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Abstract

In the automotive industry, modern cars are equipped with nu-
merous sensors and actuators to control safety critical aspects. These
sensors collect large amounts of information, which are processed and
used by vehicles to control brakes, steering, engine, etc. The AU-
TOSAR standard specifies the implementation details of these soft-
ware units. This approach provides more flexibility for the manage-
ment of vehicular Electrical/Electronic(E/E) systems related to com-
plex driver assistant functions. However, due to the distributed fea-
tures of such systems, software programs built on the AUTOSAR plat-
form are difficult to achieve high quality and correctness. AUTOSAR
programs are running on different machines and exchange messages
via the underlying in-vehicle network, which makes the system non-
deterministic and non-predictable. In this thesis work, these problems
are addressed and a new debugging tool based on a symbolic execu-
tion engine, named KLEE, is developed. This new tool enables effec-
tive testing of AUTOSAR programs before deployment on Electronic
control units(ECUs). It has the capability to detect pointer-related
problems and inject non-deterministic failures to programs while sym-
bolically executing them. We explore the design and the implementa-
tion of this tool and also come up with several possible scenarios as
use cases of this debugging tool.

Keywords: AUTOSAR, Networked Car, Symbolic Execution, KLEE,
Debugging
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1 Introduction

In this section, we describe the motivations of this thesis work, the aims and
approaches we use in the tool design and implementation. We also present
the key contributions in the work and give an overview on the structure of
this report.

1.1 Motivation

Since the software industry expanded from the early of 1960’s, different
kinds of computer programs have dramatically changed ways of people’s
life. The people are familiar with the general software used in daily office
works for processing documents, data analysis and sharing information. Sci-
entists develop and introduce hundreds of scientific software tools to assist
laboratories, to verify their guesses and to boost new findings. Other in-
dustries combine the computer hardware and the embedded software with
physical and mechanical parts to create more advanced commercial products
to improve the living quality.

The automotive industry is one of the traditional industries enthusiasti-
cally embracing complex and innovative IT systems, particularly in-vehicle
embedded systems, in the recent time. These automotive manufacturers
wish to provide not only vehicular functions but also car-human interactions
to consumers. It is appropriate to declare that the innovations in the auto-
motive industry are driven by integrating digital hardware, programmable
processors and software into vehicles. Given these facts, there is no reason
to doubt that software plays a vital role in the quality and performance of
vehicular products.

Nowadays’ Software systems contain thousands of lines of code. They
are usually created by a team of programmers and the team could consist of
from several engineers to hundreds of them. The process of developing such
systems becomes more and more difficult to be managed. It is extremely
hard to verify their correctness for both general-purpose programs and em-
bedded programs with critical missions. If the software is faulty, users could
have uncomfortable experience such as a frozen system, files missing or pri-
vacy leakage. In the worst case, the bugs in a safety critical software system
could lead to disasters, damages, and even loss of life. In 2005, the Toyota
Motor Corp recalled about 75,000 Prius gasoline-electric hybrid cars. The
bugs in the software caused the dashboard warning light to come on and the
gasoline engine to shutdown occasionally.

Researchers and developers have paid attentions on the quality of soft-
ware since the widespread use of digital components in the automotive in-
dustry. However, several special technical obstacles and challenges make it
difficult to assure the correctness of automotive software:

• Mutiple software resources
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In the modern development process of advanced generations of vehi-
cles, a large amount of components, including mechanical parts and
digital parts, are outsourced to third-party companies [8]. Automotive
manufacturers intend to optimize their supply chains, achieve rapid
prototyping, and reduce production cost. Meanwhile, vehicle manu-
facturers usually do not have access to the source code of software
components due to the confidential reasons. It is difficult for them
to know if the outsourced code satisfies the requirements or has po-
tential bugs. Thorough testings, in aspects of both functionality and
reliability, should be performed on the software components before
integrating them into existing systems.

• Distributed character
Modern vehicles heavily rely on embedded networks, compared with
those cars equipped with isolated hardware and software years ago.
These ECUs locate beside sensors and actuators, execute their ded-
icated tasks and exchange information with other controllers. This
distributed design of digital components modularizes the production
of cars while introduces non-deterministic behaviors such as packet
loss into the entire system.

• Realtime constraint
The software system in a vehicle usually is event-based. The execu-
tion order of its tasks follows a predefined scheduling policy. The time
domain is one of the primary considerations regarding to system reli-
ability. The system designers should define timing properties of tasks
to avoid deadline missing and fully utilize the processor’s resources.

The points mentioned above do not include all the sources of flaws in
vehicular digital system designs and implementation code. This fact makes
it challenging to find potential bugs in both automatic and manual ways.
There are only a few available tools supporting automatic testing on such
complex embedded systems [19]. As a result, it is necessary to develop a
debugging tool differing with existing ones.

1.2 Aim

In this thesis work, we address automatic testing problems in vehicle embed-
ded software. More specifically, we investigate the feasibility of integrating
the symbolic execution method into debugging tool designs for an industrial
in-vehicle software platform standard named AUTOSAR. This tool shall not
only detect common program bugs, e.g. wrong pointer, on one single node
but also warn possible software flaws caused by network communication
among ECUs. From the view of this tool’s users, one of the requirements
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is to provide an easy-to-use debugging approach without significantly mod-
ifying the source code of AUTOSAR applications or changing AUTOSAR
behaviors.

1.3 Approach

We choose the symbolic execution approach to achieve the relatively high
code coverage during software testing. An existing symbolic execution en-
gine named KLEE is the base of this debugging tool for AUTOSAR plat-
forms. Academic researchers have accepted it in the system reliability field
during the recent years. We motivate the choice of KLEE as the basic block
of the debugging tool as following:

• Universality
KLEE is built upon the LLVM (formerly Low Level Virtual Machine)
infrastructure. Theoretically speaking, KLEE is able to test programs
written in any language supported by this compiler infrastructure.
Because it works as an interpreter of LLVM bit code. AUTOSAR is
mainly written in C programming language while it contains a small
fraction of hardware specified assembly code. With slight modifica-
tions on AUTOSAR code, KLEE gains the capability to perform au-
tomatic testing on this embedded software platform.

• Automation
One of the goals of this thesis work is to simplify the process of de-
bugging AUTOSAR systems and applications. One of the important
features of KLEE is that it can use the program code under testing
to generate complex test cases. With this feature, testers can focus
on designing testing strategy instead of being stuck in tedious manual
testings. KLEE provides various commands to configure the debug-
ging environment conveniently.

We also choose the Arctic Core embedded software platform as the tar-
geted system. The most important reason for this choice is that the Arctic
Core is open-sourced under the GPLv2 license; thus, we have the freedom
to modify and test AUTOSAR systems depending on the demands. For
the convenience of understanding the report, we call the targeted system
AUTOSAR instead of Arctic Core.

1.4 Scientific contribution

To the best of our knowledge, applying the symbolic execution engine KLEE
to debugging AUTOSAR applications has not been done before. This thesis
work explores the internal structures of both KLEE and the AUTOSAR
platform, and bridges the gaps between them. This debugging tool supports
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several failure models that are used to find hidden bugs in the AUTOSAR
CAN communication stack.

1.5 Outline

We have given a short introduction to the testing methodology and the
testing tool foundation in section 1. In section 2, we introduce essential
concepts and more details on the symbolic execution, KLEE and AUTOSAR
standard.

Section 3 gives an overview of general testing methods existing in the
automobile industry and previous related work.

We first propose a simple debugging tool design in Section 4 to demon-
strate the fundamental problems in this thesis work. The solutions to these
problems are motivated. Then, we further modify the debugging tool based
on the observations in the previous section. This improved debugging tool
is presented in Section 5.

Section 6 provides detailed information about the implementations of
the system designs. Both of the debugging tool designs are evaluated in
Section 7. We also compare their performance under the different situations.
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2 Background

This section gives more details on the background of this thesis from two
knowledge domains, the concept of symbolic execution and the concept of
the AUTOSAR standard.

2.1 Symbolic Execution

2.1.1 Test methodology overview

The development of testing methods has great impacts on the software in-
dustry. Testing software functionality and reliability used to rely on tedious
manual efforts of the Q&A team before the software is released as a product.
In such a manual approach, testers need to follow a testing plan containing
a set of predefined test cases. Then, they collect and document the results,
report to the developers to correct the problems. However, this approach
is not suitable for complex software that takes arbitrary inputs from pe-
ripheral modules or communicates through interactive network, considering
the extremely huge number of possible test cases. During the past decades,
the research of the testing method on the automatic software has made the
great progress to solve this problem. Innovative techniques and tools are
created to increase the productivity. In general, these methodologies consist
of two categories, static testing and dynamic testing, both with strengths
and weaknesses:

• Static testing
The static testing approach focuses on the structure of code instead
of the run-time state of a program. It can reveal a variety of errors
and bad programming practices in code, including but not limited to
uninitialized variables, misuse of local variables and a piece of code
that cannot be executed with any input data. On the other hand, this
approach suffers from intrinsic limitations. For example, the static
testing method cannot detect the faulty access into an array since the
array indexing is a run-time behavior.

