CHALMERS |

UNIVERSITY OF TECHNOLOGY

Semi-Automatic Software Security
Model Extraction

Semi-Automatic Extraction of Security Relevant Information
from Source Code for Formally Based Security Models

Master’s thesis in Computer science and engineering

NEDA FARHAND

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG

Gothenburg, Sweden 2019

MASTER’S THESIS 2019

Semi-Automatic Software Security
Model Extraction

Semi-Automatic Extraction of Security Relevant Information from
Source Code for Formally Based Security Models

NEDA FARHAND

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2019

Semi-Automatic Software Security Model Extraction

Semi-Automatic Extraction of Security Relevant Information from Source Code for
Formally Based Security Models

NEDA FARHAND

© NEDA FARHAND, 2019.

Supervisors: Katja Tuma and Riccardo Scandariato, Department of Computer Sci-
ence and Engineering

Examiner: Jan-Philipp Steghofer, Department of Computer Science and Engineer-
ing

Master’s Thesis 2019

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg

Telephone +46 31 772 1000

Typeset in KTEX
Gothenburg, Sweden 2019

v

Semi-Automatic Software Security Model Extraction

Semi-Automatic Extraction of Security Relevant Information from Source Code for
Formally Based Security Models

NEDA FARHAND

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

Abstract

As society becomes increasingly integrated and dependant on software systems, soft-
ware security is more relevant than ever before. In order to ensure that software
applications are secure, different threat modelling techniques are employed. How-
ever, many of these rely a great deal on the availability of a security expert and
require significant manual effort, often resulting in high time consumption. This
thesis describes the development of a tool which automatically extracts a formally
specified representation of the software architecture with extended security anno-
tations. The extracted architectural model is known as a “SecDFD”, which is a
graph-like representation of software architecture populated with security relevant
information from source code, which in turn allows for automated analysis of in-
formation flow properties. The SecDFD extraction tool performs semi-automatic
extraction of architectural security information from the implementation by pro-
cessing textual representation of call-graphs together with the source code of the
project under analysis. The tool was evaluated by black box testing, and controlled
empirical experiments. Our evaluation shows that, while the tool requires further
work, it holds potential for use in threat modelling activities.

Keywords: Software, Security, Automation, Extraction, eDFD, Threat Modeling.

Acknowledgements

I would like to extend my gratitude towards my supervisors, Katja Tuma, Riccardo
Scandariato, and Gul Calikli, at Chalmers University of Technology for their guid-
ance, encouragement, and support throughout this process. I would also like to
thank those who participated in my experiment not only for giving me and this
project a significant portion of their day, but also for their insightful remarks and
input. Last but not least [would like to thank my examiner, Jan-Philipp Steghofer,
for his time and valuable feedback.

Neda Farhand, Gothenburg, September 2019

vii

List of Figures

List of Tables

1 Introduction

3

Contents

1.1 Scientific Contribution
1.2 Research Questions
Theory
2.1 Background o
2.1.1 The SecDFD
2.1.2 Call-graphs
2.2 Research methodology
2.2.1 Design science methodology
2.2.2 Black box testingo L
2.2.3 Qualitative content analysis
2.3 Related work
2.3.1 Architecture reconstruction
2.3.1.1 Graph based solutions
2.3.1.2 Clustering algorithms
2.3.2 Automation of threat modelling
Methods

3.1 Development
3.2 Black box tests
3.3 Experiment design

3.3.1

3.3.2

3.3.3

3.3.4

Participants oo
3.3.1.1 Selection
3.3.1.2 Participant profiles
3.3.1.3 Training oL
Subject of analysis L
3.3.2.1 Selection
3.3.2.2 Ground truth L.
Execution of experiment
3.3.3.1 Manual SecDFD extraction
3.3.3.2 Automatic SecDFD extraction.
Interviews

xiii

XV

13
13
14
15
16
16
17
17
17
17
19
20
20
20
21

ix

Contents

3.4 Analysis 22
3.4.1 SecDFD comparison 22
3.4.2 Interviews 23

4 Results 25

4.1 SecDFD extraction tool 25
4.1.1 Tool development 25
4.1.2 Implementation choices 26
4.1.3 Tool description 27

4.1.3.1 Required input L. 28
4.1.3.2 Functionality 28
4.1.3.3 Output format 30

4.2 Evaluation by black box testing 30
4.2.1 Tool Compatibility, 31
4.2.2 Tool Correctness 31
423 Cl . .o 33
424 C2 . . 33
425 C8 . . . 35
426 C10 . . . 35

4.3 Evaluation by Experiment L. 35
4.3.1 Experiment results L. 35

4.3.1.1 Correctness e 36
4.3.1.1.1 SC1 37

4.3.1.1.2 SC2 38

4.3.2 Interviews 40
4.3.2.1 Participant A L 40
4.3.2.1.1 Automatic extraction 40

4.3.2.1.2 Manual extraction 41

4.3.2.1.3 Preferred method 41

4.3.2.2 Participant Bo 41
4.3.2.2.1 Automatic extraction 41

4.3.2.2.2 Manual extraction 42

4.3.2.2.3 Preferred method 43

5 Conclusion 45

5.1 Discussiono 45
5.1.1 Relation to the field 45
5.1.2 Functionality and correctness 45
5.1.3 Information from source code (RQ1) 47
5.1.4 Comparison to manual extraction (RQ2) 47

5.2 Threats to validity oo A7
5.2.1 Internal validity o 47
5.2.2 External validity oL 48
5.2.3 Reliabilityo 49

5.3 Conclusion 49
53.1 Futurework 50

Contents

Bibliography 53

X1

Contents

xii

3.1

4.1

4.2
4.3

List of Figures

An overview of the experiment procedure

The process of the semi-automatic SecDFD extraction procedure from
the user’s perspective.
A domain model of the SecDFD extraction tool’s core elements.

The number of files generated by Doxygen per project used in the
black box testing phase. Lo

xiii

List of Figures

Xiv

3.1
3.2

4.1
4.2

4.3

4.4

4.5

4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

4.18
4.19

List of Tables

SC1 characteristics 19
SC2 characteristics 19
Requirements for the SecDFD extraction tool 27
Settings used in Doxygen to produce call-graphs in the format re-

quired by the SecDFD extraction tool 27
A list of the projects used for the black box testing. 30
[ustration of whether or not each project produced the expected files

when running Doxygen, and produced a non-empty SecDFD when
running the extraction tool. L. 31
Reason for negative result (empty SecDFD) in cases where Doxygen
produced call-graph files, when applying the “open box” keyword

determination method. 0oL 32
Adjacency matrix for the SecDFD automatically extracted from the
CoAP IoT Server (C1). 34
Logical appearances of elements from Ground Truth in automatically
extracted SecDFD for the CoAP IoT Server (C1). 34
Adjacency matrix for the SecDFD manually extracted from the CoAP
[oT Server project. 34
Logical appearances of elements from Ground Truth in automatically
extracted SecDFD for JPetStore (C10). 36
Time consumption for SecDFD-extraction using the two different ex-
traction methods, Session A 36
Time consumption for SecDFD-extraction using the two different ex-
traction methods, Session B 37
Logical connections for the Watering System (SC1). 37
Adjacency matrix for the Ground Truth of the Watering System (SC1). 37
Adjacency matrix from session A for the Watering System (SC1). . . 38
Adjacency matrix from session B for the Watering System (SC1). . . 38
Logical connections for the Access Control system (SC2). 38
Adjacency matrix for the Ground Truth of the Access Control system
(SC2). .« . oo 39
Adjacency matrix from session A for the Access Control system (SC2). 39

Adjacency matrix from session B for the Access Control system (SC2). 39

XV

List of Tables

Xvi

1

Introduction

As information technology continues to be increasingly integrated into every aspect
of our lives — ranging from medical monitoring devices to smartphones, home assis-
tants, and even kitchen appliances — the computer security community has become
increasingly aware of the shortcomings in established security protocols [41]. In ad-
dition, the number of connected devices has seen a large increase, and the numbers
are projected to grow even further with forecasts stating that there will be 22 billion
networked devices in 2022, out of which 18 billion will be in the Internet of Things
(IoT) domain as opposed to approximately 400 million IoT devices with a cellular
connection at the end of 2016 [12].

The relatively young field of IoT has come to show that the protocols written
on the foundation of personal computers are not applicable to applications running
on resource constrained devices [41], meaning that a significant portion of connected
devices are not secure. Such vulnerabilities are not limited to edge cases, but are ap-
parent in everyday networked appliances such as smartphones, which are susceptible
to a wide range of malware attacks [31]. With this follows the risk of not only com-
promised privacy, but also physical security. With the technological area increasing
at such a rapid pace, implying that a substantial portion of software development
will come to take place within the IoT domain, it is more important than ever that
the security community keeps up.

By taking security into account during the development of such applications,
aiming for software that is secure by design, companies and developers are able
to prevent major maintenance costs and loss of face that would otherwise have
occurred upon the discovery of a vulnerability. Yet, this remains a difficult task
since many security-by-design approaches require a security expert — a resource that
is scarce in many organizations [37]. Hiring a security expert for threat modelling is,
while arguably a necessary and common practice, an additional cost to the project.
Some problems may have been easily preventable given awareness of the how the
vulnerability manifests. Thus, it would be less costly if developers and software
architects themselves were to detect such security issues before reaching the code
production stage, as the cost of mending vulnerabilities is known to increase over
time [24]. Even so, there remains a risk of a disconnect between the architectural
models and the implementation of the software system, meaning that there is an
additional gap to bridge in the planned security, and the implemented security.
This presents the need for post-production security analysis of existing applications,
which would take even an expert some time as it requires code review. In addition,
if even the most basic security issues manifest in the code, the analyst’s effort may
be diverted from more complex issues.

1. Introduction

By automating the threat modelling process, the industry could save a great
amount of resources — reducing not only the number of working hours spent on man-
ual threat analysis and modelling, but possibly also reducing the risk of potentially
costly human errors. Should such an automation framework build on static analysis,
a correct and versatile solution would require an extensive set of formally expressed,
predefined rules that map to the desired security model. Such a ruleset may prove
highly cumbersome and time-consuming to produce.

By obtaining an initial threat model without the involvement of a security
expert, resources could be saved, and said expert could primarily focus on more
complex tasks. On the other hand, should this threat model be manually obtained
by the architects or developers, the earlier presented problem remains; such a model
may not be correct and would also eventually become outdated, resulting in a waste
of time and resources rather than benefit. However, should you automate the threat
modelling procedure, basing such a model on resources produced during the ar-
chitecture design phase — namely, Data Flow Diagrams (DFDs) — one could greatly
lower the threshold of security analysis, as well as increase the chance of correctness.

This thesis starts from the bottom-up part of the problem, addressing the
challenges of threat analysis from code to model. In this case, the end-model to be
extracted is a Security Data-Flow Diagram, also known as a SecDFD -— a data-flow
diagram with extended security annotations, focusing on the flow of information
assets through a software system [34]. This is particularly challenging within the
complex, large-scale systems often found in IoT, which will be the main domain of
application in this thesis.

This thesis concerns an exploratory research project which consisted of the
development and two part evaluation of a static analysis tool, referred to as the
“SecDFD extraction tool”, which extracts assets, flows, and processes by utilizing the
calls within the code base of a given application to parse its source code and extract
these necessary elements of a SecDFD. The outcome of running the extraction tool
is a SecDFD of the application, outputted by the program as a file written in the
SecDFD specification language. The evaluation was done by means of black box
tests, as well as empirical experiments.

The core idea of the automatic extraction procedure developed as part of this
thesis is to use the information given by a call graph in order to 1) identify the
information assets by cross-referencing the parameters of the functions against a
list of security relevant strings, 2) determine the responsibilities of the respective
nodes by observing their manipulation of the information assets, and 3) based on
the collective information, produce a SecDFD that represents the source project.

The remainder of this thesis is structured as follows: Section 1.2 presents the
research questions of this thesis. Chapter 2 concerns the background and related
work that lay the foundation for the conclusions, assumptions, and procedures used
throughout this thesis, as well as the justification for the design choices regarding
both tool- and experiment design. Chapter 3 presents the methodology followed for
developing the tool, the evaluation with black box testing, and the evaluation with
an empirical experiment. Chapter 4 presents the results. Chapter 5 is structured as
follows: Section 5.1 discusses the results, and answers the research questions. Section
5.2 discusses the threats to validity. Finally, Section 5.3 contains a reflection and

1. Introduction

summary of the thesis, as well as the future work.

1.1 Scientific Contribution

This thesis aims to present a novel threat modelling procedure by means of automat-
ing the process of extracting a SecDFD from source code. In particular, this thesis
describes a semi-automated procedure that would significantly reduce the time con-
sumption and need for manual involvement in SecDFD-creation from source code.
Automation thus results not only in saving a significant amount of resources, but
also in a greatly reduced risk of manifestation of inaccuracies as a result of human
error, as well as consistency in the final model seeing as the SecDFD-creation would
no longer necessarily rely on individual human interpretation. Thus, the thesis
presents an implementation of a tool which extracts a SecDFD based on call-graphs
obtained from the source code combined with a list of keywords, a semi-automated
procedure for extracting a SecDFD, as well as a means for qualitative comparison
between SecDFDs.

1.2 Research Questions

The aim of this study is to facilitate the threat modelling procedure by designing
and developing a novel approach to automatically extract high-level security infor-
mation from source code, and transforming this into a SecDFD. As of this time,
the only occurrence of SecDFDs is found in research, more specifically in the paper
by Tuma [34], which serves as the origin of the SecDFD and details the creation of
a SecDFD from a thorough conceptual description of the software under analysis
and its different components. Much like other approaches for security-by-design [35],
SecDFD creation requires security expertise — manual SecDFD extraction, especially,
relies heavily on expert knowledge of the information assets and their significance.
Thus, the current assumed method of extraction requires expert knowledge of the
respective roles and functionality of the components that build up the software, in
correspondence to the different elements of the SecDFD. This raises the question of
how to best mimic this kind of expert knowledge, which gives us our first research
question:

How can the security-relevant information be leveraged during
automatic SecDFD extraction? (RQ1)

In order to formulate a means for extraction, it is important to identify what ex-
actly is to be extracted. As the current method strongly relies on the understanding
and case-to-case interpretation of a human expert, there is no clear indication of any
particular syntactic marker in a set of source code which will definitely and uniquely
translate to a SecDFD element. Should such a marker exist and be identifiable by a
machine it will determine which approach is best suited for implementing automated
SecDFD extraction. This renders us the additional question:

1. Introduction

What information is required from the source code in order to
automatically extract a SecDFD? (RQ1.1)

To solidify the scientific contribution and contextual significance of the novel ap-
proach described in this thesis, it is important to consider the performance of this
tool in relation to correctness, as well as whether its usability overall puts usage of
the tool at an advantage over manual extraction. Thus, we are interested in com-
paring these two approaches.

How does manual creation of a SecDFD compare to SecDFD
extraction using the tool? (RQ2)

In particular, we are interested in whether one method is of greater advantage than
the other in some particular use case. Additionally, should one method of SecDFD
creation appear to be overall preferable, it may come to affect the future direction of
research conducted on the topic. Thus we should aim to identify the differences and
areas of greater suitability of each method, as compared to the other. This poses us
with the following research question:

What are the advantages or disadvantages of manual creation,
compared to using the tool? (RQ2.1)

2

Theory

2.1 Background

As briefly touched upon in Chapter 1, there are a multitude of ongoing challenges
and research opportunities in IoT security, as presented in the research conducted
by Zhang et al. [41]. While the study was conducted in 2014, many of the problems
presented still hold true today. This is further emphasized by the research of Conti
et al. [8] conducted in 2018. They identified, among other things, that building a
secure architecture is one of the main ways of overcoming vulnerabilities presented
by so called Software Defined Networks that would otherwise be passed down to
any underlying IoT sensors. As the need for understanding and implementing IoT
security rises, so does the need for efficient and reliable methods of evaluating the
security of IoT applications.

