
Random Code Variation Compilation
Automated software diversity’s performance penalties

Master’s thesis in Computer Science – algorithms, languages and logic

Christoffer Hao Andersson

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018





Master’s thesis 2018

Random Code Variation Compilation

Automated software diversity’s performance penalties

CHRISTOFFER HAO ANDERSSON

Department of Computer Science and Engineering
Division of Computing Science

Chalmers University of Technology
Gothenburg, Sweden 2018



Random Code Variation Compilation
Automated software diversity’s performance penalties
CHRISTOFFER HAO ANDERSSON

© CHRISTOFFER HAO ANDERSSON, 2018.

Supervisor: Thomas Hallgren, Computer Science and Engineering
Examiner: Andreas Abel, Computer Science and Engineering

Master’s Thesis 2018
Department of Computer Science and Engineering
Division of Computing Science
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: An illustration of a shape that mutates into different shapes to hide its
original shape.

Typeset in LATEX
Gothenburg, Sweden 2018

iv



Random Code Variation Compilation
CHRISTOFFER HAO ANDERSSON
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
This thesis investigates automated software diversity applied post linking, as a pro-
tection method for legitimate applications. A mutation tool was built that can apply
different mutation schemes directly on application binaries. Mutation schemes sim-
ilar to methods used to hide malicious code were implemented. The schemes were
applied to a legitimate application. Three properties were then analyzed for each
mutation scheme: correctness, uniqueness and performance. Correctness means
proper functionality for the mutated code. Uniqueness is how hard it is to recognize
the mutated code, knowing the original. Performance is how the mutation affected
the application performance-wise. The result showed that the choice of mutation
schemes and their parameters greatly affected the uniqueness and performance. It
was found that schemes could be grouped into different scheme types, sharing prop-
erties in how they work. Finally, it seems like it would be better to apply mutation
on a higher level for both performance and uniqueness, either if machine code could
be lifted to a higher-level language or if the mutation were integrated directly in the
compiler and linker.

Keywords: Automated Software Diversity, Mutation, Compiling, Security, Perfor-
mance, Metamorphic, Injection, Malicious Code, Virus, Cheat
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1
Introduction

In this section the subject is introduced together with some background. Then possible
applications are presented followed by the problem statement and previous research.
Finally, some limitations are discussed, and the contribution of this study is pre-
sented.

1.1 Overview

Many applications today are vulnerable to attacks based upon signature scans and
code injections. Some examples are buffer overflow attacks, viruses, computer game
cheats, etc. In this thesis, automated software diversity was applied to legitimate
application. By introducing diversity in the binary code, legitimate applications
can be protected from malicious code scnas and injections, just as malicious code
protects itself against e.g. anti-virus. This can be useful were malicious code depends
on already known information about an application, e.g. code signatures or internal
data structures.

To measure security and performance penalties, I built a mutation tool. The muta-
tion tool can mutate application binaries directly without need for recompiling, i.e.
post-linking. Different mutation schemes were tested and their security and perfor-
mance penalties were measured. The implemented mutation schemes are similar to
software diversity methods used in malicious code. The mutation tool can easily be
expanded or modified for further research or applications.

This thesis is aimed towards both an academic audience within the computer sci-
ence field, as well as any software developer working on applications that might be
vulnerable to the security problems described. Very limited compiler support and
few tools exists for those techniques described at the time being. This thesis might
be of interest for developers facing those security problems.
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1. Introduction

1.2 Signature scans and code injection

Signature scans can be used to find specific code in an application. It can be seen
as a footprint for a certain sequence of assembly code. It is e.g. used in anti-virus
software to scan for signatures of known malicious code. Signature scans are also
used in malicious code to find code of interest in target applications.

Some examples of signatures:

Listing 1.1: Signature scan example 1
8B 41 08 MOV EAX , DWORD PTR [ECX +8]
85 C0 TEST EAX , EAX

The above Listing 1.1, shows two instruction that looks like ”8B 41 08 85 C0” in flat
memory. The simplest signature would then be ”8B 41 08 85 C0”. This signature
can be used to search all relevant memory in a process until a hit is found, i.e. the
signature is found.

If a signature is too short or too common, multiple hits can be found. Normally,
the solution is to add more bytes to the signature if needed, e.g. bytes around the
code of interest. However, often just some bytes are needed to uniquely identify a
code sequence in a process. We also want to keep signatures as small as possible to
not depend on more bytes than necessary.

Listing 1.2: Signature scan example 2
8B 45 08 MOV EAX , DWORD PTR newSize [EBP]
83 C4 04 ADD ESP , 4
89 47 04 MOV DWORD PTR [EDI +4], EAX
8B 0B MOV ECX , DWORD PTR [EBX]
85 C9 TEST ECX , ECX

When a program is updated and recompiled, constants and static offsets may change,
e.g. ”newSize” in Listing 1.2. To prevent that signatures breaks too easy during
updates, wildcards can be added to the signature. For Listing 1.2, the following
signature can be used ”8B ?? ?? 83 ?? ?? 89 ?? ?? 8B ?? 85”. The signature does
not depend on any arguments to the instructions, just the instructions themselves.
If the sequence of instructions are found, a hit is reported. Note that it also must
be the right version of the instructions, e.g. there exits many OP codes for MOV.

It is also possible to have signatures with an arbitrary number of wildcards. Let
a signature independent of previous examples be ”8B ?? 93 [0-5] 89”. Where ”[0-
5]” means 0 to 5 wildcards bytes. This can be used to filter out some types of
automated software diversity as shown later. Note if signature scans become to
general, we starting to get more hits. Normally, just one hit is wanted, to identify
the code of interest.
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1. Introduction

After a signature scan returns 1 hit, the found code can be used. For malicious
code, just offsets can be interesting, or code injections can be performed. Offsets
can be used to address and access memory. Code injection is basically, overriding
the found code with something else. That opens up the possibility to change the
functionality of the original application to something else.

Example of some real signatures for CS:GO1, used in cheats:

Figure 1.1: Screenshot from source code of ”CSGO-Dumper (Y3t1y3t)”

1Computer game called ”Counter-Strike: Global Offensive”
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1. Introduction

1.3 Background

Normal compilers have the emphasis on generating code that will run as efficiently
as possible on a specific target. It may be with respect to different parameters
like hardware, knowledge of the software, available memory or some other factors.
However, with the same inputs (i.e. the same code, platform, version, etc.) the
compiler will always generate the same output (i.e. executable). This makes sense
performance-wise. Unfortunately, this homogeneity opens for several security prob-
lems in some environments and applications.

If the structure of a program is the same for every instance, attackers must only
reverse engineer one instance of the software. The gained knowledge can then be
used on another instance. The attacks discussed in this thesis are based on signature
scans and/or code injections. Those attacks can be found in e.g. buffer overflows,
viruses, computer game cheats and other malicious code.

The idea is to introduce a seed to the input of the compiler. For every unique seed,
the compiler should generate a unique output, i.e. a unique sequence of machine
code instructions. The outputs should still be logically equal. A unique output
can be achieved in a lot of different ways, e.g. modifying the instruction scheduling,
instruction choices, register choices, the overall structure of the program, calling
conventions, control flow, structs/classes member order, virtual table order, etc. [1,
2, 17].

By introducing code variation during the compilation process, the security problems
mentioned above can be partially or fully solved. This is because signature scans
and code injections are dependent on the machine instructions of the target.

