| CHALMERS |) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

The spec is out there

Extracting contracts from code

Master’s thesis in Computer Science

Christoffer Medin
Pontus Doverstav

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

MASTER’S THESIS 2017

The spec is out there

Extracting contracts from code

Christoffer Medin
Pontus Doverstav

Department of Computer Science and Engineering
Division of Formal methods
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

The spec is out there
Extracting contracts from code
CHRISTOFFER MEDIN
PONTUS DOVERSTAV

© CHRISTOFFER MEDIN, PONTUS DOVERSTAV 2017.

Supervisor: Carlo A. Furia, Department of Computer Science and Engineering
Examiner: John Hughes, Department of Computer Science and Engineering

Master’s Thesis 2017

Department of Computer Science and Engineering
Division of Formal methods

Chalmers University of Technology

SE-412 96 Gothenburg

Telephone +46 31 772 1000

Typeset in KTEX
Gothenburg, Sweden 2017

The spec is out there

Extracting contracts from code

CHRISTOFFER MEDIN

PONTUS DOVERSTAV

Department of Computer Science and Engineering
Chalmers University of Technology

Abstract

A contract is a formal specification of the properties of a method. It has many uses
in testing, verification and documentation. Despite all these benefits, developers
almost never write contracts for their code due to the large amount of time required
to write correct and expressive contracts. The project described in this thesis sets out
to evaluate the possibility of extracting contracts from code using syntactic analysis,
which is a not yet evaluated technique. Syntactic analysis is done by looking at the
operations performed by code, rather than the result of those operations. Contracts
were extracted by first parsing target source code into an abstract syntax tree,
which was then analyzed to find defined code patterns which signaled the presence
of some implicit contract. The information found within these patterns was then
extracted and written as an explicit contract. In experiments involving 4 projects
over 35 000 methods, our syntactic analysis tool extracted close to 60 000 behaviors,
of which one-third were regarded as successful. The results are promising, even
though performance of the syntactic analysis was somewhat inconsistent, it could
produce contracts on a comparable level to those written by a human.

Keywords: formal specification, contracts, syntactic analysis

Acknowledgements

We would like to thank our supervisor Carlo A. Furia for his great support during
this project. His ideas and feedback have been vital for us to succeed with this
project. We would also like to thank Victor Nilsson for taking his time writing
contracts for us to compare our results with.

Christoffer Medin & Pontus Doverstav, Gothenburg, July, 2017

Contents

Introduction
1.1 Purposeand goals.o
1.2 Scope and limitations oo

Design by Contract

Programming languages
3.1 Selection criteria
3.2 Selection of language

Java Modeling Language

4.1 mnormal & exceptional behavior 0oL
4.2 requires & ensures

421 Nresult

422 Nold
4.3 signals_only & signal00
4.4 assignable
4.5 Puremethods
4.6 Visibility of fields and methods

Code Patterns

5.1 Assertions
5.2 Conditionals
5.3 Switch-case
5.4 Exceptional behaviour 0000
5.5 Assignment
5.6 Null checks
5.7 Larger exampleo
9.8 Loops
59 Try-Catch
5.10 Method calls
5.11 Using standard libraries
Implementation

6.1 Structure
6.2 How SpeclT generates a contract

6.3 Dependencieso

Contents

6.3.1 JavaParser oL 25

6.3.2 JavaSymbolSolver oo 25

7 Evaluation of the tool SpeclIT 29
7.1 Automatic analysis 29
7.1.1 Gathering statistics about generated contract 29

7.1.2 Evaluate usefulness in automated testing 29

7.2 Manual analysis 30
7.2.1 Comparing to existing specification 30

7.2.2 Comparing to manually written contracts 30

7.2.3 Dealing with uncertainties 31

7.3 Evaluated projects 32
7.3.1 Votail 32

732 JUnitd &5o 32

7.3.3 LbGDX 32

8 Experimental Results 33
8.1 Human-written vs. SpeclT 33
81.1 Sum 34

8.1.2 Ballot 35

813 addError. 37

8.1.4 assertEquals 38

8.2 Statistics 39
8.2.1 General statistics oL 39

8.2.2 Successful behaviorso 40

8.2.3 Failing behaviorso 41

9 Conclusions 49
9.1 Futurework 49

Contents

1

Introduction

Bertrand Meyer coined the term Design by Contract based on the idea of defining
the properties of a function as a contract, stating what the function requires (pre-
conditions) and what it ensures (postconditions) [1]. The preconditions typically
depend on parameters to the function and object fields and tell the user what they
need to supply the function in order to use it. The postconditions on the other hand
tell the user what they can expect from the function given that they have satisfied
the corresponding preconditions.

Contracts have uses other than telling the user which inputs the function allows. A
contract can provide useful information when testing a program as it can be used
as specification to determine if the method behaves correctly or not [2].

Formal verification is another very powerful way to use a contract. Formal verifica-
tion is done by fully specifying the desired behavior of a function using contracts and
then using the specification with the actual function to prove that the function will
behave according to specification. This provides strong guarantees that the code is
doing what it is expected to. In contrast to merely testing the code this guarantee
of correctness is for all possible inputs rather just the ones that were tested.

1.1 Purpose and goals

In this thesis we will explore the possibilities of automatically extracting these kinds
of implicit contracts from code. Since the contracts are used to describe the code,
the idea that you could get this description by analyzing the code does not seem
too far off. Finding contracts by analyzing code or other artifacts such as comments
has already proven to be successful [2].

The project will consist of two parts: first we will develop a tool, henceforth called
SpeclT, which extracts contracts from code using syntactic analysis. Then we will
test SpeclT to evaluate the contracts generated. This evaluation will consist of
statistical analysis, looking at the amount of contracts generated, their size etc.
We will also evaluate the contracts readability and in general analyze their quality
manually.

1.2 Scope and limitations

This thesis will focus on syntactic analysis of code and not semantic analysis such
as static analysis. Static analysis consists of testing the code without executing it,

1. Introduction

this can be done via symbolic execution which uses contracts to prove properties
about programs.

The line between syntax and semantics is sometimes fuzzy but the main difference is
that the syntax is what the code says whereas the semantics is what the code does.
By not doing semantic analysis we will not create contracts that capture the result
of operations, only the operations themselves. For example doing mathematical
operations on an integer would result in the semantic contract being the result of the
operations, where as the syntactic contract would be the mathematical operations
on the integer. A very basic example of this is shown in figure 1.1.

int f(int x){
return x*x/x

/* Syntactic contract
* \ensures result == x*x/x

* Semantic contract

* \requires x !'= 0
* \ensures result == x
x/

Figure 1.1: Syntactic vs Semantic

It is important to note that the syntactic analysis performed in this project is not able
to produce contracts that are expressive enough for any useful formal verification.
Since the contracts will be generated purely through syntactic analysis of the code
and not its intent, they will not be expressive enough to do formal verification of
non-trivial properties. However, they may be used as a basis to construct detailed
specification and as aid when doing automated testing.

This study will not evaluate the value of using the extracted contracts when doing
automated testing, although this is a possible use of the contracts that might be
worth exploring.

The projects analyzed will be limited to those freely available and will focus on those
who already have contracts as it provides a good base for comparing the extracted
contracts to manually created contracts.

2

Design by Contract

Design by contract is a software development methodology which attempts to in-
crease the reliability in software systems, where reliability is defined as correctness
and robustness, or as the absence of bugs [1]. In contrast to defensive programming
which tries to achieve reliability through a plethora of checks, design by contract
relies on the notion of contracts.

Contracts can be seen as an agreement between a client and supplier, or in the
case of software systems, an agreement between a caller and a called routine. A
contract protects both sides - it specifies both how much and how little is expected
to be done. The caller knows what kind of result can be expected and the callee
knows what tasks it can be expected to perform. Both parties are subject to some
obligation, but in turn usually gain some benefit.

Contracts specify individual routines, or methods, but included in design by contract
are also class invariants. Class invariants are properties that apply to all instances
of a class and to all methods of the class. An invariant must be satisfied by every
instance of the class after creation and it must be preserved by every routine of
that class. If an invariant is satisfied upon entry it must also be satisfied upon
exit. An example of an invariant can be seen in figure 2.1, which describes that for
every element in a double-linked list, the previous element of an element’s next in a
double-linked list must be the element itself.

class Element {
Element next;
Element previous;

//@ invariant next != null --> next.previous == this;

}

Figure 2.1: An example of a class invariant

The mechanism for expressing contracts and class invariants are called assertions.
The assertions for contracts can be separated into two classes, pre- and post-conditions.
As is implied by their names, preconditions are assertions that must hold before a
method is executed and postconditions must hold after execution is finished. The
responsibility that preconditions hold is given to the caller, and responsibility for
postconditions is handed to the called method. If some case requires special treat-

2. Design by Contract

ment but is not included in the contract it must be handled by the called method.
A clause not stated in the contract cannot be guaranteed by the caller. What should
be demanded as a precondition and what should be checked manually by the method
is a design-decision and can vary from case to case. In some methods you may wish
to handle special, or exceptional, cases in some way while in other you would just
reject them. This should guide the decision whether to include it in the contract or
not.

