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Domain Adapted Language Models

Tailoring BERT for Specialist Language Domains
Erik Jansson

Department of Computer Science and Engineering
Chalmers University of Technology

Abstract

BERT is a recent neural network model that has proven itself a massive leap forward
in natural language processing. Due to the tedious training required by this massive
model, a pretrained BERT instance has been released as a high-performing starting
point for further training on downstream tasks. The pretrained model has been
trained on general English text and may not be optimal for applications in specialist
language domains. This study examines adapting the pretrained BERT model to
the specialist language domain of legal text, with classification as the downstream
task of interest. The study finds that domain adaptation is most beneficial if faced
with small task-specific datasets, where performance can approach that of a model
pretrained from scratch on legal text data. The study further presents practical
guidelines for applying BERT in specialist language domains.

Keywords: natural language processing, BERT, transformer, domain adaptation,
language model, classification
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1

Introduction

Constructing machine learning models is a difficult task in the field of natural lan-
guage processing. These models rely on mathematical data representations which
are challenging to construct with regards to human language. Natural language
is rife with ambiguity, hidden meanings, long-term dependencies, idioms and other
complex constructions that are difficult to capture mathematically. Furthermore,
the relationship between these mathematical representations and a given natural
language processing task can be even more obscure.

Recent studies have seen great success using so-called neural language models for
modeling and representing language (Howard and Ruder, 2018; Peters et al., 2018;
Radford, Narasimhan, Salimans and Sutskever, 2018). These language models un-
cover structure in language by training on some natural language task. Once this
pretraining procedure is completed, these models can then be used as starting points
for further training on other language processing tasks. By leveraging the linguistic
structures uncovered by the initial language model pretraining, subsequent mod-
eling can focus on learning task-specific attributes, not the language itself. This
procedure is similar to work done in computer vision (He, Zhang, Ren and Sun,
2016; Simonyan and Zisserman, 2014) and is an example of transfer learning - the
act of training a model on a task that provides a beneficial starting point for further
training.

The natural language problem space suffers from the usual lack of labeled data
that is common in many forms of data analysis. Besides providing a starting point
for natural language machine learning models, most language model pretraining
procedures have the added benefit of not actually requiring labeled training data. It
is therefore possible to reap the benefits of a language model despite having access
to very little task-specific labeled data.

There has been a recent surge of research that further builds on creating power-
ful language models. One of the more prominent studies presented Bidirectional
Encoder Representations from Transformers, or BERT (Devlin, Chang, Lee and
Toutanova, 2019). The authors of the paper have tested the model on industry-
standard benchmarking datasets and many different natural language processing
tasks. These tests are evidence of state-of-the-art performance improvements and
show that BERT is well-adapted to a wide array of tasks (Devlin, Chang, Lee and
Toutanova, 2019).
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While the performed benchmarking tests offer a well-rounded assessment of model
capabilities, this evaluation strategy favors generalist models that capture general
language knowledge. If a natural language processing task deals with text in a
specialist domain, these models, often pretrained on publicly available text such as
Wikipedia articles, may not be the ideal solution for specialist language. In other
words, the pretrained models may lack knowledge specific to the specialist domain
since it is not found in the pretraining dataset.

In the case of the company Seal Software, the machine learning task of interest is
classification in the domain of legal text. Seal Software uses text classification models
to identify relevant portions of legal contracts. These portions, called provisions, are
the building blocks of legal contracts. Finding and identifying relevant provisions is
crucial in analyzing large volumes of lengthy contracts. Put simply, the classification
task takes a series of contracts as input. It is then the goal of the classifier to
analyze these contracts and flag provisions of the sought-after type. Identifying
these relevant provisions in a given document is often an extremely imbalanced
classification task, with only a few examples of a given provision type. It is thus
of utmost importance that the few available annotated examples of data are put
to good use in training. By using a pretrained language model, the classification
training can be given a linguistic head start.

This study aims to evaluate the state-of-the-art language model, BERT, on the
task of classification in the domain of English legal documentation. Furthermore,
different ways of tailoring the pretrained model to this specific language domain will
be explored, attempting to bridge the disconnect between the specialist language
domain of legal text and the language domain on which BERT has been pretrained.
The effects of tailoring the pretrained BERT model to the relevant specialist domain,
through so-called domain adaptation, will be assessed on the downstream task of
legal text classification. The ultimate goal is to describe a procedure in which the
pretrained BERT model can be adapted to a specific domain.

1.1 Aim

The purpose of this project is to assess the performance of the pretrained BERT
language model when used for legal text classification. Furthermore, the project
aims to explore how the pretrained model can be tailored to this specific language
domain.

This is interesting for a number of reasons. Firstly, in contrast to the original paper,
this study focuses specifically on how BERT deals with classification. Secondly, no
other studies have been conducted which specifically focus on the domain adaptabil-
ity of the pretrained BERT model. Thirdly, the study will measure the pretrained
model’s performance when dealing specifically with specialist literature - a language
category in which many important applications reside. Using a pretrained BERT
model in the domain of legal specialist text (often colloquially called “legalese”)
may result in suboptimal classification performance. This could happen because the
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model was trained on non-specialist literature data, and may therefore not capture
the relevant legal vernacular. In other words, the linguistic structures inferred by
the pretrained model may not effectively translate to this specialist domain.

BERT was originally trained on non-specialist literature. This study aims to answer
the following questions,

o How does the pretrained BERT language model perform when applied to spe-
cialist language text classification?

e How can the pretrained BERT model be tailored for text classification on
specialist literature?

e How does the amount of available task data affect BERT performance?

1.2 Limitations

The study is limited to evaluating the performance of BERT), its pretrained and
domain adapted variants, and will therefore not focus on constructing and tuning
complex classification networks. Extending the project to include adapting clas-
sifiers would both increase the complexity of the project, and make it difficult to
isolate whether performance changes stem from the language model, the classifier
or an interaction between the two. By keeping classifiers as simple as possible, the
downstream performance can be more effectively attributed to the language model.
It is also worth mentioning that a good language model should circumvent the need
for highly complex classification networks.
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Related Work

A flurry of further research has been conducted on BERT in the short time since the
model was presented. For instance, custom pretrained models have been released
for various specialist language domains, and the pretraining procedures have been
further explored. The transformer neural network architecture on which BERT is
based has also been examined. The new research and its relation to this study are
now presented.

There have been previous attempts at leveraging BERT for specialist language do-
mains. For instance, the models SciBERT and BioBERT were recently released and
showed significant performance improvements on scientific and biomedical language
tasks (Beltagy, Cohan and Lo, 2019; Lee et al., 2019). The performance boosts
from these two models came from rerunning pretraining on large domain-specific
corpora. This is analogous to the custom legal pretraining procedure presented in
Section 4.6. Unlike this study however, the SciBERT and BioBERT papers do not
touch on leveraging the preexisting knowledge in the pretrained BERT model. In-
stead, BioBERT and SciBERT are retrained models, not domain adaptions of the
pretrained BERT.

Other studies have showcased the multi-task learning capabilities of BERT. Training
BERT (or closely related architectures) on multiple tasks at once can yield perfor-
mance gains (Stickland and Murray, 2019; Liu, He, Chen and Gao, 2019). These
papers describe training BERT on more tasks than those normally used for model
pretraining, and find that additional training tasks aid BERT in its natural lan-
guage processing capabilities. In other words, it has been experimentally verified
that adding training tasks to BERT can have performance-boosting effects on down-
stream tasks. This hints at the promise of adding tasks for domain adaptation such
as the domain invariance training procedure introduced in Section 4.4.

BERT is heavily based on a neural network architecture called the transformer (see
Section 3.5.1 for a detailed explanation of this architecture). Further studies have
empirically investigated training procedures for transformer-based network architec-
tures. One such study presented a number of findings particularly pertinent to this
study (Popel and Bojar, 2018). Of the many practical findings presented, one is
particularly relevant: transformers (like many other large neural network models)
exhibit a reluctance to overfit when training on moderately sized datasets. This
means that although the training sets used in this study are not as large as those
in the original paper, overfitting is unlikely. In other words, performance may still
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increase on these smaller datasets, even after extended training. Furthermore, the
study finds that transformers are unlikely to converge on moderately sized datasets.
Therefore, performance gains may still be seen when continuing the original pre-
training procedure.

In summary, recent research has demonstrated that there is interest in domain-
specific BERT models. However, many of the presented domain-specific models
eschew the pretrained model’s preexisting linguistic knowledge in favor of training
from scratch. Recent research has also borne witness to BERT’s potential for multi-
task learning, suggesting that expanding training procedures can increase model
performance. Lastly, transformer-based models have been found to be highly train-
able, exhibiting few tendencies to overfit. This attribute may suggest that, above
all, BERT will continue to glean knowledge from most textual data.
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Theory

To begin discussing domain adapting the pretrained BERT model for legal text,
basic notions of machine learning, such as neural network models and classification
must be explained. This chapter will discuss these topics, and also explain the inner
workings of BERT as well as domain adaptation methods that have been previously
studied. However, first of all, basic notation conventions must be established.

3.1 General Machine Learning and Notation

A very general definition of machine learning is to learn a task without explicit
instruction. In supervised machine learning, this typically means defining a model
which learns by example. Given enough examples and clever training algorithms, a
supervised machine learning model can learn rules which generalize to data it has
not yet been exposed to.

The aforementioned examples are sampled from an underlying feature space, denoted
X, which is the space of all possible input data values. Sets of sampled data points
are denoted X. Not all data are equally likely to be sampled, and this is specified
by the underlying data distribution, denoted P(X). This distribution specifies how
likely it is to sample the given data from the feature space, and is typically unknown
in practical applications. Together, these two entities define the problem domain,
D={X,P(X)}.

In supervised machine learning, the goal is usually to find some rule which maps
input to some form of output. This output can take any form in the relevant output
space, Y. Output exhibits stochasticity similarly to the input feature data, however
the output is conditioned on the input, P(Y'|X). The output space and the output
conditional probability make up the task, T = {), P(Y|X)}.

With the task and domain now defined, we can more concretely express supervised
machine learning as learning the conditional probability of output given input, based
on samples from the output and feature spaces. In other words, the probabilistic
relation between input and output, P(Y|X), is to be estimated from a finite sample
dataset D = {(x;,v;)}¥,, where ; € X and y; € Y. The estimated relationship
is to be found among all possible input-to-output mappings in the hypothesis space
‘H. This relationship must be found such that it generalizes to data not necessarily

7
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present in the dataset. Put differently, given a previously unseen datapoint x, the
model should be able to estimate some output § which lies close to the true output
y according to some output quality measure. Note that these estimated outputs, as
well as any other estimated quantities, are decorated with the hat symbol ~.

