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Scalar Potential of the Squashed Seven-sphere
Stability, the Swampland and Kähler Geometry
SEBASTIAN BERGSTRÖM
Department of Physics
Chalmers University of Technology

Abstract
Finding a consistent theory of quantum gravity has been a long-standing problem in
physics and all attempts made share a common feature: quantum gravitational effects
become important only at very high energies, much higher than the energy scales at
which current particle physics are done. Thus, connecting a particle phenomenological
description to a theory of quantum gravity has proven to be incredibly difficult. A recently
proposed solution to this is known as the Swampland program which aims to construct a
set of conjectures dictating how theories consistent with quantum gravity must behave.
Theories not fulfilling these conjectures are said to lie in the ”swampland”, while consistent
theories are said to lie in the ”landscape”.

In this thesis the compactification of 11-dimensional supergravity on a squashed seven-
sphere is studied. This scenario seems to contradict the Non-AdS SUSY conjecture, at
least at a perturbative level, and a better of understanding of it is therefore essential for the
swampland program. A thorough description of the geometry of a squashed seven-sphere
is provided, which then is extended to spacetime dependent parameters of the sphere
described by scalar fields. The stability in terms of these scalars is analysed, which leads
to the contradiction mentioned above. Finally, an attempt to generalise the setup using
complex geometry is done, treating the scalar fields as coordinates on a Kähler manifold. It
is found that a simple and natural coset structure for the Kähler manifold, SL(2,R)/U(1),
might not be the correct ansatz. Hence, further studies of the full 11-dimensional theory
would be beneficial in order to determine the true coset structure.

Keywords: quantum gravity, supergravity, the swampland, Kähler geometry, the seven-
sphere.

v





Acknowledgements
This work would not have been possible without the help and support from my supervisor,
Bengt EW Nilsson, to whom I direct my sincerest gratitudes. Thanks for all the hours of
talking we’ve had and for introducing me to this interesting field of research.

I also want to thank my fellow office mate Simon Ekhammar for never turning down
a discussion and always providing insights to my questions.

Furthermore, I want to send thanks to Daniel, Torbjörn, Magdalena, Julia, Erik,
Michael, Rikard and Björn who all have made this last semester a very pleasant experience
as lunch and coffee companions.

Finally, a huge thanks to all of my family. While you might not understand much of
this work, none of it would have been possible without your constant support.

Sebastian Bergström, Gothenburg, June 2019

vii





Contents

List of Figures xi

1 Introduction 1
1.1 Quantum Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Energy Scales and Realistic Models . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 String Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 The Swampland Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Supersymmetry and Supergravity 7
2.1 Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Supergravity in 11 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 The Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Equation of Motion for the Spin Connection . . . . . . . . . . . . . . 9
2.2.3 Supersymmetric Invariance . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Rescaling of the Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.5 Supercovariant Quantities . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Seven-Sphere Compactification 19
3.1 The General Freund-Rubin Ansatz . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 The Killing Spinor Equation . . . . . . . . . . . . . . . . . . . . . . 22
3.2 A Squashed Sphere in Higher Dimensions . . . . . . . . . . . . . . . . . . . 22

3.2.1 Fibre Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 The Seven-sphere as a Fibre Bundle . . . . . . . . . . . . . . . . . . 24

3.3 Riemann Tensor of the Squashed Seven-sphere . . . . . . . . . . . . . . . . 25
3.3.1 Computing the Curvature Tensor . . . . . . . . . . . . . . . . . . . . 27

4 Stability of the S7 Scale and Squashing Modes 31
4.1 Spacetime Scalars in the Metric . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Computing the Ricci Tensor . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.2 Rescaling the Ricci Tensor . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Effective 4D Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.1 AdS Solutions and Linear Stability . . . . . . . . . . . . . . . . . . . 40

5 N = 1 Supergravity in 4D 43
5.1 Moduli Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.1 Complex Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.2 Kähler Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

ix



Contents

5.1.3 Example: Type IIB String Theory Scalar Moduli . . . . . . . . . . . 45
5.2 Kähler Description of the Effective 4D Lagrangian . . . . . . . . . . . . . . 45

5.2.1 The Superpotential for v = 0, Q = 0 . . . . . . . . . . . . . . . . . . 48
5.2.2 The Superpotential for u = 0, Q = 0 . . . . . . . . . . . . . . . . . . 49
5.2.3 The Q-term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3 Structure of the Kähler Manifold and the Swampland . . . . . . . . . . . . 52

6 Conclusions 53

A Conventions I
A.1 Indices and Gamma matrices . . . . . . . . . . . . . . . . . . . . . . . . . . I
A.2 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I

Index III

Bibliography V

x



List of Figures

1.1 Schematic representation how all string theories are related by a set of
dualities. Each solid line represents a duality transformation, while dashed
lines represent compactifications. . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 A Möbius band and a cylinder. The cylinder is both globally and locally
the direct product S1 × R, but the Möbius band only has this structure
locally. In particular, it has only one edge. . . . . . . . . . . . . . . . . . . . 24

4.1 The effective 4D potential obtained by compactifying 11D supergravity on
the squashed S7 in the Freund-Rubin ansatz. Here, the conserved charge
has been set to Q = 1. The two points correspond to the two ground-state
solutions, round S7 with v = 0 and squashed S7 with v = 1

7 log 5. While
not easily seen in this figure, the extrema also have different values of u. . . 40

xi



List of Figures

xii



1
Introduction

1.1 Quantum Gravity

What have been the greatest accomplishments of physics in the last century? Any physicist
nowadays would probably give you the same answer to this question: quantum mechanics
and Einstein’s general theory of relativity. Out of these revolutionary theories in the
beginning of the twentieth century, modern physics as we know it today grew rapidly.
General relativity has given us e.g. GPS localization and a far better understanding of
the dynamics of galaxies. On the other hand, lasers, modern computers and a plethora of
things in our daily lives utilize quantum physics.

While the two theories have been very successful in their respective regimes, they have
vastly different foundations. The computational framework of quantum physics, that is
quantum field theory which is the basis for the Standard Model, is considered one of the
most successful theories of all times. Quantum field theory accurately describes three
of the fundamental forces in nature: the electromagnetic force, the weak nuclear force
and the strong nuclear force. In this framework, a force is described by individual force-
carrying particles1 interacting with other physical particles. This means that when two
particles of equal charge repel each other (two electrons, for example), quantum field
theory describes the process as one of the particles emitting a photon - the quanta of
the electromagnetic force - which then gets absorbed by the other particle, transferring
momentum and thus causing the repulsion. This description of how forces act is not
applicable to our macroscopic world, but it turns it that it is an extremely good description
of subatomic phenomena. By the virtue of quantum field theory, physicists have been able
to predict the properties of the electron to very high precision [1].

General relativity on the other hand is based on the geometry of spacetime. Here, the
gravitational forces are not carried by particles, but is just an elegant consequence of the
idea that massive objects distort spacetime and give rise to the notion of curvature in the
nearby geometry. Objects in a region where space and time are curved follow the shortest
path in spacetime, which manifests itself as a force to us humans constantly ”pulling” us
towards a nearby heavy object2. This theory has also been thoroughly tested, in its early
days through observations of Mercury’s orbit as well as through very recent discoveries,
such as the observation of gravitational waves, awarded with the Nobel prize in 2017 [2,
3].

1Also called quanta, since they carry ”quantized” chunks of energy. This is the etymology behind the
name quantum mechanics.

2The widely used analogy of putting some heavy object in the middle of a trampoline and then observing
how smaller objects roll towards it due to the curved surface is helpful here.
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1. Introduction

However, despite the numerous successes of these theories over the years, physicists have
not succeeded in unifying these two theories in a common framework. Since three out of
four forces are described by quantum mechanics, the obvious path forward would be to
also quantize gravity via the introduction of a force carrying particle called the graviton.
However, in quantum field theory the graviton has to be put in by hand and no matter how
one tries to do it this causes the theory to break down. As of today, the most promising
candidate for a quantum theory of gravity is instead string theory. In string theory, the
proposed graviton is a consequence of the assumption that the most fundamental objects
are not pointlike particles, but rather one-dimensional strings. All particle physics phe-
nomena we observe in our experiments happen at low energies compared to the ”natural”
energy scale in string theory, which is close to the Planck energy at ≈ 1019 GeV (see be-
low). At low energies, the strings are very short and thus manifest themselves as pointlike
particles when we study them.

While all of the above sounds promising, no one has yet been able to construct a theory
describing our universe starting from string theory. Therefore, whether string theory
is the correct description of quantum gravity or not is still up for debate. Among the
biggest problems lie the prediction of extra dimensions, which we will discuss in the coming
sections.

One might at this point stop and ask why physicists are so keen on finding a single the-
ory of everything that explains all observed phenomena at the most fundamental level.
Could it not simply be that we need different descriptions of reality at different scales?
While there are historical situations where unification has been very successful, such as
when the relationship between electricity and magnetism was discovered and gave us elec-
tromagnetism, the reason for a quantum theory of gravity is actually more fundamental.
Physics is really all about model building, where we try to describe the world we live in
using mathematical equations. Thus, if there exists a situation where quantum physics
and gravity simultaneously are relevant, then we must have a model of quantum gravity.
And in fact there is such a situation, namely in the vicinity of a black hole. There, the
force of gravity is so strong that it is comparable to the the other three forces. Thanks
to recent observations, both by the LIGO collaboration but also more recently the Event
Horizon Telescope, we now also have compelling observational evidence of the existence of
black holes [3, 4]. So, quantum gravity is not needed because it would make our equations
look neat, but rather because it lies in the very core of physics to find a description of all
phenomena that take place in our universe.

1.2 Energy Scales and Realistic Models

Before continuing with how one could construct quantum gravity, let us stop for a moment
and consider the energy scales relevant for the physics currently under discussion. Quan-
tum gravity is believed by most to be important only at very high energies, many orders
of magnitude higher than the particle physicists of today can ever hope to achieve. For a
ballpark estimation, one usually talks about the Planck energy , which is the energy scale
derived by combining fundamental constants of the universe in order to obtain something
with dimension ”energy”

EPlanck =

√
~c5

G
≈ 1019 GeV ≈ 109 joule (1.1)
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1. Introduction

where ~ is the reduced Planck’s constant, c the speed of light, andG Newton’s gravitational
constant. Note that in natural units, energy is equivalent to mass, so this is the same as
the Planck mass, Mp. One immediately sees that this energy is a huge number even in
macroscopic terms, and enormous for particle physics. As a comparison, the current beam
energy of the LHC is at around 104 GeV [5].

So given a theory of quantum gravity, such as string theory, it is in the low-energy limit
where the physics we can probe happens. In this limit, the theory takes the form of
a quantum field theory and we know well how to handle it. The theory will contain a
graviton which might look problematic since it is non-renormalizable, but knowing that
it is the limit of a consistent theory at high energies, this is no longer a problem. Field
theories of this type, that is, those derived from a consistent quantum gravity theory at
high energies, are said to be UV complete3 .

There is a caveat here. When one tries to construct realistic models, the usual procedure
is to construct a candidate field theory given some experimental constraints. After all,
the physics we probe only give information regarding the low energy behaviour, so it is
natural to work this way [6]. However, in order to determine if this candidate field theory
is correct, it must be UV complete. And while working down from consistent high-energy
theories ensures that we arrive at UV complete field theories, there is no clear way to
deduce if a specific field theory of quantum gravity is UV complete. This dilemma is one
of the main points in this thesis, and we will return to it at the end of this chapter. Now,
we will instead turn to string theory, the challenges it brings and how one constructs field
theories from it.

1.3 String Theory

Since the advent of string theory as a theory of quantum gravity in 1970’s, there have
been numerous efforts to connect the theoretical advancements to realistic models at low
energies. The major hurdle in this procedure is the fact that string theory is only consistent
in 10 dimensions. At first glance this might look like evidence for string theory being
wrong, but upon further examination one realises this is not necessarily the case. The
arguments for string theory, such as naturally containing gravity, are very compelling and
there are realistic ways in which one can handle the extra dimensions. The procedure is
called compactification . The basic idea is that if there are extra dimensions in our world,
we would not notice their presence as long as they are compact and small enough. So,
starting from a higher dimensional theory, we separate it into one part that is the universe
we live in, and one part consisting of a small compact manifold that we do not perceive
as part of our spacetime.

It then becomes a question what geometries these compact dimensions have. Are they
curled up as tiny circles, or are they combined into more complicated geometrical ob-
jects? This is where the problems start. Even if the compact dimensions don’t appear
as spacetime dimensions to us, their structure is still relevant and determine properties of
the particles we observe in the four-dimensional spacetime. It turns out that there is an
enormous amount of possible string theory compactifications4 and that there is no clear
way of immediately figuring out which alternatives produce realistic universes. This fact

3UV = Ultra-Violet ≈ short wavelength ≈ high energies. It is simply a notion of high energy, and has
nothing to do with the exact range of wavelengths where light is called ultra-violet light.

4Numbers between 10500 and 101500 have been proposed.
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1. Introduction

is even more remarkable considering that all current variants of string theory are unique.
This problem is what lies behind the commonly heard statement that string theory is un-
able to make predictions. We will soon address this issue and explain how the predictive
power of string theory may have been underestimated. First, however, we will touch on
yet another issue that comes with string theory compactifications.

When performing the compactification, we must also address the question of the geom-
etry of the the four non-compact dimensions which are supposed to describe our four-
dimensional spacetime. The vacuum of any theory must always contain a high degree of
symmetry and we thus assume the vacuum spacetime to be maximally symmetric. This
leads to three different choices of geometry: de Sitter (dS), Minkowski or Anti-de Sitter
(AdS), characterised by positive, zero and negative curvature, respectively. It turns out
that compactifying to AdS yields consistent theories, while dS vacua are very difficult to
construct via string theory. In the early times of string theory research this constituted no
major problem, but today there are a number of experiments showing that our universe
has a small positive cosmological constant [7, 8]. This would imply dS geometry. Thus,
we are faced with yet another problem. How do we construct dS solutions resembling our
universe?

Before continuing, let us summarise the procedure used to construct four-dimensional mod-
els from string theory. First, one goes to the low-energy limit as described above. Then,
the extra dimensions must be taken as compact, with some geometry and topology that
yields the desired particle properties in four-dimensional spacetime. It is worth mention-
ing here that the process of compactification is also affected by working in the low-energy
limit, but at a different scale. More specifically, one of the properties that is determined
by the geometry of the compact dimensions is the particle masses. This means that even
though we have already thrown away all massive modes when going from string theory to a
low-energy theory, the four-dimensional particle spectrum obtained from compactification
will contain massive states whose masses depends on the compact dimensions.

In the Standard Model, all particles we observe have zero fundamental mass, and instead
obtain their masses from the Higgs mechanism [9]. The reasoning behind this is that
any possible fundamentally massive states lie above the energy scales that we can probe.
Thus, the most common approach is to throw away massive modes also after performing
the compactification which is known as dimensional reduction. This then increases the
difficulty we mentioned in the last section, namely that it is very hard to figure out whether
a given field theory in at low energies in four dimensions has a UV completion or not.

In the next section, we will discuss some recently proposed solutions to this difficulty. First
however, we will zoom out and look at the bigger picture of string theory. When string
theory was developed during the end of the 20th century, physicists discovered that there
were actually five different ways of formulating the theory. It later became clear that the
seemingly independent theories were all related to each other via duality transformations.
Furthermore it was found that they could all be related to a unique 11-dimensional theory
called M-theory. The low-energy limit of M-theory is called 11-dimensional supergravity,
which is a field theory that has been well understood since the 1980’s. It will be this
theory that is the focus of this thesis. The relations between all theories are represented
schematically in figure 1.1.
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Type IIBType IIA

11D Supergravity

Heterotic E8 × E8
Heterotic SO(32)

Type IM-theory

Figure 1.1: Schematic representation how all string theories are related by a set of
dualities. Each solid line represents a duality transformation, while dashed lines represent
compactifications.

1.4 The Swampland Program
The vast number of possible of compactifications mentioned above has given rise to the
terms ”landscape” and ”swampland” [10]. Compactifications which give rise to consistent,
UV complete, field theories are said to lie in the landscape while field theories that cannot
be derived from quantum gravity are in the swampland. This leads to the very relevant
question: are there theories with dS geometry that belong to the landscape? This question
turns out to be very hard to answer. However, recently a number of conjectures were
proposed which determine whether the vacuum of a theory is in the swampland or not.
These conjectures have been formulated based on current knowledge of the behaviour of
string theory compactifications in combination with ideas from black hole physics [11].
We will briefly go through some of these conjectures below, in order to get an idea about
their general structure.

One conjecture is the de-Sitter swampland conjecture , which states that for any effective
field theory obtained from string theory we must have, with some constant c > 0 of O(1)

|∇V | ≥ c

Mp
V. (1.2)

for the scalar potential V [12]. This bound excludes any stable, or meta-stable, dS vacua
from the landscape. By (meta-)stable vacua we mean those where the potential is at an
(local) absolute minimum, i.e. where |∇V | = 0. If the above conjecture is true this never
happens for positive V . There is a modification to this conjecture known as the refined
de-Sitter conjecture [13]. It states that either the bound in (1.2) holds or, with some
constant c′ > 0 of O(1)

min(∇i∇jV ) ≤ − c′

M2
p

V. (1.3)

The indices i and j here indicate all combinations of derivatives with respect to the scalar
fields in the potential. This condition then allows for dS extrema of the potential, but

5



1. Introduction

only if the second derivative is sufficiently negative. Thus, it still does not allow for stable
de-Sitter solutions. Both of the above conjectures are automatically fulfilled in AdS-space.
There is however another very recent conjecture proposed in [14], called the Strong scalar
weak gravity conjecture which states that

2(V ′′′)2

V ′′
− V ′′′′ ≥ V ′′

M2
p

(1.4)

This conjecture is not yet formulated in terms of multiple scalar fields, thus the prime
means derivatives with respect to the single scalar field. This constraint is quite interesting,
as it does not depend on the potential directly and thus should be unaffected of the sign of
the potential at any extrema. That is, not distinguishing between dS and AdS solutions.

Lastly, we also want to point out the the Non-SUSY AdS conjecture [15]. It states that any
non-supersymmetric AdS theory must exhibit instability. Initially, this seems to not be
very relevant to real world physics, as it does not put any constraints on de-Sitter solutions.
However, the conjecture is actually a consequence of the Weak gravity conjecture, proposed
first in [16]. The weak gravity conjecture is a much more general statement and as such
it is of interest to investigate the consequence even in AdS space. We will get back to the
Non-SUSY AdS conjecture in the later chapters of this thesis.