Security will not cease to be a relevant field of research in software engineer-
ing and computer science. On the contrary, with the impending shift of quantum
computing, we may soon find that our de-facto security measures, especially cryp-
tographic algorithms, will soon be obsolete. There is ongoing research on security
in the age of quantum computing, such as that by Liu et al. [22] which considers
the security of edge devices in such a context. By preparing, and by securing more
efficient means of securing software at a time when cracking security is becoming
rapidly more effective, the security community will secure itself against the pending
shift.

Implementing security requires understanding of not only the application which
is to be secured, but also the threats it needs to be secured against. For this purpose,
we turn to the Microsoft STRIDE threat modelling procedure which is a method
for systematically identifying and evaluating security threats by analyzing a graph-
ical representation of the software architecture [27]. The STRIDE threat modelling
procedure is advocated by Microsoft for ensuring [oT security architecture [32], and
is mirrored in the SecDFD — the core elements of the threat model being processes,
data flows, data stores, and external entities, as well as both being based on creating
a diagram of the reference architecture.

The verification of automated techniques for architecture recovery based on
any kind of architectural ground truth has proved itself to be a significant hurdle
in multiple cases, enough so to warrant the collection of ground truths being a sig-
nificant portion of a project. In their 2013 study, Garcia et al. [15] performed a
comparative analysis of six different techniques for architecture recovery, in which
they collected a total of eight architectural ground truths from the open source com-

2. Theory

munity that had been independently verified. In the same spirit, in 2015 Lutellier
et al. [23] evaluated six architecture recovery techniques, with the addition of a
project significantly larger than those previously studied with the same measures —
consisting of millions of lines of code — for which creating the architectural ground
truth required collaboration with the project’s developers over the course of two
years.

There is also the matter of investigating the correlation between human read-
able language and code, to reflect the high-level and individualistic approach taken
during modelling processes. The semantic parser presented in the research by Quirk
et al. [28] was described to show a promising foundation for further work, with
the added remark that out of the taken approaches it performed best in a loosely
synchronous context. Their method clearly relied on a deterministic, self described
as an “if-this-then-that” approach to lessen the gap between programming and nat-
ural language. Judging by their work, discerning the significance and role of coding
components by their semantics is not only possible, but promising.

2.1.1 The SecDFD

The SecDFD [34] can be described as a graph where each node represents either a
process, external entity, or data store. Each node, in turn, is distinguished by one
of four contracts in regard to label propagation; encrypt or hash contract, decrypt
contract, join contract, or copy contract [34]. These different properties describe the
responsibilities of that particular node towards any asset it comes into contact with.
The SecDFD is designed to consider information security and the securing of flows
in networked applications on different abstraction levels, making it highly versatile
and applicable to the challenges that lie ahead in the sense of the oncoming growth
in IoT application areas.

In this thesis, we interpret the nodes to represent classes; the directed flows
between the processes represent method calls; and the parameters passed by those
methods represent information assets. We consider the CIA (Confidentiality, In-
tegrity, Availability) model for computer security. In practice, if naming conventions
in regard to descriptive naming are followed, the manifestation of such an informa-
tion asset in source code will be named — entirely or in part — after the information
it represents. Thus, when strings such as “key” or “id” appear as parameters in a
function, it is likely that they represent somewhat sensitive information. Examples
of such assets would be user data such as user id, authentication keys, passwords,
and so forth.

2.1.2 Call-graphs

For the purposes of this study, textual representation of call-graphs are chosen as
an intermediate between source code and SecDFD generation. This is due partly
to the straightforward relationship between call-graphs and SecDFDs in terms of
each node and flow being clearly represented, which in turn makes the flows more
clearly distinguishable and thus distills the entirety of the information given through
the source code down into the information needed for SecDFD extraction. This is

2. Theory

due to the correlation between the direction of the call, and the direction of the
data flow, which creates a link between the call-graph elements and the components
of the SecDFD. Additionally, there exist established tools on the market that can
extract call-graphs from source code, which in itself is a complex task. From there,
it is only a matter of parsing the textual representation of the call-graph given the
syntax specifications of the language it is defined in.

2.2 Research methodology

Runesson et al. [29] define experiments as the measurements of effects from ma-
nipulating variables on another variable, combined with the random assignment of
treatments to subjects. Additionally, they mention the different purposes served
by different research methodologies — namely exploratory, descriptive, explanatory,
and improving research [29]. This thesis concerns improving research, specifically
improving threat modelling techniques, as the goal is to automatize SecDFD extrac-
tion and thus reduce the time consumption.

Engstrom et al. [11] categorize solution design as belonging to the category of
design science, and have in their 2019 research, by studying 38 ICSE distinguished
papers, evaluated how well viewing research from a design science point of view can
help illustrate phenomena within software engineering communication — framing the
projects they analyzed as models of iterative loops between a problem instance and
solution, between which validation occurred. Their recommendations for communi-
cation of software engineering research, to name a few, are to be clear regarding the
technological settings in which the research was conducted in order to help advance
the field and aid fellow researchers. They also mention placing descriptions on an
apt level, tying the research into tangible problems in the domain, and visual aids
as a means of carrying the findings of one’s research across.

This thesis strives to meet the recommendations stated by Engstrom et al.
through relating the work to the design science life cycle, as well as providing a
clear description of the methodology and technological settings in which the thesis
was conducted.

2.2.1 Design science methodology

When it comes to design science, the main topic is understanding the activities of the
research, which are defined by Wieringa [39] as the study, design, and investigation of
a software artifact in its context. Furthermore, Wieringa defines the design process
as a cycle consisting of five phases; problem investigation, treatment design, treatment
validation, treatment implementation, and implementation evaluation. These phases
are a part of a rational problem solving process which concerns the application of
a treatment to a problem and an evaluation of the effects and effectiveness of said
treatment.

In the context of this thesis, and by placing the parts of this thesis in relation
to the definitions from Wieringa [39], the relation is as follows:

2. Theory

1. Problem investigation: defining what must be treated. In this thesis, this
part constitutes both the acquirement of what Wieringa refers to as prior
knowledge [39] by reviewing literature, but also requirements elicitation as
described in in Chapter 3.

2. Treatment design: the design of an artifact to treat the problem, which in
the context of this thesis constitutes the design of the SecDFD extraction tool
by identifying and specifying the scope, functionality, and dependencies.

3. Treatment validation: observing whether the designed treatment would
treat the problem, which in this case would be more aptly phrased as “would
this program be able to generate a SecDFD from source code?”. In the thesis,
this step corresponds to the tuning of the tool during the development phase.

4. Treatment implementation: the application of the designed artifact to
treat the problem, which corresponds to the final implementation of the tool
being used to extract a SecDFD in full.

5. Implementation evaluation: determining the success of the treatment. In
this thesis, this step corresponds to the black box tests and experiments, which
were used to determine the correctness of the tool and answer the research
questions.

Wieringa goes on to describe the “Engineering cycle” as the re-iteration of the first
four steps by feeding the implementation evaluation into the problem investigation
step, noting that the difference between the problem investigation and the imple-
mentation evaluation is that the purpose of the problem investigation is to prepare
for the design of a treatment while the purpose of the implementation evaluation is
to evaluate the success of a treatment when applied to the original problem [39].

2.2.2 Black box testing

Black box testing, also known as functional testing, is a kind of software testing
technique which can be used once the software is fully implemented. The test cases
are specified based on knowledge of the expected behaviour and functionality of
the software under test, often based on the functional specification of said software.
The purpose of black box testing is to test modules independently, verify system
behaviour, check performance, stress the system, and check for interface errors,
amongst other things [7].

In the tests carried out in this thesis, the black box testing technique is used,
and the software under test is the SecDFD extraction tool. It should be noted that
this is not interchangeable with the “open box” keyword determination method,
which refers to the process of specifying the keywords used by the tool based on prior
knowledge of the names of the assets in an available, manually extracted SecDFD
for a project under analysis.

2.2.3 Qualitative content analysis

Wildemuth et al. describe qualitative content analysis as the procedural conden-
sation of raw data into categories or themes based on inference and interpretation,

8

2. Theory

which is a process that relies on the researcher’s consideration and comparison of
the data in order to apply inductive reasoning [40].

Furthemore, the literature goes on to describe the process of data preparation,
specifically the preparation of interview transcripts as the most often used data
format for qualitative content analysis. The transcripts can be either literal or a
summary. This is followed by defining a unit of analysis, which can be a theme — a
theme, in turn, is described as “the expression of a single idea”, which can be found
in a single sentence or an entire document alike [40].

This definition of qualitative content analysis and inductive reasoning by the
experimenter is applied throughout this thesis in regard to the correctness evalua-
tion as part of both the treatment validation and the implementation evaluation,
including both the correctness evaluation of the output from the semi-automatic
SecDFD extraction procedure as well as the evaluation of the interviews as part of
the experiment, both described in Chapter 3.

2.3 Related work

This section concerns previous research relevant to the work conducted in this thesis,
addressing research regarding architecture reconstruction as well as the state of IoT
security and practices in threat modelling.

2.3.1 Architecture reconstruction

A great deal of work has been conducted in the area of architecture reconstruction.
A large part of the body of research in this domain concerns the application of
machine learning and other statistical methods for extracting software architecture.
As the SecDFD is first described in the work by Tuma [34], there is no precedent of
applying such research to this particular model at this time.

Regarding applying a machine learning approach to the problem of architecture
reconstruction, work conducted in 2012 by Sajnani [30] describes the process of using
machine learning as a means of recovering software architecture without having a
pre-establish set of insights into the software and its various properties. Their end
goal was to produce a model that illustrated the call low within an application. They
had studied among other things, domain feature extraction and feature classification
using supervised learning techniques, as per what was state of the art at the time.

Magbool et al. [25] have, in their 2007 work, explored the possibility of us-
ing Bayesian learning methods to recover software system architecture by labelling
known software systems in order to train a so called “Naive Bayes Classifier”. They
observed the percentage of correct matches by dividing systems into subsystems,
reaching about a 50% observed correctness rate. As they state, investigating how
their method would perform using other supervised learning methods and a greater
number of classifiers could prove interesting.

The work by Garcia et al. [16] investigated whether extracting concerns could
aid in producing increasingly correct outcomes from automatic architecture extrac-
tion processes. In their work they describe a novel model which utilizes the high level
concepts of components and connectors to describe what would make up a concern,

2. Theory

and apply statistical methods to in turn extract the concerns. Their initial results
indicate the usefulness of a supervised learning approach to the problem. There
is also research supporting semi-supervised approaches for label-propagation as the
process of labelling data sets may in itself prove cumbersome, such as the work by
Wang et al. [13] which introduces a means of doing such based on traversing linear
neighbourhoods.

Regarding tools for architecture extraction, Fontana et al. [4] propose an
Eclipse plugin called “MARPLE”, which is capable of extracting architectural infor-
mation such as design pattern detection and metrics from a project. They mention
that their tool is a novel contribution, but that attempts to make comparisons
of their results were inconclusive [4]. There is also the work of Granchelli et al.
[17], which concerns a program for extracting micro-service based architectures, and
showed promising results based on the carried out validation.

Using reflexion models, as introduced by Murphy et al. [26] in 2001, software
engineers can better reason about software artifacts by levaraging the gaps between
design and implementation, and evaluating their consistency. Additionally, Koschke
et al. [21] have extended the software reflexion model to include non-hierarchical
software architectures. The technique describes the process of comparing software
models to their reference material, which in turn is essential for evaluating archi-
tectural correctness. This principle, in turn, is considered in the evaluation parts of
my work.

This thesis concerns the extraction of security architecture from source code,
more specifically a SecDFD, which distinguishes it from the methods for architecture
reconstruction mentioned in this paragraph in the sense that the extraction of this
more specialized security model poses different requirements on the methods used
for extraction, such as identification of design patterns. Additionally, the works that
apply machine learning to the problem are based on extracting general architecture,
whereas the SecDFD is specialized, making appropriate data sets more difficult to
obtain.

2.3.1.1 Graph based solutions

Regarding similar research, Brown et al. [6] propose, in their 2004 study, a method
of applying a graph based genetic algorithm (GA) for multiobjective evolution of
median molecules, utilizing graph-based mutation- and crossover operators in or-
der to evolve their nodes and sub-graphs. A particularly interesting aspect of their
research concerned graph-based crossover operators!, in which they bring up multi-
point crossover and sub-graph crossover. Their initial results were promising, show-
ing that the method is capable of producing the desired results.

Using another approach than applying statistical methods strictly to the spe-
cific problem of architecture recovery, Fouss et al. [14] researched how random walk
computation of similarities between nodes in a weighted, undirected graph could be
used to compute similarities between elements in a database. While this strays a bit
from the original problem of this thesis, which could in a way be likened to wanting

ICrossover, in a GA, is the exchange of genetic material around a certain point. A crossover
operator would determine what the point around which the exchange takes place is.

10

2. Theory

to treat a directed graph, it is worth noting that their work lead to a computable
quantity, which is highly relevant in the need for numeric scoring.

In future applications, it may be of interest to further investigate the appli-
cability of the scoring mentioned by Fouss et al. [14]. Since this thesis treats the
SecDFD as a graph, and concerns the comparison between two or more such graphs,
having a numeric scoring system becomes highly relevant when facing machine learn-
ing application.

2.3.1.2 Clustering algorithms

The SecDFD extraction involved the clustering of processes in areas of the diagram
where it is considered applicable [34]. When it comes to machine comprehension,
Tzerpos et al. [36] present a number of properties that will in turn ensure helpful
output in the case of attempting to cluster source files. These include effective
naming and a pattern oriented approach, for which a number of possible subsystem
patterns for naming purposes are suggested. Additionally, research by Corazza et al.
[9] showed that applying weights to clustered areas when applying an Expectation-
Maximization algorithm contributed to better results.

A further remark on the work by Tzerpos et al. [36] is that the results produced
by applying their ACDC clustering algorithm showed fairly stable and correct results
when applied to skeleton construction problems. Their algorithm is pattern-driven,
and their idetified stages of skeleton construction are applicable to a wide range of
graph based problems.

Another such algorithm is LIMBO, as presented in 2004 by Andritsos et al.
[2], which is a scalable, hierarchical clustering algorithm. While LIMBO was proven
to show increases in efficiency, there were some impacts on quality.

While these methods are of interest, this thesis recognizes that the extraction
of a SecDFD from source code will, as the size of the code base increases, become
increasingly complex if clustering was to take place only after all nodes have been
obtained. While clustering algorithms are useful and applicable for further refine-
ment of the process, the initial work utilizes the clustering effect that takes place by
conditional adding of nodes, as discussed in Section 4.1.2.

2.3.2 Automation of threat modelling

There is research stating the benefits of automated architecture extraction and anal-
ysis procedures, such as that by Velasco-Elizondo et al. [38] indicating that auto-
matic information extraction leads to less time-consumption, as well as better recall.
When looking specifically into the subject of threat modelling, Tuma et al. [35] in-
troduce a means of increase the efficiency of the threat modelling process by using
an extended DFD notation (eDFDs), focusing on end-to-end asset flows, and have
thus shown that the effects of abstraction before threat analysis greatly counteracts
the threat explosion otherwise common when taking the traditional approach to the
STRIDE security model on a larger DFD. Another study that incorporates DFDs
into the threat modelling process is that of Jasser et al. [20], which proposes an
approach for bringing security into the workflow in an architecture-centric develop-

11

2. Theory

ment process. Additionally, Jasser et al. [20] touch upon the fact that very few
attempts have thus far been made on automating STRIDE.