• Dynamic testing
The dynamic testing approach monitors the execution state of a pro-
gram. The dynamic testing framework collects information about the
executed statement count, the validity of variables and the control-
flow history during the running of the program. The correctness of
the program under testing is either verified during its execution or
analyzed in the post-stage. This approach allows the testers have
clearer visions of the run-time performance of a program. The draw-
back of dynamic testing is that it expects testers to feed the programs
with proper input data to trigger a possible erroneous execution path.
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The automatic testing method, like the random input string genera-
tion(Fuzz) [20], could simplify this task but has the risk missing the
critical cases leading to the crash of a program.

2.1.2 Concept

Symbolic execution is introduced to the automatic software testing three
decades ago. With the progress in the algorithmic research, the availability
of powerful computing machines, this testing technique has gained popular-
ity in the real-world software analysis. NASA’s Symbolic Java Pathfinder
and Stanford’s KLEE are the debugging tools complying to this method.

Symbolic execution is a branch of dynamic testing, but it distinguishes
with other approaches in this category. A symbolic execution engine exe-
cutes the program on symbolic input data values instead of concrete ones.
The variables associated with symbolic input data and computed outputs
of a program are presented as symbolic expressions. In symbolic execution
engine, symbolic state has the knowledge of the mappings between variables
and corresponding symbolic inputs. At the same time, the symbolic execu-
tion engine maintains a path condition(PC) [22] to keep track of constraints
that turn the program control flow to a particular path. PC is updated at
each conditional statement containing symbolic expressions, by evaluating
the alternative symbolic states of this conditional statement to true and
false. If the updated path condition becomes unsatisfiable, the symbolic
execution engine stops along this path while continues on the other reach-
able path. A test case is generated by solving the associated PC when an
execution state of the program terminates. Each test case contains concrete
values assigned to the symbolic input data. The program can traverse along
the same execution path as the symbolic execution procedure if it executes
on these concrete input values.

Compared with other software reliability validation approaches, the sym-
bolic execution method tests the program on a set of values as input data
and explore execution paths simultaneously in an efficient way. Besides, the
logic structure of the program is explored during the execution.

2.1.3 Example

In order to have a better understanding of how the symbolic execution engine
works, a piece of example code are showed in list 1. It is needed to point
out that line 16 and line 17 are not actual initialization methods to make
variables symbolic. Different symbolic execution engines symbolize variables
in their own way.

The symbolic execution engine steps through program instructions after
marking the variable x and y as symbolic. As explained in the symbolic ex-
ecution concept, program execution states are branched at each conditional
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Listing 1: Symbolic execution example

1 int compare(int x, int y){
2 if (x > y){
3 z=2∗x;
4 if (y > z){
5 return 0;
6 }else{
7 return 1;
8 }
9 } else{

10 assert(false);
11 }
12 }
13

14 int main(){
15 x = symbolic value();
16 y = symbolic value();
17 compare(x,y);
18 return 1;
19 }

statement:

1. initialization. Assuming the variable x and y are initialized to the
symbolic value X and Y , also the path condition, PC, is initialized to
true.

2. x > y. The execution engine updates PC of the then statement to
true∧X > Y when it sees the comparison between symbolic values; it
also generates a new path condition, PC ′, for another branch, else
statement ,and initializes it to true∧X <= Y . The constraint solver
checks their satisfiability. These two execution states are explored
since both PC and PC ′ are true. z is assigned a symbolic value 2X.

3. assert(false). This statement indicates a failed assertion encoun-
tered by the symbolic execution engine. In this case, the current exe-
cution state terminates in an early stage and a test case is generated.

4. y > z. Similar to step 2, the symbolic execution engine also updates
the path condition on this conditional statement. For the then state-
ment, PC is updated to true∧X > Y ∧Y > 2X, and PC ′ is initialized
to true∧X > Y ∧Y <= 2X for the else statement. In this case, PC is
unsatisfiable while PC ′ is satisfiable. The symbolic execution engine
terminates the execution branch of the then statement and generates
a test case to warn the unreachable code fragment.
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A symbolic execution tree, in Figure 1, visually describes the execution
paths explored by a typical symbolic execution engine. The leaf nodes rep-
resent the execution states being able to trigger test case generation. The
inner nodes are transient program states along the execution paths.

X:X, 
y:Y,z:2*X

PC: 
true˄X>Y˄Y

<=2X

X:X, 
y:Y,z:2*X

PC: 
true˄X>Y 

X:X, 
y:Y,z:2*X

PC: 
true˄X<=Y 

X:X, y:Y
PC: true

X:X, 
y:Y,z:2*X

PC: 
true˄X>Y˄Y

>2X

early termination

un-reachable 

Figure 1: Symbolic execution tree illustrating program example

2.2 KLEE

KLEE is a symbolic execution engine created by Cadar Cristian, Engler
Dawson [10]. It is a redesign of EXE [11], a symbolic execution tool with
an emphasis on debugging system programs. KLEE has become an open-
sourced program downloaded by numerous users from the industry and the
academia since June 2009 [1]. KLEE intends to detect potential faulty oper-
ations while achieve the high code coverage on the varieties of programs. Ex-
periments show that KLEE succeeds in finding bugs in GNU COREUTILS
utility suites, embedded system distributions and the HISTAR operating
system kernel.

KLEE is built upon the LLVM infrastructure, and it functions as an
interpreter of LLVM assembly code. Each execution state of a program
has its register presentation, stack, heap, program counter and path condi-
tion. KLEE behaves like an operating system similar to UNIX except that
it supports the symbolic execution. The mechanism of KLEE allows the
concurrent exploration of the execution paths based on the internal logical
structures of programs. In order to achieve good performance of testing,
KLEE employs a lot of tricks and design choices on the optimization.

• Compact state representation
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One of the inefficiencies of the symbolic execution is the quickly grow-
ing number of cloned execution states, which results in great consump-
tion of the memory. Instead of mapping each execution state into a
native OS process, KLEE employs the copy-on-write strategy at the
memory object level. These states share some parts of a heap until
the content of the memory object changes.

• Query optimization
An NP-complete logic always leads to complex queries. It costs the
majority of the execution time to solve these constraints. There is no
exception for KLEE. The designers of KLEE believe that the fastest
query is an empty query; hence, they simplify the generated queries
before sending them to the constraint solver.

Expression rewriting is a common technique in a compiler design.
The expressions are usually reduced to a simpler form by algorithmic
operations: e.g. The expression 2x− x + 5 > 7 could be transformed
into x > 2.

Constraint set simplification takes advantage of the fact that
the constraints on the path condition become more specific as more
constraints added at each branching instruction. KLEE sets a wider
constraint to a more concrete one. For example, assuming the con-
straint x > 10 already exists in the constraint set; and another con-
straint x > 20 is added later on. If KLEE notices this situation, it
substitutes the first constraint with the logic value true since any value
greater than 20 must be larger than 10.

Implied value concretization enables KLEE to consume less time
by processing a concrete value instead of handling a symbolic input.
KLEE assigns an actual value back to the memory cell of the symbolic
input when a constraint implies so. For example, considering a con-
straint like 2 ∗ x == 10, KLEE infers that x is 5 and treats the value
of x along the following path as a concrete expression.

Constraint independence sets a bundle between the constraints as-
sociated with the different symbolic variables. The constraint solver
may only need a subset of constraints to determine a simple query.
KLEE identifies those constraints, which refer to the symbolic vari-
ables in the query sent to the constraint solver. For example, assum-
ing a query x == 15 and two symbolic variables x and y with the
constraint x > 10, x < 20, y > 30, KLEE only considers the first two
constraints and ignores the third one y > 30 since it is irrelevant to
this query.

Counter-example cache explores the satisfiable relations between the
subsets of constraints and the supersets of constraints. Firstly, an un-
satisfiable subset of constraints implies that the original set is not
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satisfiable either. Secondly, the subsets of constraints are also satisfi-
able if the original set of constraints is satisfiable. Finally, the solution
for a satisfiable subset can be easily verified if it also makes the orig-
inal constraint set satisfiable. It is because that solving a query is an
NP-complete problem.

• State scheduling
KLEE explores multiple execution states of a program with different
inputs, in a virtually concurrent way. KLEE chooses one candidate
from the current execution states, loads run-time information and in-
terprets the next instruction. To cover more code and avoid getting
stuck in a particular execution state, KLEE chooses state by switching
between two heuristic selection algorithms:

Random path selection always starts from the root of the symbolic
execution tree, traverses it to reach one leaf representing a candidate
state. KLEE randomly chooses from the two descendants of an internal
node and follows this path until it hits the leaf. This algorithm com-
pletely outperforms the random execution state selection algorithm in
two ways. First of all, it favors the execution states with less added
constraints since these states locate at the high level of a symbolic
execution tree. At the same time, the randomness of traverse path
selection assists this algorithm to avoid the starvation of a rapidly
branching state.

Coverage-optimization search focuses on improving code coverage.
The metric weighted in this heuristic method is the minimum distance
to the uncovered instruction.

Besides, KLEE has good supports for interacting with the environment. It
simulates function calls by models implemented in C and generates function
call failures to exercise program in such scenarios.

2.3 AUTOSAR concept

This subsection provides a background overview of the AUTOSAR standard
and its different layers containing critical software components.