/*@
public normal_behavior
requires d > 0;
ensures x == \result * d;
Ox/
public double divisionl(int x, int d){
return x/d;
}
/*@
public normal_behavior
ensures d > 0 ==> x == \result * d;
ensures d <= 0 ==> \result == -1;
Ox/
public double division2(int x, int d){
if(d <= 0){
return -1;
} else {
return x/d;
}
}

Figure 2.2: Two methods with differently demanding contracts

In figure 2.2 two almost identical methods can be seen, but with responsibility
placed on either the caller or the callee. As no precondition is specified in the
second method, it is expected that the responsibility of checking that the input is
correct lies on the called method instead of the calling method. In the same way;,
when a precondition is stated in a contract as in the first method, responsibility lies
on the calling method to make sure that it is fulfilled.

3

Programming languages

In order to do syntactic analysis a decision has to be made on what language to
analyze. The considered languages are C#, Eiffel and Java. These languages have
previously appeared in earlier studies on the usage of contracts [3], having been the
target for automatic contract generation [4][2] and also been used to examine the
value of writing stronger specifications [5]. We will now discuss what criteria were
used to determine which of these languages was better suited for this project and
how well the languages fulfilled these criteria.

3.1 Selection criteria

The first criterion to be met is supporting contracts, this does not have to be native
support, however in that case there must exist some extension or tool which allows
support for contracts. The second criteria is having available testing tools with
support for contracts. The third criteria is having a substantial amount open source
projects available in order to find a good basis for evaluating SpecIT.

3.2 Selection of language

Eiffel meets most of the criteria well. It has support for contracts such as pre- and
postconditions and assertions, however it lacks functionality in the form of quan-
tifiers. FKiffel has support for contract checking using contracts with EiffelStudio,
which also serves as the official IDE [6]. The main problem for Eiffel is that there is
a very limited amount of open source projects available, in fact on GitHub we only
managed to find around 300 projects using eiffel. Additionally, since Eiffel supports
contracts natively there may not be many implicit contracts to extract that are not
already written explicitly.

Java was deemed a good fit for the project due to its popularity and support for
contracts using the extension JML. JML allows for contracts such as pre- and post-
conditions and assertions, which also support quantifiers and variables unique to
those conditions and assertions [7]. The tool JMLUnitNG provides automatic test-
ing using with support for contracts [8]. The popularity of the language allowed
for a large amount of projects to select from when identifying suitable projects to
evaluate SpeclIT on.

C# shares many of the good qualities that Java has. It has support for contracts
called Code Contracts, it supports automatic testing using these contracts and it
has a large open source presence.

3. Programming languages

Both Java and C# were both deemed to be good target languages. The tiebreaker
was the authors’ previous experience with Java which should reduce the amount of
time spent on researching the language and its contracts.

4

Java Modeling Language

The Java Modeling Language (JML) is formal behavioral interface specification
language for Java [9]. This means that using JML interfaces and behaviors of Java
code can be specified. Here, interfaces refer to the names and static information
found in Java declarations and behaviors to how the code behaves once executed.
As such, JML can be used as a design by contract tool for Java.

In addition to supporting design by contract, JML can also be used as a tool for
model-based specification [7]. However, the focus of this thesis is on contracts,
and thus features related to model-based specification will not be explained. The
contracts generated in this thesis will be simpler, and therefore only need a subset
of JML’s functionality [10], which will be explained briefly below.

public class Example{
private boolean error = false;
private int timesInverted = O;

public int abs(int b){

if (b > 0){
return b;

} else if (b < 0) {
timesInverted++;
b=D>b% -1;
return b;

} else {
error = true;
throw new IllegalArgumentException();

}

Figure 4.1: Example of code

4.1 normal & exceptional behavior

In the event that a method has several distinct behaviors, the specification can be
split into different behaviors as well. Behaviors can be defined as general, normal or

9

4. Java Modeling Language

exceptional, where normal and exceptional behaviors mostly are general behaviors

with some syntactic sugar added.

Normal behaviors have an implicit signals clause added (signals (java.lang.Exception)
false) which specifies that this behavior cannot throw any exception. Exceptional
behaviors have an implicit ensures clause added (ensures false). Additionally,

further ensures clauses are not allowed, meaning that an exceptional behavior spec-

ifies a behavior that must throw an exception in order to terminate. Applying this

to the code seen in figure 4.1 gives a contract as seen in figure 4.2.

/%@
public normal_behavior
(* Further specification *)

also

public normal_behavior
(* Further specification *)

also
public exceptional behavior

(* Further specification *)
Qx*/

Figure 4.2: Specification of the various behaviors identified in method abs in figure
4.1

4.2 requires & ensures

The requires and ensures clause are used to specify pre- and post-conditions of a
contract, respectively. These are the most basic blocks around which contracts are
generated. Each clause consists of a boolean predicate, and several clauses in one
behavior will be evaluated as one clause with a predicate that is the conjunction of
all predicates. Related to post-conditions are the clauses \result and \old, which
are used when writing specification about return values or values held in a methods
pre-state. Figures 4.3 shows how the contract changes with the addition of pre- and
post-conditions.

4.2.1 \result

In a method specification, the keyword \result denotes the value returned by the
method. Its value is the same as that returned by the method and it is used together
with an ensures clause.

10

4. Java Modeling Language

4.2.2 \old

When evaluating the contract of a method, JML considers two states, the pre-
state and the post-state. As their names imply, pre-state refers to the state that
existed before the method call, and post-state refers to the state after the method
has completed its execution. Through using \old, one can refer to the value of an
object or expression in the pre-state. An example of \old being used can be found
in figure 4.3.

/*@
public normal_behavior
requires b > 0;
ensures \result == b;
also
public normal_behavior
requires b < 0;
requires !(b > 0);
ensures timesInverted = \old(timesInverted) + 1;
ensures \result == b * -1;
also
public exceptional behavior
requires !(b < 0);
requires !(b > 0);

Qx/

Figure 4.3: Further specification of method abs in figure 4.1 by adding pre- and
post-conditions

4.3 signals_ only & signal

When generating contracts for methods that might throw exceptions, the signals
and signals_only clauses are used. The signals_only clause is used to specify
what exceptions may be thrown by a method, while the signals clause specifies
what holds in the post-state after a certain exception is thrown.

In figure 4.4 is an example of how signals and signals_only may be used. When
b is equal to zero, it is specified that an exception must be thrown, that exception
must be of the type IllegalArgumentException and in the post-state, error ==
true must also hold.

11

4. Java Modeling Language

/*@
public normal_behavior
requires b > 0;
ensures \result == b;

also

public normal_behavior

requires b < 0;

ensures timesInverted = \old(timesInverted) + 1;
ensures \result == b * -1;

also

public exceptional_ behavior

requires b == 0;

signals_only IllegalArgumentException;

signals IllegalArgumentException (error == true);
Qx/

Figure 4.4: Further specification of figure 4.1 through use of signals and
signals_only

4.4 assignable

The assignable clause is used for framing, i.e. to specify what locations or variables
can be assigned to during execution of a method. It can either be given a list of
field names or one of two special values, \everything or \nothing, which specify
that either every location or no location can be assigned to. Figure 4.5 shows how
assignable can be used to specify figure 4.1. Note that although b is assigned a
value in one of the behaviors, it is not used in an assignable clause. This is because
method paramaters are not allowed to be used in such clauses.

4.5 Pure methods

In order to use a method in the specification of another method in JML, it has to
be specified as pure. A pure method is defined to not have any side effects when
executed, i.e. it has the specification seen in figure 4.6.

For a method to be considered pure it has to always terminate normally or throw
an exception. Additionally, it has to be deterministic, i.e. when called in a given
state, it always returns the same value. This is only an issue when dealing with
either randomness or concurrency as they can modify the results of statements and
in which order they are executed.