In a related take, in 2010 Abi-Antoun et al. [1] presented SECORIA — a semi-
automated approach to threat modelling, which mapped to the STRIDE threat
modelling procedure, and proved to be highly correlated to expert behaviour in the
sense of threat modelling. It is also worth noting that there are other approaches
to security evaluation, such as that presented by Antonini et al. in 2010 [3] which
focuses on service-oriented architectures, dividing the security evaluation process
into three phases; extraction, identification, and analysis.

Extended data-flow diagrams, or eDFDs, have been applied to ongoing research
in the field of architecture-centric security analysis. Furthermore, research has been
conducted by Tuma et al. [34] in their work on SecDFDs. Additionally, Bergher et al.
[5] have studied the automatic extraction of threats from eDFDs using graph query
rules that each map to an entry in a threat catalogue based on established threat-
modelling resources. Furthermore, Bergher et al. mention that static analyzers are
widely used by industry in the context of threat modeling. There is most likely
good reason for this, as is further solidified by Shabtai et al. [31] who achieved
promising results by combining static code analysis with machine learning algorithms
for classification of Android applications.

This work concerns the semi-automatic extraction of SecDFDs, which can be
analyzed using the SecDFD analysis plugin as described in the work by Tuma et al.
[34]. By partially automating the SecDFD extraction process, it is likely that an
outcome will be a model which can be more easily interpreted by a machine, as well
as less resource-consuming means for producing large quantities of SecDFDs, which
in turn opens up for machine learning application to the SecDFD analysis process.

12

3

Methods

The work was conducted by design, implementation, and evaluation of the program
designed to statically extract a SecDFD from source code also referred to as the
“SecDFD extraction tool”. Viewing these phases from the point of view of the
design cycle for design science research, as described in Sections 2.2.1 and 2.2, the
methodology describes a single iteration of the whole cycle over the course of the
thesis where the first four phases —i.e. the engineering cycle — are internally iterated
as part of the development described in Section 3.1.

The implementation evaluation of the thesis was conducted in two parts: an
evaluation of a number of SecDFD pairs, extracted by both manual- and semi-
automatic extraction, as well as an experiment, where both perceived user experience
and produced results using these two different methods. This section will provide
further detail on the development of the program as well as the methodology of the
tests and experiments, followed by a description of the analysis of the results.

3.1 Development

The development mainly consisted of four phases, corresponding to the first four
phases of the design science cycle as defined in Section 2.2, which were carried out
sequentially in a single iteration. Below is a summary of each phase, including an
indication of which section of the thesis it is addressed in:

1. Problem investigation: understanding the goal of the tool by literature
review, eliciting requirements from SecDFD experts — which, in this case, con-
sisted of discussing with my supervisors to determine what the requirements
should be — and studying formally specified SecDFDs. The results of this
phase are described in Section 4.1.1.

2. Treatment design: designing the tool by programming a draft and specifying
the program flow, including the interaction with third party programs. The
results of this phase are found in Section 4.1.2.

3. Treatment validation: validating the procedure effectiveness by following
the program flow and running the tool on a set of source code for which
there was already a manually extracted SecDFD available, and observing the
gap between the automatically extracted SecDFD. The sets of source code
that were paired with a manually extracted SecDFD were attained by the
author manually extracting SecDFDs from openly sourced Java projects in

13

3. Methods

the Internet of Things category on GitHub!. The gap, in turn, consisted of
the differences between the manually extracted SecDFD, and the one produced
by the extraction tool. The manually extracted SecDFD was considered the
template for a "correct" SecDFD, and thus the ground truth. The gap was
identified by following the SecDFD comparison process as further described in
Section 3.4.1. This phase followed the black box methodology as described in
Section 3.2.

4. Treatment implementation: final implementation of the tool by adjusting
it in order to bridge the gap identified in the previous step, and specifica-
tion of the end-to-end process of semi-automatically extracting a SecDFD.
The gap was bridged by making adjustments to the tool implementation in
order to bring the SecDFD produced by the tool closer to the ground truth,
i.e. reduce the differences between the semi.automatically extracted SecDFD
and the manually extracted SecDFD to the point where they were considered
equally correct representations of the software under analysis. The results of
this phase, and thus the sequential execution of all steps above, are found in
section 4.1.3.

3.2 Black box tests

The black box tests were a part of the implementation evaluation in the design
science context. A complementary set of tests were carried out on every available
set of SecDFDs manually extracted by an acting expert other than the author from
source code that was openly available. It was important not to use projects that
had already been used or were intended for other parts of the project, such as the
open source java projects that were reserved for use in the experiment phase, or any
project used for fine-tuning of the extraction tool (see section 4.1.2). This was a
necessary action due to the fact that the ground truths in these cases, which had
been extracted by the author, thus followed the same principles and process flow
that the program was tuned to. Thus, using projects that had manually extracted
SecDFDs extracted by someone else, as well as not re-using projects that had already
been analyzed, allows for making more generally based statements in regard to the
correctness of the tool due to a greater spread of data.

Due to the fact that SecDFDs manually extracted by the author could not
be used during this phase, the projects were chosen on an availability basis — that
is, only if there existed a manually extracted SecDFD, that the author had not
extracted themselves, for a certain project could that project be used for black box
testing. Due to the novel nature of the SecDFD there exist few projects of that kind,
meaning that there is little room to impose requirements without further reducing
the data quantity. Thus, all projects made available by the supervisors was used in
this phase. These projects varied in programming language, size, and compliance
with naming conventions.

Most importantly, the black box testing phase utilized the “open box” keyword
determination method, which is based on knowing the correct asset names before-

"https://github.com/topics/internet-of-things?l=java

14

https://github.com/topics/internet-of-things?l=java

3. Methods

hand due to having expertly extracted SecDFDs available that act as the ground
truth. The “open box” keyword determination method is followed by putting the
names of the assets from the ground truth into the file keywords.txt, which is
where the list of keywords is stored, as the acting keywords — splitting up the longer
asset names to sub-parts where these still constituted grammatical words. These
then acted as the set of selected keywords over a single iteration, in order to test
the apparent association between asset names and variable naming. The output
retrieved from this process was then subjected to the analysis described in section
3.4.1, paired with the manually extracted SecDFD constituting its ground truth.

The keywords are used by the tool to find assets, and thus a crucial aspect
of the tool functionality. Each keyword, defined as a string, is searched for in the
source code, and if the string appears as a substring in a variable or function in the
source code, an asset is identified and extracted to the generated SecDFD, providing
that there exists a data-flow.

The black box tests were carried out by generating the required call-graph
files using Doxygen, and subsequently running the SecDFD extraction tool on each
of the projects providing that the necessary files had been generated by Doxygen.
Each project was only subjected to a single iteration of the tool, where iteration
refers to adjustment and re-specification of keywords. This means that once the
keywords were defined, the tool was executed once, and the produced results were
considered final even though re-specification of keywords may or may not have led
to more correct output. This choice was made in order to ensure that the projects
were tested under as equal conditions as possible, and eliminating human interaction
with the tool during the extraction process to the greatest possible extent given the
current implementation of the tool.

3.3 Experiment design

Like the black box test, the experiments were a part of the implementation evaluation
in the design science context. This section details the design of the experiment,
dividing each sub-task of the experiment into subsections. A graphical overview of
the experiment can be found in Figure 3.1, where the label “Manual” means that
the participant was tasked with manual SecDFD extraction at the indicated stage,
and the label “Automatic’ means that they were tasked with using the tool and
thus the semi-automatic SecDFD extraction procedure. The respective labels “SC
1”7 and “SC 2” indicate which of the projects they were tasked with performing the
indicated extraction method on.

Each session was recorded in audio for purposes of documentation and post-
experiment analysis. Additionally, the participants signed contracts assuring their
anonymity, as well as their agreement to save the collected data for a specified
amount of time, and to not to discuss the events of the experiment for that dura-
tion as to counteract the risk of threats to internal validity by diffusion caused by
interaction between participants.

The participants were encouraged to think aloud throughout the entirety of
the experiment. This was done in order to counteract the risk of the author making
faulty assumptions about their actions and motivations throughout the experiment

15

3. Methods

1 hour 1 hour 15 [_qi_];l_.l_t_es 1 hour 15 minutes 30 minutes
' ™ — ; E —_— g ™ N
[sc1| | 5C2
p Pauze " %
Al B Automatic Independent
_______ review of
Training ground truth .
X and Interview
Q Session .
comparison
— i A with own
B > > | 5C1 | results
Automatic
AL S N /

Figure 3.1: An overview of the experiment procedure
which would in turn run the risk of affecting the validity of the conclusions.

3.3.1 Participants

The experiment involved two participants, hereon forth individually referred to as
Participant A and Participant B. As the aim of the experiment was to attain qualita-
tive results indicating the benefit of using the tool for automated SecDFD-extraction,
the main objective was not to have as large a quantity as participants as possible, but
rather to ensure that the participants had the necessary prerequisites to carry out
the tasks, and that the conditions given to each participant would equally emulate
a realistic scenario.

3.3.1.1 Selection

The participants were selected based on the following criteria:
1. The participant has completed at least one year of M.Sc. studies in Software
Engineering (or equivalent)
2. The participant has at least three years of experience with Java
3. The participant is able to understand and communicate well in English

Requirement 1 ensures that the participants not only have knowledge of software
engineering corresponding to, at least, a completed bachelor’s degree. This is nec-
essary in order to ensure that they have the fundamental understanding required to
utilize different software models, but also the knowledge required to model software
from source code, which is a substantial task in this experiment.

Requirement 2, together with the previous requirement, should ensure that the
participant has the necessary knowledge and fundamental understanding of the Java
programming language and its functionality to be able to systematically browse and
understand the source code of the project they will be tasked with analyzing.

In order to ensure that the training material is thoroughly understood, and
that the interviews are able to accurately and as precisely as possible reflect the
experiences of the participants, it is necessary for the participant to have a good
understanding of the different nuances of the English language. Thus, we conclude
with defining requirement 3 for participant selection.

16

3. Methods

3.3.1.2 Participant profiles

The selected participants both fulfilled the criteria listed in Section 3. Participant A
had completed two years of M.Sc. studies, and Participant B was near completion
of two years of M.Sc. studies, both at a Computer Science and Engineering division
at Chalmers University of Technology. Note that the English language skill entry
level requirement for admissions to their respective M.Sc. programs ensures that
they fulfill the language requirement for participating in the experiment [33].

Additionally, both had experience working as developers. Participant A had
experience with web development. Both participants were well-versed Windows
users. Neither of the participants had any prior experience whatsoever with eDFDs;
SecDFDs, or Doxygen.

3.3.1.3 Training

Identical training sessions on SecDFD properties and extraction were conducted with
both participants, which included a practical, hands-on demonstration of SecDFD
extraction for a small-scale project both manually and using the tool. In this step the
participants performed sub-tasks independently, and were then shown an example
solution after which a small discussion was held. Throughout this process, the author
would answer any questions. This was done not only in order to ensure that both
participants had the necessary knowledge for SecDFD extraction and utilization of
the tool, but also that they were on as equal a footing as possible in regard to
prior knowledge of the problem. Thus, there was no difference in the content of
the training they were given as a base, but they could still come to individually
ask questions during the training phase that could lead to them having different
extended knowledge bases during the experiment. The details of the content covered
during the training session are found in the project repository?. The contents of the
training session was also provided to the participants as a physical booklet, in order
for the participants to have material to consult should they wish to review particular
elements of the training during the experiment.

3.3.2 Subject of analysis

Two sets of source code, hereon referred to as SC' 1 and SC 2, were selected to serve
as projects for analysis as part of the experiment.

3.3.2.1 Selection

Having two sets of source code, along with the two participants, was done in order
to ensure that there would be no instances of confirmation bias during the second
SecDFD extraction as an outcome of the learning effect from already having analyzed
the project once.

A manual SecDFD-extraction was carried out on both projects to serve as
ground truth for purposes of analysis. These SecDFDs were not revealed to the
participants until they had carried out both the manual- and automatic SecDFD

2https://github.com/ExtractionTool/ExtractionTool

17

https://github.com/ExtractionTool/ExtractionTool

3. Methods

extraction they were tasked with, as to not introduce any bias or otherwise com-
promise the results of the experiment. The ground truths were revealed before the
interviews, in order for the participants to be able to assess the correctness of their
own SecDFDs.

Additionally, a set of requirements were formulated as criteria for selecting the
projects for the experiment phase. By fulfilling these requirements, the two selected
sets of source code were considered to be of equal complexity for the intended pur-
pose. SC' 1 and SC 2 were both selected from a pool of open source projects in the
Internet of Things category on GitHub, under the following criteria:

The source code is written in Java

The project does not consist of more than 1000 SLOC

The project contains at least one instance of network communication

The two selected projects should not differ in more than = 200 SLOC

Coding conventions in regard to descriptive naming are followed throughout
the project

CU W

Requirement 1 was given by the fact that the target language for the SecDFD
extraction tool is Java. Thus, it was necessary for the selected projects to be written
in Java in order for them to be candidates for both manual and automatic extraction.

As the participants will not have prior experience with SecDFD extraction, it
is important for the project to be of reasonable complexity. This presents us with
the need for requirement 2 While this size limitation will rule out a great number
of commercial applications, it is still possible to find open source projects that do
not exceed the size limitation while containing the properties described in the next
requirement.

Requirement 3 is built on utilization of a communication protocol making the
project a realistic candidate for SecDFD extraction. This means that the selected
application should have implemented functionality for communicating with either
a server, or some other networked device. Should this element not be present,
the testing of automatic extraction of implemented communication channels will be
insufficient.

Requirement 4 was defined to ensure that the complexity of the chosen projects
does not drastically differ. Should the difference in SLOC be too great between the
two projects, the difference in complexity between them may affect the results. While
200 SLOC is an arbitrary, small number seen to SLOC, the principle of maintaining
a marginal difference in complexity is at the core. This can also be achieved by
ensuring that the number of files from project to project does not drastically differ.
Since there is no general guideline as to what percentage or what number of SLOC
constitute a noticeable difference in complexity, it is left up to the researcher to use
their sensibility to thoroughly evaluate if two projects differ drastically, and it is an
area where said researcher should tread with great consideration.

Requirement 5 ensures legibility of the source code, as well as compatibility
with the tool. Legibility is a requirement in order to ensure that the participants can
easily understand the functionality and context of the different processes, variables,
and methods. Should the naming be non-descriptive, additional time-consumption

18

3. Methods

Description | A smart plant watering system
SLOC | 631
Nbr. of processes | 3

Table 3.1: SC1 characteristics

Description | A smart access control system
SLOC | 481
Nbr. of processes | 5

Table 3.2: SC2 characteristics

may become a factor during the manual extraction phase. The tool utilizes a list
of keywords in order to automatically identify information assets by finding appear-
ances of the keywords in the source code. This functionality cannot be utilized
if variable- and parameter names are non-descriptive, which means that the par-
ticipant will have to use the manual asset entry functionality (see chapter 4.1.2),
which — while still serving the purpose of automatically extracting other elements —
severely reduces the point of automatic extraction seeing as the participant will be
required to manually extract these assets either way.

