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project.
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Popular Science presentation

The Banach–Tarski paradox, the art of cloning balls with rotations
If you have ever cooked a meal or baked something, you probably have had to measure volume at
some point. Imagine how annoying it would be if you measured flour, and when you rotated the
measure to pour it in, more flour would pour out of it than what you have measured. Of course,
rotations or movement cannot affect the volume of an object, right?

In 1901, Henri Lebesgue described the Lebesgue measure, a way to mathematically determine
the volume of objects, regardless of how many dimensions the object is in. The Lebesgue measure
of two objects is the sum of their individual measurements, which remain the same when rotating
or moving the objects, given that they can be Lebesgue measured. This means that as long as the
object can be measured, its Lebesgue measure works exactly as a volume should work.

While at the time, it was assumed that every object could be Lebesgue measured, abstract
objects with no defined Lebesgue measure were found by mathematicians over time, which created
some problems with fully defining a volume. In particular, Stefan Banach and Alfred Tarski found
in 1924 that a ball could be cut into a few of these objects which would form two balls identical
to the original when rotated and moved. This has become known as the Banach–Tarski paradox.

While this might seem crazy at first, it should be noted that a ball contains an infinite number
of points and infinities work in really strange ways. There are two types of infinity relevant to the
Banach–Tarski paradox. The first is countable infinity, which is infinite, but can be ordered. One
example is the amount of natural numbers, since they can be order, even if they would never end.
The other is uncountable infinity, which is so large it can never be ordered. An example of this
is the number of points on a ball. If you were to try to order every point, you could always find
another point between the points that have been ordered.

Now, some strange things start happening when we use infinities. Imagine taking a disc,
marking a point on it, and start to rotate the disc. Every time you rotated it at a chosen angle,
you mark the point reached from the last point by the rotation. At some angles, for example
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2
◦
,

you would never mark the same point twice, since you would never go 360◦ around the disc after
any number of

√
2
◦
rotations. If you did this a countably infinite number of times and then rotate

the disc
√

2
◦
in the opposite direction, the point one rotation behind the location marked would

now be marked, while every previously marked point would still be marked, since every point has a
marked point one rotation in front of them to take its place when rotated back. We have somehow
marked another point by simply rotating the disc. Because of this, you could fill in a single hole
on the disc by rotating points that would be marked by this method into the hole. In fact, if you
kept doing it an infinite number of times, you could fill in countably infinitely many holes.

Another oddity of infinity is that you can create two infinities out of one. Imagine an infinite
labyrinth consisting of four-way crossroads going up, down, left and right, with only one path
to each crossroad. To clarify, this means that going up and then right would lead to a different
crossroad than going right and then up. Pick a starting point and write U when going up, D when
going down, L when going left and R when going R. If you keep writing each step from right to left
and remove any instance of LR, RL, UD and DU, the word corresponds to the simplest path from
the starting point, and if you were to write every path from the starting point, it would cover every
crossroad, with each crossroad corresponding to a word. If you were then to take every crossroad
whose word starts with L, and go to the crossroad on the right of each of them, you would end up
in every crossroad except the ones starting with R, since L and R cannot be next to each other.
This means that the crossroads to the right of every crossroad starting with L, together with the
crossroads starting with R, giving every crossroad in the labyrinth, using only part of it. By doing
the same with U and D, we also get every crossroad. The key idea of the Banach–Tarski paradox
is to find rotations that work like this labyrinth on the entire ball except for a countable number
of points, then we can clone those points using this method and clone the countably many points
by filling in them like a disc.

So let’s now show the Banach–Tarski paradox on a ball by dividing the ball into groups of
points. Start by marking a starting point on the surface and place it in a group called “S”. From
there, rotate the ball

√
2◦ to the left, right, up or down. Write the rotations as a word like the

labyrinth example, and put each point accessed from these rotations into the group “U”, “D”, “L”



or “R”, depending on the first letter of the rotations corresponding word. Once you have done this
for every rotation, you have only covered a countably infinite number of points, so not all points
have been put in a group. Pick a new starting point that hasn’t been marked yet and repeat the
process an uncountably infinite number of times until the whole surface has been covered.

Now some of these points will have been put into multiple groups since every rotation corre-
sponds to an axis, making the poles remain in place when you rotate around the axis. However,
since the rotations correspond to a word, they are countable, meaning that there are countably
many poles. We put these poles into a group called “P”. For the interior of the ball, put the center
into its own group “C”, and for the rest, let them be in the same group as the surface point just
above them. We have now divided the ball into seven pieces. S, U, D, L, R, P and C. Now, let’s
start copying the sets. Since all the poles have been removed, each rotation from a point in S will
be taken to a new point. This is like the labyrinth example, and like it, L rotated to the right,
together with R, creates the groups S, U, D, L and R. The same thing can be done with U and D to
get another copy of these groups. We then place P and C onto the first ball. After this, the second
ball does not have P, or C on it, but since they are not uncountably infinite, we can deal with them
easily. To get a copy of P on the second ball, observe that since P only contains countable points,
they make up individual points on the ball. We can then take an axis that doesn’t correspond to
any word, and fill in holes of our second ball using rotations like the disc. C is copied onto the ball
in a similar manner. The end result is two balls identical to the first.

Now the reason why this result is interesting is that we increased the volume using only rotations
on pieces of the ball. The reason why this happens is because the pieces that we cut the ball into
are infinitely complex, leading to them having a different volume depending on which other pieces
they are put together with. Since the rotations we used can also duplicate themselves, we use these
to clone the pieces and thus clone the ball. It should be noted that rotations cannot duplicate
themselves the same way in one or two dimensions. In fact, they have some nice properties that
give the line and plane a nice measure. This means that while we cannot measure the volume of
all objects in space, we can measure the area of every object on a plane and the length of every
object on a line. This measure is also equal to the Lebesgue measure if the object is Lebesgue
measurable, giving them the length or area that they intuitively should have.



Sammanfattning

Vi presenterar ett bevis av en sats av Stefan Banach och Alfred Tarski, som bygger på
resultat av Felix Hausdorff: Det finns två ändliga samlingar av disjunkta delmängder av
enhetsbollen i R3 sådana att varje samling kan transformeras till en ny enhetsboll under
verkan av stela rörelser (ändliga kombinationer av translationer och rotationer). Detta resultat
förlängs sedan till dess starka form: Om A,B är två begränsade delmängder av R3 med icke-
tomt inre så finns två partitioner {Ai}ni=1, {Bi}ni=1 av A och B respektive, och stela rörelser
ρ1, ρ2, ..., ρn sådana att ρi(Ai) = Bi för varje i = 1, 2, ..., n. Dessa satser kallas för Banach–
Tarski paradoxen.

Måttproblemet ställer frågan huruvida man kan tilldela en volym till varje delmängd av
Rn för n ∈ N så att volym bevaras under stela rörelser och partitionering. Vi visar att, som en
konsekvens av Banach–Tarski paradoxen, kan man inte ge ett jakande svar till måttproblemet
för n > 2. Vi diskuterar om detta kan ges i en och två dimensioner, och i allmänhet hur
problemet att tilldela en volym till varje delmängd av en mängd X relaterar till existensen av
dekomposititoner av delmängder av X liknande dem ovan, där elementen som transformerar
dekompositionerna kan höra till vilken klass som helst av bijektioner av X.

Abstract

We present a proof of a theorem of Stefan Banach and Alfred Tarski, building on work by
Felix Hausdorff: There exist two finite collections of disjoint subsets of the unit ball in R3 such
that each collection is transformed to another unit ball when subject to rigid motions (finite
combinations of translations and rotations). This result is extended into its strong form: For
any two bounded subsets A,B of R3 with nonempty interior there exist partitions {Ai}ni=1,
{Bi}ni=1 of A and B respectively, and rigid motions ρ1, ρ2, ..., ρn such that ρi(Ai) = Bi for
each i = 1, 2, ..., n. These theorems are referred to as the Banach–Tarski paradox.

The problem of measure asks if one can assign a volume to every subset of Rn for n ∈ N
in a way so that volume is preserved under rigid motion and partitioning. We show that, as a
consequence of the Banach–Tarski paradox, one cannot give a positive answer to the problem
of measure for n > 2. We discuss whether this can be done in one and two dimensions, and in
general how the problem of defining a volume of every subset of a set X relates to the existence
of decompositions of subsets of X similar to those above, where the elements transforming the
decompositions can belong to any class of bijections of X.
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1 Introduction

1.1 Background
The length of a line, the area of a surface and the volume of a shape in three or more dimensions,
these are some of the most fundamental concepts encountered in Euclidean geometry [1], all based
around measuring subsets of Rn. But even then, there is still the question of how to define these
measures in a way that also corresponds to intuitive parts of geometry, like the unit cube having a
measure of one, having the measure of disjoint parts be equal to the sum of the measures of each
part, and the measure being preserved by rigid motions like rotations and translations. Finding a
way to define the measure of subsets of Rn is known as the problem of measure.

In 1901, Lebesgue [2] defined the Lebesgue measure, a countably additive, isometry-invariant
measure on Rn, as a solution to the problem of measure. However, it was shown by Vitali [3] in
1905 that by using the axiom of choice, countable additivity and the other properties of Lebesgue
measure, one could find sets without a defined Lebesgue measure. Since countable additivity caused
sets with no defined Lebesgue measure, mathematicians tried to find an extension of Lebesgue
measure that solves the problem of measure but only required the measure to be finitely additive.

The search for a finitely additive measure eventually proved fruitless, as Hausdorff [4] proved
that there was no finitely additive measure with measures preserved by rigid motions in three
dimensions or higher. After Hausdorff’s discovery, mathematicians looked for and discovered more
geometrical paradoxes, the most striking being the Banach–Tarski paradox [5] [6] discovered by
Banach and Tarski in 1924, a theorem that in its most general form says that given two bounded
sets A,B ⊂ R3 with nonempty interiors, A can be transformed into B by cutting A into a finite
number of parts and rearrange the parts with rigid motions. In particular, you could cut a ball into
pieces and rearrange the pieces to become two new balls, each identical to the original ball. This
shows the subtlety of problem of measure, since the Banach–Tarski paradox implies that objects
change measure during rigid motions. In this report we aim to show the proof of the general
Banach–Tarski paradox and explore some of its impact on measure theory.

1.2 The axiom of choice
The Banach–Tarski paradox relies on an axiom known as the axiom of choice (AC), which was
formulated by Zermelo [7] in 1904. AC says that whenever we have a collection of nonempty sets,
we can create a new nonempty set by picking one element from each of the previous sets. The
reader might realise that this is obvious for finite sets regardless of AC since we can always pick
the first element from each set but it might not be for infinite sets, thus requiring AC.

Note that the axiom of choice is essential to the Banach–Tarski paradox as it has been proven
[8] that the Banach–Tarski paradox does not exist in set theories without it. Because of this, some
mathematicians have been unsure whether AC is true or not. Tomkowicz and Wagon [9] write
that Borel [10] objected to the use of AC in the proof of the Hausdorff paradox (a paradox we will
later use to prove the Banach–Tarski paradox ), since the proof uses AC to create a vague set.
Meanwhile, Banach and Tarski [5] defended AC as there are theorems proven by it that are fully
intuitive. We are not going to think too deeply into the philosophical aspects of AC and assume
it to be true for the rest of the paper. We will however denote theorems that use it with AC.

2 Preliminaries
Before we can begin our exposition of the Banach–Tarski paradox we establish some basic defi-
nitions and facts about groups and cardinality. The more experienced reader can skip ahead to
Section 3 where we start to discuss paradoxes.

