
Finding Potential Detections of
Dust in Protoplanetary Disk Winds
Using Machine Learning to Filter, Classify and Present ALMA-
data

Bachelor’s thesis in Space, Earth and Environment

Peter Fagrell, Jens Kollberg, Elias Rasmussen,
Erik Redmo Axelsson, Oskar Svensson, Alexander Ybring

DEPARTMENT OF SPACE, EARTH AND ENVIRONMENT

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2023
www.chalmers.se

www.chalmers.se

Bachelor’s thesis 2023

Finding Potential Detections of
Dust in Protoplanetary Disk Winds

Using Machine Learning to Filter, Classify and Present ALMA-data

PETER FAGRELL
JENS KOLLBERG

ELIAS RASMUSSEN
ERIK REDMO AXELSSON

OSKAR SVENSSON
ALEXANDER YBRING

Department of Space, Earth and Environment
SEEX16

Chalmers University of Technology
Gothenburg, Sweden 2023

Finding Potential Detections of Dust in Protoplanetary Disk Winds
Using Machine Learning to Filter, Classify and Present ALMA-data
PETER FAGRELL, JENS KOLLBERG, ELIAS RASMUSSEN,
ERIK REDMO AXELSSON, OSKAR SVENSSON, ALEXANDER YBRING

© Peter Fagrell, Jens Kollberg, Elias Rasmussen, Erik Redmo Axelsson, Oskar
Svensson, Alexander Ybring, 2023.

Supervisor: Per Bjerkeli, Department of Space, Earth and Environment
Supervisor: Maria Carmen Toribio, Department of Space, Earth and Environment
Examiner: Magnus Thomasson, Department of Space, Earth and Environment

Bachelor’s Thesis 2023
Department of Space, Earth and Environment
SEEX16
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: The protoplanetary disk of crAus_09 resembling a smiley extracted from the
ALMA project 2019.1.01792.S. The image has been identified by a Convolutional
Neural Network as candidate detection of dust in the wind.

Typeset in LATEX, template by Kyriaki Antoniadou-Plytaria
Gothenburg, Sweden 2023

iv

Finding Potential Detections of Dust in Protoplanetary Disk Winds
Using Machine Learning to Filter, Classify and Present ALMA-data
Peter Fagrell, Jens Kollberg, Elias Rasmussen, Erik Redmo Axelsson,
Oskar Svensson, Alexander Ybring
Department of Space, Earth and Environment
Chalmers University of Technology

Abstract
Star formation begins when clouds of dust and gas starts to collapse under the force
of their own gravity. Eventually, a protoplanetary disk is formed in the central
region. Because of magnetic fields, gravity and rotation, material is ejected through
jets and winds that sweep up gas from the surrounding envelope and form an outflow.
These outflows remove angular momentum which permits a star to form in the
center. In the disk, small grains eventually starts to clump together to become
planets. Whether lifting of dust via winds affect the planet formation process is
yet not understood, but it is a research topic (e.g. Pascucci et al., 2022) where this
project could contribute.

The project aims to automatically extract images from the Atacama Large Millime-
ter/submillimeter Array (ALMA) Science Archive that indicates dust lifting from
disks via the aforementioned winds, with the use of a Convolutional Neural Network
(CNN). Additionally, the network should be flexible enough to be applied to other,
similar problems. With the help of ALminer observations are fetched and then fed
to the CNN to filter out objects of interest. Due to a low number of known observa-
tions that could possibly depict dust in the wind, images are augmented to produce
sufficient training data. During training of the CNN, a portion of the training data
is reserved for determining the accuracy of the network. Finally, it is applied to a
part of the ALMA archive chosen through keywords and presents images it labels
as positive.

The methods mentioned led to an extraction of several observations. Prediction of
labels was performed by the CNN with high accuracy and it can, with modification,
act as a general model for other astronomical phenomena. In conclusion, a publicly
available and free tool was created that can support researchers in their collection of
data from the ALMA archive, minimizing manual labor and advancing the studies
of the universe.

Keywords: Protoplanetary Disk, Outflows, Star, Winds, ALMA, CNN, ALminer

v

Finna Potentiella Detektioner av Stoft i Protoplanetära Diskvindar
Använda Maskininlärning för att Filtrera, Klassifiera och Presentera ALMA-data
Peter Fagrell, Jens Kollberg, Elias Rasmussen, Erik Redmo Axelsson,
Oskar Svensson, Alexander Ybring
Institutionen för Rymd-, Geo- och Miljövetenskap
Chalmers Tekniska Högskola

Sammandrag
Stjärnbildning börjar när moln av stoft och gas kollapsar under sin egna gravita-
tion. Till slut formas en protoplanetär skiva i den centrala regionen. På grund
av magnetiska fält, gravitation och rotation accelereras material iväg via jetstrålar
och vindar som sveper upp omgivande gas vilket bildar ett utflöde. Dessa utflöden
avlägsnar rörelsemängdsmoment vilket tillåter en stjärna att bildas i centrum. I
disken finns stoft som klumpar ihop sig för att till slut bli planeter. Ifall vindarna
bär med sig stoft ur de protoplanetära diskarna och hur det påverkar planetbildning
är för tillfället ett forskningsämne (t.ex. Pascucci et al., 2022), vilket detta projekt
ämnar att bidra till.

Projektets syfte är att automatiskt finna bilder tagna av Atacama Large Millime-
ter/submillimeter Array (ALMA) som potentiellt visar på stoft som lämnar proto-
planetära diskar genom de tidigare nämnda vindarna. Dessa ska hittas med hjälp
av ett Convolutional Neural Network (CNN). Dessutom ska programkoden bakom
vara flexibel nog för att kunna appliceras på andra, liknande problem. Observa-
tionerna hämtas från ALMA Science Archive genom verktyget ALminer, som sedan
matas till ett CNN som filtrerar ut objekt av intresse. På grund av ett lågt antal
kända observationer som möjligtvis avbildar stoft i vinden augmenteras bilder för
att producera tillräcklig träningsdata. Under exikvering tränas CNN:et under ett
givet antal epoker (gånger) på träningsdatan, testas på en del av den, för att sedan
rapportera dess träffsäkerhet. Till slut appliceras den på en del av ALMA-arkivet
som valts ut genom nyckelord och presenterar bilder den märkt som positiva.

Med de tidigare nämnda metoderna kunde ett CNN tränas till att uppnå syftet
med projektet. Med en hög träffsäkerhet kunde ett flertal dittills okända bilder
tagna av ALMA lokaliseras och tillges forskarsamfundet. Kungörandet av koden och
dess dokumentation möjliggör en generalisering till andra, liknande forskningsyften.
Projektet som helhet kan hjälpa forskare i deras analys av ALMA-arkivet, samtidigt
som det kan minska mängden manuellt arbete och avancera studierna av rymden.

Nyckelord: Protoplanetär Skiva, Utflöden, Vindar, Stjärna, ALMA, CNN, ALminer

vii

Acknowledgements
A big thank you goes out to Per Bjerkeli for his outstanding work as a supervisor.
With great input, humour and spirit, he has guided us throughout the course of this
project whilst maintaining our motivation. On top of this, his astronomic cunning
and passion for knowledge made for a great cooperation, which allowed the success of
this project. Hopefully, the tool we provide will help further his research henceforth.

Another massive effort was made by Maria Carmen Toribio. She deserves a thank
you for also contributing to the lovely work environment we have had. Acting as a
connection to the ALMA observatory, she immediately set us on the right path and
made sure we had all the equipment and tools necessary. Great weight has been put
on her feedback and expert opinion throughout the entirety of this project.

We would also like to thank Jon, Adele and Henrik for inspiration, understanding
and support.

Peter Fagrell, Jens Kollberg, Elias Rasmussen,
Erik Redmo Axelsson, Oskar Svensson, Alexander Ybring,
Gothenburg, 2023

Plenty of ALMA data was collected during the process of training, testing and
presenting images of potential dust in the wind. Its corresponding projects appear
in respective appendix, see appendix A and B.

ix

List of Acronyms

Below is the list of acronyms that have been used throughout this thesis listed in
alphabetical order:

ALMA Atacama Large Millimeter/submillimeter Array
ANN Artificial Neural Network
CNN Convolutional Neural Network
FN False Negative
FP False Positive
GUI Graphical User Interface
NN Neural Network
PBCOR Primary Beam CORrection
RELu Rectified Linear Unit
TN True Negative
TP True Positive

xi

Contents

List of Acronyms xi

1 Introduction 1
1.1 Aim . 2

2 Theory 3
2.1 Star Formation . 3

2.1.1 Winds and Jets . 4
2.2 ALMA Observatory . 5
2.3 ALMA Science Archive . 6

2.3.1 ALminer . 6
2.3.2 Data Features . 7

2.3.2.1 Primary Beam Correction 7
2.3.2.2 Continuum . 7
2.3.2.3 Science Target Data 8
2.3.2.4 Integration time . 8
2.3.2.5 Spectral Window or Frequency Ranges 8

2.3.3 Flexible Image Transport System 9
2.4 Neural Networks . 10

2.4.1 History of Neural Networks 10
2.4.2 Convolutional Neural Networks 10

2.4.2.1 Architecture . 11
2.4.3 Supervised learning . 15
2.4.4 Training a Convolutional Neural Network 15
2.4.5 Display and Evaluation of Performance 17
2.4.6 TensorFlow . 18

2.5 Image Augmentation . 19
2.5.1 Linear Transformation . 20
2.5.2 Non-Linear Transformation 21

2.5.2.1 Geometric Mean Square 21

xiii

Contents

3 Methods 23
3.1 Data Retrieval . 23

3.1.1 Querying and Extracting Data 23
3.2 Annotating data . 24

3.2.1 Positive vs. Negative . 25
3.3 Data Set . 26

3.3.1 Positive Data Set . 26
3.3.2 Negative Data Set . 26

3.4 Implementation of the Convolutional Neural Network 27
3.4.1 Architecture . 27
3.4.2 Evaluation . 28
3.4.3 Choices of Parameters and Functions 28

4 Results 31
4.1 Training Data . 31

4.1.1 Extracted data . 31
4.1.2 Linear Augmentation . 32
4.1.3 Non-linear Augmentation . 33

4.2 Convolutional Neural Network . 34
4.3 Positive Classed Images . 35

5 Discussion 37
5.1 Data Retrieval . 37
5.2 Image Handling . 37

5.2.1 Small FITS-files Compatibility 37
5.2.2 Possible Mistakes in Annotation 38

5.3 Bias . 39
5.4 Convolutional Neural Network . 39
5.5 Images classified as positive by the Network 39
5.6 Documentation . 39
5.7 Further Work . 40

5.7.1 User Friendliness . 40
5.7.2 Multiple Objects in Same FITS 41
5.7.3 More Non-linear Transformations 41

6 Conclusion 43

Bibliography 50

A Initially Known Positive Images I

B CNN Classified Positive Images III

xiv

Contents

C Main and Neural Network Pipeline IX

D Image Processing XIII

E Neural Network Backend XVII

F ALminer XIX

xv

Contents

xvi

1
Introduction

The process of star formation begins when clouds of dust and gas starts to collapse
under the force of gravity (Bolles, 2023). Eventually due to conservation of angular
momentum, a disk is formed in the central region. Here, magnetic fields, gravity
and rotation conspire, to eject an outflow of material that moves away from the disk
and that removes angular momentum from the system (Pudritz and Norman, 1983;
Sheikhnezami et al., 2012; Gressel et al., 2015). The removal of angular momentum
in turn permits a star to form in the central region. There is still much uncertainty
regarding a variety of aspects about these outflows, in particular how the launching
takes place. If dust can be carried out of protoplanetary disks in this manner and
how this affects the system (Shu, 1997; Blandford and Payne, 1982).

Only a few known observations of what is potentially dust being carried out of
protoplanetary disks by wind have been found. All of these are speculations built
on similarities between these and the proposed ideas from Shoemaker et al. ([n. d.]),
studying the source HH212. These extensions of dust, differentiable by irregularities
around the disks, are fundamental to this project. Whether dust can be lifted away
from disks via winds is not yet known.

The Atacama Large Millimeter/submillimeter Array (ALMA) (ALMA Observatory,
2023) is an observatory located at approximately 5000 meters above the sea level in
northeastern Chile. Its 66 antennas work together to capture high resolution images
of everything from our own solar system, to objects within the Milky Way Galaxy,
to distant galaxies (NRAO, 2023). It does so by capturing light in the bandwidth
between radio and infrared. These images are then stored in the public ALMA
Science Archive.

The archive holds almost 60 000 unique observations to date (Atacama Large Mil-
limeter/submillimeter Array, 2023). To manually review each and every one of these
would be a time consuming and tedious effort. Once a specific observation is found
however, it is often of interest to find more of a similar fashion. An example of this

1

1. Introduction

is dust in protoplanetary disk winds. to automate the process of finding objects in
space with correlating indicators is crucial for further analysis of the phenomena
mentioned. One way of doing this is to utilize a machine learning technique called
Convolutional Neural Network (CNN), which can be trained to recognize objects in
images in similar ways as humans.

1.1 Aim
The aim of this project is to be able to filter through an extensive archive to separate
images that are particularly interesting from an observational point of view. In our
case, we want to search for images of disks with potentially winds that contain dust.
Finding more potential sources of dust in the wind would enhance our understanding
of to what extent winds can carry away dust from protoplanetary disks. If it is a
common phenomena, recent results from HH212 could be put into a broader context.
To achieve such a goal, a CNN is to be put in place to automatically separate these
observations. The capabilities of this CNN should be to analyze observations from
the ALMA Science Archive, single out certain traits of the given event and find
similar objects.

The project is intended to simultaneously act as a blueprint for finding other types
of objects in the archive, for example spiral galaxies. Therefore, the project’s end
result will be publicly available and free to use with documentation explaining the
details of modification, which hopefully promotes a more effective research process
with less manual labour. Because of the project’s flexible applicability and the
conception that users of this project’s result might use it to find rare and exotic
phenomena, methods intended to help extend data sets through augmentations is
included in the program code.

2

2
Theory

This chapter presents all relevant facts and information that was used throughout
this project. It starts with the foundations, explaining the relevant astronomical
events that occur, including star formation and outflows. Following, ALMA and its
archive is described and last comes neural networks, which are the backbone of the
project.

2.1 Star Formation
Young stars originate from clouds of dust and gas that occur scattered throughout
many galaxies, as described in (Bolles, 2023). It is the variation in molecular density
in these clouds that starts the formation. The process is a complex phenomenon
which still has many uncertainties regarding how factors like size of the clouds, and
surrounding environment affect the formation (Shu, 1997; Blandford and Payne,
1982). The process will therefore be described one of the more studied cases which
is for isolated young low-mass stars. The formation can be divided into four main
stages, which are shown in figure 2.1.

3

2. Theory

Figure 2.1: Stages of the formation of an isolated young low-mass star by Bjerkeli
(2022).

The first stage begins when dense regions of dust and gas starts to form in the
clouds, which are of such critical mass that the gravitational pull makes them start
to collapse (Bolles, 2023). These pockets are created because of turbulence and
ambipolar diffusion that occur in the clouds’ magnetic field (Shu, 1997). The second
stage is categorized by the creation of a star-core with a surrounding centrifugally
supported disk, called a protostar. The gravitational collapse makes the disk accrete
matter which then falls into the core at a velocity that increases as the radii gets
smaller. This process is referred to as an inside-out collapse, meaning that as matter
falls into the core, the front of the accretion expands outwards. The third stage
starts when outflows is emitted from the system. These carry angular momentum,
energy and mass from the system (Shu, 1997; Sheikhnezami et al., 2012; Pudritz
and Norman, 1983; Gressel et al., 2015). Outflows are further elaborated in section
2.1.1. The fourth stage ends the formation and occur when the inflow cease, leaving
only the star without a surrounding disk, marking the creation of a new star.