3.2 Classification

A classification problem involves grouping a number of data points into a predeter-
mined set of categories or classes. The aim is to construct a classification rule or
model that can correctly assign each data point @ a label § from the set of avail-
able classes ). Classification is a supervised machine learning task, meaning that
labeled data is used to construct the classification rule. Labeled data is a dataset
D = {(z;,y;)}Y, in which each data point has been pre-assigned a true label y € ).
This labeled dataset functions as an answer key when constructing the classification
model and (hopefully) allows a classification rule to be constructed by example. The
correctness of the final classifier is determined by how close it is to labeling data
points with their true labels.

When constructing a classification model, care must be taken to ensure that the
model is not simply memorizing the given labeled dataset. One such example of
a memorizing classifier would be to take the entire dataset and simply map each
data point to its given true label. Since the given dataset is finite in practice,
such a mapping-based classification rule would fail to predict the labels of new data
points not present in the initial dataset. This is an extreme example of adhering too
closely to the given dataset and is known as overtraining or overfitting (see Figure
3.1). Overtraining causes models to be ill-prepared for unseen future data, thus
exhibiting poor generalization.

Figure 3.1: An example of an overtrained classifier. This classifier appears to
adhere too strictly to the two noisy data points in the two classes.
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Overtraining can also result in poor generalization in the presence of noisy data.
A data point’s true value may have been perturbed by some form of random noise
& = x + € (where € ~ P, where P is some statistical distribution). This noise can
be the result of a non-perfect data measurement, a human error made during the
dataset construction or any number of random phenomena. Noise in the labeling
of the given dataset can also be the result of a manual labeling procedure. In this
noisy scenario, the true label is not a class assignment on the data point, but instead
a class assignment on the data as combined with noise. Blindly assuming that all
data points and labels are noiseless may also result in an overtrained classifier.
This overtrained classifier will have attempted to learn noise as part of the data,
ultimately leading to poor generalization on future data.

In order to diagnose a poorly generalizing model, the labeled dataset is commonly
divided into two non-overlapping partitions, D = {Dyqin, Diest ;- The training data
Dirgin is used to learn some classification rule. The knowledge that the classifier
has gained during this training process is then evaluated on the test data, Djes
by attempting to predict a label g§ for each data point @ € X,.. The classifier’s
performance is judged by its tendency stray from the true labels in y. In other words,
the performance is a measurement of the degree in which the predicted labels ¢ differ
from the true labels y.

There are countless metrics that can be used to quantify classifier performance. The
most straightforward metric is simply calculated as the fraction of data points that
a classifier correctly labels,!
ZZL ]Iﬁz':yi
N
where IV is the number of data points in the evaluation dataset.

This metric, known as accuracy, can be misleading in classification problems that
exhibit classes of vastly different sizes. For instance, given a dataset consisting of two
classes of disparate sizes, a naive classifier that always labels points as belonging to
the larger class will only misclassify a small fraction of the data points. This classifier
will garner a favorable accuracy metric while being utterly useless. Other metrics
are therefore required when dealing with these imbalanced classification problems.

In this case, precision and recall are two metrics that are more appropriate for clas-
sifier evaluation in an imbalanced setting (see Figure 3.2 for visualization). Consider
a binary classification problem where the goal is to assign data points to two classes,
denoted as positive and negative. In this binary scenario, precision and recall are
defined as,

true positives true positives

P: R:

true positives + false positives true positives + false negatives

where true positives, false positives and false negatives are defined as,

tp = ZH@i:-l- ’ ]Iyi:+ fp = Z_Hl?i:-i- : ]Iyi:— f?’L = ZH@i:— ’ ]Iyz‘:+

1, if condition true
ILet I be the indicator function defined as Loondition = 4 . . -
0, if condition false
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Figure 3.2: Left: A binary classification setting with a non-perfect classifier. The
red and green points are sample data, while the background color shows the model’s
classification rule. Right: Visual definitions of precision and recall

The above metrics give a more nuanced picture of classifier performance. However,
it would be easier to compare classifiers on the basis of only one single metric. This
leads to the aggregation of precision and recall known as the F} score. This is defined
as,

2PR

F =
""" P+R

Precision, recall and F} scores are not limited to binary classification problems. In a
multiclass setting, precision, recall and Fj scores are calculated once for each class.
Consider a multiclass calculation of precision, recall and Fj score for one of the
classes, class C'. To do this, the true positives, false positives and false negatives
must first be calculated. In the case of class C, this becomes,

tpC = Z]Igizc ’ ]Iyi:C pr = Z]Igi:c . Iyﬁéc fnc == Z]Iﬂﬁéc . ]Iyi:C

From these values, the calculations for the class-specific precision, recall and F} score
values follow analogously to the binary classification case.

By using the above metrics, a classification model’s ability to generalize on future
data can be empirically estimated with the aforementioned partitioning of data into
training and testing subsets. The training and evaluation procedures as well as the
above metrics will be used throughout the study.

3.3 Neural Networks for Classification

Artificial neural networks are a family of machine learning models that have seen a
rush of research in recent years. Neural networks are graph-like structures consisting

10
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of nodes, or neurons, and connections between neurons, or edges. These neurons
are commonly organized into layers, with edges running between layers (see Figure
3.3a). Numerically represented input data is fed into the network at the input layer,
propagates through the network via the edges and results in some output signal at
an output layer. The process of input propagating through the network is called a
forward pass. During a forward pass, each neuron typically applies some function to
a weighted sum of its input (see Figure 3.3b). The power of this seemingly simple
concept lies in its adaptability. There are countless ways to connect and construct
neurons and any number of functions can be applied at each neuron. There are also
many different training strategies.

1NdNI
1NndLno
8
w

Tn
(a) A schematic of a basic neural (b) A close-up view of a single
network with one hidden layer be- neuron, which outputs a non-linear
tween its input and output layers transformation of a weighted sum

of its inputs

Figure 3.3: Schematic overviews of neural networks

The final neural network layer often performs some kind of normalization. For
instance, in a classification setting with K different classes, the output layer is
typically a vector in K dimensions where element ¢ corresponds to the probability
of the input belonging to class 7. To construct valid probabilities the final layer
applies the softmaz function to each element. This function transforms the final
layer output, z into a set of valid probabilities which sum to 1. The softmax function
is defined as,

e

softmax(z); = ———
( )7’ 25:1 ezk

3.3.1 Loss

As previously mentioned, neurons perform a weighted summation of incoming sig-
nals. A neural network learns by adjusting these edge weights (and sometimes other
parameters) to better approximate the desired output, thereby adapting to the task
at hand. In classification learning, the output of the network, ¢ is compared to the
desired output y. The difference between these two outputs is called the loss. It
is possible to calculate the manner in which model parameters should be changed

11
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in order to decrease this loss. The process of calculating loss and adjusting model
parameters will now be more formally explained.

In order to adapt the model to minimize loss, the loss must first be quantitatively
calculated. This is done using a so-called loss function. Many different varieties
of loss functions exist, where one of the more commonly used in classification is
cross-entropy. Cross-entropy is defined as,

=Y p(x)logq(z

zeX

where p is the true distribution, ¢ is the model distribution and z is some input. In
a multiclass classification setting with K classes, cross-entropy becomes,?

H(p,q)=— Y Zp k)log (i = k)

z;€X k=1

K
= - Z Zp(yi = k) log Ji

r,€X k=1

Unfortunately, the true underlying distribution of text classes, p, is not typically
known in language classification. For this reason, the cross-entropy loss must be
empirically estimated from the dataset. The obvious way to do this is to set the
probability of a point belonging to the true label to 1/|X|, and the probability of
all other classes to 0. This can be formulated with an indicator function,

K

Lk, .
z,€X k=1

The use of this loss and its relation to classification may not be immediately clear.
To motivate the use of cross-entropy, consider the joint likelihood of the training
data,

K
H yi=k

Taking the logarithm of this likelihood yields,

||
1 ’:]z

N K
log £ =3 > T,—xloggu = —H(X,q)|X]|
i=1 k=1

Therefore, it is apparent that minimizing the cross entropy is equivalent to maximiz-
ing the log likelihood of the model distribution in a classification setting (Bishop,
2006). The cross-entropy loss is then used to determine how the model must be
updated to decrease the loss.

2For a model which applies the softmax function to the classification output, the model prob-
ability of the datapoint x; belonging to class k, or ¢(y; = k), is simply §;x - the model output at
position k.
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3.3.2 Gradient Descent and Backpropagation

Once the loss has been calculated, the model parameters must be adapted to decrease
it. There are many optimization strategies that strive to decrease a chosen loss
function. One such strategy is gradient descent. This optimization strategy aims to
jointly find each model parameter’s effect on the final loss through a process called
backpropagation (Hinton, Rumelhart and Williams, 1986). Once each parameter’s
influence on the loss has been determined, the next step in gradient descent is to
adjust each parameter value by a small amount to (hopefully) decrease the loss.
This is an iterative procedure that continues until some stopping criteria is reached.
This optimization process will now be explained in more detail.

The initial step of gradient descent is to calculate the rate of change of the loss
with respect to the model parameters. The resulting vector, known as the gradient,
expresses how the loss function changes as a result of changes in model parameter
values. In other words, the gradient is a multivariate generalization of the derivative.
This gradient can then be used to determine how to descend the loss function surface
to reach a model with smaller loss. Given model parameters @, the gradient of the
loss L is defined as,

oL oL

Vgﬁz 8791, 87927

The loss function increases fastest in the direction of the gradient. It therefore
decreases fastest in the direction of the negative gradient (Goodfellow, Bengio and
Courville, 2016). The gradient descent update of model parameters is therefore
expressed as,

0+ 60—Vl

where 7 is the step size, or learning rate, which dictates the magnitude of the pa-
rameter update.

Thanks to the mathematically simple building blocks of neural networks, the gradi-
ent can be calculated with the backpropagation procedure (Hinton, Rumelhart and
Williams, 1986). Backpropagation relies on the calculus chain rule,

Of(g(x)) _ 9f(g(x)) dy(x)

Oz Jdg(x) Oz

to recursively calculate how model parameters deep within the network affect the
final loss. This is easiest explained with an example.
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Figure 3.4: A simple neural network. Inputs and output are denoted by x and
y respectively. Hidden layer parameters are denoted with h” where L denotes the
model layer. An arbitrary model parameter hl is highlighted in the figure. Note
that the connection weights normally found in neural networks have been omitted
for simplicity.