2.1 Cardinality
It is tempting to say that the Banach–Tarski paradox is incorrect because seemingly one ball
contains fewer points than two copies of the same ball. We need to be careful when talking about
the number of elements in infinite sets. What exactly is meant with “fewer” in this case? The
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mathematical term we are looking for is cardinality. The cardinality of a set A is denoted |A| and
is a way of quantifying how many elements A contains. For finite sets, cardinality means precisely
the number of elements. For example |{1, ..., n}| = n. However, cardinality extends beyond the
finite case and lets us compare sets with an infinite number of elements.

Definition 2.1. Let A and B be two sets. We say that:

• |A| = |B| if there is a bijective map f : A→ B,

• |A| ≤ |B| if there is an injective map f : A→ B,

• A is finite if A = ∅ or |A| = |{1, ..., n}| for some1 n ∈ N, otherwise we say that A is infinite,

• A is countable if |A| ≤ |N|, otherwise we say that A is uncountable.

Proposition 2.2. Let A1, A2, ... be a countable collection of countable sets Ai, i ∈ I ⊆ N. Then
the set

⋃
i∈I

Ai is countable.

Proof. Assume that Ai ∩ Aj = ∅ for all i, j ∈ I, i 6= j. If not, consider the new sets A′1 = A1,
A′2 = A2\A1, A′3 = A3\(A1∪A2) and so on. Since Ai is countable it makes sense to talk about the
jth element of Ai for some ordering. Let ai,j denote the jth element of Ai. The map ai,j 7→ 2i3j

is an injective map from
⋃
i∈I

Ai to N. Thus |
⋃
i∈I

Ai| ≤ |N| and
⋃
i∈I

Ai is countable.

Proposition 2.3. Let A and B be two sets where A is uncountable and B is countable. Then
A \B is uncountable

Proof. Assume that A \ B is countable. By Propostion 2.2 the set (A \ B) ∪ B is also countable.
We have A ⊆ (A \B) ∪B, thus A has to be countable. This is a contradiction, therefore A \B is
uncountable.

Example 2.4. Let B = {(r, θ, φ) : r ∈ (0, 1], θ ∈ [0, 2π), φ ∈ [0, π]}. In words, B is a unit ball
missing the center point. The map

(r, θ, φ) 7→

{
(2r, θ, φ), if r ∈ (0, 12 ]

(2r − 1, θ, φ) on a second copy of the same ball, if r ∈ ( 1
2 , 1]

is a bijection from B to two identical copies of B. Therefore, B has the same cardinality as the
set containing two copies of B.

Does Example 2.4 prove the Banach–Tarski paradox? No it does not: the Banach–Tarski para-
dox only relies on rigid motions; no stretching is required, which our bijection certainly uses.

2.2 Selected concepts in group theory
In this section we will build the basic group theory that we need. Great parts of a standard
introduction to group theory are left out. A thorough introduction to group theory can be found
in Modern Algebra – An Introduction, by Durbin [11].

2.2.1 Groups and subgroups

Definition 2.5. Let G be a set and let ∗ be a binary operation on G. The ordered pair (G, ∗) is
called a group if the following axioms are satisfied:

1. For all a, b, c ∈ G it holds that (a ∗ b) ∗ c = a ∗ (b ∗ c). We say that ∗ is associative on G.

2. There is an element e ∈ G such that e ∗ g = g ∗ e = g for all g ∈ G. The element e is called
an identity element.

3. For every g ∈ G, there is an element g−1 ∈ G such that g ∗ g−1 = g−1 ∗ g = e. The element
g−1 is called an inverse of g.

1In this paper 0 /∈ N.
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We will often write simply G to refer to the group (G, ∗). Also, the term binary will always be
implicit when we are talking about operations.

Example 2.6. The integers together with addition is a group, (Z,+). Addition is associative, 0
is an identity element and an inverse of n ∈ Z is −n ∈ Z.

Note that the group axioms only assumes the existence of an identity and of inverses, not
uniqueness. Of course, in the example above we know that 0 is the only identity and that −n is
the unique inverse of n. This is true in general.

Proposition 2.7. Let G be a group. There is only one identity element e ∈ G. If g ∈ G, then
g−1 ∈ G is its unique inverse.

Proof. Assume that e and f are identity elements of G. Then, e = e ∗ f = f . In the first equality
we used that f is an identity, and in the second equality that e is an identity.

Let g ∈ G and assume that h is an inverse of a. Using the definition of an inverse and
associativity we have that g−1 = g−1 ∗ e = g−1 ∗ (g ∗ h) = (g−1 ∗ g) ∗ h = e ∗ h = h.

Here follows a few examples of groups, the first and last of which will be used in the paper.

Example 2.8. For any n ∈ N, congruence modulo n is an equivalence relation on the integers.
Let Zn denote the set of equivalence classes. If m and k are integers, define [m]n+[k]n := [m+k]n.
This operation is independent of the choice of representatives, so it is well-defined. It is clearly
associative since addition of integers is associative. The identity is [0]n and for any [m]n ∈ Zn,
[−m]n ∈ Zn is its (unique) inverse. Thus, (Zn,+) is a group. We will omit the brackets when
working with elements of Zn.

Example 2.9. Let V be a real vector space2 and let GL(V ) denote the set of all linear bijections
on V . If S and T are linear bijections on V , then so is T ◦ S, thus GL(V ) is closed with respect
to composition (which is always associative). The identity map on V is clearly in GL(V ) and if
S ∈ GL(V ), then S−1 exists and is linear, so inverses are contained in GL(V ). Thus, GL(V ) with
composition is a group.

Example 2.10. Let GLn(R) denote the set of all real, invertible n× n matrices. The product of
two invertible matrices is again invertible, so matrix multiplication is an (associative) operation on
GLn(R). The identity matrix I ∈ GLn(R), and if A ∈ GLn(R) then A−1 exists and is in GLn(R).
Thus, GLn(R) with matrix multiplication is a group, called the general linear group. As we will
make precise later on, GLn(R) is basically the same group as GL(V ) for any vector space V with
dim(V ) = n <∞.

Example 2.11. Let SOn denote the set of all real, orthogonal n × n matrices with determinant
equal to one. That is,

SOn = {A ∈ Rn×n : AAT = I, det(A) = 1}.

As we will see in Section 2.2.4, SOn is a group together with matrix multiplication, called the special
orthogonal group. Note that SOn ⊆ GLn(R), the next definition will clarify their relationship.

Definition 2.12. Let (G, ∗) be a group and let H be a subset of G. If (H, ∗) is also a group, then
we say that (H, ∗) is a subgroup of (G, ∗), or more simply that H is a subgroup of G.

Example 2.13. Since SOn ⊆ GLn(R) and they share the same group operation, SOn is a subgroup
of GLn(R).

At first glance, one may take for granted that a group and a subgroup share the same identity
and inverse elements. While this is true and easy to prove, it is not completely trivial.

Lemma 2.14. Let G be a group with identity e and let H be a subgroup of G. Then e is the
identity of H, and if g ∈ H then the inverse of g in G, g−1, is the inverse of g in H.

2V could be a vector space over any field K. But since fields are objects of abstract algebra which we have not
defined, we will be content with talking about vector spaces over R only. This is also all we need in this paper.
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Proof. Let eH be the identity of H. Being the identity, eH is its own inverse in H, and if we let f
be the inverse of eH in G we get that e = eH ∗ f = (eH ∗ eH) ∗ f = eH ∗ (eH ∗ f) = eH ∗ e = eH .

Assume that g ∈ H. Let g−1H denote the inverse of g in H. Using the first part we have that
g−1H ∗ g = eH = e = g−1 ∗ g. Multiplying both sides from the right by g−1 and using associativity
gives that g−1H = g−1.

Next, we will state and prove a few basic algebraic laws for elements of a group. We will now
also make use of multiplicative notation, omitting the operator ∗ if G is a general group. Thus, if
g, h ∈ G, we will write gh for the element g ∗h ∈ G. Also, we will occasionally omit parentheses in
products of more than two group elements; we can do this because the associativity axiom in the
definition of a group generalizes to arbitrary products of finitely many group elements, meaning
that the order in which we multiply elements does not matter.

Proposition 2.15. Let G be a group and let a, b, c be elements in G.

1. If ab = ac or ba = ca, then b = c.

2. The equations ax = b and xa = b have unique solutions x = a−1b and x = ba−1, respectively.

3. Finally, (a−1)−1 = a and (ab)−1 = b−1a−1.

Proof. Consider statement (1). If ab = ac, then by multiplying from the left by a−1 and using
associativity and the definition of an inverse we get b = c. The other case is analogous. These laws
are called the left cancellation law and the right cancellation law, respectively.

Consider the equation ax = b in (2). If x solves this equation, then again we multiply from the
left by a−1 to get x = a−1b; so this is the only possible solution. Insert a−1b into ax = b to see
that it is in fact a solution. The other part of (2) is analogous.

Consider statement (3). If a ∈ G, then a has inverse a−1, i.e. aa−1 = a−1a = e. But this
also shows that the inverse of a−1 is a. Thus (a−1)−1 = a. If a, b ∈ G, then (ab)(b−1a−1) = e =
(b−1a−1)(ab) by associativity. Thus, ab has the (unique) inverse b−1a−1.

Now we will consider an important class of subgroups. Let (G, ∗) be a group and S a nonempty
subset of G. Define the set 〈S〉 by

〈S〉 = {g1g2...gn ∈ G : n ∈ N and gi ∈ S or g−1i ∈ S for all i = 1, 2, ...n},

i.e. S is the set of all finite combinations of elements and inverses of elements in S.

Proposition 2.16. The set 〈S〉 together with the operation ∗ is a subgroup of G. It is called the
subgroup generated by S.

Proof. Associativity is inherited from G. Since a product of two finite products is a finite product,
〈S〉 is closed. Inverses are contained in 〈S〉 by definition. Since S is nonempty we can take g ∈ S,
then e = gg−1 ∈ 〈S〉.

If S = {g1, g2, ..., gn} is finite, then we simply write 〈g1, g2, ..., gn〉. The case when S contain
only two elements is important in this paper.

We continue our quick exposition of group theory by defining integer powers of elements. This
is done recursively. Let G be a group and let g ∈ G. Define g0 = e, gn = gn−1g and g−n = (g−1)n

for all positive integers n. We also have a few basic counting rules regarding powers of elements.

Proposition 2.17. Let G be a group and let g ∈ G. Then,

gmgn = gm+n and (gm)n = gmn for all integers m and n.

This result is proved using induction, but will not be done here. See Chapter 1.1 in [12] for
proofs.
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2.2.2 Homomorphisms and isomorphisms

The next part of this section regards certain functions between groups. These functions are fun-
damental in group theory and are just as important as groups themselves.

Definition 2.18. Let (G, ∗) and (H, ?) be groups. A homomorphism is a function θ : G → H
such that

θ(g ∗ h) = θ(g) ? θ(h) for all g, h ∈ G.

Homomorphisms occur in other parts of algebra as well, so to be specific one can also call the
function in the definition above a group homomorphism. Though, we will be content with saying
just homomorphism. In words the definition says that it does not matter whether we multiply in
G and then apply θ, or if we apply θ first and then multiply in H.

Example 2.19. Let G = (R,+) and H = (R>0, ·) where R>0 denotes the positive real numbers,
and define θ : G→ H by θ(x) = ex for all x ∈ G. Then, θ is a homomorphism since

θ(x+ y) = ex+y = exey = θ(x)θ(y) for all x, y ∈ G.

It is easy to check that (R,+) and (R>0, ·) are in fact groups.

The following proposition states three properties of homomorphisms.

Proposition 2.20. Let G and H be groups, let g ∈ G and θ : G→ H be a homomorphism. Then,

1. θ(eG) = eH ,

2. θ(g−1) = θ(g)−1,

3. θ(gk) = θ(g)k, k ∈ Z.