2.1.1 Winds and Jets

The outflows described in the third stage of star formation in section 2.1 consists of
winds and jets that are emitted from the system (Shu, 1997; Sheikhnezami et al.,
2012; Pudritz and Norman, 1983; Gressel et al., 2015). These remove angular mo-
mentum and material that are transported to the disk through inflow of material
and are in many cases bipolar-streams that appear on both sides of the protostar.
The jets are beams of high velocity that are directed out from the protostar perpen-
dicular to the disk, while the winds spread at a wider angle. An example is shown
in figure 2.2,

4

2. Theory

Figure 2.2: Illustrated examples of some possible outflows by Bjerkeli (2023).

and are illustrations of images of protoplanetary disks with possible evidence of dust
in the wind as they would appear on images. These examples were provided to us
by Bjerkeli (2023) whose scientific research instigated this project. The outflows are
shown as extensions from a Gaussian disk1. There are many uncertainties regarding
these extensions (Shu, 1997; Blandford and Payne, 1982) and the actual formation
of the outflows. For example what it is that cause these winds to form, if they can
launch dust from the protoplanetary disk and if so to which degree, and how these
winds affect the formation of the star.

2.2 ALMA Observatory
The Atacama Large Millimeter/submillimeter Array (ALMA) is an astronomical
observatory located in the Atacama Desert of northeastern Chile (NRAO, 2023).
Together with the Republic of Chile, the site has been developed in collaboration
with teams from North America, Europe and East Asia, and scientific data has been
produced and extracted since 2011 (European Southern Observatory, 2011).

The observatory is made up of 66 antennas, with 54 of these measuring 12 meters
in diameter and the other twelve measuring 7 meters. The constellation provides
a tool to observe and study light in the frequency between radio and infrared (or
millimeter to submillimeter). The dry and cold climate of the Atacama Desert has
been carefully chosen since the millimeter to submillimeter light is easily absorbed
by water vapor which comes in abundance in most habitable areas of the globe.

ALMA is undoubtedly one of the most advanced observatories in the world, and
has provided scientists all over the world with data in their search for groundbreak-
ing discoveries in astrophysics and cosmology. Currently, a group of scientists at
Chalmers University of Technology are shining new light onto the research of solar

1A Gaussian disk is an ellipsoid with values spread as a normal distribution.

5

2. Theory

systems’ formation by studying observations taken by ALMA (Bjerkeli et al., 2021).
In order to continue their work, finding several, similar objects can be helpful for
their process.

2.3 ALMA Science Archive
ALMA is currently producing roughly 500 TB worth of raw-data and reduced data
products per year. These data are stored at the Joint ALMA Observatory in Santi-
ago, Chile and are copied from there to the three ALMA Regional Centers in North
America, Europe and East Asia. There are therefore complete copies of the ALMA
Science Archive that are accessible to the users. The archive can be queried man-
ually through its web interface at Atacama Large Millimeter/submillimeter Array
(2023), as well as programmatically using Virtual Observatory protocols 2. In 2023
the ALMA archive hosts more than 1 PB of data (ALMA, 2023c). There are many
different kinds of products, such as calibration tables, or preliminary images (Wood
et al., 2021). The focus of this project has been the public science-ready images
available for download and further analysis.

2.3.1 ALminer

To extract data from the archive a specific Python toolkit has been developed;
ALminer (Ahmadi and Hacar, 2021b). ALminer is the archive mining toolkit that
enables users to access data from the ALMA Science Archive by querying, analysing,
visualizing and downloading. The code for the toolkit is free to use and accessible via
their GitHub (Ahmadi and Hacar, 2023). It comes well-documented which makes
it both flexible and easily modifiable. The development has been a collaboration
between Allegro, the ALMA Regional Centre in The Netherlands, and the University
of Vienna as part of the EMERGE-StG project (Ahmadi and Hacar, 2020).

A fundamental feature of the ALMA Science Archive is the ability to filter its con-
tents according to user-defined criteria (for example: filtering by scientific keyword,
target name, observing set up, etc). Such filtering is performed thanks to the meta-
data attached to each observation. For example, each data set contains information
about the object(s) that is/are in the image. This information has been added to
the metadata of the observation before it has been incorporated into the archive and
allows the user to filter based on target names. The main feature ALminer is that
it allows performing user queries to the whole archive and direct data download
in a programmatic manner, facilitating the systematic exploitation of all existing

2The Virtual Observatory protocol is a standard for astronomical data on a worldwide scale. It
standardizes the quality of data for developed information exchange (202, 2023).

6

2. Theory

data. Through ALminer, one can carry out systematic filtering of the ALMA Sci-
ence Archive data according to observing criteria. For example the user can filter
the archive based on release date and image resolution. Besides the filtering of ob-
servations, there is the possibility of filtering by file type, or rather what the file
name should include. There is also the option of choosing server connection spot (or
archive mirror) to speed up the downloading of data depending on your location,
but since the European archive mirror is currently down, most users are limited to
its North American or Japanese counterparts.

2.3.2 Data Features

In order to find the appropriate data for our goal, that is, finding potential detections
of dust in protoplanetary disk winds, a data feature filtering of the archive had to
be done. The following sections describe the data features that were later used as
conditions for the data in this project.

2.3.2.1 Primary Beam Correction

A possible post correction that can be added to an image is Primary Beam CORrec-
tion (PBCOR). "The primary beam describes the antenna response (sensitivity) as
function of the angle away from the main axis. The primary beam can be approxi-
mated by a Gaussian function" (ALMA, 2023a). Overall, the sensitivity is therefore
not uniform over the field of view, having a maximum at the center and tapering
off towards the edges. To reflect this non-uniform sensitivity, output images are
corrected by dividing them by the primary beam response pattern. This is what is
known as primary beam correction. In the ALMA Science Archive, by default, the
stored images have all been corrected by the primary beam response, and have the
extension in their filename ".pbcor" accordingly.

2.3.2.2 Continuum

In the ALMA archive, the images with the file extension ".cont" indicate that they
contain images of the continuum emission in the field, that is, images of the emission
average in that frequency range, and after having removed areas of the spectrum
that potentially contain spectral lines from molecules or atoms. Given the goals of
this project, it was identified as a priority to work with continuum images in first
instance 3.

3Radio continuum emission is the broadband radiation emitted in the radio part of the spectrum
by celestial objects. Its intensity (brightness temperature) typically varies relatively slowly as a
function of wavelength (or frequency). This is in contrast to the narrow emission lines produced
at characteristic frequencies by atoms and molecules (NRF, [n. d.]).

7

2. Theory

2.3.2.3 Science Target Data

The "_sci" extension is an indicator of data produced during the reduction of ALMA
data and calibrated for scientific analysis. Files having this extension are meant to
have undergone a check for the quality of data processing (e.g, images of the flux,
phase and bandpass calibrators). For this project, we are interested only in retrieving
images that have the science target or calibrators, which is done by including the
mentioned extension. The choice is largely dependent on the cycle4 and type of data
reduction that was performed as well as the data products that exist on the archive
as a result. In most recent cycles, the science target can be filtered out with the
flag "_sci" or its ALMA target name, see parameter "filename_must_include" in
alminer.download_data function (Ahmadi and Hacar, 2021a).

2.3.2.4 Integration time

One feature of the telescopes taking the images is integration time. Here, it refers
to the time the detector is collecting data on the particular source (Wallace, [n. d.]).
In other words, the amount of time that light is let through. This configuration
has a great impact on what the signal-to-noise ratio will be, meaning that with a
longer integration time, the more light is let in and captured. Objects far away
and/or faint objects are often observed as very faint or can be hidden behind noise.
The longer the telescope collects light, the better signal from the source can be
captured and distinguished from the surrounding noise, meaning the signal-to-noise
ratio is intended to be higher. If the object is bright and close by regarding distance,
shorter integration time will be producing clearer images. This balance is crucial
for collecting images where the object can be distinguished and studied.

2.3.2.5 Spectral Window or Frequency Ranges

Another difference in settings when observing an object with ALMA is the spectral
windows or frequency ranges that are covered, and their spectral resolution (i.e.,
the width of the frequency channels). The observing frequency ranges will constrain
which spectral lines or continuum emissions are to be observed. In other words, it
defines which frequency of light that will be detected. In astronomy, this is important
due to the fact that different species (e.g atoms, molecules) radiates at different wave
lengths, letting scientists target certain species (Fraknoi et al., 2022). Depending
on the observing frequency covered by the telescope the same source may display
different morphologies in the images or even appear undetected.

4A cycle indicates the schedule for the ALMA during a certain time period. See ALMA (2023b)
for information regarding the current cycle in 2023.

8

2. Theory

2.3.3 Flexible Image Transport System
Flexible Image Transport System (FITS) is the standard file format of the data in
the ALMA Science Archive and are therefore used in this project. The file format
was first introduced in 1981 and had its latest release in 2016, designed with long
term storage in mind which is reflected in the the maxim "once FITS, always FITS"
(P. Smale, 2014). Each new iteration of FITS must always be backward compatible
with every other iteration of the system. On top of that, FITS-files are predomi-
nantly used within astronomy and rarely seen elsewhere. This results in the format
not living up to conventional modern standards while being well suited for what it
was designed for.

When it comes to how the data is stored in a FITS-file one can think of it as a matrix
where each cell of the matrix represents a pixel in the image. Each pixel value is
represented by a floating point number that represents the amount electromagnetic
radiation detected at that specific pixel when the observation was made. The FITS-
images carry no information of how they are to be visualized. It is up to the viewer
to interpret and color code the FITS-files in such a way that the features of interest
are viewable. It is worth noting that the color coding used to visualize a FITS-
file does not alter the data in any way and therefore does not change the way the
FITS-file is interpreted by the CNN.

Figure 2.3: Two different color palette representations of the object HH212. Color
palette on the left image: "CMRmap_R". On the right: "Rainbow". NB: The only
difference in between the two figures are the color pallete.

The choice of color scale palettes is mostly dependant on personal preferences. The
developers of this project has chosen the color scale palette "CMRmap_R" as seen
in the left image in figure 2.3 5.

5The image was one of the initial candidates mentioned in Dust In Wind (Shoemaker et al.,
[n. d.]) and extracted from the ALMA archive using ALminer, see section 2.3.1, while taking into
account the data features detailed in 2.3.2.

9

2. Theory

2.4 Neural Networks
Neural networks, commonly referred to as artificial neural networks (ANNs), are
computing systems inspired by the structure and function of the human brain (Stew-
art, 2019). They are capable of learning and can be used to recognize patterns, make
predictions, and solve problems. ANNs consist of an interconnected group of nodes,
also known as artificial neurons, which are organized into layers, producing the
human-like behaviour.

For this project, a subspecies of neural networks have been used; Convolutional Neu-
ral Networks, for the classification of astronomical images. Therefore, this section
aims to introduce the topic of neural networks, covering a brief history, different
types, architecture, training, and evaluation.

2.4.1 History of Neural Networks

A brief history of neural networks can be traced back to the 1940s when Warren S.
McCulloch and Walter Pitts published "A logical calculus of the ideas immanent in
nervous activity," (IBM, [n. d.]) which aimed to understand how the human brain
is able to create complex networks by connecting neurons. It was not until 1958
that Frank Rosenblatt developed the perceptron, which introduced weights to the
equation and allowed a computer to differentiate between cards that are marked on
the left side versus those that are marked on the right side.

Since then, neural networks have been widely studied and applied in various fields,
from targeted marketing by social network filtering and behavioral data analysis
to financial predictions by processing historical data of financial instruments (AWS
Amazon, [n. d.]).

2.4.2 Convolutional Neural Networks

Neural networks come in various types, each with unique applications and architec-
tures for various use cases and data types. Some of the commonly used networks
include recurrent neural networks, feed-forward neural networks, modular neural
networks, and convolutional neural networks (McGregor and freeCodeCamp, 2021).
CNNs are an extension of artificial neural networks and are predominantly used
for image recognition-based tasks (Madhava and IBM, 2021). They are inspired by
the biological visual cortex and have bypassed standard computer vision, producing
cutting-edge results. CNNs have had a great deal of success in real-life case studies
and implementations, including image classification, object detection, segmentation,
face recognition, and crystal structure classification (Sharma, 2017).

10

2. Theory

2.4.2.1 Architecture

CNNs are particularly well-suited for image recognition-based tasks due to their
ability to automatically learn and extract relevant features from images. The process
starts with the input image being passed through a series of convolutional layers,
where each layer applies a set of filters (also known as kernels) to the input image
or the output of the previous layer. These layers are visualized in figure 2.4.

Figure 2.4: Structural behavior of convolutional and pooling layers provided by
Maier ([n. d.]).

These filters are responsible for detecting different patterns or structures in the im-
age, such as edges and textures (Izadkhah, 2022). The weights of these filters are
learned during the training process, allowing the network to adapt and optimize
its feature extraction capabilities based on the given data set. As the information
flows through successive convolutional layers, the network learns to recognize in-
creasingly complex and abstract patterns, effectively capturing relevant features for
the classification task (Izadkhah, 2022), see figure 2.6 for a visualization of how the
information flows. The weights of the network is visualised by w1 and w2 in fig-
ure 2.5 and consist of values in the real network. Thresholds to these values help
produce a decision-like behaviour of the CNN.

11

2. Theory

Figure 2.5: A simple neural network with two input units and one output unit
provided by AI456 ([n. d.]).

Along with convolutional layers, CNNs also incorporate non-linearity layers, which
are crucial for introducing non-linearity into the model. These layers, often called
activation layers, are applied after the convolutional layers and help the network
learn complex, non-linear relationships between the input data and the output. The
way this is done is that the activation function perfoms a predefined mathematical
expression on a single value and then selectively determines if the value should pass
trough to the next layer. One commonly used activation function is the Rectified
Linear Unit (RELu). The RELu function computes the maximum value between
zero and the input, i.e. f(x) = max(0, f), which results in an output equal to zero
when the input value is negative and the input value when the value is positive
(Stanford Visual and Learning Lab, [n. d.]).

Furthermore, in addition to convolutional layers, CNNs also utilize pooling layers
which is visualised in figure 2.4, which reduce the spatial dimensions of the feature
maps. Pooling layers work by aggregating neighboring pixel values into a single
value, effectively compressing the representation and making the network more re-
silient to minor variations in the input data (Edge AI + Vision Alliance, 2015). This
downsampling process helps the network focus on the most important features while

12

2. Theory

reducing computational complexity and the risk of overfitting 6. One could think of
it as a grid of numbers representing the pixel values in an image or a feature map.
Pooling layers help to condense this grid by taking smaller sections of the grid and
summarizing them into a single number. This summary can be done using different
methods, such as taking the maximum value (max pooling) or the average value
(average pooling) of the selected section. This process allows the CNN to focus on
the most important features and patterns in the image while being more robust to
variations in object appearance (Brownlee, 2019).

Together, the convolutional and pooling layers in a CNN form a hierarchical feature
extraction network that automatically learns to detect and extract relevant features
from the input images. This automatic feature extraction capability makes CNNs an
ideal choice for image recognition tasks, as it eliminates the need for manual feature
engineering and allows the network to adapt to different data sets and classification
problems (Izadkhah, 2022).

Figure 2.6: A convolutional neural network with different layers visualized. The
red rectangles at the end of both of the convolutional layers indicates a pooling layer
right after.

6Overfitting is a concept that occurs when a model fits the training data too closely; the model
memorizes the training data too specifically. When overfitting occurs, the model will perform
poorly on new, unseen data (IBM, [n. d.]).

13

2. Theory

As stated before, convolutional neural networks typically consist of a series of con-
volutional and pooling layers for feature extraction, followed by additional layers for
further processing and classification. One such layer is the Dropout layer, which aims
to reduce overfitting in the network by randomly deactivating a certain percentage
of neurons during training (baeldung, 2023). This technique urges the network to
learn more resiliently and gain emergent7 features since it cannot heavily depend on
any individual neuron.

Following the aforementioned layers, it is necessary to flatten the feature maps into
a singular vector before proceeding to the fully connected layers, which are also
referred to as Dense layers. The transformation of the feature maps into a singular
vector is carried out by the Flatten layer (Mishra, 2020).

The flattened vector is then fed into the fully connected layer which functions as a
crucial link between the previous layers and the output layer. Its main purpose is
to merge and comprehend the advanced characteristics extracted by the preceding
layers in the network. This is achieved by establishing connections between each
neuron in the layer and every neuron in the preceding layer, thereby creating a fully
connected network. This pattern of connectivity enables the network to grasp non-
linear complex associations between the input features and the output (Unzueta,
2022).