Calculating the gradient means deriving the loss function with respect to all model
parameters. In Figure 3.4, one of these parameters is hl. Calculating the loss

gradient therefore involves calculating 2 8h1 In backpropagation, the calculus chain

oL

rule is used to recursively define in terms of other partial derivatives calculated

dhL
earlier in the backpropagation procedure. For model parameters hl, this becomes,
oL  oC 8y
ohl 8y 8h1

oL Ay Oh2
=9y 2w

This recursive definition allows efficient calculation of all parameters’ influence on
the final loss. 3

To form a complete picture of the model’s performance on the training dataset, the
loss would ideally be calculated over the entire dataset. The resulting loss would be,

N

L£(0) = Z L(x;,y,0)

i=1

Backpropagating on this loss would require backpropagating separately over each of
the N individual loss terms. This process would both be computationally tedious

3In practice, backpropagation is not done analytically as described above. Modern neural
network libraries such as pytorch save each node’s numerically calculated gradient during the
forward pass. During back propagation, the final loss vector is calculated from these node-specific
gradient vectors. For a model with many nodes, this saving procedure can use immense amounts
of memory.
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and place heavy requirements on memory. Therefore, calculating the loss over an
entire training dataset is usually not a feasible option.

It is important to realize that the training data are random variables sampled from
some underlying data distribution. Calculating the loss gradient over this finite
training set is therefore an attempt at estimating the expected loss gradient via a
large sample set. While a large sample set will usually yield a better estimation of
this expected gradient, there are no hard restrictions on using smaller sample sets to
perform this estimation. This is the rationale behind using batches in neural network
training. Batches are small sample sets drawn from the full training data. The loss
is calculated on one batch at a time and backpropagated to facilitate model learning.
This batch-wise procedure strikes a balance between a representative estimation of
the loss gradient, while keeping model learning computationally feasible.

Since the advent of gradient descent, many different adaptations of the base algo-
rithm have been proposed. One of the more recent and successful innovations is
that of Adam. Adam is an optimization algorithm in the gradient descent family
which uses an adaptive learning rate. Adam’s learning rate adapts to each parame-
ter individually. Furthermore, the learning rate is also affected by the its magnitude
during previous iterations (Kingma and Ba, 2015).

3.4 Transfer Learning and Language Models

In typical machine learning scenarios, a model is trained on the same task it is meant
to perform. In other words, a model with no prior exposure to any training data
learns from data that is directly related to the task of interest. In transfer learning,
a model is instead trained on a source task in order to improve performance on a
target task.

Transfer learning is more concretely defined as follows. In transfer learning, a target
domain Dy and target task 77, and a source domain Dg and source task Tg are
given. The aim is to learn 7g such that performance on 77 is improved. There is
also the condition that either Dr # Dg or Tr # Ts (or else no transfer would be
necessary?) (Pan and Yang, 2010). Recalling the definitions of domain and task®,
in transfer learning, a model first estimates Pg(Y|X) in the hope that this makes it
easier to estimate Pr(Y'|X) (Torrey and Shavlik, 2010). Put slightly more formally,
learning the source task can bias the target task learning or change the target task
hypothesis space (Baxter, 2000) (see Figure 3.5).

4In a “normal” machine learning scenario Dy = Dg and T = Tg
SD={X,P(X)}; T ={Y,P(Y|X)} (see Section 3.1)
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Model Space w/o Transfer Learning Model Space w/ Transfer Learning

Untrained Model

Best Model 7—[

All Possible Models All Possible Models

Figure 3.5: The search for the best possible model in the hypothesis space can be
shortened through transfer learning.

In the best of cases, this leads to faster target task training and increased perfor-
mance. For instance, model performance on a target task may be limited by the
size of the available labeled dataset. In this situation, transfer learning can lend
the model a helping hand by first pretraining on some source task for which there
is plenty of data. This pretraining induces a hypothesis space wherein the target
task is easier to learn, thus resulting in improved performance as compared to non-
pretrained models. The pretraining also allows models to reach higher performance
with less data and fewer training steps, thereby alleviating the data scarcity problem
(Howard and Ruder, 2018). Some pretrained models have the added benefit of being
well-suited as starting points for a number of different target tasks, thus acting as
general off-the-shelf transfer learning solutions (Howard and Ruder, 2018; Devlin,
Chang, Lee and Toutanova, 2019). A single pretraining procedure can therefore
potentially yield rewards in numerous downstream tasks.

Since the aim of transfer learning is to facilitate knowledge transfer between source
and target tasks, the tasks are usually somewhat related. Unfortunately, no rigorous
theories exist that can point out the exact source task that should be learned to
improve model performance on a given target task. However, beneficial source-
target relationships do exhibit certain tendencies that can be exploited for effective
transfer learning.

First, recall that a prerequisite for transfer learning is that either Dy # Dg or
Tr # Ts hold. This implies that at least one of the following is true

1 Xp # Xs
The feature spaces are not equal, meaning that data can take different shapes
in the two domains

2 Pr(X) # Ps(X)

6Note that if inequality 1 holds, then inequality 2 is ill-posed. Likewise, if inequalities 1 or 3
hold, inequality 4 is ill-posed.
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The underlying marginal distributions of features are not equal

3 Vr #JVs

The output spaces are not equal

1 Pr(Y|X) # Ps(Y|X)
The conditional distributions of the output given data are not equal

Put simply, beneficial transfer learning tends to occur when there is some form
of similarity between target and source settings. In other words, transfer between
source and target tasks is positive when the left and right hand sides of the above
four points are at least somewhat related (Torrey and Shavlik, 2010).

Modern transfer learning for natural language processing uses so-called language
models. Successful language models are commonly trained using language modeling
tasks like next word prediction (Howard and Ruder, 2018; Devlin, Chang, Lee and
Toutanova, 2019; Tenney, Das and Pavlick, 2019). In next word prediction, the
model is fed a truncated sentence with the goal of predicting the next word. Studies
show that learning this task captures many aspects of language and can induce a
hypothesis space that is well-suited for many linguistic target tasks (Baxter, 2000;
Howard and Ruder, 2018). Once the language modelling task has been adequately
trained, the language model architecture is typically modified in order to train on
the downstream target task.

It should be noted that the size of corpus used to train the source task affects the
performance of the language model on downstream tasks. Pretraining on a larger
corpus exposes the language model to more data, thus imbuing the model with
increased linguistic knowledge (Moore and Lewis, 2010).

3.5 BERT

Bidirectional Encoder Representations from Transformers or BERT is an example
of how transfer learning and language models can be highly effective in natural lan-
guage processing. BERT is a recent neural network model whose efficacy has been
showcased on a number of industry-standard natural language benchmarking tests
(Devlin, Chang, Lee and Toutanova, 2019). The BERT language model is pretrained
on a large unlabeled corpus. Once this initial language model pretraining has been
performed, BERT can be further trained for a number of downstream natural lan-
guage tasks with minimal architectural changes. This task-specific training, known
as finetuning, typically requires less data and less training than the pretraining phase
(Devlin, Chang, Lee and Toutanova, 2019). In other words, BERT is not only pow-
erful, but also easily adaptable to new tasks once the initial language modeling has
been performed.

BERT has achieved its landmark results by utilizing the encoder from the trans-
former architecture and by pretraining on two novel language modeling tasks -
masked language modeling and next sentence prediction. These language modeling
tasks and the transformer architecture will now be explained.
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3.5.1 The Transformer Architecture

Language is contextually dependent. This means certain words are more likely
than others to appear in a given context. In the past, this contextual dependency
has been modelled with the help of recurrent neural network architectures. The
recurrent architectures are associated with a number of disadvantages compared to
non-recurrent models. For instance, recurrent networks are difficult to parallellize,
leading to lengthy training times (Vaswani et al., 2017) and also have difficulty
tracking dependencies between words that are spread far apart in the input (Lin
et al., 2017). In summary, although recurrent models have previously been the
foundation of progress in natural language processing, they are not without flaws.

Output Probabilities

t

Softmax(Output)

Decoder

Add and Normalize =

Feed Forward

y
Encoder

—

Add and Normalize Add and Normalize =

Multi-Head Attention

(Encoder-Decoder Attention)

1 kK v \ }Q )K }V
_fc J
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—
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| | | |
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(Encoder Self-Attention) (Decoder Self-Attention)
7' N A
e« Jv e« Jv
~— ———
Token Embedding Token Embedding
+ +
Positional Encodings Positional Encodings
Input Sequence Desired Output

Figure 3.6: A schematic overview of the transformer neural network architecture,
where the encoder and decoder submodules are visible.
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The transformer architecture in Figure 3.6, which greatly inspired the BERT lan-
guage model, is one attempt at modeling these contextual word dependencies with-
out using recurrent models. The initial application of the transformer was machine
translation, where input sequences in one language are trained to match output
sequences in another language. The model consists of two similarly constructed
modules, an encoder and a decoder. The encoder module is fed an input sequence,
while the decoder module is fed a target sequence, shifted one step to the right.
This shifting is done to ensure that the model does not simply copy the encoder
input, but rather learns to predict subsequent tokens. The encoder influences the
decoder output by way of inter-module connections that will be explained shortly.
The final output of the decoder are the predicted probabilities of the encoder input
corresponding to the decoder output.

The novel transformer architecture circumvents the need for recurrence by making
heavy use of the self-attention mechanism to capture sequential dependencies be-
tween words (Vaswani et al., 2017). The self-attention mechanism builds on the fact
that word dependencies are not necessarily sequentially ordered. In other words,
the context most relevant to a given word is not necessarily found in the word’s
immediately preceding neighbors (see Figure 3.7). The self-attention mechanism
allows the model to pay attention to, or attend to, any part of the input which it
deems most relevant. This will now be explained more formally.

Mary carried her bag aboard the flight. The ticket was in [his/her/its] bag.

Figure 3.7: A given word can be dependent on distant words. In this example
sequence, the chosen pronoun (his/her/its) will not be in reference to the closest
nouns. Instead, the pronoun refers to Mary, mentioned in the very beginning of the
sequence.

3.5.1.1 Attention

Attention and its variations are used across many disciplines within machine learning
(Xu et al., 2015; Ambartsoumian and Popowich, 2018) and can be thought of as a
mapping of a scalar query ¢, and vectors key k and value v to some attention value
a (Vaswani et al., 2017). What the quantities ¢, k and v actually represent depends
on the application. A general expression for attention is,

a(q, k,v) = a(q. k) -v
where « is the vector with elements,

exp(f(q, k;))
T_1exp(f(g, kj))

as stated by Ambartsoumian and Popowich (2018) and Vaswani et al. (2017). The
function f is an alignment function that calculates some measure of compatibility

a; = softmax(f(q, k;)) =
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or similarity between inputs ¢ and k;. The transformer uses the scaled dot-product
as this similarity measure,
kq
"V
where dj, is the dimensionality of k. Intuitively, attention is a weighted sum of the
elements of v as according to the similarities between ¢ and the elements of k.