Proof. Consider statement (1). We have θ(eG) = θ(eGeG) = θ(eG)θ(eG). Multiplying both sides
by the inverse of θ(eG), we get that eH = θ(eG).

Using the first part, we get that eH = θ(gg−1) = θ(g)θ(g−1) and similarly that eH = θ(g−1)θ(g).
By definition, θ(g−1) is the inverse of θ(g), so θ(g−1) = θ(g)−1.

We can show the last statement by induction on k. Let k = 0, then θ(g0) = θ(eG) = eH = θ(g)0,
by definition of the zeroth power. Assume that property (3) holds for k − 1 ≥ 0. Then θ(gk) =
θ(gk−1g) = θ(gk−1)θ(g) = θ(g)k−1θ(g) = θ(g)k. The case when k < 0 is done analogously.

Theorem 2.20 says that the identity, inverses and powers of elements are preserved under θ.
Homomorphisms preserves many other properties of the group G to its possibly smaller image
θ(G) ⊆ H as well. For example, homomorphisms preserve subgroups.

Example 2.21. Let G and H be groups and let A be a subgroup of G. If θ : G → H is a
homomorphism, then θ(A) is a subgroup of H.

Proof. By Proposition 2.20 (1), eH = θ(eG). So eH ∈ θ(A) since eG ∈ A.
Let u, v ∈ θ(A), then there are g, h ∈ A such that u = θ(g) and v = θ(h). Since gh ∈ A,

uv = θ(g)θ(h) = θ(gh) ∈ θ(A), so θ(A) is closed with respect to the operation of H.
Since g−1 ∈ A, Proposition 2.20 (2) gives that u−1 = θ(g)−1 = θ(g−1) ∈ θ(A). Thus, inverses

are contained in θ(A) and therefore θ(A) is a subgroup of H.

In Example 2.10 we said that if V is an n-dimensional vector space then the groups GL(V ) and
GLn(R) are basically the same. We can use homomorphisms to make this precise.

Definition 2.22. Let G and H be groups and let θ : G → H be a homomorphism. If θ is also
bijective, then θ is called an isomorphism. If there is an isomorphism from G to H, then G and H
are said to be isomorphic, denoted by G ≈ H.

Example 2.23. The exponential function from R to R>0 is bijective, thus the homomorphism θ
from Example 2.19 is an isomorphism and the groups (R,+) and (R>0, ·) are isomorphic.
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Example 2.24. Consider Example 2.10 and assume that dim(V ) = n <∞. If we pick a basis of
V , then for every T ∈ GL(V ) we have a corresponding transformation matrix A ∈ GLn(R) in this
basis. The map θ : GL(V )→ GLn(R) defined by θ(T ) = A for every T ∈ GL(V ) is bijective. Since
we also know that the linear map ST has transformation matrix BA, θ is a homomorphism and
thus an isomorphism, and GL(V ) and GLn(R) are isomorphic.

As we have seen examples of, a homomorphism θ : G→ H preserve properties of the group G
in the images of its elements and subgroups. In the special case when the homomorphism is also
an isomorphism, then all properties (from a group theoretic perspective) are preserved, so G and
H differ only by the names of their elements and operations.

2.2.3 Group action

We will now introduce the last concept in group theory needed in this paper. Let X be a two-
dimensional plane and let x0 be a fixed point in X. The set of all rotations of X around the
point x0 with composition as operation is a group, call it G. Define a map · : G × X → X by
·(g, x) = g(x), which we simply write as g · x = g(x). It would be natural say that the elements
of G acts on the elements of X (by rotating them), or simply that G acts on X. There are many
geometrical examples connecting groups and sets in this way, but we can also generalize this idea
by letting G be any group and X any set.

Definition 2.25. Let G be a group with identity e and let X be a set. If · : G×X → X is a map
satisfying:

1. e · x = x for all x ∈ X,

2. g · (h · x) = (gh) · x for all g, h ∈ G and x ∈ X,

then we say that G acts on X by ·. The map · is a called a group action.

One can view the group action · as a way of multiplying an element of G with an element of
X to yield an element of X. As usual, we will omit · and simply write gx instead of g · x. We also
make the following definitions: If g ∈ G and E is a subset of X, let gE := {gx ∈ X : x ∈ E},
and if A is a subset of G, let AE := {gx ∈ X : g ∈ A, x ∈ X}. We will make use of both of the
following examples.

Example 2.26. Let G be a group and define a map G × G → G by left multiplication. The
properties (1) and (2) in Definition 2.25 is just the second and first group axiom. Thus, every
group acts on itself by left multiplication (also called left translation).

Example 2.27. Let H be any subgroup of GLn(R) and define a map H × Rn → Rn by matrix
multiplication. Obviously, Ix = x for all x ∈ Rn and A(Bx) = (AB)x for all A,B ∈ GLn(R) and
x ∈ Rn. Thus, every group of invertible n× n matrices acts on Rn. In particular, SO3 acts on R3.

We will now see how group actions give rise to partitions.

Theorem 2.28. Let G be a group acting on a set X and let x, y ∈ X. Define a relation ∼ on X
by x ∼ y if and only if gx = y for some g ∈ G. The relation ∼ is an equivalence relation.

Proof. Let x, y, z ∈ X. If e is the identity of G, then ex = x. So, ∼ is reflexive. If gx = y,
then g−1y = g−1(gx) = (g−1g)x = x. So, ∼ is symmetric. Finally, if gx = y and hy = z, then
(hg)x = h(gx) = hy = z. Thus, ∼ is also transitive and therefore an equivalence relation.

The partition is given by the set of equivalence classes of ∼, which are called G-orbits or just
orbits.

Example 2.29. Let X be the plane in the introduction to this subsection. The orbits induced by
the group of rotations G are all the circles centered at x0.

In the process of cutting the unit ball into pieces, orbits induced by a group action will be
needed and next we will characterize the group SO3 which is involved in this action.
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2.2.4 The matrix group SO3

We will now see that SO3 is exactly the group of rotations of R3 about lines through the origin. In
particular, the elements of SO3 preserve and rotate the unit sphere S2. Thus, SO3 not only acts
on R3, but also on S2. There is only one orbit in S2 induced by SO3, namely S2 itself (compare
example 2.29). This orbit is not so fascinating but as we will see in Section 4.1 and 4.2 there is a
subgroup of SO3 that gives rise to interesting orbits of S2.

Proposition 2.30. SO3 forms a group under matrix multiplication. From Example 2.11 we have
that SO3 = {A ∈ R3×3 : AAT = I, det(A) = 1}.

Proof. Let I denote the identity matrix in R3. Trivially, since det(I) = 1 and IIT = I we have
that I ∈ SO3. Let A,B ∈ SO3. Then AAT = I yields A−1 = AT . Further, ATA = (AAT )T =
IT = I and det(AT ) = det(A) = 1 so SO3 is closed under inversion. Finally, since (AB)(AB)T =
(AB)(BTAT ) = A(BBT )AT = AIAT = AAT = I and det(AB) = det(A) det(B) = 1 we have that
SO3 is also closed under multiplication, which verifies that it is indeed a group.

For any real orthogonal matrix A it holds that both the columns of A and the rows of A form
orthonormal sets. Given an orthonormal basis of the inner-product space Rn, equipped with the
usual dot product, any real orthogonal matrix A induces a linear transformation T : Rn → Rn by
x 7→ Ax satisfying the first two following properties. The third is unrelated to T but will also be
of use to us.

〈u, v〉 = 〈Tu, Tv〉 for all u, v ∈ V, (1)
The matrix representation of T, [T ]E is orthogonal for any ON-basis E of Rn. (2)

Any orthogonal 2× 2-matrix with determinant 1 corresponds to a rotation of R2. (3)

Proofs of these properties can be found in Appendix B.

Proposition 2.31. For any orthonormal basis of R3, every element of SO3 gives a rotation of R3

about some line through the origin. Conversely, any rotation of R3 about some line through the
origin corresponds to an element of SO3.

Proof. Take any A ∈ SO3. By our definition of SO3, A is orthogonal. We first show that A has an
eigenvector with corresponding eigenvalue 1. Let pA(λ) := det(A − λI) denote the characteristic
polynomial of A, where I is the identity matrix in R3×3. Then

pA(1) = det(A− I) = det(A−ATA) = det
(
(I −AT )A

)
= det(I −AT ) det(A)

= det(I −A)T = det(I −A) = (−1)3 det(A− I) = −det(A− I).

So pA(1) = −pA(1) = 0 which shows that there is such an eigenvector of A. Let e1 be a normalized
such vector and let U be the orthogonal complement of the subspace spanned by e1. Taking an
ON-basis e2, e3 of U we get an ON-basis e1, e2, e3 of R3. Since U = {u ∈ R3 : 〈u, e1〉 = 0} , (1)
yields that if u ∈ U then Au ∈ U by 0 = 〈u, e1〉 = 〈Au,Ae1〉 = 〈Au, e1〉. Specifically we have that
Ae2, Ae3 ∈ U . The matrix of A in the basis e1, e2, e3 is therefore of the form

A′ =

1 0 0
0 b11 b12
0 b21 b22

 , B =

(
b11 b12
b21 b22

)
.

Since the determinant is unaffected by a change of basis, we have that 1 = det(A′) = 1 · det(B) =
det(B). A′ is also orthogonal by (2) and so by extension, B is orthogonal. Considering the linear
transformation of R3 induced by A restricted to the subspace U , TU , given by TUu = Au for u ∈ U,
we see that the matrix of TU in the basis e2, e3 is B, an orthogonal 2 × 2-matrix. By (3) B is a
rotation matrix. If e2 and e3 are picked such that the ON-basis e1, e2, e3 is right-handed, this is a
positive rotation of U of θ radians viewed from e1. Thus the transformation x 7→ Ax of R3 fixes all
points on the line spanned by e1 and gives a rotation of the orthogonal complement to this line, a
rotation about a line through the origin.
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To show the converse, let l be a line through the origin spanned by some non-zero vector v and
let θ be an angle. We want to show that the rotation about l of θ radians is a linear transformation
T with [T ] ∈ SO3. It is clear that the rotation is linear, we denote it by T . Let e1 be v after
normalization and let e2, e3 be an ON-basis of the orthogonal complement of l. In the ON-basis
E = {e1, e2, e3} we have that

[T ]E = A′ =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 ,

an orthogonal matrix with det(A′) = 1. Since orthogonality is preserved under a change of basis
by (2) we have that the matrix A of T with respect to the standard basis of R3 is orthogonal with
determinant one, which shows that A ∈ SO3.

2.2.5 Isometries

An isometry of Rn is a bijection on Rn that preserves distance between points, i.e. if x, y ∈ Rn and
ρ is an isometry, then |x−y| = |ρ(x)−ρ(y)|. We have already seen an example of isometries, namely
rotations. Isometries can be further divided into translations and reflections. Let En denote set of
all isometries.

Proposition 2.32. The set En with composition is a group.

Proof. Then identity map clearly preserves distance. Let x, y ∈ Rn and ρ, σ ∈ En. Then |σ(ρ(x))−
σ(ρ(y))| = |ρ(x)− ρ(y)| = |x− y|, so En is closed. Inverses are in En since |x− y| = |ρ(ρ−1(x))−
ρ(ρ−1(y))| = |ρ−1(x)− ρ−1(y)|. Thus, En is a group.

Definition 2.33. The group En is called the Euclidean group.

Rigid motions are finite combinations of translations and rotations, but not reflections. Let Gn
denote the set of all rigid motions. It is trivial to see that Gn with composition is a group.

Definition 2.34. The group Gn is called the special Euclidean group.

We will discuss the problem of measure in the context of the Euclidean group and the special
Euclidean group. Also, the special Euclidean group is needed in the very last step of the proof
of the standard form of the Banach–Tarski paradox. We finally note the relationship between the
isometry-groups that we have seen: SOn ⊂ Gn ⊂ En.