12

4. Java Modeling Language

/*@
public normal_behavior
requires b > 0;
ensures \result == b;
assignable \nothing;

also

public normal_behavior

requires b < 0;

ensures timesInverted = \old(timesInverted) + 1;
ensures \result == b * -1;

assignable \nothing;

also

public exceptional behavior
requires b == 0;
signals_only IllegalArgumentException;
signals IllegalArgumentException (error == true);
assignable error;
Qx/

Figure 4.5: Completed specification of method abs in figure 4.1

/* diverges false;
* assignable \nothing;

*/

Figure 4.6: Implicit specification of a pure method

4.6 Visibility of fields and methods

In order for a variable or method to be usable in a JML contract it must have public
visibility. In general these fields and methods are non-public for a reason and thus
changing their visibility would have unwanted consequences. JML has a workaround
for this namely annotating the variable of method with spec_public which allows
JML to consider it as public for specification purposes. An example of this can be
seen in figure 4.7.

private /*Q@ spec_public @*/ boolean error = false;
private /*@ spec_public @/ int timesInverted = O;

Figure 4.7: Specification of fields in figure 4.1 to allow usage in contract.

13

4. Java Modeling Language

14

O

Code Patterns

In order to extract implicit contracts from code syntactically, programming patterns
containing this information must be defined. This section presents, in a general
form, the different patterns identified. These transformations will be the basis for
the contracts generated.

5.1 Assertions

An assertion-statement is used to test assumptions about a program by document-
ing what it is believed to be true at that point in the code. This gives information
about what is expected by the program and can be used to construct contracts.
Depending on how or were an assertion is used, it can give different information
about the expected behavior.

In figure 5.1 is an example of two different placements of assertions and how this
affects the corresponding contract. In £1 the use of the assertion in the beginning
signifies that it is linked to some precondition, while in £2 the assertion is used after
some action and thus signifies some postcondition. Due to this, the two methods
will generate different contracts.

5.2 Conditionals

In any case where a return statement can be accessed through a conditional state-
ment, e.g. an if-statement, this condition directly influences the behaviour of the
code and thus the contract. In figure 5.2 is an example of a conditional and its
corresponding contract.

5.3 Switch-case

When a standard switch-case-statement is written such as the one in figure 5.3 it
can be seen as a large if-else-statement as can be seen in figure 5.4. From this the
contract in figure 5.5 is generated. It is however possible to write a switch-case
without neither break nor return statement in each case. This results in the case
below being executed as well, regardless if it matches the case or not, this will
continue until a case with break or return is found or the end of cases. Since that
kind of switch-case is not as common and very complex to generate a contract
for, it was omitted from this project.

15

5. Code Patterns

/*@
public normal_behavior
requires P(x);

Qx*/

public Object f1(int x){
assert P(x);

return result;

}

/*@
public normal_behavior
ensures P(x);

Qx/

public Object f2(){

assert P(x);
return result;

}

Figure 5.1: Example of different uses of assertion-statements and their contracts

5.4 Exceptional behaviour

The handling of errors and exceptional behaviours in code contain information about
what circumstances need to be met for the code to exhibit such exceptional be-
haviour. Figure 5.6 is a simple example of exceptional behavior.

5.5 Assignment

In cases where an assignment is done to a instance variable the statement influences
the behaviour of the code and should thus be part of the contract. An example of
this can be seen in figure 5.7.

5.6 Null checks

Whenever fields or methods of an instance are accessed via the dot operator, that
instance must be instantiated, i.e. not null. Thus, whenever a method uses the dot
operator on either a parameter or an instance field, a pre-condition can be added
which states that particular instance can not be null, as is shown in figure 5.8.

16

5. Code Patterns

/*@
public normal_behavior
requires bl;
ensures \result == al
also
public normal_behavior
requires !'bil;
ensures \result == a2
©x*/
public String f(boolean bl1){
if (b1) {
return al;
} else {
return a2;
}
}

Figure 5.2: Example of an if-statement and its contract

string f(int a){
switch (a) {
case 1: return "hello"
case 2: return "world"
default: return "!"

}

Figure 5.3: Example of a switch-case statement

5.7 Larger example

In this section, a larger, more interesting example is presented where various patterns
are used together. Given a method such as the one seen in figure 5.9 which shows of
the different patterns combined; several behaviors are created due to the if-else
statement, one of them being exceptional as I1legalArgumentException is thrown.

5.8 Loops

Due to limitations of syntactic analysis little information can be extracted from
loops. It cannot be determined if a loop will run at all or forever. Due to this
limitation the best that can be accomplished is to try to retain as much information
as possible while still ensuring soundness. This can be done by discarding the value
of variables being modified within the loop and setting the purity of the method.

17

5. Code Patterns

string f(int a){
if (a==1){
return "hello";
} else if(a==2){
return "world";
} else {
return "!"

3

Figure 5.4: Figure 5.3 as an if-statement.

/*@
public normal_behavior
requires a == 1;
ensures \result == "hello";
also
public normal_behavior
requires a == 2;
ensures \result == "world";
also
public normal_behavior
requires a !=1 && a != 2;
ensures \result == "I";

Qx*/

Figure 5.5: The contract that describes the behavior of figure 5.4

5.9 Try-Catch

There is no way to express a statement non-explicitly throwing an exception in
JML, which results in the try-catch pattern being impossible to model. For some
exceptions it is possible to express this behavior regardless, which can be seen in
figure 5.10. The contract would have to express the fact that if either of the state-
ments a.toString() or b.equals(a) throws a NullPointerException the result
is null. The most likely way for the exception to be thrown is if either a or b
is null which makes the contract ensures a == null || b == null ==> \result
== null seem reasonable to produce. However the exception could be thrown in
toString () or equals(a) which would create a lot of issues. The antecedent a ==
null || b == null would then not be expressive enough and every statement in
toString() and equals(a) would have to be examined to see if they might throw
NullPointerException and in that case be added to the antecedent. The specific

18

5. Code Patterns

/*@
public exceptional behavior
requires bl;
signals_only Exception;
signals (Exception) bil;
Qx/
f(var b1){
if (b1) {
throw new Exception();
+
// Rest of method
}

Figure 5.6: Contract generated from exceptional behavior

/*Q
public normal_behaviour
ensures a == 2;
ensures b == 3;
assignable a,b;

©x*/

public void £O{
a = 2;
b = 3;

}

Figure 5.7: An example of a contract created from assignments

analytic behavior for NullPointerException would also have to be replicated for
each expressions to cover that specific case and would only work if the catch clause
catches a specific exception.

5.10 Method calls

A very common occurrence in Java programs is methods calling methods. Since
these methods might return values and modify fields it becomes important for the
soundness of the contract to include the contract of the methods called. A basic
example is shown in figure 5.11 where doubleinc() uses the method inc() twice.
The modifications inc() does to i is thus applied twice.

Calling methods without meaningful contracts presents an issue as it at that point
exists no certainty of their return values or what fields they modify. In order to
ensure soundness a contract will not be created for a method if it calls a method for
which a good contract cannot be generated.

When using JML to prove a methods adherence to its contract using extended static
checking, it is required that all methods used in the contract are pure. Since the

19

5. Code Patterns

public class CustomInteger{
Integer i,

/* Rest of class */

/*@
public normal_behavior
requires i != null;
requires sub != null;
Ox/

public int difference(Integer sub){
return i.intValue() - sub.intValue();
+
b

Figure 5.8: Example showing how null checks can be extracted from code

contracts generated by this project will not be used for this kind of verification it
was decided to keep the impure method calls in the contracts which increases the
expressiveness of the contract.

5.11 Using standard libraries

There are methods that are too advanced for syntactic analysis to provide any
meaningful contracts which can cause problems when these methods are called. The
lack of information about these method calls means that a lot of information has to
be discarded in order to ensure soundness of the contract being generated. This can
be remedied by writing manual contracts for these type of methods. However, this is
a difficult and time consuming task which is only worth the time if the method sees
extensive usage. Examples of such methods are those in the standard Java library
which is used across a large amount of projects.

An example of a method that is too complex for syntactic analysis is Math.random().
syntactic analysis could not produce a meaningful contract as it only makes another
method call, which in turn contains loops which makes it impossible to say anything
about the return value. According to the documentation of the method it "Returns
a double value with a positive sign, greater than or equal to 0.0 and less than 1.0."
[11]. Using this, a contract can be manually added for it, such as the one in figure
5.12.

Another example is the Math.sqrt (double a) method which implementation calls
the method StrictMath.sqrt(double a). This method is native which means that
the implementation is not written in Java, nor easily available, making syntactic
analysis of the original method pointless. However the contract itself is not very
complex as seen in figure 5.13.

