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PureCake: Towards a formally verified non-strict language compiler

RICCARDO ZANETTI
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract

CakeML is an end-to-end formally verified compiler for a subset of the Standard ML
language. Its provenly correct compilation chain prevents several classes of software
bugs from seeping into the project, while drastically reducing the chances of many
others to occur. In turn, other software projects can be built on top of CakeML;
their correctness can be proven with respect to CakeML semantics, and ultimately
produce software that is itself end-to-end verified.
The aim of this thesis is to bring a pure non-strict language variant (PureCake) into
the project. The peculiar properties of the language, which include purity, referen-
tial transparency and equational reasoning facilitate the proof process, ultimately
encouraging the spread of formal methods.

Keywords: compilers, formal verification, interactive theorem provers, functional
programming, formal semantics of programming languages, code optimizations, in-
lining.
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1
Introduction

Formal methods is a mathematical discipline that aims to (i) define rigorous specifi-
cations under which to develop software (ii) verify the compliance of such programs
to the given specifications [16]. Recently, advancements in computer’s hardware,
better SMT/SAT solver algorithms [17], and more comprehensive infrastructures
made advanced techniques in formal methods accessible for larger programs [7].

As a result, more and more projects flourished under the rigorous setting of this
methodology [21, 18]. The employment of formal methods has been shown to sub-
stantially increase the overall quality of the products, to an extent unrivaled by any
other technique [46]. CakeML 1 is one of those projects. It provides (among other
things) a proven-correct compiler for a subset of Standard ML.

Despite its efficacy, a series of drawbacks stand in the way of the spread of formal
methods in software development. Proving the correctness of software artifacts with
respect to a formal specification is a time consuming task, that often exceeds the
time dedicated to the code development. Also, formal methods require specialized
knowledge in order to make a profitable use of them.

From this awareness emerges the PureCake 2 project which aims to produce a
provenly correct compiler for a pure, non-strict language variant of CakeML. The
spirit of the PureCake project is explorative and the intent is dual: to better un-
derstand how and to which extent non-strict functional languages fit into a rigorous
formal setting and, on the other side, what opportunities their new semantics brings
in the formal verification of programming languages, with an emphasis on ease of
use.

This thesis is divided into two parts. The first part describes implementation and
design choices for PureCake, with an emphasis on the aspects that contribute to the
final proving process for the language.

The second part focuses on the practical verification of a specific class of properties:
code equalities. As we will see, code equalities cover a major role in the code opti-
mization process of the language. We will argue why PureCake is particularly well
suited for the task and show the lemmas and definitions we developed for this class
of proofs.

1https://cakeml.org
2https://github.com/CakeML/pure/
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1. Introduction

1.1 Motivation

The scope of this work spans over two different fields and brings together distinct
objectives. Firstly, the work contributes to the implementation of the language
PureCake, and serves the interests of the PureCake development team: to imple-
ment a provenly correct non-strict language compiler with a simple proof reasoning
infrastructure. Secondly, this work sets the groundwork for an important code op-
timization within the context of a end-to-end provenly correct compiler, ultimately
suggesting for additional research in the field. We will explore those two distinct
aspects in order.

1.1.1 The PureCake language

Research over rigorous formalization of non-strict languages is abundant [4], but
a review of the literature suggests that no verified end-to-end compiler has ever
been produced. Stelle and Stefanovic recently formalized a call-by-need semantics
in Coq [37]: the language is proven to be correct over a small abstract machine
(Cactus Environment Machine [38]), but, as pointed out in their work, the proven
compilation chain does not reach a concrete hardware architecture (as it is the
case for CakeML). The novelty of our attempt makes it academically relevant and
constitutes a first motivation for the project.

Moreover, as will be discussed in depth in Chapters 2 and 3, the type of the semantics
adopted to define the language plays a major role over the final complexity of the
system (hence, its proof-derivation endeavour). Denotational semantics, thanks to
its abstractness, is remarkably suited for the task, and we consistently lean towards
it. Non-strict evaluation is also very mathematically-oriented and, as we show later
on, it blends naturally in the denotational framework. This is not entirely the case
for strict evaluation, which has some operational residues that need to be addressed
(Section 3.2).

Apart from semantics, PureCake features a series of properties that also contribute
to the simplification of the language, like purity and referential transparency. The
former distinguishes program’s observable behavior from the strategy in which com-
putation is performed, promoting proofs compositionality and reuse, the latter al-
lows each definition in the code to be freely inlined without risking to alter the
program’s final outcome, allowing the programmer to re-shape a piece of code to
more convenient forms while proving properties about it.

1.1.2 Provenly correct code rewriting

Code optimizations in compilers often rely on non-trivial correctness arguments and
are, hence, likely to hide bugs [31].

Testing is also often not a satisfactory option: in order to be effective a compiler
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1. Introduction

needs to combine several optimizations together. While testing the correctness of a
single code transformation might seem feasible, with unit testing for example, testing
the correctness of several transformations together is much harder: the application
of a code transformation often exposes the chance for other transformations to take
place. In the end, the final expected result of several optimizations together is hard
to determine by hand, making examples-based testing unfeasible.

The unfeasibility of examples-based testing lead to research in other forms of testing,
for example property based ones. Even though more effective for our problem, this
class of testing requires the definition of a generator for input programs, a far from
trivial task. Addressing this challenge, Pałka et al. [29] developed a generator for
a rather small subset of the Haskell language (simply typed lambda calculus), that
was nonetheless sufficient to expose bugs in GHC.

The difficulties that seem to arise from testing the correctness of compiler optimiza-
tions suggest formal verification could be an effective alternative for the task. The
PureCake project is a good fit for this attempt: its formal setting allows us to push
the extent of the optimizations even further, without worrying about potential bugs.

Among all the possible optimizations that can be implemented, one stands out for
simplicity and efficacy: code rewriting, which is a concept that covers all source-
to-source code transformations that can be expressed in terms of rewrite rules, i.e.
equalities that relates two expressions having the same meaning.

Thanks to referential transparency, pure, non-strict programming languages (like
PureCake) are particularly amenable to code rewriting. Several important opti-
mizations can be stated in terms of rewrite rules, including: inlining, function spe-
cialization, let-floating and list fusion [23]. In particular, inlining has been referred
to as the most important code optimization implemented in the Glasgow Haskell
Compiler (GHC), because of its impact over the final program speed and its ability
to reveal other important optimization instances [31].

Finally, interactive theorem provers (like HOL) and compilers that perform code
rewriting (like GHC) share the same operational mechanics: given a term/program
and an equation that relates two entities in an expression, find occurrences of one side
and replace them with the other one. HOL uses those equalities to prove theorems,
while GHC makes use of those equalities to improve the speed of programs. Recently,
Breitner [5] showed how to make use of the GHC rewrite engine to prove small code
equations in Haskell, suggesting the proximity of those two fields might hide even
more promising relations.

1.2 Contributions

This thesis brings:

• Contributions to the PureCake project, both in design and practical imple-
mentation.

3



1. Introduction

• A set of theorems and lemmas that support the proof of source-to-source
code transformations for the PureCake language, with the ultimate aim to
implement an optimization pass.

The definitions and proofs presented in this thesis are the outcome of efforts by the
whole PureCake development team, which I have been part of during the course of
this Master’s thesis.

In this document I present the main concepts and ideas of the project, supporting
them with comments and reflections. All the definitions and proofs presented should
not be attributed to me personally, but to the whole development team, to which I
will refer to as “we” throughout the thesis.

For reference, the main contributions over the project that can be attributed com-
pletely to me are:

• the parametrization of literals and primitive operators in the language, and
the associated proofs in the semantics eval (Section 3.3)

• the implementation of the capture avoiding substitution CA_subst and the
associated beta_equivalence theorem, that states beta-reduction preserves
the expressions’ meaning (Section 4.3)

• the (partial) list fusion transformation proof (Section 4.5)

1.3 Overview

This thesis gives an overview of the PureCake project, the main features of the
language and a commentary on its use in the context of provenly correct code trans-
formations.

• Chapter 2 introduces some basic notions in the field of formal methods, se-
mantics, and provenly correct software.