3 Paradoxes
We are now ready to introduce two paradoxical constructions. First we will see how rotating a
specific subset of the plane surprisingly yields the same set with additional points.

3.1 Spokes on a wheel paradox
In order to show how geometrical paradoxes arise, we will show a paradox in R2 known as the
“Spokes on a wheel paradox” using the reasoning from [13]. Later on, we are going to use a version
of the paradox in R3 but we will show it first in R2 to make it easier to understand.
We let L be the line (0, 1) in R2 along the x-axis and ρ(L) be the act of rotating L 1

10 radians
around the origin, though we could rotate L by any angle θ ∈ [0, 2π) where n ∗ k 6= 2mπ for any
positive n or m. Next, we define Wρ as {ρn(L) : n ∈ N}.

Since n
10 6= 2mπ for all n,m ∈ N, ρn(L) 6= L or more generally, ρn(L) 6= ρm(L) for all m,n ∈

N : m 6= n. Due to our definition of Wρ and ρ, we can see that ρ−1Wρ = {ρn(L) : n ∈ N ∪ {0}},
where ρ−1 is the act of rotating − 1

10 radians around the origin. Since ρ−1 returns ρ(L) back to
the line L, we get that

ρ−1Wρ = Wρ t L,
where t denotes that the sets are disjoint. We have generated an extra line by a rotation. The
reason why this paradox is known as the “Spokes on a wheel paradox” is because Wρ and the unit
circle on R2 give the appearance of a wheel with an infinite number of spokes as seen in figure 1.
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3.2 Free groups
Another paradoxical construction can be found by studying free groups. Our aim is to later transfer
the paradoxical nature of free groups to the group of rotations of the unit sphere. The elements in
a free group are called reduced words and we define them as follows.

Definition 3.1. Let G be a group. A word w on S ⊆ G is a finite product of elements in
S ∪ S−1 = {s : s ∈ S or s−1 ∈ S}. That is,

w = s1s2 · · · sn si ∈ S ∪ S−1,

where n = 0, 1, 2, ... is called the length of w. The word of length 0 is called the empty word.

Definition 3.2. Let w = s1 · · · sn be a word of length n > 0. If it holds that si 6= (si+1)−1 for 0 <
i < n where (s−1j )−1 = sj for all j then w is called a reduced word. In other words, a reduced word
is a string where no element is immediately adjacent to its inverse.

From any word we can find a unique corresponding reduced word by repeatedly cancelling all
occurrences of elements next to their inverses. Since the length of any word is finite and the length
of the word is reduced in every iteration this cancellation is unproblematic. We are now ready to
define a free group.

Definition 3.3. The free group of order n = 1, 2, ... is the group of all reduced words on S =
{a1, a2, ..., an} with concatenation (and possibly cancellation) as the group operation. It also
satisfies a 6= b−1 for all a, b ∈ S, and is denoted by Fn. The identity element of a free group is the
empty word, which we will denote by e.

Example 3.4. The free group of order 2, F2, is the group of all reduced words on {a, b}. More
explicitly, if w ∈ F2 is a reduced word of length n = 1, 2, ... then w = s1 · · · sn where si ∈
{a, b, a−1, b−1}. Examples of elements of F2 are w1 = a2ba and w2 = a−1b−1. We have that

w1w2 = (a2ba)(a−1b−1) = a2baa−1b−1 = a2bb−1 = a2,

a reduced word of length 2, and that w2w1 = (a−1b−1)(a2ba) = a−1b−1a2ba, a reduced word of
length 6.

Proposition 3.5. The free group of order n is countable.

Proof. Let Wm ⊂ Fn be all reduced words of length m = 0, 1, 2, .... For each word w = s1 · · · sm ∈
Wm there are at most 2n possibilities for each si so |Wm| ≤ (2n)m. Thus Wm is finite for all m
and n. Since Fn = ∪∞i=0Wi is the countable union of finite sets, it follows from Proposition 2.2
that Fn is countable.

The reason we are introducing the notion of free groups is that they have a so called paradoxical
decomposition. This is the property we are interested in transferring to SO3.

Definition 3.6. Let G be a group acting on a set X. We say that X is G−paradoxical if there
exist disjoint subsets A1, ..., An, B1, ..., Bm of X and elements g1, ..., gn, h1, ..., hm in G such that

n⋃
i=1

giAi = X =

m⋃
j=1

hjBj .

These subsets together with the group elements are called a paradoxical decomposition of X. In the
case that the group G is acting on itself by left multiplication we simply say that G is paradoxical.

The definition above states that a set is paradoxical if we can find two disjoint subsets, partition
them into a finite number of pieces and then by letting some elements from the group act on these
pieces create two copies of the original set. At first glance it may seem unintuitive that there are
any such sets, but the following theorem states that free groups have this property.

Theorem 3.7. The group F2 is paradoxical.
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Proof. Any nonempty word w in F2 is a string of characters s ∈ {a, a−1, b, b−1}. Define for c ∈
{a, a−1, b, b−1}

Wc = {words beginning on the left with c}.

Since any word except the empty word necessarily begins with one of these four letters, we have
that

F2 = Wa tWa−1 tWb tWb−1 t {e}.

Since elements of F2 are reduced words, this is a partition of F2. Now, we claim that

a−1Wa = Wa tWb tWb−1 t {e}.

Since a ∈ Wa we have that a−1a = e ∈ a−1Wa. Now let w be a word beginning with a, b or b−1.
Then aw ∈Wa so w ∈ a−1Wa. So far we have shown that a−1Wa ⊇Wa tWb tWb−1 t {e}.

Let w be a reduced word in a−1Wa. If w is the empty word then trivially w ∈ {e}. Assume w is
a nonempty word, that is w = s1 · · · sn. Then w = a−1wa for some reduced word wa = as1 · · · sn ∈
Wa \ {a}. Since wa is a reduced word we have that s1 6= a−1. It follows that w /∈ Wa−1 , which
shows that a−1Wa ⊆ F2 \Wa−1 = Wa tWb tWb−1 t {e}. Now, repeating the argument for b−1Wb

we have shown that

F2 = a−1Wa tWa−1 = b−1Wb tWb−1 ,

which completes the proof.

4 The Banach–Tarski paradox
The goal of this section is to show both the general and the standard form of the Banach–Tarski
paradox. To do this, we first show how we can generate a paradoxical subgroup of SO3.

4.1 A subgroup of SO3 is isomorphic to F2

What really makes the Banach–Tarski paradox work is that we can transfer the paradoxical prop-
erties of F2 to the rotation group SO3. The reason we can do that is because SO3 contains a
subgroup isomorphic to F2. Consider the rotations φ and ψ, where φ is a counterclockwise rota-
tion by arccos( 1

3 ) around the x-axis and ψ is a counterclockwise rotation by arccos( 1
3 ) around the

z-axis. In matrix form φ±1 and ψ±1 has the form

φ±1 =
1

3


3 0 0

0 1 ∓2
√

2

0 ±2
√

2 1

 ψ±1 =
1

3


1 ∓2

√
2 0

±2
√

2 1 0

0 0 3

 .

We define the group F2(φ, ψ) as the free group with S = {φ, ψ}. This is not to be confused with the
group 〈φ, ψ〉, which is a subgroup of SO3 . The difference between these groups is that in F2(φ, ψ)
elements are words and in 〈φ, ψ〉 elements are rotations. What we will prove in this section is that
F2(φ, ψ) and 〈φ, ψ〉 are isomorphic. Throughout this section we follow a proof given by Weston
[13]. We know that the rotations in 〈φ, ψ〉 are described by words in F2(φ, ψ). We can therefore
construct a map θ : F2(φ, ψ) → 〈φ, ψ〉, where each word is mapped to the corresponding rotation
it describes. All we need to verify is that θ is an isomorphism. The central part of the proof is
showing that θ is a bijective map, meaning that each rotation is described by precisely one word.
Another way of phrasing that is that only the empty word can correspond to the empty rotation.
We prove this by showing that any rotation corresponding to a nonempty word will move (0,1,0) to
a new location on the sphere. This proof is purely analytical and gives very little geometric insight.
Therefore, before we move on we should consider a few examples, and think through geometrically
why these particular rotations will not move (0,1,0) back to where it started.
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Example 4.1. Consider the rotation ψ−1φ−1ψφ ∈ 〈φ, ψ〉 applied to (0,1,0). It is tempting to
say that the rotations will cancel each other out and the point is moved back to where it started.
Figure 2 in Appendix A illustrates what happens at each step. It is clear from the picture why, for
example ψ and ψ−1 will not cancel each other out. The point covers different distances for the two
rotations since the two circles it rotates around have different circumferences and the same angle
of rotation. Thus the rotation as a whole is different from the identity rotation.

Example 4.2. Consider exponents of the rotation φ ∈ 〈φ, ψ〉. If φn((0, 1, 0)) = (0, 1, 0) then
the point (0,1,0) must have rotated an integer number of times around the equator such that
arccos( 1

3 )n = 2πk, k ∈ Z. But this is impossible since arccos( 1
3 )

π /∈ Q.

Now that we at least have an idea of what some of these rotations look like, and why they will
move (0,1,0) to a new location, we are ready to take a look at the formal proof. Throughout the
proof, whenever we refer to a rotation of length n we mean a rotation described by a reduced word
of length n.

Lemma 4.3. Let ρ ∈ 〈φ, ψ〉 be a rotation of length n, then ρ((0, 1, 0)) = 1
3n (a
√

2, b, c
√

2) for some
integers a, b, c.

Proof. The proof is done by induction. The base case n = 0 is clear since n = 0 implies ρ = eSO3
,

hence ρ((0, 1, 0)) = (0, 1, 0) = 1
30 (0
√

2, 1, 0
√

2). Let ρ be a rotation of length n > 0, then ρ is on
one of the forms ρ = φ±1ρ′ or ρ = ψ±1ρ′ for some rotation ρ′ of length n − 1. By the induction
hypothesis, ρ((0, 1, 0)) is on one of the forms

φ±1ρ′((0, 1, 0)) =
1

3


3 0 0

0 1 ∓2
√

2

0 ±2
√

2 1

 1

3n−1


a
√

2

b

c
√

2

 =
1

3n

(
3a
√

2, b∓ 4c, (c± 2b)
√

2
)
,

ψ±1ρ′((0, 1, 0)) =
1

3


1 ∓2

√
2 0

±2
√

2 1 0

0 0 3

 1

3n−1


a
√

2

b

c
√

2

 =
1

3n

(
(a∓ 2b)

√
2, b± 4a, 3c

√
2
)
,

which all have the desired form.

By Lemma 4.3 we have ρ ∈ 〈φ, ψ〉 is of length n =⇒ ρ((0, 1, 0)) = 1
3n (a
√

2, b, c
√

2) for integers
a, b, c. The function N : 〈φ, ψ〉 → Z3 × Z3 × Z3 is defined by N(ρ) = (a, b, c) mod 3, for these
integers.

Lemma 4.4. Let ρ ∈ 〈φ, ψ〉 with N(ρ) = (a, b, c). Then for n > 0

N(φ±nρ) =

{
(0, b∓ c, c∓ b), n odd
(0,−b± c,−c± b), n even

, N(ψ±nρ) =

{
(a± b, b± a, 0), n odd
(−a∓ b,−b∓ a, 0), n even

.