20

5. Code Patterns

/*@
public normal_behavior
requires b > 0;
ensures \result == b;

also

public normal_behavior
require b < 0;
ensures \result == b*x-1;

also

public exceptional behavior
requires !(b < 0) && !(b > 0);
signals_only IllegalArgumentException;
signals (IllegalArgumentException) (!(b < 0) && !(b > 0));
Qx/
public int f(int b){
if (b > 0){
return b;
} else if (b < 0) {
b=D0b% -1;
return b;
} else {
throw new IllegalArgumentException();

3

Figure 5.9: Example showing how various patterns create a complete contract

try{
a.toString();
b.equals(a);

} catch (NullPointerException E) {
return null;

}

Figure 5.10: Example showing a try catch statement

21

5. Code Patterns

class A{
int 1i;
/*
public normal_behavior
ensures i == \old(i) + 1;
*/
public void inc(){
it++;
}
/*
public normal_behavior
ensures i == \old(i) + 1 + 1;
*/
public void doubleinc(){
incQ);
inc();
}
}

Figure 5.11: Example showing the contract of a method making a method call

/*@
ensures \exists double d; 0 <=d ; d < 1; \result == d;

@x/

Figure 5.12: Manually created contract for the Math.random() method.

/*@
public normal_ behavior
requires a >= 0;
ensures \result >= 0;

public normal_behavior

requires a < 0 || a != a;

ensure \result != \result;
Qx/

Figure 5.13: Manually created contract for the Math.sqrt(double a) method. The
a != aand \result != \result is used to denote NaN.

22

O

Implementation

This section will briefly explain the external dependencies of SpecIT and why they
were deemed necessary as well as give a general explanation of the structure and
flow of the tool.

6.1 Structure

putted AST generates
Code JavaParser SpeclT Contract

Method calls Method declarations

JavaSymbolSolver

Figure 6.1: Contract generation with SpecIT and JavaParser

Given a file directory, SpeclT searches it to find all Java files and outputs one
contract for each method found within those files. In order to do this, it follows a
few steps:

Parsing - Given a directory, SpecIT identifies files containing Java source code.
These files are then parsed which generates an Abstract Syntax Tree (AST)
which in turn is sent to the contract generator.

Extracting - Given an AST, the contract generator finds all nodes representing
methods and processes all their child nodes, extracting information and gen-
erating the contract as each node is processed.

Writing - Generated contracts are associated with their corresponding methods
and are written to a new file identical to the original, with the exception of
the added contracts.

Parsing and writing is done mostly with the help of JavaParser, SpecIT does rel-

atively little work here. It is instead in the extracting that most of the work and

time has been devoted. Here, SpeclT processes nodes from the AST and creates

contracts from them, based on the patterns specified in section 5.

As mentioned before, contracts are generated by processesing nodes from the AST

and progressively building a specification for the method that is currently being

processed. This is done by first creating a base contract with a single behavior.

The contract is then built piece by piece by modifying its behavior, which in turn is

23

10

11

12

13

14

15

6. Implementation

modified based on what nodes are encountered in the AST. In the case that several
behaviors are needed in a contract, such as when conditional statements are present,
the behaviors are kept in a tree. When branching, the new behavior is created as
a child for the current behavior, which ensures that no information is lost and that
every behavior is correct. Behaviors themselves contain all the necessary information
such as pre- and post-conditions, assigned values and more.

6.2 How SpeclIT generates a contract

public class Example{
private boolean error = false;

public int abs(int b){

if (b > 0){
return b;

} else if (b < 0) {
b=Db % -1,
return b;

} else {

error = true;
throw new IllegalArgumentException();

3

Figure 6.2: Example of code

To give a better idea of how SpeclT works, consider the example given in section 4,
repeated in figure 6.2. The various nodes encountered are handled according to the
logic presented in section 5. The first node to be processes is the field declaration of
error on line 2. As it is set as private it is annotated with spec_public in order
to make it public for specification purposes.

The next step is to generate the contract for the method abs. As a conditional
statement is encountered, two child behaviors are added to the base behavior, as
there are at least two distinct behaviors in the contract due to the conditional
statement. A precondition is added to the first of these behaviors based on the
condition of the if statement, and then a postcondition is added as there is an
immediate return statement.

Then, the next part of the conditional is processed by moving to the other newly
created child behavior represented as the top else in figure 6.3. A precondition
that is the negation of the condition in the if-statement on line 5 is added to it. The
next statement is the else-if on line 7 which can be seen as a if-else statement when
the initial if has already been considered. Two children are added to the current
behavior, as there are two distinct behaviors in the current behavior. The condition
of the else if is added as a precondition to the first and the negation is added to

24

6. Implementation

the other. The behavior that enters the else if is then evaluated and the value
assigned to b is saved. When b is later returned, SpeclT remembers the assigned
value and correctly puts this into the contract in the postcondition.

Then, the else statement is processed and as this means that there are no more be-
haviors, no more child behaviors are created. The assignment to a field is recognized
and added as an assignable clause, and the throwing of an exception changes the
behavior from normal to exceptional, removes all preconditions and created signals
and signals_only clauses. As the end of the method is reached, SpeclT generates
the complete contract. This is done by visiting all leaf behaviors in the behavior
tree, and adding them as separate behaviors. Figure 6.3 shows how the conditional
is interpreted by SpecIT and how the behavior tree is structured after the method
has been completely processed. Lastly, the contract and any other annotations are
added to the AST and are written to file, resulting in the code seen in figure 6.4.

Base behavior

e

if(b > 0) else

if(b < 0) else

Figure 6.3: Tree diagram showing the structure of behaviors in SpecIT and how
conditionals are interpreted

6.3 Dependencies

SpeclIT relies on two external tools for parsing code into an AST and extracting
information - JavaParser [12] and JavaSymbolSolver [13].

6.3.1 JavaParser

JavaParser is a set of tool to parse, analyze, transform and generate Java code.
In SpecIT, JavaParser is used to parse and analyze code, and to insert generated
contracts into it. The decision to use JavaParser was made to speed up development
and to allow more time put into generating contracts, rather than creating a custom
parsing solution.

6.3.2 JavaSymbolSolver

JavaSymbolSolver is a tool built as an extension on JavaParser and it allows for pair-
ing symbols with their declarations. In SpeclT this is used to find the declarations

25

6. Implementation

of methods called in the analyzed code. It is also able to find information about vari-
ables, such as their type and declaration. It was decided to use JavaSymbolSolver
since SpeclT already had a dependency on JavaParser which made JavaSymbol-
Solver simple to integrate.

26

6. Implementation

public class Example{

private /*Q spec_public @*/ boolean error = false;
/*@

public normal_behavior

requires b > O;

ensures \result == (b);

assignable \nothing;

also

public normal_behavior

requires !(b > 0);

requires b < 0;

ensures \result == (\old(b) * -1);
assignable \nothing;

also

public exceptional_ behavior
requires !(b > 0);
requires !(b < 0);
signals_only IllegalArgumentException;
signals (IllegalArgumentException) (error == true);
assignable error;
Qx*/
public int abs(int b) {
if (b > 0) {
return b;
} else if (b < 0) {
b=D>bx*x -1;
return b;
} else {
error = true;
throw new IllegalArgumentException();

3

Figure 6.4: Full specification of class Example

27

6. Implementation

28

-

Evaluation of the tool SpeclT

There are three main aspects of contracts that are interesting to evaluate - soundness,
usability and readability. Soundness is a measure of the correctness of contracts,
usability measures how useful the contracts are when applied in the real world such
as using them for testing, and readability measures how easy the contracts are to
read and understand. Soundness is objectively measured whereas both readability
and usability are subjective. The evaluation of these aspects can be done either
manually or automatically, approaches which have both weaknesses and strengths.
As mentioned in the scope we will not focus on the usability of contracts, but we
will compare the generated contracts to human-written ones which should give some
indication of their usability.

7.1 Automatic analysis

There are two main avenues that we consider interesting in regards to automatic
analysis, namely gathering statistics about generated contracts and evaluate their
usefulness in automated testing. This will give some information about how useful
they are to other tools and give a general idea of our tools strengths and weaknesses,
but it will only give some small information regarding the contracts readability and
usability:.

7.1.1 Gathering statistics about generated contract

When generating contracts, it is possible to collect certain statistics about them such
as how many were created versus how many were discarded, in how many methods
we encountered loops or recursive functions, how many pre- and post-conditions
were created, just to mention a few. By then running the tool on many projects
in various domains and comparing the gathered statistics, it is possible to identify
for what types of projects syntactic extraction seems the strongest, and where it
is lacking. Inspecting the results can give ideas of areas of improvement. What
causes us to discard contracts? To what extent are loops present, and how do they
affect us? What types of methods generate large, hard to read contracts with many
conditions and behaviors?