1.5 Aim
The aim of this thesis is to study the compactification of 11-dimensional supergravity
to four dimensions. Specifically, we will consider first the compactification to a static
squashed seven-sphere and then promote it to a dynamic one over spacetime. This will
allow for analysis of the emergent four-dimensional scalar potential. The final goal is then
to study the potential using complex fields, which in the future could lead to a better
understanding of the stability of the solutions.

1.6 Outline
The outline of this thesis is as follows.

In Chapter 2 we will present supersymmetry and 11-dimensional supergravity together
with its connections to M-theory and string theory. We will explicitly check that the
SUSY variations of the theory is consistent.

Chapter 3 starts with an introduction to Freund-Rubin compactifications, followed by a
geometrical discussion of the squashed seven-sphere. We end by computing the two static
(Einstein metric) squashed versions of the seven-sphere.

Chapter 4 generalises the previous results to incorporate the possibility of spacetime de-
pendent parameters for the sphere. This is necessary in order to study the stability of the
solutions under spacetime variations, an analysis that will conclude this chapter.

Chapter 5 is dedicated to generalising to the previous analysis by introducing new pseu-
doscalar fields and further investigate the issue of stability. Kähler geometry will be
discussed followed by treating the potential as a Kähler potential and extending the fields
to complex fields.

Chapter 6 summarises the conclusions of the thesis, and provides some potential outlooks.

6



2
Supersymmetry and Supergravity

The very first step towards the final goal of this thesis will be to establish and under-
stand 11-dimensional supergravity, the low-energy limit of M-theory that we later on will
compactify to four dimensions and connect to the string theory landscape. We start this
chapter by a general introduction to the general idea behind supersymmetry. Then, we
proceed by introducing gravity and present the equations for 11-dimensional supergravity.
In order to familiarise ourselves with the theory we also perform an explicit check of the
supersymmetry invariance of the theory.

In the last part of the chapter we will also introduce compactification in some more detail,
before specialising to the Freund-Rubin ansatz in the next chapter.

2.1 Supersymmetry

Supersymmetry (or SUSY for short) is the idea of a symmetry between the two funda-
mental types of particles that exist in our universe, bosons and fermions. It is today an
essential component in almost all theories of quantum gravity. Supersymmetry in its first
incarnation was proposed in 1966 [17]. A few years later it was incorporated also into
the development of string theory, eventually leading up to the five superstring theories we
have today [18].

While the idea of some symmetry between particle types is quite natural, it must be
incorporated in a certain way to not invalidate the the Coleman-Mandula theorem [19].
This theorem was developed in 1967 and says in essence that no internal symmetries can be
combined with Lorentz symmetries, without rendering the theory trivial. The reason that
supersymmetry does not violate the theorem is that it does not have the usual Lie algebra
structure of symmetries, but rather the structure of a superalgebra, instead involving
an anti-commutator. This construction avoids the restriction of Coleman and Mandula’s
theorem. The generators of the supersymmetry algebra are fermionic and their defining
property is given by [20] {

Qa, Q̄ḃ

}
= 2iσµ

aḃ
Pµ, (2.1)

where Q are fermionic generators of SUSY, σµ = (1, σi), σi the Pauli matrices and Pµ
the generator of momentum. As of now, no evidence of supersymmetry has been found in
any particle physics experiments. Thus, it must be the case that SUSY is spontaneously
broken, similar to how the Higgs potential works [21]. We will not delve deeper into this
process in this thesis and simply take supersymmetry as an underlying assumption. The
interested reader can consult for example [20] for a review.

7



2. Supersymmetry and Supergravity

Schematically, one can think of supersymmetry in terms of variations as

δ(boson) = ε(fermion), δ(fermion) = ε(boson), (2.2)

where ε is the fermionic supersymmetry parameter. The exact appearance of these ex-
pressions depend on the theory in question. By gauging this theory, that is promoting ε
to a local parameter ε(x), one obtains a supergravity theory much like how gauging the
Poincaré algebra yields general relativity [22]. The exact process of going from supersym-
metry to supergravity is quite complicated and we will not delve further into it in this
thesis.

2.2 Supergravity in 11 Dimensions
Supergravity in eleven dimensions is the low-energy limit of M-theory, which is believed to
be the unique 11-dimensional theory that unifies all string theories. It turns out that 11
dimensions is a quite special case, as it is the highest dimension1 in which we can construct
a supersymmetric theory with spin-2 or lower [24]. As for all higher-dimensional theories,
in order to construct four-dimensional effective theories we perform a compactification.
The procedure we will employ here is Kaluza-Klein compactification, or dimensional re-
duction. This type of compactification means that we split up the full theory as a product
of two spaces, MD = Md ×MD−d, where d = 4. The manifold Md is taken to be our
four-dimensional spacetime and MD−d is the internal compact space, whose dimensions
are very small so that we are not able to detect them [22].

The field content of the 4-dimensional theory is given by harmonic expansion of the 11-
dimensional fields on the internal space. In Kaluza-Klein, all harmonic modes are kept,
which describes the full set of fields in d dimensions. In dimensional reduction, only a
finite number of modes are kept. The modes kept are those giving rise to massless or very
light fields, since the heavy modes require much higher energies than we have access to
in order to be excited. This process is called consistent truncation. The requirement for
such a truncation is that the heavy modes that are thrown away cannot have light modes
as sources. If this is fulfilled, then the truncation is consistent with the field equations.

Later on, we will compactify 11-dimensional supergravity to four dimensions. This section
however, will be devoted to better understanding the 11-dimensional theory. We will do
this by stating the general form of the action and explicitly check the invariance under
supersymmetry transformations to linear order in the fermionic field. For a treatment of
higher order fermionic terms, the reader may consult [25].

2.2.1 The Lagrangian

11D supergravity can be constructed in a number of ways. We will not do any full deriva-
tion of the equations of motion in this thesis, but refer the reader to for example [22, 26]
for more details. Instead we will just state the different parts of the action, argue for their
validity and then check that it is consistent by performing SUSY variations.

The bosonic part of the action is [27]

SB = 1
2κ2

∫
d11x e

(
eαµeβνRµναβ −

1
48HµνρσH

µνρσ
)
− 1

12κ2

∫
B ∧H ∧H. (2.3)

1There is an idea of a 12-dimensional theory called F-theory that has been proposed, but as of now no
one really knows how to construct that theory properly [23].
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2. Supersymmetry and Supergravity

Here, eµα is the vielbein, e = det eµα, Rµναβ the Riemann tensor and H = dB a field
strength. This structure is actually quite natural. First is the usual Einstein-Hilbert term
and then there is a quadratic term in the field strength, much like in electromagnetism.
The last term is called a Chern-Simons term. It is only topological, which means that it
is fully independent of the metric gMN .

Since the theory is supersymmetric we expect the graviton to have a superpartner, a spin-
3
2 field called the gravitino. This field has a kinetic term given by the Rarita-Schwinger
action [22]

2κ2SRS =
∫

d11x eψ̄µ
a(Γµνρ)abDν(ω)ψρb, (2.4)

where ψρb is the Rarita-Schwinger vector spinor field. The spinor index b is normally not
explicitly written out. There is an undetermined constant for this term relative to SB that
will be determined later when we check the SUSY invariance. The last part of the action
is [24]

2κ2S5 =
∫

d11x e
[
ψ̄λΓµνρσλτψτ + 12ψ̄µΓνρψσ

](
Hµνρσ + H̃µνρσ

)
, (2.5)

also with an undetermined prefactor. Here we have also introduced the supercovariant
field strength

H̃µνρσ = Hµνρσ − 3iψ̄[µΓνρψσ]. (2.6)

Our goal now is to check that the action is invariant under local supersymmetry transfor-
mations and determine the prefactors. The full action is

S = SB + SRS + S5, (2.7)

where the relative weighting of the terms will be determined soon. The SUSY variations
under consideration are [25]

δeσ
γ = −2iε̄Γγψσ, δBµνρ = 6iε̄Γ[µνψρ],

δψ = Dµε+ 1
288(−8HµρστΓρστ +HνρστΓµνρστ )ε.

(2.8)

A general variation of the action takes the form

δS = δS

δe
δe+ δS

δψ
δψ + δS

δB
δB + δS

δω

δω

δe
δe . (2.9)

In order to simplify the procedure, we may use the ”1.5 order” formalism [22]. This
essentially means that we think of the spin connection as a function of the vielbein, ω =
ω(e, ψ), defined by its algebraic equations of motion. Then we have that δS/δω = 0
and need not consider the last term above. Thus, before verifying the invariance we will
compute the variations with respect to the spin connection as well, in order to obtain the
torsion and contorsion tensor.

2.2.2 Equation of Motion for the Spin Connection

Consider the variation of the Einstein-Hilbert term with respect to the spin connection,
ω. We find

δSEH
δω

= 1
2κ2

∫
dDx eeαµeβν

δRµνα
β(ω)

δω
=

= 1
2κ2

∫
dDx eeαµeβν

[
Dµδωνα

β −Dνδωµα
β
]
.

(2.10)

9



2. Supersymmetry and Supergravity

Now, we may rewrite the Lorentz covariant derivatives as full covariant derivatives, if we
add the compensating affine connection term. The fully covariant derivative is related to
the Lorentz covariant derivative by ∇µeνβ = Dµeν

β − Γµνρeρβ. This achieves two things:
First, the full derivative fulfils ∇µeβν = 0, i.e. the metric postulate. This means that we
can use partial integration and we will only pick up the terms which contain derivatives
on e = det eβν . Second, since the two terms are antisymmetric in µ and ν, the two added
connections will combine to form the torsion, defined by

Tµν
ρ = Γµνρ − Γνµρ (2.11)

The variation is then

δSEH
δω

= 1
2κ2

∫
dDx e

(
2eαµeβν∇[µδων]α

β + eαµeβ
νTµν

ρδωρα
β
)

=

= 1
2κ2

∫
dDx e

(
−2eαµeβνKρ[µ

ρδων]α
β + eαµeβ

νTµν
ρδωρα

β
)
.

(2.12)

Introducing the contorsion related to the torsion via

Kµνρ ≡ −
1
2(Tµνρ − Tνρµ + Tρµν). (2.13)

From this we can see that in our case, when the first and last indices are contracted, the last
term vanish (the torsion is anti-symmetric in the two first indices, while the contorsion is
anti-symmetric in the two last ones). Renaming indices together with raising and lowering
of flat indices lead to the final answer

δSEH
δω

= 1
2κ2

∫
dDx e

(
1
2
(
eαµeβ

σ(Tρµρ − Tµρρ)δωσαβ − eασeβν(Tρνρ − Tνρρ)δωσαβ
)
+

+ eαµeβ
νTµν

σδωσα
β

)
= 1

2κ2

∫
dDx e

(
eβ
σTρα

ρ − eασTρβρ + Tαβ
σ

)
δωσ

αβ.

(2.14)

The other term contributing to the variation with respect to the spin connection is the
Rarita-Schwinger term. We consider it with the usual Lorentz covariant derivative, defined
acting on the gravitino as

Dν(ω)ψρ = ∂µψρ + 1
4ων

αβΓαβψρ (2.15)

Plugging this into the RS-action and varying with respect to the spin connection we arrive
at

δSRS
δω

= 1
2κ2

∫
dDx eiψ̄µΓµνρΓαβψρ(δωναβ) (2.16)

Here we may expand the gamma matrix product according to

ΓµνρΓαβ = Γµνραβ + 6Γ[µν
[βδ

ρ]
α] + 6Γ[µδν[βδ

ρ]
α] (2.17)

The second term contains a rank 3 gamma matrix, which is antisymmetric. Thus we can
use the Majorana property (see Appendix A.1) to exchange the two gravitini and then use
the antisymmetry in µ and ρ to see that that term will vanish.
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2. Supersymmetry and Supergravity

The equations of motion for the spin connection are then

δSRS + δSEH
δω

= 0 =⇒ eβ
νTρα

ρ − eανTρβρ + Tαβ
ν =

=− i
(
ψ̄µΓµνραβψρ + 2ψ̄µΓµψαeβν − 2ψ̄µΓµψβeαν + 2ψ̄αΓνψβ

) (2.18)

Contracting with eν
α yields Tρβρ = −2iψ̄µΓµψβ, and then we can convert all indices to

curved and obtain the torsion

Tµνρ = iψ̄σΓστ µνρψτ − 2iψ̄µΓρψν . (2.19)

This then leads directly to the contorsion tensor, simply using the definition

Kµνρ ≡ −
1
2(Tµνρ − Tνρµ + Tρµν) =

= − i2 ψ̄σΓστ µνρψτ + i
(
ψ̄µΓρψν − ψ̄νΓµψρ + ψ̄ρΓνψµ

)
.

(2.20)

There are two important points worth stressing in this section. First, we see explicitly that
the equations of motion for the spin connection actually are algebraic and thus the ”1.5
order” formalism is consistent. If the spin connection would have had differential equations
of motion, this would not have been the case. Second, the torsion (and of course also the
contorsion) are of second order in the fermionic field, ψ. Doing computations in differential
geometry in theories with torsion is quite difficult, since many relations we are used to
get extra contributions from the torsion. An example would be that the Ricci tensor is
not necessarily symmetric in theories with torsion. In this case however, since the torsion
is quadratic in ψ, we can actually treat the theory as torsionless as long as we are only
interested in effects up to linear order of ψ. This is precisely what we will do in the
following section.

2.2.3 Supersymmetric Invariance

Now we will check the SUSY variations up to linear order in ψ and determine the prefactors
for SRS and S5. Even though we do not consider all orders in ψ there will be a lot of terms
that must cancel each other in the following calculations. Thus we will try to employ a
systematic approach. We will first treat terms with no dependence on the H-field. Then
we will work our way upwards and first treat terms of order H followed by H2. These
are all the terms needed to check SUSY to linear order in ψ. Note that any quantities,
such as Γ-matrices and indices, are always 11-dimensional in this section. We define the
variation of the action by

δS = 1
2κ2

∫
d11x δL. (2.21)

This will reduce the cluttering of the equations somewhat. We start with the Einstein-
Hilbert term. The variation looks like

δLEH = δ
[
eeαµeβνRµναβ(ω)

]
=

=
[
(δe)eαµeβνRµναβ(ω) + 2e(δeαµ)eβνRµναβ(ω) + eeαµeβν(δRµναβ(ω))

]
.

(2.22)

In the 1.5 order formalism, we throw away the last term since it is a variation only with
respect to ω. It is in fact also so that δRµνρσ is a total derivative, if we consider only
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2. Supersymmetry and Supergravity

terms up to order ψ2. This is also a consequence of the torsion being quadratic in ψ. Now
we need the following

δe = eeγ
ρ(δeργ),

δeαµ = ηαβ(δeβµ) = −eαρ(δeργ)eγµ.
(2.23)

This leads to the expression

δLEH = e[eγρR− 2eαρeγµRµα(ω)](δeγρ) = e[eγρR− 2Rγρ(ω)](δeργ). (2.24)

We see that this is Einstein’s equations, in a somewhat different form, as we would expect.
Now we plug in the SUSY variation for the vielbein, which is

δeσ
γ = −2iε̄Γγψσ. (2.25)

This then leads to the expression

δεLEH = 4ie
(
Rγ

ρ − 1
2eγ

ρR

)
ε̄Γγψρ = −4ie

(
Rµν −

1
2gµνR

)
ψ̄νΓµε, (2.26)

where in the last step we used the symmetry of Γµ to flip ε and ψ, producing the extra
minus sign. Next, we will investigate the Rarita-Schwinger term. A general variation will
be

δLRS =(δe)ψ̄µΓµνρDνψρ + e(δψ̄µ)ΓµνρDνψρ

+eψ̄µ(δeαµeβνeγρ)ΓαβγDνψρ + eψ̄µΓµνρDν(δψρ).
(2.27)

Note that terms 1 and 3 will not be needed when we check SUSY to linear order, they
already contain two ψ so the variation of the vielbein makes them cubic in ψ.

The transformation for the gravitino is

δεψµ = D̃µε, where

D̃µε = Dµε+ 1
288(−8HµρστΓρστ +HνρστΓµνρστ )ε.

(2.28)

We want to check orders of H separately, so we split the variations of ψ as follows

δLRS = δ′LRS + δ′′LRS. (2.29)

where δ′L means we take only δ′εψµ = Dµε and δ′′L means only the second term, i.e.
δ′′εψµ = 1

288(−8HµρστΓρστ +HνρστΓµνρστ )ε.

Returning to terms 2 and 4 in the general variation, equation (2.27), we may see that by
using partial integration and the Majorana properties the two terms actually add. This is
outlined as follows

term 2 = e(δψ̄µ)ΓµνρDνψρ = e(Dνψ̄ρ)Γµνρδψµ = {µ↔ ρ,Γρνµ = Γµνρ} =
= −e(Dνψ̄µ)Γµνρδψρ = −Dν(. . . ) + (Dνe)ψ̄µΓµνρδψρ+

+ eψ̄µ(DνΓµνρ)δψρ + eψ̄µΓµνρDνδψρ = eψ̄µΓµνρDνδψρ.

(2.30)

where in the last step we used that we do not consider higher order terms in ψ together
with

Dνe = 0 +O
(
ψ2
)
,

DνΓµνρ = [Dν(eαµ . . . )]Γαβγ = 0 +O
(
ψ2
)
.

(2.31)
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2. Supersymmetry and Supergravity

So, term 2 and 4 in (2.27) add. Now we proceed to computing the variation of LRS to
zeroth order in H, hoping that it will cancel the Einstein-Hilbert term. We will need the
definition of the Riemann tensor as a commutator of covariant derivatives acting on a
spinor [24]

[Dµ, Dν ]ε = 1
4RµναβΓαβε. (2.32)

Then the variation is

δ′LRS =2eψ̄µΓµνρDν(δ′ψρ) = 2eψ̄µΓµνρ 1
2[Dν , Dρ]ε = 1

4eψ̄µΓµνρRνραβΓαβε. (2.33)

From here, we will use the identity

ΓγδεΓαβ = Γαβγδε + 6δ[γ
[αΓβ]

δε] − 6δ[γδ
[αβ]Γ

ε], (2.34)

which we may use in the above equation if we convert the indices on the first gamma
matrix by extracting vielbeins, eγµ etc. We get

δL′RS = 1
4eRδε

αβψ̄γ
(
Γαβγδε + 6δ[γ

[αΓβ]
δε] − 6δ[γδ

[αβ]Γ
ε]
)
ε. (2.35)

Here, we note that the first term vanishes, since it yields the Riemann tensor with full
anti-symmetry in all indices, which is zero up to O

(
ψ2) term. The second term is best

analysed by breaking up the antisymmetry in the upper indices
6
4e

1
3!
(
2Rδεαβψ̄[αΓβ]

δε − 2ψ̄γRε[δδβΓβ]
εγ + 2ψ̄γRδ[ααβΓβ]

γδ
)
ε =

=1
4e
(
0 + 4ψ̄γ

1
2!(Rεδ

δβΓβεγ −RεβδβΓδεγ)
)
ε = 0 +O

(
ψ2
)
.