2.3.1 AUTOSAR background

Modern luxury vehicles heavily rely on internal E/E comprising of up-to 70
Electronic Control Units(ECUs). Many critical mechanical and hydraulic
components are completely replaced by advanced realtime embedded E/E
systems. They are usually the selling points in the market and the key
elements differentiating with other vehicle products. Around 90% of the
automotive innovation happens in this area. And the cost of the development
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of IT systems could take up to 30% of the overall cost of a commercial
car [8]. This evolution in the automobile industry is not only driven by the
severe competitions among vehicle manufacturers but also the demands of
consumers. E/E systems are able to improve the overall quality of vehicles
in these aspects:

• Vehicle dynamics
Driving dynamics refer to the behaviors and states of moving vehicles.
Together with necessary mechanical actuators, E/E systems have the
capability to do the engine management, body and brake control, etc.
Besides, E/E systems also handle the situations where the outside en-
vironment suddenly changes or the emergency occurs. Modern vehicles
react quickly and precisely to minimize the damage to vehicles. Some
modules such as the air bag control module can protect drivers from
hurts.

• Driving assistance
A driver assistance system consists of sensors, computation equipment
and actuators. The sensors, like the GPS and the distance radar,
continually collect data from the road path and send them to more
powerful computers via networks. Centralized machines compute these
data to control executors, making the driving experience smooth.

• Non-functional legal requirements
Most governments have restrictions on vehicle products, such as the
restriction on the carbon emission of vehicles. To solve this envi-
ronmental problem, the hybrid engine propulsion system is built on
advanced energy and electronic technologies. Some types of vehicles
even achieve the zero emission during the operation [18].

• Comfort and convenience support
Apart from classical vehicular functionalities, modern automobile ve-
hicle manufactures also make a large investment in improving vehicu-
lar comfort. For example, the E/E system inside the air conditioning
system adjusts the temperature in an energy efficient way.

The rapid progress of in-vehicle E/E systems makes modern vehicles
smarter and eco-friendly ,but it also brings challenges to the automobile in-
dustry. Today’s vehicle manufacturers reduce operating expenses via global
supply chains. However, this business model makes the requirement specifi-
cation and the verification process extremely difficult. Independent suppliers
have their unique solutions built on different hardware, design methodolo-
gies, interfaces and development tool chains. Hence, if a vehicle manufacture
attempts to switch the supplier of one component, the integration process
may fail due to the possible incompatibility. To address this problem, vehicle
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manufacturers, OEM suppliers and automotive development tool providers
propose an open and standard software architecture framework, AUTomo-
tive Open System Architecutre(AUTOSAR). The philosophy of cooperation
on AUTOSAR standard is based on a common consideration: cooperate on
standards but compete on implementations [23]. This automotive standard
emphasizes on the cooperation among different stakeholders in partnership
while promotes competitions on innovative vehicular applications.

The AUTOSAR software infrastructure aims to standardize the inter-
faces between applications and underlying basic software modules running
on different hardware platforms. It supports unified application function li-
braries. Introducing the AUTOSAR standard into the automobile industry
brings changes and benefits to software development in this domain:

1. Scalability and exchangeability of software modules are provided across
the different suppliers and the hardware platforms.

2. The development, modification and integration throughout the life
cycle of ECU application products are highly flexible and manageable.

3. The workload of building the distributed in-vehicle software system is
comparably low since the details about hardware across vehicles are
hidden.

4. Early detection of errors in the functional scope is facilitated. Vehicle
manufacturers can deliver products with high quality and reliability.

2.3.2 AUTOSAR architecture

In the AUTOSAR standard, a layered, modularized and hardware-independent
architecture is proposed to reduce the structural complexity existing in E/E
systems. OEM suppliers and vehicle manufacturers build innovative soft-
ware components based on the AUTOSAR infrastructure for both functional
and safety purposes. This architecture design enables the Model-Based De-
sign that is widely accepted and used by engineers in the software industry.

An AUTOSAR system is comprised of a set of software components(SWCs).
In the early stage of development, detailed specifications on the automotive
functionality allows the engineers abstract from implementation details of
entities. The development tools turn such abstraction of models into con-
crete software code by choosing AUTOSAR basic software(BSW) compo-
nents. Basic software components encapsulate hardware resources and pro-
vide them to software components through a transparent middle-ware layer
named Runtime Environment(RTE). Combined with the ECU’s description
files and the system constraint description files, these tools can map RTE
and BSWs to ECUs. Figure 2 shows a variety of AUTOSAR layers and
modules in a high level.
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Figure 2: Layers of AUTOSAR architecture

2.3.2.1 Software component
Software components(SWCs) serve as the basic blocks of an AUTOSAR ap-
plication distinguishing from another concept, infrastructure. A software
component has to be ’atomic’ and resides on one ECU although it may
contain a large part of one automobile functionality. Another important
feature is that one software component shall not know the locations of other
components. The cluster of software components is interconnected by ex-
plicit ’connectors’ in implementation code. The communication can happens
through different types of embedded networks.

2.3.2.2 Virtual function bus and Runtime environment
Virtual Function Bus(VFB) is the abstract concept of the RTE in Figure
2. It provides software components with a view of virtual hardware and
abstract communication methods. SWCs exchange data via standardized
interfaces, without considering neither ECU types or in-vehicle communica-
tion networks. In the description file of VFB, each involved software com-
ponent binds with static ports. These ports can be configured with different
distributed communication patterns, including the Client-Server model and
the Sender-Receiver model.

The Runtime environment(RTE) of the AUTOSAR system implements
the abstract functionality specified in the VFB description. Automatic de-
velopment tools generate RTEs for each AUTOSAR system. They share
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most of code for a desired communication service. Meanwhile, they are
customized for hardware platforms and device drivers.

2.3.2.3 Basic software component
The Basic Software Component(BSWs) is a set of AUTOSAR moduels below
the runtime environment. It provides the infrastructural functionality to
SWCs of an application. BSWs are designed to be an adapter gluing the
standardized upper interfaces with the ECU-dependent services. The basic
software component layer is divided into five sublayers, as in Figure 3.

Services

OSEK/OS
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ECU abstraction layer

Microcontroller abstraction layer

Scheduler

ECUMMemM

Free timer

CAN Driver LIN Driver
FlexRay 
Driver
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PWM,ADC

 Driver, etc.
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COM
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AUTOSAR BSWs involved in 
this thesis 

AUTOSAR BSWs irrelevant to 
this thesis 

Figure 3: Layers of AUTOSAR basic software component

• Services
This sublayer of the BSW consists of several system services, e.g. the
memory management, the diagnostic mechanism.

• Communication
Communication sublayer is responsible of managing the vehicular com-
munication networks, e.g CAN, LIN, FlexRay.

• Operating System
The operating system of the AUTOSAR standard is compatible with
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the industrial OSEK OS [16] for the maintainability of legacy auto-
motive applications. The extended OSEK OS part supports advanced
safety techniques at runtime. The AUTOSAR OS has several features:

1. It only supports the static configuration. With this feature, the
memory is allocated when ECUs load binary code while the dy-
namic allocation is not allowed.

2. Real-time performance is one of the primary considerations in the
AUTOSAR OS design.

3. Runtime protective functions regarding the memory and time are
provided.

4. Low-end ECUs are fully supported without using external re-
sources.

• ECU abstraction layer
The ECU abstraction layer is an intermediate layer above the drives
in the microcontroller abstraction layer. It provides APIs of the in-
ternal/external peripheral devices and maps them to microcontroller’s
pins.

• Microcontroller abstraction layer
The AUTOSAR applications and the basic software components have
no direct access to ECU’s registers. The Microcontroller Abstraction
Layer (MCAL) distributes all accessing requests to hardware inter-
faces, including I/O, EEPROM, the analog/digital converter (ADC),
etc. Basic software components send commands, together with ECU
independent values, through the standardized interfaces of MCAL.
The MCAL uses a notification mechanism to inform different AU-
TOSAR components about the states of their requests.

2.3.2.4 Communication stack
The communication stack is one of the most important parts of basic soft-
ware components. It supplies AUTOSAR applications with unique interfaces
regardless of the types of underlying networks. In this thesis, we focus on
the CAN communication network. Figure 4 depicts the modules associated
with the CAN communication stack. The main functions and features of
these modules are summarized as following:

• COM
COM [6] provides signal oriented data interfaces to the RTE to send
and receive data. It packs signals to I-PDUs(Interaction Layer Pro-
tocol Data Units) to transmit to lower modules and unpacks received
I-PDUs to extract signals.
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Figure 4: AUTOSAR CAN communication stack

• PduR
PduR [7] is responsible of routing the I-PDUs of upper layer mod-
ules(e.g. COM) to the statically configured destinations. It forwards
I-PDUs to either another upper layer module or communication hard-
ware abstraction modules(e.g. CanIf).

• CanIf
CanIf [4] is the abstraction layer of CAN communication device driver.
It provides the APIs of CAN hardware functionalites to the PduR mod-
ule or directly to the Com module. CAN L-PDU(Link Layer Protocol
Data Unit) is the basis of the data processing and the notification
mechanism of the CanIf module.

• CAN Driver
CAN Driver [3] is the lowest layer of the CAN communication stack. It
handles the accesses to several CAN controllers belonging to the same
CAN Hardware Unit. It has the ability of forming the CAN frames
transmitted on the CAN bus, extracting the payload from CAN frames
and notifying events by calling callback functions.
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3 Related work

Verifying and validating AUTOSAR software components are important is-
sues through the life cycle of products. There exist numerous specifications
of the testing process in the industry and research works in academia. In
general, these works comply to the basic principles of software testing but are
also tailed for automobile embedded systems. This section gives an overview
of current testing tools developed for automobile applications. These tools
can be categorized into two classes, model simulation tools and code execu-
tion tools with respect to system output behavior [9]. Besides, in order to
show the success of KLEE in other domains, one KLEE-based tool is also
introduced.