• Chapter 3 gives a description of the compiler implemented in this project.
The description includes: the PureCake language, its semantics and various
comments over features and implementation details.

• Chapter 4 goes through some source-to-source code transformations and shows
how those can be proven in PureCake. It discusses some practical difficulties
we encountered, and presents the main lemmas that we wrote in order to
overcome them. There will be an emphasis over the ease of producing the
proofs involved, together with a commentary on the alternative languages for
the task.

• The thesis concludes with a few final remarks in Chapter 5.

4



2
Background

In this chapter we introduce formal methods as a discipline and how it is employed
in the CakeML project. We will then characterize the process of proving properties
in a formal setting and give a gist of the practical difficulties that might arise doing
so. This will give us the chance to introduce functional languages and in particular
some interesting properties that loosely relate with the proof process. We conclude
with a brief introduction of formal semantics and a comparison between the three
most commonly used ones.

2.1 Context

Formal methods is an umbrella term that covers any technique, method or framework
that makes use of theoretical computer science notions to aid the development of
software artifacts [16]. Formal methods put theory into practice: they unveil the
mathematical nature of code, making it surface out of tangled programs. Ultimately
carving out some of that complexity and revealing important properties and relations
of the system.

In CakeML, formal methods are being used to verify the functional correctness of
the compiler implemented. Specifically, it means that the compiler has been proven
to translate CakeML programs into target code preserving their meaning.

But mathematical proofs only exist within the frame of the logic in which they
have been stated. It follows that, in order to prove the correctness of a software
artifact, like a compiler, this has to be written within a formal logic, together with
models representing source and target languages and a “meaning” relation (formal
semantics), that, for any program in either source or target language, it associates
a common representation for the meaning of these. This relation is often referred to
as formal language specification.

In this setting, the correctness property, for example, can be stated in this way:
∀ e. semantics(e) = semantics(compile(e))

with e any source program. Another example is whether two programs are observa-
tionally equivalent:

semantics(e1) = semantics(e2)

5



2. Background

All these statements have to be proven true by the compiler designer, and, depending
on the complexity of the objects involved, it might require some efforts. It is also
clear the semantics covers a major role in the whole proving process.

2.1.1 The HOL theorem prover

Regarding the CakeML project, it uses higher-order logic as formal framework where
languages, compiler and correctness proofs are formalized. The logic, together with
the tools that support the proofs development process, are provided by the HOL the-
orem prover 1. HOL relies on a small library (the kernel) in which higher-order logic
is modeled as an embedded domain-specific language (EDSL) within the Standard
ML’s type system (Hindley-Milner type system). The library provides the primitive
lexemes (axioms) together with the combinators to construct new theorems from
the primitive ones (inference rules).

2.1.2 Proving is (sometimes) hard

The process of proving a property over a program is a task that requires a certain
level of expertise: newcomers often have to face a counterintuitive learning curve,
in which trivial theorems are hard to prove due to either:

• declarative style theorem provers: a divergence between how the logical system
works and their way of arguing why something should be true (Isabelle, Agda,
Epigram), or,

• procedural style theorem provers: the proof structure is clear, but there is no
intuitive way for constructing it. The feasibility of a proof relies on high-level
user directives (tactics) that need to be learnt (Coq, HOL) [43].

Learning how to effectively prove properties over programs requires effort, but the
process of proving itself, i.e. correctly composing the logical lexemes to construct
the proof object is, in itself, very simple.

So simple that it can often be performed by computer programs automatically. In
fact automatic reasoners are extensively used in this context, especially when the
search space for a proof is modest. Despite the progresses in the field, proving
moderately complex properties over moderately complex languages, instead, still
requires the expert intuition of the programmer.

This aspect highlights the resonance that language design choices can have over
the final proof complexity: small simplifications have the potential to drastically
decrease the subsequent proof efforts, which brings us to the next topic: purity and
referential transparency.

1https://hol-theorem-prover.org
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2. Background

2.2 Purity and referential transparency

One important property of pure functional languages is referential transparency.
Roughly, it means that any term in the language, at any time, can be substituted
with any other semantically equivalent term, without altering the evaluation’s final
result. For example,

(l1 ++ l2) ++ l3 = l1 ++ (l2 ++ l3)

with ++ the list concatenation operation, as defined in Haskell. We can substitute
any occurrence of one side of the equation with the other one

("purity"++"is")++"great!"
⇒
"purity"++("is"++"great!")

leading, in this case, to a more efficient program [9]. More generally:

∀ e1 e2. semantics(e1) = semantics(e2) ⇒
∀ e. semantics(e[e1/e2]) = semantics(e)

With e[e1/e2] defined as the non-capturing substitution of the lambda term e1 in e
with e2.

Referential transparency allows both the programmer and the compiler to reason
over a program as an element of an equivalence class defined by the beta-reduction
relation over the space of all possible programs. In substance, whenever we want to
prove a property over a program’s result, we can either do it directly, or we can pick
any other program in this equivalence class, and prove it for it. The property holds
for both:

∀ e1 e2. e1 ≃ e2 ⇔ semantics(e1) = semantics(e2)
∀ P. e1 ≃ e2 ⇒ P semantics(e1) ⇔ P semantics(e2)

This, combined with a compositional semantics allows us to break down the proofs
over the code into logical pieces. As we will see in Chapter 4, this also holds for
functions in the language, making it even more useful during proofs.

Finally, referential transparency is a well understood concept in functional program-
ming, being the mathematical framework over which computation is often described
(beta-reductions in term rewriting systems), and it is extensively used in the context
of informal proofs over the code [14, 11]. It is also used for optimizations purposes:
in GHC end users can specify code equalities (RULES pragma) that are latter used
by the rewrite engine to speed up programs.

2.3 Formal Semantics of programming languages

In semiotics, the study of sign processes, every symbol (a word in a text, a figure in a
drawing), is distinguished between its concrete representation as a visual mean, and
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2. Background

its denotation, i.e. the associated meaning that the interpreter (reader, observer)
gives to it.

Formal Semantics of programming languages is a branch of theoretical computer
science that studies different possible ways to give rigorous meaning to the lexemes
(symbols) of programming languages. One important field of application is of course
in compilation technology: compilers are programs that transform entities (code)
written in a language (source language) into another (target language) preserving
their meaning.

Since its conception in the 1960s [8], three main frameworks have emerged: Opera-
tional semantics, Denotational semantics and Axiomatic semantics.

2.3.1 Operational Semantics

Operational semantics first introduces a mathematical model for a computational
system, often an abstract machine (e.g. SECD machine [20]). Then gives meaning
to the lexemes of the language as state transitions over the system.

Given a program and a starting configuration for the abstract machine, an evaluation
is defined by the repeated application of those transition rules over the abstract
machine.

Operational semantics gives great control over the program evaluation dynamics
and brings into context practical aspects such as memory and clocks, allowing the
designers to prove properties about them. Another important advantage is that op-
erational semantics is often detailed enough to derive an interpreter for the language
from it.

On the other side, the abundance of such details makes often hard to generalize
the language meaning, and forces the proofs about it to take these into account,
even when not strictly relevant. For example, whenever we want to prove that two
programs are equivalent in meaning under a given semantics, the proof often needs
to be unfolded for every possible machine’s state [44, Section 5.1].

Abstract rewrite systems can be seen as a particular instance of operational semantics
where the computational model is the language itself. In this case, the semantics
provides the rewriting rules for it, and computation coincides with the continuous
application of the rewriting rules over a given expression.

2.3.1.1 Small-step vs big-step operational semantics

Operational semantics is often distinguished in two classes: small-step and big-step.
These two refer to the particular shape that the transition rules assume in the
specification of the computational model.

In the small-step semantics, the evaluation of a program produces a sequence of
machine’s state transitions from the initial configuration to the final one. The big-

8



2. Background

step semantics is instead defined as the reflexive, transitive closure of the small-step
one. This means that the evaluation relation directly binds the whole input program
to its final machine configuration.