The transformer relies on a variant of attention known as self-attention. Given an
input sequence, self-attention represents each position’s attention value in relation
to all other positions in the same sequence. Calculating self-attention is equivalent
to calculating how every input in a sequence relates to every other input in that
sequence. To calculate all attention values for all positions in an input sequence,
the self-attention calculation can be written in matrix notation as,

a(Q,K, V)= softmax(%if) Vv
k

The transformer model further tweaks attention into multi-head attention. In the
calculation of multi-head attention, the matrices (), K and V are linearly projected
with the learned parameter matrices Wq 5, Wk and Wy, for a number of dif-
ferent attention heads. These heads are each an instance of this linear projection.
The attention vectors from each head are then concatenated and multiplied with
one last learned matrix Wy to produce the final multi-head attention matrix. The
calculations for the multi-head attention matrix M are,

M = (hy, ha, ... b)) W,

where,
h; = G(QWQ,i, KWk, VWV,i)

As seen in Figure 3.6, the matrices (), V and K are retrieved in three slightly
different ways depending on where in the transformer the multi-head attention is
being calculated,

Encoder-decoder attention

This variant is calculated with values from both encoder and decoder modules.
The encoder and decoder attention sets ) to the output of the decoder, K
and V' as the ouput from the encoder.

Encoder self-attention
This variant is used in the encoder module. Here, (), K and V are all set to
the same value, namely the output of the previous encoder layer.

Decoder self-attention

This variant is used in the decoder module. Similarly to the above Encoder
self-attention, @), K and V all take the value of the output of the preceding
decoder layer. However, these values are tweaked so that when querying value
x;, all succeeding positions > 4 are set to —oo. In other words, for position 4,
set Q=K =V = (21,22, ..., x;, =00, ..., —0Q)
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The self-attention mechanism does not take the ordering of the input sequence into
account. To create an implicit ordering of the input, the transformer first applies a
positional encoding,

PEpos,Zi = Sin(pos/l()()()()%/dmodez)
PEpos 2i+1 ZCOS(pos/l()()()o?i/dmodez)

where pos is the position of the token and 7 is the dimension in question. These
positional encoding values are simply added to the input vectors.

In summary, the transformer architecture is an encoder-decoder model that uses
multi-head attention to map dependencies between input tokens in long sequences.
This mechanism allows for parallelized training and learning long-term dependen-
cies. Augmenting the multi-head attention with positional encodings allows the
transformer to capture the ordering of input sequences. The resulting model has
proved adept at a number of natural language tasks (Vaswani et al., 2017). While
the transformer architecture model lends itself well to language processing, the true
novelty of BERT is the training used to instill this model with linguistic knowledge.

3.5.2 Training BERT

The original BERT paper presented two architectures, BERTgasg and BERTArGE.
The smaller of the two, BERTgasE, is the focus of this study and consists of 12
sequentially ordered transformer encoders (see Figure 3.8).

L]
S N

Transformer Encoder 12

Transformer Encoder 1

[CLS] t1 to ... tj [SEP] tj_|_1 ... t,, [SEP]

Figure 3.8: A high-level schematic of the BERT model. BERTgasg consists of 12
sequentially stacked transformer encoders. Note the concatenation scheme of input
tokens and the [CLS] and [SEP] tokens. The purpose of these special tokens will
be more closely examined in the next sections.
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Each of these encoders represent input in 768 dimensions, where each multi-head
attention layer contains 12 heads. The resulting language model contains around
110 million learnable parameters. Due to the complexity of the model, pretraining
requires a formidable corpus. The corpus used for pretraining BERT was a combi-
nation of the Bookcorpus and an English corpus scraped from Wikipedia totalling
3.2 billion words (Devlin, Chang, Lee and Toutanova, 2019).

3.5.2.1 Input Representation

Machine learning models are typically not fed strings of raw text as input data,
and BERT is no different. A ubiquitous initial step in language processing is to di-
vide input sequences into their constituent parts in a process known as tokenization.
Tokenizing input data preprocesses input text by removing whitespace and some-
times punctuation. Tokenization can also split words into constituent subwords.
Through tokenization, models can be exposed to relationships between words that
may appear superficially different. For instance, ‘gone’ and ‘going’ are two distinct
strings when viewed at word-level. By first tokenizing the words into ‘go’+‘ne’ and
‘go’+‘ing’, it becomes apparent that these two words show some commonalities on
the subword level.

Word Sequence: [l, saw, a, hippopotamus, in, my, garden]

Tokenized Sequence: [, saw, a, hip, pop, ot, a, mus, in, my, gar, den]

Figure 3.9: The WordPiece tokenizer will never concede that a word is outside its
vocabulary. It instead performs a recursive splitting of an unknown word. In this
example sequence, the words ‘hippopotamus’ and ‘garden’ are not present in the
tokenizer’s vocabulary. These words are instead split into subwords that do exist in
the vocabulary. Note that this can substantially increase the sequence length if the
sequence contains many out-of-vocabulary words.

There are many tokenization strategies, each producing different divisions of words
into tokens. Studies show that these different strategies can drastically affect per-
formance on downstream natural language tasks (Jiang and Zhai, 2007; Kudo and
Richardson, 2018). For BERT, tokenization is done with the WordPiece tokenizer.
The WordPiece tokenizer strives to express the input corpus with a fixed-size vo-
cabulary. If a word is not found in this vocabulary, it is split into subwords in a
way that minimizes the number of tokens needed to express the original word. If
some subword still cannot be found in the vocabulary, it is split into sub-subwords.
In a worst-case scenario, this recursive procedure continues splitting until the word
has been divided into individual letters (which are guaranteed to exist in the vo-
cabulary). This tokenization procedure ensures that there are no out-of-vocabulary
tokens (Wu et al., 2016). One side-effect of the continued splitting is that text which
is dense in out-of-vocabulary words and subwords can result in excessive splitting,
thereby significantly lengthening the input text (see Figure 3.9).
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The aforementioned vocabulary is constructed through an optimization problem
where a source corpus must be represented by a vocabulary of fixed size. The tokens
to be included in the vocabulary are chosen such that the source corpus can be fully
represented with as few splits as possible. In other words, it should be possible
to reconstruct the source corpus with the chosen tokens such that word-splitting is
kept to a minimum (Wu et al., 2016).

Once tokenization has been performed, pairs of input sequences are concatenated as,
[CLS] + sequence 1 + [SEP] + sequence 2 + [SEP]. The reason for this particular
concatenation scheme will become clear in Section 3.5.2.2. In the next preprocessing
step, input tokens are represented as high-dimensional representations. These token
representations, known as embeddings, represent each token in the vocabulary as
a vector in 768-dimensional space. Each token’s unique vector representation is
randomly initialized at the start of training and subsequently trained in the same
manner as any other learnable model parameter.

BERT

Token Embeddings ~ €[cLs] €¢; €, €t; € [SEP] €tit1 €, € [SEP]
+ +  + + + + + +
Positional Embeddings ~ €p; €Ep, €Eps €pit1 C€pjie €piia €p.io  CEp,ys
+ +  + + + + + +
Segment Embeddings €5y €5, €s €5y €s, €s, €s, €5,
[CLS] t; to ... tj [SEP] tj_|_1 e Tn [SEP]

Figure 3.10: A schematic of the ingredients comprising the complete BERT input.
Token, positional and segment embeddings are added prior to being fed to the model.

The final input representation consists of more than just the token embeddings how-
ever (see Figure 3.10). The input representation is a sum of the token embeddings,
and position and segment embeddings, €token + €pos + €seg- While the token embed-
dings consist of a unique 768-dimensional vector for each token in the vocabulary,
the position embeddings are 768-dimensional vectors unique to each of the 512 input
positions (the maximum possible input sequence length for BERT'). Adding these po-
sitional embeddings allows a single token’s vector representation to differ depending
on its position in the input sequence. For instance, the token ‘walk’ is represented
by a single token embedding, e,.,. However, the input representation of the token
will differ in the sequences ‘walk away’ and ‘I walk to work’ thanks to the addition
of position embeddings e,, to the first sequence and e,, to the second.” The last
ingredient to the input representation is the addition of segment embeddings. For

"Note that this addition of position embeddings replaces the positional encodings in the trans-
former architecture as described in Section 3.5.1.1. Furthermore, the positional embeddings are
learned parameters in contrast to the deterministically calculated positional encodings.
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reasons that will become clear, BERT can accept inputs that are concatenations
of two sequences. The segment embeddings allow BERT to differentiate between
the two sequences. The segment embeddings can take the value of only two unique
768-dimensional vectors. The values of the token, position and segment embeddings
are randomly initialized. These vectors are trained in the same manner as all other
learnable parameters in the model.

3.5.2.2 Pretraining Tasks

The pretraining tasks are arguably the most significant finding in the BERT paper.
The BERT language model is pretrained simultaneously on two tasks: masked lan-
guage modeling and next sentence prediction; both of which contribute to BERT’s
performance on downstream natural language tasks (Devlin, Chang, Lee and Toutanova,
2019). Both tasks are unsupervised®, thus enabling BERT to be trained on text data
without costly and time-consuming annotation. The training procedure uses two so-
called pretraining heads (see Figure 3.11). These are small, task-specific networks
that use the output of BERT’s transformer encoder model as input. Losses are cal-
culated on the outputs of the pretraining heads and gradients are propagated down
through both heads, and into BERT itself. The two pretraining tasks will now be
explained in further detail.
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Figure 3.11: The BERT model and its pretraining heads. Note that the next
sentence prediction head connects to the output corresponding to the [CLS] token.

8Note that unsupervised here refers to the absence of human annotation. Training is supervised
in the sense that a label is still required for calculating losses. However, this labeling is synthetically
generated from the textual data.
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In the masked language modeling task®, 15% of the input tokens are randomly
selected and replaced by the [MASK] token or some other randomly selected token
from the vocabulary. It is then the model’s objective to predict the missing token,
based solely on its surrounding context. The masked language modeling head takes
the outputs corresponding to the masked tokens and feeds these through a feed-
forward network into a softmax function, calculated over the entire vocabulary.

It is worth noting that the masked language modeling task allows for a bidirectional
language model. This means that word prediction is based on both preceding and
succeeding context. This is different from previous transformer- and recurrent-based
language models where next word prediction was commonly used as the language
modeling task. Next word prediction is performed by feeding the model with a snip-
pet of text and having it predict the next token. This imbues the model with an
understanding of how words are conditioned on their preceding context. However,
only focusing on preceding context can be limiting when there is potential infor-
mation in the succeeding context as well (see Figure 3.12). The masked language
modeling task makes it possible to form an understanding of the interplay between
left-to-right and right-to-left contexts, leading to a richer model.