7.1.2 Evaluate usefulness in automated testing

One possible way of evaluation the soundness and usability of contracts is to use
them in automated testing. This could be as simple as running the JML Runtime

29

7. Evaluation of the tool SpeclT

Assertion Checker, checking that they are correct and thus useful. It could also
involve running some automated testing tool such as JMLUnitNG [8] and comparing
the coverage of the generated tests to some other method of automated testing, such
as Evosuite [14].

7.2 Manual analysis

Performing manual analysis is just what it sounds like - manually looking at and
evaluating generated contracts. Doing this in a vacuum will not tell us much, simply
looking at generated contracts will not tell us if we successfully extracted the intent
of the code. Instead we propose two methods.

7.2.1 Comparing to existing specification

One such method is comparing generated contracts to existing specification. To do
this, a project that has some form of specification is required. SpeclIT will then
be run on this same project and the generated contracts can be compared to what
specification was written before.

The advantage of this approach is the fact that we are able to analyse whether
syntactic analysis correctly capture the intent of the code. The already existing
specification should ideally convey this, and by comparing differences to the gen-
erated contracts, weaknesses in the generated ones can be found. This might also
give an idea of what properties are appropriate to specify using syntactic analysis
and what properties require more work or are infeasible. Additionally, we can find
differences in the style of writing the contracts, which is more readable and what
kind of construct do they favor.

7.2.2 Comparing to manually written contracts

Instead of looking for projects that already have some formal specification written,
it is possible to manually select a set of interesting methods for which to generate
contracts. Some developer, preferably with at least basic knowledge of writing spec-
ification, can then write their own contracts for these methods which can then be
compared to those that were generated. Ideally, this person should have little to no
knowledge of the workings of the tool in order to decrease bias.

This methods allows for testing of many different areas of specification and the
strength of our tools can be tested in these. However, it is important that methods
that showcase not only strength but also weaknesses be picked, as to show all sides
of the tool. Compared to the previously mentioned method, this puts the man-
made contracts somewhat on the same playing field as out tool. They have to try
to figure the intent of the code through looking at it, however they can also analyze
it semantically, something our tool cannot.

As mentioned, this method allows for very focused testing of our tool as we can
select methods which showcase interesting properties and carefully analyze every
contract generated, which is not feasible when generating contracts for an entire
project. However, there is a risk of bias, not to mention the risk that some interesting

30

7. Evaluation of the tool SpeclT

property to test is missed. Comparing the generated contracts to those written
by hand will give a general idea of readability, usability and soundness, and let us
identify areas where improvement is required, not to mention other various strengths
and weaknesses.

7.2.3 Dealing with uncertainties

Due to the limitations of SpeclIT and its dependencies we encounter situations where
we cannot be confident in the correctness of the contract generated. These situations
occur when we encounter statements or expressions that SpecIT does not support
such as try-catch-statements or lambda-expressions, or the symbolic solver 6.3.2
is not able to find the method declaration to a matching method call.

Since accuracy of contracts is such an important aspect we have chosen to consider
these as failing and will thus discuss them seperatly from the other results of SpecIT.
The failing behaviors are not necessarily wrong however and will, along with the
reasons for failing them, be discussed in chapter 8 Results.

However, not all failings lead to an incorrect contract. In chapter 8 we discuss how
frequently failings of SpecIT lead to incorrect contracts in the projects used for the
experimental evaluation.

31

7. Evaluation of the tool SpeclT

7.3 Evaluated projects

Finding projects using contracts proved more difficult than anticipated. The plan
was initially to use the Java projects featured in the study Contracts in Practice [3],
however the websites hosting these projects were unreachable, with the exception of
RCC which is a race condition checker for Java. However due to the age and lack
of documentation we were not able to get the dependencies of RCC to work, which
resulted in large parts of the project to be unspecified; thus we had to drop RCC as
well.

The lack of already studied projects forced us to find other projects to use for
evaluation. We will now present the projects used for evaluation and how we selected
them.

7.3.1 Votail

Votail is an implementation of Ireland’s voting system [15]. It has been formally
specified using the Java Modeling Language and verified using formal methods.
Votail was the only project which had contracts and working dependencies that we
were able to find. The specification found in Votail is not something we aim to
replicate due to its high level of quality and coverage, however it provides a good
basis for comparison with state of the art specification.

7.3.2 JUnit 4 & 5

JUnit is a popular testing framework for Java. It is a large project with 30.000
lines of code, and was available in two versions: JUnit 4 and JUnit 5. This was
of interest as JUnit 4 was released before Java 8 and JUnit 5 after. This made
evaluating the tools performance on the newer features of Java easier as the projects
are still similiar in nature.

7.3.3 1libGDX

libGDX is a game development framework for Java. It is a large project with 750.000
lines of code in total of which 260.000 is Java. It was considered interesting to test
the tool on since it is in a completely different vein of programs from the others used
in this study, containing more low level and non-Java code.

32

3

Experimental Results

We assess how well SpeclT works in two ways: manual comparison of human-written
contracts to generated ones and statistical analysis. The comparison allows us to
assess if SpeclT produces contracts of a similar quality to those written by a human,
which would show that syntactic analysis can have a significant practical usefulness.
It can also give some intuition of the limitations and strengths of SpeclT. Since a
manual comparison cannot be done on a larger scale we complement it with detailed
statistics of SpeclT’s output, to evaluate its performance on entire projects. The
statistics that we consider are the number of pre- and postconditions and behaviors.
We also look at how many of the preconditions are null-checks and the amount of
pre- and postconditions per behavior.

8.1 Human-written vs. SpeclT

In order to reduce the amount of bias when comparing SpeclT generated contracts
to human-written ones, a peer without any knowledge of the syntactic analysis or the
tool in general was asked to write contracts for eight methods. The peer is a student
of the Computer Science programme and has taken the course Software engineering
using formal methods. The course covers the topics of specification using formal
contracts and specifically using JML.

Our comparison found that SpeclT could in a lot of cases produce contracts similar
to the ones produced by a human. Our small study found that contracts generated
by SpecIT were in general more thorough than the human-written ones. If SpecIT
found that no field was assigned it would specify it whereas the human would often
omit this information. The human-written contracts in section 8.1.1 also contained
a mistake of omission, something which was not present in any SpeclT generated
contract. The readability of the generated contracts is good, with no strange or
unnecessarily large behaviors.

SpeclT was less likely to handle method calls due to the symbolsolver not being
able to find the declaration of the called method; this can be seen in sections 8.1.3
and 8.1.4. This resulted in several behaviors being considered as failures which
definitely hurt the detail of the contracts. In the examples featured in this study no
actual errors were identified in the failing behaviors which means that all contracts
achieved soundness. However as can be seen in section 8.1.4 several contracts became
underspecified due to the issues with method calls.

SpeclT actually performed better when compared to the Votail project than when
comparing to the contracts written by the peer which can be seen in section 8.1.2.

33

8. Experimental Results

The peer wrote more detailed and complete contracts whereas those found in the
Votail project were very sparsely written. This is a great result as the contracts found
in the Votail project are more likely to be the kind of contracts that a developer
writes for their code. This is a promising sign for the usability of the contracts
generated.

The inability to handle loops definitely hurts SpeclT, which can be clearly seen
in sections 8.1.1 and 8.1.2. This is something which the human had no problems
handling for these examples, however it is something humans also struggle with since
proving termination for loops is very difficult. Since loops is a very common code
pattern it is one of the larger issues with syntactic analysis.

8.1.1 Sum

public static int sum(int end) {
int total = O;
for (int i = 1; i <= end; i++) {
total += i;
}
return total;

3

Figure 8.1: Method summing numbers from 1 to end.

The first comparison is done on a method which sums numbers from 1 to end. Its
code can be seen in figure 8.1.

/*@

public normal_ behavior

requires end > 1;

ensures \result = end*(end+1)/2;

public normal_behavior
requires ends <= 0;
ensures \result = 0;
Qx/

Figure 8.2: Human-written specification of method sum in figure 8.1

We can see in figure 8.2 that the human-written contract is well specified and covers
all possible inputs, divided into two separate behaviors, one when the input is greater
than 1 and the other when the input is smaller than or equal to 0. The first behavior
specifies the result to be equal to the mathematical definition. This definition is
nearly complete and correct if not for the fact that there is no behavior for end ==
1 which should be part of the first behavior.

As can be seen in figure 8.3 the generated contract for this example is non-informative
due to the inability to process loops. It does not catch the case of not entering the

34

8. Experimental Results

/*@

//Generated

public normal_behavior
assignable \nothing;
Qx*/

Figure 8.3: Generated specification of method sum in figure 8.1

loop either, which is a case that syntactic analysis could catch, but is not supported
by SpecIT. However it correctly captures the fact that the method is pure, that is
it does not modify the object’s state, which is an aspect that is missing from the
human-written contract.