This makes the big-step semantics slightly simpler to use in practice, but on the
other side the lack of details complicates or even makes impossible to prove certain
properties: for example in case of non-terminating programs the big-step semantics
must be undefined, trivially because no transitive closure exists, while a small-step
approach would allow us to make use of the state transitions’ sequence to show it
repeats infinitely often a certain pattern, practically proving the non-termination of
the program.

2.3.2 Denotational Semantics

Denotational semantics takes a more abstract approach over the task: each element
in a program is associated with a mathematical object, called denotation. Denota-
tions are defined as (partial) functions from the expressions language (L) and (when
needed) an evaluation context (Γ) over the set of language values (V):

J_K_ : L × Γ ⇀ V

An evaluation context is usually defined as a map from variables names to values,
that keeps track of the assignments during the expression’s unfolding. Denotations
are defined inductively over the structure of the language L, e.g. for addition:

Jadd n1 n2KΓ = Jn1KΓ + Jn2KΓ

One of the main features of this approach is that semantics is inherently composi-
tional. This means that the denotation of an expression is directly derived by the
denotation of its sub-expressions. Proving a property over such structures becomes
easier; for example the commutativity of ‘add‘ in the language directly follows from
the fact that addition (‘+‘), as used in the denotation, is itself commutative. An-
other helpful feature that makes the proofs less cumbersome, is the abstractness
of the evaluation context, that often remains unaltered in the various denotation’s
definitions, in contrast with the operational semantics, that modifies the machines’
state at each step. In the latter, a property over a program needs to always be
proved against the state transformations performed.

2.3.3 Axiomatic Semantics

Axiomatic Semantics closely relates with Hoare Logic. In the latter, program con-
structs (lexemes) of a language are treated as axioms (more accurately, inference
rules) of a logical system. Those rules come with assertions (properties) about
the state of the evaluation of a program. The assertions are divided between pre-
conditions, and post-conditions. The rules have the following shape:

{A} c {B}

9



2. Background

And they should be interpreted as follows: for any state σ of an execution system
(e.g. an abstract machine) that satisfies A (the pre-condition), if the execution of c
terminates in state σ′, then σ′ satisfies B (the post-condition) [44].

Axiomatic semantics, together with denotational semantics, are considered to be
more abstract than operational semantics. This reputation comes from the fact
that these are often not descriptive enough to derive a concrete implementation for
the language.

While denotational semantics aims at giving a mathematical meaning to the pro-
grams in the language, axiomatic semantics focuses on describing the effects (the
properties) that the evaluation of such programs should produce in a concrete im-
plementation.

This shift makes axiomatic semantics very flexible and concise: whenever we want
to prove a certain property over a system, there is no need to define the full meaning
of the language, instead, it suffices to state the relation of that property with the
lexemes in the language, and proceed deriving the desired conclusions.

The flexibility of axiomatic semantics comes with the need to prove the stated axioms
to be sound against a model for the language, either denotational or operational.

In the end, in the context of compilers design, where unambiguous meanings and full
implementations have to be derived for the language, other semantics are usually
preferred, either operational or denotational.

The next chapter will introduce the PureCake language and its associated semantics.
While describing it, we will refer back to the properties of the various semantics we
discussed in this section, showing how those relate with the formal verification of
PureCake.

10



3
The PureCake language

PureCake is a pure, non-strict functional language that comes with an associated
formal semantics expressed in higher-order logic. In this chapter we introduce its
syntax and denotation, together with high-level design choices and some implemen-
tation details.

The language semantics is divided in two parts: the first one concerns the meaning of
the expressions in the language, and is represented by the function eval; the second
one, instead, gives meaning to the side-effecting actions of the programs (interp)
that defines its externally observable behavior.

3.1 Design choices

For PureCake we opted for call-by-name evaluation, defined through an operational
semantics (functional big-step semantics [28]) paired with a series of equations that
provide a denotational feel to the evaluation function. The operational semantics
adopted is the same that has been used for CakeML, and its employment brings
a couple of advantages: (i) the operational approach gives us fine-grained control
over the evaluation, and consequently over the properties we can later state and
prove (ii) a formal semantics logically close to the one used in CakeML makes the
integration of PureCake with the compilation chain easier.

At the same time, employing a denotational semantics would bring a series of other
advantages, mostly related with the formal verification of PureCake expressions (see
Section 2.3). For this reason we developed a series of theorems and equations on top
of the operational semantics that provides a compositional interface for evaluate of
the expressions of the language, mimicking what would be a denotational semantics.

Another important aspect related with semantics is the evaluation strategy: either
strict or non-strict (lazy). Non-strict fits slightly better, making the denotational
equations we wrote fully compositional. We discuss this aspect in Section 3.2.

Finally, we need to decide whether to use an evaluation context or not. We opted
for the absence of it, so that the whole evaluation state is kept within the expression
being computed, resulting in a simple semantics function that maps expressions to
values: exp -> v.

11



3. The PureCake language

3.2 Evaluation style

PureCake, due to its Turing-completeness, is not strongly normalizing. As a con-
sequence, the order in which the expressions are reduced into values might have
an impact over the final result (either a proper value or non-termination) [3]. To
keep the language evaluation deterministic, we need to pick a strategy to reduce our
lambda terms, and stick with it. Two popular alternatives are strict (or applicative)
and non-strict (or normal) order.

The strict order is loosely tied to the operational nature of abstract rewriting sys-
tems, which is the mathematical formalism where both evaluations (strict and non-
strict) originated. This relationship can be clearly appreciated observing the de-
notational semantics of lambda functions that discard some arguments, like the K
combinator:

K x y = y

non-strict semantics:

JK x yK = JyK
strict semantics:

JK x yK = if JxK = ⊥ then ⊥ else JyK
Under strict evaluation, all function’s arguments must be fully evaluated before the
function’s body. If one of them diverges, also the body must. This detail is the only
semantical difference between the two evaluation strategies. The final semantics
becomes slightly less compositional; in the strict case, it has to keep track of the
arguments a program comes across during the computation and conditionally diverge
in case any of these diverge as well.

We will now introduce the expressions language, the values and finally the semantics.

3.3 PureCake expressions

PureCake programs have the following shape:

exp =
Var vname

| Prim op (exp list)
| App exp exp
| Lam vname exp
| Letrec ((string × exp) list) exp

The language is purposefully inspired by GHC’s intermediate language ‘Core‘ [40,
39], and represents an untyped version of it.

12
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The language consists of the three classical lambda calculus lexemes: function ab-
straction (Lam), application (App), and variable identifiers (Var). vname represents
variable identifiers that are practically implemented as strings. Beside those, for
convenience, a let binder (Letrec) has been added, for mutually recursive defini-
tions. It takes as input a list of pairs (string × exp), which represent respectively
an identifier and the expression that it binds to, and an expression that covers the
role of letrec body. All the expressions mentioned can refer to any identifier (string)
in the list of pairs, making the whole set of definitions (mutually) recursive.

Finally, there is the wrapper for the PureCake’s primitive operators Prim, which
gives support for standard language features, such as conditional branching (If)
and datatype’s constructors (Cons), projections (Proj) and equality (IsEq).

op =
If

| Cons string
| IsEq string num
| Proj string num
| AtomOp atom_op
| Lit lit

Together with the operation to be performed (an element of type op), Prim takes a
list of expressions that represent the arguments to be passed to those primitives.

Worth of mention are the parametrized literals (Lit) and the associated operations
over them (AtomOp). Parametrized in this context means that the two types lit
and atom_op act as fixed polymorphic types with no concrete implementation. The
rationale behind it is: during the design of a language, the operations over literals
are subjected to continuous changes and redefinitions. In a classical compiler, adding
a new primitive would simply require to extend the language with a new token, for
example ’mul’, adding it as new constructor for atom_op, and provide the associated
meaning for it in the semantics. In a formal setting, in order to do so we also need to
extend the compiler correctness proof to reflect those changes. So, with the intent
to simplify the language design process and increase reusability, primitive operators
have been parametrized: their semantics has been abstracted to force the proofs
over the language (like, for example, the compilation correctness) to not rely on the
specific implementation.