(2.36)

We put the first term to zero by the same argument as above, it is anti-symmetric in 3
index in the Riemann tensor. The remaining terms combine, and after breaking up that
antisymmetry we see that we arrive at two terms with the Ricci tensor. While not fully
symmetric (due to the contorsion) in our context, it is symmetric up to O

(
ψ2) and thus

vanishes when contracted with the gamma matrices. The final term in δ′LRS is then what
remains. We expand it in a similar fashion below. Note that the delta function always
hits the two last indices of the Riemann tensor. The antisymmetry in those indices is
manifest, so we can drop the explicit notation.

δL′RS = −6
4e

1
3!2
(
Rδε

γδψ̄γΓε +Rδε
εγψ̄γΓδ +Rδε

δεψ̄γΓγ
)
ε =

= −1
2e
(
−Rεγψ̄γΓε −Rδγψ̄γΓδ +Rψ̄γΓγ

)
ε = e

(
Rµν −

1
2Rgµν

)
ψ̄νΓµε.

(2.37)

We see that this result is what we obtained from the Einstein-Hilbert part, equation (2.26),
apart from a factor of 4i. These two terms are the only terms without H, so they must
cancel. Thus we conclude that that the prefactor for the Rarita-Schwinger term is 4i,
relative to the Einstein-Hilbert term.

Now, we proceed to compute the variations which are linear in H and continue with the
Rarita-Schwinger term and the variation δ′′LRS. We start by rewriting δLRS so that the
derivatives does not act on the variation

δ′′LRS =

= 2eψ̄µΓµνρDν(δψρ) =
{
Partial integration, dropping terms of O

(
ψ2
)}

=

= 2e(Dνψ̄µ)Γµνρ(δψρ) = 1
144e(Dνψ̄ρ)Γµνρ(HλκστΓµλκστ ε− 8HµκστΓκστ ε) =

= − 3
144e(Dνψ̄ρ)(12ΓµσHνρ

µσ + ΓνρµσκτHµσκτ )ε.

(2.38)
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2. Supersymmetry and Supergravity

From where else do we get O(H) contributions? The kinetic term for H will contribute,
which we see by writing out the general variation

δLkin = − 1
48
(
(δe)H2 + 2e(δHµνρσ)Hµνρσ + 4eHµνρσ(δgµµ′)Hµ′νρσ)

)
. (2.39)

We find that only the second term above is O(H). If we evaluate it using the following
local SUSY variation for B

δBµνρ = 6iε̄Γ[µνψρ], (2.40)

we find

2e(δHµνρσ)Hµνρσ =− 4
24e(DµδBνρσ)Hµνρσ = −ie(Dµ(ε̄Γ[νρψσ]))Hµνρσ =

=− ieHµνρσ
(

(Dµε̄)Γνρψσ + ε̄ΓνρDµψσ

)
.

(2.41)

We may check that the second term here indeed cancels the first term in δ′′LRS, equation
(2.38) above, if we put in the corresponding factor of 4i. Using the Majorana property to
to flip ε̄ and Dµψρ and the symmetry of Γνρ produces the correct sign. We now collect
the two remaining terms of order H that we have obtained so far

δ(LRS + Lkin)
∣∣∣∣
O(H)

= −ie
( 1

12(Dνψ̄ρ)Γνρµσκτ εHµσκτ +Hµνρσ(Dµε̄)Γνρψσ
)
. (2.42)

The only remaining thing that contributes to O(H) terms is the fifth term, above denoted
S5:

δL5 = δ
[
eψ̄λΓµνρσλτψτ + 12eψ̄µΓνρψσ

](
Hµνρσ + H̃µνρσ

)
. (2.43)

Here, H̃ is the supercovariant field strength, and takes the form H̃ = H +O
(
ψ2). Thus,

to our current approximation we use H + H̃ ≈ 2H. Then, the variation with respect to
H, e and the gamma matrices all yield terms of O

(
ψ3), so we neglect them. Furthermore,

both Γ[2] and Γ[6] are symmetric, so we have

(δψ̄µ)ΓνρψσHµνρσ = −ψ̄σΓνρ(δψµ)Hµνρσ = ψ̄µΓνρ(δψσ)Hµνρσ, (2.44)

and analogously for Γ[6]. Thus we may write the variation as

δL5 = 4e
[
ψ̄λΓµνρσλτ (δψτ ) + 12ψ̄µΓνρ(δψσ)

]
Hµνρσ. (2.45)

The second term in the variation of ψ will yield O
(
H2) contributions, so we use the same

notation as before to split up the variation. The linear terms in H are

δ′L5 = 4e
[
ψ̄λΓµνρσλτ (Dτ ε) + 12ψ̄µΓνρ(Dσε)

]
Hµνρσ = {p.i. in the first term} =

= −4e(Dτ ψ̄λ)Γµνρσλτ εHµνρσ − 48eHµνρσ(Dσ ε̄)Γνρψµ =

= 48e
[ 1

12(Dτ ψ̄λ)ΓτλµνρσεHµνρσ +Hµνρσ(Dµε̄)Γνρψσ
]
,

(2.46)

where we in the last step reordered and picked up an overall minus sign. The partial
integration in the first step also yields extra terms, but they are of O

(
ψ3), except for

DτHµνρσ which is zero since H is a closed 4-form. We may now see that

δ′L5 = 48i δ(LRS + Lkin)
∣∣∣∣
O(H)

. (2.47)
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2. Supersymmetry and Supergravity

So all contributions of order H indeed cancel if we fix the prefactor of L5 to i
48 .

What remains now is terms of O
(
H2). This contribution will come from terms 1 and 3 in

equation (2.39) i.e. δLkin, the δ′′ variation of L5, and from the topological Chern-Simons
term. We start by treating the topological term. A general variation is

δ(B ∧H ∧H) = (δB ∧H ∧H) + (B ∧ dδB ∧H) + (B ∧H ∧ dδB) =
= (δB ∧H ∧H) + 2(B ∧ dδB ∧H)
= (δB ∧H ∧H)− 2 d(B ∧ δB ∧H) + 2(dB ∧ δB ∧H) + 2(B ∧ δB ∧ dH) =
= 3(δB ∧H ∧H),

(2.48)

where in the last step we dropped the total derivative and used that dH = 0. In coordinates
this is

δLCS = −1
6 δ(B ∧H ∧H) = −1

6
3

3!4!4!ε
µ1...µ11δBµ1µ2µ3Hµ4...µ7Hµ8...µ11 . (2.49)

Here, the ε symbol indicates the metric independent Levi-Civita symbol, i.e. a tensor
density. If we now plug in the variation of the B-field, δBµνρ = 6iε̄Γ[µνψρ] we find

δLCS = i

2(24)2 ε
µνρµ4...µ11ψ̄ρΓµνεHµ4...µ7Hµ8...µ11 , (2.50)

where we have dropped the explicit antisymmetrisation, it is already manifest in the ε
symbol. We also picked up an extra minus sign by exchanging ε̄ and ψρ. We now collect
the rest of the contributing terms, starting with the kinetic term

δLkin

∣∣∣∣
O(H2)

= − 1
48e

(
eα
τ (δeτ α)H2 − 8gτ(µ′

eα
µ)(δeτ α)HµνρσHµ′νρσ

)
=

= − 1
48e

(
−2iε̄ΓτψτH2 + 16iε̄Γ(µψµ

′)HµνρσHµ′νρσ
)

=

= − ie24 ψ̄τΓτH2 + ie

3 ψ̄τΓµεHµνρσH
τνρσ.

(2.51)

Now we write out the δ′′L5 terms. These are the most complicated ones, so we will take
them one at a time. The gamma matrix algebra will be done using Ulf Gran’s Mathematica
package ”GAMMA” [28]. We start by rewriting the variation, now including the factor of
i

48

δL5 = ie

12
[
ψ̄λΓµνρσλτ (δψτ ) + 12ψ̄µΓνρ(δψσ)

]
Hµνρσ. (2.52)

Then we treat the first term. Inserting the δ′′ variation of ψ yields

δ′′L(1)
5 =

= ie

12 ψ̄λΓµνρσλτ (δ′′ψτ )Hµνρσ =

= ie

12 ψ̄λΓµνρσλτ 1
288(−8Hτκ1κ2κ3Γκ1κ2κ3 +Hκ1κ2κ3κ4Γτ κ1κ2κ3κ4)εHµνρσ =

= ieψ̄γ

(
1
24ΓγH2 − 1

6Γδ0Hδ0δ1δ2δ3H
γδ1δ2δ3 − 7

36Γδ3δ4γHδ0δ1δ2δ3H
δ0δ1δ2

δ4−

− 1
8Γδ3δ4δ5Hγδ1δ2

δ3Hδ1δ2δ4δ5 −
1
72Γδ1δ2δ3δ4δ5δ6γHδ0δ1δ2δ3H

δ0
δ4δ5δ6−

− 1
288Γδ1δ2δ3δ4δ5δ6δ7Hγ

δ1δ2δ3Hδ4δ5δ6δ7 −
1

576Γδ1δ2δ3δ4δ5δ6δ7δ8γHδ1δ2δ3δ4Hδ5δ6δ7δ8

)
ε.

(2.53)
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2. Supersymmetry and Supergravity

The next term is

δ′′L(2)
5 = ieψ̄µΓνρ(δ′′ψσ)Hµνρσ =

= ieψ̄µΓνρ
1

288(−8Hσκ1κ2κ3Γκ1κ2κ3 +Hκ1κ2κ3κ4Γσκ1κ2κ3κ4)Hµνρσ =

= ieψ̄γ

(
− 1

6Γδ0Hδ0δ1δ2δ3H
γδ1δ2δ3 + 1

8Γδ3δ4δ5Hγδ1δ2
δ3Hδ1δ2δ4δ5

+ 1
288Γδ1δ2δ3δ4δ5δ6δ7Hγ

δ1δ2δ3Hδ4δ5δ6δ7ε

)
ε.

(2.54)

To our delight, these two last terms cancel two terms in δ′′L(1)
5 and the first simply adds

to another term. What then remains is

δ′′L(1)
5 + δ′′L(2)

5 =

= ieψ̄γ

(
1
24ΓγH2 − 1

3Γδ0Hδ0δ1δ2δ3H
γδ1δ2δ3 − 7

36Γδ3δ4γHδ0δ1δ2δ3H
δ0δ1δ2

δ4

− 1
72Γδ1δ2δ3δ4δ5δ6γHδ0δ1δ2δ3H

δ0
δ4δ5δ6 −

1
576Γδ1δ2δ3δ4δ5δ6δ7δ8γHδ1δ2δ3δ4Hδ5δ6δ7δ8

)
ε.

(2.55)

The first two terms here cancel exactly the contribution from δLkin, equation (2.51).

Next note that the two partially contracted H-fields are symmetric in their remaining
indices, seen by writing it as follows

Hδ0δ1δ2δ3H
δ0δ1δ2

δ4 = 1
2
(
Hδ0δ1δ2δ3H

δ0δ1δ2
δ4 +Hδ0δ1δ2

δ3Hδ0δ1δ2δ4

)
=

= 1
2
(
Hδ0δ1δ2δ3H

δ0δ1δ2
δ4 +Hδ0δ1δ2δ4H

δ0δ1δ2
δ3

)
= Hδ0δ1δ2(δ3H

δ0δ1δ2
δ4).

(2.56)

But δ3 and δ4 are antisymmetrised in the gamma matrix, so the third term in (2.55) is
zero. A similar argument holds for the H part of the fourth term, which is symmetric
under simultaneous interchange of 1 ↔ 4, 2 ↔ 5, 3 ↔ 6 while the gamma matrix is
antisymmetric.

What remains is thus only the last term. In order to show that it cancels the Chern-Simons
term we must investigate the gamma matrices further. In odd dimensions not all gamma
matrices are needed to form a complete basis and some of them are related to each other.
The general formula, for D = 2m+ 1 dimensions, is [22]

Γδ1...δr = (i)m+1 1
e

1
(D − r)!ε

δ1...δDΓδD...δr+1 . (2.57)

Note here the factor of 1
e . It appears since the gamma matrices are expressed in flat

indices. We may use this, with D = 11 and r = 9, to rewrite the last term in (2.55) as

− ie

576 ψ̄γΓδ1δ2δ3δ4δ5δ6δ7δ8γεHδ1δ2δ3δ4Hδ5δ6δ7δ8 =

= − i(i)
6

(24)2
1
2!ε

δ1...γδ10δ11ψ̄γΓδ11δ10εHδ1δ2δ3δ4Hδ5δ6δ7δ8

= i

2(24)2 (−εδ11δ10γδ1...δ8)ψ̄γΓδ11δ10εHδ1δ2δ3δ4Hδ5δ6δ7δ8 .

(2.58)
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2. Supersymmetry and Supergravity

Written in this way, it is precisely what we found in equation (2.50), but with an opposite
sign. Thus we have found both the remaining prefactors of the Lagrangian and proved its
SUSY invariance. We end this section by collecting the final results.

The 11-dimensional supergravity action is

S = 1
2κ2

∫
d11x

[
eR− 1

48eH
2 − 1

6B ∧H ∧H + 4ieψ̄µΓµνρDν

[
1
2(ω + ω̃)

]
ψρ+

+ i

48e
(
ψ̄λΓµνρσλτψτ + 12ψ̄µΓνρψσ

)(
Hµνρσ + H̃µνρσ

)]
.

(2.59)

For the local SUSY variations

δeσ
γ = −2iε̄Γγψσ, δBµνρ = 6iε̄Γ[µνψρ],

δψ = Dµε+ 1
288(−8HµρστΓρστ +HνρστΓµνρστ )ε,

(2.60)

we have checked the invariance up to quadratic order in ψ

δS = 0 +O
(
ψ2
)
. (2.61)

This Lagrangian also leads to the Einstein equations of motion [29]

Rµν −
1
2gµνR = 1

12

(
H̃µρσλH̃ν

ρσλ − 1
8gµνH̃ρ1ρ2ρ3ρ4H̃

ρ1ρ2ρ3ρ4

)
. (2.62)

2.2.4 Rescaling of the Fields

Before proceeding we will do some rescaling, in order to conform with the numerical values
of a work by Duff et al. [24]. This will be helpful later when we work with the seven-
sphere, since the definitions in this thesis will match theirs. We find that the following
rescalings

Bµνρ → 2Bµνρ =⇒ Hµνρσ → 2Hµνρσ, ψµ →
1√
2
ψµ, (2.63)

leads to the following redefinition of the supercovariant field strength

H̃µνρσ → 2Hµνρσ −
12
2 iψ̄[µΓνρψσ] = 2(Hµνρσ − 3iψ̄[µΓνρψσ]) = 2H̃µνρσ, (2.64)

which then together with an overall factor of 1
4 in the Lagrangian leads to

S = 1
2κ2

∫
d11x

[
1
4eR−

1
48eH

2 − 1
3B ∧H ∧H + i

2eψ̄µΓµνρDν

[
1
2(ω + ω̃)

]
ψρ+

+ i

192e
(
ψ̄λΓµνρσλτψτ + 12ψ̄µΓνρψσ

)(
Hµνρσ + H̃µνρσ

)]
.

(2.65)

This also causes a change in the transformation laws. Note that the fermionic parameter
ε gets rescaled in the same way as ψµ, which leads to

δeσ
γ = −iε̄Γγψσ, δBµνρ = 3

2 iε̄Γ[µνψρ],

δψ = D̃µε = Dµε+ 1
144(−8HµρστΓρστ +HνρστΓµνρστ )ε.

(2.66)
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2. Supersymmetry and Supergravity

Finally, we summarize the rescaled equations of motion

Rµν −
1
2gµνR = 1

3

[
H̃µρστ H̃ν

ρστ − 1
8gµνH̃

2
]
. (2.67)

DµH̃
µνρσ = 1

576eε
νρστ1...τ8H̃τ1...τ4H̃τ5...τ6 . (2.68)

ΓµνρD̃νψρ = 0. (2.69)

These results then match the results of Duff et.al. [24] up to signs and factors of i.

2.2.5 Supercovariant Quantities

Following this discussion, we summarize some important results here for future reference.
First, we have the supercovariant connection

ω̃µαβ = ωµαβ + i

2 ψ̄σΓστ µαβψτ = ωµαβ(e) + i
(
ψ̄µΓαψβ − ψ̄βΓµψα + ψ̄αΓβψµ

)
(2.70)

Any connection-dependent quantities, such as the Riemann tensor, with a tilde superscript
are then meant to be defined with respect to this connection. Finally, the supercovariant
field strength and the derivative is

H̃µνρσ = Hµνρσ − 3iψ̄[µΓνρψσ]

D̃µ = Dµ + 1
144(HνρστΓµνρστ − 8HµνρσΓνρσ)

(2.71)
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3
Seven-Sphere Compactification

This chapter will lay out the framework of the compactification from eleven to four di-
mensions. The Freund-Rubin ansatz for the compactification of the field strength will be
described, followed by a thorough examination of the geometry of the squashed seven-
sphere. We will see that the seven-sphere actually is a quite natural object to study
in this context, as it is one of the simplest non-trivial manifolds that yields consistent
compactification to four-dimensional spacetime.

3.1 The General Freund-Rubin Ansatz
Compactifying 11-dimensional supergravity to four dimensions with zero expectation value
for the field strength, HMNPQ, in all directions yields solutions for Ricci flat internal
manifolds[24]. However, when allowing non-zero values for the expectation value of the
field strength we will see that the constraint weakens and we can let the internal space
admit an Einstein metric1. This allows for other choices of topologies, in particular higher
dimensional spheres. Below we will consider a specific choice of background value for the
field strength which is called the Freund-Rubin ansatz [30].