8.1.2 Ballot

public class Ballot{
protected int positionInlist;
protected int numberOfPreferences;
protected int[] preferencelist;

public Ballot(final int[] preferences) {
numberOfPreferences = preferences.length;
positionInlist = O;
preferencelist = new int[numberOfPreferences];
for (int i = 0; i < preferences.length; i++) {
preferencelist[i] = preferences[i];

public void transfer() {
if (positionInList < numberOfPreferences) {
positionInList++;

3

}

Figure 8.4: Part of the class Ballot from Votail

Figure 8.4 shows a small excerpt from the class Ballot in the Votail project. The
class represents a ballot and has a list of preferred candidates as well as a position
in that list.

Figure 8.5 shows the generated specification of the Ballot class. We can see that
the specification of the constructor captures two out of three field initializations,
but it cannot capture the initialization of preferenceList. This is in part due to
the limitations of JML as preferencelist == new int[numberOfPreferences] is

35

8. Experimental Results

/*@

public normal_behavior

requires preferences != null;

ensures this.numberOfPreferences == preferences.length;
ensures this.positionInList == 0;

assignable this.numberOfPreferences, this.preferencelList[0 + 1],
— this.preferencelist, this.positionInlList;

Qx*/
public Ballot(final int[] preferences){

}

/*@

public normal_behavior

requires positionInList < numberOfPreferences;

ensures this.positionInList == \old(positionInList) + 1;
assignable this.positionInList;

also

public normal_behavior

requires !(positionInList < numberOfPreferences);
assignable \nothing;

Qx*/

public void transfer(){

}

Figure 8.5: Generated specification for the class Ballot in figure 8.4

not valid JML, and we cannot specify anything else about it due to the for-loop.
The specification also captures the precondition of preferences not being null as
it would throw a NullPointerException. For the method transfer () we see that
the specification captures the two separate behaviors with correct specification for
both.

The human-written contract for Ballot can be seen in figure 8.6 and it has strong
similarities to the generated contract. The only additional information regarding the
constructor is the specification of the values in preferencelList which was missing
from the generated specification. The specification of transfer () is the same as the
generated specification, with small differences in style. Whereas the human-written
specification relates the two behaviors with each other by specifying the change
of positionInList, the generated specification cannot make this distinction and
simply states that nothing is assigned in the second behavior.

The human-written contract by the creators of the Votail project can be seen in
figure 8.7. It can be clearly seen that the focus was not in pointing out what the

36

8. Experimental Results

/*@

requires preferences != null;

ensures positionInlList = O;

ensures numberOfPreferences == preferences.length;

ensures (\forall i; i >= 0 && i < preferences.length ;
- preferencelist[i] == preferences[i]);

assignable positionInlist, preferencelist, number(OfPreferences;
Ox/

public Ballot(final int[] preferences) {

3

/*@
public normal_behavior
requires positionInList < numberOfPreferences;
ensures positionInList == \old(positionInList+1);
public normal_behavior
requires positionInList >= numberOfPreferences;
ensures positionInlList == \old(positionInList);
*/

public void transfer() {

}

Figure 8.6: Human-written specification of the class Ballot in figure 8.4

assigned values was, but rather what variables can be assigned. It is more explicit
regarding the assignment of the array preferencelList, stating that all indices might
be assigned. The Votail version of the constructor uses different syntax to capture
that the input array has to be non-null.

The Votail specification does not specify that there are two separate behaviors for
transfer () nor what the how the value positionInList might change.

8.1.3 addError

The method addError in figure 8.8 shows the adding of a throwable error to the
list errors. If error is an AssumptionViolatedException, an AssertionError
is added instead. The human-written contract in figure 8.9 captures the dif-
ferent cases well, with exceptional behavior if error is null and separating the
two behaviors depending on whether error is an AssumptionViolatedException
or not. However, JML is limited when it comes to object creation which made
adding detail other than an increase in the size of errors difficult to specify. A
missed aspect in this contract is that the second normal behavior could specify
that error was the element added to errors by adding the postcondition ensures

37

8. Experimental Results

/*@ also public normal_ behavior

@ assignable numberOfPreferences, positionInlist,
— preferencelist[*], preferencelist;

ox/
public Ballot (final /*@ non_null ©%/ int[] preferences) {

}

/*@ public normal behavior

@ assignable positionInList;
Qx*/

public void transfer () {

3

Figure 8.7: Human-written specification from the Votail project of the class Ballot
in figure 8.4

errors.contains(error).

The generated contract in figure 8.10 shows one of the more common issues that
SpeclT encounters when generating contracts: the inability to resolve method calls.
This results in these behaviors being seen as risky and we lose a lot of certainty
of its validity. So a conservative take on the generated contract finds only one
behavior which is the exceptional one. It is very similar to the human-written one
in figure 8.9, only being more explicit and specifying that the behavior can only
throw NullPointerException and that no fields are modified.

Looking at the failing behaviors reveals that those behaviors are not incorrect, only
underspecified. Since SpecIT could not resolve the method call errors.add(error)
it cannot say anything about the changes the method call made.

8.1.4 assertEquals

The figure 8.11 shows the method assertEquals with accompanying methods from
JUnit4. The method takes two objects and a message and compares the equality
between the objects. If the objects are not equal an error is thrown using several
method calls.

As can be seen in figure 8.12 the human captures the different methods and their be-
haviors very well. The exceptional behavior of fail is correctly propagated through
failNotEquals to assertEquals. The generated contracts can be found in figures
8.13 and 8.14. Here we can see that the failure to resolve method calls once again
hurts the contract generation. The non-failing behavior for assertEquals in figure
8.13 is identical to the first human-written behavior in figure 8.12. We can also see
that the first failing behavior is very close to the second human-written behavior
but the inability to resolve expected.equals(actual) means that SpecIT cannot
be certain of the consequences and thus marks the behavior as failing. The behavior
also features a redundant null-check which SpeclT generated from the method call.

38

8. Experimental Results

private List<Throwable> errors = new ArrayList<Throwable>();

public void addError(Throwable error) {

if (error == null) {
throw new NullPointerException("Error cannot be null");

}

if (error instanceof AssumptionViolatedException) {
AssertionError e = new AssertionError(error.getMessage());
e.initCause(error);
errors.add(e);

} else {
errors.add(error);

3

Figure 8.8: Method addError in class ErrorCollector from JUnit4

SpeclT captures the behaviors of format well, only differing slightly in syntax from
the human-written behaviors. It mimics the human-written contract for fail, but
does not manage to resolve the method call in failNotEquals and thus cannot
produce any contract for it at all.

8.2 Statistics

In this section the various statistics gathered by SpeclT will be discussed. The
discussion focuses on three aspects — some general statistics regarding all projects,
the statistics of all successful contracts and the statistics of all failed contracts.

8.2.1 General statistics

In table 8.1 some general statistics gathered by SpeclT can be seen. From these we
can see that about one-third of all behaviors are classified as successful, except on
JUnit 5 where the ratio of failing behaviors is much higher. This is due to a larger
amount of uncovered statements being encountered, something that is caused by the
fact that JUnit 5 is more recent and uses newer language-features, such as lambdas.

The leading cause of failure is caused by the symbolic solver being unable to solve
some symbol, which means that we can not be confident in the soundness and validity
of the contract. However, SpecIT’s greatest strength is finding null checks and we
have high confidence in the soundness of these regardless of whether the contract is
seen as failing or not. We can have this high confidence due to null checks usually
being on parameters and fields and are not reliant on the results of method calls.

39

8. Experimental Results

/*@

public exceptional_behavior;
requires error == null;
signals NullPointerException;

public normal_ behavior
requires error != null;
requires error instanceof AssumptionViolatedException;
ensures errors.size() == \old(errors.size()) + 1;

public normal_behavior
requires error != null;
requires ! (error instanceof AssumptionViolatedException);
ensures errors.size() == \old(errors.size()) + 1;

*/

public void addError(Throwable error) {

}

Figure 8.9: Human-written specification of the method addError in figure 8.8

8.2.2 Successful behaviors

Comparing the statistics in table 8.2, we can see that the greatest outlier among the
projects is libGDX. It is by far the largest of the projects with almost tenfold more
methods processed, and there are greater differences between the size of the contracts
that can be extracted. It has the greatest standard deviation in all categories, as
well as in the greatest max values. However, the median values are in the same
range as the other projects, which shows that the overall performance of SpeclT is
comparable between projects.

Median values are low across all projects, in the range between zero and one, which
hints at inconsistent performance by SpecIT, or more precisely, many empty or
near-empty behaviors are extracted. Causes for this could be that many methods
contain loops, something SpeclT and syntactic analysis does not handle, or that
the method might be unfit for contract extraction, and thus all that is found is an
empty contract.

