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Abstract
The catalytic properties of palladium oxide for the combustion of methane have
been studied extensively in recent years. The rate-determining step of this reaction
is believed to be the dissociation of methane on the surface. The rate of the event
is dependent on both the active sites of the catalyst and the energy and orientation
of the incoming methane molecules. The dependence of energy and orientation is
often summarized in a sticking coefficient.

Here, we will address the challenge of calculating the sticking coefficient from first-
principles. However, due to the large number of trials and large time scales required
to study this event, ab initio molecular dynamics would be too computationally
expensive to perform, and an alternative approach using neural networks is ap-
plied. The adsorption position on the active sites and the activation energy of the
dissociation process are studied using density functional theory. To determine the
probability of a sticking event, a neural network is trained to predict the multidi-
mensional potential energy surface, which is used to perform molecular dynamics.
The density functional theory calculations confirm that the active sites of the cata-
lyst are the under-coordinated palladium atoms, with an apparent activation energy
of 0.2 eV for the dissociation reaction. The neural network is able to predict the
energies of the system five orders of magnitude faster than regular density functional
theory calculations, with an MAE of 0.02 eV. The molecular dynamics suggest that
the previously believed most probable transition path might be dominated by the
sum of the other, less likely, transition paths. The hope is that the results and
understanding obtained from this computational study can be used to assist in the
discovery of more efficiently designed catalysts in the future.

Keywords: Density functional theory, neural networks, methane, palladium ox-
ide, sticking, adsorption, dissociation, molecular dynamics, potential energy surface,
catalysis, activation energy
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1. Introduction

The importance of sustainable energy sources is becoming more paramount each
day. Two energy sources, which have been of great interest in recent years, are the
combustion of natural gas and biogas. The advantage of natural gas and biogas,
compared to, e.g., oil and gasoline, is that they are constituted mostly of methane
gas, which when combusted has a low emission rate of carbon dioxide in relation to
the amount of energy produced [1]. However, since methane is a potent greenhouse
gas [2], the need for complete combustion is of utmost importance. This has sparked
the need for effective catalysts. Some of the most efficient catalysts for the complete
combustion of methane are based on palladium, and in particular palladium oxide
[3], [4], of which, the latter will be considered in this report.

The combustion of methane on a palladium oxide catalyst is a very complex process
[5]. The first part of this process is the adsorption and dissociation of methane on the
surface, yielding methyl and a hydrogen atom. This part is believed to be the rate-
limiting step of the reaction, due to the weak interactions between the palladium
oxide surface and the methane molecules, and the large activation energy of the
dissociation process [4]. Due to these conditions, the rate of dissociation is highly
dependent on both the active sites of the catalyst, and the energy and orientation
of the incoming methane molecules. The dependence of energy and orientation
can be summarized in a sticking coefficient [5]. Previous, experimental, studies
on noble metal catalysts have yielded sticking coefficient values between 10−4–10−1

[6]. However, to computationally determine the sticking coefficient, and study the
dissociation process from first-principles, a very large number of molecular dynamics
simulations have to be performed. Due to the large number of simulations and large
time scales required to study the process, regular ab initio molecular dynamics
would be too computationally expensive to perform. Therefore, feed-forward neural
networks, trained with density functional theory data, will be applied to determine
the multi-dimensional potential energy surface and its gradients, relevant for, e.g.,
the molecular dynamics simulations.

1.1 Aim of the Project
The aim of this project is to study the active sites of the catalyst, the dissociation
process, and the sticking coefficient, with different computational tools. The active
site will be studied using density functional theory. The sticking coefficient will be
determined, and the dissociation process will be studied, using a combination of
density functional theory and neural networks.
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1. Introduction

1.2 Outline
The first chapter will include general theory about the catalyst, density functional
theory, and feed-forward neural networks. In the second chapter, more specific
theory about the methods, and computational tools, used in the project will be
described. This will be followed by a description of the simulations, experiments,
and work done in the project. This chapter will also include some results required
to determine the computational setup of the simulations. In the succeeding chapter,
the results will be presented, analysed, and interpreted. The report will be concluded
with a reflection and an outlook.
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2. Theory

“In the case of science, I think that one of the things that make it very difficult, is
that it takes a lot of imagination. It’s very hard to imagine all the crazy things that
things really are like.”

— Richard Feynman, Fun to Imagine (1983)

In this chapter, the theory behind some of these crazy things will be explained.
This will include theory about the catalyst, density functional theory calculations,
feed-forward neural networks, and the Velocity Verlet algorithm.

2.1 The Catalyst
The complete combustion of methane results in carbon dioxide and water, i.e.

CH4(g) + 2 O2(g) −−⇀↽−− CO2(g) + 2 H2O(l) ∆H◦ = −891 kJ/mol, (2.1)

where ∆H◦ is the combustion enthalpy [7], [8]. Even though the reaction is highly
exothermic, the activation energy is very large (see Figure 4.1). To solve this prob-
lem, a catalyst can be used, in order to enable an alternative reaction mechanism,
with a lower activation energy [9]. It is important to note that a catalyst only affects
the kinetics of a reaction, not the overall thermodynamics. Many different catalysts
have been considered for reaction (2.1), including platinum [10], rhodium/zirconium
oxide [11], different perovskite-type oxides [12], supported palladium structures [13],
and palladium oxides [4], [5], [14], of which, the latter will be considered in this re-
port.

The thermodynamically most stable crystal structure of palladium is Face Centered
Cubic (FCC), with a lattice parameter of 3.89Å at room temperature [15]. The
experimental value of the cohesive energy for bulk palladium, i.e., the energy of
a palladium atom in gas phase relative to the energy of a palladium atom in the
FCC crystal, is 3.91 eV at 0 K and 3.92 eV at 298.15 K [16]. Palladium oxide, on the
other hand, has a tetrogonal crystal structure with a base of 3.043 Å and a height
of 5.336 Å [17]. The primitive cell contains two palladium atoms located at (0, 0, 0)
and (0.5, 0.5, 0.5) and two oxygen atoms located at (0.5, 0, 0.25) and (0.5, 0, 0.75)
[18]. The enthalpy of formation for palladium oxide is 1.22 eV at 298.15 K [19].

Previous calculations and X-ray diffraction have shown that the palladium oxide
facet with the largest methane conversion rate is the (101) surface, either pure or
grown on metallic palladium (100) [4], [20]. The structure of palladium oxide (101)
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2. Theory

is shown in Figure 2.1. If palladium oxide (101) is grown on metallic palladium
(100), the latter lattice is rotated 27◦ compared to the oxide, this is known as the
(
√

5 ×
√

5)R27◦ oxide [21]. Even though (2.1) might look simple, the combustion
of methane on a palladium oxide catalyst is a very complex reaction, with many
different processes [5]. The first process in this reaction is the sticking and dissoci-
ation of methane on the surface, yielding methyl and a hydrogen atom. This step
is believed to be the rate-limiting step, due to the weak interactions between the
palladium oxide (101) surface and the methane molecule, and the large activation
energy of the dissociation [4].

(a) Side view (b) Top view

Figure 2.1: The structure of palladium oxide (101).

In Figure 2.1 it can be seen that the palladium atoms in palladium oxide (101) exist
in two different environments; alternating every second row. Previous calculations
have shown that the active site for the dissociation of methane is over the 3-fold
coordinated palladium atoms, which has one oxygen atom on each side and one
directly below [4], [5], [14]. The initial state and the final state of the methane
dissociation on the surface are shown in Figure 2.2. Previous calculations have
shown that the adsorption energy when the methane molecule saddles over the 3-fold
coordinated palladium atom, neglecting the van der Waals interactions, is between
negative 0.14 – 0.17 eV [4], [14]. At the initial position, the H–C–H angle between
the saddled hydrogen atoms has been determined to be approximately 114◦ – 115◦,
compared to 109.5◦ for the free methane molecule. It has been shown that the
energy of the final state is 0.41 – 0.49 eV lower than the energy of the initial state.
The activation energy of the process has also been proven to be very dependent
on the computational tools, and usually ranges between 0.3 – 0.7 eV [4], [5], [14].
The apparent activation energies ranges between 0.35 – 0.5 eV. Experimentally, the
value of the apparent activation energy for (2.1) has ranged between 0.3 – 1.3 eV,
dependent on the experimental conditions [22].
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2.2. Density Functional Theory

(a) Initial State (b) Final State

Figure 2.2: The initial state and the final state in the dissociation reaction of
methane on the palladium oxide (101)-surface.