The properties of the projects selected for the experiment, including a de-
scription of the project, in respect to the criteria mentioned in subsection 3.3.2.1
are defined in tables 3.1 and 3.2 for SC' 1 and SC 2 respectively. The projects
selected as SCI1 and SC2 were both retrieved from the Intel IoT Devkit’s How To
Code-repository on GitHub?, specifically the Java versions.

The SLOC were retrieved using the IntelliJ IDEA? plugin statistic.

3.3.2.2 Ground truth

In order to determine the correctness of this procedure, a ground truth is needed. In
this case, a java project coupled with a SecDFD extracted by the author who will act
in the place of a domain expert, will constitute as such. For the results to be valid,
this project must be omitted from any training or adjustment of the procedure, and
only be included in the final testing phase. By executing the novel procedure in its
entirety on this project and comparing the final output in regard to the amount of
correctly identified SecDFD elements as compared to that produced by the domain
expert, we are able to qualitatively assess the performance of the tool.

the ground truths were validated by discussion between the author and super-
visors in order to ensure that the ground truths were correct representations of their
respective Java projects. The supervisors approving the SecDFDs that had been
manually extracted from SC 1 and SC 2 by the author was considered validation of
the ground truth.

3https://github.com/intel-iot-devkit/how-to-code-samples
‘https://www.jetbrains.com/idea/
Shttps://plugins.jetbrains.com/plugin/4509-statistic

19

https://github.com/intel-iot-devkit/how-to-code-samples
https://www.jetbrains.com/idea/
https://plugins.jetbrains.com/plugin/4509-statistic

3. Methods

3.3.3 Execution of experiment

The experiment sessions alternated the different extraction methods, automatic and
manual SecDFD extraction, between being the participants’ first and second task
respectively. This was done to investigate whether the order of the tasks contributed
to learning effects, thus affecting the participants’ performance during their second
task. Additionally, the Java projects under analysis were alternated in order to
counteract the risk for confirmation bias due to the possible learning effect from
already having analyzed the project once. The experiment procedure for each session
is described in Figure 3.1.

3.3.3.1 Manual SecDFD extraction

For the participants to be able to compare usage of the tool to the current means of
extraction, i.e. manual extraction, it was necessary to include an element of manual
SecDFD extraction in the experiment. Thus, the participants were then tasked with
the manual extraction of a SecDFD from a provided set of source code. During this
time, the author remained a silent observer, as to not compromise the results of the
experiment.

Participant A was tasked with manually extracting a SecDFD from SC I as
their first task. Participant B was tasked with manually extracting a SecDFD from
SC' 2 as their second task. The participants were given an upper limit of one hour to
complete the task, which was chosen to reflect the size and complexity of both SC' 1
and SC 2, and was approximately double the time it had taken to extract the ground
truths. The time it had taken to extract the ground truths was doubled in order to
account for the fact that the participants were novice to SecDFD extraction. Both
participants were timed.

3.3.3.2 Automatic SecDFD extraction

The participants were tasked with using the tool to extract a SecDFD from the set
of source code they had not performed a manual extraction on. This was done in
order to counteract the risk of confirmation bias. Thus, participant A was tasked
with using the tool to extract a SecDFD from SC 2, and participant B was tasked
with using the tool to extract a SecDFD from SC 1. Much like earlier, the author
remained a silent observer, the participants were both given an upper time limit of
two hours, and were both timed. The one-hour time limit was set in this instance
due to the fact that the time-consumption for using the tool should not exceed the
time required for manual extraction. Should the time needed to use the tool exceed
that of manual extraction, the benefit of using the tool would most likely not be
deemed sufficient compared to manual extraction, given that they present equal
correctness and effort.

The participants were tasked with carrying out the entire semi-automatic
SecDFD extraction process, which consisted of:

1. Building an understanding of the Java project under analysis by reading the
documentation and reviewing the source code to the extent they wished

20

3. Methods

Running Doxygen and thus generating the necessary call-graph files

Defining the keywords

Running the SecDFD extraction tool

Re-iterating the process from step 3, i.e. re-defining the keywords and re-
executing the tool, if they wished

6. Manually editing the SecDFD they had generated to the extent they wished

AR

The participants were both provided a default list of keywords consisting of: id,
key, location, gps, password, pwrd, login, uid, user, device, latitude, longitude, ap,
finance, stock, listener. The default list of keywords consisted of arbitrary keywords
that had been defined and used by the author during the development and tuning of
the tool, and it was explained that the keywords were generic and should be changed
or extended. Additionally, the participants were made aware of how the granularity
of the keywords affected the end results —i.e., that defining a long and specific string
as a keyword would be less likely to reduce in a match and thus may result in an
empty SecDFD, and that a short, generic keyword such as a single letter would be
likely to result in the tool finding more of what it considers matches, but that these
may be false positives.

3.3.4 Interviews

Upon completing the task, semi-structured interviews were conducted with each
participant. The semi-structured format was selected in order to ensure that the
information relevant to the research questions (see chapter 1.2) was obtained, while
striving for open-ended interaction in order to maximize the qualitative information
gained. The interviews were centered around the following questions:

1. To what degree do you consider the output from the tool to be correct?
(a) Did you identify the correct elements?
(b) Did you identify the correct flows?
(c) Did you identify the correct assets?
(d) For each element, flow, and asset, did you identify the correct properties?
(e) Why do you consider your output correct/incorrect?
(f) Do you have any general remarks on the correctness?
2. How would you compare manual extraction to using the tool?
(a) Did you experience any challenges with manual extraction, and if so, what
were they?
i. Were the challenges regarding. . .
A. Usability and understanding?
B. Other?
1. Did the challenges affect. . .
A. Time consumption?
B. Correctness?
C. Other?
(b) Did you experience any challenges with using the extraction tool, and if
so, what were they?

21

3. Methods

i. Were the challenges regarding. . .
A. Usability and understanding?
B. Other?

1. Did the challenges affect. ..
A. Time consumption?
B. Correctness?
C. Other?

(¢) Do you have any general remarks on comparison?

The questions were selected in consideration of eliciting a conclusive and unbiased
response in relation to the research questions as listed in chapter 1.2. The partici-
pants were asked about their own performance for both the manual extraction and
when using the tool, given the fact that both cases enabled them to make manual
altercations, and relied on their own individual choices and interpretations. Thus,
interviewing them about their own correctness even when discussing the tool enables
reflection and provides information regarding the entire semi-automatic extraction
process, rather than limiting it to the step in which the tool is executed.

3.4 Analysis

A qualitative analysis was conducted on each of the SecDFDs produced as part of
the experiment, against their respective ground truths which were, as previously
mentioned, extracted by the author before the course of the experiment. Addition-
ally, the responses obtained during the interviews were taken into consideration, as
well as the time-consumption for each of the participants to complete each task.

3.4.1 SecDFD comparison

The analysis of SecDFDs to measure the correctness of the automatically generated
instance was done as such that only assets, flows and processes where subject to
evaluation. This was due to the fact that the tool only supports the extraction of
these two categories of SecDFD elements.

For an asset to be considered correctly identified, the asset in the automatically
extracted SecDFD had to be 1) logically equivalent to an asset in the ground truth,
meaning that it serves the same purpose and contains the same information, and 2)
originates from the same source, or a logically equivalent process.

Two processes were considered correctly identified if 1) they are logically equiv-
alent, i.e. they serve the same purpose and represent the same running code in the
source project, and 2) are attached to the same flows in matching directions. The
second criteria also serves the purpose of evaluating the correctness of the identified
flows. The flows are evaluated by creating adjacency matrices for both the ground
truth and automatically extracted SecDFD, with their respective processes on the
edges of the corresponding matrix. If a flow goes from one process to another, it is
denoted by a ‘1’ whereas an absence of a flow is denoted by ‘0. If the automatically
extracted SecDFD has the same flows as the ground truth, and the processes con-

22

3. Methods

nected to the flows are logically equivalent to the ground truth, the processes tied
to the flows are considered completely correct.
Throughout this process, I considered the appearances of:

e True Positives: elements that appear in both the ground truth and the au-
tomatically extracted SecDFD

o False Positives: elements that appear in the automatically extracted SecDFD,
but not the ground truth

e False Negatives: elements that do not appear in the automatically extracted
SecDFD, but do appear in the ground truth

A single element does not necessarily map to another single element from one
SecDFD to another. Rather, it is possible for two or more elements in the au-
tomatically extracted SecDFD to map to a single element in the ground truth and
vice versa. Therefore, the rates mentioned above were investigated based on what
was covered in the ground truth —i.e., if two elements mapped to a single element in
the ground truth, those two elements were considered as a single correctly identified
element.

3.4.2 Interviews

The interviews that were held with each participant after each experiment session
were analyzed by reviewing the recorded material and creating a transcript of the
interviews, which was followed by an approach similar to the inductive reasoning and
theme identification described in section 2.2.3. This was performed by qualitatively
evaluating the material, including notes and recordings, from the interviews and
identifying the quotes that stood in relation to the research questions by being a
direct response to the corresponding interview questions as found in Section 3.3.4.
This was done in order to summarize the key notes in the report in such a way that
the participants remain anonymous. The key findings were then summarized into a
general description of the participants’ respective feedback, which can be found in
section 4.3.2.

23

3. Methods

24

4

Results

In this chapter I will describe the results of the development of the extraction tool,
the black box tests, and the experiments, as described in section 3. The results of the
evaluation of the experiments are divided into a correctness analysis of the SecDFDs
produced by participants A and B, and a presentation of their responses to the two
methods: manual- and automatic SecDFD extraction. For the black box testing, I
will present how many of the projects available for this phase were compatible with
the automatic SecDFD extraction method, a presentation of the number of calls
for each of the projects, and a correctness analysis of the automatically extracted
SecDFDs, as per the methods described in section 3.4.1.

4.1 SecDFD extraction tool

This section details the implementation choices and internal functionality of the
SecDFD extraction tool, including the requirements for the tool and the third party
dependencies. The SecDFD extraction tool’s source code can be found in the Ex-
tractionTool project repository®.

4.1.1 Tool development

The tool relies on access to 1) the source code under analysis, 2) a call-graph ex-
tracted from the source code under analysis represented in the DOT graph de-
scription language, which is an abstract language part of the open source graph
visualization software, GraphViz [19][18], and 3) a domain specific library contain-
ing keywords commonly related to information assets. The extraction of such files
was acheived by using Doxygen which extracts documentation from source code,
being the de facto standard tool for that purpose for annotated C++ sources but
providing support for other programming languages, among those Java [10]. The
design of the intended program flow from source code to fully extracted can be found
in Figure 4.1. This illustrates the flow of extracting a SecDFD from information
given by the call-graph and source code, which is then given to the SecDFD analysis
plugin (analysis tool) for security analysis. The tool described in this thesis is allo-
cated in the module titled “SecDFD extraction tool” in the figure, which performs
the SecDFD extraction. In the given context, the SecDFD extraction tool provides
the mid-tier functionality of extracting the SecDFD with the aforementioned assets
provided.

https://github.com/ExtractionTool/ExtractionTool

25

https://github.com/ExtractionTool/ExtractionTool

4. Results

SecDFD extraction SecDFD analysis

Doxygen tool plugin

A A

Call-
graphs

SecDFD

Call- SecDFD
graphs
Sou
code ‘
Sou
code

Figure 4.1: The process of the semi-automatic SecDFD extraction procedure from
the user’s perspective.

The requirements for the SecDFD extraction tool can be found in Table 4.1.
These were elicited mainly by discussion between the author and the supervisors,
determining what elements were part of the desired outcome as well as what would
be necessary for the internal functionality of the tool to best mimic the process of
manual expert SecDFD extraction.

R1 was specified to ensure that the minimum necessary components to make
up an extended data flow would be present. R1.1 was specified per recommendation
that a call graph would contain the information about the flow of data that is
necessary in order to, in combination with confirming that the data on the flow
holds security relevance, extract a SecDFD. For further detail, see section 4.1.2. R2
was stated as a requirement due to the limitations and scope of the project. R3 was
formulated to ensure that the tool produced output in a format that could be used
for SecDFD security analysis. R4 was formulated as one of the main trials of the
project, which was to discern if security relevant data can be identified by naming
and string matching.

4.1.2 Implementation choices

This section details the implementation choices of the SecDFD-extraction tool, as
well as the contextual use of the tool. The SecDFD extraction tool was written in
Python?, version 3.7.

’https://www.python.org/

26

https://www.python.org/

4. Results

R1 | The tool shall identify the assets, flows, and processes of an appli-
cation based on the data flows within the application.

R1.1 | The tool will use call graphs in complement with the program code
to identify the data flows.

R2 | The tool shall be executable on projects written in Java.

R3 | The tool shall produce a SecDFD in the SecDFD specification lan-
guage as output.

R4 | The tool shall use a set of keywords used for identifying potential
assets.

Table 4.1: Requirements for the SecDFD extraction tool

Tab Wizard Expert
Topic || Project Mode Output | Diagrams Dot
Scan recursively = True | Extraction mode: all | [Default] | Use Dot = True DOT_CLEANUP = False
entities = True
Programming lan- Call graphs = True
guage:Java or C# =
True
Called-by graphs = True

Table 4.2: Settings used in Doxygen to produce call-graphs in the format required
by the SecDFD extraction tool

The tool was designed to rely on the call-graph files produced by Doxygen,
which uses the DOT graph specification language from Graphviz. These were both
installed on the device used throughout the testing. The device in question ran the
Windows 10 operating system. The Doxygen version used was 1.8.15. The Graphviz
version used was 2.38.

The output required by the tool to function was produced by Doxygen with
the settings specified in Table 4.2 in the Doxygen GUI for Windows, Doxywizard,
given that the user had provided the correct paths to the Doxygen running directory
and source code directory for the application under analysis. The table divides the
settings according to the tabs they are located in, as well as which topic the setting is
located under, as defined by the Doxygen Doxywizard GUI. An additional measure
was to specify a path to the output directory, since the path to the Doxygen output
was a required input for the tool.

The automatic SecDFD extraction process, as referred to in this manner
throughout the thesis, is used to describe the process of using the SecDFD extrac-
tion tool to extract a SecDFD in its entirety. This includes generating the necessary
third party files, i.e. the call-graph files generated by Doxygen, specifying keywords,
running the SecDFD extraction tool for however many iterations one wishes, and
manually editing the output file.

4.1.3 Tool description

The SecDFD extraction tool consists of the main script, which executes at runtime,
and utilizes the custom models that have been implemented to act as models for
the assets and elements of a SecDFD — acting as translators between the call-graph

27

4. Results

files, the project source code, and the end-model.

4.1.3.1 Required input

At the beginning of the run, the tool prompts for the following input from the user:

e The path to the directory where the source code of the application the user
wishes to extract a SecDFD from

e The path to the directory where the call graph files for the above mentioned
application are kept

e The desired destination path for the file the tool will output

e The desired name for the SecDFD that the tool will generate

4.1.3.2 Functionality

The SecDFD extraction tool tracks all communications as identified by the Doxygen
call graphs by aggregating all the call graph files into one parseable string, searching
all files that match the path given in the call graph node labels. It attempts to match
the entire list of keywords against the method- and parameter names in the source
code files, giving a positive match if any of the keywords are found to be substrings
of the method- or parameter names. The SecDFD extraction tool uses a regular
expression to find the declaration of a method, and identify the parameters of said
method. This results in the program adding a new asset, with the asset’s source
process being the SecDFD process that contains the file in which the asset was found,
to the list of assets. The values of the asset before manual editing will always be
“High Confidentiality”, which has been hard-coded into the asset generation seeing
as an asset value is required by the SecDFD specification language, but automatically
identifying asset values is not yet supported by the tool. The hard-coded value is an
accepted value by the specification language. The asset is given a compound name
in order to reflect its character and place of origin:

assetname = capitalize(functionname) + capitalize(parametername)

Similar to the asset naming procedure, processes and flows are named with an
aggregation of their location in the code.