Since we will be discussing splitting of indices and gamma matrices between different
manifolds, we will pass to a new notation, which differs from the one in chapter 2. Now,
capital letters, M,N,P, . . . indicate 11-dimensional indices and Greek letters, µ, ν, ρ, . . .
are 4-dimensional. This leaves the Latin indices,m,n, p, . . . , for the 7-dimensional compact
space. As usual, we demand vanishing fermionic expectation values, in order to preserve
maximal symmetry

〈ψM 〉 = 0. (3.1)
Next, we will look for product solutions of the form M4 × M7. This means that the
background value of the 11-dimensional metric is

〈ĝMN (x, y)〉 =
(
g̊µν(x) 0

0 g̊mn(y)

)
, (3.2)

where the hat notation indicates 11-dimensional quantities and the superscript circle means
background value. The coordinates x and y are coordinates on M4 and M7, respectively.
Note that the x and y dependence split completely in this case, though in principle we could
include a so called warp factor that incorporates x dependence in the 7-dimensional part.
A maximally symmetric spacetime also demands the following form of the 4D components
of the Riemann tensor

R̊µνρσ = 1
3Λ(̊gµρg̊νσ − g̊µσ g̊νρ). (3.3)

1An Einstein space is a space with Ricci tensor proportional to the metric.
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3. Seven-Sphere Compactification

We set the field strength to be non-zero only in the four-dimensional directions, which we
write as

〈Hµνρσ〉 = H̊µνρσ(x), 〈Hmnpq〉 = H̊mnpq(y) = 0. (3.4)

The x and y dependence here follow from the requirement that all ”mixed” field strengths
are zero and from the Bianchi identity. Now, we want the non-zero part of the field
strength to be invariant under 4D spacetime symmetries, so we take it proportional to the
only such four-index quantity we have available, the Levi-Civita tensor εµνρσ,

H̊µνρσ(x) = −3mε̊µνρσ, (3.5)

with some constant m. This, together with setting the internal directions of the fields
strength vacuum value to zero is what we call the Freund-Rubin ansatz [30]. It is worth
noting that the object εµνρσ is the tensor, and not the symbol. From now on and until
the end of this section, we drop the circle superscript notation, since we will exclusively
be working with vacuum values.

Now, we will apply this ansatz to our theory. We start by recalling the field equations of
11-dimensional supergravity2

RMN −
1
2 ĝMNR = 1

3

(
HMPQRHN

PQR − 1
8 ĝMNH

2
)
,

DMH
MNPQ = − 1

4 · (12)2 ε
NPQR1...R8HR1R2R3R4HR5R6R7R8 .

(3.6)

In the Freund-Rubin ansatz, the second equation is trivially fulfilled. The left hand side
is zero since ε is constant, and the right hand side is zero since we would need to have
repeated 4D indices in the 11-dimensional Levi-Civita tensor. The first equation then, is
what will constrain our theory given the ansatz. When multiplied by ĝMN it reduces to

R− 1
2δ

M
MR = 1

3

(
H2 − 1

8δ
M
MH

2
)

=⇒ R = 1
3

1− 11
8

1− 11
2
H2 = 1

36H
2,

where H2 = 9m2εµνρσε
µνρσ = −9m2 · 4! =⇒ R = −6m2

(3.7)

We find the constraints on the 4- and 7-dimensional metrics by considering those two
equations separately, and plugging in the value for the field strength. The 4-dimensional
equation becomes

Rµν −
1
2gµν(−6m2) = 1

3

(
9m2εµρστ εν

ρστ − 1
8gµν(−9 · 24m2)

)
=

= {εµρστ ενρστ = −3!gµν} = 3
(
−6m2gµν + 3m2gµν

)
=⇒ Rµν = −12m2gµν

(3.8)

and in an analogous way we find

Rmn = 6m2gmn (3.9)

This is the constraint that we have background solutions where the internal space is an
Einstein space. Note that this constraint comes purely from the 11-dimensional equations
of motion and the choice of background value for the field strength. We have not yet
specified the geometry of the internal manifold. In fact, one must not even specify the

2Here, the rescaling of the field strength discussed in the end of the last chapter has been incorporated.
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3. Seven-Sphere Compactification

dimensionality of the internal manifold. While we started from the assumption of a M4×
M7 splitting, one can start by analysing the 11-dimensional field equations. Since the field
strength has precisely four indices and should be proportional to some invariant tensor,
the four-dimensional Levi-Civita tensor appears as the natural way of splitting up the
theory. As a consequence, one could argue that 11-dimensional supergravity predicts the
dimensionality of spacetime to be four [30, 31]. One could imagine turning things around
and thinking of the four-dimensional manifold to instead be the compact one, but it turns
out that this way of seeing it has some problems, described in detail in [24, 32].

Furthermore, we see that in this ansatz the seven-dimensional Ricci tensor actually cor-
responds to a compact space, since the constant 6m2 is positive, which is precisely what
we desire. The four-dimensional part instead has a negative prefactor, −12m2, and thus
would imply AdS-space if we also want the background to be maximally symmetric.

We now proceed to see how the supercovariant derivatives, D̃M look in this ansatz. It will
be important to us since they appear in the Killing spinor equation, which determines the
number of surviving supersymmetries upon compactification. We will address this more
carefully shortly. The derivatives are obtained by plugging in the definition of the field
strength and using the following decomposition of the gamma matrices

Γ̂A =
{
γα ⊗ 1 A = α = 0, 1, 2, 3
γ5 ⊗ Γa A = a = 4, 5, 6, 7, 8, 9, 10

(3.10)

where Γa are the seven-dimensional gamma matrices. Recall the supercovariant derivative

D̃M = DM + 1
144

(
HNPQRΓ̂MNPQR − 8HMNPQΓ̂NPQ

)
(3.11)

We first investigate the case when M = m. The last term then vanishes from the ansatz.
The remaining term contains a rank 5 gamma matrix, with one 7-dimensional index and
four 4-dimensional ones. The matrix γ5 anti-commutes with all rank 1 gamma matrices
and is defined as

γ5 = iγ0γ1γ2γ3 = − i

4!εαβγδγ
αβγδ = − i

4!ενρστγ
νρστ (3.12)

Note that in the last equality the Levi-Civita symbol is changed to the tensor. The
relevant identities for the Levi-Civita tensor can be found in appendix A.2. Using this we
can rewrite the remaining term as

− 3m
144ενρστ Γ̂mνρστ = −m48ενρστγ5γ

νρστ ⊗ Γm = −mi4!
48 γ5γ5 ⊗ Γm = − i2mΓm (3.13)

For the case M = µ, it is instead the first term that vanish, since it will contain a 4-
dimensional gamma matrix with five indices. Writing out the second term yields

8 · 3m
144 εµνρσγ

νρσ ⊗ 1 =
{
γµγ5 = − i

4!ενρστ γµγ
νρστ︸ ︷︷ ︸

=4δνµγρστ

= − i

3!εµρστγ
ρστ

}
= im

3!
6 γµγ5 (3.14)

Summarizing the answers we have

D̃µ = Dµ + imγµγ5

D̃m = Dm −
i

2mΓm
(3.15)
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3. Seven-Sphere Compactification

3.1.1 The Killing Spinor Equation

As mentioned earlier, we assume the background solutions we are currently considering
to have a high degree of symmetry. Thus, it is natural to also demand preserved super-
symmetry after compactification [33]. This requirement can be formulated in terms of the
supersymmetry parameter ε as

δψM = D̃M ε = 0 (3.16)

This is the Killing spinor equation, and we say that those ε which are solutions to this
equations are Killing spinors. Much like Killing vectors determine ordinary (bosonic)
symmetries in other theories, this equation determines the number of supersymmetries [2,
22]. The Killing spinors are taken to separate as

ε(x, y) = ε(x)η(y) (3.17)

and we may then look for solutions on the internal and external manifolds separately.
Focusing on the constraints on the background solution for the internal manifold we thus
look for solutions to the equation

D̃mη = Dmη −
im

2 Γmη = 0 (3.18)

Acting with another supercovariant derivative and taking the commutator then yields[
D̃m, D̃n

]
η = 0 (3.19)

This is called the integrability condition. The name stems from the fact that if this
condition is fulfilled, there may exist solutions obtainable by integrating the equation.
Though this fact is not obvious when written in the current way. Writing the integrability
condition out explicitly yields

0 = [Dm, Dn]η +
[
im
2 Γm, im2 Γn

]
η = 1

4RmnabΓ
abη − m2

4 [Γm,Γn]η =

= 1
4RmnabΓ

abη − m2

2 emaenbΓ
abη = 1

4Cmn
abΓabη,

(3.20)

where Cmnab is the Weyl tensor, defined in general dimensions d, by

Cµν
ρσ = Rµν

ρσ − 4
d−2R[µ

[ρgν]
σ] + 2

(d−1)(d−2)g[µ
[ρgν]

σ]. (3.21)

Thus, in order to determine the number of supersymmetries surviving after compactifying
the theory, we have to count the number of solutions to the equation

Cmn
abΓabη = 0. (3.22)

At this point, if we specify the geometry of the internal manifold we could explicitly count
the number of supersymmetries. We will not do this now, but return with a qualitative
analysis of the equation later on in the chapter. In upcoming section, we will focus on
understanding the properties of the seven-sphere and define what is meant by ”squashing”
a sphere.

3.2 A Squashed Sphere in Higher Dimensions
Perhaps the best way to think of a round seven-sphere is as the set of all points at a
given distance from the origin in an eight-dimensional space. Understanding the squashed
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3. Seven-Sphere Compactification

sphere is more difficult but can be done in a number of ways. Here we will take the
viewpoint of it as a fibre bundle. Another common approach is via quaternions3 which is
well described in [24].

3.2.1 Fibre Bundles

The fibre bundle structure is used to describe spaces which locally has the structure of a
direct product of two other spaces, but not necessary so globally. It has many applications
in physics, especially in gauge theories [34], although here we will mainly use it to better
understand the structure of the squashed seven-sphere.

Definition 1 A fibre bundle is defined by the following elements [34]:

(i) The total space (differentiable manifold) E

(ii) The base space (differentiable manifold) M

(iii) The typical fibre (differentiable manifold) F

(iv) A surjective projection, π, from the total space to the base space. The inverse
π−1(p) = Fp is called the fibre at p.

(v) The structure group G, which is a Lie group acting on the fibre

(vi) An open covering {Ui} of M, with the mapping φi : Ui × F → π−1(Ui) such that
π ◦ φi(p, f) = p. φi is called the local trivialisation.

(vii) For some p ∈ M define φi(p, f) by φi,p(f). Define the transition function between
two patches by tij(p) ≡ φ−1

i,p ◦ φj,p : F → F . On any overlap of patches, we demand
that tij(p) ∈ G

This description is quite mathematical, and we will not need it in its entirety to understand
the squashed seven-sphere. In fact, the terminology to be used when referring to a fibre
bundle will be ”E is an F bundle over M” without specifying the rest of the structure.
The main point is what we stated above, the manifold E looks locally like M × F . The
projection π and the local trivialisations φi ensure that this local behaviour is consistent
in all patches Ui and the constraint that the transition functions tij ∈ G ensures that
the patches can be ”glued together” in a consistent way. If all transition functions are
identity maps the bundles is called a trivial bundle and the total space, E is globally a
direct product of M × F .

A great example of where fibre bundles are useful is the Möbius band. First, define a
cylinder as an R bundle over S1. This means, that base space is a circle and the typical
fibres are taken to be one-dimensional lines extending out from the circle. The cylinder is
a trivial bundle; it is also globally described by a product of a circle and a line segment.
In order to construct a Möbius band from a cylinder one makes a cut along the vertical
direction, twists one end and glues it back together. In the language of fibre bundles, this
construction corresponds to a a non-trivial transition function. Define the patches Ui to
be two semicircles overlapping at their endpoints, and make the cut at the overlap and
then ”glue” it together. The transition function between the two patches is no longer the
identity, instead it changes the orientation of fibre. The Möbius band is no longer globally

3Quaternions are, very simplified, a generalisation of complex numbers with three instead of one imag-
inary unit.
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3. Seven-Sphere Compactification

Figure 3.1: A Möbius band and a cylinder. The cylinder is both globally and locally the
direct product S1×R, but the Möbius band only has this structure locally. In particular,
it has only one edge.

a direct product space, but locally one cannot distinguish it from a cylinder.

3.2.2 The Seven-sphere as a Fibre Bundle

In the formalism developed above, the seven-sphere is an S3 bundle over S4. It does not
have this structure globally however, which is why the fibre bundle description is necessary.
The standard metric on S4 is [24]

ds2(S4) = dµ2 + 1
4 sin2(µ)Σ̃2

i , (3.23)

where the coordinate µ ∈ [0, π] and the Σ̃i are generators of SU(2). If we wanted to
construct a direct product of S4 × S3 from this, we would add a new term similar to the
second term but with a new set of SU(2) generators. The procedure to obtain a fibre
bundle structure is similar, but we also add a term inside the square of the new SU(2)
generators. In order for this to yield something non-trivial, we must take it to depend on
the S4 coordinates. Following Duff et al. [24] we take the new term to be

Ai = sin2(1
2µ)Σ̃i. (3.24)

Introducing a local S4 dependence on the S3 is the same as specifying some gauge symme-
try in the system, so we call this new term the gauge potential. The fibre bundle metric
on S7 is then

ds2(S7) = dµ2 + 1
4 sin2(µ)Σ̃2

i + λ2(σi −Ai)2, (3.25)

where the σi are a new set of SU(2) generators. The squashing of the sphere is given by
the parameter λ, which can be interpreted as changing the S3 part relative to the S4.

This way of seeing the seven-sphere is quite instructive, but not the best way when com-
puting the Riemann tensor of the sphere. Therefore, we recast the metric to another form.
First, we define the following linear combination

σi = 1
2(νi + ωi). (3.26)
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Plugging these into (3.25) yields

ds2(S7) =dµ2 + 1
4 sin2(µ)Σ̃2

i + λ2
(1

2(νi + ωi)− sin2(1
2µ)Σ̃i

)2

=dµ2 + 1
4 sin2(µ)Σ̃2

i + λ2
(1

2(νi + ωi) + 1
2 cos(µ)Σ̃i −

1
2Σ̃i

)2 (3.27)

Finally, we set Σ̃i = ωi and two terms in the last parentheses cancel. This leads to the
metric as presented in [24] and is the one we will use in the following section.

3.3 Riemann Tensor of the Squashed Seven-sphere
In this section we will derive the Riemann curvature tensor for the squashed seven-sphere.
At the end of the section we will see why this manifold is interesting when compactifying
11-dimensional supergravity.

Our starting point for the following calculation will be the defining equation for vanishing
torsion, also known as the first Maurer-Cartan equation [34].

T a = dea + ωab ∧ eb = 0, (3.28)

where ea are the frame 1-forms and ωab is the connection 1-form. The metric on the
squashed seven sphere is given by [24]

ds2 = dµ2 + 1
4 sin2 µω2

i + 1
4λ

2(νi + cosµωi)2. (3.29)

It is worth mentioning the notation here. When writing cosµωi we always mean that the
only argument of cosine is the symbol directly following, i.e., cosµωi = cos(µ)ωi. If there
is more than one argument, we would always write out the parentheses explicitly. From
the above metric we can read of the frame 1-forms

e0 = dµ, ei = 1
2 sinµωi, eı̂ = 1

2λ(νi + cosµωi). (3.30)

It will be useful later on to also have these expression inverted

ωi = 2
sinµe

i, νi = 2
λ
eı̂ − cotµek. (3.31)

The forms ωi and νi are related by

νi = σi + Σi, ωi = σi − Σi, (3.32)

where σ and Σ are left-invariant one-forms satisfying the SU(2) algebra

dσi = −1
2εijkσj ∧ σk, dΣi = −1

2εijkΣj ∧ Σk. (3.33)

In order to find the curvature tensor we will first have to solve for all components of
the connection 1-form. Note the notation introduced above where we split up the 7-
dimensional indices as a = (0, i, ı̂), where i = 1, 2, 3 and ı̂ = 4, 5, 6 = 1̂, 2̂, 3̂. Thus, we will
rewrite the connections in terms of their components in the frame fields as follows

ωab = ω0abe
0 + ωiabe

i + ωı̂abe
ı̂. (3.34)
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But first, we write out the solutions to the Maurer-Cartan equation, dea = ωba ∧ eb
explicitly for the three cases. We start with the simplest case and do it explicitly for
clarity. We have

de0 = ddµ = 0 = ω00 ∧ e0 + ωi0 ∧ ei + ωı̂0 ∧ eı̂. (3.35)
The symmetry ω(ab) = 0 means that the first term vanish. For the remaining two terms
we split up the connection in components. Then we find

0 = ω0i0e
0 ∧ ei + ωji0e

j ∧ ei + ω̂i0e
̂ ∧ ei + ω0ı̂0e

0 ∧ eı̂ + ωjı̂0e
j ∧ eı̂ + ω̂̂ı0e

̂ ∧ eı̂. (3.36)

Since the left-hand side is zero, all these terms must vanish separately. However, due to
the anti-symmetric property of the wedge product we only know that the component with
antisymmetry in the first two indices vanish. Summarizing the information obtained from
the equation above then leads to

ω[0i]0 = 0 =⇒ ω0i0 = 0 ω[ji]0 = 0, ω[̂i]0 = 0,

ω[0ı̂]0 = 0 =⇒ ω0ı̂0 = 0 ω[̂̂ı]0 = 0.
(3.37)

The boxed equations follow from the antisymmetry of the connection in the two last
indices, which implies ωabb = 0. The remaining three equations will allow us to deduce the
remaining components later on, but first we need to solve the remaining Maurer-Cartan
equations.

dei = 1
2(d sinµ)ωi + 1

2 sinµdωi = 1
2 cosµe0 ∧ ωi − 1

4 sinµ(εijk(σj ∧ σk − Σj ∧ Σk))

=
{
ωj ∧ νk = σj ∧ σk + σj ∧ Σk − Σj ∧ σk − Σj ∧ Σk =⇒

εijkωj ∧ νk = εijkσj ∧ σk − εijkΣj ∧ Σk

}
= 1

2 cosµe0 ∧ ωi − 1
4 sinµεijkωj ∧ νk

= cotµe0 ∧ ei − 1
2εijke

j ∧ νk = cotµe0 ∧ ei − 1
λεijke

j ∧ ek̂ + cotµεijkej ∧ ek.

(3.38)

Here we have used the expressions in (3.31) in order to express everything as exterior
products of the frame 1-forms. This will allows us to read off the connection components
from the right hand side of the Maurer-Cartan equation

dei = ωj0ie
j ∧ e0 + ω̂0ie

̂ ∧ e0+

+ ω0jie
0 ∧ ej + ωkjie

k ∧ ej + ωk̂jie
k̂ ∧ ej+

+ ω0̂ie
0 ∧ ê + ωk̂ie

k ∧ ê + ωk̂̂ie
k̂ ∧ ê.

(3.39)

We find that there is five different terms above, since ej ∧ e0 = −e0 ∧ ej and so on.
Comparing antisymmetrised coefficients then yields the following

2ω[0j]i = cotµδij =⇒ ωj0i = − cotµδij ω[0̂]i = 0,

ω[jk]i = εijk cotµ =⇒ ωkij = εijk cotµ 2ω[jk̂]i = − 1
λ
εijk, ω[k̂̂]i = 0.