There exist similar concepts for known malicious code e.g. ”Polymorphic code”
or ”Metamorphic code” to hide the malicious code from anti-virus software [2,
1, 3]. (”Polymorphic code” is code that e.g. encrypt itself when not executed.
”Metamorphic code” is code that modifies the instructions, but keep the original
algorithm intact.) Those techniques are used because anti-virus programs heavily
depends on signature scanning for already known signatures [2, 3, 1, 4, 5]. Anti-
cheat software basically works the same way [6]. Also in code obfuscation, similar
techniques exist where the code is mutated and/or virtualized to make it harder to
reverse engineer. However, code obfuscation often comes with performance impacts.

Code variation is introduced to hide signatures and not to alter the function of the
application. Code variation, as opposed to code obfuscation, does not need to hide
the functionality of the code and, thus, does not come with the same performance
penalties. Also, because it is not for virus compilation, the code does not need to
be compatible with e.g. a metamorphic engine. The idea is to hide legitimate appli-
cation signatures from malicious code, just as malicious code hides their signatures
from anti-virus software. It is not about making the code hard to reverse engineer.
This is a clear difference to code obfuscation, which goal is to make the code as hard
as possible to reverse-engineer, not to signature scan.
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1. Introduction

In performance critical applications such as games, it is of importance to know
what sort of performance penalties different software diversity techniques causes.
Different techniques may be appropriate for different applications or maybe even
different hardware.

By changing signatures of legitimate applications, any malicious code that is depen-
dent on those signatures stops working. For instance, any buffer overflow attack,
virus or game cheat dependent on signatures breaks if the signatures changes. Re-
verse engineering is required again. Even more important, reverse engineering is
required every time an application is recompiled with automated software diversity.
If updating an application generates a new signature, frequent updates results in
frequent reverse engineering for attackers.

Still the anti-virus arms race goes on. Other methods like e.g. jump unrolling []
can be combined with signature scans. However, even if a code sequence can be
detected, it is even more complicated to inject code. If applications are distributed
(not on a server), the attacker has full control over the execution environment which
allows more advanced attacks and analysis.

5



1. Introduction

1.4 Applications
One very rapidly growing market is the gaming market. Naturally, the problem of
cheating players is growing as well. Sometimes even legal actions have been the
solution [7]. Cheating destroys the experience for other customers and can hurt
companies that fails to provide proper protection. One recent example is ”COD:
WWII beta” which had cheaters first day on launch [8]. Attackers often earn money
from providing cheats for products from other companies [9]. Cheats can essentially
be seen as selling extensions without permission.

Normal anti-cheat software heavily relies on signature scans of known cheats [6].
That means new or private cheats are unknown to a signature database at first. By
time, they may get added to the database. Still there will be a problem with some
cheats around, just as with viruses before they are detected. Cheat uses the same
techniques as other malicious code to hide their signatures. The techniques are often
some sort of ”Polymorphic code” or ”Metamorphic code” mechanics. This can even
make public cheats relatively safe to use. Instead of adding more signatures to the
data base, recompiling the game itself with random code variation, breaks all cheats
depending on signatures from the game.

Random code variation in combination with frequent updates makes malicious code
very cumbersome to maintain, because reverse engineering is required for every
update. The need of manual work is likely leading to increased costs for the cheat
developers and a more unreliable service for their customers. This can hopefully
resulting in less online game cheating. Other benefits are that anti-cheat software
can be reduced or completely removed. Removing anti-cheat software can result in
better privacy and possibly even better overall performance [10, 11].

Another idea is to let every user have their own unique version of the game. In
that way, regular updates can be avoided. However, with a large player base, an
update can require millions of compilations. Also, a user can only be semi-trusted
and might be willing to use executables provided by a hacker. This approach may
work better for server instances, were updates are more infrequent. Each server can
have an unique compiled version per licence or instance. That makes buffer overflow
attacks very hard if not impossible [12].
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1. Introduction

1.5 Problem statement
The aim of this master thesis is to test if introducing automated software diver-
sity post-linking, is a practical protection method against signature scans and code
injections. This will be tested by applying similar methods as used in malicious
code, directly to application binaries. Different mutation schemes or combinations
of schemes will be applied, and three properties will be evaluated: correctness,
uniqueness and performance.

Theoretically, automated software diversity can be achieved in many ways [17].
However, it might not always be practically feasible due to performance impacts.
Another concern is how distinct two mutated outputs are, how unique are they?
Uniqueness is important for security, otherwise the uncertainty in the target is lost
or not enough. By measuring uniqueness, security of methods can be compared.

1.5.1 The main research question
Is applying automated software diversity post-linking a practical protection method
against signature scans and/or code injection for legitimate applications? What
properties do mutation have? What are the performance penalties? What is the best
configuration in terms of uniqueness contra performance?

This will be answered both by theoretical analysis of different mutation schemes and
by implementing a mutator that can apply those mutation schemes on binary files.
The modified binaries will be analyzed by both state of the art tools and manual
inspection. The performance will be tested by mutating a benchmark application
and running performance tests.

7
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1.6 Related work
By introducing diversity in the target, a wide range of attacks can be partly or fully
avoided. There exist many ways to diversify software [17]. However, the support in
non-commercial and commercial tools is still very limited.

A GCC 2 add-on was recently released that can scramble the order of struct members
[13]. It is described as ”. . . obfuscating the internal binary layout of a running kernel,
making kernel exploits harder”. This is basically one method of automated software
diversity that makes it harder for malicious code to use and identify structs. Struct
randomization can also be done at run time [18], however this is not currently
supported by the GCC add-on.

Another approach is ”Random instruction set” [12]. The idea is to have hardware
that XOR encrypts all instructions in memory with a random key. When an in-
struction is fetched for executed, it is decrypted before passed to the processor. A
drawback with ”Random instruction set” is that it needs an emulator or special
hardware [12]. See illustration below in Figure 1.2.

Introducing automated software diversity during the compiling process generates in-
stances that can run on already existing hardware. Just by recompiling the program
the same benefits are gained. ”Random instruction set” is similar in what they try to
achieve but with a different approach. Software diversity at compile time can possi-
bly come with greater performance impacts compared to special hardware. However,
it is likely better than an emulator and cheaper than new hardware.

Figure 1.2: Figure taken from [12].

2GNU Compiler Collection

8
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1.7 Limitations
Building a compiler and linker from scratch is out of the scope for this thesis, because
time and money are limited. However, as seen in [17], post-distribution methods
typically have greater overhead than pre-distribution methods. One reason to that
pre-distribution methods are better in general is that more information about the
application is available, e.g. source code. Pre-distribution methods also provides
more flexible code generation, the program does not need to be modified, just gen-
erated differently when compiled. When source code is compiled from scratch, no
consideration must be taken about already compiled code, since there is none. Those
reasons are why it is easier to achieve both better performance and uniqueness with
post-distribution methods.

As reported in [20], software diversity often comes with performance overheads. One
approach to reduce performance overheads is to use information about sensitive areas
like hot paths. A hot path is code that the machine spend much of the execution
time at. Cold paths are the opposite, code that the machine spend little to none
execution time at. Profile-guided software diversity tries to utilize information about
hot paths and cold paths to avoid generating code with high performance overhead
in hot paths, while allowing higher performance overhead in cold paths. Normally,
hot paths and cold paths are found by profiling the application with expected input.
Profile-guided software diversity is a possible improvement for the mutation tool
built for this thesis.

For this thesis, code mutation will be performed on already compiled binary files.
The binaries must be optimized to get meaningful performance data. The reasons
for using mutation on binary files directly, is that it makes testing easier on already
existing applications. Modifying binary files directly also avoids the need of recom-
pilation. This is interesting for some applications, e.g. if compile times are long and
many instances must be generated. A drawback of modifying binary files directly, is
that it is more complex than e.g. modifying object files or assembly code. Code are
position or offset dependent so code cannot easily be extended or moved. Branches
and sections must therefore be handled very carefully.