Additionally, a positive match for an asset is the foundation for identifying a
flow. A flow is only added to the list of flows if it transports an identified asset, and
a process is only added to the list of processes if it is attached to a security relevant
flow. The tool builds a SecDFD by only adding relevant assets and elements, rather
than adding everything and narrowing the SecDF'D down as a separate process.

The tool is designed not to list duplicate processes, flows, or assets. It does
so by maintaining “copy trackers” for each relevant instance, which basically create
rudimentary hashes of the paths, class names, function names, and in the case of
assets parameter names, of each of the already identified components. Before a new
component is added, it is first hashed and checked against the copy tracker. Should
it represent an identical component, any newly found information is bundled in with
the already registered version of the component. This, together with the conditional

28

4. Results

Flow

+ name: String

Process +from_process: Process
* | +to_process: Process
+enumeration: int

+ assets: Asset]]
+is_inheritance: Boolean

+ name: 3tring
+enumeration: int
+incoming_flows: Flow(]

+ outgoing_flows: Flow(] 2

+responsibilities: String[] _ _

+ assets: Asset]] +jterate_assets(}): String
+ path_to_file: String .
+func_name: String *

+asset_copy_tracker: {3

+ add_incoming_flow(Flow): Mane
+ print_process: Mane "
+jterate_incoming_flows(). String

+ jterate_outgoing_flows(): String Asset
+ get_responsibilities(): String +name: String
+jterate_assets(): String +spurce: Process

. | +targets: Process]
+vyalues: String

+ path: String

+flows:
+target_copy_tracker: {3

append_targetinew_target): Process

Figure 4.2: A domain model of the SecDFD extraction tool’s core elements.

adding of elements to the final SecDFD, creates a natural process-bundling effect by
only breaking out processes when their assets and responsibilities are unique relative
the interconnected processes.

Each component — processes, flows, and assets — is modelled as an object
and maintains instances of relations and information accounting their origin and
characteristics, which are used for pairing them, identifying their origin in the code,
and gathers the required SecDFD characteristics into one instance from the different
information sources parsed by the tool. Figure 4.2 illustrates these core components
and their relationships.

Since Doxygen provides unique nodes in the call graphs with unique enumer-
ations, a matrix where processes are placed on the address of their index is used to
maintain the list of identified processes. This matrix may be considered a debased
variation of a hashmap.

The tool uses this procedure to attempt extraction of the following information:

o Assets:
— Source
e FElements:
— Processes:
* Assets
* Responsibilities:
Store

29

4. Results

Forward
x Incoming flows
x Qutgoing flows:
Unique enumeration
Assets
Targets

4.1.3.3 Output format

The tool outputs a .mydsl file in the specified destination directory, containing all
positively identified SecDFD components according to the procedure mentioned in
Section 4.1.3.2 given in the syntax of SecDFD specification language.

4.2 Evaluation by black box testing

The black box testing was carried out according to the specification given in Section
3.2. The projects that were available during this phase are specified in Table 4.3.

Index | Project

C1 COAP IoT Server ¢
C2 DroidBench °

C3 FriendMap ¢

C4 Hospital ¢

C5 JPMail ¢

C6 WebRTC f

C7 ATM Simulator ¢
C8 CoCoMe "

C9 iTrust *

C10 JPetStore 7

C11 SecureStorage *

Table 4.3: A list of the projects used for the black box testing.

“https://github.com/Mozilla9/coap-iot-server
https://github.com/secure-software-engineering/DroidBench
‘https://github.com/apl-cornell/fabric/tree/master/examples/friendmap
dnttps://github.com/apl-cornell/fabric/tree/master/examples/hospital
°http://siis.cse.psu.edu/jpmail/
’nttps://github.com/webrtc/apprtc
9http://www.math-cs.gordon.edu/local/courses/cs211/ATMExample/
hhttps://github.com/cocome-community-case-study
‘https://sourceforge.net/projects/itrust/
Jhttp://www.mybatis.org/jpetstore-6/
*https://www.eclipse.org/equinox/security/

Code: http://wuw.java2s.com/Code/Jar/o/Downloadorgeclipseequinoxsecurityjar.htm

30

https://github.com/Mozilla9/coap-iot-server
https://github.com/secure-software-engineering/DroidBench
https://github.com/apl-cornell/fabric/tree/master/examples/friendmap
https://github.com/apl-cornell/fabric/tree/master/examples/hospital
http://siis.cse.psu.edu/jpmail/
https://github.com/webrtc/apprtc
http://www.math-cs.gordon.edu/local/courses/cs211/ATMExample/
https://github.com/cocome-community-case-study
https://sourceforge.net/projects/itrust/
http://www.mybatis.org/jpetstore-6/
https://www.eclipse.org/equinox/security/
http://www.java2s.com/Code/Jar/o/Downloadorgeclipseequinoxsecurityjar.htm

4. Results

Project | Positive, Doxygen | Positive, Extraction Tool
C1 Yes Yes
C2 Yes Yes
C3 No -
C4 No -
Ch Yes No
C6 Yes No
c7 Yes No
C8 Yes Yes
9 Yes No

C10 Yes Yes
C11 No -

Table 4.4: Tllustration of whether or not each project produced the expected files
when running Doxygen, and produced a non-empty SecDFD when running the ex-
traction tool.

4.2.1 Tool Compatibility

Table 4.4 illustrates whether Doxygen produced call-graphs for each of the projects,
and whether the extraction tool produced a non-empty SecDFD. In Table 4.5, the
projects for which call-graph files were correctly generated but where the extraction
tool failed to generate a non-empty SecDFD are paired with the direct explanation
for the failure. This correlates to the fact that the projects used for this phase were
selected on an availability basis, following the explanation in Section 3.2, and thus
did not necessarily meet all of the compatibility requirements of the tool, such as
being written in Java.

As made visible by Table 4.4, the total number of projects for which no non-
empty SecDFD was produced was 7 out of the 11 available projects, resulting in
a failure rate of roughly 63.6%. However, 3 of these failures were due to Doxygen
failing to generate call-graphs from the projects. These projects are omitted from
Table 4.5 due to the cause of failure being on a third party rather than the extraction
tool. Subtracting the failures that occurred due to Doxygen not being able to process
the projects in the expected way, 4 out of the 8 remaining projects failed due to the
extraction tool not producing a non-empty SecDFD with the given keywords. The
keywords were based on the names of the assets in the respective ground truths, and
were determined according to the process defined in 3.2. This means that the pure
failure rate is at 50%.

4.2.2 Tool Correctness

This section describes the correctness evaluation of the projects for which a non-
empty SecDFD could be extracted by applying the automatic SecDFD extraction
process. For the extracted assets in the comparative tables of manually extracted
SecDFDs and their automatically extracted versions, a star annotation next to the
automatically extracted asset in the table represents an asset that is logically equiv-
alent to its counterpart in the ground truth as per content and purpose, but does

31

4. Results

Proj. | Explanation

Ch Keywords did not match. Confirmed by re-
executing with general keywords, which pro-
duced a non-empty SecDFD.

C6 Suspected semantic mismatch as the project
is not written in Java.

Cc7 Suspected package-structure mismatch. The
package structure expected by the extraction
tool, based on the Doxygen output, did not
match the file structure of the running di-
rectory since the original directory structure
was not available for download.

C9 Error on host machine when executing tool
on project C9. It is suspected that this is cor-
related to the fact that the files generated by
Doxygen for project C9, that in turn needed
to be parsed by the tool, were too many for
the tool to compute within reasonable com-
plexity, as illustrated in Figure 4.3.

Table 4.5: Reason for negative result (empty SecDFD) in cases where Doxygen
produced call-graph files, when applying the “open box” keyword determination
method.

Nbr of files generated by Doxygen located in <output directory=/html per project

40000
35000
30000
25000
20000
15000
10000

5000

0 | l P R — . — . | P

c1 Cc2 c3 Cc4 C5 Cc6 c7 c8 cs Cl10 C11

Figure 4.3: The number of files generated by Doxygen per project used in the
black box testing phase.

32

4. Results

not originate from the logically equivalent source in the ground truth.

The tool correctness is evaluated using the SecDFD comparison method as
defined in Section 3.4.1, where logically equivalent processes and assets are identi-
fied, and adjacency matrices are used to illustrate the flows between processes. As
described in Section 3.4.1, the processes are located on the edges of the matrix, and
a ‘1’ denotes the existence of a flow in the given direction between the processes.

Out of the projects subjected to the black box testing, which produced non-
empty SecDFDs after a single iteration of keywords based on their ground truths,
the automatically extracted SecDFD for C1 proved the most correct. The tool
identified 50% of the logically equivalent assets, where 2/3 were confirmed to have
originated from the same process. Additionally, 2/3 processes from the ground
truth were represented by their logically equivalent counterpart in the automatically
extracted SecDFD. Apart from C1, the automatically extracted SecDFD for C10
was considered more correct than both C2 and C8, out of which the automatic
extraction for C8 performed better. Regarding C10, the automatically extracted
SecDFD identified 30% of the logically equivalent assets, and 40% of the logically
equivalent processes.

4.2.3 C1

The manually extracted SecDFD of the CoAP IoT Server contained 6 assets and
3 processes, whereas the automatically extracted SecDFD contained 8 assets and 8
processes. Of these, 3 automatically extracted assets corresponded to 3 assets in
the ground truth, where 2 of the automatically extracted assets originated from the
logically equivalent process in the ground truth. The number of logically equivalent
processes was 2 to 2. The logically equivalent SecDFD components for C1 are listed
in Table 4.7. In the table you can see that over half of the processes from the ground
truth were identified, as well as half of the assets.

By observing the adjacency matrices of the ground truth and automatically
extracted SecDFD, observable in Tables 4.6 and 4.8 respectively, we find that there
are no identical flows when only observing process based communication.

It is noted that the processes representing Data Access objects (DAOs) corre-
spond to the Data Stores of the ground truth.

4.2.4 C2

The DroidBench project analysis was inconclusive, as the general names and charac-
teristics of the assets and processes between the 4 activities making up the manually
extracted SecDFD were not semantically represented in the source code, which cre-
ated a disconnect between the ground truth, the source code, and the automatically
extracted SecDFD. Such an occurrence is most likely due to liberties and individ-
ual interpretations taken during the manual SecDFD extraction. Additionally, the
character of the manually extracted SecDFDs keywords such as a, b, and String
resulted in a high number of false positives in the automatically extracted SecDFD.
The automatically extracted SecDFD contained 20 assets (as opposed to 6 unique
assets by name across the 4 activities making up the manually extracted SecDFD),

33

4. Results

- <]

B
LT
. c% [} %) ~ <
s = £ = g =
& = A = o ——— <
5 = IS = s =
ool 0 [o [5) & o]
T Qg 29 £ 2 9
s & 2 & & g & &
S 2 < =8
2t T E % L OE %
m A3 &R A& O A
SessionHolder o 0 0 1 0 0 0 0
DeviceDataMapper o 0 0 O 0 0 0 0
LoginResource o 0 0 1 0 0 0 O
FirmwareDataMapper |0 0 0 0 0 0 0 0
DeviceConfigDAO 0O 0 0 0 0 0 0 O
ParserHelper o 0 0 0 1 0 0 O
ConfigurationResource | 0 0 0 1 0 0 0 0
DeviceDataDAO 0O 1 0 1 0 0 0 0

Table 4.6: Adjacency matrix for the SecDFD automatically extracted from the
CoAP IoT Server (C1).

Manual ‘ Automatic
Assets
logdata -
devicedata updateDevicedata*
newconfiguration | insertDeviceConfig
coapsessiontoken getSessionToken
deviceowner -
deviceserialnumber -
Processes
ClientApp ParserHelper
CoAPServerApp -
Authenticate SessionHolder

Table 4.7: Logical appearances of elements from Ground Truth in automatically
extracted SecDFD for the CoAP IoT Server (C1).

‘ClientApp CoAPServerApp Authenticate

ClientApp 0 1 1
CoAPServerApp 1 0 0
Authenticate 1 0 0

Table 4.8: Adjacency matrix for the SecDFD manually extracted from the CoAP
[oT Server project.

34

4. Results

and 15 processes.

4.2.5 C8

The results from the CoCoMe project analysis showed that the automatic extrac-
tion identified a subset of the SecDFD components from the ground truth, but not
necessarily in the same component category, meaning that a component listed as
a Data Store or Exerternal Entity in the ground truth was identified as a Process
by the extraction tool. The keywords did not correspond to any logically equiva-
lent instance in the paths and files as determined by the call-graphs generated by
Doxygen, leading to a disjoint set of assets and processes between the manually-
and automatically extracted SecDFDs. It is however worth noting that the identi-
fied processes, IStoreQuery and RMI, in this case correspond to a Data Store and
External Entity respectively. The manually extracted SecDFD contains 7 assets and
7 processes, whereas the automatically extracted SecDFD contains 5 assets and 2
processes. No instance could be directly mapped.

4.2.6 C10

There is no inter-process communication in the manually extracted SecDFD of JPet-
Store, as all communications are directly to or from other element types (External
Entities and Data Stores), meaning that it is not a candidate for comparison by
adjacency matrix.

The manually extracted SecDFD of JPetStore contained 10 assets and 5 pro-
cesses. The automatically extracted SecDFD of JPetStore contained 8 assets and
8 processes, where a total of 4 assets from the automatically extracted SecDFD
mapped to 3 of the assets in the manually extracted SecDFD, and a total of 3
processes mapped from the automatically extracted SecDFD to 2 processes in the
manually extracted SecDFD. The logical equivalences mentioned are given by Table
4.9. The rate of affirmed logical matches is notable. However, the processes and thus
flows could not be positively affirmed as correct due to the lack of pure inter-process
communication in the ground truth.

4.3 Evaluation by Experiment

This section details the results from the experiments. The experiment participants
were both consistent in the degree of correctness of the SecDFDs they themselves
produced whether it was using the manual- or semi-automatic SecDFD extraction
method, while the degree of correctness varied between the participants. Both par-
ticipants experienced less time consumption when using the tool, and were in the
end partial towards the semi-automatic extraction process.

4.3.1 Experiment results

Descriptions of the two applications used as subjects for analysis, labelled SC1 and
SC2, are given in Table 3.1 and 3.2 respectively.

35

4. Results

Manual ‘ Automatic

Assets

product
productID
itemID

item
account__info
username
password
keyword
order

cart

setltemltem, addItemlItem
initOrderAccount*

getOrderOrder

Processes

Authenticate
Search_product
Purchase order

AddRemove Items
Manage account

OrderService, Order
Cart

Table 4.9: Logical appearances of elements from Ground Truth in automatically
extracted SecDFD for JPetStore (C10).

Method of extraction ‘ Project ‘ Time

Manual extraction SC1 57 min. 52 sec.
Extraction using tool SC2 12 min. 28 sec.
Extraction using tool (incl. manual editing) | SC2 | 29 min. 39 sec.

Table 4.10: Time consumption for SecDFD-extraction using the two different
extraction methods, Session A

Both participants were able to complete both the manual and automatic
SecDFD extraction procedure, to the point where they considered themselves to
have completed the task. At the point of perceived completion, the timer was
stopped. In the case of automatic extraction, a partial time was noted when the us-
age of the tool was considered completed after n iterations of re-specifying keywords
and subsequently re-executing the tool, and when the manual editing commenced.
The times for Participant A can be found in table 4.10, and the times for Partici-
pant B can be found in table 4.11. Note that the time for automatic extraction for
Participant B was affected by a sporadic event, which is further elaborated by the
footnote given in the table.