(3.40)

The boxed equations follow immediately from the symmetry of δij and the antisymmetry
of εijk, respectively. Next, we solve the last Maurer-Cartan equation

deı̂ = 1
2λ(dνi + d(cosµωi)) = 1

2λ
(
− 1

2εijk(σj ∧ σk + Σj ∧ Σk)− sinµe0 ∧ ωi+

+ cosµ(−1
2εijkωj ∧ νk)

)
=
{
νj ∧ νk + ωj ∧ ωk = 2(σj ∧ σk + Σj ∧ Σk)

}
=

=
(
− λ

2 sin2 µ
εijk −

λ cot2 µ

2 εijk + λ cot2 µεijk
)
ej ∧ ek − 1

2λεijke
̂ ∧ ek̂ − λe0 ∧ ei

(3.41)
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3. Seven-Sphere Compactification

Here we have again used the results of (3.31) to rewrite the results. Note that there is
two ê ∧ ek terms in the above calculation that we have not written out since they cancel
each other. Now we use that

cot2 µ− cot2 µ

2 − 1
2 sin2 µ

= 1
2 sin2 µ

(cos2 µ− 1) = −1
2 , (3.42)

to obtain
deı̂ = −λ2 εijke

j ∧ ek − 1
2λεijke

̂ ∧ ek̂ − λe0 ∧ ei. (3.43)

Comparing this to the right hand side

deı̂ = ωj0ı̂e
j ∧ e0 + ω̂0ı̂e

̂ ∧ e0+

+ ω0jı̂e
0 ∧ ej + ωkjı̂e

k ∧ ej + ωk̂jı̂e
k̂ ∧ ej+

+ ω0̂̂ıe
0 ∧ ê + ωk̂̂ıe

k ∧ ê + ωk̂̂̂ıe
k̂ ∧ ê,

(3.44)

gives the following results

ω[0j ]̂ı = −1
2λδij , ω[0̂]̂ı = 0, ω[jk]̂ı = −εijk λ2 =⇒ ωjkı̂ = −λ

2 εijk

ω[jk̂]̂ı = 0, ω[̂k̂]̂ı = − 1
2λεijk =⇒ ω̂k̂ı̂ = − 1

2λεijk
(3.45)

From the above analysis we have determined six components of ωabc completely, the boxed
equations. Since the 1-form ωbc is antisymmetric in its last two indices, each taking three
values, 0, i, ı̂, there are five such omegas. Each having three components then amounts to
a total of 15 components to compute. To figure out the remaining components we will use
the identity

ωabc = ω[ab]c + ω[ca]b − ω[bc]a, (3.46)

which follows from the fact that ωabc is anti-symmetric in its last two indices. We then
find

ω̂0i = 0 + 0 + 1
2λδij = 1

2λδij ,

ωj0ı̂ = 1
2λδij + 0− 0 = 1

2λδij , ω̂0ı̂ = 0 + 0− 0 = 0,

ω0ij = 1
2 cotµδij − 1

2 cotµδij − 0 = 0, ωk̂ij = 1
2λεjik −

1
2λεijk + εkij

λ
2 = εijk

(
λ
2 −

1
λ

)
,

ω0î = −1
2λδij + 0− 0 = −1

2λδij , ωk̂î = 0 + 0− 0 = 0,

ω0ı̂̂ = 0 + 0− 0 = 0, ωkı̂̂ = 0 + 0− 0 = 0.

Summarizing our results we then obtain

ω0i = − cotµei + λ
2 e
ı̂, ω0ı̂ = λ

2 e
i, ωij = εijk cotµek + εijk

(
λ
2 −

1
λ

)
ek̂,

ωî = −λ
2 δije

0 − λ
2 εijke

k, ωı̂̂ = − 1
2λεijke

k̂.
(3.47)

3.3.1 Computing the Curvature Tensor

Having determined all components of the connection we are now ready to compute the
curvature 2-form, Θij . Writing out the curvature 2-form explicitly will then let us read
off the components of the Riemann tensor. The curvature 2-form is defined by

Θab ≡ dωab + ωac ∧ ωcb, (3.48)
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3. Seven-Sphere Compactification

and related to the Riemann tensor as

Θab = 1
2Rabcde

c ∧ ed. (3.49)

The components are computed by taking the results in (3.47), plugging them into (3.48)
and computing each component at a time. By using equations (3.38) and (3.43) we are
left with only algebra that needs to be done, eventually leading up to the following result

Θ0i = e0 ∧ ei
(
1− 3

4λ
2
)

+ εijke
̂ ∧ ek̂ 1

4

(
1− λ2

)
,

Θ0ı̂ = e0 ∧ eı̂ 1
4λ

2 + εijke
j ∧ ek̂ 1

4

(
λ2 − 1

)
,

Θij = ei ∧ ej
(
1− 3

4λ
2
)

+ eı̂ ∧ ê 1
2

(
1− λ2

)
,

Θî = εijke
0 ∧ ek̂ 1

4

(
λ2 − 1

)
+ ei ∧ ê 1

4λ
2 + ej ∧ eı̂ 1

4

(
λ2 − 1

)
+ em ∧ em̂δij 1

4

(
1− λ2

)
,

Θı̂̂ = εijke
0 ∧ ek 1

2

(
1− λ2

)
+ ei ∧ ej 1

2

(
1− λ2

)
+ eı̂ ∧ ê 1

4λ2 .

(3.50)

This fully determines the Riemann tensor. For example, if one seeks R0i0j , we turn to the
first line and read off to find

R0i0j = δij
(
1− 3

4λ
2
)
. (3.51)

Terms like Rki`j are somewhat trickier to find immediately, the procedure is

Θki = · · ·+ ek ∧ ei
(
1− 3

4λ
2
)

= · · ·+ δk` δ
i
je
` ∧ ej

(
1− 3

4λ
2
)

= 1
2Rkiabe

a ∧ eb

=⇒ 1
2Rki[`j] = δk[`δ

i
j]

(
1− 3

4λ
2
)

=⇒ Rki`j = 2δki`j
(
1− 3

4λ
2
)
.

(3.52)

The most complicated terms to read off are those mixing hatted and unhatted coordinates,
partly because in those cases we cannot naively impose the antisymmetry as we did above.
Let us consider an example. In order to find Rkı̂`̂ we need to do the following

Θkı̂ = · · ·+
(
δk` δ

i
j

1
4λ

2 + δi`δ
k
j

1
4

(
λ2 − 1

)
+ δ`jδ

ik 1
4

(
1− λ2

))
e` ∧ ê = 1

2Rkı̂abe
a ∧ eb

=⇒ Rkı̂[`̂] = Rkı̂`̂ = δk` δ
i
j

1
4λ

2 + δi`δ
k
j

1
4

(
λ2 − 1

)
+ δ`jδ

ik 1
4

(
1− λ2

)
.

(3.53)

Note that the factor of 1
2 is not there in this case, it vanishes since the exterior prod-

uct appears in two ways related by antisymmetry when we expand the sum in a and b.
Furthermore, we do not impose explicit antisymmetrisation on the right hand side. The
reason is actually due to our notation. Consider the last term, where we actually have
mixed indices in the Kronecker deltas, e.g. δ`̂. We have defined this quantity in the
following way

δ`̂ =


1, ` = 1 and ̂ = 1̂ = 4
1, ` = 2 and ̂ = 2̂ = 5
1, ` = 3 and ̂ = 3̂ = 6
0, else.

=



1 0 0
0 1 0
0 0 1


. (3.54)

So, while written as a δ, it is not really symmetric under interchange of hatted and
unhatted indices. This becomes evident when viewing it in the matrix form presented
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3. Seven-Sphere Compactification

above. So, we will leave the expression in equation (3.53) as it is of now, and then it will
simplify when we compute the Ricci tensor later on.

Now, we are ready to use the above result to compute the Ricci tensor on the squashed
seven sphere. It is as usual defined by

Rab = Rcacb = Rcadbδ
dc. (3.55)

It is worth noting that upstairs or downside indices do not matter here, since both (hatted
and unhatted) flat metrics are Euclidean. The following identity will come in handy in
the calculations to follow

δki`j δ
`
k = D − 1

2 δij . (3.56)

For D = 3, which is the case for the hatted and unhatted metrics, the prefactor is just 1.
We now start by computing the zero-components of the Ricci tensor

R00 = Ri0j0δ
j
i +Rı̂0̂0δji = δij

(
1− 3

4λ
2
)
δji +δij 1

4λ
2δji = 3− 9

4λ
2+ 3

4λ
2 = 3

(
1− 1

2λ
2
)
. (3.57)

R0i = Rj0kiδ
j
k +R̂0k̂iδ

j
k = 0 + εjik

1
4

(
λ2 − 1

)
δjk = {εkik = 0} = 0. (3.58)

R0ı̂ = Rj0kı̂δ
j
k +R̂0k̂ı̂δ

j
k = 0 + 0. (3.59)

Then, proceeding with Rij we will use (3.52), (3.53) and the identity in (3.56). This leads
to

Rij =R0i0j +Rki`jδ
`
k +Rk̂iˆ̀jδ

`
k = δij

(
1− 3

4λ
2
)

+ 2δki`j
(
1− 3

4λ
2
)
δ`k

+
(
δk` δ

i
j

1
4λ

2 + δi`δ
k
j

1
4

(
λ2 − 1

)
+ δ`jδ

ik 1
4

(
1− λ2

))
δ`k =

=3δij
(
1− 3

4λ
2
)

+ δij
3
4λ

2 + δij
1
4

(
λ2 − 1

)
− δij 1

4

(
λ2 − 1

)
= δij3

(
1− 1

2λ
2
)
,

(3.60)

where we also used the fact that δi`δkj δ`k = δij and δk` δ`k = 3. Next is the mixed term, which
we immediately find to be vanishing

Rî = R0i0̂ +Rki`̂δ
l
k +Rk̂i ˆ̀̂δ

`
k = 0 + 0 + 0. (3.61)

Then finally we compute Rı̂̂, making use of the results in (3.60) to find

Rı̂̂ = R0ı̂0̂ +Rkı̂`̂δ
`
k +Rk̂ı̂ ˆ̀̂δ

l
k = δij

1
4λ

2 + δij
3
4λ

2 + δki`j
1

2λ2 δ
`
k = δij

(
λ2 + 1

2λ2

)
. (3.62)

So we find that the Ricci tensor is indeed diagonal. In order for it to be an Einstein metric
we require it to be proportional to the metric and thus we solve

3− 3
2λ

2 = λ2 + 1
2λ2 =⇒ λ2 = 3

5 ±
2
5 . (3.63)

That is, apart from the round sphere with λ2 = 1 (which we knew was an Einstein metric,
since it is maximally symmetric) the squashed sphere with squashing parameter λ2 = 1

5
also admits an Einstein metric.

It is quite interesting that there is only one specific configuration where we can compact-
ify 11-dimensional supergravity on a squashed seven-sphere in the Freund-Rubin ansatz.
Having determined the geometry of the internal manifold we return to the Killing spinor
equation

Cmn
abΓabη = 0. (3.64)
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3. Seven-Sphere Compactification

Consider first the case when λ = 1 and the round seven-sphere. Since it is a maximally
symmetric space the Weyl tensor is zero and the number of solutions is equal to the number
of components of the spinor[2]. In d = 7 dimensions, a spinor has 2(d−1)/2 = 8 components
and thus we have 8 preserved supersymmetries, which means we have an N = 8 super-
gravity theory in four dimensions. In the case of the squashed seven-sphere, we do not
have maximal symmetry and the Weyl tensor is non-zero. Using the results of Awada et al.
[35], the Weyl tensor on the squashed S7 can be seen to have 14 independent components.
One can then go to a specific representation of the seven-dimensional gamma matrices
and solve the Killing spinor equation. It turns out that there exists exactly one solution
for the squashed seven-sphere [35] in the Freund-Rubin ansatz. More importantly, Duff
et al. [24] have also showed that if one changes the orientation of the sphere, by a parity
transformation of the internal metric, there are no solutions to the Killing spinor equation.
We will return to this fact later on, and discuss it in the context of the Swampland.
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4
Stability of the S7 Scale and

Squashing Modes

In this chapter, we will perform the actual compactification on the seven-sphere and
analyse the effective four-dimensional theory it gives rise to. First however, it is worth
taking a step back and summarise what we have done so far.

Our starting point has been 11-dimensional supergravity, the low-energy limit of M-theory
which unifies all five versions of string theory. Due to the theory’s higher-dimensional
nature, we must treat the extra dimensions as directions on a compact manifold. In the
previous chapter we saw that the theory spontaneously compactifies to exactly four dimen-
sions, due to the four index structure of the field strength. We chose the background ansatz
of Freund-Rubin and found that this demanded a hyperbolic four-dimensional spacetime
(AdS) and a compact seven-dimensional Einstein space. This is fulfilled by a round seven-
sphere, but we showed that a certain distortion of the S7 metric also yields an Einstein
space. We stated that the main difference between these two solutions is the number of
supersymmetries in the four-dimensional resulting theory.

We start this chapter by letting the squashing of the sphere be spacetime dependent, in
order to obtain a scalar potential in the four-dimensional theory. Then, we compute the
new curvature tensor and find the equations of motion. Lastly, we will use these equations
to determine the Lagrangian and the effective four-dimensional scalar potential. We also
comment on the solutions linearised around the squashed ground state.

4.1 Spacetime Scalars in the Metric

We begin by writing down a general 11-dimensional metric that is the product of an
arbitrary spacetime metric and a squashed S7. However, we now want to promote the
squashing parameter to a spacetime dependent Lorentz scalar and introduce a so called
scaling parameter which controls the overall size of the S7. We will denote these parameters
v(x) and u(x), respectively. In general, when we want distinguish between coordinate
dependencies we take x to be coordinates on spacetime and y to be coordinates on S7.
The squashing parameter will relate to the now x-dependent λ from the previous chapter
as

λ2(x) = e−7v(x). (4.1)

We will also introduce the following combinations of the scalar fields u and v

A ≡ 7
2u, B ≡ −u− 3

2v, C ≡ −u+ 2v. (4.2)
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4. Stability of the S7 Scale and Squashing Modes

The reason for the above definitions is only to write the metric in a convenient form. Note
especially that 2(B−C) = 7v. We follow [36] and write the general 11-dimensional metric
as

dŝ2 = η̂ABdXAdXB =e−2Aηαβdxαdxβ

+ e−2B
[

1
4dµ2 + 1

16 sin2 µ
3∑
i=1

ω2
i

]

+ e−2C
3∑
i=1

1
16(νi + cosµωi)2.

(4.3)

The prefactor e−2A in front of the four-dimensional metric is purely there for convenience.
The scalars u and v are parameters of the S7 but we are free to also choose any overall
scale of the metric. This specific choice will eliminate any u-dependent factors in the Ricci
scalar term in the resulting Lagrangian. In terms of the seven-sphere we looked at in the
last chapter the metric is

dŝ2 = e−2Aηαβdxαdxβ + e−2B

4 × ds2
(
S7
)∣∣∣∣
λ=λ(x)

(4.4)

where ds2(S7) is the same as in equation (3.29). Our goal is now to find the Ricci tensor of
this metric. Thanks to our notation, we will be able to reuse our results from the previous
section. In order to do this we must reverse engineer this metric from a direct product of
spacetime and S7. We will first define the frame fields in the following way

eα = eα(x), e0 = e0(y) = 1
2dµ, (4.5)

ei = ei(y) = 1
4 sinµωi, eı̂ = eı̂(x, y) = 1

4e
−7

2v(x)(νi + cosµωi). (4.6)

Note that these definitions are very similar to what we used earlier, but now with an
additional factor of 1

2 . This is to absorb the 1
4 in dŝ2. Since we aim to reuse our previous

results we must note that this change will increase the previous answers for the Ricci tensor
on S7 by a factor of 4. In fact, it will be useful to recall the previous results rewritten in
terms of the scalar v. We have

Rab = δab
(
12− 6e−7v

)
, Rı̂̂ = δij

(
4e−7v + 2e7v

)
. (4.7)

Here, the index a = (0, i) is on S4 while ı̂ is on S3 when we write S7 as a twisted product
of S4 × S3. Now, in terms of these frame fields we see that the metric can be written as

dŝ2 = e−2B
[
e−2(A−B)eαeα + eaea + eı̂eı̂

]
. (4.8)

By introducing the rescaled frame field ẽα = e−(A−B)eα, we note that this metric is related
by a Weyl rescaling with e−2B to the metric

ds̄2 = ẽαẽα + eaea + eı̂eı̂. (4.9)

This metric is very close to a direct product of an arbitrary spacetime metric and an S7

metric. However, since there is an x-dependent factor in eı̂ we cannot directly reuse our
old results. However, it is straightforward to compute the Ricci tensor of this metric in
terms of our old results. In order to simplify the upcoming computations we will introduce
the notation were we split up the exterior derivative as

d = d4 + d7. (4.10)
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The first term acts only on spacetime dependent quantities and the second terms acts only
on the internal directions. Thus, terms like d7e

ı̂ will produce exactly the results we have
obtained earlier, since the x-dependent prefactor is a constant with respect to the internal
coordinates. Again we will start from the first Maurer-Cartan equation

dẽA = ω̄[BC]
AẽB ∧ ẽC . (4.11)

We use the ω̄ notation here to denote that this ω receive corrections from the λ(x) prefactor
in eı̂. However, since λ does not depend on the internal coordinates, any new components
of ω̄ must contain a mix of indices, and such connection components were all zero for
constant λ. Note that all quantities now are with respect to the scaled framefields, ẽα, so
we will have to rescale these coordinates in the end. We see that the only term yielding a
new contribution is given by deı̂ and thus find

dẽı̂ = deı̂ = d4e
ı̂ + d7e

ı̂ = 1
λ
∂̃αλẽ

α ∧ eı̂ + ω[IJ ]
ı̂eI ∧ eJ . (4.12)

Capital indices I, J, . . . denote all indices on S7, i.e. I = (0, i, ı̂). We find that almost all
components looks the same as in the previous case with λ now equal to λ(x). We will
from now on sometimes write λ(x) in terms of v(x) to clean up expressions. The new
components obtained from (4.11) are

ω̄[α̂]
ı̂ = − 7

2 · 2 ∂̃αvδ
i
j =⇒

{
ω̄α̂̂ı = ω̄[α̂]̂ı + ω̄[̂ıα]̂ − ω̄[̂̂ı]α = 0
ω̄̂αı̂ = ω̄α̂̂ı − 2ω̄[α̂]̂ı = 7

2 ∂̃αvδji
(4.13)

So, the 1-form ω̄αı̂ is
ω̄αı̂ = 7

2 ∂̃αvδije
̂ = 7

2 ∂̃αveı̂. (4.14)

We may now turn to compute the new 11-dimensional curvature two-forms, coming from
the ds̄2 metric. Since the curvature two-form contains quadratic terms in ω̄ it is possible
that even the two-form in the internal directions receives corrections. We will now use
the notation Θ̄αβ to denote 11-dimensional 2-forms with λ = λ(x). In contrast Θ̃αβ will
denote 11-dimensional 2-forms but with constant λ. All quantities are with respect to the
rescaled spacetime frame fields ẽα.