2.2 Density Functional Theory
Properties of chemical systems, including e.g., molecules, metal-, and metal-oxide
surfaces, can be described precisely from the solutions of the Schrödinger equation.
The time-independent Schrödinger equation is given by

E |Ψ〉 = H |Ψ〉 , (2.2)

where E is the energy eigenvalue, and H is the Hamiltonian [23]. Even though some
systems can be solved numerically when exploiting symmetries, geometries, and
boundary conditions, there are no analytic solutions to the Schrödinger equation
when two or more electrons are considered. The reason being that for systems
with more than one electron, the Hamiltonian gets more complex; more Coulomb
interactions and the Pauli exclusion principle have to be considered [24]. This means
that the particles are antisymmetric under the interchange of two particles, i.e.,

|Ψ(r1, ..., ri, ..., rn, ...)〉 = − |Ψ(r1, ..., rn, ..., ri, ...)〉 , (2.3)

where rj is the position vector for particle j. Generally, if the nuclei are seen as
individual particles, the Hamiltonian can be expressed as

H =−
∑
i

~2

2me
∇2
i −

∑
k

~2

2Mk

∇2
k

+ 1
8πε0

∑
i 6=j

e2∣∣∣ri − rj
∣∣∣ − 1

4πε0

∑
i,k

Zke
2

|ri −Rk|
+ 1

8πε0

∑
k 6=l

ZkZle
2

|Rk −Rl|
, (2.4)

where the first and second terms are the kinetic energy for the electrons and the
kinetic energy for the nuclei, respectively [24]. The last three terms are the Coulomb
interactions between the electrons, between the nuclei and the electrons and between
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2. Theory

the nuclei, in that order. From now on, Hartree atomic units will be used, where
the reduced Planck constant, the Bohr radius, the electronic charge, the electronic
mass, and the Coulomb force constant are all set to 1, i.e.,

~ = a0 = e = me = 1
4πε0

= 1. (2.5)

A common approximation to ease the computations of the Schrödinger equation
is the Born-Oppenheimer approximation [25]. The mass of the nuclei is three to
four orders of magnitude greater than the mass of an electron. The large difference
in time scales entails the possibility to consider the wave functions of the nuclei
and the electrons as decoupled [26]. This means that the electronic wave function
can be solved from an electronic Schrödinger equation, with an external potential,
dependent on the instantaneous positions of the nuclei. The Hamiltonian for the
electronic Schrödinger equation is thus given by

He = −1
2
∑
i

∇2
i + 1

2
∑
i 6=j

1∣∣∣ri − rj
∣∣∣ −

∑
i,k

Zk
|ri −Rk|

. (2.6)

However, even with the use of the Born-Oppenheimer approximation, the solutions
to the electronic Schrödinger equation are still too computationally expensive to
find. One way of dealing with this computationally costly problem is by using
Density Functional Theory (DFT). Instead of dealing with the many-electron wave
function, the energy of the system is evaluated using only the electron density [27].

This can be done thanks to certain discoveries of Hohenberg, Kohn, and Sham.
The first theorem of Hohenberg and Kohn states that the external potential can be
precisely determined (up to a constant) by the electron density in the system [28];
i.e., there exists a functional S, such that

Vext = S[ρ(r)], (2.7)

where ρ(r) is the electron density, calculated from the total electronic wave function
as

ρ(r) =
∣∣Ψ(r)

∣∣2 . (2.8)
This was a revolutionary discovery, considering that from here on, not only could
the electron density be determined from the external potential, but the contrary
as well. A consequence of this is that the energy of the system can be calculated
from only the electron density. To this day, there does not exist any determined
form of this functional, and approximations have to be made. Apart from the Born-
Oppenheimer approximation, this is the first approximation required in order to
continue.

It is by minimizing the energy functional, with respect to the electron density, that
the ground state energy of the system can be determined, i.e.,

E0 = E[ρ0(r)] = min
ρ(r)

E[ρ(r)]. (2.9)
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2.2. Density Functional Theory

The theorem states that the ground state energy is found when the electron density
equals the ground state electron density [28].

However, it is extremely difficult to determine the ground-state electron density.
An alternative approach to solve this was suggested by Kohn and Sham [29]. The
approximation is known as the Kohn-Sham ansatz. It states that the many-particle
problem can be replaced by non-interacting particles existing in a so called effective
potential. The fact that the electrons are seen as individual, non-interacting, parti-
cles, makes it possible to express the total electron density as a sum of the individual
densities, i.e.,

ρ(r) =
∑
i

∣∣φi(r)
∣∣2 , where

∫
ρ(r)dr = N (2.10)

is the number of electrons in the system and φi(r) are obtained by solving the wave
equations for the individual non-interacting electrons. The energy functional (2.9)
now takes the form

E[ρ(r)] = T [ρ(r)]−
∫ ∑

k

Zkρ(r)
|r−Rk|

dr + 1
2

∫ ∫ ρ(r)ρ(r′)
|r− r′|

drdr′ + Exc[ρ(r)], (2.11)

where the functional T yields the kinetic energy of the non-interacting electrons,
i.e.,

T [ρ(r)] = −1
2
∑
i

〈φi| ∇2
i |φi〉 . (2.12)

The functional Exc is known as the exchange-correlation functional, and captures
quantummechanical properties that are neglected with this approach. The exchange-
correlation functional is described more precisely in Section 2.3.

With the use of Lagrange multipliers, and exploiting the fact that the number of
electrons are constant, the Kohn-Sham equations can be derived [29]. These equa-
tions, on which most DFT calculation are dependent, are(

− 1
2∇

2
i + veff(r)

)
φi(r) = εiφi(r). (2.13)

The effective potential, veff(r), in which the electrons exist, is given by

veff = −
∑
k

Zk
|r−Rk|

+ 1
2

∫ ρ(r′)
|r− r′|

dr′ + δExc[ρ(r)]
δρ(r) . (2.14)

The eigenvalues obtained from (2.13) do not correspond exactly to the total energy
of the system [29]. Instead, the eigenvalues and eigenvectors obtained from (2.13)
are used to obtain the total energy of the system according to

E =
∑
i

εi −
1
2

∫ ∫ ρ(r)ρ(r′)
|r− r′|

drdr′ + Exc −
∫ δExc[ρ(r)]

δρ(r) ρ(r)dr, (2.15)

where the total electron density ρ(r) is calculated from the individual electron densi-
ties according to (2.10). The equations in this section are all that is needed in order
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2. Theory

to perform a so called self-consistency loop, with the attempt to find the ground
state energy of a system. The loop can be seen in Figure 2.3.

ρ(r) Calculate veff(r)
(
− 1

2∇
2
i + veff(r)

)
φi(r) = εiφi(r)

Solve for εi and φi(r)

E =
∑
i

εi −
1
2

∫ ∫ ρ(r)ρ(r′)
|r− r′|

drdr′ + Exc −
∫ δExc[ρ(r)]

δρ(r) ρ(r)dr

ρ(r) =
∑
i

∣∣φi(r)
∣∣2

Figure 2.3: The self-consistency loop applied to obtain the ground state electron
density and ground state energy of the electrons.

2.3 Exchange-Correlation Functional
When expressing the energy as in (2.11), an addition functional has been added,
known as the Exchange-Correlation Functional, Exc. This term captures certain
quantum mechanical properties that are neglected when using the the Hartree-Fock
approximation and the Kohn-Sham ansatz [30]. The exchange-correlation functional
should, for example, capture

• the antisymmetry with respect to the interchange of two particles (2.3),

• corrections for self-interacting electrons in the density formulation,

• kinetic energy differences due to the Kohn-Sham ansatz [27].

Kohn and Sham proposed an exchange-correlation functional known as the Local
Density Approximation (LDA), based on the homogeneous electron gas, which, of
course, is a large simplification for most systems [29]. The functional is written as

ELDA
xc [ρ(r)] =

∫
ρ(r)εxc[ρ(r)]dr, (2.16)

where εxc[ρ(r)] is the energy due to exchange and correlation for a homogeneous
electron gas. The exchange and correlation per electron is in this case known, and
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2.3. Exchange-Correlation Functional

can be expressed as

εxc = −3
4

(
9

4π2

)
1
rs︸ ︷︷ ︸

εx−exchange

+

0.0311 ln rs − 0.048 + 0.002rs ln rs − 0.0116rs, if rs < 1,
−0.1423/(1 + 1.0529√rs + 0.3334rs), if rs ≥ 1,︸ ︷︷ ︸

εc−correlation
(2.17)

where

rs =
(

3
4πρ(r)

) 1
3

, (2.18)

is known as the Wigner-Seitz radius. The exchange part in (2.17) is an exact,
derived, expression [31], while the the correlation part has been obtained from com-
putational experiments [32]. It has been shown that this approximation is adequate
for systems where the electron density is relatively stationary [28]. However, this
approximation is often not satisfactory, especially when calculating binding ener-
gies [30]. These limitations can, to an extent, be overcome with the introduction
of a generalized gradient approximation (GGA), which has proven to improve, e.g.,
total energy calculations [33] and activation energy calculations [34]. The exchange-
correlation energy is then determined from the electron density of the system, as
well as the gradient of the electron density, in order to better approximate inhomo-
geneous electron densities [35]. This can be done in different ways. Perdew, Burke,
and Ernzerhof chose to incorporate a scaling functional to (2.16), i.e.,

EGGA
xc [ρ(r)] =

∫
ρ(r)εxc[ρ(r)]Fxc

[
∇ρ(r), ρ(r)

]
dr. (2.19)

Both the local density approximation and the generalized gradient approximation
can be refined to also capture the spin-polarization of the electrons [31], [35]. It is
possible to also incorporate the kinetic energy densities in the exchange-correlation
energy functional; these functionals are known as meta-GGAs [36].