The last component of the architecture in a CNN is typically a fully connected
layer or a dense layer, followed by an output activation function. A visualization
of the CNN architecture is shown in the figure 2.6 8. Usually one would use the
sigmoid function when performing binary classifications, and the softmax function
when dealing with multi-class classification. However, one could also use the soft-
max function when dealing with binary classification. The softmax classifier then
simplifies to a binary softmax classifier. The sigmoid function maps the output to a
probability score between 0 and 1. A single output neuron represents the probability
of the input belonging to one of the classes. The probability of the other class can be
calculated as 1 minus the output probability. The binary softmax classifier on the
other hand, is used when there are two classes, but you want the output probabili-
ties to be explicitly represented for both classes. The softmax function converts the
output into probability scores for each class, ensuring that the sum of the probabil-
ities equals 1. In summary, both options can be used for binary classification tasks,
but they have different output representations. The choice between them depends

7"Emergent properties are properties that become apparent and result from various interacting
components within a system but are properties that do not belong to the individual components
themselves." (Comunale, [n. d.])

8The figure 2.6 is actually a representation of the CNN used in this project.

14

2. Theory

on the use case and how one wants to represent the output probabilities (Stanford
Visual and Learning Lab, [n. d.]; Keras, [n. d.]).

2.4.3 Supervised learning

Supervised learning is where one supervises the training by having the model train
on a labeled data set9 (Delua and IBM Analytics, 2021). When doing binary image
classification, supervised learning would be the case where each input image has an
associated output label. By letting the model use labeled input images, accuracy
and other metrics can be measured. Thus, the model can learn over time because the
wrongful predictions are quantifiable. Analogously, one could think of supervised
learning like a teacher who provides students with correct answers before the exam,
and the students utilize these answers in order to learn how to solve similar types
of problems.

2.4.4 Training a Convolutional Neural Network

To begin the process of training a CNN, it is necessary to define the network ar-
chitecture. This involves determining the number of layers, the type of layers (such
as convolutional, pooling, fully connected, and so on), and the connections between
them. But in order to begin training the model, it is necessary to prepare the data.
This is usually done by collecting a data set that includes images and their corre-
sponding labels, i.e. the correct output values assigned to each input image, see
subsection 2.4.3. The data set should be divided into training and test sets, with
the former being used to train the model and the latter to evaluate its performance
(McCullum, [n. d.]).

Once the data collection is done and the architecture is defined, the next step is to
initialize the weights and biases of the network which are essential components of
a CNN. Weights refer to the values that are assigned to the connections between
the neurons in the network (Raitoharju, 2022). The weights are primarily found in
the convolutional layers, where they define the convolutional filters or kernels that
are applied to the input data. They dynamically change as the network learns in
order to enhance the decision process. As the training progresses, the CNN acquires
understanding of the characteristics of the input data and the network adapts the
weights (Teuwen and Moriakov, 2019). In contrast, biases are values that are added
to the output of every neuron prior to the activation function being applied. Their
contribution is extremely important in modifying the activation function, which
greatly improves the networks capability to adapt to data and enhances its overall

9In this case, labeled data set refers to the process of annotating images with specific labels
that represent the category or class to which the object belongs, such as positive or negative.

15

2. Theory

performance (Raitoharju, 2022; Teuwen and Moriakov, 2019). Similar to weights,
biases are also learned gradually throughout the training process and are updated
in order to reduce the discrepancy between the anticipated output and true labels
(D’Agostino, [n. d.]).

But how are parameters such as weights and biases learned by the network? This
is done trough the use of loss functions and optimizers. Loss functions are the
quantifiable measurement of the model’s error. Early in the training of the model
it is possible that the untrained network may not provide accurate predictions. In
order to improve the performance, the aim is to minimize the loss function, which
measures the difference between the predicted result and the desired correct labels.
To determine the loss, the inputs from the data is compared to the correct data
label value (PyTorch, [n. d.]). Thus, providing a way to quantify the error of the
model. There are several different loss functions available with different use cases.
Some of the common ones include Mean Squared Error (MSE) for regression tasks,
Binary Cross Entropy for binary classification and Categorical Cross Entropy for
multi-class single label classification (Raitoharju, 2022).

On the other hand, the loss function would not be minimized if there is no change
in the network before the next iteration. This is where the optimizer function comes
into play. The optimizer function in a CNN is critical in assisting the model to learn
from data by iteratively increasing its weights based on a particular loss function.
Specifically, the optimizer takes in the current weights and gradient values (i.e. how
much the loss has changed as a result of tiny changes in the weights) throughout
each training iteration and utilizes this information to update the weights toward a
new value that aims to minimize the overall loss. Some common optimizers used in
convolutional neural networks include Stochastic Gradient Descent (SGD), Adagrad,
RMSprop and Adam (Raitoharju, 2022).

Additionally, it is necessary to assign values to certain hyperparameters. These
hyperparameter include learning rate, which determines the rate of how the model
adjusts its parameters with respect to the loss function. It is important to find
the right balance, as setting it too high or too low can results in poor performance
of the model. Another important hyperparameter is the number of epochs, which
determines how many times the model will go through the training set. Setting
this value too high might lead to overfitting, while a too low value might result in
a too generalized model. Lastly, the batch size determines the number of samples
processed at each iteration, and the optimal size depends on the specific task at hand
(Zvornicanin and baeldung, 2023). Even though learning rate, number of epochs,
and batch size may not be as central to the performance of a CNN as its architecture,
they are still important factors to consider when training a model.

16

2. Theory

To summarize, the process of training a CNN involves defining the network archi-
tecture, initializing weights and biases, computing the loss function, and updating
weights and biases using an optimization algorithm. This process requires careful
monitoring of the model’s performance to achieve the best possible results through
iteration.

2.4.5 Display and Evaluation of Performance

The following section describes how to determine the performance of a CNN in the
binary class case 10. In figure 2.7 an example of a confusion matrix is displayed. It
shows the true labels and the classified labels that the model has placed. It results
in four different categories that the labeling can have. A true positive (TP) is when
the label was positive and classified as positive. False positive (FP) corresponds
to the situation where a negative label was classified as positive. False negative
(FN) corresponds to a positive label with a negative classification and lastly, true
negative (TN) represents a negative label being classified as negative. They display
the probability of its labeling capabilities, and are therefore in the range of 0-1. FP
is a type 1 error and FN is a type 2 error, and should be kept as low as possible
whilst TP and TN should be high (Narkhede, 2018).

Figure 2.7: Structure of a confusion matrix provided by Errachete ([n. d.]).

From such a representation, three metrics can be extracted: recall, precision and
accuracy. Recall indicates how many positive classed images were correctly classified.
Precision shows how many of the classified positives that actually were positive. The
last metric, accuracy, describes how many of both negative and positive class that
were classified correctly. What they all have in common is that the higher the metric

10There are multi-class generalizations of these performance calculations, see Bex (2021) for
more information on this topic.

17

2. Theory

value, the better the model performs (Narkhede, 2018). Calculation of the metrics
is made with the help of three different formulas, see equations 2.1, 2.2 and 2.3.

Recall = TP

TP + FN
(2.1)

Precision = TP

TP + FP
(2.2)

Accuracy = TP + TN

Total
(2.3)

F − measure = 2 · Recall · Precision

Recall + Precision
(2.4)

Additionally, a comparison score can be constructed with the capabilities of measur-
ing both recall and precision simultaneously, whilst punishing extreme values, see
equation 2.4. It is called F-measure, and it achieves this by replacing the Arithmetic
Mean with Harmonic Mean (Narkhede, 2018). Harmonic Mean is commonly used in
information retrieval with ratios such as recall and precision. The difference is that
it divides the number of data points by the reciprocal of each value. It is often called
the true average when rates are involved, and is therefore preferred over Arithmetic
Mean (DeepAI, 2020).

2.4.6 TensorFlow
TensorFlow is a machine learning system designed for building and training machine
learning models (USENIX Association. et al., 2005). Google launched the system
in 2015 and have been carefully developing it since. TensorFlow is free to download,
install and use, and because of its extensive user base, it comes well documented
on both their own website as well as on programmer forums such as StackOverflow
(2023). The most prominent features of TensorFlow is the ability to develop and
design neural networks, including deep learning models. It is available on a wide
range of programming languages such as Python, C++, and Java (Abadi et al.,
2015). In this project, it acts as the underlying service for the entire CNN. This
project would not have been achievable without this tool given timeline, expertise
and resources11.

11There are other machine learning systems that have similar applicabilities, such as PyTorch
(2023), but TensorFlow was the one that was used in this project.

18

2. Theory

2.5 Image Augmentation
FITS-files retrieved from the ALMA archive have widely different shapes, sizes and
contents. These differences need to be accounted for, since a CNN will only work on
images of a fixed size and shape. Therefore, being able to transform a wide range
of different sized images into a standard form is critical for the projects success.

In order to avoid overfiting on the training data, mentioned in subsection 2.4.2,
CNNs need large and diverse training data sets (IBM, [n. d.]). Image augmentation
is commonly used to increase the size of the training data set to improve accuracy
of classification on new data. It is a technique where existing images are copied and
augmented by some transformation that changes the data of the image (Saxena,
2021). The transformations can be divided into two main categories, linear trans-
formation and non-linear transformation. The figure 2.8 displays some examples of
linear transformations.

19

2. Theory

Figure 2.8: Example images of linearly augmented images provided by TseiKiChun
under the license CC 4.0 TseKiChun ([n. d.]).

2.5.1 Linear Transformation
Formally, a linear transformation is a function F : Rn → Rm that satisfies additive
and scalar multiplicative properties as shown in equation 2.5, where α, β are scalars,
and x,y are vectors (Adams and Essex, 2017).

F (αx + βy) = αF (x) + βF (y) (2.5)

20

2. Theory

Linear transformations are generally safe to be applied automatically since they do
not tend to change the class of the image; the features of the image keep their linear
relationships. This is true as long as the features are still contained in the image.

Examples of some linear transformations are: cropping, rotating, resizing and in-
verting, which can be seen in figure 2.8. Cropping is essential to isolate objects
and to make data uniform for the CNN. Rotating an image allows alignment for
consistency between images regarding orientation, or simply for augmentation. Re-
sizing changes an image so that the contents are enlarged or made smaller while the
aspect ratio of the image remains constant. Finally there are two ways of inverting
an image, left-right or up-down. Left-right inverts the pixels along the Y-axis and
up-down inverts along the X-axis.

2.5.2 Non-Linear Transformation
When performing a non-linear transformation on a positive class FITS-file, there is a
higher risk that the transformation changes the class of the image. Essentially, non-
linear transformation changes the features of the image and therefore one cannot
assume that it retains its class.

With these risks in mind, the motivation for non-linear augmentations is that the
data trained on is non-linear; the data cannot be classified by linear relationships.
The linear transformations still add value as the model learns that rotations, mir-
roring etc of the same data does not matter, but it does not add new information
to train on. Non-linear augmented images can however add new data with new
inductive biases (Gavneet Singh Chadha, 2019) that generalizes a CNN, improving
its classification ability of new, unseen data.

2.5.2.1 Geometric Mean Square

Geometric Mean Square is one technique to combine two images into a new unique
image. It works by taking the square root of the product for each corresponding
pixel value of two images, as shown in 2.6, where A and B are matrices.

F (A, B) =
√

AB (2.6)

21

2. Theory

22

3
Methods

This chapter describes the prominent steps in realizing the CNN briefed in section
1.1. The order of the information is in chronological order of the CNN’s process and
aims to guide the reader naturally along the finalization of the project. It starts
by explaining the retrieval of data from the ALMA archive, to annotating the data
as either positive or negative with explanations regarding the qualitative reasoning
behind. The following sections clarify the preprocessing of the data before finally
describing the CNN itself, how it is trained, evaluated, and applied.

Research that combine FITS-files with machine learning is scarce. The work that
were found had objectives that differed from this project’s, therefore the approach
for this project has been to adapt general techniques in machine learning and data
handling to a set of new circumstances.

3.1 Data Retrieval

The data was downloaded from the ALMA archive using a Python toolkit, ALminer
2.3.1, that accesses the ALMA archive by code. The utility interconnects the archive
to the user and has been fundamental in carrying out this project, as it allowed
filtering and downloading useful data for our project in a user-friendly manner. The
coming sections are intended to give the reader an insight as to how the retrieval is
done and on what parameters the choice of data is built upon.

3.1.1 Querying and Extracting Data

For this project, the following scientific keywords was used to filter out the ALMA
data most likely to contain observations of protostellar outflows.

23

3. Methods

• Low-mass star formation
• Intermediate-mass star formation
• Outflows, jets, feedback
• Outflows, jets and ionized winds
• Inter-stellar medium (ISM)/molecular clouds

After the above filtering, the archive was filtered by the following extra conditions.

• Release date: 2016 and later.
• Angular resolution: 0.4 arcseconds.
• File name must include: ".pbcor", "_sci", ".cont".
• Archive mirror: "NAOJ".

The filtering of release date was set up to discard data from the very first cycles
of ALMA, during which the ALMA pipeline was not yet deployed and the output
products were heterogeneous in their content and file naming. Given the large
number of projects with high-quality data that satisfy our data release criterion,
exploring data obtained before 2016 has not been a priority. The conditions on
the angular resolution was simply an approximation of how high of a quality the
image had to be in order to be able to detect any extensions possibly indicating
dust in the wind. The included strings in the file name was added with different
intentions. With the ".pbcor" extension, the intention was to filter by the primary
beam correction described in subsection 2.3.2.1. ".cont" is an extension intended
to filter by the image aggrevation described in subsection 2.3.2.2. Lastly, "_sci"
was added in order to get the scientifically calibrated data described in subsection
2.3.2.3.

3.2 Annotating data
In supervised learning, annotating the data before feeding it to the network is funda-
mental for the learning process, see section 2.4.3. The procedure includes manually
labeling each image that is being used for training data as part of a certain class.
The data from ALMA archive comes in many different variations and file modifica-
tions. These variations are dependent on, among other things, the configuration of
the telescope at the time of the observation and that of the file handling done after
an image is taken. In some cases, the same object might be targeted by the telescope
with different settings. These settings can affect the outcome of the annotations.
This section describes the annotation process done by the developers of this project.

24

3. Methods

3.2.1 Positive vs. Negative

A total of 825 images FITS-files were downloaded from the ALMA archive. All of
these were validated via inspection from multiple people in the project. The images
were annotated with the previously mentioned factors in mind and with help from
illustrations provided by the supervisors, shown in figure 2.2. The images of whose
class were uncertain were moved aside to be inspected by our more knowledgeable
supervisors. In the process multiple images that had been downloaded from the
archive were found to have the characteristics of the positive class and were used as
positive training data. The images that did not show any signs of extensions were
used as negative training data.

Each image is taken with a specific calibration to ALMA. This calibration strongly
affects the outcome of the image, primarily the quality of detail. When the same
object is targeted by the telescope using different settings, the images might differ
considerably. With differences in spatial and spectral resolution, integration time of
the detector, etc, the outcome can affect the quality of the image and the properties
of the features in them. The figure 3.1 shows the object NGC_1052 where the
observational settings affected the images enough for them to differ in clarity.

Figure 3.1: Three ALMA images of the same object NGC_1052 showing differ-
ent quality and signs of extension. The images were obtained by different ALMA
projects on the same source, but observing in different frequency bands, different
angular resolution, different sensitivity, and polarization products. Left and middle
panels show the total intensity image (Stokes I), but observed in different ALMA
Bands (frequency, wavelength, etc), angular resolutions and sensitivity. An image
from one full-polarization project displaying the Stokes Q (related to the linear
polarization of the light) is also included (right panel). Left: ALMA image from
observation with UID A001_X13f_X140. Middle: ALMA image from observation
with UID A001_X133d_Xcf9 in Band 4 total intensity (Stokes I). Right: ALMA
image from observation UID A001_X133d_Xcf9 in Band 4 Stokes Q.