In this thesis, some mutation schemes are chosen and discussed. It should be enough
to demonstrate the concept of introduction code variation and for getting an idea
of performance penalties. However, this should be seen as a general discussion and
different applications may respond differently to the same mutation schemes. No
prior knowledge is used about applications, like in profile-guided automated software
diversity [20]. Also, different hardware may play an important role in performance
and as discussed in ”Random instruction set”[12] even special hardware is possible.

Testing the concept on a wide range of applications will be out of the scope because
of time limitations. The platform will be limited to Windows and Intel’s x86 archi-
tecture: however, the concept still applies to x64 assembly code as well as any other
instruction set available today.

9



1. Introduction

1.8 Contribution
The contribution of this thesis is to give more insight into how automated software
diversity affects legitimate applications. It is expected that automated software
diversity can solve many existing security problems in million-dollar industries, e.g.
the gaming industry. Different mutation schemes were implemented, tested and
evaluated, contributing to more knowledge about security and performance penalty
for different mutations schemes. Performance penalties are of high importance for
most real-world applications. Security contra performance is an interesting aspect
that is investigated. Finally, the developed mutation tool used for data collection
in this thesis, is provided as an open source tool. Few open source mutation tools
exist, so therefore contributing to more open source tools can aid further research
or development.

10



2
Methods

In this section the methods used during this study are presented. Three mutation
properties are introduced for comparing different mutation schemes and parameters.
The built mutation tool and the implemented schemes are explained. Finally, the
test methods used are presented and explained.

2.1 Achieve random code variation
To evaluate random code variation I built a mutation tool. The mutation tool ex-
tract arbitrary functions from a binary, apply various mutation schemes, and finally,
write the mutated functions back to a new section in the binary. The implemented
mutation schemes are inspired by how malicious code hide its code signature [3, 2,
1]. However, any mutation scheme can be implemented.

One main reason to apply mutation post-linking is that mutation can then be ap-
plied to already existing binaries without recompilation. Other advantages are that
modifying the build chain can be avoided and no source code is needed. This is
convenient when the build chain is complicated, which is often the case. To ap-
ply mutation post-linking, linking information is used to locate function entries.
The mutation tool can also apply mutation to binaries without source or linking
information, but reverse engineering is then needed to locate function entries.

11



2. Methods

2.2 Three properties of mutation

Each mutation scheme will have different properties. In this thesis we look at three
properties of each mutation scheme: correctness, uniqueness and performance. Cor-
rectness means proper functionality for the mutated code. Uniqueness is how hard it
is to recognize the mutated code for an attacker, knowing the original. Performance
is how the mutation affects the application performance-wise.

We always want the mutated assembly code to be logically equivalent to the original
assembly code. Acceptable uniqueness and performance depends on application re-
quirements. A balance must be found between uniqueness and performance for each
application, as explained more below. These three properties are used to measure
and compare the quality of different mutation schemes.

In more formal words, let A be an arbitrary assembly code sequence. Define identity,
meaning the exact same assembly sequence as A = A.

Let

M(A, Seed) = A′

be a mutation scheme, that takes an assembly code sequence A, a seed Seed and
returns a mutated assembly code sequence A′.

Let S be the current state of a machine. Then let

E(A, S, X) = S ′

be an execution function that takes an assembly sequence A, a state S, X ∈ N and
returns the state S ′ after A was executed X steps, the sequence returned or the end
of the sequence was reached.

2.2.1 Correctness

For any mutation scheme to be useful, correctness must be fulfilled, i.e. a generated
assembly sequence A′ must be logical equivalent with the input A. Define logical
equivalence between two assembly sequences A and A′ as

A ∼= A′ ≡ ∀S, X ∈ N : E(A, S, X) = E(A′, S, X)

In this thesis correctness will be tested by comparing output from mutated assembly
code with output from the original assembly code. However, software verification
or logic proofs can also be used, e.g. like methods used in [21], where a compiler is
formally verified.

12



2. Methods

2.2.2 Uniqueness

For a mutation scheme to be useful, it must not only fulfill the correctness property,
but also generate distinct enough output. Otherwise the benefits of automated
software diversity are lost. What is distinct enough, depends on the application and
the potential attacks.

For an attacker to find or inject code in critical parts of an application, the attacker
must first identify where those critical parts are located. Normally, only a small
portion of a code sequence is critical. Let s ∈ A be a signature that exits in A.
Then s can be scanned for in A with a signature scan. The simplest decidable case
for an attacker is the identity case A = A′, i.e. no mutation was performed so if
s ∈ A then s ∈ A′.

By introducing mutation the goal is to achieve s /∈ A′ when s ∈ A. Let

s ∈ SignatureDB

where
∀s ∈ SignatureDB : s ∈ A

be a set with all or chosen critical signatures for an assembly sequence A.

For this thesis, we define a unique enough mutation scheme M as

Unique(M) ≡ ∀Seed, s ∈ SignatureDB : s /∈M(A, Seed)

for a chosen set SignatureDB of signatures. Signatures are determined by applica-
tion requirements or expected attacks.

Potentially, more advance recognition functions can be used instead of signature
scans. Let s′ ∈ A′ be the corresponding signature to s ∈ A after a mutation. To
identify s′ ∈ A′ knowing s ∈ A, the ideal recognition function for an attacker is
A ∼= A′. If A ∼= A′ can be identified, then s ∼= s′ can be identified, because it
is a subset of the solution to A ∼= A′. However, in practice, A ∼= A′ can not be
solved for arbitrary cases as known from the halting problem. Therefore, we expect
attackers can identify critical parts somewhere in the domain between the identity
function A = A′ and the logical equivalence function A ∼= A′. The uniqueness must
outmatch what an attacker can recognize, otherwise an attacker can find critical
code and construct attacks.

To measure uniqueness in this thesis, a set of signatures is used. Every generated
instance is scanned for all chosen signatures. Fewer signature matches are better.
However, in real world examples, a 100% miss rate of signature scans are normally
not necessary, it depends on the expected attacks.

13
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2.2.3 Performance

For a mutation scheme M to be useful in practice, it must generate output that
have acceptable run-time performance. Let

T (A, S, X) = t

be a function that returns the time it takes to execute A from state S, X steps,
until return or to end of the sequence. Let

P (A, M, Seed, S, X) = T (M(A, Seed), S, X)
T (A, S, X)

be a function that returns the slowdown factor.

It is expected in general that

∀A, M, Seed, S, X ∈ N : T (A, S, X) ≤ T (M(A, Seed), S, X)

⇐⇒

∀A, M, Seed, S, X ∈ N : P (A, M, Seed, S, X) ≥ 1

otherwise an ”optimization” has been performed.

Acceptable performance is defined by application requirements. It may vary greatly
between different applications. Some applications may have an upper bound that can
not be exceeded. In general, as low average execution time as possible is obviously
wanted. To calculate lower and upper bounds for an applications we see M , A, S
and X as constants. If M or A are variables, it means the used mutation scheme
or application code are changing. If a program always is executed from the start
until the end with the same input, S will be a constant state. Let X be the number
of steps the program is measured over, or as many steps as the the sequence needs
to return. The seed is the only variable, used to generate different instance. The
upper and lower bound are then:

Upper bound slowdown factor:

sup
Seed

P (A, M, Seed, S, X)

Lower bound slowdown factor:

inf
Seed

P (A, M, Seed, S, X)

In this thesis performance benchmarks will be used to estimate an average of P.
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2.3 Test Methods
For each tested mutation scheme the three properties correctness, uniqueness and
performance are be tested.

Correctness is tested by executing mutated versions of a binary and comparing the
output with the output from the original binary. Always the same input is used. For
the same input the same output is expected, otherwise the binaries are not logically
equal which mean ∃Seed : A 6∼= M(A, Seed), breaking the correctness property.