3.1 Code execution tool

Detecting software faults while executing programs on a platform is a com-
mon testing method in the development of embedded programs. Such testing
tools compare the behaviors of vehicular systems, based on predefined in-
puts, with expected ones. If the result of comparison violates the mapping
relation between input and pre-computed output, testers are alerted about
potential software issue. Code execution can happen on a hardware platform
or in a microcontroller simulator.

AutoPlug [13] is a test-bed for debugging automotive electronic system.
This system consists of multiple subsystems including vehicle dynamic sim-
ulator, a CAN-bus based ECU network and runtime diagnosing middleware.
This system runs on an ECU as a background task to perform result verifi-
cation, controller implementation verification and sensor value validation.

3.2 Model based tool

AUTOSAR is a framework fully supporting the model based design method,
which assists managing complex data relations inside vehicle digital systems
and resolving version conflicts. AUTOSAR software component model is
developed under the MATLAB Simulink/Stateflow framework in the design
phase, as in [21]. The generated models can be verified and validated in
a higher abstraction level by model simulation. The model languages and
checker are used to verify the design choices and automatically generate test
cases needed in such high level simulation.

AutoMOTGen [15] is a model based automatic test case generation tool.
It uses an intermediate representation, SAL, and its associated tools to
process and verify the Simulink/Stateflow model. The goal of AutoMOTGen
is to generate a test suite consisting of input-output mapping sequences while
achieving user specified coverage goal.
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In [17], the widely used Simulink Design Verifier in the automotive in-
dustry and a general purposed SPIN model checking tool are evaluated in
terms of their usability in verification of the vehicular software model. Par-
ticularly, the correctness of an AUTOSAR memory management module,
NVRAM, is verified with these two different approaches.

3.3 KleeNet

KleeNet [25] is a KLEE-based debugging tool for Wireless Sensor Net-
work(WSN), which is an infrastructureless and self-organized network com-
prising hundreds of resource-constraint devices. It aims at debugging WSN
applications before deployment. KleeNet detects potential corner-cases lead-
ing to pre-termination of programs. The research work of KleeNet makes
several contributions to WSN debugging domain:

• Coverage
KleeNet supports debugging WSN application on unmodified code
with symbolized environment input values, enabling a high code cov-
erage.

• Non-determinism
Non-deterministic events, such as packet loss, duplication and corrup-
tion, are common in distributed network. KleeNet guides the program
execution flow to corner cases, and find potential bugs there.

• Distributed assertion
The distributed state of wireless sensor network is checked by a tech-
nique named distributed assertions. KleeNet generates test cases for
each execution path where distributed assertion is violated. Similar to
the requirement of white-box testing, using this KleeNet feature needs
inside knowledge of the program.

• Repeatability
KleeNet can reproduce the execution by using automatically generated
test cases.

KleeNet has good performance in finding four bugs in one of the popular
WSN applications, µIP TCP/IP stack. On the other side, KleeNet also
suffers from issues, such as great run-time and memory complexity, demand
for manual effort and limited application domain.
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4 Design

In this section, we present the architecture of this KLEE-based debugging
tool for the AUTOSAR software platform in a high level view and leave
discussions on its implementation details to section 6. In the thesis work,
we first propose a naive system design revealing and solving the difficulties
existing in applying KLEE to debugging the AUTOSAR system. Then, we
optimize the tool design based on the observations which are demonstrated
in section 5. This report documents both of the system architectures to pro-
vide more information and hints for further development of such a debugging
tool.

4.1 System overview

The system design of this KLEE-based tool follows a direct and simple rule:
the structure of the AUTOSAR system shall be retained as much as possible.
We follow this design rule for two reasons:

1. A complete AUTOSAR stack supports a variety of features without
compromise, improving the chances to trigger a faulty execution path.

2. The AUTOSAR system is a complicated system where different layers
are connected via complex interfaces, making decoupling it into several
independent layers difficult. This design rule treats the AUTOSAR
stack as a black box requiring only a limited number of basic external
supports.

The basic components of the debugging tool are shown in Figure 5. The
kernel represents the symbolic execution engine interpreting the LLVM bit-
code compiled from an AUTOSAR application. It is the extension of KLEE
with supports for the AUTOSAR operating system and network functional-
ity. The AUTOSAR runtime is an intermediate layer between the symbolic
execution engine and the AUTOSAR platform. It serves as a wrapper of a
set of KLEE special functions and provides necessary interfaces customized
for the AUTOSAR platform.

The Operating system model and the network model are the basic com-
ponents adapting the KLEE kernel to the AUTOSAR standard. Generally
speaking, the OS model in this debugging tool kernel simulates the behav-
iors of the OSEK/OS basic software components, which enables debugging
standalone programs. The network model allows the AUTOSAR programs
on multiple ECUs exchange messages, especially CAN bus messages. A set
of failure models are designed to inject symbolic events during the execution
of a program and drive it into a rarely explored path.
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Figure 5: Components of a simple debugging tool design

4.2 OS model

The OS model in the design overcomes the incompatibility between the
architectures of the KLEE kernel and the AUTOSAR operating system.
The basic entities of the AUTOSAR OS are implemented in this model by
modifying KLEE as well as adding an adapted AUTOSAR runtime layer.

4.2.1 AUTOSAR requirement

The operating system in the AUTOSAR standard is an embedded OS with
basic hardware management functionalities and extended real-time features.
It is derived from an industrial legacy operating system specification, OSEK,
for microcontrollers used in the automotive domain. As mentioned in sec-
tion 2.3.2, every application software component built on the AUTOSAR
platform is independent of each other. They compete for the ECU resources
with other program routines. These AUTOSAR OS entities can be catego-
rized into two types:

• Task
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The AUTOSAR OS uses a task to present one software component
with real-time parameters. A task can be either executed periodically
or scheduled according to a predefined scheduling table. In a typical
AUTOSAR application with complicated interactions of software com-
ponents, there are two types of tasks, the basic task and the extended
task. Both of them have running,ready and suspended states, and only
the extended task can enter waiting state.

• Interrupt service routine
The Interrupt Service Routine(ISR) plays an important role in an
event-driven embedded system, allowing ECUs communicate with ex-
ternal devices. There are two types of interrupts, the hardware in-
terrupt and the software interrupt. An AUTOSAR program handles
multiple interrupts from different resources. In this thesis work, we
focus on two important ones, the hardware timer interrupt and the
CAN communication interrupt.

The task entity and the ISR entity both have the user specified priority.
The AUTOSAR OS manages the runtime context and assigns ECU resource
to tasks during the execution.

4.2.2 Existing model and modification

KLEE is a symbolic execution virtual machine with only one process host-
ing a basic program. Hence, it cannot symbolically execute an embedded
program like an AUTOSAR application. A set of operations, such as task
creation, task switching and task termination, are missing in KLEE. Besides,
unmodified KLEE is only suitable for traditional sequential programs, failing
to support the event-driven programming paradigm.

The kernel of KLEE and runtime environment are re-designed to imple-
ment the task entity and the ISR entity. In this naive approach, the interrupt
service routine model locates in the AUTOSAR runtime layer while the task
model resides inside the KLEE engine as depicted in Figure 6.
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Figure 6: Architecture of the OS model

• Task substructure
The software components of an AUTOSAR application are mapped
into the regular tasks. The other parts of the AUTOSAR stack, in-
cluding the alarm and the scheduler, reside in a main task. It has the
same structure as a regular task but serves as the default one in the
system. The basic APIs are provided to the AUTOSAR runtime to
create, switch and terminate internal tasks inside the KLEE kernel.

• ISR substructure
The interrupt service routine is simulated by substituting hardware in-
terrupts with software interrupts. They are viewed as discrete events
driving the whole system. A discrete event queue manages these sim-
ulated interrupts, as in Figure 7.

This event queue handles two types of interrupt events, the periodic
event and the one-shot event. The periodic event has the capability
to insert itself back to the tail of the event queue. The one-shot event
removes itself after termination. In the AUTOSAR system, the timer
interrupt behaves as a periodic event since it advances the AUTOSAR
OS counter repeatedly. On the contrary, the communication interrupt
is a one-shot event inserted by the other program routine. Addition-
ally, the APIs of this discrete event queue are outside the KLEE kernel
and linked with AUTOSAR applications.
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Figure 7: The discrete event queue containing the periodic event and the
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4.3 Network model

Communication is one of the most important features of AUTOSAR plat-
forms, allowing software components on multiple ECUs cooperate on the
same automotive functionality. The network model aims at debugging AU-
TOSAR applications communicating with each other. The non-deterministic
issues existing in the ECU network are further explored with it.

4.3.1 Network topology

The network topology is essential to every debugging tool supporting net-
worked systems. Compared with the scenarios in the other research work
such as KleeNet, we simplify the network topology in the AUTOSAR system
for three reasons:

• An automotive functionality usually needs a few number of ECUs al-
though there could be up to 70 nodes in a vehicle. For example,
displaying the current speed of a vehicle needs the ECUs of the speed
detecting module and the driver panel module.

• A less complicated network topology reduces the difficulty to design a
high-performance debugging tool.