Proof. All cases are proven in the exact same way, therefore we will only do the proof for N(φnρ),
n > 0. Suppose that ρ((0, 1, 0)) = 1

3n (a
√

2, b, c
√

2) meaning N(ρ) = (a, b, c). By the calculations
in Lemma 4.3 we have that φρ((0, 1, 0)) = 1

3n+1 (3a
√

2, b− 4c, (2b+ c)
√

2), hence
N(φρ) = (3a, b− 4c, 2b+ c) ≡ (0, b− c, c− b) (since 3 ≡ 0, 4 ≡ 1 and 2 ≡ −1). This proves the case
when n = 1. For n = 2, note that N(φ2ρ) = N(φ(φρ)) = (0, (b− c)− (c− b), (c− b)− (b− c)) by
applying the same calculations again. This reduces to (0, 2b− 2c, 2c− 2b) ≡ (0, c− b, b− c), which
proves n = 2.

For n > 2 we need to verify that N is independent of the parity of n. This can be done by
induction on the odd and even numbers separately. For the odd numbers we want to show that
N(φ2m−1ρ) = (0, b − c, c − b) for all m ∈ N. The base case m = 1 is already proven. Take
some m > 1, then N(φ2m−1ρ) = N(φ2(φ2(m−1)−1ρ)) where N(φ2(m−1)−1ρ) = (0, b − c, c − b)
by the induction hypothesis. We can use the result for n = 2 and conclude that N(φ2m−1ρ) =
N(φ2(φ2(m−1)−1ρ)) = (0, (c− b)− (b− c), (b− c)− (c− b)) = (0, 2c− 2b, 2b− 2c) ≡ (0, b− c, c− b).
The even case and the other rotations are proven in the exact same way.
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Proposition 4.5. Let ρ ∈ 〈φ, ψ〉 correspond to a nonempty word. Then N(ρ) can only take on val-
ues in the set N(ρ) ∈ Nρ := {(0, 1, 1), (0, 1, 2), (0, 2, 1), (0, 2, 2), (1, 1, 0), (1, 2, 0), (2, 1, 0), (2, 2, 0)}.

Proof. We will show that if the leftmost rotation of ρ is φ then
N(ρ) ∈ {(0, 1, 1), (0, 1, 2), (0, 2, 1), (0, 2, 2)} ⊂ Nρ, and if the leftmost rotation of ρ is ψ then
N(ρ) ∈ {(1, 1, 0), (1, 2, 0), (2, 1, 0), (2, 2, 0)} ⊂ Nρ. Any rotation ρ ∈ 〈φ, ψ〉 corresponding to a
nonempty word must alternate in nonzero powers of φ and ψ. We will do the proof by induction
in the number of alternations (not the same as the length of the word). The base cases are φn1

and ψn2 . Note that φn1 = φn1eSO3
with N(eSO3

) = (0, 1, 0). Depending on if n1 is positive
or negative, even or odd, N(φn1) will take on one of the four values (0,1,1), (0,1,2), (0,2,1) or
(0,2,2). This follows from Lemma 4.4. With exactly the same argument we must have N(ψn2) ∈
{(1, 1, 0), (1, 2, 0), (2, 1, 0), (2, 2, 0)}.

Let now ρ be a word that alternates between powers of φ and ψ at least once. We then have ρ =
φn1,1ψn1,2 ... or ρ = ψn2,1φn2,2 ... for nonzero powers ni,j . In order to make the induction argument
valid we can assume that both ψn1,2 ... and φn2,2 ... alternates between powers of φ and ψ a total of k
times. By the induction hypothesis we then have N(ψn1,2 ...) ∈ {(1, 1, 0), (1, 2, 0), (2, 1, 0), (2, 2, 0)}.
We can use Lemma 4.4 to check all 16 cases: four possible values for N(ψn1,2 ...), times two
possible parities for n1,1, times two possible signs for n1,1 and conclude that N(φn1,1ψn1,2 ...)(ρ) ∈
{(0, 1, 1), (0, 1, 2), (0, 2, 1), (0, 2, 2)}. Similarly we can use Lemma 4.4 together with the induction
hypothesisN(φn2,2 ...) ∈ {(0, 1, 1), (0, 1, 2), (0, 2, 1), (0, 2, 2)} to again check all 16 cases and conclude
that N(ψn2,1φn2,2 ...) ∈ {(1, 1, 0), (1, 2, 0), (2, 1, 0), (2, 2, 0)}. We will not write out all 32 cases since
it is just basic arithmetic. This finishes the induction.

Theorem 4.6. Let ρ ∈ 〈φ, ψ〉 be a rotation of length > 0. Then ρ((0, 1, 0)) 6= (0, 1, 0)

Proof. Assume ρ((0, 1, 0)) = (0, 1, 0). By Lemma 4.3 we have ρ((0, 1, 0)) = 1
3n (a
√

2, b, c
√

2) for
integers a, b, c and n > 0. Since ρ((0, 1, 0)) = (0, 1, 0) we must have a = 0, b = 3n, c = 0. Since
n > 0 we have 3n ≡ 0 mod 3. This implies N(ρ) = (0, 0, 0). By Proposition 4.5 we must have
N(ρ) ∈ Nρ, but (0, 0, 0) /∈ Nρ. This is a contradiction. Therefore ρ((0, 1, 0)) 6= (0, 1, 0).

Theorem 4.7. The free group F2(φ, ψ) is isomorphic to the rotation group 〈φ, ψ〉 which is a
subgroup of SO3.

Proof. The subgroup claim follows from Theorem 2.16. To conclude the isomorphism we use the
map θ : F2(φ, ψ)→ 〈φ, ψ〉 defined earlier in this section. The homomorphism criteria θ(w1 ∗w2) =
θ(w1) ∗ θ(w2) for all w1, w2 ∈ F2(φ, ψ) is trivial, both concatenation and composition essentially
means putting the elements after each other and canceling any adjacent pairs where some element
ends up right next to its inverse. Surjectivity of θ is also trivial since every rotation ρ ∈ 〈φ, ψ〉 has
at least one corresponding word in F2(φ, ψ). What remains to verify is injectivity.

Suppose that θ is not injective, meaning that there exists w1, w2 ∈ F2(φ, ψ) such that w1 6= w2

and θ(w1) = θ(w2). This implies θ(w1) ∗ θ(w2)−1 = eSO3 , using that θ is a homomorphism we get
θ(w1 ∗ w−12 ) = eSO3

. Since w1 6= w2 the word w1 ∗ w−12 is nonempty and the rotation θ(w1 ∗ w−12 )
is of length > 0. Hence θ(w1 ∗w−12 )((0, 1, 0)) 6= (0, 1, 0) by Theorem 4.6. Since the trivial rotation
cannot move (0, 1, 0) to a new location we get θ(w1 ∗ w−12 ) 6= eSO3

. This is a contradiction which
implies that no such w1 and w2 exists. Therefore θ is injective and F2(φ, ψ) ≈ 〈φ, ψ〉.

4.2 Hausdorff paradox
In section 4.1, we proved that there is a subset 〈φ, ψ〉 of SO3 isomorphic with F2 and now we
are going to let 〈φ, ψ〉 act on S2 to try to transfer the paradoxical composition of 〈φ, ψ〉 onto S2.
However, there are parts of S2 that make the application a bit more complicated than directly
applying 〈φ, ψ〉 onto S2. Instead we get a result known as the Hausdorff paradox [4].

4.2.1 Why 〈φ, ψ〉 cannot be directly applied to S2

We start off by making the observation that since 〈φ, ψ〉 is countable, every 〈φ, ψ〉-orbit on S2

countable, while S2 contains an uncountable number of point. This means that S2 consists of an
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uncountable number of disjoint 〈φ, ψ〉-orbits. Because we assume that the axiom of choice holds,
we can pick one representative from each orbit to create the set M , thus we can rewrite S2 as

S2 = 〈φ, ψ〉M,

since we can access every point of an orbit using 〈φ, ψ〉 on one point, and with M we have access
to every orbit in S2. With this partition, we can divide S2 into the union of five pieces, much like
we divided F2.

S2 = eM ∪WφM ∪Wφ−1M ∪WψM ∪Wψ−1M.

Unlike F2, these sets might not be disjoint because there are non-trivial fixed points on the
sphere that cause parts of the sets to overlap, making us unable to use the same partitions with S2

as F2. An example would be the point (1, 0, 0), which is kept in place by the rotation φ ∈ 〈φ, ψ〉. So
what do we do about the non-trivial fixed points of S2? Well, each element of 〈φ, ψ〉 corresponds
to the rotation around an axis, making the ends of the axes fixed points. These points are also the
only fixed points of S2, since the only way to fix a point on S2 using rotations is by rotating the
sphere around the axis through that point.

Since 〈φ, ψ〉 is countable, the poles of 〈φ, ψ〉 are countable as well, meaning that most of the
points on S2 are not a pole of 〈φ, ψ〉. So instead of applying 〈φ, ψ〉 on S2, we instead try to apply
it on all non-poles and try to copy the poles later. We call D the set of 〈φ, ψ〉-poles, defined as

D = {p : ρp = p for some ρ ∈ 〈φ, ψ〉 \ {e}}.

Then the set of all points not fixed by any non-trivial 〈φ, ψ〉-rotations on S2 is S2 \D.

4.2.2 The 〈φ, ψ〉 action on S2 \D

In order to apply 〈φ, ψ〉 on S2 \D, we first need to show that 〈φ, ψ〉 is still a group action on S2 \D.

Proposition 4.8. The group 〈φ, ψ〉 acts on S2 \D with no non-trivial fixed points.

Proof. Let ρ be an arbitrary element in 〈φ, ψ〉. We need to show that for all p ∈ S2 \ D, then
ρp ∈ S2 \D. Since 〈φ, ψ〉 maps S2 onto itself, we just need to show that ρp ∈ D only when p ∈ D.
By our definition of D, there is a non-identity element g ∈ 〈φ, ψ〉 where gρp = ρp. If we multiply
by ρ−1 from the left, the right-hand side cancels out so we get ρ−1gρp = p, but since g is not the
identity element, ρ−1gρ is also a non-identity element, so p ∈ D, making 〈φ, ψ〉 act on S2 \D. By
the definition of D, S2 has no non-trivial fixed points.

Since 〈φ, ψ〉 is a group action on S2 \D and S2 \D is an uncountable set, we will once again
invoke AC to create a set M containing one representative from each orbit on S2 \D and divide
S2 \ D in the same way we did with S2. This time however, the sets will be disjoint. Suppose
that there exists a ρ1, ρ2 such that ρ1M ∩ ρ2M 6= ∅. Then there are points p1, p2 ∈ M such that
ρ1p1 = ρ2p2. But then p1 = ρ−11 ρ2p2 so p1 and p2 must be in the same orbit. Since M contains
exactly one point from each orbit, p1 = p2. But since we also have no non-trivial fixed points in
S2 \D, we also have that ρ−11 ρ2 = e meaning that ρ1 = ρ2. This means that any two sets AM and
BM are disjoint if A and B are disjoint subsets of 〈φ, ψ〉. We can then safely make the partition

S2 \D = eM tWφM tWφ−1M tWψM tWψ−1M,

and since 〈φ, ψ〉 is isomorphic with F2, we can use F2’s paradoxical composition to get

φ−1WφM tWφ−1M = S2 \D = ψ−1WψM tWψ−1M,

leading to the Hausdorff Paradox.

Theorem 4.9. (Hausdorff Paradox, AC) There is a countable set D such that S2 \ D is SO3-
paradoxical.
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4.3 Equidecomposability
We introduce the concept of equidecomposability and derive some useful propositions which we
later apply to finalize the proof of the Banach–Tarski paradox. Our presentation closely follows
those of Wagon [9] and Knudby [14].

Definition 4.10. Let G be a group acting on a set X. We say that A,B ⊆ X are (finitely)
G-equidecomposable if there are finite partitions of A and B, {Ai}ni=1 and {Bi}ni=1, with the same
number of pieces and group elements {gi}ni=1 such that

giAi = Bi, i = 1, ..., n.