We start with the 2-form with space-time indices

Θ̄αβ = dω̄αβ + ω̄αC ∧ ω̄Cβ = dω̃αβ + ω̃αγ ∧ ω̃γβ− ω̄αı̂∧ ω̄βı̂ = Θ̃αβ− ω̄αı̂∧ ω̄βı̂ = Θ̃αβ. (4.15)

Here we used that ω̄αβ = ω̃αβ. This allows us to rewrite the right hand side in terms of
the Θ̃αβ Furthermore, the extra term contains only a term of the form eı̂ ∧ eı̂ and is thus
zero. Continuing with the other components we find

Θ̄α0 = dω̄α0 + ω̄αB ∧ ω̄B0 = −ω̄αı̂ ∧ ω̄0ı̂ = 7
2 ∂̃αveı̂ ∧

1
2e
−7

2vei = 7
4e
−7

2v∂̃αve
ı̂ ∧ ei. (4.16)

Θ̄αi = dω̄αi+ ω̄αB ∧ ω̄Bi = −ω̄α̂∧ ω̄î = 7
4e
−7

2v∂̃αvδije
̂∧e0 + 7

4e
−7

2v∂̃αvεijke
̂∧ek. (4.17)

Θ̄αı̂ = dω̄αı̂ + ω̄Bı̂ = ẽγ ∧ ê 72δji
(
∂̃γ ∂̃αv + ω̃γα

β ∂̃βv −
7
2(∂̃αv)(∂̃γv)

)
+

+ eJ ∧ eK 7
2ω[JK ]̂ı∂̃αv − ê ∧ ek̂

7
4e

7
2vεijk∂̃αv =

= ẽβ ∧ ê 72δij
(
D̃β ∂̃αv −

7
2(∂̃βv)(∂̃αv)

)
− e0 ∧ ejδji

7
2 ∂̃αv − e

j ∧ ek 7
4εijke

−7
2v∂̃αv.

(4.18)
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In the last equation the term containing ê ∧ ek̂ from d7e
ı̂ cancelled to a similar term

coming from ωα̂ ∧ ω̂̂ı.

Next, we turn to computing the curvature 2-form components in the internal directions.
We still denote 11-dimensional quantities with λ = λ(x) by Θ̄IJ . However, there is no
need to use the notation Θ̃IJ since for constant λ the metric is block diagonal and the S7

is unaffected by rescalings in the spacetime framefields. We find

Θ̄0i = Θ0i + ẽα ∧ êδij ∂̃αλ. (4.19)

Θ̄0ı̂ = Θ0ı̂ + 1
2 ẽ

α ∧ ejδij ∂̃αλ. (4.20)

Θ̄ij = Θij + ẽα ∧ ek̂εijk∂̃αλ. (4.21)

Θ̄î = Θî − ẽα ∧ e0 1
2δij ∂̃αλ− ẽ

α ∧ ek 1
2εijk∂̃αλ. (4.22)

Θ̄ı̂̂ = Θı̂̂ − ek̂ ∧ e
ˆ̀ 1
λ2 (∂̃λ)2δk`ij = Θı̂̂ − ek̂ ∧ e

ˆ̀49
4 (∂̃v)2δk`ij . (4.23)

4.1.1 Computing the Ricci Tensor

From the curvature 2-forms above we find the relevant Riemann tensor components to
obtain the Ricci tensor. It is as previously defined by

Θ̄AB = 1
2R̄ABCDẽ

C ∧ ẽD. (4.24)

The process is analogous to the previously described one of the squashed seven-sphere.
We start with the space-time directions. The Ricci tensor is

R̄αβ = R̄αCβDη
CD, (4.25)

and the relevant Riemann components are thus immediately found from the curvature
2-forms to be

R̄αγβδ = R̃αγβδ, R̄αcβd = 0, R̄αı̂β̂ = 7
2δij

(
D̃β ∂̃αv −

7
2(∂̃βv)(∂̃αv)

)
, (4.26)

and thus we find
R̄αβ = R̃αβ + 21

2

(
D̃β ∂̃αv −

7
2(∂̃βv)(∂̃αv)

)
. (4.27)

For the internal S4 directions we have

R̄ab = R̄aCbDη
CD, (4.28)

so we need the following components

R̄aαbβ = 0, R̄acbd = Racbd, R̄aı̂b̂ = Raı̂b̂. (4.29)

And thus we see that
R̄ab = Rab, (4.30)

and for the S3

R̄ı̂̂ = R̄ı̂ĈDη
CD, (4.31)
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we need the components

R̄ı̂α̂β = 7
2δij

(
D̃β ∂̃αv −

7
2(∂̃βv)(∂̃αv)

)
, R̄ı̂âb = Rı̂âb, R̄ı̂k̂̂ˆ̀ = Rı̂k̂̂ˆ̀−

49
2 (∂̃v)2δj`ik ,

(4.32)

which upon contraction yields the Ricci tensor

R̄ı̂̂ = Rı̂̂ + 7
2δij�̃4v − δij

3 · 49
4 (∂̃v)2. (4.33)

It is straightforward to verify, from the components in Θ̄AB, that the Ricci tensor is still
diagonal so all other components are zero.

4.1.2 Rescaling the Ricci Tensor

Now we have found the Ricci tensor components of the metric

ds̄2 = ẽα(x)ẽα(x) + ea(y)ea(y) + eı̂(x, y)eı̂(x, y). (4.34)

In order to find the Ricci tensor of the metric in equation (4.3), we will go through the
procedure we outlined previously. First we will rescale the metric by an overall factor of
e−2B(x). Then, we will have our answer expressed in terms of ẽα and thus we need to also
transform all spacetime quantities. We start by stating the transformation rules that we
will need. First of all we need the Weyl rescaling of the Ricci tensor in flat indices. For a
general rescaling of the form êA = e−sγ(X)eA we have [22]

R̂AB = e2sγ
(
RAB + s[ηAB�11γ + (D − 2)DB∂Aγ]

− s2(D − 2)
[
ηAB(∂γ)2 − (∂Aγ)(∂Bγ)

])
.

(4.35)

Note that the � is with respect to all 11 dimensions, this will be important later. Next,
we need to know how to transform from ẽα quantities to eα. If we start from the rescaling
ẽα = e−sγeα we may derive the following transformation rules

ẽα = ẽµ
αdxµ = e−sγeµ

αdxµ =⇒ ẽµ
α = e−sγeµ

α, ẽα
µ = esγeα

µ. (4.36)

det ẽαµ = e−sDγ det eαµ. (4.37)

g̃µν = ẽα
µẽβ

νηαβ = e2sγgµν . (4.38)

∂̃α = ẽα
µ∂µ = esγea

µ∂µ = esγ∂α. (4.39)

ω̃γαβ = esγ(ωγαβ − sηγα∂βγ + sηγβ∂αγ). (4.40)

D̃β ∂̃αB = ∂̃β(esγ∂αB) + esγω̃βα
γ∂γB =

= e2sγ
(
Dβ∂αB + s

[
2∂(αγ∂β)B − ηαβ(∂γ)(∂B)

])
.

(4.41)

�̃4B = 1√
−g̃

∂µ
(√
−g̃g̃µν∂νB

)
=

= esDγ
((
∂µe
−s(D−2)γ

)
gµν∂νB + e−s(D−2)γ�B

)
=

= e2sγ
(
− s(D − 2)(∂γ)(∂B) + �4B

)
.

(4.42)
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4. Stability of the S7 Scale and Squashing Modes

Finally we will need the transformation of the rescaled Ricci tensor R̃αβ. It is given in
(4.35) if we let A = α,B = β and change the � to be in 4 dimensions.

Having these matters settled we are now ready to compute the final Ricci tensor, R̂AB.
We will start with the ab-component, which is fairly simple but illustrative. From (4.30)
we note that there are no extra terms appearing. This means that we can immediately
plug in the result in (4.35) with γ = B. Two of the terms vanish, since B is independent
of the internal directions. We find that

R̂ab = e2B
(
Rab + ηab�̃11B − 9ηab(∂̃B)2

)
. (4.43)

The final step is now to use the transformations derived above to write the expression in
terms of eα rather than ẽα. The partial derivatives are straightforward and only pick up
a factor of e2(A−B). The 11-dimensional box however, should be rewritten in terms of a
four-dimensional, which is not trivial. It actually picks up an extra term, which we see
from

�̃11B = ηABD̃A∂̃BB = ηAB
(
∂̃A∂̃BB + ω̄AB

C ∂̃CB
)

=

= ηαβ ∂̃α∂̃βB + ηαβω̃αβ
γ ∂̃γB + ηı̂̂ω̄ı̂̂

γ ∂̃γB = �̃4B −
21
2 (∂̃γv)(∂̃γB).

(4.44)

Now we may simply plug in the expressions for the tilde-quantities and the value for Rab
to find the final answer. We can also use that v = − 2

21(7B + 2A) to more easily see the
cancellation of the contracted derivatives.

R̂ab = e2BRab + e2Aηab
(
�4B − 2∂γ(A−B)∂γB + ∂γ(7B + 2A)∂γB − 9(∂B)2

)
= e2BRab + e2Aηab�4B = ηab

(
12e−2u−3v − 6e−2u−10v − e7u(�4u+ 3

2�4v)
)
.

(4.45)

We perform a similar procedure for R̂ı̂̂. First we have

R̂ı̂̂ = e2B
(
R̄ı̂̂ + ηij�̃11B + 9D̃̂∂̃ı̂B − 9ηij(∂̃B)2

)
. (4.46)

We need to keep the D∂B term here, since the connection term in the covariant derivative
contributes to the result. If we split up the 11-dimensional box as before and plug in R̄ı̂̂
we arrive at

R̂ı̂̂ = e2B
(
Rı̂̂ + 7

2ηij�̃4v − ηij
3 · 49

4 (∂̃v)2
)
+

+e2Bηij
(
�̃4B −

21
2 (∂̃γv)(∂̃γB) + 9ω̄̂̂ıγ ∂̃γB − 9ηij(∂̃B)2

)
=

=e2BRı̂̂ + e2Aηij
(
�4C −�4B + 6∂γ(B + 1

2C)∂γ(C −B)− 3(∂(C −B))2+

+ �4B + 6∂γ(B + 1
2C)∂γB − 3∂γ(C −B)∂γB − 9∂γ(C −B)∂γB − 9(∂B)2

)
.

(4.47)

where we used the fact that A − B = −3(B + 1
2C) and rewrote 7v = 2(C − B). Now, a

little bit of algebra shows that almost all of the terms cancel and we are left with

R̂ı̂̂ = e2BRı̂̂ + e2Aηij�4C = ηij
(
4e−2u−10v + 2e−2u+4v − e7u(�4u− 2�4v)

)
. (4.48)

Finally, we compute R̂αβ. This is somewhat more complicated since we must perform
an additional Weyl rescaling of the R̃αβ term in R̄αβ. Using equation (4.35) we see that
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ẽα = e−(A−B)eα yields

R̃αβ = e2(A−B)
(
Rαβ + ηαβ�4(A−B) + 2Dβ∂α(A−B)−

− 2ηαβ∂γ(A−B)∂γ(A−B) + 2∂α(A−B)∂β(A−B)
)
.

(4.49)

As before, we start by writing out R̂αβ from (4.35)

R̂αβ = e2B
(
R̃αβ + 21

2 D̃β ∂̃αv −
63
4 (∂̃βv)(∂̃αv)+

+ ηαβ�̃4B −
21
2 (∂̃γv)(∂̃γB)

+ 9D̃β ∂̃αB − 9ηαβ ∂̃γB∂̃γB + 9∂̃αB∂̃βB
)
.

(4.50)

Now all we need to do is to plug in the tilde transformations and perform the algebra.
After a mass slaughter of terms we are left with

R̂αβ = e7u
(
Rαβ + 7

2ηαβ�4u−
63
2 (∂αu)(∂βu)− 21(∂αv)(∂bv)

)
. (4.51)

In curved indices this is

R̂µν = êµ
αêν

βR̂αβ = Rµν + 7
2gµν�4u−

63
2 (∂µu)(∂νu)− 21(∂µv)(∂νv), (4.52)

since
êµ
α = e−

7
2ueµ

a and eµ
αeν

βηαβ ≡ gµν , (4.53)

and we have obtained the desired expressions for the case of a seven-sphere with spacetime
dependent parameters.

4.2 Effective 4D Lagrangian
We will now use the results for the Ricci tensor to obtain the effective 4D Lagrangian of
the theory. The idea is that since we have written the spacetime components of the 11-
dimensional Ricci tensor in terms of the scalar fields and the 4-dimensional Ricci tensor,
we will be able to obtain equations of motions for the three dynamical quantities, R, u, v,
if we solve these equations. We start from the Einstein equations in 11D supergravity
with the fermion field set to zero

R̂MN −
1
2gMNR = 1

3
(
ĤMPQRĤN

PQR − 1
8gMNĤ

2
)
, (4.54)

which we rewrite as

R̂MN = 1
3
(
ĤMPQRĤN

PQR − 1
12 ĝMNĤ

2
)
. (4.55)

The hatted notation refers to the metric in (4.3). We will employ the Freund-Rubin ansatz,
but now allowing for the constant of proportionality m to be dependent on the spacetime.
Thus, we write f(x) = −3m. The ansatz is then

ĤMNPQ = Ĥµνρσ = f ε̂µνρσ = fê4εµνρσ = fe−14uεµνρσ. (4.56)

Then inserting into the field equation for H

∇̂MĤMNPQ = 0, (4.57)
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together with

ĤMNPQ = fe−14uĝMM ′
ĝNN

′
ĝPP

′
ĝQQ

′
εM ′N ′P ′Q′ = −3me(−14+28)uεµνρσ, (4.58)

yields

∇̂MĤMNPQ = 1
ê
∂̂M (êfe14uεMNPQ) = 1

ê
∂̂M (fe7uεMNPQ). (4.59)

Here we have used the notation where ê = e−7ue is the 11-dimensional determinant of the
vielbein and ê4 = e−14ue4 is the 4-dimensional part. Furthermore, in the last equality we
have absorbed the determinant in the Levi-Civita tensor to write it as the tensor density
instead. Since the tensor density is constant, we find that

∂̂M (fe7u)εMNPQ = ∂̂µ(fe7u)εµνρσ =⇒ Q = fe7u = constant. (4.60)

Thus, we may rewrite
Ĥµνρσ = Qe−21uεµνρσ. (4.61)

Inserting this into Einstein’s equations then yields, for the spacetime components

R̂µν = 1
3
(
Ĥµρστ Ĥν

ρστ − 1
12 ĝµνĤ

2
)

= 1
3
(
Q2e−21uεµρστ εν

ρστ − 1
12e

−7ugµνQ
2e−14u|ε|2

)
= 1

3Q
2e−21u

(
− 3!gµν + 4!

12gµν
)

= −4
3Q

2e−21ugµν = −4
3Q

2e−14uĝµν ,

(4.62)

and for the internal components

R̂mn = 1
3Q

2e−14u 4!
12 ĝmn = 2

3Q
2e−14uĝmn. (4.63)

Equating these results with the ones obtained in the previous section will now yield equa-
tions of motion for Rµν , u and v. Note that changing between flat and curved indices
simply means changing ĝ ↔ η since

R̂αβ = êα
µêβ

νR̂µν = −4
3Q

2e−14uηαβ, (4.64)

and similarly for R̂mn. Starting with the internal parts, converting (4.45) to curved indices
and equating with (4.63) yields

2
3Q

2e−14u = 12e−2u−3v − 6e−2u−10v − e7u�u− 3
2e

7u�v, (4.65)

and when comparing (4.48) and (4.63) we find in the same fashion

2
3Q

2e−14u = 4e−2u−10v + 2e−2u+4v − e7u�u+ 2e7u�v. (4.66)

Since we work in four dimensions now, we denote � ≡ �4. We obtain the field equations
for the scalar fields by adding these equations together. We find

�v = −4
7e
−9u+4v + 24

7 e
−9u−3v − 20

7 e
−9u−10v,

�u = 6
7e
−9u+4v + 48

7 e
−9u−3v − 12

7 e
−9u−10v − 2

3Q
2e−21u.

(4.67)
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Equating (4.62) and (4.51) and plugging in (4.67) yields

Rµν =− 7
2gµν�u+ 63

2 (∂µu)(∂νu) + 21(∂µv)(∂νv)− 4
3Q

2e−21ugµν

=⇒ Rµν =63
2 (∂µu)(∂νu) + 21(∂µv)(∂νv)+

+ gµν
(
− 3e−9u+4v − 24e−9u−3v + 6e−9u−10v +Q2e−21u

)
.

(4.68)

We are now ready to construct the effective 4D Lagrangian from these equations of motion.
Our starting point will be a Lagrangian of the form

L =
√
−g
(
R+ h(u, v)

)
, (4.69)

where h(u, v) is some function of the scalar fields. Then the variation is

δL = δ
(√
−g
) (
R+ h(u, v)

)
+
√
−gδR+

√
−gδh(u, v). (4.70)

The equations of motion for v and u must come from the δh(u, v) part. Starting with v
we may see that

δ
(
(∂µv)(∂µv)

)
= −2(δv)�v + (∂µv)(∂νv)δgµν , (4.71)

where we have dropped the boundary terms. Also note that we have

δe−9u+av = (δv)ae−9u+av − (δu)9e−9u+av, (4.72)

for some constant a. Thus, in order to obtain the �v equation in (4.67) we set

h(u, v) = A
2 (∂v)2 − A

7 e
−9u+4v − 8A

7 e
−9u−3v + 2A

7 e
−9u−10v + . . . (4.73)

where A is an undetermined prefactor. Doing the same procedure with the u equation
tells us that we must add two terms to the above expression, (∂u)2 and Q2e−21u. This
leads to the final expression

h(u, v) = 3A
4 (∂u)2 + A

21Q
2e−21u + A

2 (∂v)2 − A
7 e
−9u+4v − 8A

7 e
−9u−3v + 2A

7 e
−9u−10v. (4.74)

We can now write out the variation with respect to the metric

δL
δgµν

= −1
2
√
−ggµν

(
R+ h(u, v)) +

√
−gRµν +

√
−ggµν δRµν

δgµν
+

+
√
−g
(

3A
4 (∂µu)(∂νu) + A

2 (∂µv)(∂νv)
)
,

(4.75)

where we may drop δRµν
δgµν because it is a total derivative. Uncontracted derivatives on u

and v appear only in the last parentheses and we may immediately compare this result
to (4.68) to find that A = −42. This choice reproduces the equations of motion for Rµν ,
which can be seen by contracting (4.68) with gµν to find

R =63
2 (∂u)2 + 21(∂v)2 − 12e−9u+4v − 96e−9u−3v + 24e−9u−10v + 4Q2e−21u. (4.76)

and then carrying out the algebra in (4.75). Thus, the effective 4-dimensional Lagrangian
is

L =
√
−g
(
R− 63

2 (∂u)2 − 21(∂v)2 − V (u, v)
)
,

V = 2Q2e−21u − 6e−9u+4v − 48e−9u−3v + 12e−9u−10v.
(4.77)

The potential as a function of the two scalar fields can be seen in figure 4.1
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Figure 4.1: The effective 4D potential obtained by compactifying 11D supergravity on
the squashed S7 in the Freund-Rubin ansatz. Here, the conserved charge has been set to
Q = 1. The two points correspond to the two ground-state solutions, round S7 with v = 0
and squashed S7 with v = 1

7 log 5. While not easily seen in this figure, the extrema also
have different values of u.