The network scalability issue is taken into consideration, but we pay
more attntion to small-scaled AUTOSAR systems. In addition, the complex
network structure containing multiple communication methods is beyond
this thesis work.
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4.3.2 Simulation machine

To debug a networked system, the tool should have the capability to execute
programs on several ECUs. Only one program under test can be symboli-
cally executed on KLEE. There are two promising approaches to solve this
problem:

• One KLEE instance on one machine. This approach models the be-
haviors of the networked system inside one KLEE instance running in
a native OS(e.g. Linux) process.

• A distributed execution engine consisting of multiple KLEE instances
running on several machines. These KLEE instances exchange exe-
cution states of programs through the network infrastructure such as
TCP/IP. [12] uses a similar approach to share the testing workload
among KLEE instances.

KLEE

AUTOSAR 
application B

AUTOSAR 
application A

Network 
model

Figure 8: Multiple nodes reside in one KLEE instance on one machine
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Figure 9: Multiple KLEEs locate on independent machines

Figure 8 and Figure 9 demonstrate the difference between these two
approaches. In this debugging tool design, the first approach is preferred
for two reasons. First of all, it would be annoying to deploy the testing
environment and settings for all the machines. Secondly, it is unrealistic to
use one machine for one ECU program since there could be several nodes in
the network.

4.3.3 Logic node

A Logic node is introduced into this KLEE-based debugging tool to model
multiple AUTOSAR nodes. This system design retains one of the KLEE’s
drawbacks. It cannot interpret several LLVM bit code files at the same time.
To solve this problem, the source codes of different nodes are merged into
one file but separated by the logic scope as in List 2. The network activity
is simulated by the interaction between the different copies of this merged
program.

33



Listing 2: Merge code of two nodes to one file

1 IF I am Node A THEN
2 Do job A
3

4 IF I am Node B THEN
5 Do job B

During the execution, every logic node has an individual OS model that
provides the separation of their memory address space. Several logic nodes
coexist in a single program, and a set of OS tasks form a logic node.

4.3.4 Dedicated branching

KLEE branches the execution paths of a program and concurrently explores
every possible execution state. This symbolic debugging tool for the the
AUTOSAR system focuses on two scenarios triggering such execution path
branching:

1. The program on the single node branches due to the conditional state-
ments associated with the symbolic value. It is a feature inherited
from the original KLEE.

2. The execution path of a networked AUTOSAR system branches due
to the non-deterministic events such as packet loss.

This naive system design uses a branching strategy called dedicated
branching. It forks the runtime states of each node regardless of the branch-
ing type. Figure 10 gives an example of dedicated branching. In this exam-
ple, a networked AUTOSAR system consists of two nodes and one of them
transmits a packet. The symbolic execution engine branches their execution
paths for twice. The first branching is due to a conditional statement while
the second branching is caused by a symbolic packet loss event. All the
execution states of the nodes are forked internally.

4.3.5 AUTOSAR communication

A variety of communication methods, including CAN, FlexRay and LIN, are
used in the AUTOSAR standard. We choose the CAN stack as the under-
lying network. The bottom layer of the AUTOSAR communication stack
is the CAN Driver interacting with the CAN controllers. The simulation of
communication over the CAN bus contains two phases. First, the packet is
copied from the TX buffer of the sender to the RX buffer of the receiver.
Then, the sender triggers the RX interrupt on the side of the receiver.
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Figure 10: A symbolic execution tree showing the dedicated branching

4.3.6 Synchronization

Timing issue is critical in the AUTOSAR real-time system since its behaviors
are driven by discrete timer interrupts. For example, the function calls to
transmit and receive packets are wrapped in periodic tasks. The AUTOSAR
OS calls these functions when the system clock reaches a certain value. For
example, Node A and Node B boot up at the same time. If Node A issues
packet transmission when the system clock is 10, Node B should receive and
process this packet when the value of its system clock is equal or greater than
10. This feature makes it necessary to synchronize the system clock of each
node in the network. It is completely different from debugging non-realtime
programs such as a client-server application [14]. In general, there are two
ways, as in Figure 11, to synchronize the nodes in the realtime network.
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Figure 11: Synchronization method: the loose synchronization and the tight
synchronization

• Loose synchronization
In this approach, a heap sorts the execution order of nodes according
to the time stamp to trigger their candidate periodic task. The node
is re-scheduled after the task period if its current task terminates.

• Tight synchronization
The system clocks of AUTOSAR nodes are well synchronized in a way
of tick-by-tick. It means that every node has to increase its system
clock by 1, then waits for the other nodes to do the same operation.

KleeNet uses the first approach to modify the Contiki system [24]. How-
ever, tight synchronization is more suitable for this AUTOSAR debugging
tool. The AUTOSAR OS combines the periodic execution and a predefined
scheduling table to manage tasks. It is difficult to handle these two mech-
anisms separately in the loose synchronization approach. This method also
ignores some critical parts of the AUTOSAR OS stack. It is wise to leave
the work of managing tasks to a complete AUTOSAR OS stack by driving
it from the lowest layer.

4.4 Failure model

As a part of the debugging tool design, it is important to define the types
of failures that can be detected. Although KLEE provides several built-
in failure models such as the memory access failure, it does not address
the failures encountered in distributed scenarios. Most of them are caused
by non-deterministic events like packet loss or random input data. Three
possible failure models in the AUTOSAR networked system are proposed
and discussed in the following section.
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4.4.1 Packet loss

Although underlying networks, such as CAN and FlexRay, are designed to
be reliable in the physical layer, the exchanged packets can get lost in the
presence of malicious ECUs. This non-deterministic event potentially leads
to strange or undesired performance issues of vehicles. This debugging tool
drives the system to two paths by using a packet loss model. One path is
that the CAN frame is transmitted correctly while the other one is that this
debugging tool discards the CAN frame. Test cases are generated for any
buggy scenario if packet loss causes the system to crash.

4.4.2 Remote invalid path invocation

KLEE can trigger a faulty execution path in a standalone program by fol-
lowing the control flow of it. In a networked system, one common case is
that the execution flow of one node is controlled by another node through
the communication network. For example, the sensor module collects the
environment data, then process it and send the computed results to the ac-
tuator. The actuator performs the actions such as acceleration on vehicle
dynamics. The invalid input data harvested by sensors would lead to erro-
neous computation results and trigger a faulty execution path on the side of
the actuator. This debugging tool implements this failure model and warns
application developers to notice the invocation of an invalid path.

4.4.3 Assertion

This debugging tool uses assertions to verify the correctness of the behav-
iors of AUTOSAR nodes. It is not only designed for validating a standalone
program but also for checking the consistency of a networked AUTOSAR
system. In this thesis, we consider a consistency checking example, whose
condition is a simple statement of ’if the received value equals to the sent
value’. This assertion is mainly used to find the buggy part of a communi-
cation stack or protocol when packet loss happens.
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5 Improved Design

In the previous section, we propose a naive debugging tool design to demon-
strate the concept of applying the symbolic execution engine KLEE to de-
bugging AUTOSAR systems. This KLEE-based symbolic execution engine
simulates most of the behaviors of the AUTOSAR applications running on
either single ECU or multiple ECUs. The OS model and the network model
are designed to provide system infrastructures to hosted programs. The fail-
ure model contains a preliminary study of possible debugging functionalities
that can be enriched in the future work.

This simple system design reveals several fundamental problems existing
in developing a KLEE-based symbolic execution tool. It also employs the
approximate solutions to solve these problems. These approximate methods
have negative effects on either the performance or usability of this debugging
tool although they reduce the workload of the system design in the early
stage. It can be further modified to achieve:

• improvement of usability of this KLEE-based symbolic execution en-
gine. This target assists the future integration of this debugging tool
into the existing AUTOSAR application development environment.

• better performance during the symbolic execution of programs. It is
important to save the computation resources on the simulation ma-
chine and reduce the computation time.

We present some improvements on the previous simple design as well as
the motivations for these different design choices in the remaining part of
this section.

5.1 Overview

This improved symbolic debugging tool is more complex, but its basic struc-
ture does not change. It still comprises the AUTOSAR runtime, an OS
model, a network model and a failure model. They have been re-designed
and modified to some extent. Figure 12 gives an overview of this system
design.

At the first glance, the only difference between these two designs is that
all the components of the OS model and the network model now reside
in the kernel of KLEE. This choice leads to another design philosophy: the
architecture of the debugging environment should be invisible to AUTOSAR
applications. In other words, an AUTOSAR application interacts with the
debugging tool via a few interfaces instead of liking with a runtime library
such as a discrete event queue in section 6. This approach accelerates the
execution speed because interpreting the code by KLEE is much slower
than performing the same operation in the kernel of the symbolic execution
engine.
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Figure 12: Components of the improved debugging tool design

5.2 OS model improvement

The OS model of this debugging tool design is not improved dramatically.
The task substructure of the OS model remains to support concurrent tasks
while the interrupt service routine(ISR) substructure changes. In the pre-
vious design, the ISR is simulated by discrete events inserted by the tested
program, which results in large execution overhead outside the kernel of
KLEE.