However, mean values are higher, especially in Votail and libGDX, and in all projects
max values are quite high, showing that is possible to extract contracts of a sensible
size. The rather high values of standard deviation seem to reinforce the notion given
by the median values, namely that the performance of SpeclT is inconsistent. This
is especially evident in libGDX. However, in that project the maximum values are
extremely high, which might skew the other statistics considerably.

Comparing these results to a study on human-written contracts [3] again reinforces
the notion that SpeclT performs inconsistently, especially compared to human-
written contracts. In that study, median values are generally higher and standard
deviations are lower than the performance of SpecIT. However, maximum values for

40

8. Experimental Results

/*@

//Generated

public exceptional_behavior
requires error == null;

signals_only NullPointerException;
signals (NullPointerException) (true);
assignable \nothing;

also

// Failing behavior : SymbolSolverException: Method call
public normal_behavior

requires e != null;
requires errors != null;
requires !(error == null);

requires error instanceof AssumptionViolatedException;
assignable \nothing;
also

// Failing behavior : SymbolSolverException: Method call
public normal_behavior

requires errors != null;

requires !(error == null);

requires !(error instanceof AssumptionViolatedException);
assignable \nothing;

Qx*/

public void addError(Throwable error) {

}

Figure 8.10: Generated specification of method addError in figure 8.8

SpeclIT are higher, which could signify that SpecIT is able to find some contracts
that humans are not.

The largest contract found in the libGDX project has 423 postconditions and 1128
preconditions and is a large toString()-method. It converts keycodes to string
values and is a switch-case with 256 cases, which leads to a ridiculously large
contract. This is a contract that a developer would most likely not write, but
something that SpecIT can competently extract.

8.2.3 Failing behaviors

Comparing the statistics in table 8.3 to those in table 8.2 shows that the worst-
case performance in failing behaviors is comparable to the performance in successful
behaviors, while best-case performance is much higher. However, looking at the
maximum values shows that some of the generated contracts are ridiculously large,

41

8. Experimental Results

General statistics
Project name Votail JUnit 4 JUnit 5 libGDX
Methods processed 113 3736 4094 30268
Total behaviors 156 4203 4579 50843
Successful behaviors 64 1477 905 16502
Failing behaviors 92 2726 3674 34341
Symbol solver failures 81 1951 2439 26544
Uncovered statements 4 407 950 3622
Unresolved parameters 7 368 285 4175
Total postconditions 64 856 644 25662
Total preconditions 46 440 337 24092
Successful null checks & 210 149 4783
Total null checks 103 3166 5583 66074

Table 8.1: General statistics gathered by SpeclT

and are thus likely not readable. Given the size of the contracts, it is also likely that
some of these are not sound.

While some of these contracts are most likely unsound, or unwieldy to use at best,
we believe that some of these failing behaviors might still be sound. This is because
failure to solve a symbol marks a contract as failing, but this does not mean that
it is an incorrect contract. In the same sense, a contract with an excessive amount
of behaviors is indicated as failing, but it may still be correct, merely with less
readability.

42

8. Experimental Results

static public void assertEquals(String message, Object expected,
< Object actual) {
if (expected == null &% actual == null) {

return;

}

if (expected !'= null && expected.equals(actual)) {
return;

}

failNotEquals(message, expected, actual);

static public void failNotEquals(String message, Object
- expected, Object actual) {
fail(format (message, expected, actual));

}

public static String format(String message, Object expected,
— 0Object actual) {
String formatted = "";
if (message != null && message.length() > 0) {
formatted = message + " ";
b
return formatted + "expected:<" + expected + "> but was:<" +
< actual + ">";

}

static public void fail(String message) {
if (message == null) {
throw new AssertionFailedError();

}

throw new AssertionFailedError (message);

b

Figure 8.11: The method assertEquals with accompanying methods from JUnit4

43

8. Experimental Results

/*@
public normal_behavior
requires expected == null;
requires actual == null;

public normal_behavior
requires expected != null;
requires expected.equals(actual);

public exceptional_behavior
requires expected != null || actual !'= null;
requires expected == null || !expected.equals(actual);
signals AssertionFailedError;
©x/
static public void assertEquals(String message, Object expected, Object
— actual) {

3

static public void failNotEquals(String message, Object expected, Object
— actual) {
fail(format (message, expected, actual));

b
/*@
public normal_behavior
requires message != null && message.length()> 0
ensures \result == message + "expected:<" + expected + "> but was:<" +

— actual + ">";

public normal_behavioe
requires message == null || message.length == 0;
ensures \result == "expected:<" + expected + "> but was:<" + actual +
N
@x/
public static String format(String message, Object expected, Object actual)
- A

3

/*@

public exceptional_behavior
requires message == null;
signals AssertionFailedError;

public exceptional_behavior
requires message != null;
signals AssertionFailedError;
Ox/
static public void fail(String message) {

}

Figure 8.12: Human-written specification of method assertEquals and accompa-
nying methods in figure 8.11

44

8. Experimental Results

/*@

//Generated

public normal_behavior

requires expected == null && actual == null;
assignable \nothing;

also

// Failing behavior : SymbolSolverException: Method call
public normal_behavior

requires expected != null;

requires ! (expected == null && actual == null);
requires expected != null && expected.equals(actual);
assignable \nothing;

also

// Failing behavior : SymbolSolverException: Method call
public normal_behavior

requires expected != null;

requires !(expected == null && actual == null);

requires !(expected != null && expected.equals(actual));
assignable \nothing;

0x/

public static void assertEquals(String message, Object expected,
— Object actual) {

}

Figure 8.13: Generated specification of method assertEquals in figure 8.11

45

8. Experimental Results

/*@
//Generated
// Failing behavior : SymbolSolverException: Method call
public normal_behavior
assignable \nothing;
ox/

public static void failNotEquals(String message, Object expected, Object
— actual) {

fail(format (message, expected, actual));

¥
/*@
//Generated
public normal_behavior
requires message != null;
requires message != null && message.length() > 0;
ensures \result == (message + " " + "expected:<" + expected + "> but was:<" +

< actual + ">");
assignable \nothing;

also

public normal_behavior

requires message != null;

requires ! (message != null && message.length() > 0);

ensures \result == ("" + "expected:<" + expected + "> but was:<" + actual +
o ">

assignable \nothing;

Qx/

public static String format(String message, Object expected, Object actual)
- {

3
/*@
//Generated
public exceptional_behavior
requires message == null;

signals_only AssertionFailedError;
signals (AssertionFailedError) (true);
assignable \nothing;

also

public exceptional_behavior

requires ! (message == null);

signals_only AssertionFailedError;
signals (AssertionFailedError) (true);
assignable \nothing;

x/

public static void fail(String message) {

}

Figure 8.14: Generated specification of methods accompanying assertEquals in
figure 8.11

46

8. Experimental Results

Votail0.0.1b [SUCCESSFUL]

Statistic measured Min Mean Median Max o
Preconditions per method 0 0.885 0 11 2.036
Postconditions per method 0 1.231 1 4 0.783
Null checks per method 0 0.058 0 1 0.235
Behaviors per method 1 1.231 1 3 0.469
Preconditions per behavior 0 0.359 0 11 1.169
Postconditions per behavior 0 1 1 3 0.713
Null checks per behavior 0 0.047 0 1 0.213
junit4-master [SUCCESSFUL]
Statistic measured Min Mean Median Max o
Preconditions per method 0 0.316 0 12 1.002
Postconditions per method 0 0.614 0 16 0.917
Null checks per method 0 0.151 0 9 0.580
Behaviors per method 1 1.060 1 8 0.337
Preconditions per behavior 0 0.149 0 4 0.429
Postconditions per behavior 0 0.580 0 5 0.711
Null checks per behavior 0 0.142 0 3 0437
junitb5-master [SUCCESSFUL]
Statistic measured Min Mean Median Max o
Preconditions per method 0 0.389 0 60 2.250
Postconditions per method 0 0.743 1 8 0.752
Null checks per method 0 0.172 0 16 0.805
Behaviors per method 1 1.044 1 8 0.319
Preconditions per behavior 0 0.186 0 9 0.612
Postconditions per behavior 0 0.712 1 5 0.660
Null checks per behavior 0 0.165 0 4 0.520
libgdx-master [SUCCESSFUL]
Statistic measured Min Mean Median Max o
Preconditions per method 0 2402 0 1128 21.590
Postconditions per method 0 2.558 1 423 11.748
Null checks per method 0 0477 0 222 3.922
Behaviors per method 1 1.645 1 423 6.684
Preconditions per behavior 0 0.730 0 16 1.324
Postconditions per behavior 0 1.555 1 55 2478
Null checks per behavior 0 0.290 0 8 0.713