Finally, new PureCake lexemes can be introduced as macros (Overloads in HOL)
defined in term of the other objects in the language. This is the case for ’Let’,
’Case’, and other operators. The main advantage of this approach is that it keeps
the expression’s datatype small. During an inductive proof on the structure of exp,
we, in turn, only need to show it holds for the core language lexemes. At the same
time, equations and properties can still be proved for the defined macros, making
the language extension process ultimately easier: whenever we want to support new
language features, macros exempts us from digging into the PureCake’s technicalities
and refactor all the core proofs.
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3.4 PureCake values

The values in the language have the following shape:

v =
Atom lit

| Constructor string (v list)
| Closure vname exp
| Diverge
| Error

The datatype (or more correctly co-datatype) is self-explanatory: Atoms are used
to represent the parametrized literals. Constructor represents datatypes and co-
datatypes within the PureCake language and Closures represent function values
(with vname the bound variable). The only peculiarity worth of notice is the distinc-
tion between Diverge, representing non-terminating programs’ value, and Error,
which, instead represents the outcome of ill-typed but terminating programs. An
example for the latter would be a program that tries to apply a primitive operation
over an incorrect number of arguments. This distinction is justified in Section 3.5.

Almost all these lexemes can be defined directly. Constructor is recursively stated
in terms of a list of values. This shape implicitly allows for non-converging com-
putation to produce an infinite data structure of type v. This is not a concerning
aspect by itself. In fact, under a strict semantics, the evaluation of an expression
that produces an infinite constructor would simply not terminate, and the seman-
tics function would then give ⊥ as meaning object to the whole computation, which
is exactly the expected value for any strict program containing a non-terminating
sub-expression.

But under non-strict semantics, those infinite sequences are allowed to be partially
produced and consumed during an evaluation: programmers rely on the language
laziness in order to avoid the full evaluation of the value, that would otherwise result
in a non-terminating computation.

PureCake semantics needs to reflect this behavior. It has to cautiously compute the
expressions into values only when actually needed, and even then it should com-
pute the values up to its outermost data constructor, leaving the inner expressions
uncomputed. A way to address this problem is model the values of the language
using a lazy co-datatype. Doing so, the application of the language semantics over
an expression would not result into a potentially infinite evaluation, but instead the
actual computation would be suspended until when needed. The lazy data structure
would also provide access to finite prefixes of the potentially infinite values, and the
semantics could in turn be defined to make use of those.

For PureCake we opted for rose trees as lazy co-data structure (part of the HOL
standard library: α ltree):

α ltree = Branch α ((α ltree) list)
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The final type for our language values becomes v_prefix ltree, where v_prefix
is defined as:

v_prefix =
Atom’ lit

| Constructor’ string
| Closure’ vname exp
| Diverge’
| Error’

v_prefix consists in all possible finite values of our language. Comparing it with v
above, we can notice Constructor now lacks its second argument, which has been
lifted into the ltree co-datatype, to take advantage of the lazy features offered.
The Constructor’s arguments can in turn be accessed trough the exposed ltree
interfaces, that ensure a lazy consumption of the structure.

3.4.1 Functions as values

One of the main characteristics of functional programming languages is that func-
tions are first class objects. This means that functions are treated as any other
value in the language and can hence be bound to identifiers, passed as arguments
and returned.

In order to do so, we need to define a representation for functions in the values
domain of our language. This representation is commonly known as Closure, and
its concrete implementation (as data structure) is up to the compiler designer.

Our concrete representation is structurally equivalent to a lambda term in our ex-
pression’s type exp:

eval (Lam n e) = Closure n e

When a closure is applied to an expression during the evaluation of a PureCake
program, the substitution-based call-by-name semantics replaces each occurrence
of the closure’s bound variable n in e with the expression passed as argument, in
practice absolving us from keeping explicit track of the bindings occurred.

3.4.1.1 Lambda terms and computable functions

The semantics for lambda terms, in the way it has been defined above, walks away
from the denotational method, in favour of an operational one. It is clear that the
proper mathematical object that should be associated with a lambda term is the
function. Then why do not Closures have the following type?

v = Closure (exp → v)

The reason is technical rather than conceptual: the objective of a function f : exp → v
in (Closure f) is to provide a mathematical model for the computation that the
closure represent. But the HOL logic can also model non-computable functions, and
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there is no easy way to restrict the type of f to the strictly computable ones. More-
over, there is similarly nothing stopping the function f from syntactically inspecting
the structure of the given input expression, e.g. it could treat 1+1 and 2 differently
because it has access to the explicit syntax.

For this reason we went for the operational representation of lambda terms.

3.5 PureCake language semantics

Following the functional big-step semantics style, we start defining the evaluation
of PureCake expressions as a clocked interpreter function (with term rewriting as
abstract machine for the evaluation). The function eval_wh_to :num → exp →
wh assumes this role: it takes a natural number (the clock) and an expression as
input, and returns as result the weak-head normal form of the input expression (of
type wh).

The datatype for weak-head normal form expressions, shown below, is similar to the
values v introduced in the previous section, with an important difference: the type
is not recursive; the Constructor case holds a list of uncomputed expressions as its
payload. This is consistent with the definition of weak-head normal form terms in
term rewriting systems [30].

wh =
wh_Constructor string (exp list)

| wh_Closure string exp
| wh_Atom lit
| wh_Error
| wh_Diverge

From the semantics function eval_wh_to (Figure 3.1) we can appreciate the role
of the clock k. It acts as a “fuel” argument, that is decreased at each and every
recursive call; when the clock reaches 0, the semantics returns a wh_Diverge.

The clock is needed in order to keep the function definition total, in fact, HOL is
a logic of total functions where most recursive functions must follow well-founded
recursion.

In the App case, for example, the recursive call does not always recur on a structurally
smaller argument, because of the bind call that expands body. A similar argument
applies for Letrec. The decreasing clock allows us to define the PureCake semantics
without worrying about its totality.

The value returned by eval_wh_to, as defined, varies on the k passed, and it basi-
cally reduces to two cases: if k is “large enough”, i.e. k is greater than the number
of Apps, Letrecs and Prims encountered by eval_wh_to during the expression’s
evaluation, then eval_wh_to will return the actual value of the expression, which
can be anything but wh_Diverge. Instead, if k is not large enough, or the program
itself is not supposed to terminate, eval_wh_to will return wh_Diverge.

16



3. The PureCake language

eval_wh_to k (Var s) def= wh_Error
eval_wh_to k (Lam s x) def= wh_Closure s x
eval_wh_to k (App x y) def=

let v = eval_wh_to k x
in if v = wh_Diverge

then wh_Diverge
else case dest_wh_Closure v of

None ⇒ wh_Error
| Some (s, body) ⇒ if k = 0

then wh_Diverge
else eval_wh_to (k − 1) (bind s y body)

eval_wh_to k (Letrec f y) def=
if k = 0
then wh_Diverge
else eval_wh_to (k − 1) (subst_funs f y)

eval_wh_to k (Prim p xs) def=
if k = 0
then wh_Diverge
else let vs = map (λ a. eval_wh_to (k − 1) a) xs

in case p of
If ⇒ . . . (omitted) . . .

| Cons s ⇒ wh_Constructor s xs
| IsEq s′′ i ′ ⇒ . . . (omitted) . . .
| Proj s′ i ⇒ . . . (omitted) . . .
| AtomOp a ⇒ . . . (omitted) . . .
| Lit l ⇒ . . . (omitted) . . .

Figure 3.1: eval_wh_to definition. For convenience, the semantics of most of the
operations p in Prim p xs has been omitted.

The idea to use a clock to turn a partial function into a total one is not new, and
it has been used in a substantial way in CakeML [28]. This approach, as pointed
out by Xia et al. [45], is similar to the one proposed for denotational semantics by
Dana Scott in one of his first formalizations [34], in which he suggests to construct
the semantics of programming languages’ functions through increasingly accurate
approximations of partial functions, until the reach for a least fixed point.