The three exchange-correlation functionals considered in this report are PBE [35],
CX [37], and BEEF [38]. The PBE exchange-correlation functional is on the form
(2.19), with a scaling factor mostly dependent on the exchange part, on the form

Fx = 1 + κ− κ

1 + µs2/κ
, (2.20)

where κ and µ are parameters, and s is dependent of the electron density and Fermi
wave vector as

s =
∣∣∇ρ(r)

∣∣
2kFρ(r) [35]. (2.21)

Both CX and BEEF incorporate van der Waals interactions, i.e., additional coulomb
interactions, resulting from small shifts in the electron density. The CX functional
includes plasmon-response descriptions for both the exchange and correlation. This
exchange correlation functional has been proven to be very accurate when predicting
binding energies and lattice parameters, especially for systems with non-covalent
bonds [37]. The BEEF functional is a Bayesian error estimation functional, with
the main advantage of providing computational error estimations [38].

9



2. Theory

2.4 Neural Networks
McCulloch and Pitts studied, in 1943, how neurons in a network could be used to
process information [39]. They stated a list of assumptions, describing how a neural
network should be designed, including that the activity of the neuron is an "all-or-
none" process, the structure of the neural network does not change with time, and
that the only significant delay within the nervous system is synaptic delay. The
artificial neuron has later been developed to include a bias and have continuous
values of the neuron output, making it possible to, with a sufficiently large net-
work, approximate any continuous function [40]. Mathematically, the output of a
McCulloch-Pitts neuron, and the output of a modern neuron, which is used in this
work, are expressed as

OMcCulloch−Pitts = θ
(∑

input
)
, θ − Heaviside function (2.22)

and
Omodern = g

(
b+

∑
input

)
(2.23)

where b is the bias and g is an arbitrary activation function. Common activation
functions are e.g. the sigmoid function, the ReLU function, and the tanh function
[41], defined as

Sigmoid : σ(x) = 1
1 + e−x

(2.24)

ReLU : f(x) = xθ(x) (2.25)

tanh : g(x) = ex − e−x

ex + e−x
. (2.26)

The neural network used in this project is a feed-forward neural network consisting
of neurons described in (2.23). A feed-forward neural network consists of an input
layer, an output layer, and an arbitrary number of hidden layers [42]. There are
no connections between neurons in the same layer, and information is only passed
forward in the network, towards the output layer. A schematic layout of a feed-
forward neural network is shown in Figure 2.4.

10



2.4. Neural Networks

I,0

I,NI

1,0

1,N1

1,α

2,0

2,β

2,N2

M ,0

M ,γ

M ,NM

O,0

O,NO

...

...

...

...

...

. . .

. . .

. . .

...

...

...

w2
00

wM+1
NONM

Figure 2.4: A schematic figure of a fully-connected feed-forward neural network.

The value of a neuron nji (the i:th neuron in layer j), with this notation, is given by

xji = g

bji +
Nj−1∑
k=1

wjikx
j−1
k

. (2.27)

The training of the neural network is performed with, so called, supervised learning,
where the training set consists of labeled data, with input data and corresponding
output data [42]. The predicted output of the (fully connected) feed-forward neural
network is used to update the weights and biases in the network via back-propagation
[43]. The aim is to reduce the Loss Function L, which determines the correctness
between the predicted output and the output data. The loss function is often chosen
to be the squared errors of the complete training set, i.e.,

L = 1
2
∑
i,µ

(
yµi,predicted − y

µ
i,data

)2
, (2.28)

where the summation is performed over all output neurons, for all training data.
Gradient descent is used to update the weights and biases, in order to minimize the
loss function, according to

wjik,new = wjik − η
∂L
∂wjik

(2.29)

and
bji,new = bji − η

∂L
∂bji

, (2.30)

which can be solved numerically, or analytically via the chain rule, if the activation
functions and the loss function are differentiable.
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2.5 Molecular Dynamics
One of the most common molecular dynamics techniques is the Velocity Verlet al-
gorithm [44]. It is, in essence, a classical technique derived from Taylor expansions
of Newton’s equations of motion. For a chosen time step ∆t, the algorithm can be
described with the following scheme:

v(t+ ∆t/2) = v(t) + 1
2a(t)∆t (2.31)

r(t+ ∆t) = r(t) + v(t+ ∆t/2)∆t (2.32)

v(t+ ∆t) = v(t+ ∆t/2) + 1
2a(t+ ∆t)∆t (2.33)

Before (2.33), new accelerations are calculated from the forces at that time [45].
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In this section, the theory and implementation of the methods used in the project
are described in more detail. Here, it is revealed how neural networks can be used
as a speed-amplifier, in order to perform a very large amount of molecular dynam-
ics simulations. In addition to the theory and implementation descriptions, the
work methodology and simulations are described. A few computational results are
presented, required to motivate the choices of structure and computational setup.

3.1 Plane Waves, Cutoff Energies and k-points
Sampling

When solving the Kohn-Sham equations (2.13) it is convenient to expand the elec-
tronic wave functions into a linear combination of plane waves. For structures with
periodic boundary conditions, and periodic potentials, the Bloch theorem states that

ϕk(r) = eik·ruk(r), (3.1)

where k is the wave vector (a vector in the reciprocal space which can always be
confined in the first Brillouin zone due to the periodicity), and uk is a function with
the same periodicity as the structure [46]. The function ϕk can be expressed as a
Fourier series over the reciprocal space, entailing

ϕk(r) =
∑
G
Ck+Gei(k+G)·r, (3.2)

where G are integer linear combinations of the reciprocal base vectors. The expres-
sions in (3.2) can then be substituted into (2.13), to solve the Kohn-Sham equations.
The expansion of the Fourier series in (3.2) is truncated by the so called cutoff energy,
defined as

Ecutoff = 1
2 |k + G|2 . (3.3)

The software used in this project to perform the DFT calculations is Vienna Ab
initio Simulation Package (VASP), which uses projector-augmented plane waves
[47]. The method used in VASP, formulated and implemented by Blöchl, treats
the electrons within a certain distance from the nucleus, known as the (semi-)core
electrons, differently compared to the valence electrons [48]. The wave functions of
the valence electrons are still described by plane waves, but the rapidly oscillating
core electrons are described to exist in a smoother, more easily calculated pseudo-
potential. Since the valence electrons determine all chemical properties, this can be
done without loss of accuracy, but at a reduced computational cost.

13
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The sampling of the wave vectors, k, when using plane waves (3.1), is performed
with the original Monkhorst-Pack scheme [49]. The k-points are then sampled in
the reciprocal space, with the base vectors e1, e2, e3, according to

kijk = 2pi − qi − 1
2qi

e1 + 2pj − qj − 1
2qj

e2 + 2pk − qk − 1
2qk

e3, (3.4)

where q is the number of k-points in each direction, and p ranges from 1 to q. Notice
that the Γ-point1 is included if there is an odd number of k-points in each direction.

3.2 Tools
In this section, the computational tools used in Atomic Simulation Environment
(ASE) in order to find minimum energy states, vibrational modes, and activation
energies between initial and final states, will be described. In many cases, it is
necessary to not only determine the energy of the system, but also the forces on
each atom, defined as the derivative of the energy with respect to the positions of
the nuclei, i.e., the forces on atom i is given by

Fi = −∇iE. (3.5)

BFGS is a minimization algorithm used for finding the positions and values of the
global and local minima in potential energy surfaces [50]. The changes in energy, as
a function of the positions of all nuclei R, are calculated iteratively via the forces
and the Hessian of the energy. The energy is expanded as a second order Taylor
series as

E(Rnew) = E(Rold) + dRTF (Rold) + 1
2dRTH(Rold)dR, (3.6)

where dR = Rnew − Rold and F is an array containing all forces according to
(3.5). The choice of Rnew is determined from the eigenvalues and eigenvectors of
the Hessian. If the matrix containing all eigenvectors is notated V , the new position
array Rnew, is given by

Rnew = Rold + s V V TF , (3.7)
where s is a scaling factor, determined by the step length and the eigenvalues of the
Hessian. The Hessian matrix can then be updated in several ways, depending on
the problem [51]. For all calculations in this report, the minimization is considered
converged when the largest force on an atom is below 0.05 eV/Å.

When determining the vibrational modes, the energy of the molecule can be approx-
imated to behave as a harmonic oscillator [52]. The vibrational modes are calculated
using finite differences to calculate the Hessian of the energy, with respect to the
Cartesian coordinates of all atoms in the molecule. The energy can then be expressed
as

E = E0 + 1
2dRHdR, (3.8)

1The Γ-point is the reciprocal space vector with coordinates (0, 0, 0).
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where E0 is the equilibrium energy and dR is a vector containing all deviations
from the equilibrium positions. If the deviations follow a sinusoidal time evolution
Newton’s equations of motion yields the eigenvalue equation

Huk = ω2
kMuk, (3.9)

where M is a matrix, containing the masses of the particles. It now follows that
the vibrational modes are the eigenvectors of (3.9). The vibrational frequencies are
given by the square-root of the eigenvalues of (3.9). Calculations on the methane
molecule yield 15 eigenmodes, of which 6 correspond to translations and rotations
(number of degrees of freedom), while the other 9 correspond to vibrations. The
eigenmodes corresponding to the translations and rotations have eigenvalues close
to 0. When the methane molecule is positioned at a saddle point in the potential
energy surface, one of the eigenvalues will be imaginary.