Uniqueness is tested by scanning for signatures matching the original binary. Signa-
tures are manually created and must be carefully designed, e.g. offsets, registers and
addresses can easily be changed if the binary is recompiled. Signatures should try
to avoid dependencies to such factors to be reliable during updates. If a signature
s ∈ SignatureDB exists in s ∈ A′, the uniqueness property is not fulfilled. It is
hard to define what enough uniqueness is in general, it depends on the expected
attacks.

For the signature scanning itself an external open source tool called YARA will be
used. YARA is a well-known tool and used by some of the leading companies when
it comes to malware research [14]. YARA has support for searching for custom
signature strings, including wildcards and regular expressions. See appendix C for
used YARA file.

Performance is measured by running a benchmark application and see how the
mutation affects the performance. The performance property is apart from the
correctness property hard to say if it is fulfilled. Acceptable performance is defined
by application requirements. E.g. in a game the performance requirements can be
a certain frame rate, or in a server environment it can be the longest acceptable
response time. The mutation must be tested directly on an application to be sure.
The performance impact depends on the characteristics of an application, hardware,
etc. The goal is to get a general idea of how different mutation schemes affect
performance and what causes performance impacts.

A benchmark application is executed to collect data. The same input is always used
for all tests. For each tested mutation scheme, 10 different instances are generated.
Those instances are executed 10 times each to calculate the average execution time
of the instances. The averages of the instances are then used to calculate the average
execution time for the mutated application. The average performance penalty can
then be compared for each mutation scheme.

The chosen signature scans are tested against each unique instance, i.e. 10 times
per mutation scheme. The number of matches are used to describe the efficiency
of the tested mutation scheme. Uniqueness and performance can then be compared
for each mutation scheme.
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2.4 Tested Schemes

Three mutation schemes have been implemented and tested. Each implemented
mutation scheme will be described here. The mutation tool will fix changes in
offsets so the mutation schemes can operate on assembly code level. E.g. branch
and call instructions must be patched when inserting instructions, because it will
change jump offsets.

2.4.1 Garbage insertion

Garbage insertion is the simplest mutation scheme. It works by inserting instructions
that do not have any meaningful contribution to the application, therefore called
garbage. Garbage generation is implemented by pushing a register and popping it
immediately afterwards or by just inserting of NOP instructions. More variations
of garbage are of course possible to add. The idea is to split up adjacent bytes into
two or more separate blocks, to prevent a signature match.

The implemented garbage insertion scheme has three parameters: minimum and
maximum instruction block size without garbage instructions, and the maximum
number of garbage instructions inserted between the blocks. All block sizes will be
randomized but bound by the parameters.

In Listing 2.2, we can see an example of garbage insertion with min and max block
size 1. Maximum number of garbage instructions inserted is 5. I.e. 1 to 5 garbage
instructions will be inserted between every original instruction.

In Listing 2.3, we can see an example of garbage insertion with min block size 1
and max block size 3. Maximum number of garbage instructions inserted is 5. I.e.
1 to 5 garbage instructions will be inserted between every block of 1 to 3 original
instruction.

Examples of garbage insertion:

Listing 2.1: Original code sequence
MOV EDI , [EBP +0x8]
MOV ESI , ECX
NOP DWORD [EAX+EAX +0x0] ; padding added by compiler
MOV EAX , EDI
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Listing 2.2: Garbage insertion with min and max block size 1
MOV EDI , [EBP +0x8]
NOP
NOP
MOV ESI , ECX
NOP
PUSH EBX
POP EBX
PUSH EBX
POP EBX
NOP DWORD [EAX+EAX +0x0]
NOP
NOP
NOP
NOP
MOV EAX , EDI
NOP

Listing 2.3: Garbage insertion with min block size 1and max block size 3
MOV EDI , [EBP +0x8]
NOP
PUSH EAX
POP EAX
MOV ESI , ECX
NOP DWORD [EAX+EAX +0x0]
MOV EAX , EDI
NOP
NOP

To fulfill the correctness property, the state is unchanged of a garbage snippet. This
is achieved by choosing garbage snippets that do not affect flags and restore the
state if changed before returning.

Garbage insertion will only work against static signature scans. This is because
garbage easily can be filtered out through wildcard strings. However, garbage inser-
tion is a very simple technique and serves well as a reference.

Example of how wildcard strings can filter our garbage.

Listing 2.4: Garbage filtering demonstration (Original)
8B 7D 08 MOV EDI , DWORD PTR [EBP +0x8]
89 CE MOV ESI , ECX
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Define a signature for Listing 2.4 as ”8B 7D 08 [0-5] 89 CE”. The signature can
handle that 0 to 5 bytes are inserted between the instructions. E.g. both listing 2.5
and listing 2.6 will match.

Listing 2.5: Garbage filtering demonstration (1 bytes inserted)
8B 7D 08 MOV EDI , DWORD PTR [EBP +0x8]
90 NOP
89 CE MOV ESI , ECX

Listing 2.6: Garbage filtering demonstration (2 bytes inserted)
8B 7D 08 MOV EDI , DWORD PTR [EBP +0x8]
53 PUSH EBX
5B POP EBX
89 CE MOV ESI , ECX

The expected performance is depending on how frequent garbage is inserted and
how much that is inserted. More efficient garbage sequences can be added. E.g. if
5 bytes garbage is needed it is probably more efficient to insert a 5-byte instruction
than 5 NOPs if chosen wisely. However, the same instructions can not always be
chosen since then it results in a static signature, defeating the purpose of adding
garbage from the beginning.

Added padding from the compiler is treated as normal instructions. Inserted garbage
will destroy memory alignment created by the compiler. This can potentially de-
crease performance because frequent jump addresses are often aligned in memory.
Implementing support for restoring memory alignment can increase performance if
cache misses are a problem.
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2.4.2 Scramble

Scramble mutation scheme takes a code sequence and divides it into blocks which are
scrambled and reconnected with jumps. The scramble scheme has two parameters:
minimum block size and maximum block size. The block size is the number of
instructions before a new block is defined and a jump instruction is inserted. The
goal is the same as in garbage insertion, to split up adjacent instructions into two
or more separate blocks.

Figure 2.1: Illustration of how the scramble scheme breaks up the execution flow

For real assembly example, see appendix E.

One advantage over garbage insertion is that scramble mutation can protect against
wildcard strings, this is because the instructions will no longer be in the original
order. However, too large block size (several instructions) leaves signatures intact
inside blocks. To signature scan properly, the instructions needs to get unrolled. Un-
rolling jumps are trivial e.g. if a control-flow graph is built [13]. However, unrolling
instructions are more expensive than signature scans, because the instructions must
then be disassembled to analyze the code. Signature scans are fast since they only
compare bytes.

The correctness property will be fulfilled because unconditional jump instructions do
not change the state, apart from the instruction pointer. The original instructions
sequence is executed in the original order, apart from inserted jump instructions
between the code blocks.
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The performance penalty will depend on at least two factors: cache misses and the
execution time of jump instructions. Those factors will be affected by the chosen
block size as well as memory layout of the blocks. E.g. a small block size will scatter
more blocks and also insert more jump instructions. A large block size likely will
affect performance less, but as mentioned, with too large blocks, signatures starts
to match inside the blocks. Different block sizes have been tested in this thesis to
investigate the balance between uniqueness and performance.