Equipped with the clocked computation of the weak-head, the computation of the
weak-head can hence be defined as the value assumed by eval_wh_to with k that
extends towards infinity, practically removing the cases in which an expression e in
eval_wh_to k e is mapped to a wh_Diverge because of a not large enough k.
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This is done defining a function eval_wh as follows:

eval_wh e def=
case some k. eval_wh_to k e ̸= wh_Diverge of
None ⇒ wh_Diverge

| Some k ⇒ eval_wh_to k e

With some being wrapped around the choice operator ε [2]:

some x . P x def= if ∃ x . P x then Some (εx . P x) else None

With the definition of eval_wh we conclude the formalization of the language se-
mantics using the functional big-step framework, but we are not done yet: we also
need to convert the eval_wh result from wh into v. To do so, we need to (i) force
the evaluation of the expressions beyond the weak-head normal form, thus in prac-
tice calling eval_wh recursively over the arguments of a constructor (ii) wrap this
potentially infinite resulting evaluation into the lazy datatype v.

The function eval is defined as follows:

eval x def= v_unfold eval_wh x

And v_unfold in turn:

v_unfold f x def=
case f x of

wh_Constructor s xs ⇒ Constructor s (map (v_unfold f ) xs)
| wh_Closure s′ x ⇒ Closure s′ x
| wh_Atom a ⇒ Atom a
| wh_Error ⇒ Error
| wh_Diverge ⇒ Diverge

The function applies the argument f (in our case eval_wh) to the expression e and
pattern matches over the result. In case of a wh_Constructor, it calls recursively
itself over the xs arguments list and wraps the whole computation into the v’s lazy
operator Constructor. For all the other cases, the v object creation follows trivially
from the weak-head normal form conterpart.

3.5.1 eval equations

From this rather complex eval definition, we can derive a series of compositional
equations that describe the relationship between PureCake expressions, values, and
the semantics:
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⊢ eval (Var s) = Error
eval (Lam s x) = Closure s x
eval (App x y) = let v = eval x
in if v = Diverge then Diverge

else case dest_Closure v of
None ⇒ Error

| Some (s, body) ⇒ eval (bind [(s, y)] body)
eval (Letrec f x) = eval (subst_funs f x)

For the Prim case, we went a bit further, and proved the following equivalences:

⊢ eval (Prim (Cons s) xs) = Constructor s (map eval xs)
eval (Prim (IsEq s n) [x ]) = is_eq s n (eval x)
eval (Prim (Proj s i) [x ]) = el s i (eval x)
eval (Prim (Lit l) []) = Atom l
eval (Prim (If) [x ; y; z ]) =

if eval x = Diverge then Diverge
else if eval x = True then eval y
else if eval x = False then eval z
else Error

In the Cons case, the application of eval over the list of expressions xs could,
potentially, not terminate. As we can see, this scenario is handled wrapping the
application map (eval c) xs into the lazy operator Constructor, which is just an
overload for the rose tree co-datatype constructor Branch:

Constructor s xs def= Branch (Constructor’ s) xs

3.5.2 Expressions evaluation: an example

The eval equations proved practically implement the eval function and provide
a computable alternative for the evaluation of PureCake expressions. We can, for
example, prove the following beta-reduction:

⊢ closed y ⇒ eval (App (Lam“x” (Var “x”)) y) = eval y

only relying upon equational reasoning (rewriting tactics in HOL).

We can also evaluate infinite data-structures, like lists. Let us define an infinite list
of identity functions ids using a Letrec:

ids = Letrec [(“z”, Cons “cons” [Lam “x” (Var “x”); Var “z”])] (Var “z”)

Making use of the equations proved, we can in turn unfold the datatype as follows:

⊢ eval ids =
Constructor “cons” [Closure “x” (Var “x”); eval ids]
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The extent of the evaluation is explicitly controlled through the rewrite tactics of-
fered in HOL.

3.6 Purity and I/O

As we said, in order to keep the observable behavior of programs deterministic,
PureCake needs to be pure: the evaluation order of terms under non-strict seman-
tics is data-dependent; this means that terms might, or might not, be evaluated
depending on the outcome of other evaluations in the expression. The programmer
has no explicit control over it, and the execution of side-effecting operations would
potentially depend on the program’s input data, making it non-deterministic. To
avoid such scenarios, an explicit order between side-effecting operations needs to be
enforced. This is done by making use of monads and preventing the programmer
from placing side-effecting terms outside the monadic IO context. This is ultimately
enforced by the language’s type-system.

The monadic output of eval could be directly unfolded and performed by an effect-
ful interpreter, but for the project we went for another path. Instead, we translate
the monadic output value into an interaction tree [45]. Interaction trees are a re-
cent formalization that allows to model (among other things) the I/O behavior of a
program within the HOL logic: making it easier to prove properties about the inter-
action of the program with the environment, like liveness, for example. Interaction
trees, as presented, consist in 3 constructors: Ret, terminates a program returning
a value, Vis, used for interacting with the environment and Tau, that represent
the execution of “silent” chunks of computation, needed to model programs’ non-
termination. Since we already model non-termination within our semantics, the Tau
operator is not need. For this reason, our interaction tree co-datatype (io) consists
only on the first two constructors:

(ϵ, α, ς) io = Ret ς | Vis ϵ (α → (α, ϵ, ς) io)

The type io is parametrized over the three polymorphic type variables (ϵ, α, ς).

The function interp translates the monadic actions into an interaction tree. The
translation is roughly as follows: the monad is opened, revealing the sequence of
bind-folded, side-effecting, chunks of code the program is made of. Those chunks
contain exactly one side-effecting operation each. This operation can either be

• a return applied to a value v, i.e. a non side-effecting value that has been
lifted to IO

• a proper side-effecting function, like read, print etc.

In case of return, the lifted value v is simply passed to the next code chunk, since
no proper IO action occurred. Any other case is placed into a Vis, to perform
the needed environment interaction. When no further interactions are supposed to
happen, a Ret is produced to terminate the program.
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The whole program semantics is finally defined as the composition of eval and
interp:

semantics e def= interp (eval e)
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4
Code equalities with PureCake

In the previous chapter we presented the PureCake language and semantics. Here
we will instead discuss the formal verification aspects of it. In particular, we will
show the logical framework we designed to prove code equalities in PureCake and
discuss some implementation details.

This Chapter is divided into two parts. In the first one (Section 4.1), we will argue
why there is currently only a very limited support for code equalities proofs in the
CakeML project, thus implicitly justifying the need for PureCake. In the second
part, we will go through the practical matters of proving code equalities.

First, we will formalize what it means for two expressions to be equivalent, by giving
context to the idea under both denotational and operational semantics. We will then
move on introducing an important code equality transformation, beta-reduction, that
will allow us to prove some code equalities, with a small example.

We will then try to generalize such equations through the use of forall quantifiers,
and show the practical difficulties that this might bring, together with the solutions
we adopted.

Ultimately, we will talk about how we handled proofs over co-inductive data struc-
tures, such as lists, and discuss their pros and cons. We finish with a comment
about equalities and types.

4.1 Code equalities without PureCake

The two language alternatives offered by the CakeML project that we will discuss
are the CakeML language itself, and HOL.

While CakeML is a natural choice for the task, using HOL, the logic used to develop
all the proofs might seem peculiar. The usage of HOL as a programming language
is made possible through a program called the “translator”, which converts HOL
functions into CakeML ones. The conversion, when successful, is also proven to be
correct (proof-producing translation).

Finally, it is obligatory to mention we are limiting our comparison to the obvious
alternatives within the CakeML project. There are several other languages and

23



4. Code equalities with PureCake

logics that would be worth considering for this task, but most of these cannot take
advantage of an end-to-end provenly correct compilation chain. This in itself does
not make those languages inadequate for the task, but in such relaxed context the
necessity for the code transformation to be proven correct vanishes. Proving a
transformation does not provide any added value to the task except having shown
the correctness in itself. With PureCake, instead, proving its correctness allows the
transformation to be added into the compilation chain, ultimately contributing to
the compiler.

4.1.1 CakeML

The most straightforward procedure for proving code equalities in CakeML is similar
to the one presented in Section 2.1: we prove that two distinct programs (represented
as CakeML ASTs) when applied to the language’s semantics, result in the same
meaning object.

CakeML is the first and most natural alternative to PureCake. They both are
general-purpose Turing-complete languages with a formal semantics for the proofs
and a provenly correct language compiler. Opposed to PureCake, CakeML is not
pure (see Section 3.6) and the evaluation order follows a strict semantics.