Next Word Prediction: |was walkinginthe

Masked Language Modeling: |___ walking ___ the park ___Ifell.

Figure 3.12: A comparison between next word prediction and masked language
modeling tasks. Note that next word prediction only takes the preceding context
into account, while masked language modeling uses both preceding and succeeding
contexts.

The second pretraining task, next sentence prediction, aims to train BERT to rec-
ognize long-range dependencies (Devlin, Chang, Lee and Toutanova, 2019). Recall
that BERT is fed input in which two sequences have been concatenated with the
scheme [CLS] + sequence 1 4+ [SEP] + sequence 2 + [SEP]. The next sentence pre-
diction task is a binary classification problem, with the goal of identifying whether
these two input sequences are adjacent in the pretraining corpus. During pretrain-
ing, 50% of these input sequences are neighbors in the pretraining corpus, while the
other half are randomly concatenated sequences. This task is a so-called sequence
classification task because predictions are made on a sequence level (as opposed to
token-level predictions in the masked language task). In this task, as in all sequence
classification tasks, output corresponding to the [CLS] token is routed to a fully con-
nected feed-forward network. This classification head is then trained to recognize
whether the two input sequences are adjacent.

Pretraining BERT on these two tasks is a computationally intense endeavor. The
original model was pretrained on four TPUs, with each TPU housing four TPU
chips, for a total of four days. Training time would increase drastically if the same
pretraining procedure was performed on a GPU-based setup (Devlin, Chang, Lee

9This task has been previously mentioned in linguistics literature as the Cloze task.
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and Toutanova, 2019). Pretraining as well as task-specific finetuning are performed
with the Adam gradient descent optimization algorithm. Once the strenous pre-
training procedure is complete, BERT is well-prepared to tackle further training for
downstream tasks.

3.5.3 Task-Specific Finetuning of BERT

When BERT has been sufficiently pretrained it contains a linguistic understanding
that can be effectively transferred to a variety of natural language tasks (Devlin,
Chang, Lee and Toutanova, 2019). For the purposes of this study, that task is
sequence classification. This final training is known as finetuning, and requires
task-specific labeled data. Thanks to the transfer learning of the language model,
the amount of this labeled data is typically lower than if the language modeling
step had been omitted (Howard and Ruder, 2018; Peters et al., 2018). As previously
mentioned, sequence classification tasks route the output corresponding to the [CLS]
token into a task-specific head. This head is a feedforward classification network
where output is run through a softmax calculation. In the finetuning process, the
entirety of the model (both BERT and the task-specific head) is trained.

3.6 Domain Adaptation

As previously mentioned, language models like BERT are pretrained on a large
unlabeled corpus. BERT uses a pretraining corpus scraped from Wikipedia and
Bookcorpus. Training on this source domain has a beneficial impact on the model’s
performance on downstream language processing tasks in a separate target domain
(Devlin, Chang, Lee and Toutanova, 2019). However, when dealing with downstream
tasks in specialist language domains, there may be a linguistic disparity between
source and target domains. For instance, the vocabulary of the specialist domain
may differ from the source domain vocabulary, words may differ in their usage, or
sentences may have a very different structure. Therefore, the pretraining procedure
may not have captured the language structures most relevant to the downstream
task domain. Domain adaptation seeks to smooth the transition from the source
domain in pretraining to the target domain of the downstream task; striving for
maximum knowledge transfer between the two.

Given a target domain Dy = {Xr, Pr(X)}, target task Tr = {Yr, Pr(Y|X)}, source
domain Dg = {Xg, Ps(X)} and source task Tg = {Vs, Ps(Y'|X)}, recall the four
inequalities (of which at least one holds) in transfer learning scenarios (Pan and
Yang, 2010),

Xr # Xs Pr(X) # Ps(X) Vr # Vs Pr(Y|X) # Ps(Y]X)

Because BERT’s training procedures commence by recreating data in terms of tokens
from a vocabulary of fixed size, the inequality X7 # X does not hold. However, it
can safely be assumed that the underlying probability distributions of the tokens are
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not the same in the two domains. In other words, the inequality Pr(X) # Ps(X)
holds. Likewise, since the output spaces of the source tasks and target task are
different, the inequality Vr # Vg holds. These two valid inequalities render the
inequality Pr(Y|X) # Ps(Y|X) nonsensical.

Since estimating P(Y'|X) is the aim of machine learning, it would seem plausible
that an operation attempting to equate learning Pr(Y|X) and learning Ps(Y'|X)
would be beneficial to the transfer learning procedure of language models. There
exist many such procedures that attempt to relate learning in the source domain to
learning in the target domain. Two methods which prove relevant to this study are
presented in the following sections.

3.6.1 Domain Finetuning

A simple method of domain adaptation is to attempt to imbue the language model
with target domain specific language knowledge. This is done by continuing the pre-
training procedure on an unlabeled corpus from the target domain after the initial
source domain pretraining. When continuing the pretraining on more relevant lan-
guage, the goal is to adjust the linguistic knowledge already present in the language
model to the target domain. This procedure is mentioned (though not formally
attempted) in the original BERT paper (Devlin, Chang, Lee and Toutanova, 2019).

3.6.2 Domain Invariance Training

When training in the source domain, it would be counterproductive to learn lan-
guage features which are unapplicable to the target domain. If these unnecessary
source-specific features are present, the model could identify their absence, thereby
differentiating between source and target domains. Removing the model’s ability
to differentiate between domains would lead the model to ignore source-specific
features and thereby focus on learning more general features. This is exactly the
intuition behind domain invariance adaptation. In this domain adaptation method,
the model is made unable to discriminate between source and target domains. By
hampering the model’s ability to identify the domain, no features are learned that
are specific to any one domain. This shifts the learning focus to features that are
present in both domains, ensuring that knowledge learned from the source domain is
applicable to the target domain as well (Ben-David et al., 2010; Ganin et al., 2016).

To make a neural network domain invariant, training is expanded to include a do-
main identification task in addition to the preexisting modeling task. For domain
identification, the model is fed data from both source and target domains. The
model then attempts to identify whether input originates from the source or target
domain. Since the model should not be able to discriminate between domains, the
model is trained to perform as poorly as possible on the domain identification task
while performing as well as possible on the original training task. This method will
now be formally explained.
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Figure 3.13: Domain invariance training partitions the original network into a
feature extractor and a task-specific head. These two subnetworks have the param-
eters @y and 8, respectively. An additional subnetwork is appended to the feature
extractor. This subnetwork, with parameters 84, attempts to identify the domain
of the input, given the output from the feature extractor.

The original model is partitioned into two subnetworks: the initial subnetwork func-
tions as a feature extractor with model parameters 8y and the second subnetwork is
a task-specific head with parameters 8, (see Figure 3.13). By appending a domain
identification head (with parameters 6,) to the feature extractor, the original task
can be trained while the domain identification task is simultaneously un-trained.
The goal is now to update each head’s parameters 8, and 6, such that performance
on their respective tasks is maximized. Furthermore, the feature extractor’s param-
eters @ should be updated such that performance on the original task is maximized,
but domain identification performs as poorly as possible. This yields the following
interlocked optimization problems,

argmin £,(0;,8,) — La(;,80,) (3.1)
éfvéy

argmax L,(8;,0,) — L4(87,0,) (3.2)
0a

where £, is the loss associated with the original task and £ is the domain identifica-
tion loss. Note the conflict between the two optimizations, where we simultaneously
wish to maximize the domain identification loss £4 with respect to 8y but minimize
the same quantity with respect to 84. These conflicting goals make it impossible to
optimize model parameters through stochastic gradient descent, as gradient descent
cannot maximize on certain parameters while minimizing on others. Using stochas-
tic gradient descent on the total loss of £, — £; would yield the following erroneous
update rules,

9f<—9f—77V9f(£y—£d) :Of—HVQfﬁy-i-anfﬁd

0,—6,—nVe, (L,—Ly) =6,—1VeL,

0,<«+ 0, — T]ng([,y — ['d) =60, + ﬁngEd (33)
In the above update rules, it is apparent that optimizing on £, — £; with gradient

descent leads to incorrect updates on 6, in equation (3.3). The update rule in
(3.3) adjusts @, in the direction of the gradient, thereby increasing the domain
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identification loss L4 with respect to 64. This is the direct opposite of the sought-
after optimization in equation (3.2).

Utilizing a clever trick makes it possible to simultaneously optimize both minimiza-
tion and maximization problems while still using stochastic gradient descent. To
enable simultaneous minimization and maximization, a gradient reversal layer can
be inserted between the feature extractor and the domain identification head. This
neural network layer multiplies the gradient by -1 during backpropagation, but leaves
values unchanged during forward passes.

Performing stochastic gradient descent on L, + L4 (note that the losses are now
added instead of subtracted), yields the following update rules,

Bf — Hf — ﬁngﬁy — T]ng[,d (34)
gradient descent on £, + L; = 6, 0, —nVy L,
9d — 9d — 77V9d£d

The above update rules are still incorrect. However, by including the aforementioned
gradient reversal layer between the feature extractor and the domain identification
head, the subtraction of Vg, L, in equation (3.4) is changed to addition. This results
in the correct update rules for simultaneous optimization on (3.1) and (3.2).

gradient descent on £, + L4 0y« 0 —nVe, L, +nVe, Ly
with = 0,+0,-1nVy L,
Gradient Reversal Layer 0, 6, — Vo, Ly
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Method

This study aims to benchmark the performance of a pretrained BERT model on
legal text classification. This benchmarking serves as an indication of how effec-
tively BERT’s pretrained knowledge transfers to a different language domain. Once
this initial benchmarking has been performed, three methods of adapting the pre-
trained BERT model to the legal language domain will also be studied. Finally, a
BERT instance which is pretrained completely from scratch will be benchmarked
and compared to the three domain adaptation techniques.

More concretely, each of the three domain adapted models and the continued pre-
training model are evaluated as follows. The starting point for all models is the freely
available pretrained version of BERT. This pretrained BERT is then put through
three epochs of domain adaptation or continued pretraining (see Figure 4.1). At
each epoch, the model state is saved for evaluation on the legal classification task
(see Figure 4.2).