In order to find the transition paths and, in particular, the activation energy of a
reaction, the Nudged Elastic Band (NEB) method was used [53]. More specifically,
a refined version of this method, using a climbing image was utilized [54]. The
initial state and the final state are both local minima, and are held fixed in the
NEB method. It is between these two states that the elastic band is spanned. A
number of images are interpolated between the initial and final states, as an initial
guess of the minimum energy transition path. The large advantage with NEB,
compared to previous methods, is that due to the elastic band, the path can be more
uniformly sampled, entailing the entire transition path to be well described [53]. The
activation energy is a saddle point in the potential energy surface; a maximum in
the tangential direction of the band, and a minimum in the perpendicular direction.
In the optimization process, the forces acting on each image in the interpolated
path are the tangential spring force from the band and the force perpendicular to
the band from the DFT calculations. In the climbing image case, the spring force
from the band on the highest energy image is neglected after a certain number
of iterations [54]. The force is then purely determined from the potential energy
surface. Consequently, the activation energy is more converged, while the other
images still describe the transition path.

3.3 Atomistic Machine-learning Package
The software used to build, train and apply the neural network was the Atomistic
Machine-learning Package (AMP), developed by Alireza Khorshidi and Andrew A.
Peterson at Brown University [55]. It is integrated with ASE in such a way that it
can be used as a regular calculator. The neural network uses the methods described
in Section 2.4; it is a feed-forward neural network, utilizing back-propagation to
update the weights and biases. However, the input to the neural network is not
whole structures, but feature vectors, generated for each atom in the system. This
enables the network to be applied on different structures, of different sizes, as long
as the elements are the same.

The output of the system is the energy of the system, and the forces on each atom,

15



3. Methods

equivalent to the definition in (3.5). The total energy of the system Esystem, deter-
mined by the neural network, is calculated as the sum of the energy contributions of
each atom, which in turn depends on the element and the local environment around
the atom, i.e.,

Esystem =
N∑
i=1

Elocal(ri), (3.10)

where N is the number of atoms in the system. To capture the features, and make it
easier for the neural network to determine the energies of these local environments,
radial symmetry functions based on Gaussian functions are used [56]. The radial
symmetry functions for an atom are created by pair interactions and triplets interac-
tions with the other atoms. The radial symmetry functions for atom i corresponding
to pair interactions are given by

Gpair
i =

∑
j 6=i

e−ηr2
ijfc(rij), (3.11)

where η is a parameter and rij is the distance between atom i and atom j. The
function fc is a cutoff function, determining how large of an impact the energy
contribution has. It is limited by a cutoff radius Rc, creating a sphere, which is
considered as the local environment. The cutoff function is defined as

fc(r) =


1
2

(
1 + cos πr

Rc

)
, if r ≤ Rc,

0, if r > Rc.
(3.12)

The radial symmetry functions for atom i corresponding to triplet interactions are
given by

Gtriplet
i = 21−ζ ∑

j,k 6=i
(1 + λ cos θijk)ζe−η(r2

ij+r
2
ik+r2

jk)fc(rij)fc(rik)fc(rjk), (3.13)

where θijk is the angle between the three atoms, λ=± 1, and ζ is a parameter. These
symmetry functions are known as fingerprints [57]. A feed-forward neural network
is created for each element, where the inputs are the radial symmetry functions, i.e.,
the feature vectors. For methane on a palladium oxide surface, this corresponds to
four different neural networks. The neurons in the neural network then regress the
fingerprints to energies and the derivatives of the fingerprints to forces. The total
energy of the system is then evaluated according to (3.10). A schematic overview of
the whole process can be seen in Figure 3.1.
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Figure 3.1: A schematic figure of the energy (and force) calculations using the
neural network approach. For each atom, feature vectors (and their derivatives)
are calculated and fed to the corresponding neural network. The output energy
for all individual atoms are summarized to obtain the total energy of the system.

During the training, the energies and forces are compared to the true values gener-
ated by DFT, via a loss function. The loss function that was used is in the same
form as (2.28), dependent on the energies and forces as

L = 1
2

Nµ∑
µ=1

 1
N2

(
Eµ,Amp − Eµ,DFT

)2
+ α

3N

N∑
i=1

3∑
k=1

(
Fµ,i,k,Amp − Fµ,i,k,DFT

)2
, (3.14)

where Nµ is the number of training images, and α is a scaling factor to determine
the relative impacts between the energy loss and the force loss.

3.4 Determination of Cutoff Energy and number
of k-points for the calculations

To determine the required cutoff energy and amount of k-points in each direction
(according to the Monkhorst-Pack scheme) for the DFT calculations, convergence
tests for the lattice parameters were performed. The primitive cell of palladium
(FCC) was built with periodic boundary conditions. In practice, this is equal to
an infinitely large bulk structure of the metal in each direction. The energies of
the metal with 10 different lattice parameters uniformly sampled between 3.7–4.1 Å
were calculated for a range of different cutoff energies and number of k-points. The
number of k-points ranged between 4 and 15, and the cutoff energy ranged between
200–650 eV. The energy of the bulk metal as a function of lattice parameter is
believed to behave as a harmonic oscillator. Therefore, for a given value of the
cutoff energy and the number of k-points, a second-order polynomial regression
of the lattice parameter versus energy was performed, in order to find the lattice
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parameter of the most stable structure. This was done for the three exchange-
correlation functionals PBE, CX, and BEEF. The lattice parameters which minimize
the energy as a function of cutoff energy and the number of k-points for PBE, CX
and BEEF are shown in Figure 3.2, Figure 3.3 and Figure 3.4, respectively. The
lattice parameter is considered converged when a cutoff energy of 450 eV and 12
k-points are used. In addition to the convergence of the lattice parameter, the
cohesive energy of FCC palladium was calculated, in order to compare the three
exchange-correlation functionals. The cohesive energy for palladium is defined as

EPd
coh = EPd

atom − EPd
FCC. (3.15)

The energy of a vacuum box of size (10, 11, 12) Å, containing one palladium atom,
was calculated using two k-points in each direction in the reciprocal space, and a
cutoff energy of 450 eV.

Figure 3.2: The lattice parameter as a function of the cutoff energy and the
number of k-points for the DFT calculations using the PBE exchange-correlation
functional.
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Figure 3.3: The lattice parameter as a function of the cutoff energy and the
number of k-points for the DFT calculations using the CX exchange-correlation
functional.

Figure 3.4: The lattice parameter as a function of the cutoff energy and the num-
ber of k-points for the DFT calculations using the BEEF exchange-correlation
functional.
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The converged lattice parameters, which minimized the energy, using a cutoff energy
of 450 eV and 12 k-points, as well as the cohesive energy of FCC palladium, for the
three exchange-correlation functionals, are shown in Table 3.1.

Table 3.1: The converged lattice parameters, as well as the cohesive energies,
for FCC palladium using the three different exchange-correlation functionals.

XC-functional Lattice Parameter [Å] Cohesive Energy [eV]

PBE 3.953 3.75

CX 3.899 4.36

BEEF 3.983 3.21

Experimental 3.89 3.91

Analogous calculations were performed for palladium oxide. The primitive cell was
constructed with 10 base parameters uniformly sampled between 2.5–3.5 Å, and 10
height parameters uniformly sampled between 4.8–5.8 Å, with periodic boundary
conditions. The relative distances between the 4 atoms in the primitive cell were
held constant. The number of k-points ranged between 4 and 15, and the cutoff
energy ranged between 200–650 eV. In this case, 100 lattice parameter pairs, with
corresponding energies, were calculated for each cutoff energy and number of k-
points. The energy contribution from the two lattice parameters could not with
safety be considered as decoupled; therefore, a six-dimensional polynomial regression
(including the cross-term) was performed to find the parameter pair yielding the
lowest energy. The lattice parameter pairs minimizing the energy of the palladium
oxide structure for PBE, CX and BEEF are shown in Figure 3.5, Figure 3.6 and
Figure 3.7, respectively. In this case, it is easier to see when the lattice parameters
are converged, namely, when a cutoff energy of 450 eV and 12 k-points are used. For
the tetragonal palladium oxide structure the formation energy, defined as

EPdO
form = EPd

FCC + 1
2E

O2
gas − EPdO

tetra, (3.16)

was calculated with the different exchange-correlation functionals. The energy of
a vacuum box of size (15,16,17)Å, containing an oxygen molecule, was calculated
using two k-points in each direction, and a cutoff energy of 450 eV.

20



3.4. Determination of Cutoff Energy and number of k-points for the calculations

Figure 3.5: The base and the height of the tetragonal structure that minimize
the energy, as a function of the cutoff energy and the number of k-points for the
DFT calculations using the PBE exchange-correlation functional.

Figure 3.6: The base and the height of the tetragonal structure that minimize
the energy, as a function of the cutoff energy and the number of k-points for the
DFT calculations using the CX exchange-correlation functional.
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Figure 3.7: The base and the height of the tetragonal structure that minimize
the energy, as a function of the cutoff energy and the number of k-points for the
DFT calculations using the BEEF exchange-correlation functional.

The converged lattice parameter pairs, which minimized the energy, using a cutoff
energy of 450 eV and 12 k-points, as well as the formation energy of palladium oxide,
for the three exchange-correlation functionals are shown in Table 3.2.

Table 3.2: The converged lattice parameter pairs and the formation energies, for
bulk palladium oxide using the three different exchange-correlation functionals.