25

3. Methods

Here, the difference in observational setup affects the quality of the signs of exten-
sions in the images. In the right image, distinguishing an object and possible signs
of extensions to this object is nearly impossible, leading the annotators to label it
as negative class. Meanwhile, the figure in the middle shows no signs of extensions
despite being quite clear. Making the annotators to annotate it as negative. The
left image shows signs of extensions though, leading the annotators to label it as
positive.

3.3 Data Set
The CNN in this project uses binary classification which implies that all FITS-files
can be considered one of two classes; positive or negative. Positive class was set
to be FITS-files that contain a protoplanetary disk with extensions in the shape of
winds. The negative class is anything that is not positive class.

3.3.1 Positive Data Set
Initially, the project had only eight FITS-files, see appendix A, of positive class.
This lack of positive FITS was the reason for one of the largest hurdles in this
project. It is common for a CNN to be trained with thousands of both positive
and negative data points. There are several techniques to create an artificial influx
of training data, as previously stated in section 2.5. This project focuses on image
transformation.

The main strategy was to combine the eight positive images in as many ways as
possible. In the first step the positive FITS-files were centered, rotated and resized
so that the Gaussian disk was in the center, aligned along the same axis and of the
size 100x100 pixels. This ensures that the geometric mean square of any two images
will have a high likelihood of being of positive class since the extensions line up in
the correct orientation relative to the disk. The orientation of the extensions also
remain aligned if each image is inverted along the X-, Y-, and XY-axis. Each of these
images were combined by the geometric mean square and then manually sorted by
hand to ensure that only positive FITS-files were present in the final positive data
set.

3.3.2 Negative Data Set
In the ALMA archive, images of the negative class were more abundant than those
of positive, therefore transformations and augmentation was not necessary. The
algorithm works by finding the disk in a given FITS-image and taking a 100x100 pixel
crop with the disk in the centre. The centre of the disk is found by found by taking

26

3. Methods

the brightest pixel in the middle 50% of a given FITS-file. This ensures that noise
generated as a result of PBCOR, see subsection 2.3.2.1, will not be misidentified as
a disk. Each image also went through manual inspection as described in section 3.2

3.4 Implementation of the Convolutional Neural
Network

This section contains the implementation details of the Convolutional Neural Net-
work (CNN). It covers the model’s architecture, the selection of hyperparameters,
and the reasoning behind some choices that were made. This aims to provide a
comprehensive understanding of the approach taken to construct the CNN and its
application in resolving the issue at hand.

3.4.1 Architecture

The CNN model was built and defined as a function ’model()’ that takes an ac-
tivation function as an input argument, with a default value of ’softmax’. The
architecture of the model consists of several layers that are commonly used in Con-
volutional Neural Networks (CNNs). The first layer is a 2D convolutional layer with
32 filters, each with a kernel size of 3x3. This layer learns low-level features, such
as edges and textures.

As described above, the activation function is set to the input argument, and the
input shape is set to (100, 100, 1) for images of size 100x100. The next layer is
a max-pooling layer with a pool size of 2x2, which reduces the spatial dimensions
by a factor of 2. The model then includes a second 2D convolutional layer with 64
filters and a kernel size of 3x3, using the ReLU activation function. The aim of this
layer is to learn more complex, high-level features that can distinguish between the
two classes. Another max-pooling layer with a pool size of 2x2 follows. To reduce
overfitting, a dropout layer with a dropout rate of 0.25 is added. The model then
includes a flatten layer to convert the feature maps into a 1D array. A dense (fully
connected) layer with 128 neurons, using the ReLU activation function, is added.
Another dropout layer with a dropout rate of 0.5 is included. Finally, the model
includes a dense layer with 2 neurons, using the softmax activation function, as
specified in the input parameter ’activation’ of the model.

In summary, the model includes two 2D convolutional layers, two max-pooling layers,
two dropout layers, two dense layers, and a flatten layer. The ReLU (Rectified
Linear Unit) activation function is used in the convolutional and dense layers, as it
introduces non-linearity and helps the network learn complex patterns. The model

27

3. Methods

is designed to classify images of size 100x100 into two classes. The first convolutional
layer extracts 32 features from the input image, and the second convolutional layer
extracts 64 features from the output of the first convolutional layer.

3.4.2 Evaluation

The model evaluation is performed using the evaluate_model() function, which
takes the training and testing data, the model, the loss function, learning rate,
optimizer, and evaluation metric as input arguments. The default values for these
parameters are binary_crossentropy for the loss function, 0.001 for the learning
rate, Adam for the optimizer, and accuracy for the evaluation metric. The model
is first compiled using the input parameters. Then, it is trained using the fit()
method with a batch size of 2, for 30 epochs. the model’s performance is evaluated
on the testing data using the evaluate() method.

3.4.3 Choices of Parameters and Functions

The filter sizes of 3x3 were chosen for both convolutional layers. Smaller filter sizes,
like 3x3, are preferred because they can capture local patterns in the images, and
they require fewer parameters compared to larger filter sizes (e.g., 5x5 or 7x7). A
pool size of 2x2 was chosen for both max-pooling layers. This size is a common
choice because it effectively reduces the spatial dimensions of the feature maps by
a factor of 2, while still retaining important information. Two dropout layers with
rates of 0.25 and 0.5 were added to the architecture. These rates were chosen as
a balance between preventing overfitting and preserving the network’s capacity to
learn. A batch size of 2 and 30 epochs were chosen for training the model. Smaller
batch sizes can provide better generalization and faster convergence, but at the cost
of increased training time. The number of epochs was chosen to allow the model to
learn the patterns in the data without overfitting. Increasing the number of epochs
might improve the model’s performance on the training set but could also lead to
overfitting.

Multiple tests were conducted on the same data to select the best combination
of optimizer function and hyperparameters, namely learning rate, batch size, and
number of epochs, to achieve optimal results on the training data. Five different
optimizers were tested, including Stochastic Gradient Descent (SGD), RMSprop,
Adagrad, Adadelta, and Adam, with various learning rates evaluated for each opti-
mizer. The loss function used when performing the tests were binary cross entropy.
Additionally, adjustments were made to the batch size and number of epochs to
ensure the best combination for the model’s performance. The reason for testing
different optimizers is that each optimizer has its unique approach to updating the

28

3. Methods

model’s parameters during training, and it is crucial to test multiple options to find
the best fit for the given task at hand.

29

3. Methods

30

4
Results

The CNN was supplied with augmented data to fulfill a necessary amount of training
data, and examples of the end result from this process will be shown. After several
epochs of training, the CNN returned a series of images that it classified as positive.
In this chapter, the neural network’s performance and accuracy along with the
positive observations will be showcased.

4.1 Training Data
The results from the extraction of data is presented, with given numbers of obser-
vations. With the few known positive class sources, there was a lack of data for the
CNN to be trained on. Due to this, both linear and non-linear augmentations were
made, see section 2.5. Below, some of them are presented with descriptions of what
specific alterations were made.

4.1.1 Extracted data

In table 4.1 the keywords have the corresponding amount of observations that con-
tains the data retrieved when querying in ALminer described in the first conditions
stated in section 3.1.1.

Table 4.1: Scientific keyword filtering in ALminer.

Keyword No. of observations after filtering

Low-mass star formation ERROR (Zero obs.)1

Intermediate-mass star formation 610
Outflows, jets, feedback 1094
Outflows, jets and ionized winds 1294
Inter-stellar medium (ISM)/molecular clouds 2922
Total 5920

31

4. Results

The table 4.2 shows how many of the observations stated in table 4.1 passed the
second conditions stated in section 3.1.1.

Table 4.2: Scientific keyword filtering with conditions in ALminer.

Keyword No. of observations after filtering

Intermediate-mass star formation Zero observations
Outflows, jets, feedback 84
Outflows, jets and ionized winds 389
Inter-stellar medium (ISM)/molecular clouds 755
Total 1228

Of these 1228 observations, 359 of these were duplicates of others and were removed,
landing in a total of 869 filtered observations to consider. Of these observations, each
contained a great variety in amount of files that were going to be used for the project.
Some contained several, some contained only one, and others did not contain any
files that could be used for the project. The interesting files from the observations
were the FITS-files, see section 2.3.3. The image data contained in these FITS files
was read and stored as numerical arrays in Python. From these 869 observations,
a total of 825 files were downloaded for both training, evaluation and testing the
CNN. Many of them contain data from the same observation and/or object. The
different observing setups and observing conditions at ALMA affect the properties
and quality of the images, sometimes enough to make an impact the annotations,
see 3.2.

4.1.2 Linear Augmentation

Different linear transformations can be applied to augment the training data set,
explained in 2.5 and 3.3. A sequence of these can be seen in figure 4.1.

1The error of filtering by "Low-mass star formation" was discovered by the developers of this
project and issued at the ALminer GitHub Toribio ([n. d.])

32

4. Results

Figure 4.1: Linear transformations: flip, rotation and resizing. The upper left
image is an artificially created disk with an extension.

4.1.3 Non-linear Augmentation

The only non-linear transformation used was the Geometric Mean, see subsection
2.5.2.1. Two examples of this augmentation can be seen in figure 4.2 and 4.3.

33

4. Results

Figure 4.2: A Geometric Mean transformation with good result. Image 1 is from
the source B335 and Image 2 is from HH212.

Figure 4.3: A Geometric Mean transformation with unnatural and therefore bad
result. Image 1 and 2 are from the source HH212.

4.2 Convolutional Neural Network
Final execution of the CNN was run with the parameters shown in table 4.3 and 4.4,
which gave the best results after several tests. These yielded a number of 37 positive
classed images. The code for the results can be viewed at the following GitHub
Repository https://github.com/nkatshiba/Alma-bachelor-project or at appendix C
D E F

Table 4.3: Parameters for the CNN.

model.compile

loss_function binary_crossentropy
optimizer Adam
learning_rate 0.001

Table 4.4: Parameters for the CNN.

model.fit

batch_size 2
epochs 30

34

https://github.com/nkatshiba/Alma-bachelor-project

4. Results

On the validation data, the performance of the network is described through a
confusion matrix, see figure 4.4. As detailed in subsection 2.4.5, this brings three
different metrics to calculate, as well as a comparison score.

Figure 4.4: Confusion matrix for the model on validation data.

The confusion matrix gives us a TP of 0.86, a FP of 0.056, a FN of 0.14 and a TN of
0.94. A recall of 86% is found, see equation 2.1. What this means is that 86% of the
positive class was predicted correctly. Looking solely at the positive class, 94% were
actually positive, which is gathered from the precision’s calculation, see equation
2.2. Lastly, an accuracy of 90% measures the amount of correctly predicted images
from both classes, see equation 2.3. Additionally, the F-measure reached 90%, and
can be used to compare this model to others, see equation 2.4.

4.3 Positive Classed Images
From the CNN, 37 images were positively classified. Seen in figure 4.5, 4.6 and
4.7 are the top three candidates for possibly depicting dust being carried out of a
protoplanetary disk by wind. The rest of the results can be found in appendix B

35

4. Results

Figure 4.5: Observation
G328.2551.

Figure 4.6: Observation
G034.43.

Figure 4.7: Observation
NGC6334.tt1.

Sources of interest, that the CNN extracted observations of, are the following:

DG_Tau
M17-UC1
IC348
TMC1A
G10.3-0.1
hbc_494
AGAL337.916-00.477
AGAL332.826-00.549
IRAS_18566+0408
AGAL351.581-00.352
NGC6334I
NGC6334I_H2O
G034.43+0.24MM1_H2O
NGC_2264_CMM3
G328.2551-0.5321_A

GAL_005.88-00.41
BHR7
Serp_18
Serp_29
CrAus_01
CrAus_02
CrAus_05
CrAus_07
CrAus_08
CrAus_09
ChamII_01
Oph_34
Aql_13
HOPS_358

36

5
Discussion

In the following section, results, method and improvements in the different stages
of the project will be discussed. This in terms of if the aim of the project has been
reached and steps that can be taken to improve the results. Ways that the project
can be taken further will also be discussed. These range from wider documentation
to increased user friendliness.

5.1 Data Retrieval
The retrieval of data from the ALMA archive was successful within the framework
of the project to that extent that data could be extracted for desired parameters.
As shown in table 4.1 and 4.2 the keywords and filtration produced a list relevant
observation, with the exception of the keyword "Low-mass star formation". The cor-
relation between potential dust in the wind and low mass star formation is described
in section 2.1, which makes it possible to believe that more relevant observation could
be found using this keyword once the issue has been resolved.

5.2 Image Handling
The importing and processing of data to ensure that the CNN operated optimally
met the requirements stated in the objective, see section 1.1. The algorithms always
managed to find an object in the FITS-files and transform them into something the
CNN could process. This is not to say that the methods used are without issues, in
this section those improvement opportunities will be discussed.

5.2.1 Small FITS-files Compatibility

FITS-files come in different native sizes ranging from under 80x80 to over 8000x8000.
The current implementation of the code will discard any images that are not over
800x800. The changes required to lower the compatibility to 200x200 images would

37

5. Discussion

be simple and without any trade offs. After that, there would be trade offs but not
impossible. One solution would be to pad the exceptionally small FITS-files with
zeroes to artificially expand them. This would enable essentially all FITS-files to be
used no matter the size.

5.2.2 Possible Mistakes in Annotation
When analysing which images have been used as positive or negative class to feed
the network, some images were found to be labeled as the wrong class. The figure
5.1 shows two images of the same object but one of the images has been labeled as
negative despite showing signs of extensions.

Figure 5.1: Left: The object S255_IRS3 labeled as positive due to signs of exten-
sions. Right: The same object incorrectly labeled as negative.

The images depict the same object but they are taken on different occasions, i.e
observations. Besides the fact that the observations are different, no further infor-
mation explain any differences such as frequency ranges or integration time. Spec-
ulatively, the image on the right suffers from data reduction issues and could be
improved by manual reprocessing by an expert to further remove instrumental ef-
fects if at all possible. Even though both images hints of extensions, only the left

38

5. Discussion

was labeled and used as a positive class for the CNN, leading the authors to believe
there might be other occasions where images were labeled incorrectly. This error is
an affecting factor in how the network learns to distinguish interesting images from
uninteresting ones, making it an improvement area where annotations could be done
more thoroughly.

5.3 Bias
Because the classification of training data was manually done by mainly group mem-
bers, who lack any astronomic background, unknown bias might be present that
does not reflect real data. Bias could also have been induced by the geometric mean
square algorithm as it changes the non-linear relationships between features. Po-
tential bias could potentially have affected the accuracy and end result of the CNN.
Unfortunately, biases are difficult to detect or measure.

5.4 Convolutional Neural Network
As figure 4.4 suggests, improving the CNN itself will probably not add any major
benefits to the project as a whole. However, there are changes around the CNN that
might allow it to classify more positive FITS-files, which are discussed in previous
sections.

5.5 Images classified as positive by the Network
The CNN classified 37 images as positive, meaning that they are candidates to po-
tentially contain images of dust in the winds, see section 4.3. These were displayed
for the project’s supervisors, who analyzed each image mentioned in the appendix B.
Both supervisors expressed their interest in many of the images, increasing the can-
didate status for some of them. Hence, the aim of contributing to science explained
in section 1.1 was accomplished to an extent. Some images were simultaneously
discarded pretty quickly by the supervisors, indicating errors done by the network.
The errors made showed new kinds of irregularities that were clearly not the winds
we were looking for. We believe these misclassifications are a sign of the size of the
training data being too small.

5.6 Documentation
For distribution purposes, an adequate documentation would have to be created.
With one in place, it could enable new users to clearly understand the underlying

39

5. Discussion

structure and use of the different features present. Another improvement this brings
is better maneuverability and overview whilst improving upon the code itself. Since
it acts as a guide, precise alterations could be applied by anyone. This might lead
to easy customization on the user-side rather than specifically at the source code,
which enables new applications of this project.

5.7 Further Work
In this section further work that can be done on the project will be discussed.
They were not implemented for various reasons, ranging from time constraints to
computational constraints.