To address these problems, a special task is introduced here. This OS en-
tity uses the task substructure of the OS model to host an interrupt routine.
It has different features from either the main task or the regular task. Every
special task has its mirror that is initialized with the interrupt routine en-
try. The kernel of KLEE provides an interface to switch the execution path
to the interrupt routine by awaking a sleeping special task. The kernel of
KLEE spawn a brand-new sleeping special task from its mirror automatically
after termination. This approach precisely simulates the behaviors of inter-
rupts and reduces the overall complexity of the OS model. The interrupts
generated by packet transmission use this approach.
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5.3 Network model improvement

5.3.1 Multiple nodes hosting

In section 4.3, the programs of multiple nodes are merged into one exe-
cutable file and simulated in one instance of KLEE. This approach is easy
to implement but has limitations in debugging the AUTOSAR networked
system.

The ECUs in an automobile run completely different programs perform-
ing their own functionalities. It is unlike the wireless sensor network in
which the sensor nodes usually execute the same program. The AUTOSAR
application developers pick different basic software components from the li-
brary and connect them via extremely complicated static configuration files.
These files contain variable declarations and definitions. The logic node ap-
proach handles the case where the programs share most of the basic software
components and use the same configuration files. It is not suitable if ECU
programs are more independent in the aspect of the system structure and
the configuration. For example, two ECU programs may have different con-
figuring values for the mode of packet transmission. This scenario requires
the merged file to provide a variable array hosting multiple values. It brings
troubles to extract the correct value for each ECU program.

The intuitive way solving this problem is to execute each program by a
dedicated KLEE engine. Meanwhile, it is impossible to allocate one simu-
lation machine to each ECU program. Thus, we propose a new way to host
multiple nodes to fulfill these requirements, as in Figure 13.

The main idea is running multiple instances of KLEE on the same sim-
ulation machine, allowing the concurrent execution of completely different
programs. It deserves to be specially noted that the instances of KLEE do
not run in different Linux processes. Instead, they reside in the same native
process. It is much easier to synchronize the execution of nodes. In ad-
dition, we avoid using POSIX system infrastructures to manage programs’
branched execution states.

5.3.2 Communication channel

This multi-instance KLEE engine makes it difficult to read from or write
to the memory object of the other program. It is Because each instance
of KLEE has an independent address space and a different LLVM bit code
module of the program. The channel is introduced into the design to assist
the communication between the instances of KLEE. It is similar to the link
between two communication ports except that the ends of a channel are
memory objects. This approach provides a way to transfer value among
KLEE instances and eliminates the risk of the faulty access to the memory
object in other node’s address space.
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Figure 13: Multiple instances of KLEE reside in an independent native
process on one simulation machine

5.3.3 Distributed view

A distributed view manages a set of execution states having the same com-
munication log for all the nodes in the AUTOSAR networked system. In a
distributed view, the execution states of the same node are branched only
due to the conditional statement on symbolic value. The validity of the
distributed view cannot hold if one execution state of a node transmits a
packet. The execution engine creates a distributed to solve this invalidity. In
the extreme case of no communication activity, there is only one distributed
view, and every node executes and branches independently.

Distributed view test files log the references to the test case files generated
by KLEE for the execution states in one distributed view. They are useful to
trace the branching history of each node and investigate the communication
history of the whole system.

41



5.3.4 On-demand branching

Dedicated branching is used in the previous system design, but it is not
efficient enough to handle the state explosion caused by non-deterministic
events such as packet loss. The on-demand branching strategy, based on
distributed view concept, partially eliminates the redundant execution states
existing in dedicated branching. Figure 14 gives an on-demand branching
example.

AUTOSAR application A AUTOSAR application BA B

A B A B’

true false Branch on symbolic input

Packet sent Packet lost

Branch on packet 
transmission

A BA1

A1

Figure 14: A symbolic execution tree showing on-demand branching

A conditional statement on a symbolic value triggers the first branching
of Node A. The execution engine generates an execution state A1. Then,
it inserts it into the current distributed view without forking the execution
state of Node B. The second branching is due to packet transmission issued
by execution state A. The distributed view is not valid anymore since state
A and A1 have different communication logs. A new distributed view is
created to solve this conflict. The execution engine forks the execution
states of Node B, and inserts it into the new distributed view. The on-
demand branching strategy reduces the total number of execution states in
the system, compared with the dedicated branching strategy.
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6 Implementation

In this section, we provide the implementation details of previously described
designs. The descriptions include the structure of the debugging tool sys-
tem, the interfaces provided by the runtime environment, and explanations
about the modifications on both KLEE and AUTOSAR code. We start
the description from the simple system design in section 6.1. Then, we ex-
plore details of the improved design in section 6.2. These two designs share
subsystems such as the task model and underlying communication methods.

6.1 Implementing simple design

6.1.1 Existing model

The most important class of KLEE is ExecutionState representing the
state of a program under testing. ExecutionState is initialized by loading
the LLVM bitcode file of the program. During the execution, the current
ExecutionState branches at every conditional statement that can be true
or false. ExecutionState contains several essential classes:

• Address Space Address space keeps track of the state(e.g. value) of
the ’memory object’, which simulates the cells of the memory.

• Program Counter Program counter maintains a pointer pointing
to an instruction in the LLVM code module. There exist two pro-
gram counters, the current program counter and the previous program
counter.

• Constraint Manager The constraints on the path condition com-
puted from symbolic variables are maintained by a constraint manager.
It has the capability to optimize the collected constraint expressions.

• Stack The Stack is a vector of stack frames, keeping track of caller
instructions, the entry of the current function, local variables and ar-
guments.

6.1.2 System

The modifications on ExecutionState implement the task substructure of
the OS model, the logic node concept and the synchronization concept in
the network model. The relations between these components are depicted
in Figure 16.
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Figure 15: Showing the class diagram of ExecutionState and related classes

Figure 16: Showing the class diagram of ExecutionState after modification

6.1.3 Data transmission

Data transmission is simulated by transferring the value of one memory
object to another memory object. Particularly in the AUTOSAR system
built on the CAN network, the data are transferred between the sending
buffer and the receiving buffer. The transfer process can be split into three
phases:

1. Extract the address space of the sender node and resolve the object
state of the memory object associated with the sending buffer. The
pointers of Expr representing state value are copied into a vector-based
temporary data storage.

2. Extract the address space of the receiver node and grasp the the
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writable object state of the memory object associated with the re-
ceiving buffer. The pointers of the state value Expr from the data
storage in the previous step are written into the writable object state.

3. Merge the constrains of the sender’s execution state into the receiver’s
execution state.

One tricky problem about packet transmission is that data can be sym-
bolic values. It is different from the case where the data are concrete values.
In the memory object state model, an array of uint8 t values derived from
ConstantExpr is used to store concrete values. On the contrary, an ar-
ray of Expr pointers serves as the unique identifiers in memory for itself. To
solve this problem elegantly, two smart functions ObejectState::read8 and
ObjectState::write, that can distinguish between concrete and symbolic
value, are employed in the first and the second step of data transmission.

6.1.4 Special functions

The special function is an important feature provided by KLEE, allowing
programs talk to the execution engine. We define a set of special functions:

• klee get context AUTOSAR nodes use it to obtain the node id al-
located by the symbolic execution engine.

• klee task create This special function takes a task id, an entry point
of a task routine and arguments as its parameters. It will create an
initialized task object in the kernel.

• klee task terminate If a periodic task completes its execution, it has
to call this special function to eliminate the corresponding task entity
inside KLEE.

• klee task switch This special function takes the id of the expected
task as its parameter and forces the execution flow of KLEE to switch
to this task.

• klee handle transmit The purpose of this special function is to trans-
fer the data from one memory object to the other memory object.
Hence, it requires the address of both source and destination vari-
ables, the ids of both source and destination nodes and the length of
transferred data.

• klee add node This special function is used to fork the execution state
of a program containing logic nodes.

• klee node sync An AUTOSAR application uses it to synchronize its
execution with other nodes.
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6.1.5 Runtime

The interrupt service routine substructure of the OS model is implemented
in the AUTOSAR runtime layer. The implementation has similar APIs as
in the AUTOSAR system. List 3 shows the key elements in implementation.

Listing 3: Code fragment of the software interrupt

1 typedef enum {
2 VIRTUAL TIMER INTERRUPT,
3 VIRTUAL IRQ TYPE CAN0 TX,
4 VIRTUAL IRQ TYPE CAN0 RX
5 }virtualInterruptType;
6

7 virtualInterruptType interrupt type;
8 unsigned int incoming interrupt flag;
9

10 #define GEN VIRTUAL INTERRUPT \
11 void ∗ virtual interrupt table[MAX NUMBER VIRTUAL INTERRUPT]=
12

13 void attach virtual interrupt(TaskType tid, virtualInterruptType vector);
14

15 void virtual interrupt entry(virtualInterruptType);
16

17 void virtual set interrupt(virtualInterruptType set interrupt type,
18 uint8 receiver, uint8 sender);
19

20 void Os VIsr(void ∗pcb);

In the AUTOSAR system, an interrupt routine is managed by a process
control block(pcb) as a task. It has the highest priority over other OS
entities such as periodic tasks and scheduled tasks. To ’install’ an interrupt
routine, the id of its pcb has to be mapped to an interrupt type. The
function attach virtual interrupt helps to register an interrupt routine
in a virtual interrupt table. At the same time, virtual interrupt entry

extracts the interrupt routine associated with a type value and call Os VIsr

to execute it.
In section 4.2.2, it is pointed out that there are two types of interrupt

events, the periodic interrupt event and the one-shot interrupt event. One
tricky question is how a node issues an interrupt to other nodes. A polling
strategy is employed here. The flag incoming interrupt flag is set from
0 to 1, and the variable interrupt type is configured by the other node if
it issues an interrupt. Each node checks the flag for each clock tick. If the
flag is set, this node creates an interrupt event and inserts it into the private
event queue.
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6.2 Implementing improved design

6.2.1 Existing model

In this improved system design, more classes of KLEE are explored and
modified. Apart from ExecutionState, another important class is Execu-

tor, which interprets the bit code file of a program, maintains the program
state, sends constraint queries, and interacts with the environment. It con-
sists of many classes, but only the essential ones are shown in Figure 17.
In Executor, a process tree remembers the execution states associated with
a program. The leaves of the PTree are current candidate execution states
that can be scheduled. The other internal nodes present the branching his-
tory of a program. A searcher selects a state from the leaves of the process
tree and hands it to the executor to step one instruction. KLEE firstly
uses its own expression language [2] to express the constrains on a program.
Then KLEE transforms them into equivalent STP expressions that can be
solved by an STP solver being wrapped in TimingSolver.