The implemented scramble scheme in this thesis does not consider memory alignment
or cache misses, performance improvements are therefore possible. E.g. placing
connected blocks in the same memory area can reduce cache misses. Alignments
for jumps can also be considered, especially were the compiler have already added
padding for alignment. E.g. branches, function entry points, etc.
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2.4.3 Substitution
Substitution is the last scheme that was tested. The idea with substitution is to
break signatures by substitute instructions or instruction sequences. This is the most
complicated mutation scheme to implement. Every supported instruction needs spe-
cial care, especially if flags are modified. The implemented support is limited to
PUSH REG, POP REG and MOV REG, REG instructions. The current implemen-
tation has predefined substitutions that are generated with help of randomization.
Even though not all instructions are supported, the scheme can be used to evaluate
if it is worth to implement support for more instructions.

Examples of substitution:

Listing 2.7: Original code sequence
PUSH EBX

Listing 2.8: Substituted variant
PUSH EAX
PUSH EBX
POP EAX
POP EBX
PUSH EAX
PUSH EAX
PUSH EBX
POP EAX
POP EBX

Listing 2.9: Another substituted variant
PUSH EBX
MOV EBX , ECX
POP ECX
PUSH ECX
PUSH ECX
MOV ECX , EBX
POP EBX

Exact implementations can be found in source code, see appendix A.

The supported instructions do not change any flags. Correctness is fulfilled because,
the substituted instructions just performs the same logical operation in another way
and do not change any flags. If an instruction modifies the flags, the status of the
flags must be restored after the substituted instructions, or special care must be
taken. E.g. MOV EAX, EBX is not always replaceable with:

Listing 2.10: MOV instruction replaced by XOR instructions
XOR EAX , EBX
XOR EBX , EAX
XOR EAX , EBX
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since the flags will be different. It depends on if the status of the flags are used
afterwards or not. It can be tricky to see if flags are used later or not because of
instruction scheduling and pipelining.

Substitution makes it hard to signature scan unless all substitutions are covered. It
especially gets tricky when randomization is involved in the substitution. However,
all used instructions must be supported to get proper protection.

This post-linking substitution will likely have a significantly higher performance
penalty than necessary. This is because instruction are substituted one by one and
one instruction is replaced by several other instructions. This blows up the code
size relatively fast. A better substitution method is easier to implement at a higher
level. If random code variation is supported directly in a compiler more information
and options are available.

Example of 3 possibly compatible substitutions:

Listing 2.11: Examples of possible substitutions
ADD EAX , EAX
MUL EAX , 2
SHL EAX , 1

The substitutions in Listing 2.11 could possible be interchanged. To safely inter-
change those instructions, high level information is needed. E.g. if EAX is unsigned,
substitutions in Listing 2.11 can be made. However, if EAX is singed, it can not.
Also, flags must be treated carefully because different instructions may set flags
differently.

Reported in [17], post-distribution methods typically have greater overhead than
pre-distribution methods in general. This because less information is available.
Another approach to gain more information, is to lift the assembly code to a higher
level, e.g. to LLVM or similar. This is not as good as source code, but can easier be
analyzed than machine instructions.
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2.5 Combining mutation schemes
Different or same mutation schemes can also be combined. Basically, meaning that
they are applied one after another. Since the schemes are applied independently
after each other, the properties already discussed should still be valid. Otherwise
they can not be valid for an original instruction sequence looking like the output
from a previous mutation scheme. The hope is to improve the security by gaining
advantages that are unique for each combined scheme.
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3
Results

In this section the application tested on is presented. The signatures used to test
uniqueness are also shown here. Then the test results are presented and analyzed.

3.1 Heap sort benchmark
I implemented a heap sort benchmark to test the mutation schemes. The application
is given a text file with numbers to sort. All numbers are loaded into memory before
the profiling starts and no outputs are made before the benchmark has ended, hence
all IO operations are excluded from the measured benchmark time. The source of
the application can be found in appendix A.2.

In total, 24 different mutation scheme configurations were tested with the benchmark
application. The original version was tested in the same way and used as a reference
point. For each configuration, 10 different instances were generated, i.e. 10 different
randomly picked seeds were tested for each configuration.

Each instance was tested against the chosen signatures and the number of matches
were counted. One million numbers to sort was given to each instance and the
execution time was measured. The execution was repeated 10 times for each instance
to measure an average execution time per instance. In total, 2400 executions were
performed (Configurations ∗ Instances ∗ Samples = 24 ∗ 10 ∗ 10).

Proper function was tested for each instance by checking the min, max, median and
total sum, returned by the instance. All executions passed this test.
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3.2 Configurations

In the configurations below, a code block is defined a as sequence of instructions
with a randomized length. During mutation, the garbage insertion and scramble
scheme will split the code into code blocks with varying length until no more code
blocks can fit. The length is bound by the min and max block parameters. E.g.
with min block 1 and max block 5, code blocks length will randomly vary in the
range from 1 to 5 instructions during mutation.

Original:
No modifications.

Garbage (1-1) 1 to 5 garbage instructions:
Insert 1 to 5 garbage instructions between all instructions.

Garbage (1-2) 1 to 5 garbage instructions:
Insert 1 to 5 garbage instructions between every code block. Code block size is
randomized dynamically during mutation and will be in the range 1 to 2 instructions.

Garbage (1-3) 1 to 5 garbage instructions:
Insert 1 to 5 garbage instructions between every code block. Code block size is
randomized dynamically during mutation and will be in the range 1 to 3 instructions.

Garbage (1-4) 1 to 5 garbage instructions:
Insert 1 to 5 garbage instructions between every code block. Code block size is
randomized dynamically during mutation and will be in the range 1 to 4 instructions.

Garbage (1-5) 1 to 5 garbage instructions:
Insert 1 to 5 garbage instructions between every code block. Code block size is
randomized dynamically during mutation and will be in the range 1 to 5 instructions.

Garbage (1-1) 1 garbage instructions:
Insert 1 garbage instructions between all instructions.

Garbage (1-3) 1 to 5 garbage instructions x2:
Same as ”Garbage (1-3) 1 to 5 garbage instructions”, but applied twice.

Garbage (1-5) 1 to 5 garbage instructions x2:
Same as ”Garbage (1-5) 1 to 5 garbage instructions”, but applied twice.

Scramble (1-1):
Insert a jump instruction between all instructions.

Scrambe (1-2):
Insert jump instruction between all code blocks. Code block size is randomized
dynamically during mutation and will be in the range 1 to 2 instructions.
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Scrambe (1-3):
Insert jump instruction between all code blocks. Code block size is randomized
dynamically during mutation and will be in the range 1 to 3 instructions.

Scrambe (1-4):
Insert jump instruction between all code blocks. Code block size is randomized
dynamically during mutation and will be in the range 1 to 4 instructions.

Scrambe (1-5):
Insert jump instruction between all code blocks. Code block size is randomized
dynamically during mutation and will be in the range 1 to 5 instructions.

Scrambe (1-3) x2:
Same as ”Scrambe (1-3)”, but applied twice.

Scrambe (1-5) x2:
Same as ”Scrambe (1-5)”, but applied twice.

Garbage(1-3) 1 to 5 + Scramble(1-3):
First apply ”Garbage(1-3) 1 to 5”, then apply ”Scramble(1-3)”

Scramble(1-3) + Garbage(1-3) 1 to 5:
First apply ”Scramble(1-3)”, then apply ”Garbage(1-3) 1 to 5”

Garbage(1-5) 1 to 5 + Scramble(1-5):
First apply ”Garbage(1-5) 1 to 5”, then apply ”Scramble(1-5)”

Scramble(1-5) + Garbage(1-5) 1 to 5:
First apply ”Scramble(1-5)”, then apply ”Garbage(1-5) 1 to 5”

Garbage(1-5) 1 to 5 + Scramble(1-3):
First apply ”Garbage(1-5) 1 to 5”, then apply ”Scramble(1-3)”

Scramble(1-3) + Garbage(1-5) 1 to 5:
First apply ”Scramble(1-3)”, then apply ”Garbage(1-5) 1 to 5”

Garbage(1-3) 1 to 5 + Scramble(1-5):
First apply ”Garbage(1-3) 1 to 5”, then apply ”Scramble(1-5)”

Scramble(1-5) + Garbage(1-3) 1 to 5:
First apply ”Scramble(1-5)”, then apply ”Garbage(1-3) 1 to 5”
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3.3 Signatures
Here are the chosen signatures to test against the heap sort benchmark.