XC-functional Base [Å] Height [Å] Formation Energy [eV]

PBE 3.100 5.547 1.19

CX 3.058 5.545 1.31

BEEF 3.116 5.574 1.20

Experimental 3.043 5.336 1.22

3.5 Vibrational Modes of Methane

The vibrational modes of the methane molecule in gas form, (a (15,16,17)Å vac-
uum box containing one molecule), were studied using the three different exchange-
correlation functionals. The energies and movements (rotations, translations and
vibrations with corresponding symmetry group) are presented in Table 3.3. The
vibrational modes 1–6, with energy eigenvalues close to 0, correspond to transla-
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tions and rotations. Vibrational modes 7–15 correspond to different vibrational
movements between the carbon atom and the hydrogen atoms.

Table 3.3: The vibrational modes for the methane molecule in a (15,16,17)Å
vacuum box, calculated using the three different exchange-correlation function-
als. The energies of the vibrational modes are expressed in cm−1, with the
movement described in the rightmost column.

Mode Energy [cm−1] (PBE) Energy [cm−1] (CX) Energy [cm−1] (BEEF) Movement

1 135.4 i 82.62 i 39.24 i Rotation

2 124.8 i 68.09 i 33.05 i Rotation

3 111.4 i 58.29 i 15.27 i Rotation

4 30.23 i 36.13 i 126.2 Translation

5 20.00 i 20.70 i 166.4 Translation

6 10.25 29.78 186.3 Translation

7 1281 1290 1336 Vib. f2

8 1289 1299 1338 Vib. f2

9 1291 1302 1343 Vib. f2

10 1502 1503 1549 Vib. e

11 1503 1505 1549 Vib. e

12 2939 2891 2967 Vib. a1

13 3092 3064 3114 Vib. f2

14 3101 3065 3120 Vib. f2

15 3101 3066 3123 Vib. f2

3.6 Building the Structures
In order to determine the structure, five candidates were constructed in ASE, and
certain properties were inspected. The five structures were

• 1 layer -
√

5: 5 layers of 2×2 primitive cells palladium (100) with 1 layer of 1×2
primitive cells palladium oxide (101) on top, according to the (

√
5×
√

5)R27◦
structure [21].

• 2 layers -
√

5: 5 layers of 2×2 primitive cells palladium (100) with 2 layer of 1×2
primitive cells palladium oxide (101) on top, according to the (

√
5×
√

5)R27◦
structure [21].
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• 7 layers PdO: 7 layers of 1× 2 primitive cells of palladium oxide (101).

• 5 layers PdO: 5 layers of 1× 2 primitive cells of palladium oxide (101).

• 5 layers PdO - fixed: 5 layers of 1× 2 primitive cells of palladium oxide (101)
with the atoms in the bottom layer fixed in their positions.

All structures were periodic in the x, y and z-directions, but separated by 30 Å of
vacuum in the z-direction. Physically, this means that the surface is infinite in the
x, y-plane; and there are an infinite amount of such surfaces in the z-direction. This
is perfectly possible due to the periodicity of the projector augmented plane waves
described in Section 3.1. All structures were built with the lattice parameters in
Table 3.1 and Table 3.2. However, for all structures, and all exchange-correlation
functionals, the structures were optimized to minimize the energy; this is especially
important for the (

√
5×
√

5)R27◦ structures, due to the interface between palladium
and palladium oxide. The structures were optimized with the BFGS algorithm,
using a cutoff energy of 450 eV and (6, 6, 1) k-points according to the Monkhorst-
Pack scheme (3.4). The choice of cutoff energy and k-point sampling is based on
the convergence from Section 3.4. Since the size of the structure in the x, y-plane
is approximately two times that of the primitive cells of palladium and palladium
oxide, half as many k-points are needed in the reciprocal space. Similarly, the
reciprocal space is as well sampled for the structure when only one k-point is used
in the z-direction.

3.7 Initial State
When the surface structures had been relaxed to their minimum-energy configura-
tion, the methane molecule was added to the system. To find the adsorption position
of the methane molecule on the surface, i.e., the global minimum of the potential
energy surface, the BFGS algorithm was used once more. From above, and side-
ways from, the adsorption position, the potential energy surface is very flat, thus
making it difficult for the minimization algorithm to converge to the correct energy.
Therefore, the methane molecule was initialized close to the surface in the exponen-
tially repelling region of the potential energy surface. The exponential wall in the
1-dimensional potential energy surface is shown in Figure 4.6. The strong repulsive
force acting between the surface and the methane molecule makes it easier for the
BFGS algorithm to find the global energy minimum. The adsorption energy and
hydrogen-carbon-hydrogen angle for all structures and exchange-correlation func-
tionals can be seen in Table 3.4.
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Table 3.4: The Adsorption energy and H–C–H bond angle for the five potential
structures and three potential exchange-correlation functionals.

Structure XC-functional Adsorption Energy [eV] H-C-H Angle [°]

1 layer -
√

5 PBE -0.022 109.6

1 layer -
√

5 CX -0.201 110.6

1 layer -
√

5 BEEF -0.0970 110.2

2 layers -
√

5 PBE -0.130 114.4

2 layers -
√

5 CX -0.429 115.4

2 layers -
√

5 BEEF -0.177 112.2

7 layers PdO PBE -0.170 114.9

7 layers PdO CX -0.479 116.4

7 layers PdO BEEF -0.186 112.8

5 layers PdO PBE -0.159 115.3

5 layers PdO CX -0.448 116.2

5 layers PdO BEEF -0.182 112.8

5 layers PdO - fixed PBE -0.182 114.9

5 layers PdO - fixed CX -0.469 116.5

5 layers PdO - fixed BEEF -0.192 112.9

3.8 Choice of Structure and
Exchange-Correlation Functional

Since the density functional theory calculations are very computationally expensive,
it would not be possible to consider all structures and exchange-correlation function-
als in a reasonable time frame. Therefore, this section will be dedicated to explain
the reasoning behind the choice of structure and exchange-correlation functional.

In Table 3.4 it can be seen that the BEEF functional has problems with the activa-
tion of the methane molecule at the adsorption position. Even though van der Waals
interactions are accounted for, the adsorption energies are relatively small. The an-
gles between the two saddling hydrogen atoms are considerably smaller, indicating
that the adsorption of methane on the surface was not satisfactorily calculated.
Therefore, since the adsorption is the most important process, the BEEF functional
was discarded. Both the PBE and CX exchange-correlation functionals show satis-
factory activation of the methane molecule and reasonable activation energies. The
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same can be concluded when studying the vibrational modes of methane, seen in
Table 3.3. The lattice parameters in Table 3.1 and Table 3.2 are in better agreement
with experimental values when using the CX functional, while the cohesive energy
and the formation energy are in better agreement when using the PBE functional.
The choice of exchange-correlation functional fell on the CX functional, due to the
larger angle and adsorption energy of the methane molecule on the surfaces.

The choice of structure was solely based on the results from Table 3.4. The ad-
sorption energy and activation of the methane molecule, the H–C–H angle, are
considerably larger when studying the 2 layers -

√
5 structure compared to the 1

layer -
√

5 structure. This is not strange, since the 1 layer -
√

5 structure does not
contain any 3-fold coordinated palladium atoms, i.e., a palladium atom with one
oxygen atom on each side and one directly beneath, shown in Figure 2.1. 2 layers
-
√

5, 7 layers PdO, 5 layers PdO, and 5 layers PdO - fixed all show very similar
adsorption energies and H–C–H angles; with somewhat larger absolute values when
any pure palladium oxide was studied. Since all structures seemed satisfactory, the
structures with the lowest computational cost were prioritized, i.e., 5 layers PdO
and 5 layers PdO - fixed. In order to make the surface more bulk like, the struc-
ture with fixed atomic positions in its bottom layer was chosen. This simplifies the
calculation a bit, and also makes the surface more robust, since it will not move
in the collision with incoming methane molecules. Therefore, from here on, only
the exchange-correlation functional CX and the 5 layers PdO - fixed structure were
used.

3.9 Activation Energy
In order to determine the activation energy of the methane dissociation and the
minimum energy transition path (see Figure 2.2), the final state of the structure
needed to be determined. The BFGS algorithm was used, similar to when the initial
state was found. The energy of the final state was found to be 0.40 eV lower than
that of the initial state. With the initial and final states of the dissociation reaction
determined, the climbing image nudged elastic band method was applied in order
to find the minimum energy transition path and the activation energy. Between
the initial and final states, seven images were interpolated, over which the elastic
band was spanned. The energies and forces in the nudged elastic band method
were minimized with the BFGS algorithm, until the convergence criteria were met.
The criteria were the same as for the systems; a converged result is obtained when
the forces on each atom, in all images, are below 0.05 eV/Å. To check whether the
correct transition path, and activation energy, was found, a vibrational analysis was
performed on the methane molecule at the saddle point in the reaction path. If the
methane molecule is, in fact, in a saddle point in the potential energy surface, the
molecule should have only one imaginary vibrational mode. The results from the
nudged elastic band calculations and the vibrational analysis are shown in Section 4.1
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3.10 Training data
It is impossible to sample the whole 135-dimensional space to be used as training
data for the neural networks. Therefore, the physically most probable, and impor-
tant, positions were sampled first. Firstly, the atoms in the surface and methane
molecule were thermally disordered from a Maxwell-Boltzmann distribution, entail-
ing an artificial temperature around 800 K, after which the Velocity Verlet algorithm
was applied. DFT simulations were performed to calculate the trajectories with the
thermal vibrations captured. The positions of all atoms in a system, the energy
of the system, and the 135 partial derivatives were stored for each time step in the
Velocity Verlet algorithm. The same was done for the dissociated methane molecule,
i.e., free methyl and hydrogen moving on the surface. Transition paths, including the
minimum energy transition path, for the dissociation process were determined with
the use of nudged elastic bands. Since the molecular dynamics and the transition
paths are biased towards certain positions and configurations, methane molecules
with random orientation were sampled in the regions with low sampling rate, in
order to get a more well sampled space. The training data set consisted of a total of
20898 systems, with corresponding energies and forces. Each system was built with
1 × 2 × 5 primitive cells of palladium oxide (101) and one methane molecule, i.e.,
20 palladium atoms, 20 oxygen atoms, one carbon atom and four hydrogen atoms.
The distribution of the carbon atom in the methane molecule in the training data
set can be seen in Figure 3.8.