During the automatic extraction procedure, Doxygen generated 206 files for
SC1, and 157 files for SC2.

4.3.1.1 Correctness

This Section describes the correctness evaluation of the manual- and automatic
extraction of SecDFDs by the experiment participants for both SC1 and SC2. Par-

36

4. Results

Method of extraction ‘ Project ‘ Time
Manual extraction SC2 | 59 min. 15 sec.
Extraction using tool SC1 48 min.*

Extraction using tool (incl. manual editing) | SC1 | 52 min. 41 sec.

®This time was affected by unpredictable issues with Doxygen, which resulted in call-graph files
not being generated. This was discovered at the 32 minute mark, after which the author intervened
and ran Doxygen on the same project, with the same settings as participant B, in a different system
location. It is possible that this, in turn, came to affect the correctness of the SecDFD produced
by participant B due to them not performing optimally due to the frustration.

Table 4.11: Time consumption for SecDFD-extraction using the two different
extraction methods, Session B

Ground Truth | Session A | Session B (Extraction Tool)
Assets
PortNbr AzureServerUrl

AllLoggedValues | TwilioMessage™, AzureMessage | SendMessageWithTwilioString,
SendMessageWith Twilio-
Body

CurrentMoisture | TwilioMessage™, AzureMessage | SendMessageWithTwilioString,
SendMessageWithTwilio-

Body
Processes
Server TwilioApi Utils
MoistureController - -
WateringSystem WateringSystem -

Table 4.12: Logical connections for the Watering System (SC1).

ticipant A had a high degree of correctness using both manual- and semi-automatic
extraction. Participant B produced a SecDFD with a greater degree of correctness
using semi-automatic extraction as compared to manual extraction. The degree
of correctness between the sessions and the projects used in the experiment indi-
cate that the correctness changed between the participants, rather than between
the projects, meaning that the correctness depended on the participant rather than
which project they were analyzing.

4.3.1.1.1 SC1 The logical equivalences for SC1 in relation to the ground truth,
from both sessions, are given by Table 4.12.

‘Server MoistureController WateringSystem

Server 0 0 0
MoistureController 1 0 0
WateringSystem 1 0 0

Table 4.13: Adjacency matrix for the Ground Truth of the Watering System (SC1).

37

4. Results

‘TwilioApi HTTPConnection WateringSystem

TwilioApi 0 0 1
HTTPConnection 0 0 0
WateringSystem 1 1 0

Table 4.14: Adjacency matrix from session A for the Watering System (SC1).

‘ Utils FlowSensor
Utils 0 1
FlowSensor 1 0

Table 4.15: Adjacency matrix from session B for the Watering System (SC1).

Participant A produced 9 assets and 3 processes for SC1 by manual extraction,
where a total of 3 assets mapped to 3 assets in the ground truth — however, two of
these were aggregated. 2 processes were logically equivalent to 2 processes in the
ground truth, and while it can be seen in the adjacency matrices for the ground truth
(Table 4.13) and the one from the SecDFD manually extracted by participant A
(Table 4.14) that they both contain communication between the logically equivalent
representations of the Server and the Watering System, the communications are in
reverse direction. Therefore, it cannot be considered a complete match.

Participant B produced 8 assets and 2 processes for SC1 by automatic extrac-
tion, where a total of 2 assets mapped to 2 assets in the ground truth — however,
the two assets from the automatically extracted SecDFD were aggregates, and the
aggregation mapped to both assets in the ground truth. 1 process mapped to 1
process in the ground truth — however, based on the adjacency matrix for the auto-
matically extracted SecDFD from session B as seen in Table 4.15, we cannot state
that the communications match as the extracted SecDFD only includes a single
logically equivalent process in relation to the ground truth.

4.3.1.1.2 SC2 The logical equivalences for SC2 in relation the ground truth,
from both sessions, are given by Table 4.16.
Participant A produced a total of 3 assets and 5 process by automatic SecDFD

Ground Truth | Session A (Extraction Tool) ‘ Session B
Assets
MotionActivity - -
PortNbr SetupServerPort* -
DisplayMessage Notify AzureMessage, WriteMessageString Message
Processes
Server Utils, ServerSetup -
AccessControl AccessControl -
MotionSensor - MotionActivityHandling
LedDisplayMessage Azure, LedSensor ScreenAcitivty

Table 4.16: Logical connections for the Access Control system (SC2).

38

4. Results

Server AccessControl MotionSensor LedDisplayMessage
Server 0 0 0 0
AccessControl 1 0 0 0
MotionSensor 0 1 0 1
LedDisplayMessage 0 0 0 0

Table 4.17: Adjacency matrix for the Ground Truth of the Access Control system
(SC2).

AccessControl Utils ServerSetup Azure LedSensor
AccessControl 0 0 0 0 0
Utils 0 0 1 0 0
ServerSetup 1 0 0 0 0
Azure 0 0 0 0 0
LcdSensor 0 1 0 0 0

Table 4.18: Adjacency matrix from session A for the Access Control system (SC2).

extraction. From these, a total of 3 assets map to 2 assets in the ground truth, and
a total of 5 processes map to 3 processes in the ground truth. By observing the ad-
jacency matrix for the SecDFD of SC2 produced by Participant A via the automatic
SecDFD extraction process as seen in Table 4.18, and comparing it to that of the
ground truth as seen in Table 4.17, we can see that it contains the communication
between the logically equivalent processes for the LCD Display, Motion Sensor, and
Access Control when considering the logical bundling — however, these are all in the
reverse directions, and can thus not be considered correct.

Participant B produced a total of 1 asset and 2 processes via the manual
SecDFD extraction process for SC2. Of these, a total of 1 asset mapped to 1
asset in the ground truth, and 2 processes mapped to 2 processes in the ground
truth respectively. By observing the adjacency matrix for Participant B’s manually
extracted SecDFD of SC2 as seen in Table 4.19, we can see that it contains the
communication between the Motion Sensor and LCD Display as in the ground truth
— however, it is in the reverse direction, and can thus not be considered correct. It is
not certain whether the reversed flows are a product of the tool, or the participants’
interaction with the tool and the produced SecDFD. Further study is needed to
determine the cause of the flow reversal.

‘ MotionActivityHandling ScreenActivity
MotionActivityHandling 0 0
ScreenActivity 1 0

Table 4.19: Adjacency matrix from session B for the Access Control system (SC2).

39

4. Results

4.3.2 Interviews

This section compiles the results from the interviews held after the completion of
each experiment session with the respective participant. Note that the opinions
given are from the participants interview statements, with the reflections on the
correctness of each approach being based on their perceived correctness of their
results. For the correctness evaluation by SecDFD analysis, see section 4.3.1.1.

4.3.2.1 Participant A

Participant A performed manual SecDFD extraction on SC1 first, and automatic
SecDFD extraction on SC2 subsequently.

4.3.2.1.1 Automatic extraction Participant A considers the correctness of the
automatic SecDFD extraction process to be of medium correctness according to their
own words, pointing out that they achieved about the same level of correctness when
using the automatic extraction process as they did when performing manual extrac-
tion, noting that while the results from the manual- and semi-automatic extraction
were of seemingly equal correctness, the automatic extraction process, including the
manual editing, required about half the time. They remarked that they believed
the degree of incorrectness of their automatically extracted SecDFD should be ac-
credited to their lack of expertise in the subject rather than the performance of the
tool.

They also noted that their frame of reference for considering their solutions
correct was that they considered the components similar to the ground truth they
were shown to be correct, and those that differed too greatly to be incorrect. They
said that the components they considered to be incorrect in their solutions were
the ones that were omitted, and pointed out that they had forgotten to include or
consider them.

They mentioned that, given the chance to repeat the process, they would add
one or two more keywords to the set of keywords in order to achieve a more correct
solution.

They also noted that they felt that the experienced time pressure affected the
end result, and that it would most likely have been easier to be two or more people
working together on the task.

The participant felt that using the tool lessened their understanding of the
code base — they remarked that when performing the manual extraction, they had
to read through and comprehend the code in search of the different assets, which
meant they had to understand the role of said assets and other components of the
program. However, when using the tool, they felt that they received a list of assets
that could be useful, and searched in the code for the assets they had received,
rather than having to find assets by comprehending the program.

They felt that their perceived challenges of using the tool mainly affected the
correctness of their end result, due to the fact that they trusted the tool too much
when it came to producing the correct output. Time consumption was also added
to some degree, as they performed quite a lot of manual editing.

40

4. Results

Additionally, they believe that it would have become an element of frustration
to have to manually enter the paths to the required directories over the course of
many iterations, had they performed more iterations with the tool.

4.3.2.1.2 Manual extraction Participant A experienced that the manual ex-
traction involved many steps, and that there were many things to keep track of.
They remarked that they would sometimes perform steps in the wrong order, and
have to start over. They also found it difficult to have to locate the important as-
sets manually. Thus, they felt that understanding the manual SecDFD extraction
process was one issue, and actually locating the important assets and elements was
another challenge.

They remarked that their experienced challenges affected both time consump-
tion and the correctness of their results. They mentioned that it was their lack of
understanding for the process that led to them having to redo steps, and that this
in turn affected the time consumption.

They found the manual SecDFD extraction process frustrating in the sense
that they at time could not locate the correct assets and elements.

Regarding the SecDFD specification language syntax, they felt that it was
similar to other markup- and object oriented languages that they had previously
used, with some key differences, which in turn led to frustration since they would
often make small mistakes when specifying the SecDFD in the specification language.

4.3.2.1.3 Preferred method When asked which of the methods they would
use if tasked to extract a SecDFD again, they say that they would choose to use
the extraction tool, mainly for the assistance it contributed with by providing the
correct format and syntax in the automated output.

4.3.2.2 Participant B

Participant B performed automatic SecDFD extraction on SC1 first, and manual
SecDFD extraction on SC2 subsequently.

4.3.2.2.1 Automatic extraction Participant B found the output produced by
the tool to be relatively correct — not entirely correct, they remarked, since it did
not contain all elements of the ground truth. They also expressed that they felt that
they could not say with complete certainty that it was correct, since they did not
know the code-base well, but rather that it appeared correct from what they could
tell without delving deeper into the code.

They felt that the assets found by the extraction tool were too many, but that
they would have been able to find the correct ones over more time and iterations.
They also expressed that they found the properties of the assets to be correct after
manual editing, and that they were relatively easy to find given the assets themselves.

When asked why they found their solution correct or incorrect, they replied
that they found it correct but with too much overhead, and that one thing in the
ground truth was represented by maybe three things in the automatically extracted
SecDFD. They also found the variable names unreadable.

41

4. Results

Participant B experienced difficulties with defining keywords, and entering
keywords that are too specific.?

The participant felt that one advantage with the tool was that they could find
potential assets they would not otherwise have thought to look for. They also found
it beneficial to be able to enter single letters as keywords and get a high number of
matches, in order to then narrow their search.

They expressed that they found it annoying to have to repeatedly input the
required paths manually to the tool over the course of their iterations, and that it
was more annoying than time consuming.

The participant stated that they believe it would be good to have performed
manual SecDFD extraction at least once or twice before using the extraction tool,
likening using the tool before having performed manual extraction to using greater
functions on a calculator before knowing what the function actually does — that is,
using a method before knowing the fundamentals of how it works.

4.3.2.2.2 Manual extraction The participant expressed that they found it dif-
ficult to compare manual extraction of a SecDFD to automatic extraction, since
they felt much more prepared when they were tasked with manual extraction, hav-
ing gained experience from performing the automatic extraction beforehand. They
note that they experienced that they gained a sense of the concept and SecDFDs
from the automatic extraction process, which made it easier for them during the
manual extraction process.

They remark that they believe that if someone has had practical experience
with manual SecDFD extraction beforehand, it becomes easier for them to use the
extraction tool.

The participant felt that they were in much greater control during the manual
extraction, but that it did take much more time. They also add that they would
most likely not have been able to finish a single asset, had they been tasked with per-
forming the manual SecDFD extraction first, rather than having done the automatic
SecDFD extraction before being tasked with doing it manually.

They experienced that the manual SecDFD extraction process was time con-
suming, and add that they would have liked to have a template. 4

Regarding how their end result was affected by the challenges they experienced,
they felt that the correctness was affected due to the fact that they were not sure
if they had found everything by manually looking through the code, and were thus
missing required SecDFD elements.

3 Author’s note: Too specific keywords run the risk of causing the tool to return an empty
SecDFD, as it will not find exact matches. However, an empty SecDFD will also be returned if
no *cgraph.dot files have been generated by Doxygen. As Participant B experienced trouble with
Doxygen in the shape of unexpected behaviour when using the correct settings, the tool would
output empty SecDFDs over the course of their iterations. However, this was treated as keyword
related issues before the missing files were detected after the author intervened, after which the
participant generated the correct files.

4By template, they meant for the formal specification of SecDFD in the SecDFD specification
language.

42

4. Results

4.3.2.2.3 Preferred method When asked which approach they would use if
tasked with extracting a SecDFD in the future, the participant replied that they
would definitely use the extraction tool now that they had a greater sense of what
is going on.

43

4. Results

44

O

Conclusion

In this chapter I will discuss the results of the thesis, bringing up reflections as well
as relating the results to the research questions and the work in the field. I will also
present the threats to validity, as well as a final conclusion, including my reflections
and recommendations for future work and improvements.

5.1 Discussion

In this section I will discuss the results of the thesis, both in regard to the final
product of the development that is the SecDFD extraction tool, as well as the
results of the conducted tests and experiments, in relation to the research questions
posed in chapter 1.2. The research questions are answered in Sections 5.1.3 and
5.1.4, where Section 5.1.3 answers RQ1 and RQ1.1, and 5.1.4 answers RQ2 and
RQ2.1.

5.1.1 Relation to the field

The SecDFD is, as previously mentioned, relatively novel and thus has little imme-
diate research precedent. This has also led to small data sizes and limited resources
throughout this thesis. While this particular work does not directly translate to the
previous works surrounding automatic architecture reconstruction and clustering al-
gorithms discussed in Chapter 2, many of the other works utilized machine learning
in some respect. This is something that requires significantly larger sample sizes
than those available throughout this thesis.

A contribution of this thesis in relation to the field is the reduced time and
effort of SecDFD extraction simply by a foundation to work from, as remarked by
the participants during the experiment phase of the thesis. By introducing the
tool and the semi-automatic extraction process, research surrounding automation of
threat modelling and threat analysis may become simpler by reducing the effort of
producing data by hand. This is of course mainly relevant for the research on the
topic that utilizes the SecDFD as the main security model.

5.1.2 Functionality and correctness

As presented in chapter 4, the degree of correctness of both the automatically ex-
tracted SecDFDs from the user experiments and the black box testing were low or
inconclusive. However, seen to true positives, the rate of correctly identified SecDFD

45

5. Conclusion

components was consistent, albeit lower than desired. Even so, the sample sizes are
too small to make statistical inferences from the results. Therefore, iterative use
of the tool seems more suitable, where the user across the iterations modifies or
extends the list of keywords and manually adds SecDFD elements if needed. Even
so, it is also apparent from the positive response as well as the overall ability to
consistently provide correct elements — and that the correctness of the elements and
number of identified assets varies depending on the specified keywords — that the
procedure holds great potential.