We denote this relation by A ∼G B or simply A ∼ B if it is clear what groups action we are
referring to. For the rest of this paper all mentions of equidecomposability will refer to finite
equidecomposability.

Proposition 4.11. Let G be a group acting on a set X. Then G-equidecomposability is an equiv-
alence relation on all subsets of X.

Proof. Suppose G acts on X and that A,B,C ⊆ X. Since e ∈ G and A = eA we have that
A ∼ A so ∼ is reflexive. Assume A ∼ B, witnessed by A1, ..., An, B1, ..., Bn and g1, ..., gn. Defining
h1 = (g1)−1 ∈ G we have that hiBi = Ai for i = 1, ..., n, i.e. B ∼ A. Hence ∼ is symmetric.
Finally we want to show that if A ∼ B and B ∼ C then A ∼ C. Assume that Ai, B0

i , B
1
j , Cj

are finite partitions of A,B,C and that giAi = B0
i , hjB

1
j = Cj holds for the appropriate group

elements gi, hj . Defining a new partition of A and C by

Ai,j = g−1i
(
B0
i ∩B1

j

)
and Ci,j = hj

(
B0
i ∩B1

j

)
,

ignoring possibly empty intersections, with group elements gi,j = hjgi we have that

gi,jAi,j = hjgig
−1
i

(
B0
i ∩B1

j

)
= hj

(
B0
i ∩B1

j

)
= Ci,j .

Thus ∼ is also transitive, so ∼ is an equivalence relation.

We can now phrase G-paradoxicality in terms of G-equidecomposability; a set X is paradoxical
if there are two disjoint subsets of X both equidecomposable with the whole of X. The following
proposition shows that the converse also holds.

Proposition 4.12. Let G be a group acting on a set X and let A be a subset of X. Then A is
G-paradoxical if and only if there are disjoint subsets B,C of A such that B ∼ A ∼ C.
Proof. If there are disjoint subsets B,C of A such that B ∼ A ∼ C then A is G-paradoxical by
definition. To show the other direction, assume that B1, ..., Bn, C1, ..., Cm are disjoint subsets of A
and g1, ..., gn, h1, ..., hm are elements of G witnessing that A is G-paradoxical. While the subsets
Bi and Cj are necessarily disjoint, after applying the group elements to them the sets {giBi} and
{hjCj} need not be. To remedy this we can shrink the Bi and Cj to ensure that no overlapping
occurs. Let

B′1 = B1, and inductively, B′i = Bi \ g−1i

(
i−1⋃
k=1

gkB
′
k

)
.

Since B′i ⊆ Bi for i = 1, .., n we have that the possibly smaller B′i are disjoint. By definition of B′i we
are only removing elements that have already been covered by the preceding {gkB′k}

i−1
k=1, so it holds

that A = tnk=1gnB
′
n. Defining C ′j analogously, we find that tni=1B

′
i = B′ ∼ A ∼ C ′ = tmj=1C

′
j .

We can now show that G-paradoxicality is really a property of the equivalence classes of ∼G,
leading to the following useful proposition.

Proposition 4.13. Let G be a group acting on a set X and assume that A,B are G-equidecomposable
subsets of X. If A is G-paradoxical, so is B.

Proof. Let C,D be disjoint subsets of A such that C ∼ A ∼ D. Since A ∼ B there is a bijection
f : A→ B defined by a 7→ gia for a ∈ Ai, where Ai, gi are subsets and group elements witnessing
that A ∼ B. By bijectivity of f and C ∩ D = ∅ we have that C ′ = f(C) and D′ = f(D) are
disjoint subsets of B. By definition of f , we also have that C ∼ C ′ and D ∼ D′ which shows that
C ′ ∼ B ∼ D′.
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4.4 The Banach–Tarski paradox for S2 and B3

To recap, we have so far shown that the unit sphere S2 minus a countable set D is SO3–paradoxical.
We will now use this to show that we can cover also copy points in D so that we end up with two
full copies of the unit sphere. First we show that there exists a rotation in SO3 which maps all
points in D to points in S2 \D.

Lemma 4.14. Let D ⊂ S2 be a countable subset of S2. Then there exists a rotation σ ∈ SO3 such
that σnD ∩D = ∅ for n = 1, 2, ....

Proof. Let l be a line through the origin such that it does not intersect D. There certainly is such
a line since the set of lines through the origin is uncountable while the set of lines that intersect
one of the countable number of points in D is countable.

Let lθ ∈ SO3 be the rotation about l of θ radians. We can identify all such rotations with the
interval I = [0, 2π) ⊂ R under the bijection lθ 7→ θ. For each p in D, let Ip be the set of angles
θ such that lnθ(p) ∈ D for some n = 1, 2, .... Each point in D contributes to a countable number
of elements of Ip. Since countable unions of countable sets are countable by Proposition 2.2, Ip is
countable for all p and it follows that

ID =
⋃
p∈D

Ip

is countable. Thus I \ ID is nonempty by Proposition 2.3, so there exists an angle θ0 ∈ I \ ID. By
construction, the rotation σ = lθ0 satisfies σnD ∩D = ∅ for all n ≥ 1.

With this rotation we are now able to recreate what resembles a three-dimensional analogue
of the Spokes on a wheel paradox described in Section 3, this time yielding the countable set D
instead of an additional line.

Theorem 4.15 (The Banach–Tarski paradox for S2, AC). The unit sphere S2 is SO3–paradoxical.

Proof. Let D be the countable subset of S2 in the Hausdorff Paradox and let σ be a rotation as
in Lemma 4.14. Let E = ∪∞n=0σ

nD. Then {E,S2 \E} is a partition of S2 and, by construction of
σ, {σE,S2 \ E} is a partition of S2 \ D. Trivially, since e(S2 \ E) = S2 \ E and σ(E) = σE we
have that S2 and S2 \D are SO3-equidecomposable. Since S2 \D is paradoxical by the Hausdorff
Paradox, S2 is paradoxical by Proposition 4.13.

Extending the Banach–Tarski paradox for S2 to the unit ball B3 without the origin is straight-
forward since we can extend each point on S2 radially towards the origin to get B3 \ {0}. Using
this radial correspondence, the paradoxical decomposition of S2 yields one for B3 \ {0}.

Corollary 4.16 (AC). The unit ball in R3 with the origin removed is SO3–paradoxical.

Proof. Let {Ai}ni=1, {Bj}mj=1 and {gi}ni=1, {hj}mj=1 be subsets of S2 and elements of SO3 witnessing
that S2 is SO3–paradoxical. Let ACi be the conical extension of Ai given by ACi = {rx : x ∈
Ai and 0 < r ≤ 1}. Then

n⋃
i=1

giA
C
i = {rx : x ∈ ∪ni=1giAi and 0 < r ≤ 1} = {rx : x ∈ S2 and 0 < r ≤ 1} = B3 \ {0}.

Forming {BCj }mj=1 analogously, we see that the conical extensions of the subsets of S2 witnessing
that S2 is paradoxical yields a paradoxical decomposition of B3 \ {0}.

To get the paradox for the whole unit ball, the rotations of SO3 are not sufficient since they all
map the origin onto itself. We instead consider the larger group of rigid motions, G3, introduced
in Definition 2.34. As before we have to deal with a set of problematic points, this time only the
origin. Once again we use the idea from the Spokes on a wheel paradox; we find a transformation
that in some sense allows us to absorb this point.

Theorem 4.17 (The Banach–Tarski paradox for B3, AC). The unit ball in R3 is G3-paradoxical.
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Proof. Since B3 \{0} is SO3-paradoxical and since SO3 is a subgroup of G3 it follows that B3 \{0}
is also G3-paradoxical. Let lθ be a rotation of θ radians about a line sufficiently close but not
through the origin; i.e. a rotation such that lθ(0) ∈ B3 for all θ. Pick θ0 such that (lθ0)n(0) 6= 0
for all n = 1, 2, ..., this is certainly possible since there are only countably many rational multiples
of 2π, and let σ = lθ0 ∈ G3. We construct a subset E of B3 by E = {σn0 : n = 0, 1, 2, ...}. Then,
as usual, we have that E \ σE = {0}. Thus {E,B3 \ E} is a partition of B3 and {σE,B3 \ E}
is a partition of B3 \ {0} which shows that B3 ∼G3

B3 \ {0}. The theorem now follows from
Proposition 4.13.

The paradox easily generalizes to any solid ball in R3 since we can translate any ball to have
its center at the origin and since the radius of the ball is not important. A more rigorous proof is
left out.

Corollary 4.18 (AC). Any solid ball in R3 is G3-paradoxical.

4.5 The general form of the Banach–Tarski paradox
We can define a new relation . on the equivalence classes of ∼G by A . B if and only if A is
equidecomposable with a subset of B. The following theorem, due to Banach, is an adaptation of
the proof of the set-theoretic Schröder–Bernstein Theorem. We follow Wagon’s [9] presentation.

Theorem 4.19 (The Banach–Schröder–Bernstein Theorem). Let G be a group acting on a set X
and let A,B be subsets of X. If A . B and B . A, then A ∼G B.3

Proof. We begin by showing two properties of the relation ∼G, denoted ∼ for brevity.

1. Assume that A ∼ B. Then there is a bijection g : A→ B such that if C ⊆ A then C ∼ g(C),
defined by a 7→ gia, a ∈ Ai where the gi and Ai are as in the definition of A ∼ B.

2. Assume that A1∩A2 = B1∩B2 = ∅, that A1 ∼ B1 and that A2 ∼ B2. Then A1tA2 ∼ B1tB2.
This is easily seen by letting the partition of A1 tA2 be the union of the induced partitions
of A1 and A2, similarly for B1 tB2, and applying the corresponding group elements.

Assume that A . B and B . A. Then A ∼ B1 ⊆ B and B ∼ A1 ⊆ A. By property 1, there are two
bijections f : A→ B1 and g : B → A1. Let C0 = A \A1 and define inductively Cn+1 = g(f(Cn)).
Let C = ∪∞n=0Cn. We have that

g−1(A \ C) = g−1(A \ ∪∞n=0Cn) = g−1(A1 \ ∪∞n=1Cn) = B \ g−1(∪∞n=1Cn) = B \ f(C),

so by the choice of g we have that A \C ∼ B \ f(C). Then, again by property 1, we also have that
C ∼ f(C) so property 2 yields A = (A \ C) t C ∼ (B \ f(C)) t f(C) = B.

We are now equipped to prove the strong form of the Banach–Tarski paradox, concluding this
section.

Theorem 4.20 (The Banach–Tarski paradox, general form, AC). Any two bounded subsets of R3

with nonempty interior are G3-equidecomposable.

Proof. Let A and B be bounded subsets of R3 with nonempty interior. It is sufficient to show
that A . B, since by the same argument we will also have that B . A and thus by Theorem 4.19
A ∼ B. Let K be a solid ball such that A ⊆ K, there certainly is such a ball since A is bounded.
Since B has a nonempty interior we can also find a solid ball L ⊆ B. Let n be large enough such
that K can be covered by n possibly overlapping copies of L, and let S be a set consisting of n
disjoint copies of L. Then K . S, and by repeated use of Corollary 4.18 we also have that S . L
which yields A ⊆ K . S . L ⊆ B, so A . B.

The proof of the Banach–Tarski paradox is quite long and technical and it is very valuable
to identify and abstract the key steps. There are essentially two main ideas. Firstly, we realized
that SO3 has a subgroup 〈φ, ψ〉 isomorphic to the free group of rank 2, which is paradoxical.
Secondly, we considered the action of 〈φ, ψ〉 on S2 and realized that if we removed the nontrivial

3This shows that . is a partial ordering of the equivalence classes of ∼G.
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fixed points in S2, we could push the paradoxical decomposition of 〈φ, ψ〉 onto S2\D. After having
proved these steps it was a rather technical matter to transfer the paradoxical decomposition of
S2 \ D to S2, B3 \ {0} and finally B3 (the strong form of the Banach–Tarski paradox required
the additional machinery of equidecomposability and the Banach–Schröder–Bernstein Theorem).
In fact, to further clarify the importance of these steps we can put these two ideas together
and abstract them in the context of paradoxical decompositions, which is a generalization of the
Hausdorff paradox.