BERT
L Legal
Pretraini
Pretraining (ETEIAIE

J
4 N
Domain
Adaptation

Continued Mixed Domain Domain Invariance
Pretraining Training Training
\ #J

Benchmarking
on Legal Classification

Figure 4.1: An overview of the experiment pipeline. The pretrained BERT model is
used a starting point for all domain adaptation methods and continued pretraining.
A BERT instance is also pretrained on legal data and benchmarked.
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By evaluating models after each epoch
of domain adaptation, it is possible to

track the rate at which domain adapta- II
tion occurs. A fast domain adaptation
method requires few domain adapta- Epoch 1

tion epochs before improvement is seen 'h Benchmarking

on target domain tasks. Since domain on Legal Classification
adaptation is computationally expen-
. . . Epoch 2
sive, a fast domain adaptation method

may be particularly interesting in prac- hh Benchmarking

tical use cases. on Legal Classification

In this study, the domain adaptation Epoch 3 .
is run on two NVIDIA GTX Titan \h Benchmarklng .
X GPUs, each with 12 gigabytes of on Legal Classification

graphical memory. The training is run

with half-precision operations (enabling ) .
larger batch sizes) with a loss scaling Figure 4.2: Each of the domain adap-

of 128 through NVIDIA’s apex library. tation methods as well as continued pre-
BERT is set to accept sequences of 256 training are benchmarked after every
tokens, and training is performed with epoch.

a learning rate of 3 - 107° with a batch
size of 64.

This chapter describes the legal classification task used for benchmarking, the bench-
marking of pretrained and continued pretraining models, the benchmarking of do-
main adaptation methods tailored for BERT, as well as the benchmarking of a BERT
model pretrained on legal text.

4.1 Benchmarking on Legal Text Classification

In this study, legal text classification is used to evaluate the degree with which the
pretrained and domain adapted BERT model has captured target domain language.
Each of the domain adapted BERT models, as well as the BERT models which
have undergone continued and legal pretraining, are evaluated on this task. The
classification task is performed by connecting the output vector corresponding to
the sequence-level [CLS] tag to a feed-forward classification network. Evaluation is
performed by training the complete model (BERT and its task-specific classification
head) on legal classification for five epochs and subsequently testing on a hold-out
set.

The legal text classification dataset is an example of specialist literature from a
language domain different to the source language domain used for the original pre-
training. Beyond exhibiting linguistic differences, the dataset also contains noise in
the form of optical character recognition errors. These errors arose during dataset
construction when the legal text was electronically transferred from paper docu-
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ments to the digital medium. The errors starkly contrast the heavily proofread
text which BERT was pretrained on, and further differentiate the source and target
language domains. The differences between the source domain and the language
domain of the legal text make classification in this setting apt for measuring domain
adaptation.

The classification task itself consists of classifying sentences as one of seven legal
text classes, called provisions, or an additional non-provision class reserved for text
lacking any specific legal role. There are significant class imbalances in the 136
megabyte text dataset, with the largest class containing 615 900 examples and the
smallest class containing only 1388 examples (see Table 4.1).

Each model is benchmarked by training Proportion of
on subsamplings of the total classification Sampled Data

dataset. These subsampled training sets [ ] Test 0-20
come in four different sizes and serve to B iy 0.01440922
%llustrate‘the effe.cts of domain a%daptatlon 2] P sman 007204610
in scenarios ranging from very little task- €

specific data, to plentiful task-specific data S ) B Medium 0.18011527

(see Figure 4.3). These subsamplings were Large 036023054
stratified, meaning that the distributions of
classes were equal regardless of subsample
size. After training for five epochs with a
batch size of 32 and learning rate of 2-1075,
the model has undergone task-specific fine-
tuning and is evaluated on a classification
test set. The size of the test set is kept
constant, regardless of the size of the train-
ing set. It is worth noting that the test set
does not overlap with the training set. Since
both test and training sets are randomly
sampled from the total classification dataset,
the evaluation experiment is repeated seven Fjgure 4.3: An illustration of the

times to yield statistically informative re- fyur different training set subsample
sults (see Figure 4.4). sizes.

BERT builds on the transformer architecture, which means that the model is fed
entire sequences instead of the batchwise input schemes commonly used for recurrent
language models. While this allows the bidirectionality of BERT), it also means that
BERT places a fixed constraint on the maximum length of input sequences. In the
legal text classification task, this maximum sequence length is set to 256 tokens.
Using longer sequences leads to higher memory requirements thus limiting training
batch size. In turn, this increases the number of batches per epoch ultimately leading
to longer training. The 256 token limit allows large enough batch sizes that training
is completed within reasonable timeframes. However, the restriction forces a few
lengthy training examples to be truncated, thus destroying information (see Table
4.1).
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No. of
Provision Sentences Example Truncated

termination this agreement
shall continue until
Auto Renewal 1647 terminated in accordance 0.8 %
with this clause 20 or
clause 23 .

neither party may assign this
agreement without the prior
written consent of the other

party .

Change of Control 1388 6.4 %

neither party will be liable
for performance delays or for
-ob ,
Force Majeure 3199 HOBZODSEIVARCE OF KOt 1.4 %
performance due to causes
beyond its reasonable

control .

13 indemnity 13.1 the supplier

shall indemnify and hold the
Indemnity 6380 customer harmless from all 32 %

claims in connection with :

13.1.1

the broker shall not be

responsible for any investment
Limitation of Liability 6118 risk or any loss or profit 1.0 %

realized from the operation

of the assets .

by reason of bankruptcy or
Termination Cause 6762 insolvency of either party 2.9 %
as described below .

if client wishes to terminate
ihis agreement without cause

Termination Convenience 1815 prior to the end of the 2.5 %
initial term .
upon signature by the parties ,
each order form and

NONE 615900 provisioning form will be 0.5 %

incorporated into and
governed by the terms of
this agreement .

Table 4.1: The distributions of classes in the legal classification dataset. The
last column specifies the percentage of examples which have been truncated upon
restricting input to 256 tokens. It should be noted that the dataset used for bench-
marking has been specially constructed for this study.
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Figure 4.4: An overview of the benchmarking pipeline. Each model is trained on
four subsamplings of the labeled training data. These subsamplings vary in size
in order to investigate the effect of training set size on performance. Due to the
stochastic nature of this sampling, the benchmarking is repeated seven times.

Now that the evaluation task has been more thoroughly explained, the model that
has undergone continued pretraining, the legally pretrained model, as well as the
domain adapted model versions are presented.

4.2 Pretrained BERT and Continued Pretraining

There is a possibility that the pretrained BERT model may benefit from any training,
regardless if it strives for domain adaptation or not. To control for this possibility,
an additional pretrained BERT model continues pretraining on the original BERT
language modeling task (instead of undergoing domain adaptation) for three epochs
and is then evaluated on the legal classification task. The result is a model that has
been trained for the same number of total epochs as the domain adapted variants,
thus enabling a fair comparison between domain adapted and non-domain adapted
models.

This continued pretraining procedure requires reconstructing the original pretraining
datasets. As previously mentioned, BERT has been pretrained on English language
data retrieved from Wikipedia and Bookcorpus. The pretraining dataset combined
a 2.5 billion word corpus scraped from Wikipedia and an 800 million word corpus
from Bookcorpus. Unfortunately, the original paper does not publish the datasets,
nor detail the exact steps taken during data preprocessing. The original pretraining
dataset has therefore been approximated as closely as possible to allow for continued
pretraining.
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The approximated pretraining data is created by first downloading raw Wikipedia
articles and Bookcorpus texts. This text data is cleaned by removing HTML arti-
facts, tabular data and the incomplete sentences found in headings, titles, chapter
headers and other formatting-related text. This data does not typically follow tra-
ditional language rules and is therefore deemed irrelevant to language modeling.

Furthermore, the approximated dataset is constructed so as to retain the ratio of
Wikipedia to Bookcorpus data present in the original pretraining dataset. Main-
taining the same proportion of Wikipedia to Bookcorpus data is an attempt at
allowing continued pretraining to occur in a language domain with underlying data
distributions similar to those of the original pretraining procedure. In total, the
reconstructed pretraining dataset contains approximately 940 megabytes of text
from Bookcorpus and approximately 2.99 gigabytes of textual data scraped from
Wikipedia.

The model is benchmarked on the legal text classification task after each of the three
epochs of continued pretraining on the approximated Wikipedia and Bookcorpus
datasets.

4.3 Domain Finetuning

Domain finetuning is the domain adaptation method suggested, but not formally
attempted, in the original BERT paper. Domain finetuning consists of training
the pretrained model on the original language modeling tasks (masked language
modeling and next sentence prediction) with data directly related to the language
domain of the downstream task.

The unlabeled dataset used for legal domain finetuning consists of 3.9 gigabytes
of data retrieved from legal contracts. The contracts have been converted from
paper to digital form with optical character recognition. The resulting dataset
therefore contains the same type of character recognition errors present in the text
classification dataset. Note that the size of the domain finetuning dataset is similar
to the size of the dataset used for continued pretraining. This is no accident. By
using domain adaptation datasets and continued pretraining datasets of similar sizes,
each of the compared models have been exposed to similar numbers of training
examples. Conclusions can then be based on the domain adaptation techniques
(or lack thereof) and not on the number of training examples used for domain
adaptation.

The model is benchmarked on the legal text classification task after each of the three
epochs of domain finetuning.
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4.4 Domain Invariance Training

The aim of domain invariance training is to force the model to attend only to fea-
tures which are present in both source and target domains (as explained in section
3.6.2). For this study, domain invariance training requires constructing an appro-
priate dataset as well as describing a BERT-specific domain invariance training
procedure.

The domain adaptation dataset used for domain invariance training contains equal
parts domain-related and non-domain-related data. Half of the dataset consists
of data from the domain finetuning dataset, and the other half stems from the
continued pretraining procedure. The concatenation of these two training subsets
is a 3.9 gigabyte domain invariance training set.

f Lnsp Lyrnm

T t

GRL

BERT

[CLS] t1 to ... tj [SEP] tj+1 ... t, [SEP]

Figure 4.5: The domain invariance adaptation uses a domain identification head
in addition to the original pretraining heads. The gradient reversal layer is visible
as the first layer of the domain identification head.

The domain identification task is appended to the preexisting language modeling
tasks, next sentence prediction and masked language modeling, for a total of three
tasks (see Figure 4.5). The training head used for domain identification is connected
to the sequence-level [CLS]-tag output in much the same way as the next sentence
prediction task. Similarly to the next sentence prediction head, the domain iden-
tification training head is a fully connected feedforward network which acts as a
binary classifier. However, the domain identification head is preceded by a gradient
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reversal layer that multiplies values by -1 during backward passes. The result is a
training head which minimizes the language model’s ability to identify the domain
of the training data thus making the model domain invariant. The complete loss
function becomes,

L=Lysp+ Lyrym+ Lpr

where Lygp is the loss from the next sentence prediction task, Lysras is the loss
associated with masked language modeling and £p; is the domain identification loss.
The gradient reversal layer which precedes the domain identification head causes the
language model to unlearn domain-specific features. The domain identification head
must resort to identifying the domain of the input data as well as possible given the
domain invariant features that are propagated from the BERT language model.
Updates to parameters of BERT, 8, are made with gradient descent according to,

0+ 0 —nVeLnsp — VoLl +nVeLlpr

Note that gradients are subtracted along the next sentence prediction and masked
language modeling losses but added along the domain identification loss. This sign
change is the result of the aforementioned gradient reversal layer. While parameter
updates descend the loss surface of the next sentence prediction and masked lan-
guage modeling tasks, parameter updates instead ascend the loss surface of the do-
main identification task. This increases future domain identification losses, thereby
promoting domain invariance in the language model.