Figure 3.8: The position of the carbon atoms in the training data set. The left
most figure shows the distribution in the x, y-plane for methane molecules 0–
3 Å above the surface in the z-direction with respect to the centered palladium
atom. The rightmost figure is the distribution of training data in the x, y-plane
for methane molecules 3–6 Å above the surface in the z-direction, with respect
to the centered palladium atom.

The leftmost figure in Figure 3.8 shows the close distance region between the methane
molecule and the surface, between 0–3 Å in distance in the z-direction. Since the pal-
ladium oxide (101) surface has a wave-shaped structure (see Figure 2.1), the distance
is ambiguous; hence the palladium atoms are set as the reference in the z-direction.
Due to the reference, it can be seen that the number of sampled methane molecules
is rather small above the left oxygen atom, since the position of that atom is above
the palladium atoms, and the exponential wall, i.e., where the repelling forces are
very large, becomes more prominent at larger z-positions. The rightmost figure
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shows the carbon positions of the methane molecules with a distance of 3–6 Å to the
reference palladium atoms in the surface in the z-direction. This space is heavier
sampled, since all positions in this region are possible, unlike the close range re-
gion, where the methane molecule is repelled close to the surface. Even though the
distance between the methane molecules and the surface is larger, this data is also
important when the neural network predicts the energies in the close range regions,
since interactions with palladium atoms and oxygen atoms in the inner layers of the
surface are also accounted for.

3.11 Construction of the Neural Network
The neural network, used for predicting the potential energy surface and its gra-
dients, was constructed using the AMP software. For each atom, a cosine cutoff
function with a cutoff radius of 6.5 Å was used, according to (3.12). The number of
symmetry functions was chosen to be 56, for each atom; 16 pair interaction functions
(3.11) and 40 triplet interaction functions (3.13). The parameters of the Gaussian
functions were the same for each element. For the four pair-interactions, the η values
were 0.05, 0.23, 1.07 and 5, resulting in 16 total functions. For the triplet-interaction
functions, η was always 0.005, and the four combinations of (ζ, γ) where (1,±1) and
(4,±1). The different (ζ, γ), ranging over all possible combinations of triplets for a
given element, equals 40 triplet-interaction functions. The feature vectors, and the
gradients, were calculated for each system in the training data set.

For each element, a fully connected, feed-forward neural network was constructed.
The number of input layers for each neural network is the same as the number
of feature vectors. The energy output corresponds to one output neuron, and the
gradient of the energy corresponds to three output neurons. To ease the interpolation
between the feature vectors and the outputs, each network was constructed with two
hidden layers, each containing 20 neurons. A few different architectures were also
tested, including 2× 10, 3× 10, 3× 20, 2× 40 and 2× 64 hidden neurons. However,
when the number of hidden neurons increases, the number of weights increases
approximately quadratically, and the training time increases rapidly. After training
each of the network on approximately half the training data set, only including
systems with temperatures between 0–425 K, the optimal architecture was chosen
to be 2 × 20 hidden neurons for all four neural networks, due to the relatively fast
training, decreased risk of overfitting, and large reduction of the loss function. The
activation function for each neuron was chosen to be the tanh function. The loss
function of the combined neural networks (i.e., sum of the four networks) is given
in (3.17) as

L = 1
2

Nµ∑
µ=1

 1
N2

(
Eµ,Amp − Eµ,DFT

)2
+ α

3N

N∑
i=1

3∑
k=1

(
Fµ,i,k,Amp − Fµ,i,k,DFT

)2
, (3.17)

where Nµ = 20898 is the number of training images, α = 0.05, and N = 45 is the
number of atoms in the system. The combined neural network was trained for 1200
epochs, after which, the RMSEs for the energies and forces, for the entire systems,
were 0.103 eV, and 0.174 eV/Å with respect to the training data, respectively.
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3.12 Molecular Dynamics Simulations
In order to predict the ratio between the number of dissociated methane molecules
on the surface and the number of incoming methane molecules, a large number of
molecular dynamics simulations had to be performed. The forces used to perform
the Velocity Verlet algorithm, i.e., the gradients of the potential energy surface, were
predicted with the trained neural network. However, in order to obtain a satisfac-
tory number of trials for the whole process, i.e. the adsorption and the dissociation
reaction, with as small a time step as possible, some approximation had to be made.
The event was divided into two parts. Firstly, the probability of adsorption on the
surface was determined. Secondly, the probability of a dissociation reaction was de-
termined. This can be done without loss of accuracy, since the only positions where
the methane molecules can be adsorbed on the surface is around the initial position
of the dissociation reaction (see Figure 4.7). Since all dissociation reactions must
follow an adsorption process, the probability that an incoming methane molecule is
adsorbed, and dissociated, on the surface, can be determined by the product of the
two probabilities. Additional predictions for the activation energy of the dissocia-
tion process and determination of the potential energy surface were also performed,
partly to check the accuracy of the predictions, partly to obtain results that would
otherwise be too computationally expensive to obtain.
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Results are sometimes very difficult to interpret; but sometimes a simple plot can
explain everything one wants to know. Here, the main results will be presented and
interpreted. It starts with results from the dissociation process, and continues with
the performance and results obtained by the neural network. The probability of
adsorption and dissociation, combined with a potential new dissociation event are
presented. Lastly, a brief discussion of possible errors and corrections is presented.

4.1 The Dissociation Process
The energy required to dissociate the methane molecule into a methyl molecule and
a free hydrogen atom without the use of a catalyst was calculated to be 6.63 eV.
The potential energy as a function of bond length is shown in Figure 4.1. The bond
distance in the methane molecule that minimizes the energy is 1.09 Å. The behaviour
of the energy as a function of bond length also strengthens the argument that the
energy can be expressed as a harmonic oscillator when the vibrational analysis is
performed.

1 2 3 4 5 6 7 8
Methyl - Hydrogen - Distance [Å]

6

5

4

3

2

1

0

Po
te

nt
ia

l E
ne

rg
y 

[e
V]

Optimal Distance = 1.09 Å

Figure 4.1: The potential energy of the methane molecule as a function of bond
length between the methyl molecule and the hydrogen atom.
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The results from the nudged elastic band calculations, minimized with the BFGS
algorithm, are shown in Figure 4.2. The minimum energy transition path with
corresponding activation energy calculated with DFT is shown in the leftmost figure.
Note that the potential energy is expressed with the initial state as reference. The
activation energy was determined to be 0.657 eV. Since the adsorption energy was
−0.469 eV, the apparent activation energy of the dissociation reaction was 0.188 eV.
The energy of the final state was 0.401 eV lower than the energy of the initial state.
The middle figure shows the neural network predicted energies and forces for the
minimum energy transition path determined from the DFT calculations. The neural
network predicted an activation energy of 0.750 eV, and an energy difference between
the initial and final state of 0.384 eV. In the rightmost figure, the minimum energy
transition path with corresponding activation energy determined purely with the
neural network is shown. The activation energy of the minimum energy transition
path was determined to be 0.693 eV. The neural network predicted an adsorption
energy of −0.434 eV, and a final state energy 0.384 eV lower than the initial state
energy. This means that the apparent activation energy predicted by the neural
network was 0.259 eV. The neural network also predicted the H–C–H angle to be
116.3◦. This agrees well with the DFT calculated angle 116.5◦.
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Figure 4.2: The minimum energy transition paths and activation energies cal-
culated with nudged elastic bands. The leftmost figure shown the transition
path calculated with DFT. The middle figure used the same transition path as
the left figure, but the energies and forces from the band are calculated with
the neural network. The rightmost figure shows the minimum energy transition
path calculated purely with the neural network.

To ensure that the determined activation energy was the true saddle point in the
potential energy surface, a vibrational analysis was done for the methane molecule.
The vibrational modes of the methane molecule at the assumed saddle point are
shown in Table 4.1. One vibrational mode has a large imaginary energy eigenvalue,
which in large captures the reaction path. The second vibrational mode, with a low
imaginary energy eigenvalue, has captured parts of the movement in the reaction
path. However, the results from the vibrational analysis ensure that the state is
positioned very close to a saddle point in the potential energy surface.
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Table 4.1: The vibrational modes with corresponding energies for the methane
molecule positioned at the transition state.