Unfortunately, the lack of purity is a deal-breaker for our task: almost all code
equalities change the order of evaluation of the terms in an expression, and non-
pure languages are, in general, not resilient to those changes, i.e. altering this
order potentially changes the observational behavior of a program, which ultimately
changes the program’s meaning making the code equality false.

We could try to prove the functions and values in a particular program are in fact
pure, despite being written in CakeML: as long as we are able to prove their purity,
then the transformation can be applied. Proving a particular function to be pure is
often feasible, for example, given:

map f [] = []
map f (x:xs) = f a:map f xs

it is enough to assume the arguments of map to be pure to conclude the final result
is pure as well.

It is, although, much harder to conclude purity for arbitrary expressions. Various
factors get in the way; referring to the example above, f could be a complex recur-
sive function that produces side-effects only for particular arguments: under this
setting, determining for which x the function f is pure could even be undecidable.
This conclusion directly follows from Rice’s theorem, that’s states any non-trivial
semantical property of a Turing-complete program is, in general, undecidable [12].

The exploitability of code rewriting in CakeML is not only limited by the lack of
purity, but also by its strict semantics. As we mentioned briefly in Section 3.2, this
evaluation strategy imposes and order (right to left) for the evaluation of the terms
in a function application (also known as spine [32]).
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In non-strict strategies, no order is imposed: the partial computation of terms in
a program can happen freely, without altering the whole meaning. This aspect is
very important, because computation in lambda calculus is performed through code
rewriting (following a specific rule, β-reduction). It follows that if we restrict the
computation that can be performed to a specific order (as strict semantics does),
we are also limiting the amount of rewrite rules that can be applied over a program
at an given moment: each rewriting rule that performs computation can potentially
break the strict strategy order, and hence alter the program’s semantics.

This scenario can be easily seen with transformations that discard some terms, like
the K combinator presented in Section 3.2:

K x y ≃ y

This equivalence holds in any pure, non-strict language, but in CakeML substitut-
ing the left-hand-side with the right one might result in a change in the program
meaning, specifically when x diverges:

JK ⊥ yK = ⊥ ̸= JyK
Another more interesting example is the following dead-code elimination transfor-
mation:

x ̸∈ FV (A) ⇒ let x = B in A ≃ A

That says: if x does not occur as free variable in A, then the whole let-binding can
be removed. Again, in case B diverges, this substitution cannot take place.

A similar arguments can be made for errors: applying a transformation that discards
a term that has the potential to trigger an error alters the programs semantics, and
therefore cannot be applied.

4.1.2 HOL

The HOL language, like many other proof assistants, comprise a subset that closely
resembles a pure programming language. Definitions that are strictly within this
programming language-like subset can hence be translated into a proper program-
ming language (like CakeML), with the intent to be executed.

In case of HOL, this is made possible making use of the “translator” [25, 19]. The
translator consists of Standard ML functions that convert HOL terms into CakeML
ones, together with a proof that certifies the correctness of such transformation
(proof-producing translation). This process is also referred to as verified program
extraction in the literature.

We can write the two programs we want to show are equal in HOL, and make use of
the translator to convert those in CakeML AST, that in turn can be compiled into
machine code.
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This approach has an advantage over PureCake and a series of drawbacks. The
main advantage is that HOL can benefit from a collection of libraries with already
proven code equalities. In fact, those, paired with the tactics offered in the system,
constitute the main building blocks that allow programmers to construct the proofs
in the logic.

For example, we can find the equality that states the correctness of a list fusion
transformation 1:

⊢ map f (map g l) = map (f ◦ g) l

On the other side, the fact that HOL has been conceived as a logic system brings
also a series of disadvantages. First of all, HOL requires each function definition to
be total. In particular this means that most definitions of recursive functions must
only recurse according to a well-founded relation. In other words, most recursive
functions terminate if one views them as functions in a programming language (note
there are certain classes of recursive functions that can be defined in HOL without
termination proofs, e.g. tail-recursive functions or certain boolean-valued functions).

Although this is not a real limitation from the expressiveness point of view [41, 22],
it forces the programmer to prove the existence of such relation for any recursive
definition (or at least for the ones in which automatic methods fail). From the
user point of view, this adds a small learning curve over an otherwise frictionless
transition from a classic functional programming language (Standard ML, Haskell
etc.) to HOL.

One more significant issue with HOL being a logic of total functions is that it makes
it a bad target for a potential source-to-source compiler for common functional lan-
guages (Standard ML, Haskell, JavaScript etc.). In fact, all the main programming
languages currently used allow the definition of partial functions. Turning all the
functions in a program from partial to total requires an accurate refactoring by
the programmer, that needs to provide a meaning to all the cases left undefined.
In particular for recursive functions their totality requires a proof of termination
(like in HOL), which is in general undecidable [12]. The inability to automatically
port mainstream languages into the verified compilation chain limits the potential
exploitability of the project as formal verification tool.

Another relevant drawback of using HOL is that we would rely on the translator
to implement the verified compilation chain. Proof-producing code extraction is
slightly more fragile compared with verified compilation, because it does not guar-
antee the successful termination of the translating function for all inputs.

4.1.3 Something in between

There is a third option for the task. We can make use of the HOL-translator to
produce CakeML functions, that are latter placed into larger CakeML programs.
The rationale behind it is that we can prove properties about HOL functions making

1from listTheory.MAP_MAP_o
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use of all the tools and libraries already developed for the language, and latter deploy
those in a full program.

We can, for example, program a sorting algorithm in HOL, and prove its correctness.
Latter on, we can make use of the translator to produce a CakeML function from it
and use it to implement a correct full-scale program.

While this approach turns out to be useful in some scenarios, it lacks an important
aspect that we can instead find in PureCake: the properties we prove for the terms
in HOL do not compose once deployed in CakeML. We can take as example the list
fusion discussed above:

⊢ map f (map g l) = map (f ◦ g) l

This equality implicitly assumes the two functions f and g to be pure and total,
trivially because the proof is conducted within the HOL language. Once deployed
into CakeML, those assumptions do not hold anymore.

In other words there is a forced logical separation between the two languages that
is given from the fact we are translating functions from a language with a certain
set of properties to another one that lacks some of those (purity, in particular). As
a result, we lose all the proofs that rely on those implicit properties.

On the other side, this exact same technique might turn out to be more useful when
translating HOL terms into PureCake ones. PureCake, as we said, is pure. This
gives more HOL equalities the chance to hold when translated into PureCake.

A difference between the two languages (HOL and PureCake) that can limit the
scope of this approach is that in PureCake there is no separation between data and
co-data, while in HOL this distinction is needed to preserve the function’s totality.
As an example, the list fusion transformation discussed above assumes the lists to
always be finite, while in PureCake this is in general not true.

4.2 Code equalities with PureCake

Informally, we define two PureCake expressions to be equivalent when one can re-
place the other, in any program, without altering the overall meaning.

A first naive equivalence can be defined in terms of eval as follows:

e1 ≃ e2 ⇔ eval e1 = eval e2

Two expressions are equivalent if the function eval maps them to the same value.

We soon notice that, the way it is stated, this equality trivially holds only for fully
applied PureCake expressions. In fact, the evaluation of a Lam term results in a
Closure, whose body is left uncomputed:

add x y = ... (addition between literals) ...
e = Fun "n" (add (Lit 5) (Lit 6))
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e' = Fun "n" (Lit 11)

eval e = Clos "n" (add (Lit 5) (Lit 6))
eval e' = Clos "n" (Lit 11)

The PureCake expression e and e’ can obviously be substituted with each other in
any program without altering its final meaning, despite being not structurally equal.

The problem involves even expressions only consisting of application and lambda
abstraction:

id = Lam "x" (Var "x")
id' = Lam "y" (App id (Var "y"))

eval id = Clos "x" (Var "x") ̸= Clos "y" (App id (Var "y")) = eval id'

Functions are a substantial subset of all the terms we would like to substitute in
an equational context, leaving those out is not an option. We need to define an
equivalence relation that subsumes partially applied terms, and relates closures that
can be effectively substituted without altering the meaning of a program. Luckily,
this exact problem has been object of thorough studies in the past, and since then
several solutions have been proposed. We refer to Ong [27] for a review of the
literature.