Table 8.2: Tables showing the successful behaviors generated for Votail, JUnit4,

JUnith and 1ibGDX

47

8. Experimental Results

Votail0.0.1b [FAILING]
Statistic measured Min Mean Median Max o
Preconditions per method 0 3.061 1 77 10.087
Postconditions per method 0 1.697 1 16 2.443
Null checks per method 0 1.515 1 13 2.476
Behaviors per method 1 1.394 1 11 1.38
Preconditions per behavior 0 1.098 0 11 1.931
Postconditions per behavior 0 1.217 1 5 1.299
Null checks per behavior 0 1.087 1 8 1.419
junit4-master [FAILING]
Statistic measured Min Mean Median Max o
Preconditions per method 0 1.519 1 93 3.499
Postconditions per method 0 0.770 0 24 1474
Null checks per method 0 1.216 1 61 2.072
Behaviors per method 1 1.122 1 17 0.651
Preconditions per behavior 0 0677 0 8 1.004
Postconditions per behavior 0 0.686 0 6 0.876
Null checks per behavior 0 1.084 1 8 1.103
junit5-master [FAILING]
Statistic measured Min Mean Median Max o
Preconditions per method 0 1.956 1 174 4.771
Postconditions per method 0 0.942 1 20 1.587
Null checks per method 0 1.643 1 110 3.081
Behaviors per method 1 1.111 1 16 0.594
Preconditions per behavior 0 0.881 0 22 1.518
Postconditions per behavior 0 0.848 1 20 1.166
Null checks per behavior 0 1.479 1 22 1.795
libgdx-master [FAILING]
Statistic measured Min Mean Median Max o
Preconditions per method 0 4.669 1 7004 53.321
Postconditions per method 0 3.315 1 1952 28.566
Null checks per method 0 2.803 1 5548 39.550
Behaviors per method 1 1.571 1 192 3.034
Preconditions per behavior 0 1.486 1 46 2.534
Postconditions per behavior 0 2.11 1 63 4.289
Null checks per behavior 0 1.785 1 46 3.033

Table 8.3: Tables showing the failing behaviors generated for Votail, JUnit4, JU-
nitH and libGDX

48

9

Conclusions

In this thesis we used automated syntactic analysis to extract formal contracts from
code. We developed a tool called SpecIT to do this analysis and ran it on several
large projects such as JUnit, libGDX and Votail. The results show that SpecIT could
produce contracts of reasonable quality, sometimes even comparable to that of a
human. In general a human will provide more expressive contracts for a more varied
range of code, although our study found that a human is prone to introducing small
mistakes and omissions. The big advantage of SpecIT is the automation, as creating
contracts is a time consuming process; the small sample of functions shown in the
human-written comparison took the human about an hour to complete whereas
SpeclIT is able to process about 1000 lines of code per second for larger projects.
The generated contracts were also more detailed than those found in actual projects;
which might be a better representation of how contracts written by developers look
like. In general, SpeclT performs a bit inconsistently. This is due to internal failures
or methods unfit for syntactic analysis, such as those containing loops.

Syntactic analysis is a simpler approach than semantic analysis and one should not
expect to get a complete specification using syntactic analysis. Since it is relatively
simple it requires a lot less work to implement.

Are the contracts produced by syntactic analysis of any real value? Considering their
similarities to human-written contracts they are certainly useful to some extent, such
as as oracles for testing. The usages of these contracts is something we consider to
be of interest and should be explored further.

9.1 Future work

There are several aspects of SpeclT that we know could be improved. We have a
lot of issues with resolving method calls which resulted in a lot of failing behaviors.
Resolving this would eliminate most of the failing behaviors as well as increase the
level of detail greatly. There is also the possibility to add support for special cases of
loops to cover cases such as the one seen in section 8.1.2, however this might require
more effort than the benefits it entails. Making use of human-written contracts
for the Java standard library is also something that could improve the contracts
generated, although this does require a lot of time to implement. Adding support
for uncovered statements such as lambdas would also improve the level of detail,
however due to the difficulties of implementing these statements it might not be a
worthy endeavour.

The value of generated contracts is also something that warrants further research.

49

9. Conclusions

Another question of interest is whether using generated contracts can help auto-
mated testing — for example, by increasing coverage, by reducing the number of
false positives or by finding more bugs. Investigating these issues could help dis-
cover areas where syntactic analysis is practically useful.

50

[1]
2]

Bibliography

Bertrand Meyer. Applying 'design by contract’. Computer, 25(10):40-51, 1992.
Michael D. Ernst, Alberto Goffi, Alessandra Gorla, and Mauro Pezze. Auto-
matic generation of oracles for exceptional behaviors. In ISSTA 2016, Proceed-
ings of the 2016 International Symposium on Software Testing and Analysis,
pages 213-224, Saarbriicken, Genmany, July 18-20, 2016.

H-Christian Estler, Carlo A Furia, Martin Nordio, Marco Piccioni, and
Bertrand Meyer. Contracts in practice. In International Symposium on Formal
Methods, pages 230-246. Springer, 2014.

Yi Wei, Carlo A Furia, Nikolay Kazmin, and Bertrand Meyer. Inferring better
contracts. In Proceedings of the 33rd International Conference on Software
Engineering, pages 191-200. ACM, 2011.

Nadia Polikarpova, Carlo A Furia, Yu Pei, Yi Wei, and Bertrand Meyer. What
good are strong specifications? In Proceedings of the 2013 International Con-
ference on Software Engineering, pages 262-271. IEEE Press, 2013.

Bertrand Meyer, Arno Fiva, Ilinca Ciupa, Andreas Leitner, Yi Wei, and Em-
manuel Stapf. Programs that test themselves. Computer, 42(9), 2009.

Gary T Leavens, Albert L Baker, and Clyde Ruby. Preliminary design of JML.
Technical report, Citeseer, 2001.

Daniel M Zimmerman and Rinkesh Nagmoti. JMLUnit: The next genera-
tion. In International Conference on Formal Verification of Object-Oriented
Software, pages 183-197. Springer, 2010.

Gary T Leavens and Yoonsik Cheon. Design by contract with JML, 2006.
Curtis Clifton Yoonsik Cheon Clyde Ruby David Cok Peter Miiller Joseph
Kiniry Patrice Chalin Gary T. Leavens, Erik Poll and Daniel M. Zimmerman.
JML Reference Manual, May 2013.

Java™ platform, standard edition 7 api specification - class math. https:
//docs.oracle.com/javase/7/docs/api/java/lang/Math.html. Accessed:
July, 2017.

JavaParser. http://javaparser.org/. Accessed: July, 2017.
JavaSymbolSolver. https://github.com/javaparser/javasymbolsolver.
Accessed: July, 2017.

Gordon Fraser and Andrea Arcuri. EvoSuite: Automatic test suite genera-
tion for object-oriented software. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software En-
gineering, ESEC/FSE 11, pages 416-419, New York, NY, USA, 2011. ACM.
Dermot Cochran and Joseph R Kiniry. V6téil: Pr-stv ballot counting software
for irish elections. Formal Verification of Object-Oriented Software, page 235.

51

https://docs.oracle.com/javase/7/docs/api/java/lang/Math.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Math.html
http://javaparser.org/
https://github.com/javaparser/javasymbolsolver

	Introduction
	Purpose and goals
	Scope and limitations

	Design by Contract
	Programming languages
	Selection criteria
	Selection of language

	Java Modeling Language
	normal & exceptional behavior
	requires & ensures
	\result
	\old

	signals_only & signal
	assignable
	Pure methods
	Visibility of fields and methods

	Code Patterns
	Assertions
	Conditionals
	Switch-case
	Exceptional behaviour
	Assignment
	Null checks
	Larger example
	Loops
	Try-Catch
	Method calls
	Using standard libraries

	Implementation
	Structure
	How SpecIT generates a contract
	Dependencies
	JavaParser
	JavaSymbolSolver

	Evaluation of the tool SpecIT
	Automatic analysis
	Gathering statistics about generated contract
	Evaluate usefulness in automated testing

	Manual analysis
	Comparing to existing specification
	Comparing to manually written contracts
	Dealing with uncertainties

	Evaluated projects
	Votail
	JUnit 4 & 5
	libGDX

	Experimental Results
	Human-written vs. SpecIT
	Sum
	Ballot
	addError
	assertEquals

	Statistics
	General statistics
	Successful behaviors
	Failing behaviors

	Conclusions
	Future work