Figure 17: Showing the class diagram of Executor and related classes

6.2.2 System

The further modified structure of the debugging tool retains the essential
models, including the task model implemented in ExecutionState. Recall
that this design shall support multiple instances of KLEE in one native Linux
process. To achieve this goal, we allow several Executor instances coexist
in one KLEE program. These objects of Executor class share user con-
figurations for KLEE, but work independently as fully functional symbolic
execution engines. This thesis work aims at verifying the idea of applying
KLEE to debugging the AUTOSAR program. Hence, the system design
only considers two instances of Executor. Figure 18 gives an overview of
the debugging tool structure after modifications.
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Figure 18: Components of the improved debugging tool design

This system comprises SuperExecutor, Executor, DViewManager, Trans-
missionManager, StatisticWrapper and SchedulingQueue.

• SuperExecutor is the center of the execution engine. It has global
knowledge about each executor as well as the execution states of every
program under testing.

• DViewManager is the implementation of the distributed view model.

• TransmissionManager is used to handle the operations related to
packet transmission.

• StatisticWrapper records the runtime statistic information about the
program module.

• SchedulingQueue stores the execution states of each node according
to their time stamps.

6.2.3 Dynamic switching

This is an implementation trick that deals with global variables in both
KLEE and interface code of the STP solver. Although the major parts of
KLEE and STP solver are written in C++, there are variables keeping track
of the global status. Adding more executor instances to KLEE demands the
separation between their statuses. To address this problem, a trick called
dynamic switching is used. It means that these global variables retains in the
code but are forced to point to the corresponding local wrappers when the
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executor is switched. The globalStatisticWrapper, theStatisticMan-

ager in KLEE and BEEV::ParserBM, BEEV::GlobalSTP in the STP solver
employs this trick.

6.2.4 Special function

The special functions used to manipulate task entities of the OS model are
as same as in the previous design. We define five additional special functions
for AUTOSAR applications:

• klee schedule state This special function takes a time interval as
its parameter. The node calling it is scheduled to execute after this
time interval.

• klee port bind It defines a communication channel at the beginning
of each AUTOSAR application. Several ports, which refers to vari-
ables, can be bound to the same channel id.

• klee transmit via channel This function takes the source channel
id, the destination channel id and the length of the transferred variable
as its parameter. The broadcast mechanism of the CAN bus motivates
that all the ports of other nodes receive the value.

• klee special task create This special function creates a special task
for each interrupt service routine.

• klee special task terminate It is added to the end of each special
task. The purpose of this special function is to terminate and re-load
the interrupt routine automatically.

6.2.5 Communication and On-demand branching

The communication between different instances of KLEE is via a channel
whose ends are memory objects. An option, ’debug-packet-loss’, en-
ables debugging the AUTOSAR application in different scenarios including
normal packet transmission and packet loss. The communication procedure
under the latter case is demonstrated by a simple example in Figure 19. In
this example, node A has branched into state A and A’ on a conditional
statement. State A attempts to send a packet to Node B, making the cur-
rent distributed view invalid. We use an algorithm to solve this conflict and
handle the packet transmission.

1. Alias query
Alias refer to the execution states of other nodes in the same dis-
tributed view as the sender. The alias are marked with green color in
Figure 19.
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Figure 19: An example showing the communication procedure

2. Alias forking
SuperExecutor forks the execution state of the alias found in Step
1 and notifies the executor. The newly forked execution states are
inserted into the process tree in the executor.

3. DView expanding
DView is expanded in this step to solve the communication log con-
flict between two execution states of Node A. In this step, an empty
distributed view is created first. Then the forked execution state of
alias, B’, is inserted to this DView, together with current execution
state of the sender, A.

4. Transmission handling
Targets are the execution states that should receive the packet. They
are either forked execution states of alias in the packet loss scenario or
just alias in the normal packet transmission scenario. The data trans-
mission framework in the simple system design is reused here. As the
discussion in section 5.2, a special task is used to trigger the CAN
Rx interrupt. Hence, SuperExecutor calls invokeSpecialTask() of
each target at the end of packet transmission.

6.2.6 Scheduling and synchronization

SchedulingQueue schedules and synchronizes the execution states. This
class provides two key interfaces to manipulate this map-based event queue:

• reScheduleExecutionState

It is wrapped in a special function, klee schedule state. An AU-
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TOSAR node uses this function to delay the execution of itself after
n ticks to synchronize with other nodes.

• updateSchedulingQueue

SuperExecutor collects the newly branched or terminated execution
states in every Executor, then updates the scheduling queue by step-
ping through each element from collected execution states.

In the original KLEE, the searcher of an executor selects an execution
state from the process tree using different searching strategies. In this sys-
tem design, it is SuperExecutor that selects an execution state for every
executor. List 4 shows the code to select an execution state. The execution
state with minimum time stamp is popped from the schedulingQueue in
Line 2. SuperExecutor finds the associated executor and feeds it with this
execution state.

Listing 4: Code fragment of SuperExecutor to select execution state

1 while (!schedulingQueue.isEmpty()) {
2 ExecutionState∗ crtes = schedulingQueue.selectExecutionState();
3

4 NodeId node id = (crtes−>dInfo).getNodeId();
5 Executor∗ crtExecutor = executor mapping[node id];
6 if (!crtExecutor−>haltExecution)
7 crtExecutor−>runExecutionState((∗crtes));
8 }
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7 Evaluation

In this section, we evaluate the debugging tool designs proposed in section
4 and section 5. The purpose of the evaluation is to demonstrate the ap-
plications of this KLEE-based tool in debugging AUTOSAR programs. We
also try to compare the performance of the different system designs from
the aspects of their execution speed and memory consumption. We focus
on these two metrics because they are usually the major issues existing in
the symbolic execution methodology. The extremely large number of exe-
cution states explored by a symbolic execution engine makes the execution
procedure both time consuming and memory inefficient.

During the period of this thesis work, there is no available real-world AU-
TOSAR application for the testing purpose. Hence, we present two possible
use cases of this KLEE-based debugging tool to show that it can find faults
purposely injected into the programs. The applications are constructed on
the basic functionalities of the AUTOSAR platform. We use some tricks to
simulate the behaviors of the system in extreme cases to push the perfor-
mance of this system to the limit. Besides, the other researchers working
on the same topic can use and analyze these use cases to make further im-
provement and testing.

7.1 Packet loss

In the klee-related research, debugging the networked system usually means
injecting non-deterministic events, such as packet loss, into the system. The
debugging tools check the consistency of nodes. This method finds bugs
existing in applications such as communication protocol stacks. This use
case aims at exploring the performance of this debugging tool when it is
used to debug the AUTOSAR networked system with CAN packet loss.

[5] points out that the CAN transport layer protocol is mostly used
by vehicle diagnostic systems. However, applying the CAN transport pro-
tocol to regular message passing is an interesting attempt to change the
AUTOSAR stack. With this modification, the AUTOSAR communication
stack can transfers the signal whose message size is larger than 7 bytes. The
modified AUTOSAR communication stack is shown as Figure 20.
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Figure 20: The AUTOSAR communication stack integrated with the CAN
transport layer protocol

7.1.1 Experiment assumption

This experiment is designed to demonstrate the capability of this KLEE-
based tool to find insidious bugs in the full AUTOSAR communication
stack. In order to achieve this purpose, we deliberately make a piece of
code in the AUTOSAR communication stack buggy. We apply this sym-
bolic execution engine to the application built upon this faulty AUTOSAR
platform. The symbolic debugging tool should be aware of such a buggy
part in the implementation code.

In this experiment, we choose to make the interface function, PduR -

CanTpRxIndication, between CanTp and PduR buggy, as in List 5.

Listing 5: Buggy code fragment in AUTOSAR communication stack

1 void PduR CanTpRxIndication(PduIdType CanTpRxPduId, NotifResultType Result) {
2 PduR ARC RxIndication(CanTpRxPduId, &comRxBuffer.pduInfo, 0x04);
3 comRxBuffer.status = NOT IN USE;
4 }

PduR CanTpRxIndication was used by the diagnostic software compo-
nent, Det, to report the status of the CAN transport protocol, but it has
been modified to deliver the data received from CanTp to the upper Com

layer. The parameter, Result, indicates the different status of CanTp such
as NTFRSLT E WRONG SN, NTFRSLT E NO BUFFER. The code in List 5 delivers
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the data to the upper layer without checking the status of CanTp, which is
assumed to cause severe problems.