Listing 3.1: "Array" signature
8b 41 08 mov eax , DWORD PTR [ecx +8]
85 c0 test eax , eax

Listing 3.2: "BubbleUp" signature
8b 1c b9 mov ebx , DWORD PTR [ecx+edi *4]
8b 14 81 mov edx , DWORD PTR [ecx+eax *4]

Listing 3.3: "BubbleDown" signature
8b ?? ?? mov ??, ??
8d ?? ?? lea ??, ??
3b ?? ?? cmp ??, ??

Listing 3.4: "Resize" signature
8b ?? ?? mov ??, ??
83 ?? ?? add ??, ??
89 ?? ?? mov ??, ??
8b ?? mov ??, ??
85 ?? test ??, ??

Listing 3.5: "Garbage" signature
; exact instruction depends on Mod -R/M
8b ?? 08 mov ??, DWORD PTR [??+8]
[0..5] bytes
; exact instruction depends on Mod -R/M
8b ?? b1 mov ??, DWORD PTR [ecx+esi *4]
[0..5] bytes
; exact instruction depends on Mod -R/M
8b ?? 93 mov ??, DWORD PTR [ebx+edx *4]
[0..5] bytes
89 ?? ?? mov ??, ??

Listing 3.6: "Substitution" signature
8b f2 mov esi , edx
8b ?? ?? mov ??, ??

The two first signatures "Array" signature and "BubbleUp" signature are static byte
strings.

The next two signatures "BubbleDown" signature and "Resize" signature are normal
wildcard strings. Basically, designed to remove dependence to registers and offsets.

The garbage "Garbage" signature is a special wildcard string that allows some offsets
inside the string. Such signatures can very efficiently filter out inserted garbage
between the instructions. In this case, up to five bytes can be inserted between the
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instructions, the value can also easily be modified if needed to support larger chunks
for garbage.

The last tested "Substitution" signature is basically a normal wildcard string as well.
The reason for adding it is because it depends on the instruction mov esi, edx which
the substitution scheme support. This signature is added to test the substitution
scheme.

The YARA signature file can be found in appendix C.
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3.4 Test results
The tests were run on a Windows 10 PC, Intel Core i7 3820 @ 2.6GHz with 16 GB
ram, for full CPU-Z 1 output see Appendix D. The raw test data table can be found
Appendix B.

1CPU-Z is a freeware system profiling and monitoring application for Microsoft Windows.
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Figure 3.1: Comparison of execution time.

Figure 3.2: Comparison of the numbers of signatures found.
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All raw data discussed below can be found in Appendix B. Listing 3.1 visualizes
performance penalty factors (less is better). Listing 3.2 visualizes signatures found
(less is better). Better uniqueness means less signatures found.

The original application had an average execution time of 130 ms when executed
100 times. Let 130 ms define the execution time factor 1,0. Also, all signatures were
obviously found.

As expected, the "Garbage" signature was found for all instances mutated by garbage
insertion a single time. When applying garbage insertion twice or combining it with
the scramble scheme, the "Garbage" signature was not found for all instances. When
combining garbage insertion twice, the garbage sections became too long for the
"Garbage" signature. However, the supported length of garbage sections can easily
be modified.

The best tested garbage insertion configuration in terms of uniqueness was with min
block size 1 and max block size 1, i.e. garbage was inserted between all instructions.
If one NOP instruction was inserted instead of up to 5 instructions, the performance
was drastically improved. The matching signatures were identical even though less
garbage instructions were inserted between the blocks. Worth noticing though is
that inserting only one NOP instruction between every instruction generates a static
signature for the binaries. However, it shows that since garbage easily can be filtered
out in wildcard strings, shorter garbage sections are probably to prefer if preferable
at all. Longer garbage sections may not necessarily add more security. Garbage
insertion itself does not add enough security to prevent signature scans even if
aggressively configured.

The best uniqueness in the test was achieved with the scramble scheme with min
block size 1 and max block size 1, i.e. an unconditional branch was inserted between
all instructions. The scramble scheme also had better uniqueness than the garbage
insertion scheme overall. However, if the "Garbage" signature was excluded, the
uniqueness was quite similar to the garbage insertion scheme. Scramble scheme had
an overall larger performance penalty compared to the garbage insertion scheme.

For the schemes tested applied twice, the performance penalty was less than two
times the single mutation performance penalty. However, the performance penalty
contra the number of matched signatures, did never justify choosing the combination.
Basically, very similar or better uniqueness can be achieved for similar performance
penalty if decreasing the block size instead of applying a scheme twice. The problem
with the garbage insertion scheme and scramble scheme, is that the goal is to split
an existing signature into different code blocks. When applied twice, instead of
decreasing the block size directly, the schemes try to split code inserted from previous
pass. Therefore, for these types of schemes, this mostly becomes an inefficient way
of decreasing the block size.
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When combining the garbage insertion scheme with the scramble scheme, the per-
formance penalty was also less compared to the sum of their single performance
penalties. Still it was hard to justify the combinations. Much like applying a
scheme twice, there are better options in terms of uniqueness contra performance
penalty. The problem is the same as with applying a scheme twice. Since both
schemes have the same goal, to break signatures into multiple code blocks. Combin-
ing the schemes becomes an inefficient way of decreasing the block size. Applying
the scramble scheme last tends to give a little better uniqueness in general. As the
results show, the scramble scheme gives better uniqueness in general. Therefore,
it has more effect to slightly decrease the scramble max block size instead of the
garbage insertion max block size, i.e. it is better to apply the scramble scheme last.

Finally, limited substitution was tested. Since the scheme is very incomplete, it was
expected that most signatures matched. However, the "Substitution" signature never
matched. That is because it depends on an instruction that was substituted. It is
hard to draw any conclusions from the performance data since so many instructions
were unsupported.
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4
Discussion

In this section the results and the test methods are discussed. Different scheme types
and their effect based on the results are discussed. Then some limitations of the
testing are discussed. Finally, some further research and the built mutation tool are
discussed.

4.1 Results summary
One contribution of this thesis was to investigate whether random code variation
is a practical protection method against signature scans and code injection. The
scramble scheme was the only scheme in this limited testing that generate a mutation
such that 0 signatures were found. The performance impact can not be ignored
when the scramble scheme increased the execution time by a factor of 2,9. However,
this execution factor is an upper bound which likely can be decreased. With more
engineering there are a lot of possibilities and room for improvements.
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4.2 Schemes types
Both the garbage insertion scheme and the scramble scheme rely on breaking signa-
tures up into two or more code blocks. The different is that the garbage insertion
scheme is breaking signatures by inserting garbage, while the scramble scheme is in-
serting jumps. The advantage of the scramble scheme in term of uniqueness is that
plain signature scans does not work. The code needs to be unrolled, which means
the signature scanner must be able to analyze the code and cannot just compare
bytes. However, the scrambled blocks cannot be placed right after each other, then
the same problem as garbage insertion arises, wildcard strings can be used to filter
out garbage or jumps.

As seen in the tests, combining the garbage insertion scheme and the scramble
scheme did not have good results in terms of uniqueness per performance penalty.
Also, applying the garbage insertion scheme or the scramble scheme twice had very
similar problems. Those problems are likely caused by the fact that the garbage
insertion scheme and the scramble scheme perform very similar functions. Both
schemes rely on breaking up signatures. As we can see from the results, breaking
up signatures is best done by picking a small block size, such that signatures cannot
fit inside a block. Applying this type of scheme twice only results in an inefficient
way of decreasing the block size.