Mode Energy [cm−1]

1 1266 i

2 73.27 i

3 106.4

4 209.3

5 468.9

6 569.8

7 687.2

8 1024

9 1144

10 1375

11 1390

12 1598

13 2913

14 2988

15 3029

4.2 Neural Network Performance
The neural network, with 2×20 hidden neurons and 56 feature vectors per element,
predicted the energies approximately five orders of magnitude faster than DFT cal-
culations, and the forces approximately three order of magnitude faster than DFT
calculations. The difference in time gain is due to the computational differences
between DFT and the neural network. When using DFT, the obtained electron
density, used to determine the energy can, according to the Hellmann-Feynman the-
orem, be used to determine the forces as well, without much computational effort.
However, when using neural networks, the derivatives of the feature vectors, with
respect to all atoms and coordinates, need to be determined to obtain the forces in
the system. For a test data set, containing 4387 systems at 0 K, the energy RMSE
was determined to be 0.0254 eV, the energy MAE was determined to be 0.0196 eV,
and the Pearson correlation coefficient was determined to be 0.996. It is common
to see the energy errors expressed per atom, rather than the whole system. In that
case the energy RMSE per atom was determined to be 0.564 meV per atom, and the
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energy MAE 0.436 meV per atom. Note that this is for systems at 0 K, and that
the energy RMSE tends to increase with a factor 3-4 when the temperature of the
systems is increased to 800 K.
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Figure 4.3: The neural network predicted energies compared to the DFT-
calculated energies.

Table 4.2: The root-mean-square error, the mean absolute error and the Pearson
correlation coefficient for the test set. The errors are given for the whole system,
and the errors per atom is hence obtained if the values are divided by 45.

RMSE MAE r

0.0254 [eV] 0.0196 [eV] 0.996

An additional test to determine the accuracy of the neural network was done by
comparing the energies of DFT calculated trajectories of the system. In the tra-
jectories, the methane molecule and the surface were initially disordered following
a Maxwell-Boltzmann distribution corresponding to 600 K. The methane molecules
were initialized at random positions 4.827 Å above the surface, relative to the cen-
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tered palladium atoms. 300-400 steps were performed with the Velocity Verlet algo-
rithm, with the time step 1 fs. Six different trajectories were studied, and the energy
errors between the DFT calculations and the neural network predictions were cal-
culated. In Figure 4.4 the potential energies, relative to the free methane molecule
and the surface at 0 K, for the six trajectories are shown. The total energy MAE
and the energy RMSE, for all 2076 points in the six trajectories, were determined
to be 0.101 eV and 0.131 eV, respectively.
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Figure 4.4: The DFT calculated energies and the neural network predicted en-
ergies, relative to the free methane molecule and the surface at 0 K. The total
energy MAE and energy RMSE were determined to be 0.101 eV and 0.131 eV,
respectively.
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The temperature distribution for the six trajectories can be seen in Figure 4.5. It
is clear that even though the neural network was only trained for temperatures up
to 800 K, it could still predict the energies of systems with higher temperatures
with good precision. This can be explained by the feature vectors the neural net-
work used. Since they are based on distances between the atoms, translation and
rotational energies do not affect the energy predictions. There could, however, be
problems when the vibrational energies are too large, and the distances between the
hydrogen atoms and the carbon atom are too large. If only one carbon-hydrogen
distance is increased, it would not be a problem, since the neural network is trained
to predict energies of systems containing methyl and hydrogen. Problems could
arise for vibrational modes where more than one carbon-hydrogen bond length is
increased, since the training data did not contain systems at these temperatures,
nor systems with a methylene molecule and two free hydrogen atoms. The energy
RMSE for the trajectories can be compared with the energy RMSE for the train-
ing data set, which was determined to be 0.103 eV. The relatively small difference,
partly influenced by the increased temperatures in the six trajectories, shows that
there was no overfitting in the training of the neural network.
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Figure 4.5: The temperature distribution for the 6 trajectories shown in Fig-
ure 4.4.

4.3 Potential Energy Surfaces
The potential energy surface, on which all molecular dynamics simulations were
dependent, was predicted with the neural network. In Figure 4.6 the 1-dimensional
potential energy surface is shown for the adsorbed methane molecule on the surface.
The adsorption energy is expressed as a function of the distance between the carbon
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atom and the palladium atom, on which the molecule is adsorbed. As a sanity
check, a few DFT calculations were performed to compare with the neural network
predicted potential energy surface. The neural network predictions and the DFT
calculations agree very well, both in the repelling close range region, the adsorption
region, and in the long-range region. The energy MAE and energy RMSE are in
this region 0.0194 eV and 0.0230 eV, respectively.
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Figure 4.6: The one-dimensional potential energy surface for the methane
molecule at its adsorption position, and at translations in the z-direction.

The 2-dimensional potential energy surfaces for a methane molecule at different
heights above the surface at 0 K are shown in Figure 4.7. Of course, there exist an
infinite amount of such representations, dependent of the orientation on the methane
molecule. Therefore, two extreme cases were chosen. The left row in Figure 4.7
shows the potential energy surfaces for methane molecules with one hydrogen atom
directed straight towards the surface and one straight down in the y-direction, and
the right row shows the potential energy surfaces for the methane molecule with
one hydrogen atom directed straight away from the surface and one straight up
in the y-direction. The distance between the carbon atom and the surface, with
the centered palladium atom as reference, were chosen to be 2.46 Å (equal to the
adsorption position distance to the centered palladium atom), 3.0 Å, 4.0 Å and 5.0 Å,
shown in the first, second, third and fourth row, respectively. The potential energy
surfaces are above the primitive cell shown in Figure 4.8. It can be noted, that for the
equilibrium structure of methane, i.e., all angles 109.5◦, the largest adsorption energy
in any of the two extreme cases is −0.345 eV, compared to the global minimum with
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an adsorption energy of −0.434 eV, with more favourable rotation and angles in the
molecule. Since the methane molecule is very inert, and a large part of the potential
energy is due to van der Waals interactions, the distance between the surface and
the atoms in the molecule has a higher energy contribution than the orientation and
activation of the methane molecule. However, to reach the global minimum in the
potential energy surface, both orientation, activation and distance must be optimal.
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Figure 4.7: The potential energy surface for the methane molecule above the
primitive cell of the surface, shown in Figure 4.8, when one hydrogen atom is
directed straight toward the surface (left figures), and one hydrogen directed
straight away from the surface. The distances above the surface are 2.46 Å (first
row), 3.0 Å (second row), 4.0 Å (third row), 5.0 Å (fourth row).
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Figure 4.8: The primitive cell of the surface.

4.4 Sticking
To determine the probability of adsorption on the surface, methane molecules were
placed 3.827 Å above the surface, with random orientations and random x and y-
coordinates. The molecules were given an initial velocity of 0.0219 Å/fs correspond-
ing to 0.4 eV, directed in the negative z-direction. The surface was thermally disor-
dered with a Maxwell-Boltzmann distribution corresponding to 100 K. The Velocity
Verlet algorithm was then applied with a time step of 2 fs and 200 steps. The number
of incoming methane molecules was 12658. The methane molecule was considered
adsorbed if it was within 3 Å of the surface, in the z-direction, relative to the pal-
ladium atoms. This is motivated by Figure 4.7, since the within 3 Å of the surface,
the only positions of the surface that can adsorb a molecule are in close vicinity of
the initial position of the dissociation reaction. Due to the low temperature of the
surface, the adsorbed methane molecules stayed adsorbed on the surface. The num-
ber of methane molecules that were adsorbed on the surface was 570. Therefore, the
probability of adsorption is 0.045. The initial positions of the adsorbed (blue) and
repelled (red) molecules can be seen in Figure 4.9. When the methane molecule is
initialized straight above the active site, the chance of an adsorption event is large.
However, the chance of adsorption is also very large if the molecule is initialized
above the rightmost region of the primitive cell, even though this region is relatively
repelling (see Figure 4.7). This region, however, seems to be relatively soft, so that a
large fraction of the translation energy of the methane molecule is transferred to the
phonons in the surface. The repelled molecule then has a relatively small translation
energy directed from the surface, and can therefore be attracted back towards the
active site of the surface.
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Figure 4.9: The initial positions of the methane molecules in the trajectories
(with random orientations). The initial positions that resulted in an adsorption
and in a rejection are plotted as blue dots and red dots, respectively.

To study the adsorption in more detail, the initialization of the methane molecules
was constrained in the x, y-plane. The initialization was done analogous to previous
tests, but the only allowed positions in the x, y-plane were within the rectangle
[3.22, 3.82; 0.679, 2.279]Å in the primitive cell. The Velocity Verlet algorithm was
applied for 1 ps, with a time step of 2 fs. The total number of incoming methane
molecules was in this case 1062, and the number of adsorbed molecules was 76. The
probability of adsorption is, in this case, 0.072. If one compares previous probability,
this emphasises the importance of favourable collision on the surface in order for a
methane molecule to be adsorbed. In some cases, if a methane molecule collided
with an unfavourable position on the surface (see Figure 4.7), the repelled molecule
could be attracted by the favourable positions and drawn back to the surface, if a
large portion of the translation energy was transferred to vibrational and rotational
energy or vibrations in the surface.