Before discussing the formalization, a small digression over equality between func-
tions.

4.2.1 Intensional versus Extensional equality

Two functions are said to be extensionally equal when they map the similar input
to the similar output. In set theory, a model that is often used to describe the
extensional equality of two mathematical functions is given interpreting those as a
set of pairs associating each element of the input with the corresponding output
element, and defining their equality in terms of equality of these sets of pairs.

Extensional equality is opposed to intensional equality, where functions can be un-
derstood as a set of rules in a formal language that express how to transform the
input into output. This equality shows the relationship between function arguments
and returning values, like a pure programming language. Under intensional equality,
two lambda terms are equal if they are structurally equivalent up to renaming of
the bounded variables in the expression (alpha equivalence).

This is exactly the issue we are facing in our equality relation for PureCake. We
notice that intensional equality is not loose enough to capture the idea of contextual
equivalence, and we therefore need to define a relation based upon extensional equal-
ity. The intensional equality of two lambda terms implies their extensional equality,
but the other way round does not always hold. The analogy with programming lan-
guages makes the intuition clear: two observationally equivalent programs are often
not structurally equal (i++; vs i=i+1;), but, obviously, two identical programs
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always share the same behavior [1].

4.2.2 Contextual equivalence

The mathematical formalization for contextually equivalent expressions depends on
the semantics adopted: denotational semantics states that two expressions are equiv-
alent if those are mapped to the same denotational object:

e1 ≃ e2 ⇔ Je1K = Je2K
this is the definition we used to introduce the concept in Section 2.2. The simplicity
of this formula relies on the ability of denotational semantics to provide a unique
representation for the meaning of a program, making the comparison between the
expressions ultimately trivial. In other words, all the hard work is done defining the
denotational semantics in the first place.

The definition of equivalent programs under an operational semantics requires in-
stead a more substantial approach. Suppose we have a generic program C for our
abstract machine. This program C contains an “hole” in where we can place any
program fragment X, obtaining a complete program C[X], that can therefore be
interpreted by the abstract machine.

This program C is commonly called context. Now, we say that two program’s frag-
ments (our PureCake expressions) are considered equivalent when for any possible
context, the machine running the two expressions behaves in the exact same way.

∀ C. e1 ≃ e2 ⇔ (∀ v. C[e1] ⇓ v ⇔ C[e2] ⇓ v)

In other words the two executions are observationally equivalent.

The formalization we adopted for PureCake is based on this second approach. The
implementation follows closely Pitts [33], which in turn is based on Howe [13]. The
equivalence relation between two closed expressions is defined as a bi-simulation
over the eval function (presented in Section 3.5), which in this case covers the role
of transition function for our term-rewriting abstract machine. Without going into
the details of the implementation, we will show the resulting main equivalence (≃)
lemma2.

For Atoms and Errors the definition of this equivalence is straightforward: we simply
lift the HOL structural equality.

⊢ e1 ≃ e2 ⇐⇒
closed e1 ∧ closed e2
∧ (∀ a. eval e1 = Atom a ⇒ eval e2 = Atom a)
∧ (eval e1 = Error ⇒ eval e2 = Error)
. . .

2 from pure_exp_relTheory.app_bisimilarity_iff. The definition has been slightly simpli-
fied for clarity. The relation presented lacks its second part, in where the expressions e1 and e2
are permuted, thus making ≃ symmetric
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For the other cases, which contain themselves unevaluated PureCake expressions
(Closure and Constructor), the equivalence must be defined co-inductively over
the semantics of such expressions:

. . .
∧ (∀ x e1s. eval e1 = Constructor x e1s ⇒

∃ e2s. eval e2 = Constructor x e2s
∧ LIST_REL (≃) e1s e2s)

. . .

In particular for closures, the function body might contain a free variable: the
relation must be proven to hold for any ≃-related expressions a1 and a2 which have
been substituted on each sided with the free variable:

. . .
(∀ x ce1.

eval e1 = Closure x ce1 ⇒
∃ y ce2. eval e2 = Closure y ce2 ∧

∀ a1 a2 . a1 ≃ a2 ⇒ subst x a1 ce1 ≃ subst y a2 ce2)

From a denotational perspective, this similarity states that two closures are related
when the two associated functions are extensionally equal.

On top of (≃) we can then define an equivalence relation between not-closed terms:

⊢ x ∼= y ⇐⇒
∀ f . freevars x ∪ freevars y ⊆ FDOM f

⇒ bind f x ≃ bind f y

Which simply states that two terms are related when substituting their free variables
with generic closed terms, we obtain two expression that are themselves ≃-related.

4.3 Beta-reduction

Making use of our brand new equivalence (∼=), we can prove that the beta-reduction
rule preserves the programs’ meaning, i.e. always relates expressions within the
same ∼=-equivalence class:

⊢ App (Lam x body) arg ∼= CA_subst x arg body

Where CA_subst is the capture-avoiding substitution of the free variables x in body
with arg.

This proof allows us to prove that two PureCake expressions are in fact equivalent
through a sequence of beta-reduction steps. For example we can now prove that:

id ∼= id' ⇔
Lam "x" (Var "x") ∼= (Lam "y" (App (Lam "x" (Var "x")) (Var "y"))

in one reduction step 3.
3examples/pure_identity_equivScript.sml
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4.4 Abstracting code equalities

An important aspect that relates with referential transparency is the ability to
generalize the equations we want to prove over a set of possible programs and input
arguments. This is done very naturally in HOL through the use of forall quantifiers.
As example, here is a variant of the list fusion transformation:

∀ f l. closed f ∧ closed l ⇒
(map f . map f) l ≃ map (f.f) l

With f and l two generic PureCake expressions. While proving the two expressions
are ≃-related, we might have to partially evaluate them (through symbolic inter-
pretation). The evaluation of the expressions must, in turn, go indirectly through
those variables, and this might pose some challenges.

In Section 3.5, we briefly showed how the semantics for the App lexemes is defined
in terms of a bind function:

bind m e def=
if ∀ n v. FLOOKUP m n = Some v ⇒ closed v then subst m e
else Fail

This function substitutes a series of free variables in a term with their associated
expressions, and requires the latter to not contain free variables themselves (closed).
Since some might contain forall-quantified HOL variables, closed must be defined
over the structure of the expressions datatype:

closed e def= freevars e = []

freevars (Var n) def= [n]
freevars (Prim v0 es) def= FLAT (map (λ a. freevars a) es)
freevars (App e1 e2)

def= freevars e1 ++ freevars e2

freevars (Lam n e) def= FILTER (λ y. n ̸= y) (freevars e)
freevars (Letrec lcs e) def=
omitted...

By turning the definition in this way, it is enough, during the proofs, to assume the
HOL variables to be closed themselves in order to infer any term containing them
would also be closed.

Another example is given by subst that, given a expression v, a variable identifier n
and an expression e, it substitutes each occurrence of n in e with v. It might be the
case, during some proofs, that subst is called over an HOL variable. This in theory
is not a concern, since those are assumed to be closed and a substitution simply
leaves the term unaltered. In practice, we have to prove a lemma that says so:

⊢ ¬MEM n (freevars e) ⇒ subst n v e = e
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4.5 Equalities over infinite structures

To prove the semantical equivalence of recursively defined expressions is not enough
to rely upon term-rewriting proof strategies, like the beta-reduction equivalence
above.

We need to make use of co-induction to prove that the two expressions are equivalent.
To help us with it, we proved a lemma (progress lemma):

⊢ progress exp1 next ∧ progress exp2 next ∧
isClos (eval exp1) ∧ isClos (eval exp2) ⇒
exp1 ≃ exp2

The lemma saves us from explicitly construct a bi-simulation argument whenever we
want to prove an equality between two closures. It states that if two expressions exp1
and exp2 are proved to behave equivalently (progress) against a certain semantical
model (next) then those two expressions are ≃-related.