The substitution scheme is another type of scheme. Its goal is not to break up
signatures into several different blocks. It is to replace instructions that signatures
depend on. One or more operations can likely be done in many ways. E.g. a
multiplication of 2 can be replaced with the sum of the value twice or just some
bit shifting. Obviously, if the mutation is too static, it is still possible to perform
simple signatures scans. However, if performed on a higher level, more options are
available. Mutation must not necessarily be performed on single instruction level.
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4.3 Limitations
Some things are worth mentioning about the testing. A small single threaded heap-
sort benchmarking application was used as performance measurement. It is still
a bit uncertain how mutation affects other applications, but some general analysis
was made. A single machine was used to run the tests. There was some variation
in execution time even though the same input was used. The instances were also
executed with the highest priority. The variation probably has to do with the
operation system or some other hardware factors.

Multithreading was not tested. For some applications good multithreading may be
more important than performance per thread. In such environments, the perfor-
mance penalty has likely less impact compared to in single threaded applications.
However, well threaded applications often tend to be performance critical and may
therefore have less margins as well. Schemes that modify the instruction order must
also be carefully designed when multithreading is considered. Otherwise e.g. locks
may not work properly. Reordering of instructions can be dangerous if not done
carefully.

One may think of the idea to only apply mutation to known problem areas, such as
some vulnerable functions or classes. That can come with less performance penalty
compared to mutating the whole application. It depends on e.g. where the hot paths
are. Also, identifying problem areas are not trivial. Attackers can still attack other
parts of the application. Some of the original benefits of introduction random code
variation are then lost. Knowledge about attacks and what parts that are vulnerable
are needed.

Introducing random code variation will not automatically increase security. How-
ever, it has great potential for some applications. Games e.g. can be protected from
cheats by having regular updates. Servers can be protected by unique instances for
each license or server. This make it very hard if not impossible for an attacker to
signature scan and inject code. However, just compiling one distribution copy adds
very little to no security. One reason it adds some security is that it may not be
possible for an attacker to directly compile an exact copy of a target.

Note that unique signatures are not protected against security holes in an API,
bugs in software or poor software design but only against signature scans and code
injections.
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4.4 Mutation properties
There is no standard method of measuring diversification [17]. Three properties
were introduces to analyze different mutation schemes. The methods used to analyze
those properties in practice can be improved and expanded. E.g. correctness can
be verified by logic proofs instead of just testing. A mutated code sequence is only
correct when it is logically equivalent to the original code sequence. However, if
automated software diversity at higher levels are considered, it might not be possible
to compare code sequences directly, because e.g. the structure of the application may
differ.

Performance was very hard to forecast. It depends on many factors, algorithms, code
layout, input data, underlying systems, hardware, etc. The performance penalties
found in this thesis were high, this may be because of the very high uniqueness
requirements used. The requirement was that no signature matches were accepted.
This requirement may be higher than necessary for most applications. In [19],
garbage insertion of NOPs was investigated and the diversification was measured
by a percent of found signatures. 26% was suggested as a good ratio of NOP in-
struction insertions. That means that the probability of inserting a NOP instruction
after each instruction was 26%. The found performance penalties were likely better
because of the relaxed requirements. However, as the results show, inserting garbage
instructions is not a sufficient method against more advanced signature scans. Each
application will have different uniqueness and performance requirements.

Depending on what attacks that are expected, there will be different requirements
for the mutation to achieve enough uniqueness. For the purpose of this thesis,
preventing the used signature scans was defined as enough uniqueness.

The anti-anti-virus arms race will continue. More advanced methods can probably
be used, especially for distributed applications, e.g an attacker can better analyze
a distributed application, having root access, etc. Similar methods as used in e.g.
compiler testing and optimization can potentially be used to optimize a mutated
code sequence to some extent. A code sequence does not have to look as the original
one, as long as the ”optimized” result is consistent. Reverse engineering and attacks
can then be performed on the ”optimized” code sequence instead.

Another option might be to lift the code to a higher-level language like e.g. LLVM.
The analysis and modifications can then partly or fully be done in a high-level
language. The high-level code can then be compiled back to binary machine code.
A function can then be overridden with the new modified code.
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4.5 Mutation tool
In [17], the post-distribution methods studied, have higher overheads than the pre-
distribution methods. The range reported is from 1% to 250% overhead. Mutating
binaries post-linking introduces some complications and limitations. One reason is
that less information is available. Mutated functions are also likely to be longer than
their original version, the code section must therefore be extended, or a new section
must be added. The mutator built in this thesis adds a new section and moves the
mutated functions there. This means addresses and offsets needs to be updated,
e.g. call and jump instructions. Switch cases must be handled if implemented by a
jump table. Mutating binary files directly also involves complications like handling
function imports/exports, relocations, etc.

Modifying object files instead of applications simplifies the mutation process to some
extent. Relinking binaries and adding an extra section can be completely avoided.
However, mutating object files instead of binaries still makes the mutation work on
machine instruction level. The main reason this technique was not chosen is that
mutation can then not be applied to already compiled applications. The build chain
also needs modifications to support modifying object files.

Mutation is likely be easier at a higher level, and as reported in [17], the overheads for
pre-distribution methods were lower than for post-distributing methods. Working at
machine instruction level limits the mutation options, if the code can not be lifted to
a high-level language. However, even if the code was lifted, information is normally
lost during compilation.

If mutation is part of a compiler, higher level of mutation is possible, both in the
front-end and back-end. Mutation can e.g. be performed in multiple steps during the
compilation process, allowing many layers of mutation and utilization of high-level
language info. With more information and control over the code, greater software
diversification can likely be achieved. Mutation does not have to operate on single
machine instruction level, and can e.g. affect the whole structure of the application.

Many mutations are be possible by changing e.g. the overall structure of the pro-
gram, structs/classes member order, virtual table order, calling conventions, control
flow, instruction scheduling, instruction choices, register choices, more sophisticated
substitution, etc.
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4.6 Mutation tool implementation

The mutator is implemented in roughly 4500 lines C++ code excluding the third-
party libraries used. C++ was chosen as the implementation language because of
the used third-party libraries. Four third-party libraries were used: JSON (https:
//github.com/nlohmann/json), used for parsing mutation configuration; diStorm3
(https://github.com/gdabah/distorm), used to disassembly chosen functions in
binary; Asmjit (https://github.com/asmjit/asmjit) and Asmtk (https://github.
com/asmjit/asmtk), used to assemble code back to machine form.

The mutator tool consists of three modules: mutator module, exeedit module and
client module. The modules are built in a modular way to easily allow reuse or
extension of any module. The source of the mutator can be found in appendix A.1.

4.6.1 Exeedit module
The exeedit module can extract the machine code of arbitrary functions from an
executable binary, allowing any modifications of the functions and then writing the
modified functions back to a new section. Jump instructions are placed at the old
entry point of the functions, pointing to the new entry point in the new section. This
is done by parsing the PE header1 and extracting the chosen functions from the code
section. The functions are disassembled by diStorm3 to understand the execution
flow. By analyzing the execution flow the functions length can be determined.
Multiple return instructions are supported since it sometimes occurs when branches
are involved. The machine code plus some code info like length and virtual address
are returned. Finally, when the mutated machine code is handed back, a new PE
header is generated and the whole executable binary is rewritten.