5.7.1 User Friendliness
The plan was to present the project as a downloadable package with all depen-
dencies included and an easy-to-use framework. Since it is supposed to be used
by astronomers, who possibly lack sufficient experience in programming/optimizing
CNNs, the user friendliness is an important factor. As it stands, different constants
and parameters are separated throughout the code. It creates unnecessary strain
on whoever wants to modify the details of the CNN. An alternative to the following
solution could be to create a graphical user interface (GUI) for the preparation,
execution and presentation of the CNN and its results.

Late in the process, an attempt of this was initiated, but remains unfinished. It
included an interface to create training data, to create a CNN and to classify data
on it. With links to local folders, it removes the struggle of locating the stored
FITS-files and retrieving results from the CNN in the end. All it would take to
review the obtained observations would be to open the specified folder and view the
files.

Another added benefit of a GUI is the simplification of changing relevant parameters
for the program by gathering all constants, parameters and options at the same place
while keeping a clear overview. This would still require alteration of the code during
set-up, but it is at least confined to a separate and collected space. As seen in figure
5.2, on the lower image, there are several options such as loss function and optimizer.
To change these manually, you have to traverse the folder structure in the code and
change each one by writing them out. Drop-down menus could replace that effort
with all options listed and easily swapped.

40

5. Discussion

Figure 5.2: An example of a GUI to be used for the project.

5.7.2 Multiple Objects in Same FITS
The current algorithm for locating the centre of a Gaussian disk in a FITS-image
takes the max value in the middle 50% of the image. This means that if there
are several objects in one file only the brightest will be processed and classified. A
variation of the flood fill algorithm (Sryheni, 2022) was implemented to find several
objects in the file. The algorithm was ultimately not used in the final product
because of constrictions in time and computational power.

5.7.3 More Non-linear Transformations
Geometric mean square was the only non-linear transformation used in the final
product. A possible improvement would be to implement different non-linear meth-
ods to further improve the data.

One type of non-linear transformation that could be applied is adding artificial
noise. Adding noise to data is commonly done for CNNs to improve accuracy on
new data where some particular kind of noise occurs. Adding noise can also help the
model to learn various aspects of each class by randomly occluding small portions

41

5. Discussion

of features (Akbiyik, 2019); the overall shape of the image would stay the same but
with small changes to numerical values the model would learn more general aspects
of the class. Adding noise can also drastically increase the training data size. Two
different algorithms of adding noise to the image were implemented but not used
in the final product. We chose not to perform any noise augmentation as we did
not have enough time to validate whether or not they would improve the accuracy.
Adding the wrong kind of noise or noise with improper variance or level could harm
the performance of the CNN (Akbiyik, 2019).

42

6
Conclusion

In this project, a CNN model was trained with the purpose to classify images in the
ALMA archive in order to find observations that indicate a possible occurrence of
dust present in a star formation wind.

With the results from the CNN in Appendix A, a final conclusion of this project can
be made as overall successful. Since the aim was to produce a series of observations
portraying potential dust in the wind carriage, the images shown back this up by at
least being of interest for this thesis. Although some manual filtering was required
from the end result, the images followed a pattern of being irregular in the sense of
them not following the structure of a perfect two-dimensional Gaussian. However,
there were instances of images with new kinds of undesired irregularities that were
missclassified as positive. These missclassifications could be a sign that our training
data was too small in size and variety.

Overall, several observations were recognized by the supervisor Per Bjerkeli from his
research on the topic. The recognized observations had extensions that seemed to
be in line with the boundaries of the outflow in star formation. These recognized
observations acted as an affirmation of the model’s ability to classify observations
of potential dust in the wind and opens up possible future research and analysis on
the objects.

43

6. Conclusion

44

Bibliography

2023. International Virtual Observatory Aliance. https://ivoa.net/index.html

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan-
delion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
https://www.tensorflow.org/ Software available from tensorflow.org.

Robert A. Adams and Christpher Essex. 2017. Calculus: A Complete Course (9
ed.). Pearson Education.

Aida Ahmadi and Alvaro Hacar. 2020. ASCL Code Record. https://ascl.net/
code/v/2971

Aida Ahmadi and Alvaro Hacar. 2021a. ALminer API. https://alminer.
readthedocs.io/en/latest/pages/api.html

Aida Ahmadi and Alvaro Hacar. 2021b. ALminer Documentation. https://
alminer.readthedocs.io/en/latest/

Aida Ahmadi and Alvaro Hacar. 2023. ALminer Github. https://github.com/
emerge-erc/ALminer

AI456. [n. d.]. A simple neural network with two input units and one output unit.
https://openverse.org/image/2681ee1f-8a18-4553-9347-c01cd30bb4f9?
q=neural%20network%20weights

45

https://ivoa.net/index.html
https://www.tensorflow.org/
https://ascl.net/code/v/2971
https://ascl.net/code/v/2971
https://alminer.readthedocs.io/en/latest/pages/api.html
https://alminer.readthedocs.io/en/latest/pages/api.html
https://alminer.readthedocs.io/en/latest/
https://alminer.readthedocs.io/en/latest/
https://github.com/emerge-erc/ALminer
https://github.com/emerge-erc/ALminer
https://openverse.org/image/2681ee1f-8a18-4553-9347-c01cd30bb4f9?q=neural%20network%20weights
https://openverse.org/image/2681ee1f-8a18-4553-9347-c01cd30bb4f9?q=neural%20network%20weights

Bibliography

Murtaza Eren Akbiyik. 2019. Data Augmentation in Training CNNs: Injecting
Noise to Images. ICLR 2020 Conference Blind Submission (2019). https://
openreview.net/forum?id=SkeKtyHYPS

ALMA. 2023a. ALMA Basics - Field of view. https://almascience.nrao.edu/
about-alma/alma-basics

ALMA. 2023b. ALMA Cycle. https://almascience.eso.org/
documents-and-tools/cycle-9-documents

ALMA. 2023c. The ALMA Science Archive has
reached several milestones. almascience.org/news/
the-alma-science-archive-has-reached-several-milestones

ALMA Observatory. 2023. Atacama Large Millimeter/submillimeter Array. https:
//www.almaobservatory.org/

Atacama Large Millimeter/submillimeter Array. 2023. ALMA Science Archive.
https://almascience.nrao.edu/aq/?result_view=observations

AWS Amazon. [n. d.]. What is a Neural Network? https://aws.amazon.com/
what-is/neural-network/

baeldung. 2023. How ReLu and Dropout Layers Work in CNNs. (4 2023). https:
//www.baeldung.com/cs/ml-relu-dropout-layers

T. Bex. 2021. Comprehensive Guide to Multiclass Classifica-
tion Metrics. (6 2021). https://towardsdatascience.com/
comprehensive-guide-on-multiclass-classification-metrics-af94cfb83fbd

Per Bjerkeli. 2022. Star formation.

Per Bjerkeli. 2023. Extention patterns.

P. Bjerkeli, D. Harsono, J. Ramsey, A. Plunkett, H. Calcutt, L. Kristensen, M.
van der Wiel, J. Jørgensen, and Z. Li. 2021. The effects of winds on disk and
planet formation. In American Astronomical Society Meeting Abstracts (American
Astronomical Society Meeting Abstracts, Vol. 53). Article 406.05, 406.05 pages.

R.D. Blandford and D.G. Payne. 1982. Hydromagnetic flow. Monthly Notices of
the Royal Astronomical Society 199, 4 (8 1982), 883–903. https://doi.org/10.
1093/mnras/199.4.883

Dana Bolles. 2023. Stars. https://science.nasa.gov/astrophysics/
focus-areas/how-do-stars-form-and-evolve

46

https://openreview.net/forum?id=SkeKtyHYPS
https://openreview.net/forum?id=SkeKtyHYPS
https://almascience.nrao.edu/about-alma/alma-basics
https://almascience.nrao.edu/about-alma/alma-basics
https://almascience.eso.org/documents-and-tools/cycle-9-documents
https://almascience.eso.org/documents-and-tools/cycle-9-documents
almascience.org/news/the-alma-science-archive-has-reached-several-milestones
almascience.org/news/the-alma-science-archive-has-reached-several-milestones
https://www.almaobservatory.org/
https://www.almaobservatory.org/
https://almascience.nrao.edu/aq/?result_view=observations
https://aws.amazon.com/what-is/neural-network/
https://aws.amazon.com/what-is/neural-network/
https://www.baeldung.com/cs/ml-relu-dropout-layers
https://www.baeldung.com/cs/ml-relu-dropout-layers
https://towardsdatascience.com/comprehensive-guide-on-multiclass-classification-metrics-af94cfb83fbd
https://towardsdatascience.com/comprehensive-guide-on-multiclass-classification-metrics-af94cfb83fbd
https://doi.org/10.1093/mnras/199.4.883
https://doi.org/10.1093/mnras/199.4.883
https://science.nasa.gov/astrophysics/focus-areas/how-do-stars-form-and-evolve
https://science.nasa.gov/astrophysics/focus-areas/how-do-stars-form-and-evolve

Bibliography

Jason Brownlee. 2019. A Gentle Introduction to Pooling Layers for Convolu-
tional Neural Networks. (4 2019). https://machinelearningmastery.com/
pooling-layers-for-convolutional-neural-networks/

Joseph Comunale. [n. d.]. What are emergent properties? Interpretations and Ex-
amples.

Andrea D’Agostino. [n. d.]. Introduction to Neural Networks - Weights,
biases and activation. ([n. d.]). https://medium.com/mlearning-ai/
introduction-to-neural-networks-weights-biases-and-activation-270ebf2545aa

DeepAI. 2020. Harmonic Mean. https://deepai.org/
machine-learning-glossary-and-terms/harmonic-mean

Julianna Delua and IBM Analytics. 2021. Supervised vs. Unsupervised Learn-
ing: What’s the Difference? https://www.ibm.com/cloud/blog/
supervised-vs-unsupervised-learning

Edge AI + Vision Alliance. 2015. Using Convolutional Neural Networks for Im-
age Recognition. (11 2015). https://www.edge-ai-vision.com/2015/11/
using-convolutional-neural-networks-for-image-recognition/

Errachete. [n. d.]. Binary Confusion Matrix. https://commons.wikimedia.org/
w/index.php?curid=85341147

European Southern Observatory. 2011. ALMA Opens Its Eyes. In Eso 1137 -
Organisation Release, Tania Burchell (Ed.). European Southern Observatory.
https://www.eso.org/public/news/eso1137/

Andrew Fraknoi, David Morrison, and Sidney Wolff. 2022. Spectroscopy
in Astronomy. In Astronomy (first ed.). Vol. 2e. Rice University,
Chapter 5.3. https://openstax.org/books/astronomy-2e/pages/
5-3-spectroscopy-in-astronomy

Andreas Schwung Gavneet Singh Chadha. 2019. Learning the Non-linearity in Con-
volutional Neural Networks. arXiv: 1905.12337 (2019). https://arxiv.org/
pdf/1905.12337.pdf

Oliver Gressel, Neal J. Turner, Richard P. Nelson, and Colin P. McNally. 2015.
Global simulations of protoplanetary disks with Ohmic resistivity and ambipolar
diffusion. Astrophysical Journal 801, 2 (3 2015), 84. https://doi.org/10.
1088/0004-637X/801/2/84

IBM. [n. d.]. What are Neural Networks? https://www.ibm.com/topics/
neural-networks

47

https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/
https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/
https://medium.com/mlearning-ai/introduction-to-neural-networks-weights-biases-and-activation-270ebf2545aa
https://medium.com/mlearning-ai/introduction-to-neural-networks-weights-biases-and-activation-270ebf2545aa
https://deepai.org/machine-learning-glossary-and-terms/harmonic-mean
https://deepai.org/machine-learning-glossary-and-terms/harmonic-mean
https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning
https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning
https://www.edge-ai-vision.com/2015/11/using-convolutional-neural-networks-for-image-recognition/
https://www.edge-ai-vision.com/2015/11/using-convolutional-neural-networks-for-image-recognition/
https://commons.wikimedia.org/w/index.php?curid=85341147
https://commons.wikimedia.org/w/index.php?curid=85341147
https://www.eso.org/public/news/eso1137/
https://openstax.org/books/astronomy-2e/pages/5-3-spectroscopy-in-astronomy
https://openstax.org/books/astronomy-2e/pages/5-3-spectroscopy-in-astronomy
https://arxiv.org/pdf/1905.12337.pdf
https://arxiv.org/pdf/1905.12337.pdf
https://doi.org/10.1088/0004-637X/801/2/84
https://doi.org/10.1088/0004-637X/801/2/84
https://www.ibm.com/topics/neural-networks
https://www.ibm.com/topics/neural-networks

Bibliography

IBM. [n. d.]. What is overfitting? ([n. d.]). https://www.ibm.com/topics/
overfitting

Habib Izadkhah. 2022. Medical image processing: an insight to convolutional neural
networks. In Deep Learning in Bioinformatics. Elsevier, 175–213. https://doi.
org/10.1016/b978-0-12-823822-6.00015-9

Keras. [n. d.]. Layer Activation Functions. https://keras.io/api/layers/
activations/#softmax-function

Samaya Madhava and IBM. 2021. Introduction to Convolutional
Neural Networks. https://developer.ibm.com/articles/
introduction-to-convolutional-neural-networks/

Andreas Maier. [n. d.]. Convolutionalandpooling. https://openverse.
org/image/ef4cf2de-db98-47ab-8461-24daa9c6186f?q=convolutional%
20layer%20network

Nick McCullum. [n. d.]. How to Build and Train a Convolutional Neural Net-
work. ([n. d.]). https://www.nickmccullum.com/python-deep-learning/
convolutional-neural-network-tutorial/

Milecia McGregor and freeCodeCamp. 2021. What is a Neu-
ral Network? A beginner’s tutorial for Machine Learning
and Deep Learning. https://www.freecodecamp.org/news/
convolutional-neural-network-tutorial-for-beginners/

Mayank Mishra. 2020. Convolutional Neural Networks, Ex-
plained. (8 2020). https://towardsdatascience.com/
convolutional-neural-networks-explained-9cc5188c4939

Sarang Narkhede. 2018. Understanding Confusion Matrix. https://
towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62

NRAO. 2023. National Radio Astronomy Observatory. https://public.nrao.
edu/telescopes/alma/

NRF. [n. d.]. Continuum Observing with the Hart 26m Telescope. http://www.
hartrao.ac.za/continuum/

Alan P. Smale. 2014. A brief history to FITS. https://fits.gsfc.nasa.gov/
fits_overview.html

Ilaria Pascucci, Sylvie Cabrit, Suzan Edwards, Uma Gorti, Oliver Gressel, and
Takeru Suzuki. 2022. The Role of Disk Winds in the Evolution and Dispersal
of Protoplanetary Disks. (3 2022). http://arxiv.org/abs/2203.10068

48

https://www.ibm.com/topics/overfitting
https://www.ibm.com/topics/overfitting
https://doi.org/10.1016/b978-0-12-823822-6.00015-9
https://doi.org/10.1016/b978-0-12-823822-6.00015-9
https://keras.io/api/layers/activations/#softmax-function
https://keras.io/api/layers/activations/#softmax-function
https://developer.ibm.com/articles/introduction-to-convolutional-neural-networks/
https://developer.ibm.com/articles/introduction-to-convolutional-neural-networks/
https://openverse.org/image/ef4cf2de-db98-47ab-8461-24daa9c6186f?q=convolutional%20layer%20network
https://openverse.org/image/ef4cf2de-db98-47ab-8461-24daa9c6186f?q=convolutional%20layer%20network
https://openverse.org/image/ef4cf2de-db98-47ab-8461-24daa9c6186f?q=convolutional%20layer%20network
https://www.nickmccullum.com/python-deep-learning/convolutional-neural-network-tutorial/
https://www.nickmccullum.com/python-deep-learning/convolutional-neural-network-tutorial/
https://www.freecodecamp.org/news/convolutional-neural-network-tutorial-for-beginners/
https://www.freecodecamp.org/news/convolutional-neural-network-tutorial-for-beginners/
https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939
https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939
https://towardsdatascience.com/understanding- confusion-matrix-a9ad42dcfd62
https://towardsdatascience.com/understanding- confusion-matrix-a9ad42dcfd62
https://public.nrao.edu/telescopes/alma/
https://public.nrao.edu/telescopes/alma/
http://www.hartrao.ac.za/continuum/
http://www.hartrao.ac.za/continuum/
https://fits.gsfc.nasa.gov/fits_overview.html
https://fits.gsfc.nasa.gov/fits_overview.html
http://arxiv.org/abs/2203.10068

Bibliography

R E Pudritz and C A Norman. 1983. CENTRIFU GALL Y DRIVEN WINDS FROM
CONTRACTING MOLECULAR DISKS. Technical Report. 677–697 pages.