To study the dissociation process, the methane molecule was initialized at the global
minimum of the potential energy surface, i.e., the initial position of the dissociation
process. The surface was left unchanged, thermally disordered with a Maxwell-
Boltzmann distribution corresponding to 100 K. The atoms in the methane molecule
were given completely random momenta, via a Maxwell-Boltzmann distribution cor-
responding to 0.85 eV. This value is the sum of the initial kinetic energy of the
methane molecule and the average neural network/DFT calculated adsorption en-
ergy value. Due to the high energies and large velocities, a time step of 2 fs for the
Velocity Verlet algorithm was not satisfactory to capture the correct vibrations of
the methane molecules and their interactions with the surface, hence not conserving
the total energy of the system. The time step was therefore chosen to be 1 fs applied
for 200 iterations. The methane molecule was considered dissociated if the distance
between the carbon atom and any hydrogen atom was larger than 2 Å. If one con-
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siders Figure 4.1, this would require an energy of approximately 3 eV without a
catalyst. For 8415 dissociation trials, only one of the methane molecules dissociated
on the surface, yielding a probability of 0.00012. In summation, this implies that
the probability of an incoming particle being both adsorbed and dissociated on the
surface, under these conditions, is 5.4 · 10−6.

In order to study the temperature dependence of the dissociation reaction, the
atoms in the methane molecule were also given completely random momenta, via
a Maxwell-Boltzmann distribution corresponding to 1.0 eV, with an otherwise com-
pletely analogous environment. In this case, three out of 2567 trails resulted in a
dissociation event, corresponding to a probability of 0.0012. Interestingly, none of
the four dissociation events, either in the 0.85 eV-case or the 1.0 eV-case, resulted
in a dissociation reaction path described in Figure 2.2 and Figure 4.2, where the
hydrogen atom approaches the high-positioned oxygen atom. Instead, the methyl
molecule was hybridized as suspected, but the hydrogen atom approached the inter-
stitial, right between the centered palladium atoms, which can be seen in Figure 4.10.
Note, that due to the symmetry of the surface, this is equivalent to the state obtained
if the system is reflected in the horizontal axis.

Figure 4.10: The methyl group and the interstitial hydrogen atom after the
dissociation process that occurred.

The nudged elastic band calculation performed with the neural network showed that
the activation energy to reach the state shown in Figure 4.10 was actually lower than
the activation energy yielded in Figure 4.2. In Figure 4.11 the minimum energy
transition path between the initial state and the newly found local minimum is
shown. The activation energy of this dissociation process is 0.578 eV, corresponding
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to an apparent activation energy of 0.109 eV. However, the final state of this process
is 0.276 eV higher in energy than the initial state, suggesting that the hydrogen atom
might continue towards the global minimum, showed in Figure 2.2, in later stages of
the process. The energy difference between this local minimum and the initial state
was also calculated with the BFGS algorithm using DFT. The energy difference
between the two stages was determined to be 0.317 eV, which is in good agreement
with the neural network prediction. This dissociation process, might be followed by
the reverse reaction, since the activation energy is relatively small, and the energy
difference favours the reverse reaction. However, it might also work as an alternative
reaction path, in order to reach the final state, where the hydrogen atom is bonded to
the high-positioned oxygen atom; either the previously believed, or the oxygen atom
in another row. The existence of alternative reaction paths is a logical explanation
to why so few methane molecules are dissociated for molecular dynamics simulations
during 200 fs.

Figure 4.11: The minimum energy transition path and activation energy calcu-
lated with nudged elastic bands for a possible, alternative, dissociation path,
predicted by the neural network.

4.5 Potential Errors and Corrections
The three most probable causes of errors are due to the DFT calculations, the
training data, and the architecture of the neural network. The surface, containing
1×2×5 primitive cells of palladium oxide (101), i.e. 2×2×5 palladium atoms, might
not be large enough to describe all interactions and surface vibrations. However,
since the computational cost increases rapidly with the number of atoms in the
system, and the neural network had to be trained with a large number of systems,
this compromise is deemed acceptable. The cutoff energy and number of k-points
used were determined solely by the energies and lattice parameters of the bulk
structures. To avoid undesirable energy fluctuations, more plane waves could have
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been used, in a more heavily sampled reciprocal space. However, this would also be
computationally more costly; and since the results of the adsorption energy, H–C–H
angle, and activation energy are consistent with previous results, the cutoff energy
and number of k-points were most likely enough. Compared to the neural network,
the errors caused by the DFT calculations are considered negligible.

Due to memory storage problems, the size of the training data set was limited to
roughly 20 000 systems. If more training data were used, more hidden neurons could
have been used with a lower chance of overfitting. However, the network used in this
project, with 2 × 20 hidden neurons, required approximately 10 days to train 1200
epochs of the training data set, although parallelized over 20 cores. More hidden
neurons, with a larger training data set might require other sacrifices, such as fewer
feature vectors and a smaller number of epochs during the training. The cutoff
radius, used to determine the local environment around each atom was chosen to
be 6.5 Å, to capture surface vibrations and adsorption energies at larger distances.
However, since this cutoff radius is slight larger than the cell size, carbon-carbon
interactions are, to a small degree, captured in the feature vectors. This could have
been avoided with the use of a larger cell size.

It has been explained how the vibrational energies of methane molecules of higher
temperatures could be predicted, despite not being part of the training set. How-
ever, to be able to use even larger energies of the incoming molecules, and obtain
more accurate predictions during the collisions, the training data set could either in-
clude systems of higher energies, or, apart from methyl-hydrogen configurations, also
include methylene-hydrogen-hydrogen configurations. This would capture higher vi-
brational energy states of the methane molecule, as well as higher energy states of
the methyl-hydrogen configuration, after the dissociation process.
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5.1 Reflections
The global minimum in the potential energy surface, obtained from the DFT cal-
culations, confirmed that the active sites of the palladium oxide (101) surface are
the 3-fold coordinated palladium atoms. As suspected, the (

√
5 ×
√

5)R27◦ struc-
ture of palladium (100) with one palladium oxide (101) layer on top did not yield
a sufficient adsorption energy or methane activation, due to the absence of 3-fold
coordinated palladium atoms. However, if two layers are used, the activation and
adsorption energy are comparable to those of bulk palladium oxide (101). The
adsorption energy and the activation of the methane molecule are dependent on
the exchange-correlation functional, with the functionals yielding the most reliable
results being PBE and CX.

The activation energy for the dissociation of methane on the surface, using the
exchange-correlation functional CX, was determined to be 0.657 eV. The apparent
activation energy was determined to be 0.188 eV, which is slightly lower than pre-
vious computational and experimental results. The final state of the dissociation,
where methyl is bonded to the 3-fold coordinated palladium atom, and the hydrogen
atom is bonded to the oxygen atom, was 0.401 eV lower in energy than the initial
state of the dissociation.

The trained neural network was able to predict the energies and forces approximately
100 000 and 3000 times faster than DFT, respectively. The mean absolute energy
error was determined to be 0.436 meV per atom at 0 K, and 2.24 meV per atom
for a Maxwell-Boltzmann distributed temperature distribution centered at 600 K.
Note that this includes temperatures outside the trained interval. Due to the use of
feature vectors, rather than atomic positions, the neural network could, potentially,
be applied on systems of other sizes and structures.

Thanks to the amplified computational speed when using neural networks, it was
possible to predict the trajectories of a large number of incoming methane molecules
approaching the surface. From 12658 incoming methane molecules, with completely
random positions and orientations, and a translation energy of 0.4 eV, directed to-
wards the surface with a temperature of 100 K, it was possible to determine the rate
of adsorption. The ratio of adsorption was determined to be approximately 4.5%,
which is in good agreement with previous experimental studies on other noble metal
catalysts. It can also be concluded that the possibility of adsorption was heavily
dependent on the initial positions of the methane molecules; the probability was
the greatest when the initialization occurred right above the active site, or at the
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rightmost part of the primitive cell.

The probability of dissociation of methane on the surface, was considerably lower
than the probability of adsorption, for this choice of energy and surface tempera-
ture. During 200 fs, only one dissociation event occurred, out of 8415 trials. How-
ever, when the methane molecule was given an additional 0.15 eV, the probability
of dissociation was increased by a factor of ten. The dissociation did, however, not
occur the same way as the previously believed most probable transition path. In-
stead, the hydrogen atom took an interstitial position between the palladium atoms.
The activation energy of this transition path was approximately 0.08 eV lower than
if the hydrogen atom moved directly to the oxygen atom. However, the energy of
the interstitial position was higher than both the initial state and oxygen-hydrogen
bonded state, which indicates that the hydrogen atom might continue towards either
of the high-positioned oxygen atoms. If the energy required to do so is relatively
small, this newly discovered dissociation event might be the dominating one.

5.2 Outlook
There are two very clear directions for further research. The newly discovered dis-
sociation event can be studied in more detail. The neural network predictions have
been able to suggest the transition path, but nudged elastic bands, calculated with
DFT would have to be used to study both the transition path between the initial
state and the interstitial state, and the transition path between the interstitial state
and possible final states in more detail.

The adsorption and dissociation, or more precisely the sticking of methane on the
palladium oxide (101) surface, could be determined at different surface temperatures
and energies of the incoming methane molecule. It is believed that the adsorption
would decrease and the dissociation would increase, as the temperature increases.
However, at higher temperatures, the dissociation would need to happen instanta-
neously after adsorption, since the methane coverage on the surface at these temper-
atures is extremely low. Hopefully, the temperature yielding the maximum sticking
can be found from the perfect compromise between adsorption and dissociation.
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