4.6.2 Mutator module
The mutator module can apply various mutation schemes to any machine code pro-
vided. Different random generation algorithms can be used for generating variation.
Schemes are applied in passes and the result of one scheme is passed to the next.
Schemes are implemented separately and can easily be applied in arbitrary order
with any parameters. One or many schemes can be applied during the same execu-
tion. The same scheme can even be applied many times with the same or different
parameters.

Each scheme starts by disassembling the given machine code with help of diStorm3.
Then an intermediate representation is created. The intermediate representation
holds information about decoded instructions, e.g. original location, size, etc. This
information is later used to recalculate offsets based on new locations. The inter-
mediate representation allows code to be moved or inserted which is not possible
directly with machine code. Code is often position or offset dependent, e.g. jumps,

1Windows Portable Executable File Format Header
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branches and calls. The mutation scheme is then applied on the intermediate rep-
resentation. Finally, the code is compiled back to machine code, partly by help of
Asmjit/Asmtk.

4.6.3 Client module
The client module is a console application which takes a JSON file and a binary
file as parameters. The JSON file defines the mutation configuration, i.e. schemes,
scheme parameters, order, functions to mutate and random algorithm to use. The
client module depends on both the exeedit module and the mutation module and is
responsible for executing the given configuration on the chosen binary. The client
module can easily be replaced with a GUI based applications instead.
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5
Conclusion

To answer the research questions a mutation tool and three mutation schemes were
implemented. A test application was mutated by several mutation schemes and with
different configurations. The output of each mutation scheme was tested against
several signature scans and the performance was measured.

The results showed that different types of mutation schemes and parameters af-
fected the uniqueness and performance greatly. It was not trivial to choose muta-
tion schemes and parameters to get satisfactory results. The tests showed that the
garbage insertion scheme did not fulfill the uniqueness property alone. The scramble
scheme fulfilled the uniqueness property for all signature scans if aggressive settings
were used. However, the performance penalty can not be ignored when it increased
the execution time by a factor of 2,9. However, the uniqueness requirements where
very high, since no matches were accepted.

Combining schemes with similar function, like the garbage insertion scheme and the
scramble scheme, made no sense. The results showed that combining this type of
schemes, just led to an inefficient way of decreasing their block size parameter. It
was better in terms of both performance and uniqueness, to just decrease the block
size directly. Probably, because both schemes works by dividing a signature it into
several blocks. Other functioning schemes may still be interesting to combine.

A better implementation is certainly possible to achieve and there are several inter-
esting options to evaluate. Both uniqueness and performance can likely be improved
a lot if mutation was applied earlier in the build chain. Its likely that mutation on
a higher level, with multiple steps, both add possibilities and simplify the mutation
process. This can likely lead to better results. More research is needed to evaluate
random code variation further and to push it to commercial compilers.
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A
GitHub repositories

A.1 Mutator
https://github.com/farbrorbarbro/ExeMutator

A.2 Test Application
https://github.com/farbrorbarbro/MutateMeDemo
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Raw test data table
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C
YARA signature file

Listing C.1: The used YARA signature file
/*

00000 8b 41 08 mov eax , DWORD PTR [ecx +8]
00003 85 c0 test eax , eax

*/

rule Array_signature
{

strings :
$hex_string = { 8b 41 08 85 c0 }

condition :
$hex_string

}

/*
00022 8b 1c b9 mov ebx , DWORD PTR [ecx+edi *4]
00025 8b 14 81 mov edx , DWORD PTR [ecx+eax *4]

*/

rule BubbleUp_signature
{

strings :
$hex_string = { 8b 1c b9 8b 14 81 }

condition :
$hex_string

}

/*
0004e 8b 04 99 mov eax , DWORD PTR [ecx+ebx *4]
00051 8d 14 99 lea edx , DWORD PTR [ecx+ebx *4]
00054 3b 04 b1 cmp eax , DWORD PTR [ecx+esi *4]

*/

rule BubbleDown_signature
{

strings :
$hex_string = { 8b ?? ?? 8d ?? ?? 3b }

condition :
$hex_string

}

/*
00026 8b 45 08 mov eax , DWORD PTR _newSize$ [ebp]
00029 83 c4 04 add esp , 4
0002c 89 47 04 mov DWORD PTR [edi +4] , eax
0002f 8b 0b mov ecx , DWORD PTR [ebx]
00031 85 c9 test ecx , ecx

V
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*/

rule Resize_signature
{

strings :
$hex_string = { 8b ?? ?? 83 ?? ?? 89 ?? ?? 8b ?? 85 }

condition :
$hex_string

}

/*
00038 8b 5f 08 mov ebx , DWORD PTR [edi +8]
0003b 8b 0c b1 mov ecx , DWORD PTR [ecx+esi *4]
0003e 8b 04 93 mov eax , DWORD PTR [ebx+edx *4]
00041 89 04 b3 mov DWORD PTR [ebx+esi *4] , eax

*/

rule Garbage_signature
{

strings :
$hex_string = {

8b ?? 08 [0 -5] 8b ?? b1 [0 -5]
8b ?? 93 [0 -5] 89 ?? ??

}

condition :
$hex_string

}

/*
00044 8b f2 mov esi , edx
00046 8b 47 08 mov eax , DWORD PTR [edi +8]

*/

rule Substitution_signature
{

strings :
$hex_string = { 8b f2 8b }

condition :
$hex_string

}

VI



D
CPU-Z Output

Figure D.1: Output from CPU-Z for the machine tests were executed on.
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E
Scramble assembly example

Example of scramble mutation with min block size 1 and max block size 3. I.e.
blocks of 1 to 3 instructions will be created and scrambled.

Listing E.1: Original code sequence
PUSH EBP
MOV EBP , ESP
PUSH EBX
PUSH ESI
PUSH EDI
MOV EDI , [EBP +0 x8]
MOV ESI , ECX
NOP DWORD [EAX+EAX +0 x0] ; padding added by compiler
MOV EAX , EDI
CDQ
SUB EAX , EDX
SAR EAX , 0x1
TEST EAX , EAX
JLE 0x39
CMP EAX , [ESI]
JGE 0x39
MOV ECX , [ESI +0 x8]
MOV EBX , [ECX+EDI *4]
MOV EDX , [ECX+EAX *4]
CMP EBX , EDX
JGE 0x39
MOV [ECX+EDI *4] , EDX
MOV EDI , EAX
MOV ECX , [ESI +0 x8]
MOV [ECX+EAX *4] , EBX
JMP 0x10
POP EDI
POP ESI
POP EBX
POP EBP
RET 0x4
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E. Scramble assembly example

Listing E.2: After scramble mutation.
JMP 0 x2545

PUSH EBP
MOV EBP , ESP
JMP 0 x2595

SAR EAX , 0x1
JMP 0 x25a7

POP EDI
POP ESI
JMP 0 x2590

MOV EBX , [ECX+EDI *4]
MOV EDX , [ECX+EAX *4]
CMP EBX , EDX
JMP 0 x2572

NOP DWORD [EAX+EAX +0 x0]
JMP 0 x259d

JGE 0 x2554
MOV [ECX+EDI *4] , EDX
MOV EDI , EAX
JMP 0 x25b6

JGE 0 x2554
MOV ECX , [ESI +0 x8]
JMP 0 x255b

POP EBX
POP EBP
RET 0x4

PUSH EBX
PUSH ESI
PUSH EDI
JMP 0 x25c6

MOV EAX , EDI
CDQ
SUB EAX , EDX
JMP 0 x254d

TEST EAX , EAX
JLE 0 x2554
CMP EAX , [ESI]
JMP 0 x2582

MOV ECX , [ESI +0 x8]
MOV [ECX+EAX *4] , EBX
JMP 0 x259d
JMP 0 x2554

MOV EDI , [EBP +0 x8]
MOV ESI , ECX
JMP 0 x2568

X
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