Theorem 4.21 (AC). Let the group G act on the set X without nontrivial fixed points. If G is
paradoxical, then X is G-paradoxical.

5 The implications on the problem of measure
In this section, we will discuss the implications of the Banach–Tarski paradox on the problem of
measure. We start by defining what a measure is with the definition from Cohn [15]. Then, we
define what the problem of measure is and find that there is a measure known as Lebesgue measure
that solves the problem of measure for sets known as Lebesgue measurable sets. Then, we discuss
the Lebesgue measure of the sets we use to prove the Banach–Tarski paradox and how the paradox
further affects the problem of measure.

5.1 Defining measures
In order to define measures, we must first define algebras, the domain of measures.

Definition 5.1. Let X be a set. A collection of subsets A is known as an algebra on X if

1. X ∈ A.

2. If A ∈ A, then AC ∈ A.

3. If A1, A2, ..., An ∈ A, then
⋃n
k=1Ak ∈ A.

4. If A1, A2, ..., An ∈ A, then
⋂n
k=1Ak ∈ A.

In other words, A is an algebra on X if X is in the algebra and the algebra is closed under
complementation, finite unions and finite intersections. If A is also closed under countable unions
and intersections, A is called a σ-algebra. Note that since Xc = ∅, the empty set is in every algebra.

A measure is a function that tries to give sensible volumes to sets in an algebra.

Definition 5.2. Let X be a set and A be a σ-algebra on X. A function m : A → [0,∞] is called
a countably additive measure on A if it satisfies the following properties:

1. m(∅) = 0,

2. m(
⊔∞
k=1(Ek)) =

∑∞
k=1m(Ek) for all disjoint collections {Ek}, Ek ∈ A.

If m(E t F ) = m(E) + m(F ) for E,F ∈ A and A is an algebra, the function is called a finitely
additive measure. If A = P(X)4, we will call m a finitely/countably additive measure on X.

This definition agrees with our intuition of measure, as something empty should have a measure
of zero and if a set can be separated into countably or finitely many disjoint parts, the measure
should be the sum of its parts.

Example 5.3. Let X be a finite set. Then the function µ(A) = |A| is a finitely additive measure
on X. This measure is known as the counting measure.

Since we often have groups interact on sets, we are interested in seeing how the groups interact
with the measures on the set.

Definition 5.4. Let µ be a measure on X and let G be a group acting on X. We say that µ
is G-invariant on X if for all g ∈ G and E ⊆ X, µ(gE) = µ(E). If µ(E) = 1, we say that µ
normalizes E.

4The collection of all subsets of X
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5.2 The problem of measure
The problem of measure is about finding a measure m on Rn for n ∈ N which normalizes the
n-dimensional unit cube, and where m is En-invariant. Remember that this means that m is
isometry-invariant. Essentially, we want a measure on Rn that generalizes the notion of length,
area and volume, and these properties satisfy this. The volume is unaffected by any distance-
preserving isometries, the unit cube has the right volume, and because of the finite additivity,
smaller cubes will have the right volume, which through unions can at least approximate the most
common geometric shapes.

5.2.1 Lebesgue measure

In order to find a suitable measure, let us start by constructing the length of sets of the form
[a, b], a ≤ b, an interval in R, that is translation-invariant and normalizes [0, 1]. By our intuition,
the length should be b − a, so let len(I) = b − a denote the length of the interval. It is obvious
from the definition that len normalizes [0, 1] and is translation invariant since the set I + x has
length (b + x) − (a + x) = b − a for all x ∈ R. It should also be intuitive that it does not matter
if the interval is open, closed or neither, since an individual point would have length 0. Since
an n-dimensional box can be described as the Cartesian products of intervals, we can define the
n-dimensional box as Cn = {(x1, x2, ..., xn), xk ∈ Ik}, where Ik are intervals. By our intuition, we
should define the volume of a box as vol(Cn) =

∏n
k=1 len(Ik) which similarly normalizes [0, 1]n

and is translation-invariant. While vol(E) is only a volume of boxes, and the collection of boxes on
Rn is not an algebra on Rn, it does provide the basis of several measures, including the Lebesgue
measure.

Definition 5.5. The smallest σ-algebra on Rn that contains all boxes (Proposition 1.1.5 in [15]),
is known as the algebra of Borel sets. We say that the Borel sets are generated by boxes.

Proposition 5.6. There exists a, countably additive, translation-invariant measure known as
Lebesgue measure [2] that normalizes the unit cube and is unique on Borel sets [9].

Let E be a subset of Rn. Since we already have the volume of n-dimensional boxes, we try to
cover E with boxes and try to minimize the total volume of the boxes used to cover E. Then the
infinum of the total volume is larger or equal to the logical measure. We call this upper bound the
Lebesgue outer measure, which is defined as

λ∗(E) = inf⋃∞
k=1(C

n
k )⊇E

∞∑
k=1

vol(Cnk ).

Since the volume of boxes is translation-invariant, λ must be translation-invariant.

Definition 5.7. If E ⊂ Rn partitions all A ⊂ Rn so that the Lebesgue outer measure is consistent,
in other words if λ∗(A) = λ∗(A∩E) + λ∗(A∩Ec), E is called Lebesgue measurable with Lebesgue
measure λ(E) = λ∗(E) [15].

To show that Lebesgue measure is unique on Borel sets, let µ be a countably additive, translation-
invariant measure normalizing the unit cube defined on Borel sets. Then the translation-invariance,
countable additivity and µ(∅) = 0 gives that µ = λ on all boxes. Since these boxes generate the
Borel sets, µ has to agree with λ on all Borel sets.

We will need that Lebesgue measure is isometry invariant but could not find a reference, so we
will show a quick proof based on [16]. To show this, we will show that the measure of an isometry
of a set fixing the origin is translation-invariant. We only need to show it for isometries fixing the
origin since every isometry is the combination of a translation and an isometry fixing the origin.
Let S be an isometry fixing the origin and E be a Lebesgue measurable subset of Rn. Then

λ(S(E + x)) = λ(S(E) + S(x)) = λ(S(E)),

where the second equality comes from the translation-invariance of λ. Since Lebesgue measure is the
only translation-invariant measure on Borel sets, it implies that λ(S(E)) = cλ(E) for some constant
c. Since isometries fixing the origin fixes the unit ball, c = 1 meaning that λ(S(E)) = λ(E).
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5.2.2 Non-measurable sets

Vitali [3] showed the existence of sets in R that are not measurable by any countably additive,
En-invariant measure where m([0, 1]) = 1, which of course includes the Lebesgue measure. The
method by which he found these sets can be used to find similar non-measurable sets in higher
dimensions as well. The question then arises if there is a finitely additive, En-invariant measure
on Rn for which all subsets are measurable.

Let {Ai}ni=1 be any finite partition of the unit ball in R3 such that Ai is measurable for
i = 1, 2, ..., n and let ρ1, ρ2, ..., ρn be arbitrary elements of G3. Since Lebesgue measure is G3-
invariant and finitely additive it holds that

λ(B3) = λ

( n⊔
i=1

Ai

)
=

n∑
i=1

λ(Ai) =

n∑
i=1

λ(ρiAi),

i.e. disassembling the unit ball into finitely many measurable pieces and moving these around in a
rigid manner preserves the volume with respect to Lebesgue measure. Now, letA1, ..., An, B1, ..., Bm
and g1, ..., gn, h1, ..., hm be sets and elements witnessing that B3 is G3-paradoxical. Suppose that
all the Ai:s and Bi:s are measurable, then we have

λ(B3) ≥ λ

(( n⊔
i=1

Ai

)
∪
( m⊔
i=1

Bi

))
=

n∑
i=1

λ(Ai) +

m∑
i=1

λ(Bi) =

n∑
i=1

λ(giAi) +

m∑
i=1

λ(hiBi)

≥ λ
( n⋃
i=1

giAi

)
+ λ

( m⋃
i=1

hiBi

)
= 2λ(B3).

(4)

Since Lebesgue measure assigns the usual volume to the unit ball, i.e. λ(B3) = 4
3π, we have that

4
3π ≥

8
3π. Thus, at least one of the sets A1, ..., An, B1, ..., Bm is not Lebesgue measurable – this is

interesting since the Lebesgue measurable sets cover a wide range of subsets of R3. Ultimately, the
sets used in Corollary 4.16 only exist due to the axiom of choice, which hints at the subtle nature
of AC – it gives rise to somewhat artificial sets.

Assume that µ is any finitely additive, E3-invariant measure on R3. By Theorem 4.20, the
unit cube [0, 1]3 is G3-equidecomposable with two copies of itself. With B3 replaced by [0, 1]3, an
identical calculation as in equation (4) will give that µ([0, 1]3) ≥ 2µ([0, 1]3), which is only true if
µ([0, 1]3) is equal to 0 or ∞. Thus, there cannot be such a measure on R3 normalizing the unit
cube, giving a negative answer to the problem of measure on R3.

The paradoxical subgroup 〈φ, ψ〉 of SO3 can be identified as a subgroup of SOn for n > 3. One
might expect it, though it is not completely obvious, this implies that the Banach–Tarski paradox
exists in higher dimensions as well (see Chapter 5 in [9] for a proof) and consequently giving a
negative answer to the problem of measure for n > 3. We will return to answer the problem of
measure in one and two dimensions in Section 5.4 after we have defined a few more concepts.

5.3 Tarski’s Theorem and Amenable groups
The key properties of the Lebesgue measure is that it is isometry-invariant and that it assigns the
unit cube a measure of 1. For other sets however, we might want to construct a measure that is
invariant under some other group action, or that normalizes some other subset. If a measure µ is
scaled by a constant factor the result is still a measure. Therefore any subset with finite, nonzero
measure can always be normalized. We saw in the last section that because B3 is G3-paradoxical,
it can not have a finite nonzero measure, assuming that all subsets of Rn are measurable. This
reasoning can be generalized to other measures as well.

Proposition 5.8. Let µ be a finitely additive G-invariant measure on X, and let E ⊆ X. If E is
G-paradoxical then µ(E) = 0 or µ(E) =∞.

Proof. Let A1, ..., An, B1, ..., Bm and g1, ..., gn, h1, ..., hm be sets and elements witnessing that E is
G-paradoxical. Assume µ(E) < ∞. Then µ(E) ≥ Σµ(Ai) + Σµ(Bj) = Σµ(giAi) + Σµ(hjBj) ≥
µ(∪giAi) +µ(∪hjBj) = µ(E) +µ(E) = 2µ(E). Therefore, since µ(E) <∞ we have µ(E) = 0.
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Note that this proof is exactly analogous to the calculation in Equation 4. This is because all
we used in Equation 4 is that B3 is G3-paradoxical. Maybe this result is not so surprising. If it is
possible to build two copies of E from E itself only by doing an action that does not change the
measure, then E can not have a finite nonzero measure. The interesting part is that this goes in
both directions. This is what is called Tarski’s Theorem.

Theorem 5.9 (Tarski’s Theorem, AC). Let G act on a set X and let E ⊆ X. Then there is a
finitely additive, G-invariant measure µ on X with µ(E) = 1 if and only if E is not G-paradoxical.

Proof. Proposition 5.8 takes care of one direction. A complete proof is included in Wagon and
Tomkowicz [9] book and is dependent on the axiom of choice.