PyTorch. [n. d.]. Optimizing Model Parameters - PyTorch. https://pytorch.
org/tutorials/beginner/basics/optimization_tutorial.html

PyTorch. 2023. PyTorch. https://pytorch.org/

Jenni Raitoharju. 2022. Convolutional neural networks. In Deep Learning for
Robot Perception and Cognition. Elsevier, 35–69. https://doi.org/10.1016/
B978-0-32-385787-1.00008-7

Shipra Saxena. 2021. Image Augmentation Techniques for Training Deep
Learning Models. https://www.analyticsvidhya.com/blog/2021/03/
image-augmentation-techniques-for-training-deep-learning-models/

Aditya Sharma. 2017. Convolutional Neural Networks in
Python with Keras. https://www.datacamp.com/tutorial/
convolutional-neural-networks-python

Somayeh Sheikhnezami, Christian Fendt, Oliver Porth, Bhargav Vaidya, and
Jamshid Ghanbari. 2012. Bipolar jets launched from magnetically diffusive accre-
tion disks. I. Ejection efficiency versus field strength and diffusivity. Astrophysical
Journal 757, 1 (9 2012). https://doi.org/10.1088/0004-637X/757/1/65

H. Shoemaker, P. Bjerkeli, J. Ramsey, and A Plunkett. [n. d.]. Dust In the wind: A
search for dust in the outflow of the HH212 class 0 protostellar system.

F.H. Shu. 1997. Molecules in star formation. Symposium - International Astronom-
ical Union 178 (1997), 19–30. https://doi.org/10.1017/s0074180900009219

Said Sryheni. 2022. Flood Fill Algorithm. (2022). https://www.baeldung.com/
cs/flood-fill-algorithm

StackOverflow. 2023. Questions tagged [tensorflow]. https://stackoverflow.
com/questions/tagged/tensorflow

Stanford Visual and Learning Lab. [n. d.]. CS231n Convolutional Neural Net-
work for Visual Recognition. Technical Report. https://cs231n.github.io/
neural-networks-1/

Matthew Stewart. 2019. Introduction to Neural Net-
works. (6 2019). https://towardsdatascience.com/
simple-introduction-to-neural-networks-ac1d7c3d7a2c

49

https://pytorch.org/tutorials/beginner/basics/optimization_tutorial.html
https://pytorch.org/tutorials/beginner/basics/optimization_tutorial.html
https://pytorch.org/
https://doi.org/10.1016/B978-0-32-385787-1.00008-7
https://doi.org/10.1016/B978-0-32-385787-1.00008-7
https://www.analyticsvidhya.com/blog/2021/03/image-augmentation-techniques-for-training-deep-learning-models/
https://www.analyticsvidhya.com/blog/2021/03/image-augmentation-techniques-for-training-deep-learning-models/
https://www.datacamp.com/tutorial/convolutional-neural-networks-python
https://www.datacamp.com/tutorial/convolutional-neural-networks-python
https://doi.org/10.1088/0004-637X/757/1/65
https://doi.org/10.1017/s0074180900009219
https://www.baeldung.com/cs/flood-fill-algorithm
https://www.baeldung.com/cs/flood-fill-algorithm
https://stackoverflow.com/questions/tagged/tensorflow
https://stackoverflow.com/questions/tagged/tensorflow
https://cs231n.github.io/neural-networks-1/
https://cs231n.github.io/neural-networks-1/
https://towardsdatascience.com/simple-introduction-to-neural-networks-ac1d7c3d7a2c
https://towardsdatascience.com/simple-introduction-to-neural-networks-ac1d7c3d7a2c

Bibliography

Jonas Teuwen and Nikita Moriakov. 2019. Convolutional neural networks. In Hand-
book of Medical Image Computing and Computer Assisted Intervention. Elsevier,
481–501. https://doi.org/10.1016/B978-0-12-816176-0.00025-9

Carmen Toribio. [n. d.]. ALminer science keyword "Low-mass star formation" issue.
https://github.com/emerge-erc/ALminer/issues/4

TseKiChun. [n. d.]. Data Augmentation of Rock Images Revised. https:
//commons.wikimedia.org/wiki/File:Data_Augmentation_of_rock_images_
revised.jpg

Diego Unzueta. 2022. Fully Connected Layers vs. Convolutional Layer:
Explained. (10 2022). https://builtin.com/machine-learning/
fully-connected-layer

USENIX Association., ACM SIGMOBILE., ACM Special Interest Group in Operat-
ing Systems., and ACM Digital Library. 2005. Papers presented at the Workshop
on Wireless Traffic Measurements and Modeling : June 5, 2005, Seattle, WA,
USA. USENIX Association. 44 pages.

Jon Wallace. [n. d.]. Introduction to Radio Astronomy. https://www.
radio-astronomy.org/pdf/sara-beginner-booklet.pdf

Sarah Wood, Erica Keller, and Catarina Ubach. 2021. ALMA Archive
& Data Products - What to expect after your observations are
made. https://science.nrao.edu/facilities/alma/community/
alma-archive-data-products-cycle-8-2021

Enes Zvornicanin and baeldung. 2023. Relation Between Learning Rate and Batch
Size . https://www.baeldung.com/cs/learning-rate-batch-size

50

https://doi.org/10.1016/B978-0-12-816176-0.00025-9
https://github.com/emerge-erc/ALminer/issues/4
https://commons.wikimedia.org/wiki/File:Data_Augmentation_of_rock_images_revised.jpg
https://commons.wikimedia.org/wiki/File:Data_Augmentation_of_rock_images_revised.jpg
https://commons.wikimedia.org/wiki/File:Data_Augmentation_of_rock_images_revised.jpg
https://builtin.com/machine-learning/fully-connected-layer
https://builtin.com/machine-learning/fully-connected-layer
https://www.radio-astronomy.org/pdf/sara-beginner-booklet.pdf
https://www.radio-astronomy.org/pdf/sara-beginner-booklet.pdf
https://science.nrao.edu/facilities/alma/community/alma-archive-data-products-cycle-8-2021
https://science.nrao.edu/facilities/alma/community/alma-archive-data-products-cycle-8-2021
https://www.baeldung.com/cs/learning-rate-batch-size

A
Initially Known Positive Images

This appendix makes use of the following ALMA data:

ADS/JAO.ALMA#2012.1.00122.S
ADS/JAO.ALMA#2015.1.00024.S
ADS/JAO.ALMA#2016.1.01475.S
ADS/JAO.ALMA#2017.1.00044.S

ADS/JAO.ALMA#2017.1.00288
ADS/JAO.ALMA#2018.1.01208
ADS/JAO.ALMA#2019.1.00912.S

I

A. Initially Known Positive Images

II

B
CNN Classified Positive Images

This appendix makes use of the following ALMA data:

ADS/JAO.ALMA#2015.1.00722.S
ADS/JAO.ALMA#2015.1.01535.S
ADS/JAO.ALMA#2016.1.00711.S
ADS/JAO.ALMA#2016.1.01115.S
ADS/JAO.ALMA#2016.1.00846.S
ADS/JAO.ALMA#2016.1.00630.S
ADS/JAO.ALMA#2016.1.01347.S
ADS/JAO.ALMA#2016.1.00345.S
ADS/JAO.ALMA#2017.1.00661.S

ADS/JAO.ALMA#2018.1.00024.S
ADS/JAO.ALMA#2018.1.01647.S
ADS/JAO.ALMA#2018.1.01679.S
ADS/JAO.ALMA#2018.1.00513.S
ADS/JAO.ALMA#2019.1.00463.S
ADS/JAO.ALMA#2019.1.01792.S
ADS/JAO.ALMA#2019.1.00691.S
ADS/JAO.ALMA#2021.1.01578.S

III

B. CNN Classified Positive Images

IV

B. CNN Classified Positive Images

V

B. CNN Classified Positive Images

VI

B. CNN Classified Positive Images

VII

B. CNN Classified Positive Images

VIII

C
Main and Neural Network

Pipeline

1 from alma_classifier import pipeline_tensorflow
2 from alma_classifier . image_processing . manual_sorting import predict_fits
3 from keras . models import load_model
4 from alma_classifier . image_processing . image_augmentation import

generate_pos_dataset
5 from alma_classifier . image_processing . manual_sorting import sort_manually ,

save_data_to_npy
6 from alma_classifier . image_processing . pre_processing import

init_training_data_from_folder
7 import shutil
8

9 """
10 *****// PATHS //******
11

12 ** Before the first run , make sure that the paths are correct and exist at your
local machine **

13

14 ORIGINAL_POS_FITS : path to folder containing positive FITS files
15

16 ORIGINAL_NEG_FITS : path to folder containing negative FITS files
17

18 POS_TRAIN : path to .npy file containing positive training data
19

20 NEG_TRAIN : path to .npy file containing negative training data
21

22 CNN_MODEL : path to folder containing CNN model
23

24 UNCLASSIFIED_FITS : path to folder containing FITS files to be classified
25

26 CLASSIFIED_FITS : path to folder where classified FITS files will be saved
27

28 """
29

30

31 ORIGINAL_POS_FITS = ’alma - classifier /data/fits/pos ’
32 ORIGINAL_NEG_FITS = ’alma - classifier /data/fits/neg ’
33

34 POS_TRAIN = ’C:/ ChalmersWorkspaces / KandidatArbete /data/ npy_train / pos_dataset .npy ’
35 NEG_TRAIN = ’C:/ ChalmersWorkspaces / KandidatArbete /data/ npy_train / neg_dataset .npy ’
36

37 CNN_MODEL = ’C:/ ChalmersWorkspaces / KandidatArbete /data/ CNN_model ’
38

IX

C. Main and Neural Network Pipeline

39 UNCLASSIFIED_FITS = ’C:/ ChalmersWorkspaces / KandidatArbete /data/ fits_to_classify ’
40 CLASSIFIED_FITS = ’C:/ ChalmersWorkspaces / KandidatArbete /data/ classified_fits ’
41

42

43 """
44

45 Note that the output of generate_pos_training_data () is saved to a .npy file and is
46 400 x400 so you need to run either crop_middle_100x100 or linnear_transformation

before
47 you can use the data in the CNN. When changing the input fits files you need to

manually
48 change the degreees in the rotate array so that asll tha gaussian discs line up and

is
49 compatible with being combined with eachother .
50

51 Example :
52

53 pos_data = [crop_middle_100x100 (file) for file in pos_data if file. shape == (400 ,
400)]

54 pos_data = np. array ([linear_transformation (file) for file in pos_data for i in
range (augment_factor) if file. shape == (400 , 400)])

55

56 NOTE !: This is done in initinit_training_data_from_npy () in pre_processing .py which
is called

57 in pippeline_tensorflow () in pipeline_tensorflow .py. Which is standard for the CNN.
58

59 """
60

61

62 def generate_pos_training_data (load_directory = ORIGINAL_POS_FITS , save_directory =
POS_TRAIN):

63 pos_data = generate_pos_dataset (load_directory)
64 pos_data = sort_manually (pos_data)
65 save_data_to_npy (pos_data , save_directory)
66

67

68 """
69

70 Note that the aoutput of generate_neg_training_data () is saved to a .npy file and
is ready to be

71 used in the CNN directly
72

73 """
74

75 def generate_neg_training_data (load_directory = ORIGINAL_NEG_FITS):
76 neg_data = init_training_data_from_folder (load_directory)
77 neg_data = sort_manually (neg_data)
78 save_data_to_npy (neg_data , NEG_TRAIN)
79

80

81 """
82

83 Creates and traines a CNN and saves the trained CNN to specified folder .
84

85 """
86

87 def train_CNN (pos_npy_path =POS_TRAIN ,
88 neg_npy_path =NEG_TRAIN ,
89 save_path =CNN_MODEL ,
90 lin_aug =False ,
91 aug_factor =1):

X

C. Main and Neural Network Pipeline

92 model = pipeline_tensorflow . pippeline_tensorflow (
93 pos_npy_path , neg_npy_path , lin_aug , aug_factor)
94 model .save(save_path)
95

96 """
97

98 Loads a trained CNN and uses it to classify the fits files in the specified folder .
99 The classified fits files are then saved to the specified folder .

100

101 """
102

103 def classify_data (read_path = UNCLASSIFIED_FITS , model = CNN_MODEL , save_path =
CLASSIFIED_FITS):

104 pos_image = predict_fits (read_path , load_model (model))
105 [shutil . copy2 (name , save_path) for (data , name) in pos_image]
106

107 """
108

109 Print call the functions in main () to run the program .
110

111 """
112

113

114 def main ():
115 print (’main ’)
116

117 if __name__ == ’__main__ ’: main ()

1 from . models . tensorflow . model_01 . data_handler import tensorflow_data_handler
2 from . models . tensorflow . model_01 . evaluation import evaluate_model
3 from . image_processing . pre_processing import init_training_data_from_npy
4 from . models . tensorflow . model_01 . model import model
5

6 """
7

8 Creates , trains and returns a CNN model .
9

10 """
11

12 def pippeline_tensorflow (pos_npy_path , neg_npy_path , linnear_aug =False ,
augmentation_factor =5):

13

14 # ------------------- Importing data -------------------#
15

16 X, y = init_training_data_from_npy (pos_npy_path , neg_npy_path , linnear_aug ,
augmentation_factor)

17

18 # ------------------- Reshape to tensor -------------------#
19

20 X_train , X_test , y_train , y_test = tensorflow_data_handler (X, y)
21

22 # ------------------- Creat model -------------------#
23

24 nn_model = model ()
25

26 # ------------------- Compile model -------------------#
27

28 evaluate_model (X_train , X_test , y_train , y_test , nn_model)
29

30 return nn_model
31

XI

C. Main and Neural Network Pipeline

32

33 __name__ == ’__main__ ’ and pippeline_tensorflow ()

XII

D
Image Processing

1 from astropy .io import fits
2 import numpy as np
3 import glob as glob
4 import numpy as np
5 import glob
6 import astropy .io.fits as fits
7 from . support_functions import *
8

9

10 """
11

12 This function takes a path to a folder containing FITS files and returns the data
in

13 an array of 2D- arrays of size 000 x100. Ready to be used as input for a neural
network .

