) :
9case SOURCE or REMOTE:
10result.add(t)
11case MAP or MULTIPLEX:
12enqueueIfNotVisited(t.U1, q, visited)
13case JOIN:
14enqueueIfNotVisited(t.U1, q, visited)
15enqueueIfNotVisited(t.U2, q, visited)
16break;
17case AGGREGATE:
18enqueueIfNotVisited(t.U2, q, visited)
19Tuple temp = t.U2.N;
20while(temp != null && temp != t.U1)
21enqueueIfNotVisited(temp, q, visited)
22temp = temp.N;
23enqueueIfNotVisited(t.U1, q, visited)
24return result;
25

26void enqueueIfNotVisited(tuple, queue, visited :
27if(!visited.contains(tuple)):
28visited.add(t)
29queue.addLast(t)
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A.2 Implicit inter-task provenance method

Listing A.2: Combining the behavior of Remote and Aggregate for implicit inter-
task provenance.

1case SOURCE:
2result.add(t)
3case AGGREGATE or REMOTE:
4enqueueIfNotVisited(t.U2, q, visited)
5Tuple temp = t.U2.N;
6while (temp != null && temp != t.U1)
7enqueueIfNotVisited(temp, q, visited)
8temp = temp.N;
9enqueueIfNotVisited(t.U1, q, visited)
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