A possible reason for the observed “reverse direction” of flows in the SecDFDs
produced via the automatic extraction process, as remarked in section 4.3.1.1, is
confirmation bias within the participant extracting the SecDFD automatically. This
builds on the theory that the participant, when seeing the flow appear in automat-
ically generated SecDFD and optionally reviewing the code, trusted the SecDFD
extraction tool more than their own instinct or observation. However, I cannot
make a firm statement regarding the explanation for this, as the sample size of both
participants and automatically extracted SecDFDs displaying the same degree of
correctness in flows is too small for statistical inference, and the participant made
no statements regarding this as it was discovered in post analysis. It is also worth
noting that the participant did not react to this in their independent review of the
ground truth. Their reviews were completely independent — while they were encour-
aged to think aloud, there was no interaction from the author during the time the
participants were reviewing the ground truths.

The overall rate at which the tool produced a non-empty SecDFD was roughly
33% — however, as was illustrated in Table 4.4, a large portion of these were due
to Doxygen failing to produce the correct call-graph files, which makes it a third
party dependency failure. When subtracting these, the tool produced non-empty
SecDFDs at a 50% frequency. Other empty SecDFDs were, however, the product
of a disconnect between the names of the assets in the model and their name as
represented in the code, which supports the notion that the variable naming and
keyword determination affects the quality of the extracted SecDFD.

Of the instances where tool did not manage to produce a non-empty SecDFD,
the majority can be accredited to keywords being specified in a way which did
not give matches, which was expected and confirmed. One error was due to a Java
Runtime Error. When further investigated, a notable spike was found in the number
of files produced by Doxygen for project C9, as seen in Figure 4.3. Since over 35 000
files were generated in the case of C9, as opposed to below 5 000 for the remaining
10 projects, it is very likely that this was the cause. The SecDFD extraction tool
operates by parsing all relevant files when creating the aggregated call graph — in
the case of C9, the number of such files vastly exceeded that of previous test runs,
leading to the discovery of a vulnerability in the program which in turn caused the
tool and operating system to shut down. This could also be due to hardware issues,
but can likely be solved by optimizing the code. It may also be useful to perform
more tests to determine the maximum number of files the tool can parse.

46

5. Conclusion

5.1.3 Information from source code (RQ1)

The SecDFD extraction tool parses the source code files in order to review the
function declaration and parameter names. In addition, it needs to be provided a
call-graph of the project under analysis. The analysis and discussion of the method
is made based on this being the information provided to the tool.

As mentioned in section 4.1.3.2, given the path to the files apparent in the
nodes of the call-graph as specified by *cgraph.dot files, the SecDFD extraction tool
used a regular expression to find the method declaration and its given parameters.
The rationale for matching against the parameters of a function was that, if naming
conventions in regard to descriptive naming were regularly followed throughout the
source code, any function that processed security relevant information across multi-
ple processes may have it as a parameter. The reason for also matching against the
function name was to cover for the cases where a function processes security relevant
information but either has generically named parameters, or takes no parameters
but rather makes, for instance, direct inquiries to databases or devices. In this case,
the extraction tool largely relies on the naming of the function — specifically, that it
has been descriptively named according to what it does, and to what kind of data
it does it.

5.1.4 Comparison to manual extraction (RQ2)

The experiment participants were greatly positive to the use of the tool, as displayed
in section 4.3.2. Both participants used both methods once, and were positive
to the performance and shorter time consumption of the SecDFD extraction tool.
Regarding manual extraction, they felt that it was a very complex task to master,
especially in a short time. However, they also felt that they gained a more in-
depth understanding of the code they were working with when tasked with manual
extraction, rather than when performing automatic extraction.

It is worth noting that both participants remarked on the learning effects of
whichever task they were given first, with Participant B hypothesizing that they
would have been able to perform a more accurate automatic extraction had they
performed a manual extraction first. This is further suggested by the fact that
Participant A, who performed manual extraction before automatic, showed more
correct results overall. However, more user experiments need to be carried out in
order to make any firm conclusions regarding this effect.

5.2 Threats to validity

In this section I will discuss the threats to internal and external validity of the thesis,
as well as the reliability.

5.2.1 Internal validity

There is a running risk for confounding variables in several aspects of this thesis.
The participants, while to a carefully specified set of requirements during participant

47

5. Conclusion

selection, may perform and respond differently due to variables not considered, such
as health, personal background, comfort, and technical experiences in other domains.

Regarding the black box testing phase, the SecDFDs acting as ground truth
may have been subjected to learning effects throughout the course of manual ex-
traction, causing their correctness to vary from file to file. Additionally, these may
also have been affected by a number of variables that are not known to the author,
who was not present at the time these particular SecDFDs were manually extracted.
Therefore it is not safe to assume that there were no environmental factors such as
comfort, disturbance, and so on, affecting the performance and concentration of the
person performing the manual SecDFD extraction. As the projects were chosen on
an availability basis, there was little room for the author to mitigate threats to va-
lidity that were introduced during, and by, the manual extraction of these particular
SecDFDs.

During the user experiments, there may be a risk for experimenter bias. While
the author was operating with minimal interaction, as specified in the methodology,
there are always risks for unconscious communication via for instance body language,
which may risk affecting the choices and actions of the experiment participant.

During the development phase of the project, throughout the iterations, there
may arise uncertainties regarding temporal precedence of changes, which in turn
risks affecting the validity.

It is necessary to prevent information spreading between participants regard-
ing the content and structure of the experiment, since this may lead to diffusion.
Putting a contract in place that prevents participants from discussing the contents
of the experiment would be a countermeasure of this particular threat, albeit not
waterproof as the actions of the participants cannot be regulated beyond the signing
of the contract.

Conclusion validity may be affected due to the limitations of strictly observing
participant behaviour throughout the experiments. Encouraging participants to
think aloud throughout the experiment, on record, is a measure towards reducing
the number of assumptions made regarding their choices, which in turn lessens the
risk of drawing false conclusions regarding their impressions and choices.

5.2.2 External validity

The small data problem which permeates the project means that the low num-
ber of sample SecDFDs used throughout the testing and experimentation of the
project affects the statistical conclusion validity of the thesis. Similarly, time and
resource constraints affect the number of experiment iterations, which affects the
statistical conclusion validity. Additionally, the same constraints result in conve-
nience sampling of both SecDFDs for the various testing phases, and the selection
of participants, which in turn affects the statistical conclusion validity once more.

The SecDFDs that are treated as the ground truth throughout the experiment
may not be entirely correct, nor entirely consistent in their level of accuracy, due to
the subjective nature of manual extraction. Thus, the quality of the ground truths
used depend on a multitude of factors with the expert who was produced them, such
as environment, learning effects, subconscious reasoning, and confirmation bias.

48

5. Conclusion

5.2.3 Reliability

Measures were taken throughout the thesis in order to ensure reliability to the extent
possible. However, the experiment phase is of course affected by the participants
to some extent — seeing as while they fulfil the criteria defined to normalize their
prior experience and ensure that they had the necessary prerequisites, they were in
fact different individuals with different experiences defining their approach to the
task, and are thus not interchangeable with people who share similar backgrounds
and experiences. When replicating the experiment, there is thus no guarantee that
the same results will be produced even when using the same experiment flow, same
training material, same projects, and same tool. Apart from the individuality of the
participants, including the questions they asked during the training, the experiments
can be replicated based on the descriptions given in the documentation in previous
chapters.

The black box tests should, when replicated with the same projects and meth-
ods, produce the same results in thanks to the deterministic keyword determination
and single iteration approach. However, seeing as the evaluation of correctness was
qualitative and thus relied on individual interpretation, the details of the conclusions
may come to vary depending on the software experience and SecDFD expertise of
the one conducting the tests and evaluations.

Regarding the implementation choices and development of the tool based on
the requirements, there is of course a chance for variation depending on the developer
and their software experience, as this task — being a vague, largely unspecified
development task — relies greatly on individual skill and interpretation.

5.3 Conclusion

As the use of information technology surges, software systems become increasingly
integrated in all aspects of society. These systems are processing a wide range of
sensitive data on a daily basis, and trends indicate that the use of such systems
is going to drastically increase within the next few years. In order to ensure that
developed applications are secure, many organizations employ threat modelling,
which requires the involvement of a security expert — however, security experts
remain a scarce resource in many companies. Additionally, the threat modelling
process can be highly time consuming. By automating parts of the threat modelling
process, organizations could thus save a great amount of time and resources.

In this thesis I have developed and evaluated a procedure for semi-automatically
extracting SecDFDs from source code by leveraging call-graphs and a set of keywords
which reflect the information assets of the software under analysis. The evaluation
was performed by independent tests, and user experiments. The results were then
qualitatively evaluated.

The information required from the source code is, in combination with a for-
mally specified call graph of the software under analysis, the function- and parameter
names, which act as indicators for information assets (RQ 1). These are extracted
by searching the source files using regular expressions, to match against the list
of keywords (RQ 1.1). Using the tool can provide a similar degree of correctness

49

5. Conclusion

as manual extraction, but with less time consumption (RQ 2). However, manual
SecDFD extraction is indicated to allow for better code comprehension and a greater
degree of control over the process (RQ 2.1).

While the SecDFD extraction tool requires further work for completion and
correctness solidification, the tool and the automatic SecDFD extraction process
holds great potential. While being a straight-forward, deterministic process, the
SecDFD extraction tool has proved a determined first step in the right direction
judging by positive user experiences and stable performance, providing the user
flexibility while saving time. It is perhaps to be regarded as a complement to
manual extraction at this time, acting as an augmentation of human intelligence.
Furthermore, this thesis opens up for several new areas of investigation, offering a
foundation to build upon such as the application of machine learning to the SecDFD
extraction process.

5.3.1 Future work

Section 4.1.3.2 details what components of a SecDFD the tool delivers. While these
need further tuning, there are also SecDFD components that need to be added, such
as External Entities and Data Stores, as well as Asset targets and a wider range of
Process responsibilities. The method of adding these will require additional inves-
tigation, but I believe that identifying most of these components correctly requires
more than simply regular expressions and call-graphs.

As is, the tool does not rely on documentation, apart from the call-graphs
generated by Doxygen. I believe that it may be worth investigating whether a
natural language processor can be used to process documentation in cases where it
exists, in order to discern which method plays a role in handling security relevant
information and thus identify assets by those means. Ideally, this matching would
occur in combination with complementary techniques.

The SecDFD and the work surrounding it is still very much novel. This comes
with an issue common machine learning problems such as image recognition are
less affected by — a great lack of labelled datasets. In order to be an applicable
problem for machine learning, a much greater number of SecDFDs coupled with
their respective sources is necessary. Even throughout this project, the low number
of pre-existing SecDFDs resulted in having to resort to use projects that were not
purely written in Java for the black box testing phase, which was necessary in order
to investigate the stability of the tool.

Ideally, such a testing phase would be conducted with more projects in order
to be able to make any kind of reliable statistical inference. I believe that an added
improvement to future tests in this sentiment would be a numeric scoring system
for correctness, which in itself needs careful consideration and development.

I would thus like to propose a few possible future topics for research in the
area, other than improvement of the tool, which are welcome to build upon the
SecDFD extraction tool. These are:

1. Creating labelled datasets for SecDFDs, which in turn requires determining
the necessary labels

50

5. Conclusion

Developing a SecDFD correctness scoring system

Conducting large scale user experiments on automatically extracting SecDFDs
Investigating best means for keyword determination

Conducting large scale black box tests, or by another appropriate keyword
determination method

6. Applying machine learning to automatic SecDFD extraction

Cu W

I suggest that these works are carried out in a sequential order, in order to
maximize the outcome of each study by utilizing the full extent of the previous one.

51

5. Conclusion

52

Bibliography

Marwan Abi-Antoun and Jeffrey M. Barnes. “Analyzing security architec-
tures”. In: Proceedings of the IEEE/ACM international conference on Au-
tomated software engineering - ASE ’10. New York, New York, USA: ACM
Press, 2010, p. 3. 1SBN: 9781450301169. po1: 10. 1145/ 1858996 . 1859001.
URL: http://portal.acm.org/citation.cfm?doid=1858996.1859001.

Periklis Andritsos et al. “LIMBO: Scalable Clustering of Categorical Data”.
In: Springer, Berlin, Heidelberg, 2004, pp. 123-146. DOI: 10.1007/978-3-
540-24741-8_9. URL: http://link.springer.com/10.1007/978-3-540-
24741-87,7B%5C_%7D9.

Pablo Antonino et al. “Indicator-based architecture-level security evaluation
in a service-oriented environment”. In: Proceedings of the Fourth FEuropean
Conference on Software Architecture Companion Volume - FECSA ’10. New
York, New York, USA: ACM Press, 2010, p. 221. 1SBN: 9781450301794. DOTI:
10.1145/1842752.1842795. URL: http://portal.acm.org/citation.cfm?
doid=1842752.1842795.

Francesca Arcelli Fontana and Marco Zanoni. “A tool for design pattern detec-
tion and software architecture reconstruction”. In: Information Sciences 181.7
(Apr. 2011), pp. 1306-1324. 1ssN: 0020-0255. DOI: 10.1016/J.INS.2010.
12.002. URL: https://www.sciencedirect.com/science/article/pii/
S0020025510005955.

Bernhard J. Berger, Karsten Sohr, and Rainer Koschke. “Automatically ex-
tracting threats from extended data flow diagrams”. In: Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). 2016. 1sSBN: 9783319308050. DO1: 10.1007/
978-3-319-30806-7_4.

Nathan Brown et al. A graph-based genetic algorithm and its application to the
multiobjective evolution of median molecules. 2004. DOI: 10.1021/ci1034290p.

Naresh Chauhan. 5.1 Need of White-Box Testing. 2010. URL: https://app.

knovel.com/hotlink/khtml/id:kt00U5AM11/software-testing-principles/

need-white-box-testing.

Mauro Conti et al. “Internet of Things Security and Forensics: Challenges and
Opportunities”. In: (July 2018). por: 10. 1016/ j . future . 2017 . 07 . 060.
arXiv: 1807 .10438. URL: http://arxiv.org/abs/ 1807 .10438%20http :
//dx.doi.org/10.1016/j.future.2017.07.060.

53

https://doi.org/10.1145/1858996.1859001
http://portal.acm.org/citation.cfm?doid=1858996.1859001
https://doi.org/10.1007/978-3-540-24741-8_9
https://doi.org/10.1007/978-3-540-24741-8_9
http://link.springer.com/10.1007/978-3-540-24741-8%7B%5C_%7D9
http://link.springer.com/10.1007/978-3-540-24741-8%7B%5C_%7D9
https://doi.org/10.1145/1842752.1842795
http://portal.acm.org/citation.cfm?doid=1842752.1842795
http://portal.acm.org/citation.cfm?doid=1842752.1842795
https://doi.org/10.1016/J.INS.2010.12.002
https://doi.org/10.1016/J.INS.2010.12.002
https://www.sciencedirect.com/science/article/pii/S0020025510005955
https://www.sciencedirect.com/science/article/pii/S0020025510005955
https://doi.org/10.1007/978-3-319-30806-7_4
https://doi.org/10.1007/978-3-319-30806-7_4
https://doi.org/10.1021/ci034290p
https://app.knovel.com/hotlink/khtml/id:kt00U5AM11/software-testing-principles/need-white-box-testing
https://app.knovel.com/hotlink/khtml/id:kt00U5AM11/software-testing-principles/need-white-box-testing
https://app.knovel.com/hotlink/khtml/id:kt00U5AM11/software-testing-principles/need-white-box-testing
https://doi.org/10.1016/j.future.2017.07.060
http://arxiv.org/abs/1807.10438
http://arxiv.org/abs/1807.10438%20http://dx.doi.org/10.1016/j.future.2017.07.060
http://arxiv.org/abs/1807.10438%20http://dx.doi.org/10.1016/j.future.2017.07.060

Bibliography

[9]

[14]

[15]

54

Anna Corazza et al. “Weighing lexical information for software clustering in
the context of architecture recovery”. In: Empirical Software Engineering 21.1
(Feb. 2016), pp. 72-103. 1sSN: 1382-3256. DOI: 10.1007/s10664-014-9347-3.
URL: http://1link.springer.com/10.1007/s10664-014-9347-3.