4.2.1 AdS Solutions and Linear Stability

Now we will specialise to anti-de Sitter space. Such a space is maximally symmetric and
thus fulfil [2]

Rµνρσ = 1
3Λ(gµρgνσ − gµσgνρ). (4.78)

We now look for the ground-state solution, in which the scalars u and v should be constant.
Looking back at (4.67) we find from the equation for �v1 = 0 that there are two possible
solutions for constant v. Setting v1 = 0 is trivially a solution and corresponds to the
sphere being the normal round S7. However, there is another solution given by

0 = −4e4v1 + 24e−3v1 − 20e−10v1 = −4e7v1 + 24− 20e−7v1

=⇒ e7v1 = 5 =⇒ v1 = 1
7 log 5.

(4.79)

which is precisely the squashed solution with an Einstein metric. Indeed, setting λ2 =
e−7v1 yields precisely the results we obtained for the squashed sphere with no spacetime
dependent parameters. The round sphere will not provide much insight to us, so we will
instead focus on the squashed version. For other studies regarding the round sphere and
stability, consult for example [24, 36]. Now, we plug this solution into the �u = 0 equation
which yields

e12u1 = e10v1

34 Q2. (4.80)
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Now, we may contract two indices in (4.78) to obtain Rµν = Λgµν . If we equate this with
(4.68) and set v = v1 and u = u1 we get

Λ = −2916
√

5
125

1
Q3/2 . (4.81)

Note that this is also equivalent to

e−9u1 = −e
10v1

108 Λ. (4.82)

We now want to be able to read off the scalar potential, V from our Lagrangian. The
form of the Lagrangian with a cosmological constant that we seek is

1√
−g
L = R− 2Λ + (derivatives on scalar fields)− V (scalars). (4.83)

So, from equation (4.77) we write

L =
√
−g
(
R− 2Λ− 63

2 (∂u)2 − 21(∂v)2 − V (u, v)
)
, (4.84)

where

V (u, v) = −2
(
Λ−Q2e−21u + 3e−9u+4v + 24e−9u−3v − 6e−9u−10v

)
=

= −2Λ− 2Λe−9(u−u1)
(

3
4e
−12(u−u1) − 1

36e
14v1e4(v−v1)

− 2
9e

7v1e−3(v−v1) + 1
18e
−10(v−v1)

)
.

(4.85)

Using that e7v1 = 5 we rewrite this as

V (u, v) = −2Λ− 2
36Λe−9(u−u1)

(
27e−12(u−u1) − 25e4(v−v1) − 40e−3(v−v1) + 2e−10(v−v1)

)
.

(4.86)
We may now find and characterise the stationary points of this potential which leads to
information regarding stability with the respect to the scalars u and v. We do this by
looking at the linearised field equations directly. By linearising around the stationary
points u = u1 and v = v1 corresponding to the ground state we may immediately extract
information about the behaviour of the scalars. Starting with the field equation for u in
(4.67), the linear approximation is given by

�u ≈ �u
∣∣∣∣u=u1
v=v1

+ ∂�u
∂u

∣∣∣∣u=u1
v=v1

(u− u1) + ∂�u
∂v

∣∣∣∣u=u1
v=v1

(v − v1). (4.87)

It turns out that ∂�u
∂v = 0 at u = u1 and v = v1 so we find that

�(u− u1) ≈ −5−
10
7 648e−9u1 = −6Λ(u− u1). (4.88)

Since Λ < 0 in AdS space, the coefficient on the right hand side is positive, indicating that
u = u1 corresponds to a stable minimum.

Next, we investigate the �v equation in (4.67). Again we find that ∂�v
∂u = 0 so after some

algebra we arrive at
�(v − v1) ≈ 20

27Λ(v − v1). (4.89)
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Here the situation is reversed, and perturbations around v1 seems to be unstable. However,
the answer is actually much more intricate. It can been shown that the squashed seven-
sphere is in fact stable to perturbations in v based on an argument first proposed by
Breitenlohner and Freedman [37]. In fact, the Breitenlohner-Freedman bound states that
stability holds as long as the second derivative for some scalar field φ is bounded from
below by (recall that Λ < 0)

1
φ
�φ ≥ 3

4Λ. (4.90)

Qualitatively, this bound relates to the kinetic terms of the scalar field. The hyperbolic
geometry of AdS space means that a dynamical change in a scalar field is not energetically
favourable due to the kinetic term of that field. In certain cases, this unfavourable energy
is enough to change an unstable extremum in the potential to a stable one when consid-
ering the whole theory. The Breitenlohner-Freedman bound specifies precisely when this
happens. If we let v be a small perturbation around the ground state we write v = v1 +∆v
and find

1
∆v�∆v ≈ 20

27Λ = 80
108Λ >

81
108Λ = 3

4Λ. (4.91)

The inequality holds since Λ < 0. We note that in the light of this argument, the squashed
seven-sphere is indeed stable, although not by much. What is even more remarkable is
that this argument still holds if the orientation of the sphere is reversed. Upon performing
a parity transformation, both v and Λ are unchanged. It is only the conserved charge Q
that changes sign, and if we had any pseudoscalar fields in the theory they would too [24].
Recalling our discussion in 3.3.1 regarding the maximum number of supersymmetries from
the Killing spinor equation we may now understand the contradiction with the Non-AdS
SUSY conjecture:

Conjecture 1 (Non-SUSY AdS Conjecture) There are no non-supersymmetric sta-
ble solutions in AdS space

The orientation-reversed squashed seven-sphere has no supersymmetries but still exhibits
perturbative stability, as we just saw. This leads to one of two possible conclusions. Either
non-perturbative effects are needed in order to see the instability of the squashed seven-
sphere, or the above conjecture is wrong. Investigating non-perturbative corrections are
very complicated, but an important first step would be to understand the perturbative
behaviour of the theory in more detail. Our current analysis is actually quite limited, as
we have only looked at two specific scalars in four dimensions. The full 11-dimensional
theory yields a large amount of fields in four dimensions upon compactification. The
reason for only considering these two scalars are of course that if one includes more fields,
the analysis can get very complicated.

Having more knowledge about pseudoscalar fields in four dimensions would however be
very interesting, as they transform under orientation-reversing. In principle one could re-
peat the procedure of this chapter, but include also pseudoscalars in the beginning. This
might be a feasible strategy, although complicated, but we will instead go with another
method in order to find the pseudoscalar fields. The basic idea is that the pseudoscalar
fields always appear in a certain way together with the scalar fields and form complex
scalars in the full theory. Thus, one could view our current results as coming from that
theory, but in the limit where the pseudoscalars are zero. With some knowledge of the
general structure of the theory one could then hope to be able to re-introduce the pseu-
doscalars from our current position, without having to go back to the 11-dimensional
theory. This will be the subject of the next and last chapter of this thesis.
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5
N = 1 Supergravity in 4D

This chapter will conclude the thesis and present some analysis of the obtained four-
dimensional potential and its connection to the Swampland. At first, we will introduce
relevant theory of complex manifolds which will be the framework we use when trying
to construct the scalar potential including pseudoscalar fields. After reviewing a simple
example from type IIB string theory the method will be applied to our potential.

5.1 Moduli Spaces

When compactifying string theory or supergravity to four dimensions on Ricci flat compact
internal manifolds, one generally finds a number of solutions for a given manifold. These
solutions arise since for a manifold with a specified topology, there is freedom to distort the
geometry of the manifold while preserving the topological properties. These distortions
are usually described by a set of parameters which are taken as scalar fields on the external
space time. If we describe the space of solutions obtained by varying the values of the
scalar fields, we obtain what is called a moduli space. The scalars are called moduli and
are regarded as coordinates on the moduli space.

It turns out that these moduli spaces often are described by a specific class of complex
manifolds called Kähler manifolds. A common example is the compactification of type
IIB string theory a torus T 2, where the torus is described by two scalar fields that form
a complex coordinate on the coset space SU(1, 1)/U(1). More important for this thesis
is that scalar fields of four-dimensional supergravity theories with one supersymmetry,
N = 1, also parametrise Kähler manifolds [22]. In the case of S7 compactifications the
”size” and ”squashing” parameters on the S7 are moduli. For certain values, these moduli
give an internal Einstein space and N = 1 supergravity in four dimensions. Therefore, we
provide a short introduction to complex manifolds and the definition of Kähler manifolds.
For a more thorough explanation, the reader may consult for [20, 22].

5.1.1 Complex Manifolds

Complex manifolds are locally 2n-dimensional real manifolds described instead by n com-
plex coordinates. We may express the coordinates as

zα = φα + iφα+n, α = 1, . . . , n
z̄ᾱ = φα − iφα+n = z̄α,

(5.1)

where φa is real and the complex manifold has a full set of coordinates za = (zα, z̄α),
a = 1, . . . , 2n. In terms of the real coordinates, the manifold behaves as if a standard
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Riemannian manifold. In complex coordinates, the situation changes slightly. We can still
write out the metric as

ds2 = gabdzadzb, (5.2)

and we can go from the real coordinates to the complex ones via the transformations
φi → za as we are used to, e.g. the metric is

gab = gij
∂φi

∂za
∂φj

∂zb
, where ds2 = gijdφidφj . (5.3)

The important difference arises when we split the complex coordinate za into zα and z̄α.
The set of coordinates zα is not invariant under general coordinate transformations, but
instead we must require that they transform holomorphically, that is zα → z′α = fα(z)
where f is a holomorphic function. Knowing this, we can split up the metric as

ds2 = 2gαβ̄dzαdz̄β̄ + gαβdzαdzβ + gᾱβ̄dz̄αdz̄β. (5.4)

Next, we say that the metric admits a hermitian structure if gαβ = gᾱβ̄ = 0. The important
part of this definition is that the structure is preserved under holomorphic transformations
of the coordinates. We now want to define a Kähler manifold. First, from a hermitian
metric we may construct the fundamental 2-form, also called the Kähler form

Ω = −2igαβ̄dzα ∧ dz̄β̄. (5.5)

The Kähler form is real, since

Ω̄ = 2iḡαβ̄dz̄ᾱ ∧ dzβ =
{
ḡαβ̄ = gβᾱ

}
= −2igβᾱdzβ ∧ dz̄ᾱ = Ω. (5.6)

We now state the following definition

Definition 2 A complex manifold that admits a hermitian structure and has a closed
Kähler form, dΩ = 0, is called a Kähler manifold.

5.1.2 Kähler Geometry

We now explore the Kähler manifolds further. First, we start from the definition and
compute the exterior derivative of the Kähler form

0 = dΩ = −i(∂γgαβ̄ − ∂αgγβ̄)dzγ ∧ dzα ∧ dzβ̄ + c.c. =⇒ ∂γgαβ̄ = ∂αgγβ̄ (5.7)

From the last equality we may deduce that the Kähler metric can be written as a partial
derivative in its first index, i.e. gαβ̄ = ∂αCβ̄ for some function Cβ̄. Then, from the
condition ḡαβ̄ = gβᾱ we see that this condition must hold for both indices and thus we can
write

gαβ̄ = ∂

∂zα
∂

∂zβ̄
K(z, z̄) (5.8)

where K(z, z̄) is a scalar called the Kähler potential. It is invariant under so called Kähler
transformations

K → K ′ = K + f(z) + f̄(z̄) (5.9)

Note that the above definition of the Kähler potential is not always globally defined. Then
the transition function between different patches of the manifold is given by the Kähler
transformation.
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5.1.3 Example: Type IIB String Theory Scalar Moduli

We will now study the moduli space of the scalars in type IIB string theory. It will prove
instructive to guide us in our understanding of the Kähler potential. The scalar part of
the type IIB supergravity action is [27]

L = −
(
∂µφ∂

µφ+ e2φ∂µχ∂
µχ
)
. (5.10)

Our goal will be to express this via the Kähler metric, gij , and some complex coordinate
τ as

L = −gτ τ̄∂µτ∂µτ̄ . (5.11)

From the appearance of φ in the exponential in (5.10) we are led to an ansatz for τ of the
form

τ = χ+ ie−φ, (5.12)

which leads to

L = −gτ τ̄
(
(∂µχ− ie−φ∂µφ)(∂µχ+ ie−φ∂µφ)

)
=

= −gτ τ̄
(
∂µχ∂

µχ+ e−2φ∂µφ∂
µφ
)

=⇒ gτ τ̄ = e2φ.
(5.13)

Then, we use the definition of the Kähler metric to find

K(τ, τ̄) =
∫

dτdτ̄ e2φ =
∫

dτdτ̄ −4
(τ − τ̄)2 , (5.14)

since τ − τ̄ = 2ie−φ. Carrying out the integration yields

∫
dτdτ̄ −4

(τ − τ̄)2 =
∫

dτ
(
−4
τ − τ̄

+ f ′(τ)
)

= −4 log |τ − τ̄ |+ f(τ) + g(τ̄). (5.15)

As we might expect we determine the Kähler potential up to a Kähler transformation.
Note that

|τ − τ̄ | = τ − τ̄
i

, (5.16)

and we take the integration constant to be 4 log 2 which means we can take the Kähler
potential as

K = −4 log τ − τ̄2i = 4φ. (5.17)

5.2 Kähler Description of the Effective 4D Lagrangian

We now turn to the four-dimensional Lagrangian we obtained in chapter 4. It is written
only in terms of the Ricci tensor and the two real scalar fields u and v. We want to study the
behaviour of the Lagrangian under parity transformations, since the orientation-reversing
of the seven-sphere is the phenomena we are interested in. In other words, we would
like to reintroduce pseudoscalar fields into the Lagrangian, as they transform with a sign
under parity. Recall, we have been very selective when choosing the two specific scalars
u and v to study. The full 11-dimensional theory will in general yield many fields in
four dimensions when compactified where some of them are pseudoscalars. We view the
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Lagrangian we obtained in (4.77) as the limit when all fields except u and v are zero.
Denoting the pseudoscalar fields by χi, i = 1, 2 we schematically have

L
∣∣∣∣
χi=0

=
√
−g
(
R− 63

2 (∂u)2 − 21(∂v)2 − V (u, v)
)
,

V (u, v) = 2Q2e−21u − 6e−9u+4v − 48e−9u−3v + 12e−9u−10v.

(5.18)

Of course all other fields that could appear at the four-dimensional level are set to zero
above as well, but we do not explicitly write that out since we want to focus on pseu-
doscalars. Reintroducing the pseudoscalars at this point would be impossible if we had no
further information. We will here utilise the fact that we mentioned earlier, that complex
scalars in N = 1 supergravity theories are coordinates on Kähler manifolds. From this we
then combine the real scalars u and v with corresponding pseudoscalars χ1 and χ2 to form
complex scalar fields, similarly to the example regarding type IIB string theory above. It
is this structure that gives us clues to how the pseudoscalar fields must appear, only from
information of the scalar fields.

Denote the complex scalar fields by τi. As in the above example, we seek a Lagrangian of
the form

1√
−g
L = R− gij∂τ i∂τ̄ j − V, i, j = 1, 2 (5.19)

with the difference that we now have included the Ricci term and a scalar potential. In
supergravity, the scalar potential is usually divided into two parts called an F -term and a
D-term, that is V = VF +VD. A more thorough description on how to obtain the potentials
from a general supergravity multiplet can be found in [22]. The main point for this thesis
is to think of them as distinct parts of the scalar potential. We will mainly focus on the
F -term, VF , for reasons that will become clear later on. In term of the Kähler potential
it is given by

VF = eK
(
WiW̄jg

ij − 3|W |2
)
, (5.20)

where K is the Kähler potential, W the superpotential, and subscripted indices denote
Kähler covariant derivatives, defined by

Wi = ∂W

∂τi
+W

∂K

∂τi
, (5.21)

for the complex fields τi. The superpotential, W , is a holomorphic function of the complex
fields. It is this superpotential that we will be able to tune in order to match the scalar
potential we obtained earlier to VF . There is one last preliminary step that needs to be
done in order to use this formalism. The kinetic terms in the Lagrangian must be canon-
ically normalised relative to the Einstein-Hilbert term in order for the above expressions
to be valid. At first this looks quite simple, and can be achieved by simply redefining
the fields. However, upon doing this redefinition the exponents in the potential get scaled
by
√

63 and
√

42 for u and v respectively. This actually sets some constraint on what
ansatz we can make for the complex scalar and the superpotential. Due to the fact that
the superpotential must be holomorphic, it can only contain integer powers of τi. In order
for this to yield exponents with irrational coefficients for u and v, one then has to include
some parameter in the definition of τ .

In light of this argument, we take the ansatz for the complex fields to be

τ1 = χ1 + ie−αu, τ2 = χ2 + ie−βv. (5.22)
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We also rescale the fields u and v to get the Lagrangian into the canonical form. With
u→ 1√

63u and v → 1√
42v, the potential takes the form

V = 2Q2e−a1u − e−a2u ×
(

6eb1v + 48e−b2v − 12e−b3v

)
, (5.23)

with the coefficients

a1 = 21√
63

= 7 1√
7
, a2 = 9√

63
= 3 1√

7
,

b1 = 4√
42

= 2
√

2
3

1√
7
, b2 = 3√

42
=
√

3
2

1√
7
, b3 = 10√

42
= 5

√
2
3

1√
7
,

(5.24)

and the kinetic terms are in the desired form.