14

15 Input :
16

17 file_path : path to folder containing FITS files
18 linnear_aug : if True , the data will be augmented by linear transformations
19 augment_factor : how many times the data will be augmented
20

21 """
22

23

24 def init_training_data_from_folder (file_path , linnear_aug =False , augment_factor =5):
25

26 fits_files_data = [fits. getdata (file). squeeze () for file in glob.glob(file_path
+ ’/*. fits ’)]

27 fits_files_data = [crop_around_middle_50x50_percent (file) for file in
fits_files_data if file. shape [0] > 500 and file. shape [1] > 500]

28 fits_files_data = ([crop_around_max_value_400x400 (file) for file in
fits_files_data])

29 if linnear_aug :
30 return np. array ([linear_transformation (file) for file in fits_files_data

for i in range (augment_factor) if file. shape == (400 , 400)])
31 return np. array ([crop_middle_100x100 (file) for file in fits_files_data if file.

shape == (400 , 400)])
32

33

34 """
35

36 Convert a folder of FITS files to a numpy array and save it to a npy file.
37

38 """

XIII

D. Image Processing

39

40 def fits_to_npy (folder_path , npy_path , linnear_aug =False , augment_factor =5): np.
save(npy_path , init_training_data_from_folder (folder_path , linnear_aug ,
augment_factor), allow_pickle =True)

41

42 """
43

44 Init X and y from numpy arrays of positive and negative data.
45

46 """
47

48

49 def init_training_data_from_npy (pos_path , neg_path , linnear_aug =False ,
augment_factor =5):

50

51 fits_pos = np.load(pos_path , allow_pickle =True)
52 fits_neg = np.load(neg_path , allow_pickle =True)
53

54 if linnear_aug :
55 fits_pos = np. array ([linear_transformation (file) for file in fits_pos for i

in range (augment_factor) if file. shape == (400 , 400)])
56 fits_neg = np. array ([linear_transformation (file) for file in fits_neg for i

in range (augment_factor) if file. shape == (400 , 400)])
57

58 else:
59 fits_pos = np. array ([crop_middle_100x100 (file) for file in fits_pos if file

. shape == (400 , 400)])
60 fits_neg = np. array ([crop_middle_100x100 (file) for file in fits_neg if file

. shape == (400 , 400)])
61

62

63 y = [0] * len(fits_neg) + [1] * len(fits_pos)
64

65 X = np. concatenate ((fits_neg , fits_pos), axis =0)
66

67 return X, y
68

69

70

71 __name__ == ’__main__ ’ and print (’pre_processing .py is working ’)

1 import numpy as np
2 import glob
3 import astropy .io.fits as fits
4 from scipy . ndimage import rotate
5 from skimage . transform import resize
6 from . support_functions import *
7

8

9 def generate_pos_dataset (folder_path):
10

11 print (’Loading data from ’ + folder_path)
12

13 pos_data = ([fits. getdata (file). squeeze () for file in glob.glob(folder_path + ’
/*. fits ’)])

14

15 pos_data = [crop_around_middle_50x50_percent (file) for file in pos_data]
16

17 # resize the data so that all the disks are roughly the same size exepct for
the two largest ones

18 pos_data = [file if (file is pos_data [2] or file is pos_data [3]) else resize (

XIV

D. Image Processing

19 file , (2000 , 2000)) for file in pos_data]
20

21 # # Rotate the data so that the stars are aligned according to predefined
angles

22 pos_data = [rotate (data , degrees , reshape = False) for (data , degrees) in list(
23 zip(pos_data , [0, 0, -15, -15, -9, -9, -13, -13]))]
24

25 pos_data = [crop_around_max_value_400x400 (file) for file in pos_data]
26

27 print (’Augmenting data ... ’)
28

29 # Flip each image LR , UD and both
30 f1 , f2 , f3 , f4 = lambda file: file , lambda file: np. fliplr (
31 file), lambda file: np. flipud (file), lambda file: np.flip(file)
32 pos_data = [f(file) for file in pos_data for f in [f1 , f2 , f3 , f4] if file.

shape == (400 , 400)]
33

34 # # Make non - linnear combinations of all the fits files
35 pos_data += [geometric_mean_square (pos_data [i], pos_data [j])
36 for i in range (0, len(pos_data)) for j in range (i+1, len(pos_data)

)]
37

38 print (’Done augmenting data. Total number of images : ’ + str(len(pos_data)))
39

40 return pos_data
41

42

43 __name__ == ’__main__ ’ and print (’pre_processing .py is working ’)

1 import numpy as np
2 import random
3 from scipy . ndimage import rotate
4 from skimage . transform import resize
5

6 """
7

8 Crop functions for the fits files . Self explanatory .
9

10 """
11

12 def crop_around_middle_50x50_percent (fits): return fits [(int(fits. shape [0]*.25)):(
int(fits. shape [0]*.75)),

13 (int(fits. shape [1]*.25)):(
int(fits. shape [1]*.75))]

14

15

16 def crop_middle_100x100 (fits): return fits[fits. shape [0]//2 -50: fits. shape [0]//2+50 ,
17 fits. shape [1]//2 -50: fits. shape [1]//2+50]
18

19

20 def crop_around_max_value_400x400 (fits):
21 (x, y) = np. unravel_index (np. argmax (fits , axis=None), fits. shape)
22 return fits[x -200: x+200 , y -200: y +200]
23

24

25 """
26

27 Geometric mean square function . Used to make non - linnear combinations of the fits
files . To generate more data.

28

29 """

XV

D. Image Processing

30

31

32 def geometric_mean_square (a, b): return np.sqrt(np. multiply (abs(a), abs(b)))
33

34

35 """
36

37 Linnear transformation || Random rezise , rotate , flip and return 100 x100
38

39 """
40

41

42 def linear_transformation (fits):
43 ret_image = fits
44

45 random_resize = random . randint (150 , 350)
46 ret_image = resize (ret_image , (random_resize , random_resize))
47

48 ret_image = rotate (ret_image , random . randint (0, 360) , reshape = False)
49

50 if random . getrandbits (1):
51 ret_image = np. fliplr (ret_image)
52 if random . getrandbits (1):
53 ret_image = np. flipud (ret_image)
54

55 (lwr_bound , upr_bound) = int(random_resize /2) - 55, int(random_resize /2) - 45
56 x = random . randint (lwr_bound , upr_bound)
57 y = random . randint (lwr_bound , upr_bound)
58

59 return ret_image [x:x+100 , y:y +100]
60

61

62 __name__ == ’__main__ ’ and print (’helper_functions .py is working ’)

XVI

E
Neural Network Backend

1 import numpy as np
2 import tensorflow as tf
3

4 from keras import utils as np_utils
5 from sklearn . model_selection import train_test_split
6

7

8 """
9

10 This function is used to reshape the data to a tensorflow format .
11

12 """
13

14

15 def tensorflow_data_handler (X, y):
16

17 X = np. array ([tf. convert_to_tensor (fits) for fits in X])
18 y = np. array ([tf. convert_to_tensor (fits) for fits in y])
19

20 X_train , X_test , y_train , y_test = train_test_split (X, y, test_size =0.2 ,
random_state =42)

21

22 y_train = np_utils . to_categorical (y_train , 2)
23 y_test = np_utils . to_categorical (y_test , 2)
24

25 return X_train , X_test , y_train , y_test
26

27

28 __name__ == ’__main__ ’ and print (’data_handler .py works !’)

1 from keras . models import Sequential
2 from keras . layers import Dense , Dropout , Flatten
3 from keras . layers import Conv2D , MaxPooling2D
4

5 """
6

7 This function creates a CNN model .
8

9 """
10

11 def model (activation =’softmax ’):
12

13 model = Sequential ()
14 model .add(Conv2D (32 , kernel_size =(3 , 3) ,
15 activation = activation ,

XVII

E. Neural Network Backend

16 input_shape =(100 , 100 , 1)))
17 model .add(MaxPooling2D (pool_size =(2 , 2)))
18 model .add(Conv2D (64 , (3, 3) , activation =’relu ’))
19 model .add(MaxPooling2D (pool_size =(2 , 2)))
20 model .add(Dropout (0.25))
21 model .add(Flatten ())
22 model .add(Dense (128 , activation =’relu ’))
23 model .add(Dropout (0.5))
24 model .add(Dense (2, activation = activation))
25

26 return model
27

28

29 __name__ == ’__main__ ’ and print (’model .py works !’)

1 import keras
2

3

4 """
5

6 This function is used to evaluate a tensorflow CNN.
7

8 """
9

10 def evaluate_model (X_train , X_test , y_train , y_test , model ,
11 loss_function =’binary_crossentropy ’ , learning_rate =0.0001 ,

optimizer =’Adam ’, metrics =’accuracy ’):
12

13 model . summary ()
14

15 model . compile (loss = keras . losses . binary_crossentropy ,
16 optimizer = keras . optimizers .Adam(learning_rate =0.001) , metrics =[’

accuracy ’])
17

18 fit_info = model .fit(X_train , y_train ,
19 batch_size =2,
20 epochs =30 ,
21 verbose =1,
22 validation_data =(X_test , y_test))
23

24 print (model . evaluate (X_test , y_test , verbose =0))
25

26

27 __name__ == ’__main__ ’ and print (’model .py works !’)

XVIII

F
ALminer

1 from os import system
2 import alminer
3 import pandas as pd
4 from astroquery .alma import Alma
5 from astropy .io import fits
6 import numpy as np
7 import os
8

9 # Below license is for ALminer since we have modified some code from there
10 """
11 MIT License
12

13 Copyright (c) 2021 Aida Ahmadi , Alvaro Hacar
14

15 Permission is hereby granted , free of charge , to any person obtaining a copy
16 of this software and associated documentation files (the " Software ") , to
17 deal in the Software without restriction , including without limitation the rights
18 to use , copy , modify , merge , publish , distribute , sublicense , and/or sell
19 copies of the Software , and to permit persons to whom the Software is
20 furnished to do so , subject to the following conditions :
21 The above copyright notice and this permission notice shall be included in
22 all copies or substantial portions of the Software .
23

24 THE SOFTWARE IS PROVIDED "AS IS" , WITHOUT WARRANTY OF ANY KIND , EXPRESS OR
25 IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY ,
26 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT . IN NO EVENT SHALL THE
27 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES OR OTHER
28 LIABILITY , WHETHER IN AN ACTION OF CONTRACT , TORT OR OTHERWISE , ARISING FROM
29 , OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
30 THE SOFTWARE .
31 """
32

33 """ Modified version of alminer . download_data . Here , the download randomly
34 selects 500 files to download and download these . The code for this can
35 be found on line 167. """
36

37

38 # ###
39 # Libraries
40 # ###
41 from constants_copy import band_names , band_color , band_min_freq , band_max_freq , \
42 CO_line_names , CO_line_freq , CO_line_ha , CO_line_label , VALID_KEYWORDS_STR , \
43 NEW_COLUMNS , COLUMN_TYPES
44 from pyvo.dal import tap
45 from astroquery .alma import Alma

XIX

F. ALminer

46 from matplotlib . ticker import FormatStrFormatter , NullFormatter
47 import matplotlib . pyplot as plt
48 from astropy import constants as const
49 from astropy import units as u
50 from astropy . coordinates import SkyCoord
51 from astropy . coordinates import name_resolve
52 from astropy . coordinates import get_icrs_coordinates
53 from astropy . coordinates import Angle
54 import os
55 import re
56 import pandas as pd
57 import numpy as np
58

59 np. set_printoptions (threshold =np.inf)
60

61

62 def _format_bytes (size):
63 """ Convert the size of the dota to be downloaded in human - readable format ."""
64 power = 1000
65 n = 0
66 power_labels = {0: ’B’, 1: ’KB ’, 2: ’MB ’,
67 3: ’GB ’, 4: ’TB ’, 5: ’PB ’, 6: ’EB ’}
68 while size > power :
69 size /= power
70 n += 1
71 return size , power_labels [n]
72

73

74 def download_data_mod (observations , fitsonly =False , dryrun =False , print_urls =False ,
filename_must_include =’’,

75 location =’./ data ’, archive_mirror =’ESO ’):
76 """
77 Download ALMA data from the archive to a location on the local machine .
78

79 Parameters
80 ----------
81 observations : pandas . DataFrame
82 This is likely the output of e.g. ’conesearch ’, ’target ’, ’catalog ’, & ’

keysearch ’ functions .
83 fitsonly : bool , optional
84 (Default value = False)
85 Download individual fits files only (fitsonly =True). This option will not

download the raw data
86 (e.g. ’asdm ’ files), weblogs , or README files .
87 dryrun : bool , optional
88 (Default value = False)
89 Allow the user to do a test run to check the size and number of files to

download without actually
90 downloading the data (dryrun =True). To download the data , set dryrun = False

.
91 print_urls : bool , optional
92 (Default value = False)
93 Write the list of urls to be downloaded from the archive to the terminal .
94 filename_must_include : list of str , optional
95 (Default value = ’’)
96 A list of strings the user wants to be contained in the url filename . This

is useful to restrict the
97 download further , for example , to data that have been primary beam

corrected (’. pbcor ’) or that have
98 the science target or calibrators (by including their names). The choice

is largely dependent on the

XX

F. ALminer

99 cycle and type of reduction that was performed and data products that
exist on the archive as a result .

100 In most recent cycles , the science target can be filtered out with the
flag ’_sci ’ or its ALMA target name.

101 location : str , optional
102 (Default value = ./ data)
103 directory where the downloaded data should be placed .
104 archive_mirror : str , optional
105 (Default value = ’ESO ’)
106 The archive service to use. Options are:
107 ’ESO ’ for Europe (https :// almascience .eso.org),
108 ’NRAO ’ for North America (https :// almascience .nrao.edu), or
109 ’NAOJ ’ for East Asia (https :// almascience .nao.ac.jp)
110 """
111 print (" ================================ ")
112 # we use astroquery to download data
113 myAlma = Alma ()
114 default_location = ’./ data ’
115 myAlma . cache_location = default_location
116 if archive_mirror == ’NRAO ’:
117 mirror = " https :// almascience .nrao.edu"
118 elif archive_mirror == ’NAOJ ’:
119 mirror = " https :// almascience .nao.ac.jp"
120 else:
121 mirror = " https :// almascience .eso.org"
122 myAlma . archive_url = mirror
123 # catch the case where the DataFrame is empty .
124 try:
125 if any(observations [’data_rights ’] == ’Proprietary ’):
126 print (" Warning : some of the data you are trying to download are still

in the proprietary period and are "
127 "not publicly available yet.")
128 observations = observations [observations [’data_rights ’] == ’Public ’]
129 uids_list = observations [’member_ous_uid ’]. unique ()
130 # when len(uids_list) == 0, it ’s because the DataFrame included only

proprietary data and we removed them in
131 # the above if statement , so the DataFrame is now empty
132 if len(uids_list) == 0:
133 print ("len(uids_list)==0")
134 print ("No data to download . Check the input DataFrame . It is likely

that your query results include only "
135 " proprietary data which cannot be freely downloaded .")
136 return
137 # this is the case where the query had no results to begin with.
138 except TypeError :
139 print ("type error ")
140 print ("No data to download . Check the input DataFrame .")
141 return
142 # change download location if specified by user , else the location will be a

folder called ’data ’
143 # in the current working directory
144 if location != default_location :
145 if os.path. isdir (location):
146 myAlma . cache_location = location
147 else:
148 print ("{} is not a directory . The download location will be set to {}".

format (
149 location , default_location))
150 myAlma . cache_location = default_location
151 elif (location == default_location) and not os.path. isdir (location): # create

the ’data ’ subdirectory

XXI

F. ALminer

152 os. makedirs (default_location)
153 if fitsonly :
154 data_table = myAlma . get_data_info (uids_list , expand_tarfiles =True)
155 # filter the data_table and keep only rows with "fits" in ’access_url ’ and

the strings provided by user
156 # in ’filename_must_include ’ parameter
157 dl_table = data_table [[i for i, v in enumerate (data_table [’access_url ’]) if

v. endswith (".fits") and
158 all(i in v for i in filename_must_include)]]
159 else:
160 data_table = myAlma . get_data_info (uids_list , expand_tarfiles = False)
161 # filter the data_table and keep only rows with "fits" in ’access_url ’ and

the strings provided by user
162 # in ’filename_must_include ’ parameter
163 dl_table = data_table [[i for i, v in enumerate (data_table [’access_url ’]) if
164 all(i in v for i in filename_must_include)]]
165 dl_df = dl_table . to_pandas ()
166 # Picking out 500 files of these
167 dl_df = dl_df . sample (500)
168 # remove empty elements in the access_url column
169 dl_df = dl_df .loc[dl_df . access_url != ’’]
170 dl_link_list = list(dl_df [’access_url ’]. unique ())
171 # keep track of the download size and number of files to download
172 dl_size = dl_df [’content_length ’]. sum ()
173 # print (dl_size [’ content_length ’])
174 dl_files = len(dl_df [’access_url ’]. unique ())
175 dl_uid_list = list(dl_df [’ID ’]. unique ())
176

177 if dryrun :
178 print ("This is a dryrun . To begin download , set dryrun = False .")
179 print (" ================================ ")
180 else:
181 print (" Starting download . Please wait ...")
182 print (" ================================ ")
183 try:
184 myAlma . download_files (dl_link_list , cache =True)
185 except ValueError as e:
186 print (e)
187 if dl_files > 0:
188 print (" Download location = {}". format (myAlma . cache_location))
189 print (" Total number of Member OUSs to download = {}". format (len(dl_uid_list