It should be noted that each training example comes exclusively from either the
domain-related or non-domain-related texts. In other words, the random pairing
used for the next sentence prediction task never retrieves one sentence from the
domain-related training subset and the other sentence from the opposite training
subset. If the sentence pairing had been permitted to cross training subset bound-
aries in this way, the next sentence prediction task would have benefited from learn-
ing domain-specific features, thus opposing domain invariance training.

After each of the three epochs of domain invariance training, the model is trained
and benchmarked on the legal text classification task.

4.5 Mixed Domain Finetuning

In order to isolate the performance effects of domain invariance training, an addi-
tional model is trained on the same mixed dataset but without the domain invariance
task. This mized domain finetuning functions as a control for studying the impact
of domain invariance training.

After each of the three epochs of mixed domain finetuning, the model is trained and
benchmarked on the legal text classification task.
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4.6 Legal Pretraining

BERT’s state-of-the-art performance comes at a cost. Its unprecedented results
are in part due to its massive number of parameters. Because of these 110 million
learnable parameters, pretraining from scratch is a costly and tedious endeavor.
While avoiding a complete pretraining procedure is the point of domain adaptation,
pretraining a BERT instance on legal data acts as an empirically derived upper
bound on performance. This custom pretrained BERT model serves to approximate
a perfect domain adaptation, where the model has captured all linguistic knowledge
available in the domain-specific data. By comparing domain adapted BERT models
to the custom pretrained model that constitutes an upper bound, it is possible
to measure how much of BERT’s maximum potential is unlocked through domain
adaptation techniques.

The legal training procedure closely mimics the pretraining presented in the orig-
inal BERT paper, save for four important differences that will now be discussed.
Firstly, the original pretraining data from Wikipedia and Bookcorpus is replaced by
a legal text corpus. This legal corpus is the same corpus that was used for domain
finetuning. The second difference is the number of pretraining steps in the legal
pretraining procedure. The original pretrained BERT model was pretrained on 108
batches each consisting of 256 sequences. Since the often formulaic language found
in legal documents is assumed to be less varying than the text from Bookcorpus
and Wikipedia, the legal pretraining procedure was decreased to 5-10° steps with a
batch size of 256 sequences. The third difference is the pretraining hardware setup.
BERT was originally pretrained on four cloud TPUs, while the custom pretrained
BERT used in this study is pretrained on a single cloud TPU. The fourth and final
difference between the original BERT pretraining and the legal pretraining model
lies in the vocabulary, and warrants a detailed description.

As mentioned in section 3.5.2.1, BERT relies on the WordPiece tokenizer to split
input sequences into tokens available in a fixed-size vocabulary. When some input
word is not found in the vocabulary, the word is split with the hope that its con-
stituent subwords exist in the vocabulary instead. The vocabulary is created by
finding the list of words which can recreate some corpus with as few splits as pos-
sible. Since legal pretraining should exhibit the absolute best performance BERT
can muster, a custom vocabulary is used. This vocabulary consists of 29 927 tokens
that were selected to represent the legal corpus with as few token splits as possible.

Aside from the aforementioned four differences, legal pretraining is carried out iden-
tically to the original pretraining procedure. After the 5-10° legal pretraining steps,
the model is benchmarked on the legal text classification task.
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4.7 Run Configuration Summary

This section contains a succinct overview of model hyperparameters and run config-
urations (Table 4.2) and training data used for legal pretraining, domain adaptation

and benchmarking runs (Figure 4.6).

Max
Learning Sequence
Rate Loss Scale | Length | Batch Size Dataset
Legal 4 Target
Pretraining 2-10 256 Domain
Continued Source
Pretraining Domain
Domain Target
Finetuning Domain
i -5
Don}aln 3.10 128 256 64 Misxed
Invariance .
. Domain
Training
Mixed Mixed
Domain .
. . Domain
Finetuning
Legal _5 Legal
Classification 2-10 32 Classification

Table 4.2: A tabular summary of run configurations, hyperparameters and the
datasets used for legal pretraining, the four domain adaptation methods and for the

final benchmarking runs.

BookCorpus
0.47 GB

Legal Data

Legal Data
1.89 GB

3.90 GB

Target Domain Mixed Domain

Wikipedia
2.99 GB

Source Domain

Figure 4.6: The three different datasets used in the legal pretraining, domain

adaptation and continued pretraining methods.
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Results

The purpose of this study is to benchmark various domain adapted instances of
BERT on a classification task in the specialist domain of legal text. During bench-
marking, each model is finetuned to legal classification on four differently sized
subsamplings of the legal classification dataset, and subsequently evaluated on a
test set of fixed size. The resulting performance measurements of these models are
presented and discussed in this chapter.

5.1 General Findings

Figure 5.1 shows the different models’ F; score on the test set after finetuning on
training sets of different sizes. Note that the shown F) score is an average of the
seven classwise F scores (one for each provision).

A few general conclusions can be drawn from these results. Firstly, model perfor-
mance is highly variant. So much so, that any effects of domain adaptation may be
overtaken simply by variance in the training set, particularly if this training set is
small. It is therefore difficult to guarantee any performance benefits from any of the
domain adaptation methods. It is however possible to make statements concerning
on-average model performance.

From these averages, it is visible that methods of domain adaptation or continued
pretraining are most helpful when task-specific finetuning is performed on a smaller
training dataset, while they are negligible with larger task-specific training sets. A
larger performance increase in these small-data scenarios is to be expected, because
a large task-specific training dataset allows the model to compensate for poor pre-
training or poor domain adaptation. In other words, a large task-specific training
dataset lets the model recoup task-relevant knowledge missed during the preceding
training phases. Additionally, it is clearly visible that the largest performance gains
occur after only one epoch of domain adaptation or continued pretraining. Since
an epoch of domain adaptation drags on for approximately 45 hours (and upwards
of 55 hours for domain invariance training), the fact that the first epoch results in
the largest performance increase is relevant from a time-efficiency standpoint. In
other words, if computational power or time are scarce commodities, a single domain
adaptation epoch will yield a majority of the available performance gains.
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Domain Adaptation Performance on Varied Training Set Sizes
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Figure 5.1: Average F} score on the legal classification task after training on four
differently sized task-specific training sets. Each graph shows the legal classification
performance after each epoch of domain adaptation or continued pretraining and
subsequent task finetuning. The standard deviation is indicated by the shaded areas.
The F} score for the legally pretrained model is visible as the grey line.

The are other less clear-cut findings in Figure 5.1. For instance, it would seem
improbable that a heavily trained model such as the pretrained BERT instance
would benefit from additional training on Wikipedia and Bookcorpus text. Contrary
to this intuition, Figure 5.1 shows surprisingly substantial on-average performance
gains from continued pretraining. Two factors could cause this to happen. Firstly,
the reconstructed Wikipedia and Bookcorpus dataset could have differed from the
original pretraining dataset. This is highly possible given that the original paper
does not explain the steps taken to construct the original pretraining dataset. If
substantial differences exist between the reconstructed and original datasets, the
reconstructed dataset would have exposed the pretrained BERT model to previously
unseen linguistic structures, allowing the model to further its linguistic knowledge.
Another possible cause of the benefits of continued pretraining is that BERT simply
had not converged during pretraining. This is corroborated by empirical studies on
transformers, stating that transformers rarely converge or overfit on large datasets
(see Chapter 2). In this case, it may be possible that continued pretraining (even
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on the original pretraining datasets) allows BERT to uncover yet more knowledge.

There are further surprises evident in Figure 5.1. For example, continued pretrain-
ing, mixed domain training and domain invariance training have almost identical
impacts on classification performance. This is unexpected because the mixed do-
main training and domain invariance training procedures, at the very least, expose
BERT to some target domain-related legal text. Allowing BERT to train on this
legal data should better prime the model for downstream tasks in the relevant legal
domain, yet no improvements over continued pretraining are seen. This is doubly
surprising given that domain finetuning (which only trains on data from the legal
domain) does yield performance improvements. Thus, it can be concluded that the
mere presence of source domain data in the domain adaptation phase can negate
desired model adjustments made for the target domain.

5.2 Performance Per Provision

Examining the model on a per-provision basis shows that performance on individual
provisions can in some cases decrease, while class average performance increases. For
example, Figure 5.1 shows that the on-average performance of domain finetuning
increases. However, as seen in Figure 5.2, domain finetuning does not necessarily
increase performance for all provisions. In this scenario, average performance on
the Indemnity provision increases by almost 0.1, while performance on Termination
Convenience decreases by almost 0.05.

This disparity in performance could be due to the different levels of complexity
and variation between the involved classes. For instance, the Indemnity provision
contains an average of 1.71 unique words per example, while the Termination Con-
venience class contains 2.47 unique words per example. This hints at a more varied
language usage within the Termination Convenience provision class. It can also be
noted that 75% of Indemnity examples contain the token ‘indem’ (as found in words
like ‘indemnity’, ‘indemnify’, ‘indemnification’ or ‘indemnitees’). This means that
even a rudimentary string search for ‘indem’ will manage to correctly flag 75% of
Indemnity examples. No such “tell-tale” string is found in the Termination Conve-
nience class.

It is also worth noting that the Termination Cause and Termination Convenience
classes were difficult even for the human annotators to correctly. As a result, the
classification dataset has examples of these classes that have not been annotated. A
model which has been specialized could possibly be more sensitive to these erroneous
or missed labelings.

In summary, the hypothesis is that classification on highly variable textual data does
not necessarily benefit from domain-specific training. Training procedures geared to
the target domain could possibly specialize the model in a way that is detrimental
to classifying the more varied classes. Noisy labeling in the downstream task dataset
could further exacerbate this problem. While the above discussion is by no means
a definitive proof, it does suggest that highly variable classes may be more difficult
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to handle after a specializing domain adaptation. However, this hypothesis requires
further investigation.

Performance Per Provision With Small Training Dataset
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Figure 5.2: Performance per provision after performing task-specific training on
the Small dataset.
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5.3 Domain Invariance Training

Figure 5.1 shows that domain invariance training yielded no performance benefits
over other methods, despite the promising results presented in the original paper.
This section will examine possible causes of domain invariance training’s lackluster
results.