The semantical model corresponds, in practice, to an HOL function that defines the
expected behavior the two expressions should implement, in terms of the various
shapes the input can assume. Here is, as example, the semantical model for the map
f expression:

next_list f input =
if ¬closed input then INL Fail
else if eval input = Diverge then INL Bottom
else case eval input of

| Constructor “nil” [] ⇒ INL nil
| Constructor “cons” [_;_] ⇒

INR (“cons”, App f (Proj “cons” 0 input), Proj “cons” 1 input)
| _ ⇒ INL Fail

The model is parametrized over the function supposed to be mapped (f) and the
input list, and describes the possible outcomes that can result in applying map f
over a list. Those outcomes are divided in two classes and relate on the way the
function map consumes its input:

map f [] = []
map f (x:xs) = f x:map f xs

at any given occasion map either terminates returning a value ([]) or produces a
partial result (f x:_) and calls itself recursively. Hidden under the syntactic sugar,
the Haskell definition above also describes the behavior of the function when a
diverging term is passed as argument to map f, which is ’diverge’ as well.

We can recognize each of those scenarios listed in the model next_list. The ter-
minating cases are wrapped in an INL constructor (’Left’ constructor for the HOL’s
sum type) while the recursive-call case is labelled with INR. Since PureCake is un-
typed, we also need to define the outcome for ill-typed applications (that result in
an Error).
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In turn, the progress relation states that an expression exp implements a model
next if, for any possible input, their outputs are ≃-related:

progress exp next ⇐⇒
App exp input ≃
case next input of
| INL final ⇒ final
| INR (n, x , rec_input) ⇒ Cons n [x ; App exp rec_input]

4.5.1 List fusion proof

We can in turn make use of the progress lemma to prove a simple code equality
between functions over lists:

∀ f g l. closed f ∧ closed g ∧ closed l

⇒ (map f . map g) l ≃ map (f.g) l

This equality is an instance of a wide class of code-transformation equalities known
in the literature as list fusion [9].

We start proving the right-hand side of the equivalence:

⊢ closed f ⇒ progress (App map f ) (next_list f )

The progress relation holds for any expression f , in particular the (f . g) above.
The proof is lengthy but straightforward. We make use of 4:

⊢ eval x = eval y ∧ closed x ∧ closed y ⇒ x ≃ y

And proceed rolling eval through the expression App map f, showing for each input
the result is equivalent to the expression given by the model next_list f.

We conclude by proving in the same fashion the progress relation for the left-hand
side and finally make use of the progress lemma to obtain our equivalence.

4.6 Equalities and types

As we said, PureCake is untyped. This has an important implication over the
amount of equalities we can prove with it. For example:

map id ≃ id

Only holds when we assume the input argument for each side of the equality to
be a list. For any other value v, map id v returns an ’Error’ under the current
semantics, while id v always returns v. Since the two expressions are not ≃-related
for all shapes of input, the two expressions are not equivalent.

4meta-theory/pure_exp_relTheory.eval_IMP_app_bisimilarity
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In order to extend the scope of the equalities, we need to restrict the input to only
type-correct expressions. Unfortunately, this inherently relates to the PureCake
language itself rather than the equivalence relation we defined. Relaxing the equiv-
alence condition up-to-’Error’ is also not a viable option: two expressions would be
considered contextually equivalent simply because the is no valid input that matches
both type signatures, like (\x.x+1) and (\x.[x]++[1]): a complete nonsense.

The only concrete solution is to bring a type discipline in the language that prevents
type-ill applications from happening, as it is case for the Programming Computable
Functions language (PCF) and several of its variants [10].
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5
Conclusions

In this report we described the main contributions and achievements of the PureCake
project from its very beginning until now. We described context and motivations
for its conception, the design choices and the associated challenges.

In its essence, this project shares the same spirit of CakeML: to make advanced
formal methods techniques more accessible. In order to make concrete progresses
over this ambitious task, we should leave no stone unturned. PureCake takes a
step into non-strict functional languages, and since the conception of the project we
discovered some relevant aspects that show promise.

In particular, we have identified a class of proofs (code equalities), that is currently
not well supported by any other language in the CakeML project. We justified the
practical importance of them in the context of code optimizations, and shown, with
examples, how those can be achieved in PureCake.

5.1 Limitations and future work

The PureCake language and its semantics are continuously evolving to overcome
the obstacles in the way to the implementation of the compiler, and every now and
then some challenges are inevitable.

Developing provenly correct software requires great time and efforts, and there are
still several components of the compiler yet to be implemented, including parsing,
type-checking, strictness analysis, and the target-code generation pass itself. All
these are currently under development or soon will be, hence constituting the im-
pending “future work” for the project.

At the moment, the focus is kept over the feasibility of the compiler itself. Despite
the substantial research around the topic, PureCake remains the first ever attempt
to develop a provenly correct non-strict compiler. While an actual implementation
seems to be within reach, it is still unclear how the language will have to change to
accommodate the technical difficulties along the way.

Moving over the code rewriting optimization side of the thesis, there are many vi-
able paths. First of all, there is the need to implement the actual rewrite engine
that performs the optimization. The engine needs to pattern match the input pro-
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gram over the equalities we have proven and once a match with one side of the
equivalence is found, it should be replaced with the other side. This machinery is
almost identical to the proof construction process adopted in HOL, which could in
turn provide insightful instruments for its implementation. The correctness of such
transformations should rely on the logical framework we developed (Section 4.2).

Another viable path has to do with the equivalence relation presented in Section
4.2. Currently, to prove code equalities between recursive expressions we have to
rely on co-induction. The approach, although effective, requires non-trivial efforts,
also computationally. This is mostly due to the fact that the current approach is
not compositional: the two sides of the equivalence has to be proven correct against
a model, and the only way to do so is through symbolic interpretation. The lack of
compositionality should be attributed to the underlying operational semantics itself,
rather than the equivalence notion we constructed on top of it [36].

An alternative approach would be to make use of denotational semantics to prove
the equivalence of the two expressions (as introduced in Section 4.2.2). The adoption
of a denotational semantics would solve the compositionality issue but, in turn, it
would introduce another problem: how to make the complex mathematical objects
returned by the denotational semantics simple enough to allow practical reasoning
over their equality. Addressing this challenge, Siek [36] investigates some elementary
models for call-by-value lambda-calculus, that show promise.

It is also worth mentioning that research over the PCF language have found a cor-
respondence between the notions of equivalence in the two semantical frameworks
(denotational and operational) [27]. This connection might help overcome the diffi-
culties that seem to arise during the practical poof of code equalities.

Also concerning the code equivalences, in order to expand the profitability of the
optimizations, it would interesting to develop a typed version of PureCake, that
would allow us to prove more equalities, as we argued in Section 4.6.

5.2 Related work

Recently, formal methods have been proven to increase the reliability of large soft-
ware projects, to an extent unrivaled by any other technique [46]. While this achieve-
ment marks an important milestone in the field, the profitability of those verified
projects has been somehow limited by the existence in the market of unverified coun-
terparts, that, thanks to software testing and other tools, have been nonetheless able
to meet the reliability requirements of most non-critical applications.

This is the case for CakeML, for example: the existence in the market of unverified
compilers for Standard ML makes the CakeML project uninteresting in contexts
where reliability can be sacrificed for convenience.

Now that the efficacy of software verification for larger projects has been proven,
the next step is to make use of this tool to develop classes of software that are
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too complex to be approached with informal methods. In this thesis, we brought
the case for compiler’s optimizations, which is a class of software inherently hard
to test (see Section 1.1.2). Several other are emerging, especially in the context of
code analysis [24], cryptography, network communications [26] and artificial intelli-
gence [35].

Finally, equational reasoning has always received sustained support from the re-
search community [15], both as an optimization technique [31, 23, 6] and as an
instrument for reasoning over the correctness of programs [42]. PureCake provides
a logical framework for research in both aspects, and, as a plus, it give the chance
to concretize the theories proven into a verified compilation chain.

PureCake also enables the formalization of more complex languages on top of it,
including typed ones like Haskell, ultimately contributing with a new tool in the
efforts for the formal reasoning about programs.
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