Doxygen. Dozygen: Main Page. URL: http://www.doxygen.nl/ (visited on
07/30/2019).

Emelie Engstrom et al. “A review of software engineering research from a
design science perspective”. In: (Apr. 2019). arXiv: 1904.12742. URL: http:
//arxiv.org/abs/1904.12742.

Ericsson. Internet of Things forecast — Ericsson Mobility Report - Ericsson.
URL: https://www.ericsson.com/en/mobility-report/internet-of -
things-forecast (visited on 07/29/2019).

Fei Wang and Changshui Zhang. “Label Propagation through Linear Neigh-
borhoods”. In: IEEE Transactions on Knowledge and Data Engineering 20.1
(Jan. 2008), pp. 55-67. 1SSN: 1041-4347. DOT: 10.1109/TKDE. 2007 . 190672.
URL: http://ieeexplore.ieee.org/document/4358958/.

Francois Fouss et al. “Random-Walk Computation of Similarities between
Nodes of a Graph with Application to Collaborative Recommendation”. In:
IEEE Transactions on Knowledge and Data Engineering 19.3 (Mar. 2007),
pp. 355-369. 1SSN: 1041-4347. DOL: 10 .1109/TKDE . 2007 . 46. URL: http:
//ieeexplore.ieee.org/document/4072747/.

Joshua Garcia, Igor Ivkovic, and Nenad Medvidovic. “A comparative analy-
sis of software architecture recovery techniques”. In: 2013 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE,
Nov. 2013, pp. 486-496. 1SBN: 978-1-4799-0215-6. DOI: 10.1109/ASE.2013.
6693106. URL: http://ieeexplore.ieee.org/document/6693106/.

Joshua Garcia et al. “Enhancing architectural recovery using concerns”. In:
2011 26th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE 2011). IEEE, Nov. 2011, pp. 552-555. ISBN: 978-1-4577-1639-3.
DOI: 10.1109/ASE.2011.6100123. URL: http://ieeexplore. ieee.org/
document/6100123/.

Giona Granchelli et al. “Towards Recovering the Software Architecture of
Microservice-Based Systems”. In: 2017 IEEE International Conference on Soft-
ware Architecture Workshops (ICSAW). IEEE, Apr. 2017, pp. 46-53. 1SBN:
978-1-5090-4793-2. DOI1: 10.1109/ICSAW.2017.48. URL: http://ieeexplore.
ieee.org/document/7958455/.

GraphViz. Graphviz - Graph Visualization Software. URL: https : // www .
graphviz.org/ (visited on 07/30/2019).

GraphViz. The DOT Language. URL: https://www . graphviz . org/doc/
info/lang.html (visited on 07/30/2019).

Stefanie Jasser et al. “Back to the Drawing Board - Bringing security con-
straints in an architecture-centric software development process”. In: ICISSP.
2018. 1SBN: 9789897582820.

https://doi.org/10.1007/s10664-014-9347-3
http://link.springer.com/10.1007/s10664-014-9347-3
http://www.doxygen.nl/
http://arxiv.org/abs/1904.12742
http://arxiv.org/abs/1904.12742
http://arxiv.org/abs/1904.12742
https://www.ericsson.com/en/mobility-report/internet-of-things-forecast
https://www.ericsson.com/en/mobility-report/internet-of-things-forecast
https://doi.org/10.1109/TKDE.2007.190672
http://ieeexplore.ieee.org/document/4358958/
https://doi.org/10.1109/TKDE.2007.46
http://ieeexplore.ieee.org/document/4072747/
http://ieeexplore.ieee.org/document/4072747/
https://doi.org/10.1109/ASE.2013.6693106
https://doi.org/10.1109/ASE.2013.6693106
http://ieeexplore.ieee.org/document/6693106/
https://doi.org/10.1109/ASE.2011.6100123
http://ieeexplore.ieee.org/document/6100123/
http://ieeexplore.ieee.org/document/6100123/
https://doi.org/10.1109/ICSAW.2017.48
http://ieeexplore.ieee.org/document/7958455/
http://ieeexplore.ieee.org/document/7958455/
https://www.graphviz.org/
https://www.graphviz.org/
https://www.graphviz.org/doc/info/lang.html
https://www.graphviz.org/doc/info/lang.html

Bibliography

[22]

[23]

[26]

[27]

28]

[29]

[30]

R. Koschke and D. Simon. “Hierarchical reflexion models”. In: 10th Working
Conference on Reverse Engineering, 2003. WCRE 2003. Proceedings. IEEE,
pp. 36—45. 1SBN: 0-7695-2027-8. DOI: 10.1109/WCRE . 2003 . 1287235. URL:
http://ieeexplore.ieee.org/document/1287235/.

Zhe Liu, Kim Kwang Raymond Choo, and Johann Grossschadl. “Securing
Edge Devices in the Post-Quantum Internet of Things Using Lattice-Based
Cryptography”. In: IEEE Communications Magazine (2018). 1SSN: 01636804.
DOI: 10.1109/MCOM.2018.1700330.

Thibaud Lutellier et al. “Comparing Software Architecture Recovery Tech-
niques Using Accurate Dependencies”. In: 2015 IEEE/ACM 37th IEEE In-
ternational Conference on Software Engineering. IEEE, May 2015, pp. 69—
78. I1SBN: 978-1-4799-1934-5. pOI: 10.1109/ICSE. 2015 . 136. URL: http:
//ieeexplore.ieee.org/document/7202951/.

Kyriakos Malamas and Danial Hosseini. “Design Flaws as Security Threats”.
MA thesis. 2017. URL: https://odr.chalmers.se/handle/20.500.12380/
250250.

O. Magbool and H.A. Babri. “Bayesian Learning for Software Architecture
Recovery”. In: 2007 International Conference on Electrical Engineering. IEEE,
Apr. 2007, pp. 1-6. 1SBN: 1-4244-0892-X. DOI: 10.1109/ICEE. 2007 .4287309.
URL: http://ieeexplore.ieee.org/document/4287309/.

G.C. Murphy, D. Notkin, and K.J. Sullivan. “Software reflexion models: bridg-
ing the gap between design and implementation”. In: IEEE Transactions on
Software Engineering 27.4 (Apr. 2001), pp. 364-380. 1ssN: 00985589. DOT: 10.
1109/32.917525. URL: http://ieeexplore.ieee.org/document/917525/.

Larry Osterman. Threat Modeling Again, STRIDE. 2007. URL: https://
blogs.msdn.microsoft.com/larryosterman/2007/09/04/threat-modeling-
again-stride/ (visited on 04/03/2019).

Chris Quirk, Raymond Mooney, and Michel Galley. “Language to Code: Learn-
ing Semantic Parsers for If-This-Then-That Recipes”. In: Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and the
Tth International Joint Conference on Natural Language Processing (Volume
1: Long Papers). 2015. 1SBN: 9781941643723. pOI: 10.3115/v1/P15-1085.

Per Runeson and Martin Host. “Guidelines for conducting and reporting case
study research in software engineering”. In: Empirical Software Engineering
14.2 (Apr. 2009), pp. 131-164. 18sN: 1382-3256. DOI: 10.1007/s10664-008~
9102-8. URL: http://1link.springer.com/10.1007/s10664-008-9102-8.

Hitesh Sajnani. “ Automatic software architecture recovery: A machine learning
approach”. In: 2012 20th IEEE International Conference on Program Com-
prehension (ICPC). IEEE, June 2012, pp. 265-268. 1SBN: 978-1-4673-1216-5.
DOI: 10.1109/ICPC.2012.6240501. URL: http://ieeexplore. ieee.org/
document/6240501/.

95

https://doi.org/10.1109/WCRE.2003.1287235
http://ieeexplore.ieee.org/document/1287235/
https://doi.org/10.1109/MCOM.2018.1700330
https://doi.org/10.1109/ICSE.2015.136
http://ieeexplore.ieee.org/document/7202951/
http://ieeexplore.ieee.org/document/7202951/
https://odr.chalmers.se/handle/20.500.12380/250250
https://odr.chalmers.se/handle/20.500.12380/250250
https://doi.org/10.1109/ICEE.2007.4287309
http://ieeexplore.ieee.org/document/4287309/
https://doi.org/10.1109/32.917525
https://doi.org/10.1109/32.917525
http://ieeexplore.ieee.org/document/917525/
https://blogs.msdn.microsoft.com/larryosterman/2007/09/04/threat-modeling-again-stride/
https://blogs.msdn.microsoft.com/larryosterman/2007/09/04/threat-modeling-again-stride/
https://blogs.msdn.microsoft.com/larryosterman/2007/09/04/threat-modeling-again-stride/
https://doi.org/10.3115/v1/P15-1085
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
http://link.springer.com/10.1007/s10664-008-9102-8
https://doi.org/10.1109/ICPC.2012.6240501
http://ieeexplore.ieee.org/document/6240501/
http://ieeexplore.ieee.org/document/6240501/

Bibliography

[31]

[32]

[33]

[34]

[38]

[39]

[40]

[41]

56

Asaf Shabtai, Yuval Fledel, and Yuval Elovici. “Automated Static Code Anal-
ysis for Classifying Android Applications Using Machine Learning”. In: 2010
International Conference on Computational Intelligence and Security (2010).
1SSN: 00320935. por: 10.1109/CIS.2010.77.

Robin Shahan and Bryan Lamos. loT Security Architecture | Microsoft Docs.
2018. URL: https://docs.microsoft.com/en-us/azure/iot-fundamentals/
iot-security-architecture (visited on 04/03/2019).

Chalmers University of Technology. English Language Requirement. URL: https:
/ /www . chalmers . se/en/education/application-admission/entry _
requirements/Pages/documentation-of-english-language-proficiency.
aspx (visited on 07/30/2019).

Katja Tuma, Riccardo Scandariato, and Musard Balliu. “Flaws in Flows: Un-
veiling Design Flaws via Information Flow Analysis”. In: 2019 IEEFE Interna-
tional Conference on Software Architecture (ICSA). IEEE, Mar. 2019, pp. 191
200. 1SBN: 978-1-7281-0528-4. DOI: 10.1109/ICSA.2019.00028. URL: https:
//ieeexplore.ieee.org/document/8703905/.

Katja Tuma et al. “Towards security threats that matter”. In: Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics). 2018. 1SBN: 9783319728162. DOI: 10.
1007/978-3-319-72817-9 _4.

V. Tzerpos and R.C. Holt. “ACCD: an algorithm for comprehension-driven
clustering”. In: Proceedings Seventh Working Conference on Reverse Engi-
neering. IEEE Comput. Soc, pp. 258-267. 1SBN: 0-7695-0881-2. DOI: 10 .
1109/WCRE.2000.891477. URL: http://ieeexplore.ieee.org/document/
891477/.

Alexander Van Den Berghe et al. “A model for provably secure software de-
sign”. In: Proceedings - 2017 IEEE/ACM 5th International FME Workshop
on Formal Methods in Software Engineering, FormaliSE 2017. 2017. 1SBN:
9781538604229. DOI1: 10.1109/FormaliSE.2017.6.

Perla Velasco-Elizondo et al. “Knowledge representation and information ex-
traction for analysing architectural patterns”. In: Science of Computer Pro-
grammaing 121 (June 2016), pp. 176-189. 1sSN: 0167-6423. DOI: 10.1016/J.
SCICO.2015.12.007. URL: https://www.sciencedirect . com/science/
article/pii/S0167642316000101.

Roel J. Wieringa. Design science methodology for information systems and
software engineering. Springer, 2014, p. 332. ISBN: 3662438399.

Yan Zhang and Barbara M. Wildemuth. “Applications of social science re-
search methods to questions in information and library science”. In: Qualita-
tive Analysis of Content. 2005, pp. 308-319. 1SBN: 9781440839054.

Zhi Kai Zhang et al. “IoT security: Ongoing challenges and research opportuni-
ties”. In: Proceedings - IEEE 7th International Conference on Service-Oriented
Computing and Applications, SOCA 2014. 2014. 1SBN: 9781479968336. DOI:
10.1109/S0CA.2014.58.

https://doi.org/10.1109/CIS.2010.77
https://docs.microsoft.com/en-us/azure/iot-fundamentals/iot-security-architecture
https://docs.microsoft.com/en-us/azure/iot-fundamentals/iot-security-architecture
https://www.chalmers.se/en/education/application-admission/entry_requirements/Pages/documentation-of-english-language-proficiency.aspx
https://www.chalmers.se/en/education/application-admission/entry_requirements/Pages/documentation-of-english-language-proficiency.aspx
https://www.chalmers.se/en/education/application-admission/entry_requirements/Pages/documentation-of-english-language-proficiency.aspx
https://www.chalmers.se/en/education/application-admission/entry_requirements/Pages/documentation-of-english-language-proficiency.aspx
https://doi.org/10.1109/ICSA.2019.00028
https://ieeexplore.ieee.org/document/8703905/
https://ieeexplore.ieee.org/document/8703905/
https://doi.org/10.1007/978-3-319-72817-9_4
https://doi.org/10.1007/978-3-319-72817-9_4
https://doi.org/10.1109/WCRE.2000.891477
https://doi.org/10.1109/WCRE.2000.891477
http://ieeexplore.ieee.org/document/891477/
http://ieeexplore.ieee.org/document/891477/
https://doi.org/10.1109/FormaliSE.2017.6
https://doi.org/10.1016/J.SCICO.2015.12.007
https://doi.org/10.1016/J.SCICO.2015.12.007
https://www.sciencedirect.com/science/article/pii/S0167642316000101
https://www.sciencedirect.com/science/article/pii/S0167642316000101
https://doi.org/10.1109/SOCA.2014.58

	List of Figures
	List of Tables
	Introduction
	Scientific Contribution
	Research Questions

	Theory
	Background
	The SecDFD
	Call-graphs

	Research methodology
	Design science methodology
	Black box testing
	Qualitative content analysis

	Related work
	Architecture reconstruction
	Graph based solutions
	Clustering algorithms

	Automation of threat modelling

	Methods
	Development
	Black box tests
	Experiment design
	Participants
	Selection
	Participant profiles
	Training

	Subject of analysis
	Selection
	Ground truth

	Execution of experiment
	Manual SecDFD extraction
	Automatic SecDFD extraction

	Interviews

	Analysis
	SecDFD comparison
	Interviews

	Results
	SecDFD extraction tool
	Tool development
	Implementation choices
	Tool description
	Required input
	Functionality
	Output format

	Evaluation by black box testing
	Tool Compatibility
	Tool Correctness
	C1
	C2
	C8
	C10

	Evaluation by Experiment
	Experiment results
	Correctness
	SC1
	SC2

	Interviews
	Participant A
	Automatic extraction
	Manual extraction
	Preferred method

	Participant B
	Automatic extraction
	Manual extraction
	Preferred method

	Conclusion
	Discussion
	Relation to the field
	Functionality and correctness
	Information from source code (RQ1)
	Comparison to manual extraction (RQ2)

	Threats to validity
	Internal validity
	External validity
	Reliability

	Conclusion
	Future work

	Bibliography