The most glaring difference between domain invariance training as presented in the
original paper, and domain invariance training in this study, is that this study uses
domain invariance training alongside pretraining tasks. The original paper presents
domain invariance training as a supplementary procedure meant to be performed
alongside the training of the task of interest. This enables models to gain knowledge
from another domain thus learning a domain invariant classification rule. In con-
trast, training for domain invariance during language model pretraining may cause
the model to ignore linguistic structures that may not be present in the domain-
related data, but nevertheless could have been useful in downstream tasks. In short,
ignoring any language features could be a destructive action. This is further corrob-
orated by results indicating that even continued pretraining leads to performance
gains on downstream tasks. It can thus be concluded that BERT is not picky with
data used during pretraining.

Domain Identification Loss During First Domain Adaptation Epoch

1.2+
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0.9 4
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0.8

0.7 4

0.6

0 20000 40000 50000 80000 100000 120000 140000
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Figure 5.3: Batchwise domain identification loss during the first epoch of domain
invariance training. The raw, per-batch loss values are shown in light grey. The
LOWESS smoothing method has been applied to these raw values and visualized
in dark grey in order to illustrate overall loss trends. Since training for domain
invariance is synonymous to adversarially training for domain identification, the
domain identification loss should grow during training. No such trend is discernible
in this plot.
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Figure 5.3 shows how the domain identification loss remains near-constant during
training, instead of showing the increase that adversarial training aims for. This
could further confirm that domain invariance and language modeling are two op-
posing goals. In other words, the two language modeling tasks could cancel out
the domain invariance training in a sort of training tug-of-war. However, the non-
moving losses may also be the result of the loss formulation used during domain
invariance training. Recall, as presented in Section 4.4, that domain invariance
training combines next sentence prediction, masked language modeling and domain
identification into the loss function,

L= Lysp+ Lyvrym + Lpr
which yields the parameter update rule,
0« 0 —nVeLlnsp —nNVeLyrm +1nVeLpr

Note that the same learning rate, 7, is used for all three training tasks. Using inden-
tical learning rates for all tasks may be problematic. Unlike next sentence prediction
and masked language modeling, domain identification has not been trained for one
million steps during pretraining. Therefore, domain invariance losses might remain
virtually unchanged and show almost no effect on legal classification performance
simply because domain invariance training is using a learning rate that is adapted
for tasks that have undergone pretraining.

In summary, training for domain invariance shows no advantage over other domain
adaptation techniques. This could be due to domain invariance training being incom-
patible with language modeling, or because domain invariance requires a separately
tuned learning rate. In either case, this study finds no benefits to domain invariance
training for BERT in the aforementioned experiment setup.
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5.4 Practical Guidelines

To make the above results practically applicable, a general set of domain adaptation
recommendations will now be presented. If seeking to adapt the pretrained BERT
model to some specialist domain, it must first be established that the source domain
(Wikipedia and Bookcorpus) and target domain are at least somewhat related. This
means that source and target domains should show some overlap and, for instance,
not stem from two completely different languages. If no relation exists between the
domains, very little linguistic knowledge from the source domain will be applicable
in the target domain. However, if this relation can be established, three factors
dictate how BERT should be used in the relevant domain.

e Access to a large unlabelled corpus from the target domain
e Access to computing power
o Size of the labeled task-specific dataset

These three factors and their practical ramifications are presented in Figure 5.4.

Are source and target domains
at least somewhat related?

(U -
A4
Is there access to a large unlabeled .
corpus from the target domain? gl AsiE i)
\ NO
Is there access to substantial Is there a large task-specific dataset?
computing power? 1 NO
N\ NO
Use pretrained Continued Pretraining
Custom Pretraining Domain Finetuning BERT as-is

Figure 5.4: This figure shows how best to apply BERT in specialist language
domains with respect to the available data and computing power. Note that the
dashed line representing the case of unrelated source and target domains has not
been formally investigated in this study. However, it would seem likely that a
target domain completely unrelated to the language found in the Wikipedia and
Bookcorpus pretraining corpora would require a custom pretraining procedure.
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Conclusion

This study has focused on the performance of BERT on downstream classification
tasks in the specialist language domain of legal text. A number of methods for adapt-
ing the pretrained BERT model to this language domain have been explored. The
impact of domain adaptation techniques or custom pretraining are more pronounced
when task-specific datasets are small. The study further finds that pretraining BERT
from scratch will result in the best on-average performance on downstream tasks.
However, finetuning for only a few epochs on relevant domain data will bring on-
average downstream performance close to that of a custom model. Additionally,
the study finds that continuing pretraining on (an approximation of) the original
pretraining data can increase model performance in the specialist language domain.
This is thought to be the result of transformer-based models’ reluctance to converge
on moderately large training datasets. Furthermore, the study examines the use of
domain invariance training as a domain adaptation technique. This method shows
no advantage over other, simpler domain adaptation techniques, like pretraining on
domain-related data. This nonbeneficial effect is presumed to either be the result of
training a language modeling task adversarially, or the result of an ill-tuned learn-
ing rate. This destructive influence obstructs the model’s ability to glean as much
knowledge from the corpora as possible, leading to lackluster performance on down-
stream tasks. Finally, the study suggests practical guidelines for applying BERT in
a specialist language domain.

49



6. Conclusion

20



Bibliography

Ambartsoumian, A. and Popowich, F. (2018), Self-attention: A better building
block for sentiment analysis neural network classifiers, in ‘Proceedings of the 9th

Workshop on Computational Approaches to Subjectivity, Sentiment and Social
Media Analysis’, pp. 130-139.

Baxter, J. (2000), ‘A model of inductive bias learning’, Journal of Artificial Intelli-
gence Research 12, 149-198.

Beltagy, 1., Cohan, A. and Lo, K. (2019), ‘Scibert: Pretrained contextualized em-
beddings for scientific text’, arXiw preprint arXiv:1903.10676 .

Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F. and Vaughan,
J. W. (2010), ‘A theory of learning from different domains’, Machine Learning
79(1-2), 151-175.

Bishop, C. M. (2006), Pattern Recognition and Machine Learning, Springer, pp. 209
210.

Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K. (2019), BERT: Pre-training
of deep bidirectional transformers for language understanding, in ‘Proceedings
of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers)’, Association for Computational Linguistics, Minneapolis, Min-
nesota, pp. 4171-4186.

URL: https://www.aclweb.org/anthology/N19-1423

Ganin, Y., Ustinova, E.; Ajakan, H., Germain, P., Larochelle, H., Laviolette, F.,
Marchand, M. and Lempitsky, V. (2016), ‘Domain-adversarial training of neural
networks’, The Journal of Machine Learning Research 17(1), 2096-2030.

Goodfellow, I., Bengio, Y. and Courville, A. (2016), Deep Learning, MIT press,
p- 83.

He, K., Zhang, X., Ren, S. and Sun, J. (2016), Deep residual learning for image
recognition, in ‘Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition’, pp. 770-778.

Hinton, G. E., Rumelhart, D. and Williams, R. J. (1986), ‘Learning representations
by back-propagating errors’, Nature 323(9), 533-536.

Howard, J. and Ruder, S. (2018), Universal language model fine-tuning for text

51



Bibliography

classification, in ‘Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers)’, pp. 328-339.

Jiang, J. and Zhai, C. (2007), ‘An empirical study of tokenization strategies for
biomedical information retrieval’, Information Retrieval 10(4-5), 341-363.

Kingma, D. P. and Ba, J. (2015), ‘Adam: A method for stochastic optimization’,
CoRR abs/1412.6980.

Kudo, T. and Richardson, J. (2018), Sentencepiece: A simple and language indepen-
dent subword tokenizer and detokenizer for neural text processing, in ‘Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations’, pp. 66—71.

Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H. and Kang, J. (2019),
‘Biobert: a pre-trained biomedical language representation model for biomedical
text mining’, arXiv preprint arXiv:1901.08746 .

Lin, Z., Feng, M., Santos, C. N. d., Yu, M., Xiang, B., Zhou, B. and Ben-
gio, Y. (2017), ‘A structured self-attentive sentence embedding’, arXiv preprint
arXiv:1705.03130 .

Liu, X., He, P., Chen, W. and Gao, J. (2019), ‘Multi-task deep neural networks for
natural language understanding’, CoRR abs/1901.11504.

Moore, R. C. and Lewis, W. (2010), Intelligent selection of language model training
data, in ‘Proceedings of the ACL 2010 Conference Short Papers’, Association for
Computational Linguistics, pp. 220-224.

Pan, S. J. and Yang, Q. (2010), ‘A survey on transfer learning’, IEEFE Transactions
on Knowledge and Data Engineering 22(10), 1345-1359.

Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K. and Zettle-
moyer, L. (2018), Deep contextualized word representations, in ‘Proceedings of
the 2018 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long Papers)’,
pp. 2227-2237.

Popel, M. and Bojar, O. (2018), ‘Training tips for the transformer model’, The
Prague Bulletin of Mathematical Linguistics 110(1), 43-70.

Radford, A., Narasimhan, K., Salimans, T. and Sutskever, 1. (2018), ‘Improving
language understanding by generative pre-training’.
URL: https://s3-us-west-2.amazonaws.com/openai-assets/research-
covers/languageunsupervised /language__understanding__paper.pdf

Simonyan, K. and Zisserman, A. (2014), ‘Very deep convolutional networks for large-
scale image recognition’, arXiv preprint arXiv:1409.1556 .

Stickland, A. C. and Murray, I. (2019), BERT and PALs: Projected attention layers
for efficient adaptation in multi-task learning, in K. Chaudhuri and R. Salakhutdi-
nov, eds, ‘Proceedings of the 36th International Conference on Machine Learning’,

52



Bibliography

Vol. 97 of Proceedings of Machine Learning Research, PMLR, Long Beach, Cali-
fornia, USA, pp. 5986-5995.
URL: http://proceedings.mlr.press/v97/stickland19a.html

Tenney, 1., Das, D. and Pavlick, E. (2019), ‘Bert rediscovers the classical nlp
pipeline’; arXiv preprint arXiv:1905.05950 .

Torrey, L. and Shavlik, J. (2010), Transfer learning, in ‘Handbook of Research on
Machine Learning Applications and Trends: Algorithms, Methods, and Tech-
niques’, IGI Global, pp. 242-264.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L. and Polosukhin, I. (2017), Attention is all you need, in ‘Advances in Neural
Information Processing Systems’, pp. 5998-6008.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M.,
Cao, Y., Gao, Q., Macherey, K. et al. (2016), ‘Google’s neural machine translation
system: Bridging the gap between human and machine translation’, arXiv preprint
arXiw:1609.08144 .

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R. and
Bengio, Y. (2015), Show, attend and tell: Neural image caption generation with
visual attention, in ‘International Conference on Machine Learning’, pp. 2048—
2057.

53