To verify this assumption, an AUTOSAR application containing this
buggy code is tested with the KLEE-based debugging tool.

7.1.2 Experiment setting

This use case of packet loss contains the scenario where two AUTOSAR
nodes are communicating with each other. In this application, Node A
sends an 8-byte value to Node B through their AUTOSAR communication
stacks. Node B verifies that whether it receives this value correctly in an
assertion. The debugging tool raises an execution error if Node B receives
an incomplete or faulty value.

The maximum length of a carried message is set to 8 bytes. The CanTp

layer splits this message into two CAN message frames. Timeout of CanTp

is set to 2(= 2000/1000). The application program has to call the main
function of CanTp, CanTp MainFunction, twice before the timeout period
expires.

We use ’klee -debug-packet-loss com simple/main.bc com simple2/main.bc’
to invoke the improved version of the debugging tool.

7.1.3 Experiment result

We discuss the experiment results from two aspects, generated test cases
and performance of the debugging tool.

The debugging tools implementing both design choices generate the test
cases including .ktest files. These test cases shows that two scenarios where
packet loss happens trigger the the assertion failures as in Figure 21.
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Figure 21: Two scenarios where packet loss triggers assertion failures

In both of the scenarios in Figure 21, Node B receives the first frame of
the message but keeps waiting for the second frame. PduR CanTpRxIndi-

cation is called because of the timeout of CanTp. The status of CanTp is
NTFRSLT E NOT OK. It delivers the incomplete value, without checking the
status of CanTp, to the upper layer which triggers the assertion failure. To
correct the buggy code, the status of CanTp should be checked before packet
delivery, as in List 6.

Listing 6: Correct code fragment in AUTOSAR communication stack

1 void PduR CanTpRxIndication(PduIdType CanTpRxPduId,
2 NotifResultType Result) {
3 if (Result == NTFRSLT OK) {
4 PduR ARC RxIndication(CanTpRxPduId, &comRxBuffer.pduInfo, 0x04);
5 comRxBuffer.status = NOT IN USE;
6 }
7 }

The performance of the debugging tools is shown in Table 1.

Table 1: Performance of two debugging tool designs in packet loss user case

Execution time/s Memory consumption/MB

Simple design 0.64 21.10

Improved design 0.48 27.78

It shows that the execution speed of the improved debugging tool design
is faster than the simple one. However, it consumes more memory due to
the multiple KLEE instances in the same OS process.
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7.2 Invalid sensor data

This use case demonstrates an application of one failure model, remote in-
valid path invocation. It explores the impact of invalid data on the correct-
ness of the AUTOSAR system.

7.2.1 Experiment setting

In this experiment, we consider the scenario where two nodes running AU-
TOSAR systems are involved in the communication as depicted in Figure 22.
CanTp is not integrated into the AUTOSAR communication stack. These
two nodes cooperate on an easy task: Node A(sensor) receives an environ-
ment value, then assigns different computed values to the result. This result
is transmitted to Node B(actuator) through the AUTOSAR CAN commu-
nication stack. Node B chooses one of the execution paths based on this
value after receiving the result.

There is one erroneous execution path leading to the crashing of Node
B.

Periodic signal

Node BNode A

Periodic signal

Figure 22: Node A(sensor) send a periodic signal to Node B(actuator)

We highlight two important pieces of code to configure the proprieties
of this AUTOSAR application:

1. SetAbsAlarm The AUTOSAR application uses it to configure the start-
ing point and the period of the task by associating it with an alarm.

2. ComTxModeMode & ComTxModeTimePeriodFactor They are the mem-
bers of the struct ComIPdu, which defines the property of the signal.
It can be used in a periodic way. Compared with the concept of the
period of a task, the period of a signal expires after a certain number of
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invocation of the function Com SendDynSignal instead of the system
ticks.

7.2.2 Experiment result

For the first attempt of the experiment, we set the starting point of the task
to 5 and the period of the task to 50 system clock ticks. The period of the
Tx signal is set to 10.

Both of the KLEE-based debugging tools successfully find the faulty
execution path in Node B. One of the distributed test cases, distributed-
Test000003.dvtest, shows that the crashing of Node B also causes the
early termination of the execution states of Node A in the same distributed
view.

The number of generated cases is shown in Table 2. The simple de-
bugging tool solution only generates test cases for the entire AUTOSAR
networked system. The improved solution separately generates test cases
for every node in the system.

Table 2: Number of the test cases generated by the simple tool design and
the improved tool design

Node A Node B

Simple design 3

Improved design 3 4

The test cases are recorded in different .dvtest files to identify the
execution paths of nodes in the same distributed view, as in Table 3.

Table 3: Distributed view’s references to ktest files

Node A Node B

DView 0 test000002.ktest

DView 1 test000002.ktest test000003.ktest

DView 2 test000003.ktest test000004.ktest

DView 3 test000001.ktest test000001.ktest

We also focus on the execution time and the memory consumption. Table
4 shows results for the both system designs.

The experiment results also show that the simple design outperforms
the improved design in the aspect of total memory usage. This phenomenon
happens in the scenario where there are communication activities but only
a few number of execution states branch on conditional statements. It is
due to the complex internal structure of the improved tool design. Besides,
on-demand branching strategy brings the extra one execution state of Node
B to avoid the communication log conflict.
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Table 4: Performance of the two debugging tool designs in the packet loss
use case

Execution time/s Memory consumption/MB

Simple design 0.75 17.17

Improved design 0.55 21.46

On the contrary, the execution speed of the improved design is faster
than the simple design by 62%. The built-in OS model and network model
dramatically reduce the workload of the whole system by avoiding interpret-
ing the code of the runtime layer.

7.2.3 Further test and result

The further testing aims at exploring the performance of the debugging
tool designs when they are handling the heavy workload of execution path
branching. There could be thousands of different execution states caused
by symbolic values during the execution of a program if it contains complex
conditional statements. For example, in the AUTOSAR system, the pro-
gram on the sensor side implements a complicated algorithm to process the
input environment data, which results in thousands of branches. Currently,
we consider a case where only a few branched execution states of Node A
send the computed value to Node B, as in Figure 23.

A BA1 An...

Figure 23: The distributed view containing redundant execution states

To compare the performance of the debugging tool designs, we choose to
branch the execution paths of Node A in an exponential way. They branch
the execution states of Node A for the same times. Figure 24 and Figure 25
describe the changes of execution time and memory consumption with the
number of execution states of Node A.
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Figure 24: Execution time of the debugging tool changes with the number
of execution states of Node A
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Figure 25: Memory usage of the debugging tool changes with the number
of execution states of Node A

59



The results in Figure 24 and Figure 25 indicate that the improved debug-
ging tool design outperforms the simple one as the number of the execution
states of Node A increases. The built-in OS model and network model con-
tribute to the fast speed of the improved debugging tool. The redundant
execution states of Node B in every distributed view are removed to save
memory resource. Hence, we conclude that the improved debugging tool
design accelerates the simulation speed in most of the scenarios. It reduces
the runtime memory cost if there exist a large number of branched execution
states in distributed views.
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8 Conclusion

This section discusses the limitations of the present work, shows the ideas
for future research and summarizes this thesis work.

8.1 Discussion and future work

KLEE supports a replay framework to execute programs on the concrete
values in test cases. The simple debugging tool design retains this feature
since it is inherited from original KLEE, and the whole networked system
resides in one execution state. It is difficult to provide the same feature
if an execution state represents one node as in [25] and [14]. Currently,
the improved tool design does not have this feature either. Adding a re-
play framework to the improved debugging tool design is a challenge in the
future work. This thesis work only considers the scenarios involving two
AUTOSAR nodes to investigate the basic concepts. Supporting more nodes
requires better designs of the debugging tool kernel and APIs. In this case,
there still exist some redundant execution states to be eliminated. Besides,
both of the system designs choose to synchronize the AUTOSAR system
clocks in a tick-by-tick way. They ignore the possible clock drift, which is
also an interesting topic for future improvement. As it is mentioned in the
evaluation, we create use cases to test the performance of this KLEE-based
debugging tool. It is necessary to test it on programs from the automobile
industry by cooperating with the automotive companies.

The Arctic core platform, the implementation code of the AUTOSAR
standard, is constantly updated by the ARCCORE AB. The APIs provided
by this debugging tool may be outdated in the future, but the methods
proposed in the report shall be still applicable. In addition, the automobile
industry is enriching the AUTOSAR standard to support more features. For
example, the AUTOSAR standard release 4.0 has come into the market.
This debugging tool can be further developed to support new AUTOSAR
standards.

8.2 Conclusion

In this thesis, we introduce a KLEE-based symbolic debugging tool for AU-
TOSAR programs. It detects the faulty execution paths existing in the
applications built upon the Arctic core platform.

We propose two debugging tool designs to simulate the behaviors of both
standalone AUTOSAR programs and a networked system consisting of two
ECU nodes. They allow us symbolically execute AUTOSAR applications
and automatically generate test cases. We also demonstrate the implemen-
tation details of the tool designs. These technical materials not only reveal
the structures of this debugging tool but also help other researchers have an
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in-depth knowledge of KLEE and AUTOSAR code.
The use cases and evaluation results show that this KLEE-based tool

can find the buggy parts of AUTOSAR applications when non-deterministic
events happen. The comparison between the different designs indicates that
the improved tool design in section 5 is more promising than the simple tool
design.
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