Lkin = −1
2(∂u)2 − 1

2(∂v)2. (5.25)

We now want to compute the Kähler potential. The first step is to differentiate the
complex field τ1, which yields

∂τ1∂τ̄1 = (∂χ1)2 + α2e−2αu(∂u)2. (5.26)

The result for τ2 is similar. Comparing equations (5.25), (5.19) and last term above leads
to

g11 = 1
2α2 e

2αu, g22 = 1
2β2 e

2βv, g12 = g21 = 0. (5.27)

We can rewrite this in terms of the complex fields, using that e2αu = (Im τ1)−2, to get

g11 = − 2
α2

1
(τ1 − τ̄1)2 , g22 = − 2

β2
1

(τ2 − τ̄2)2 . (5.28)

The Kähler potential can be found by integrating this expression, which follows from the
definition of the Kähler metric

gij ≡
∂

∂τi

∂

∂τ̄j
K. (5.29)

Then we find the expression

K = − 2
α2 log(τ1 − τ̄1)− 2

β2 log(τ2 − τ̄2) + (Kähler transformation). (5.30)

As mentioned in the above example, we have the freedom to change the potential by
Kähler transformations. We will do this in order to obtain a simpler expression. Note
that

log(τ1 − τ̄1) = log(2i) + log
(
e−αu

)
= log(2i)− αu. (5.31)

Since constant shifts are contained in the set of Kähler transformations, we can throw
away the log 2i factor and then we get

K = 2u
α

+ 2v
β
, (5.32)

and the prefactor in the expression for the scalar potential is

eK = e
2u
α

+ 2v
β . (5.33)
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Next, we need one derivative on the Kähler potential, as it appears in the Kähler covariant
derivative. We have that

∂1K ≡
∂K

∂τ1
= − 2

α2
1

τ1 − τ̄1
= i

α2 e
αu ∂2K = − 2

α2
1

τ2 − τ̄2
= i

β2 e
βv. (5.34)

The scalar potential, VF , is thus

VF = e
2u
α

+ 2v
β

(
2α2e−2αu|∂1W + (∂1K)W |2

+2β2e−2βv|∂2W + (∂2K)W |2 − 3WW̄

)
.

(5.35)

This expression is quite complicated, and thus we will start to investigate it piece by piece.
Before doing that however, it is instructive to comment on our ansatz. The expressions in
(5.22) both parametrise the upper complex half-plane. This corresponds to the symmetry
group SL(2,R)/U(1). Since we have two complex coordinates, the manifold is described
by the direct product SL(2,R)/U(1) × SL(2,R)/U(1). Note that at this point this is
merely an assumption, indeed we do not know the structure of the kinetic terms for the
pseudoscalar fields which dictate the full structure of the Kähler manifold. This is one of
the places where we have to guess, and we take this structure as it is fairly simple, yet
non-trivial and will point us to interesting results.

5.2.1 The Superpotential for v = 0, Q = 0

The first step we want to take is to check the case when both Q and v are set to zero. In
this limit, the scalar potential is

V = −42e−a2u. (5.36)

We make the simplest possible polynomial ansatz for the superpotential

W = aτm1 (5.37)

with some coefficient a and integer power m. Then we compute the Kähler covariant
derivative

W1 = amτm−1
1 + i

α2 e
αuaτm1 . (5.38)

In the expression for VF we need the absolute value of this, which is

|W1|2 =a2m2(τ1τ̄1)m−1 + e2αu

α4 a2(τ1τ̄1)m

− ia
2m

α2 eαuτ̄1(τ1τ̄1)m−1 + ia2m

α2 eαuτ1(τ1τ̄1)m−1
(5.39)

We want to make sure that we obtain the correct scalar potential in the limit when χi = 0,
where τ1 = ie−αu and τ1τ̄1 = e−2αu. Then we find

|W1|2
∣∣∣∣
χ1=0

=a2m2e−2αu(m−1) + a2

α4 e
−2αu(m−1)

−a
2m

α2 e−2αu(m−1) − a2m

α2 e−2αu(m−1)
(5.40)
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We can now plug this into the expression for the scalar potential and then we obtain

VF

∣∣∣∣
χ1=0

= eK
(
g11|W1|2 − 3WW̄

) ∣∣∣∣
χ1=0

=

= e2u( 1
α
−αm)

(
2a2α2m2 + 2a2

α2 − 4a2m− 3a2
) (5.41)

It is promising that this procedure generates exactly one unique exponential in u. However,
if we would not have consideredQ = 0 this superpotential cannot generate the two different
exponential terms needed. We will come back to this issue later on. The next step is to
compare this result to the potential V = −42e−a2u. The exponent yields the equation

2
( 1
α
− αm

)
= −a2 =⇒ m = a2

2α + 1
α2 . (5.42)

For a2 = 9/
√

63 this yields infinitely many solutions for α if we demand m to be integer
valued. We also get an equation for the coefficient, in which we can insert the above
equation for m in terms of α

a2(2α2m2 + 2
α2 − 4m− 3) = −42 =⇒ a2(a

2
2

2 − 3) = −42. (5.43)

Interestingly, the dependence on α vanishes. The constant a2 controls the overall scale,
and in this scenario where a2 = 9/

√
63 the quantity in the parenthesis is negative and we

find
a2 = 42× 14

33 = 196
11 . (5.44)

So, we see that it is possible to find a superpotential consistent with our ansatz in the
limit v = 0 and Q = 0. However, generating also the Q-term would require extending the
superpotential. Adding yet another polynomial term in τ1 is close at hand and we will
do precisely this in the next section, but for τ2 instead. The results obtained there are
however analogous to those for τ1 and we will discuss the Q-term in more detail later on.

We proceed our analysis by focusing on the three exponents in v by keeping Q = 0 and
instead setting u = 0. If this proves consistent one could combine that solution with the
one obtained in this section to possibly form an ansatz for the full superpotential of the
theory.

5.2.2 The Superpotential for u = 0, Q = 0
In this limit, the scalar potential is

V = −6eb1v − 48e−b2v + 12e−b3v. (5.45)

In order to generate three terms, we include one extra term in the ansatz for the super-
potential

W = aτm + bτn, τ = χ+ ie−βv. (5.46)

We have dropped the subscript 2 on τ here in order to reduce cluttering. The procedure
now is similar to that in the last subsection. First, the Kähler covariant derivative is

W2 = amτm−1 + bnτn−1 + i

β2 e
βv(aτm + bτn), (5.47)
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and squaring it yields

|W2|2 =a2m2(τ τ̄)m−1 + b2n2(τ τ̄)n−1 + e2βv

β4 |W |
2 + abmn(τ τ̄)m−1(τ̄n−m + τn−m)

+ i
am

β2 e
βv(τ τ̄)m−1(τ(a+ bτn−m)− τ̄(a+ bτ̄n−m)

)
+ i

bn

β2 e
βv(τ τ̄)n−1(τ(b+ aτm−n)− τ̄(b+ aτ̄m−n)

)
.

(5.48)

We now want to evaluate this expression when χ = 0. We have that τ τ̄ = e−2βv and

|W |2
∣∣∣∣
χ=0

= a2e−2βvm + b2e−2βvn + abe−βv(n+m)in−m(1 + (−1)n−m). (5.49)

The potential is as stated earlier given by

VF = e
2v
β

(
2β2e−2βv|W2|2 − 3|W |2

)
. (5.50)

We can utilise that |W |2 appears also in the derivative term, with exponential prefactor
such that it combines with the last term above. Evaluating the expression in parentheses
at χ = 0 yields

2β2e−2βv|W2|2 − 3|W |2
∣∣∣∣
χ=0

=
[ 2
β2 − 3

]
|W |2

+ 2β2
[
a2m2e−2βvm + b2n2e−2βvn + abmne−βv(m+n)in−m(1 + (−1)n−m)

− 2a2m

β2 e−2βvm − 2abm
β2 e−βv(n+m)in−m(1 + (−1)n−m)

− 2b2n
β2 e−2βvn − 2abn

β2 e−βv(n+m)im−n(1 + (−1)m−n)
]
.

(5.51)

Note that if n −m is odd in the above expression, all terms with e−βv(n+m) vanish and
the potential simplifies to

ṼF = e
2v
β

(
e−2βvma2

[ 2
β2 − 3 + 2β2m2 − 4m

]

+e−2βvnb2
[ 2
β2 − 3 + 2β2n2 − 4n

]) (5.52)

This solution is however not sufficient to reconstruct our potential for v, since we require
three unique exponents. For the case when n −m is even, we get any extra term to the
above expression. We also have that (−1)n−m = (−1)m−n and thus that im−n = in−m.
The scalar potential is then

VF = ṼF + e
2v
β
−βv(m+n)2in−mab

[
2
β2 − 3 + 2β2mn− 4m− 4n

]
. (5.53)

The next step is to match these exponents to b1, b2 and b3 respectively, in order to
determine m, n and β. The scalar potential is invariant under simultaneous exchange of
m↔ n and a↔ b so there are three possible ways of assigning the exponents

2
β − β(m+ n) = b1
2
β − 2βn = −b2
2
β − 2βm = −b3

or


2
β − β(m+ n) = −b2
2
β − 2βn = b1
2
β − 2βm = −b3

or


2
β − β(m+ n) = −b3
2
β − 2βn = −b2
2
β − 2βm = b1

(5.54)
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It turns out however that for integer n and m there are no solutions for any of the above
cases and the previously specified values of b1, b2 and b3. Being unable to recover our
four-dimensional scalar potential indicates that something is wrong with our assumptions.
There are essentially two possibilities:

1. The proposed superpotential is incorrect.

2. The coset structure for the v-field, SL(2,R)/U(1), is incorrect.

Alternative 1 is quite unlikely, since it would be hard to modify the current ansatz. Adding
more terms is not an option as it would produce new exponents in the scalar potential.
Other functional dependence on τ in the superpotential would be possible, but in order
to preserve the holomorphic structure the options are quite limited. The most probable
explanation is thus alternative 2. As mentioned earlier, the specific structure of the Kähler
manifold depends on the kinetic terms of both the scalar and pseudoscalar field. In our
ansatz with τ2 = χ + ie−βv we assume the kinetic term for the pseudoscalar to be of the
same form as in the type IIB example in 5.1.3. Since this assumption does not reproduce
our four-dimensional scalar potential, the kinetic term for the pseudoscalar is probably
more complicated.

5.2.3 The Q-term

We now return to the case where we set v = 0 and try to reproduce both exponents in u
in the scalar potential. As we saw in the previous section in equation (5.52), it is possible
to generate only two distinct exponents from a superpotential with two terms. Starting
from the expression in (5.52) and changing v → u and β → α corresponds to instead
considering the case where v = 0 and the superpotential ansatz to be

W = aτm1 + bτn1 . (5.55)

The scalar potential is

V = 2Q2e
− 21√

63
u − 42e−

9
√

63
u
, (5.56)

so matching the exponents yields the equations
2
α − 2αm = − 21√

63
2
α − 2αn = − 9√

63

(5.57)

Solving for α in the first equation and substituting in the second then leads to two solutions
for n in terms of m

n =
2m

(
8m+ 3± 3

√
16m+7√

7

)
(√

16m+ 7±
√

7
)2 , (5.58)

which needs to be solved for integer m and n. It is not obvious whether there exists integer
solutions to this or not, but using any numerical software it can be found that there are
actually a number of solutions. For the case where ± = + the three lowest integer solutions
(m,n) are: (21, 18), (35, 31), (98, 91). For ± = − we have: (21, 25), (35, 40), (98, 106).
Recall that we have already assumed that m − n is odd, and thus the lowest possible
integer solution to the above equation is m = 21, n = 18. As we saw in equation (5.43),
the prefactor is independent of m and n and we must thus also verify that the correct signs
are reproduced in this setting. As we have already concluded we have that a2

2/2 − 3 < 0
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which gives us the negative term in the scalar potential. Fortunately, a2
1/2− 3 = 1/2 > 0,

so we also get the correct sign of the Q2-term in (5.56). The overall scaling of the terms
can be determined individually by tuning a and b. We find that

b2
(
a2

2
2 − 3

)
= −42 =⇒ b2 = 196

11 ,

a2
(
a2

1
2 − 3

)
= 2Q2 =⇒ a2 = 4Q2.

(5.59)

So, in contrast to the case where v 6= 0, u = 0, it seems like we can obtain exactly our
desired four-dimensional scalar potential for the u-field.

5.3 Structure of the Kähler Manifold and the Swampland
In light of our findings in this section, it seems like our ansatz must be revised in order to
produce the desired results. The ansatz for u, that is τ1 = χ1 + ie−αu, which parametrises
the upper complex half plane corresponds to the coset structure presented in 5.1.3. While
this ansatz yielded the desired results, we cannot be sure whether it is the correct structure.
The reason is that since the ansatz for v, τ2 = χ2 + ie−βv, is incorrect we do not know the
overall structure of the Kähler manifold parametrised by the two complex coordinates. A
direct product structure, such as SL(2,R)/U(1)×Gv/Hv whereGv/Hv is a consistent coset
structure for v, would imply that the solution we obtained for u could be used. However,
the Kähler manifold could also be such that the u and v parts are not independent. For
example, one could imagine that the Kähler metric had one component dependent on both
fields, such as g11(u) but g22(u, v). Then the Kähler potential contains mixed terms of u
and v and the above analysis would have to be performed much more carefully.

Unfortunately, the inability to reintroduce the pseudoscalars in the theory also hinders
any further investigation of the Non-AdS SUSY conjecture. One could try to experiment
with other complex structures for the v-field, but finding the correct one could be very
difficult. A better approach for future work would be to instead find the kinetic terms
for the pseudoscalars in some other way. Hopefully, one could do this by going back to
the full theory. Indeed, if one introduces the pseudoscalars already at the 11-dimensional
level, as we did for u and v, one could find the corresponding four-dimensional equations
of motion and from there construct the terms in the Lagrangian.
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6
Conclusions

In this thesis the compactification of 11-dimensional supergravity on the squashed seven-
sphere has been studied in the context of the Swampland program. After providing a
brief overview of the 11-dimensional theory, the geometry of a squashed seven-sphere was
reviewed. The compactification was done in the Freund-Rubin ansatz, which was shown
to lead to an AdS background geometry in four dimensions. By taking the scale and
squashing parameters of sphere to be spacetime dependent, we constructed an effective
four-dimensional supergravity Lagrangian containing a scalar potential. It was shown that
the potential features two perturbatively stable extrema, corresponding to the round and
squashed seven-sphere. It was argued that the extremum for the squashed seven-sphere
retains stability after orientation-reversing, a process which breaks all supersymmetry.
This contradicts the Non-AdS SUSY conjecture at a perturbative level.

In order to better understand this effect, an attempt to reintroduce pseudoscalar fields
coming from the 11-dimensional theory was done. The basic idea behind this attempt
rested upon the fact that complex scalars in supergravity parametrise Kähler manifolds.
The size and squashing scalars were combined with pseudoscalars to form two complex
coordinates, each parametrising the upper complex half-plane, which allowed for construc-
tion of the metric and potential of the Kähler manifold. Taking a polynomial ansatz for
the superpotential and computing the scalar potential on the Kähler manifold allowed for
comparison with the scalar potential from the compactification. The parametrisation of
the upper complex half-plane, corresponding to the coset structure SL(2,R)/U(1), was
seen to be consistent for the size parameter, but unable to reproduce the desired scalar
potential for the squashing parameter. Thus, it appears as one would need further infor-
mation of the structure of the Kähler manifold in order to proceed with this method, as
the SL(2,R)/U(1)× SL(2,R)/U(1) structure used in this thesis is not correct.

Obtaining a better understanding of the squashed seven-sphere and any possible contradic-
tions with the Swampland program is highly interesting. Further studies of the perturba-
tive properties, as done in this work, is one possible way. Along the lines of this thesis one
could explore different coset structures of the Kähler manifold or non-polynomial forms
of the superpotential. A somewhat different approach would be to introduce the pseu-
doscalars already at the 11-dimensional level, and explicitly see how they appear in four
dimensions. Such an approach could possibly be combined with the findings of this thesis
in order to provide a complete understanding of the structure of the Kähler manifold.
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A
Conventions

A.1 Indices and Gamma matrices
We use Greek letters for spacetime indices. Letters from the beginning of the alphabet,
α, β, . . . are flat indices, those from the middle of the alphabet, µ, ν, . . . are curved. Spinor
indices are written with Latin letters, a, b, . . . for flat and m,n, . . . for curved. Note that
this means that m,n, . . . will almost never be used in these context. Instead they will
have a more standard meaning in compactifications, by describing the coordinates on the
internal manifold. Gamma matrices in eleven dimensions are defined by{

Γ̂α, Γ̂β
}

= 2ηαβ (A.1)

In the most general case, Γ̂ are 11-dimensional, Γ are seven-dimensional and γ are four-
dimensional. However, in parts where the work is done exclusively in 11 dimensions, Γ
(no hat) is also used for the 11-dimensional ones. Antisymmetrised products of gamma
matrices are written

Γ[n] = Γα1...αn ≡ Γ[α1Γα2 . . .Γαn] (A.2)

In four dimensions, γ5 is defined as

γ5 = iγ0γ1γ2γ3 (A.3)

The symmetries of 11-dimensional gamma matrices are taken so that

χ̄Γ̂[m]ψ = −ψ̄Γ̂[m]χ, for m = 1, 2, 5
χ̄Γ̂[m]ψ = +ψ̄Γ̂[m]χ, for m = 3, 4

(A.4)

for Majorana spinors. Since the flip of the spinors produce a minus sign from the anti-
commuting nature we will, for example, call Γαβδ antisymmetric while Γα is said to be
symmetric.

A.2 Tensors
The Riemann tensor is defined by

Rµνα
β(ω) ≡ 2∂[µων]α

β + 2ω[µ|α|
γων]γ

β (A.5)

Where ω is the spin connection. If we solve the equation of motion for the spin connection
we will find

ωµ
αβ = ωµ

αβ(e) +Kµ
αβ (A.6)
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A. Conventions

where K is what we define as the contorsion, and ω(e) is the torsion-free connection.

The Levi-Civita symbol is defined as positive with upper indices1. Explicitly in four
dimensions

ε0123 = 1, ε0123 = −1 (A.7)

The Levi-Civita symbol can then be used to define the determinant of any matrix as

detM = − 1
D!ε

b1...bDεa1...aDM
a1
b1 . . .M

aD
bD (A.8)

These definitions are however only true if written in the local frame. In order to express
the Levi-Civita symbol in curved indices we use the following definitions

εµ1...µD ≡ e
−1εa1...aDeµ1

a1 . . . eµD
aD

εµ1...µD ≡ eεa1...aDea1
µ1 . . . eaD

µD
(A.9)

with e = det eµa and e−1 = det eaµ. Note that the symbol is not a tensor. It is sometimes
convenient to use the tensor description and thus we define

εµ1...µD = eεµ1...µD εµ1...µD = e−1εµ1...µD (A.10)

Note that this means that the usual contraction identities can be used also for the tensor,
since the factors of e cancel. A general formula for contractions is

εa1...anb1 . . . bpε
a1...anc1...cp = −p!n!δc1...cp

b1...bp
(A.11)

The Kronecker delta with multiple indices is defined by

δρσµν = δρ[µδ
σ
ν] (A.12)

The covariant d’Alembertian operator acting on scalars is defined by

�φ = 1√
−g

∂µ
(√
−ggµν∂νφ

)
(A.13)

1Comparing to Supergravity [22], this corresponds to s5 = −1
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