)))
190 print (" Selected Member OUSs: {}". format (dl_uid_list))
191 print (" Number of files to download = {}". format (dl_files))
192 dl_size_fmt , dl_format = _format_bytes (dl_size)
193 print (" Needed disk space = {:.1f} {}". format (dl_size_fmt , dl_format))
194 if print_urls :
195 print ("File URLs to download = {}". format ("\n".join(dl_link_list)))
196 else:
197 print (" Nothing to download .")
198 print ("Note: often only a subset of the observations (e.g. the

representative window) is ingested into "
199 "the archive . In such cases , you may need to download the raw dataset

, reproduce the calibrated "
200 " measurement set , and image the observations of interest . It is also

possible to request calibrated "
201 " measurement sets through a Helpdesk ticket to the European ARC "
202 "(see https :// almascience .eso.org/local -news/ requesting - calibrated -

measurement -sets -in - europe).")
203 print (" --------------------------------")
204

XXII

F. ALminer

205 # From here on there ’s download , we only want to download random amount of X
declared when calling function

1 """ Global variables & constants to be used in alminer .py """
2 """ This is a copy from the ALminer GitHub (https :// github .com/emerge -erc/ ALminer).
3 The reason to have this copy is to provide for the modified download_data in

alminer_mod ."""
4

5 # Lists and dictionaries for analysis and plotting purposes
6 band_names = ["Band 3", "Band 4", "Band 5",
7 "Band 6", "Band 7", "Band 8, 9, 10"]
8

9 band_color = {"Band 3": "# BDD9BF ", "Band 4": " #929084 ", "Band 5": "# FFC857 ", "Band
6": "# A997DF ",

10 "Band 7": "# E5323B ", "Band 8, 9, 10": "#2 E4052 "}
11

12 band_min_freq = {’Band 3’: 84. , ’Band 4’: 125. , ’Band 5’: 163. ,
13 ’Band 6’: 211. , ’Band 7’: 275. , ’Band 8, 9, 10 ’: 373.}
14

15 band_max_freq = {’Band 3’: 116. , ’Band 4’: 163. , ’Band 5’: 211. ,
16 ’Band 6’: 275. , ’Band 7’: 373. , ’Band 8, 9, 10 ’: 950.}
17

18 # CO , 13CO , C180 lines covered in all ALMA bands
19 CO_line_names = ["CO (1 -0)", "CO (2 -1)", "CO (3 -2)", "CO (4 -3)", "CO (5 -4)", "CO

(6 -5)",
20 "CO (7 -6)", "CO (8 -7)", "13 CO (1 -0)", "13 CO (2 -1)", "13 CO (3 -2)",
21 "13 CO (4 -3)", "13 CO (5 -4)", "13 CO (6 -5)", "13 CO (7 -6)", "13 CO

(8 -7)",
22 "C18O (1 -0)", "C18O (2 -1)", "C18O (3 -2)", "C18O (4 -3)", "C18O

(5 -4)", "C18O (6 -5)",
23 "C18O (7 -6)", "C18O (8 -7)"]
24

25 CO_line_freq = {"CO (1 -0)": 115.27120180 , "CO (2 -1)": 230.53800000 , "CO (3 -2)":
345.79598990 ,

26 "CO (4 -3)": 461.0407682 , "CO (5 -4)": 576.2679305 , "CO (6 -5)":
691.4730763 ,

27 "CO (7 -6)": 806.6518060 , "CO (8 -7)": 921.7997000 ,
28 "13 CO (1 -0)": 110.20132180 , "13 CO (2 -1)": 220.39861950 , "13 CO (3 -2)

": 330.58786710 ,
29 "13 CO (4 -3)": 440.7651735 , "13 CO (5 -4)": 550.9262851 , "13 CO (6 -5)":

661.0672766 ,
30 "13 CO (7 -6)": 771.1841250 , "13 CO (8 -7)": 881.2728080 ,
31 "C18O (1 -0)": 109.78217340 , "C18O (2 -1)": 219.56035410 , "C18O (3 -2)

": 329.33055250 ,
32 "C18O (4 -3)": 439.0887658 , "C18O (5 -4)": 548.8310055 , "C18O (6 -5)":

658.5532782 ,
33 "C18O (7 -6)": 768.2515933 , "C18O (8 -7)": 877.9219553}
34

35 CO_line_ha = {"CO (1 -0)": "left", "CO (2 -1)": "left", "CO (3 -2)": "left", "CO (4 -3)
": "left", "CO (5 -4)": "left",

36 "CO (6 -5)": "left", "CO (7 -6)": "left", "CO (8 -7)": "left", "13 CO
(1 -0)": "left", "13 CO (2 -1)": "left",

37 "13 CO (3 -2)": "left", "13 CO (4 -3)": "left", "13 CO (5 -4)": "left", "
13 CO (6 -5)": "left",

38 "13 CO (7 -6)": "left", "13 CO (8 -7)": "left", "C18O (1 -0)": " right ", "
C18O (2 -1)": " right ",

39 "C18O (3 -2)": " right ", "C18O (4 -3)": " right ", "C18O (5 -4)": " right ",
"C18O (6 -5)": " right ",

40 "C18O (7 -6)": " right ", "C18O (8 -7)": " right "}
41

42 CO_line_label = {"CO (1 -0)": r’$\ mathregular {\,CO \ ,(1 -0)\,\,}$’, "CO (2 -1)": r’$\

XXIII

F. ALminer

mathregular {\,CO \ ,(2 -1) \,\,}$’,
43 "CO (3 -2)": r’$\ mathregular {\,CO \ ,(3 -2) \,\,}$’, "CO (4 -3)": r’$\

mathregular {\,CO \ ,(4 -3) \,\,}$’,
44 "CO (5 -4)": r’$\ mathregular {\,CO \ ,(5 -4) \,\,}$’, "CO (6 -5)": r’$\

mathregular {\,CO \ ,(6 -5) \,\,}$’,
45 "CO (7 -6)": r’$\ mathregular {\,CO \ ,(7 -6) \,\,}$’, "CO (8 -7)": r’$\

mathregular {\,CO \ ,(8 -7) \,\,}$’,
46 "13 CO (1 -0)": r’$\ mathregular {\ ,^{13} CO (1 -0)}$’,
47 "13 CO (2 -1)": r’$\ mathregular {\ ,^{13} CO \ ,(2 -1)\,\,}$’,
48 "13 CO (3 -2)": r’$\ mathregular {\ ,^{13} CO \ ,(3 -2)\,\,}$’,
49 "13 CO (4 -3)": r’$\ mathregular {\ ,^{13} CO \ ,(4 -3)\,\,}$’,
50 "13 CO (5 -4)": r’$\ mathregular {\ ,^{13} CO \ ,(5 -4)\,\,}$’,
51 "13 CO (6 -5)": r’$\ mathregular {\ ,^{13} CO \ ,(6 -5) \,\,}$’,
52 "13 CO (7 -6)": r’$\ mathregular {\ ,^{13} CO \ ,(7 -6) \,\,}$’,
53 "13 CO (8 -7)": r’$\ mathregular {\ ,^{13} CO \ ,(8 -7)\,\,}$’,
54 "C18O (1 -0)": r’$\ mathregular {\,C ^{18} O\ ,(1 -0)\,\,}$’,
55 "C18O (2 -1)": r’$\ mathregular {\,C ^{18} O\ ,(2 -1)\,\,}$’,
56 "C18O (3 -2)": r’$\ mathregular {\,C ^{18} O\ ,(3 -2)\,\,}$’,
57 "C18O (4 -3)": r’$\ mathregular {\,C ^{18} O\ ,(4 -3)\,\,}$’,
58 "C18O (5 -4)": r’$\ mathregular {\,C ^{18} O\ ,(5 -4)\,\,}$’,
59 "C18O (6 -5)": r’$\ mathregular {\,C ^{18} O\ ,(6 -5) \,\,}$’,
60 "C18O (7 -6)": r’$\ mathregular {\,C ^{18} O\ ,(7 -6) \,\,}$’,
61 "C18O (8 -7)": r’$\ mathregular {\,C ^{18} O\ ,(8 -7)\,\,}$’}
62

63 # Define all possible keywords from TAP and their types
64 VALID_KEYWORDS_STR = (’obs_publisher_did ’, ’obs_collection ’, ’facility_name ’, ’

instrument_name ’, ’obs_id ’,
65 ’dataproduct_type ’, ’target_name ’, ’s_region ’, ’pol_states ’,

’o_ucd ’, ’band_list ’,
66 ’authors ’, ’pub_abstract ’, ’proposal_abstract ’, ’

schedblock_name ’, ’proposal_authors ’,
67 ’group_ous_uid ’, ’member_ous_uid ’, ’asdm_uid ’, ’obs_title ’, ’

type ’, ’scan_intent ’,
68 ’science_observation ’, ’antenna_arrays ’, ’is_mosaic ’, ’

obs_release_date ’, ’frequency_support ’,
69 ’obs_creator_name ’, ’pub_title ’, ’first_author ’, ’qa2_passed ’

, ’bib_reference ’,
70 ’science_keyword ’, ’scientific_category ’, ’lastModified ’, ’

access_url ’, ’access_format ’,
71 ’proposal_id ’, ’data_rights ’)
72 VALID_KEYWORDS_DOU = (’gal_longitude ’, ’gal_latitude ’, ’s_ra ’, ’s_dec ’, ’s_fov ’, ’

s_resolution ’, ’t_min ’, ’t_max ’,
73 ’t_exptime ’, ’t_resolution ’, ’em_min ’, ’em_max ’, ’

em_res_power ’, ’em_resolution ’,
74 ’sensitivity_10kms ’, ’cont_sensitivity_bandwidth ’, ’

spatial_scale_max ’, ’bandwidth ’,
75 ’spatial_resolution ’, ’frequency ’, ’velocity_resolution ’, ’

pwv ’)
76 VALID_KEYWORDS_INT = (’calib_level ’, ’publication_year ’)
77

78 # Define new columns we manually add to the dataframe
79 NEW_COLUMNS = [’Obs ’, ’project_code ’, ’ALMA_source_name ’, ’RAJ2000 ’, ’DEJ2000 ’, ’

ang_res_arcsec ’, ’min_freq_GHz ’,
80 ’max_freq_GHz ’, ’central_freq_GHz ’, ’bandwidth_GHz ’, ’freq_res_kHz ’,

’vel_res_kms ’, ’LAS_arcsec ’,
81 ’FoV_arcsec ’, ’cont_sens_bandwidth ’, ’line_sens_10kms ’, ’

line_sens_native ’, ’MOUS_id ’]
82

83 # setting the column types for the manually added columns
84 COLUMN_TYPES = {’Obs ’: ’Int64 ’, ’project_code ’: str , ’ALMA_source_name ’: str , ’

RAJ2000 ’: ’float64 ’,

XXIV

F. ALminer

85 ’DEJ2000 ’: ’float64 ’, ’ang_res_arcsec ’: ’float64 ’, ’min_freq_GHz ’:
’float64 ’,

86 ’max_freq_GHz ’: ’float64 ’,
87 ’central_freq_GHz ’: ’float64 ’, ’bandwidth_GHz ’: ’float64 ’, ’

freq_res_kHz ’: ’float64 ’,
88 ’vel_res_kms ’: ’float64 ’, ’LAS_arcsec ’: ’float64 ’, ’FoV_arcsec ’: ’

float64 ’,
89 ’cont_sens_bandwidth ’: ’float64 ’, ’line_sens_10kms ’: ’float64 ’, ’

line_sens_native ’: ’float64 ’,
90 ’MOUS_id ’: str}
91

92 # setting the column types for the TAP columns
93 COLUMN_TYPES . update ({k: ’float64 ’ for k in VALID_KEYWORDS_DOU })
94 COLUMN_TYPES . update ({k: ’Int64 ’ for k in VALID_KEYWORDS_INT })
95 COLUMN_TYPES . update ({k: str for k in VALID_KEYWORDS_STR })
96 COLUMN_TYPES . update ({ ’publication_year ’: object })

1 """ Download .fits files from the ALMA Archive based on keywords . Uses a modified
version of

2 ALminer ’s own function download_data in order to pick out 500 random images from
the

3 query . There is a cleanup script added at the end in order to delete " extra " .
pickle files

4 coming with the .fits files due to Python as well as larger files than 30 MB."""
5

6 import alminer
7 import pandas as pd
8 from alminer_mod import download_data_mod
9 import os , os.path

10

11 # ’" disks around low -mass stars "’ is not working and has been published as an issue
at the code provider .

12

13 DIR = ’<PATH TO DATA DIRECTORY >’ # Will be set to ’/data ’ as default
14 KEYWORDS = [’" intermediate -mass star formation "’, ’"outflows , jets , feedback "’, ’"

outflows , jets and ionized winds "’, ’"inter - stellar medium (ism)/ molecular
clouds "’]

15

16 def download_routine (datadir , keywords , n_files , dryrun):
17 obs_holder = pd. DataFrame ()
18 for i in range (len(keywords)):
19 # Query and filtering
20 print (" Querying with keyword : " + keywords [i])
21 my_query = alminer . keysearch ({ ’science_keyword ’:[keywords [i]]} ,

print_targets =False , tap_service =’NAOJ ’)
22 selected = my_query [my_query . obs_release_date > ’2016 ’]
23 selected = selected [selected . ang_res_arcsec < 0.4]
24 selected = selected . drop_duplicates (subset =’obs_id ’). reset_index (drop=True)
25 obs_holder = pd. concat ([obs_holder , selected])
26

27

28 print (" Proceeding to download { files } fits files from the following dataframe ."
. format (files = n_files))

29 print (obs_holder)
30 print (alminer . summary (obs_holder , print_targets = False))
31 download_data_mod (obs_holder , fitsonly =True , dryrun =dryrun , location =datadir ,

filename_must_include =[". pbcor ", "_sci", ".cont"], archive_mirror =’NAOJ ’,
n_fits = n_files)

32

33 return
34

XXV

F. ALminer

35

36 def cleanup (dir):
37 for root , _, files in os.walk(dir):
38 for f in files :
39 fullpath = os.path.join(root , f)
40 if f. endswith ((’. pickle ’)):
41 os. remove (fullpath)
42 elif os.path. getsize (fullpath) > 30 * 1024 * 1000:
43 os. remove (fullpath)
44

45 download_routine (DIR , KEYWORDS , n_files =500 , dryrun =True)
46 cleanup (DIR)

XXVI

DEPARTMENT OF SPACE, EARTH AND ENVIRONMENT

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden

www.chalmers.se

www.chalmers.se

	List of Acronyms
	Introduction
	Aim

	Theory
	Star Formation
	Winds and Jets

	ALMA Observatory
	ALMA Science Archive
	ALminer
	Data Features
	Primary Beam Correction
	Continuum
	Science Target Data
	Integration time
	Spectral Window or Frequency Ranges

	Flexible Image Transport System

	Neural Networks
	History of Neural Networks
	Convolutional Neural Networks
	Architecture

	Supervised learning
	Training a Convolutional Neural Network
	Display and Evaluation of Performance
	TensorFlow

	Image Augmentation
	Linear Transformation
	Non-Linear Transformation
	Geometric Mean Square

	Methods
	Data Retrieval
	Querying and Extracting Data

	Annotating data
	Positive vs. Negative

	Data Set
	Positive Data Set
	Negative Data Set

	Implementation of the Convolutional Neural Network
	Architecture
	Evaluation
	Choices of Parameters and Functions

	Results
	Training Data
	Extracted data
	Linear Augmentation
	Non-linear Augmentation

	Convolutional Neural Network
	Positive Classed Images

	Discussion
	Data Retrieval
	Image Handling
	Small FITS-files Compatibility
	Possible Mistakes in Annotation

	Bias
	Convolutional Neural Network
	Images classified as positive by the Network
	Documentation
	Further Work
	User Friendliness
	Multiple Objects in Same FITS
	More Non-linear Transformations

	Conclusion
	Bibliography
	Initially Known Positive Images
	CNN Classified Positive Images
	Main and Neural Network Pipeline
	Image Processing
	Neural Network Backend
	ALminer