Since paradoxical groups can prove the absence of a finitely additive, G-invariant measure
normalizing a set, we might want to look at the converse. Is there a property on some non-
paradoxical group that, when transferred to a set, gives a finitely additive, G-invariant measure,
and are R and R2 sets that the property can be transferred to?

Von Neumann [17], realized in 1929 that there were non-paradoxical groups with G-invariant
normalizing measures on them that could be transferred over to other sets. While there are multiple
ways of defining these groups [18], we are going to define them using measures.

Definition 5.10. Let G be a group. If there is a finitely additive, G-invariant measure µ on G
that normalizes G, G is called an amenable group.

From Proposition 5.8, one finds that paradoxical groups are not amenable, since paradoxical
groups have to satisfy µ(G) = 2µ(G).

Example 5.11. Let G be a finite group. Then the normalized counting measure µ(E) = |E|
|G| is a

finitely additive, G-invariant measure nomalizing G, meaning that G is amenable.
The isometry group En is amenable for n = 1, 2 [9] but is not amenable for n ≥ 3. The first

statement will not be proven due to it being outside the scope of the thesis. The second statement
comes from En containing the paradoxical subgroup of SO3.

These group measures can then be pushed onto any set through group actions.

Proposition 5.12. Let G be a group acting on X. If G is amenable, there exists a finitely additive,
G-invariant measure µX on X normalizing X.

Proof. Let x ∈ X be a fixed point. Then for E ⊆ X, the function µX(E) = µ({g ∈ G : gx ∈ E})
is a finitely additive, G-invariant measure with µX(X) = 1.

Using this result on Rn using the group En for n = 1, 2 gives us a finitely additive isometry-
invariant measure on the line and plane, though one that normalizes the whole set and not the
unit cube. Thus, this still does not give an answer to the problem of measure for R and R2. With
some more work however, we can find a measure that normalizes the unit cube.

5.4 Measure on R and R2

In section 5.2.2 we answered the problem of measure for dimensions higher than two. What about
one and two dimensions? It turns out that we can get the measure we have hoped for, and
moreover, this measure extends Lebesgue measure. In fact, the solution to the problem of measure
must extend Lebesgue measure on Borel sets, since this is the unique En-invariant measure on
Borel sets.

Theorem 5.13 (AC). If G is an amenable group of isometries, then there is a finitely additive,
G-invariant measure on Rn which extends Lebesgue measure.

We give a sketch of a proof of this theorem in Appendix C. Since λ([0, 1]n) = 1, this measure
normalizes the unit cube. Choosing G = En for n = 1, 2 we get En-invariant extensions of
Lebesgue measure on R1 and R2, giving a positive answer to the problem of measure in one and
two dimensions. Since bounded subsets with nonempty interior have positive, finite Lebesgue
measure, this result together with Theorem 5.9 implies that all such sets are not En-paradoxical
for n = 1, 2. In particular, it denies the existence of the Banach–Tarski paradox in one and two
dimensions.
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Figure 1: The unit circle with 100 spokes generated by rotating the line (0, 1) 1
10 radians, showing

the appearance of the “Spokes on a wheel paradox”.

Figure 2: What happens to (0,1,0) at each step when ψ−1φ−1ψφ is applied. The blue point
represents the starting point and the green point the ending point.
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B Orthogonal Matrices
In Section 2.2.4 we list some properties of orthogonal matrices needed to show that the elements of
SO3 are in a one-to-one correspondence with the group of rotations about lines through the origin.
We give proofs of these properties here.

Definition B.1. Let Rn be the inner-product space with the ordinary Euclidean dot product. A
matrix A over Rn is orthogonal if AAT = I.

The following is an equivalent definition.

Proposition B.2. Both the columns and the rows of an orthogonal matrix A form orthonormal
sets.

Proof. Let {Ai}ni=1 be the rows of A. Then

I = AAT = (〈Ai, Aj〉)i,j

which shows that 〈Ai, Aj〉 = 1 if i = j and 0 otherwise. For the columns, instead consider
I = IT = (AAT )T = ATA.

Proposition B.3. Take any A ∈ SOn and let T be the linear transformation of Rn given by A
under any orthonormal basis of Rn. For any u, v ∈ Rn it holds that 〈u, v〉 = 〈Tu, Tv〉.

Proof. Given any orthonormal basis of Rn, we have that T is given by x 7→ Ax. Let u, v ∈ Rn.
Then 〈Tu, Tv〉 = 〈Au,Av〉 = (Au)T (Av) = uTATAv = uT v = 〈u, v〉.

Proposition B.4. Let E be an orthonormal basis of Rn and let T be a linear transformation of
Rn given by [T ]E = A for some A ∈ SOn. Then [T ]E′ is an orthogonal matrix for any orthonormal
basis E′ of Rn.

Proof. We only need to show that the change of basis matrix B = [I]E′E is orthogonal, since
[T ]E′ = [I]E′E [T ]E [I]EE′ = BAB−1. Let E and E′ = {v1, ..., vn} be orthonormal bases of Rn. But
then since

B =
[
v1, ..., vn

]
we have that

BBT = (BTB)T = ((〈vi, vj〉)i,j)T = I.

This shows that B−1 = BT so

BAB−1(BAB−1)T = BABT (BABT )T = BABTBATBT = BAATBT = ... = I.

Proposition B.5. Let A be a real orthogonal 2 × 2-matrix with determinant 1. Then A can be
written as

A =

[
cos θ sin θ
− sin θ cos θ

]
for some θ ∈ R and therefore corresponds to a rotation of R2.

Proof. Since each row of A necessarily is a unit vector and that each unit vector can be written as
(cos θ, sin θ) for some θ, we have that for some θ, φ

B =

(
cos θ sin θ
cosφ sinφ

)
.

The rows must also be perpendicular which together with det(B) = 1 yields

B =

(
cos θ sin θ
− sin θ cos θ

)
,

which we recognize as a rotation matrix.
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C Sketching a proof of Theorem 5.13
We will only give a sketch of the proof – which closely follows the proof by Knudby [14] – and
try to provide some intuition since there are several concepts involved that will not be constructed
and which cannot be expected from the reader to have knowledge of; such as measurable functions,
Lebesgue integration see Tao [1], and integrals on groups defined through probability measures see
Knudby [14]. Also, we will need a central extension theorem from functional analysis called the
Hahn–Banach Theorem, the proof of which is outside the scope of this paper. The theorem was
proved independently by Hans Hahn and Stefan Banach in the late 1920s. See Rudin [19] for a
proof. Before stating it we need some terminology.

Definition C.1. Let V be a real vector space. A linear functional on V is a linear map from V
to R. A sublinear form on V is a map f : V → R such that

1. f(αx) = αf(x) for all α ∈ [0,∞) and x ∈ V ,

2. f(x+ y) ≤ f(x) + f(y) for all x, y ∈ V .

Theorem C.2 (The Hahn-Banach Theorem, AC). Let V be a real vector space and V0 ⊆ V a
subspace. If p is a sublinear form on V and F0 a linear functional on V such that F0(x) ≤ p(x)
for all x ∈ V0, then there exists a linear extension F : V → R of F0 to V such that

−p(−x) ≤ F (x) ≤ p(x) for all x ∈ V.

Theorem C.2 relies on the axiom of choice and is non-constructive, meaning that we only know
that there exists an extension F but have no other information about it.

Let L be the set of Lebesgue measurable and integrable functions f : Rn → R, and let V be
the set of functions f : Rn → R such that |f | ≤ f0 for some f0 ∈ L. It is easy to see that these are
both vector spaces under pointwise operations and that L is a subspace of V . Define F0 : L → R
by

F0(f) =

∫
fdλ.

This is a linear functional on L and it can be proved that F0 is dominated by some sublinear form
on V . The proof of Theorem 5.13 builds upon the fact one can apply The Hahn-Banach Theorem
on F0 and consequently get an extension F of F0 to V and thereby almost extending Lebesgue
measure.

Let E ⊆ Rn be measurable with finite measure and denote its indicator function by 1E . Since
1E ∈ L if and only if λ(E) <∞ we get that

F0(1E) =

∫
1Edλ = λ(E). (5)

It could be useful to keep this in mind to provide some motivation to why we are working with F0

when trying to extend Lebesgue measure.
Let L∞(G) be defined as the set of bounded, measurable functions from G to R. Essential to

the proof is that one can define an integral on L∞(G) via a finitely additive, G-invariant measure
ν on G (which exists since G is amenable). It can be constructed as to obey the usual properties
of integrals as well as G-invariance and the analogous relationship of equation (5) (with λ replaced
by ν).

Sketch of proof of Theorem 5.13. Let L, V and F0 be defined as above. The map from G×V to V
given by g · f = f ◦ g−1 for all g ∈ G and f ∈ V is a linear 5 group action of G on V . The space L
is invariant under this action so G acts on L as well. We need this action to eventually push the
measure of G onto Rn.

By definition of V , for any f ∈ V there is a map f0 ∈ L such that |f | ≤ f0. Therefore, if
h ∈ L satisfy f ≤ h, we have that −f0 ≤ h and by monotonicity of Lebesgue integration that
F0(−f0) ≤ F0(h). The elements of the set If = {F0(h) : h ∈ L and f ≤ h} are therefore bounded

5If α1, α2 ∈ R, f1, f2 ∈ V and g ∈ G, then g(α1f1 + α2f2) = α1gf1 + α2gf2.
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from below and since If is clearly nonempty we can define the sublinear form p : V → R by
p(f) = inf If . It is not difficult to check that p is a sublinear form. Since Lebesgue integration
is invariant under isometries, F0 is G-invariant and consequently p is G-invariant. Moreover, p
agrees with F0 on L, thus we can apply Theorem C.2 to extend F0 to V through a linear functional
F : V → R.

One could interpret the meaning of p when applied to a function f ∈ V \ L as assigning to f
the best possible approximation (from above) of what we would have wanted its Lebesgue integral
to be if f would actually have been Lebesgue measurable. Thus, because of the bounds on F given
by Theorem C.2, F seems like a reasonable extension of Lebesgue integration to functions that are
bounded by measurable and integrable functions.

The problem with F is that it is not necessarily G-invariant. To fix the invariancy we try
to merge the properties of the amenable group with our extension. For each f ∈ V , define
ϕf : G→ R ∪ {∞} by ϕf (g) = F (g−1f). For every g ∈ G, we get the following bounds on ϕf (g):

ϕf (g) = F (g−1f) ≤ p(g−1f) = p(f)

ϕf (g) = F (g−1f) ≥ −p(−g−1f) = −p(g−1(−f)) = −p(−f),

where we have used the bounds on F (f), the G-invariancy of p and to attain the lower bound
also that the action is linear. Thus, ϕf ∈ L∞(G) and we may therefore define a function µ :
P(Rn)→ R∪ {∞} by invoking the amenability of G and thereby acquiring a measure ν on G and
an accompanying integral:

µ(A) =

{∫
G
ϕ1A(g)dν if 1A ∈ V,

∞ otherwise.

This function extends Lebesgue measure: Let A ⊂ Rn be measurable. If λ(A) <∞, then 1A ∈ L,
so

µ(A) =

∫
G

ϕ1A(g)dν =

∫
G

F (g−11A)dν =

∫
G

F0(g−11A)dν =

∫
G

F0(1A)dν = λ(A)

∫
G

1dν = λ(A).

In the last equality we used that
∫
G

1dν =
∫
G

1Gdν = ν(G) = 1. If λ(A) = ∞, then 1A /∈ V , so
µ(A) =∞ = λ(A).

Using the bounds given by Theorem C.2, the linearity of the action, the linearity of F and the
G-invariance of ν, we can show that µ is non-negative, finitely additive and G-invariant.

Notice that the only functions we are really interested in are indicator functions, but we have
to work in the general setting of L and V to be able to apply Theorem C.2.
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