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Abstract

In today’s world, computer systems have long since made the move from the
desktop to numerous locations in the form of routers, intelligent light bulbs, elec-
tricity meters and more. These devices are referred to as “embedded devices”,
because they are generally smaller, less powerful versions of their PC counter-
parts. These computers have lower memory and CPU performance requirements,
leading to challenges in creating software for such devices: resource constraints
encourage the use of unsafe programming languages, which in turn promotes an
environment that can lead to mistakes or unintended side-effects of the created
program. Some of these errors open up vulnerabilities that can be abused, causing
the program to perform unintended actions or giving the actors control over the
software and consequently the device. For the owner of the device, this can lead to
annoyances in the case of an intelligent light bulb, to real, economic and physical
damage in the case of devices in a critical infrastructure.

It is therefore necessary for a manufacturer of such devices to ensure the pres-
ence of steps in the development process that ensure the software conforms rigor-
ously to the specification. Aside from development guidelines for writing program
code, and the choice of safe programming languages, the actual testing of the fin-
ished application can discover critical errors before the release of the program or
device. Testing applications can be time-intensive work due to the need for proper
test cases that elicit the entirety of the program’s functionality. For this reason, a
suite of applications exists called “fuzzers”, that automatically generate exhaustive
test cases for programs.

In this thesis we present an automated system for generating such test cases
for a program. Unlike most fuzzing engines, our solution can function without the
need for its source code, and it supports multiple architectures. We use a technique
called “concolic execution” to ensure that each newly generated test case causes
the program to exhibit new behavior. With this, we intend to be able to cover all
parts of the original program much faster than humans could manually write test
cases and better than completely randomly generated inputs.

Our results are promising in that they show that we can produce exhaustive
test cases that reliably cause a program to follow unique execution paths. This
accuracy comes with a greatly increased execution cost, however, causing our cur-
rent solution to require further work to handle larger programs. Nevertheless, we
can show that in isolation, our solution outperforms an advanced fuzzer in the
case of complicated branch conditions. We conclude that the area of our thesis
shows promising results, and that future work can greatly improve the result by
removing some of the current limitations and improving performance.
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1
Introduction

The relatively young craft of software development has its share of unsolved prob-
lems. From mismanagement of developer teams and bad planning of large-scale
software systems, to the difficulties from some computational impossibilities in
computer science [Tur36], the field still remains in constant motion. One of the
problems is the security of the system by ensuring confidentiality, integrity and
availability of data or services. It is generally accepted that no computer program
can achieve full security1, largely because the three properties influence and cancel
each other out. However, achieving as much as possible of this goal still remains a
primary focus in computer security, because of the damage (financial, privacy and
otherwise) involved in security breaches.

That the number of vulnerabilities is not decreasing, is shown by the data col-
lected by the National Vulnerability Database (NVD) [CVE]. This is a database
of all publicly reported vulnerabilities in computer systems, run by the U.S. gov-
ernment. Each vulnerability is assigned a Common Vulnerabilities and Exposures
(CVE) ID and registered in the NVD and other systems. Figure 1.1 lists the num-
ber of CVEs published per year, and shows that computer system security remains
a problematic area.

The importance of secure computing systems is even more reinforced by the
ubiquity of computing devices in today’s society: The “Internet of Things” (IoT)
describes common household objects outfitted with computer chips (embedded
computers) that are connected to each other. This ranges from cell phones, cameras
and radios to intelligent fridges and electricity meters. These devices often operate
on very low memory and processing power, requiring developers to operate under
strong constraints. Compromise of such devices can lead to economical damage,

1http://c2.com/cgi/wiki?ComputerSecurityIsImpossible
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1.1. MOTIVATION
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Figure 1.1: The number of CVEs published in the National Vulnerability Database
per year (data from [CVE])

or even personal damage (in the case of pacemakers), depending on their field of
operation.

Proper auditing of computer systems before deployment, along with strict pro-
gramming guidelines, the usage of safe programming language or even formal ver-
ification can limit the chance of problematic vulnerabilities that will later be ex-
ploited by attackers. However, most of these methods remain very time-intensive,
and thus, expensive, preventing their wide-spread adoption. In the case of embed-
ded computer systems, there simply might not be the resources to keep certain
security measures in place.

1.1 Motivation

Progress has been made in the development of automated test-case generation
tools, also called fuzzers2, that continuously run the target program with new,

2http://pages.cs.wisc.edu/~bart/fuzz/
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CHAPTER 1. INTRODUCTION

randomized, inputs, in order to cause it to enter an unexpected state, crash, or
exhibit other misbehavior that could potentially be exploited. A limitation of these
randomized fuzzing tools is, that, since they do not posses any knowledge about the
input format of the tested program, they rarely generate well-formed inputs. This
leads to the execution never progressing very far into the program, and only testing
shallow execution paths. Attempts have been made at more intelligent test-case
generation through grammars [GKL08] or parsing of source code [GKS05], but are
still connected with time-intensive tasks to set up the fuzzers.

A measure of the effectiveness of fuzzers, is the lines of code covered during
one execution caused by a test case. As such, the primary goal of fuzzers and our
work is, to cover as many unique lines of code with as few test cases as possible.
The act of working towards this goal is called code coverage maximization.

Research has been conducted in developing more intelligent fuzzing frameworks
using binary analysis, as described in more detail in Chapter 3, however most of it
is focused on desktop computer systems or its results are simply not made available
publicly. Therefore this thesis’s focus is on bridging the gap: Development of an
intelligent fuzzing method using the binary analysis method symbolic execution,
described in Chapter 2, that remains as platform-agnostic as possible and can work
with binary programs without the need for source code.

1.2 Contributions

The contributions of this thesis are primarily in the form of a design and imple-
mentation of symbolic execution on top of a framework that supports a number of
beneficial properties. Unlike most fuzzing engines, our solution, except for evalu-
ation purposes, works completely without knowledge of the program source code.
This presents two primary benefits: First it gives users of proprietary software a
method to test it for errors, second, by operating on the compiled binary, it makes
it possible to catch errors that only manifest after compilation. Additionally, since
the solution is based on the QEMU emulator, support for multiple chipsets, in-
cluding X86, X64 and ARM is possible. With the advent of widespread embedded
devices this is particularly appealing.

As such, our contributions are:

• A platform to dynamically generate test files for programs that cause the
program to behave differently.

• Analysis of binary programs with zero knowledge about the program inter-
nals, without any source code, and on multiple architectures.

• For cases where the source code is available, a method to measure source line
coverage.

3



1.3. ORGANIZATION

• A method to rank generated test files by their likeliness to cover new code.

1.3 Organization

In Chapter 2 we give an in-depth introduction into the theory needed to understand
the area of this work and its implementation. Chapter 2 continues with an overview
over similar research in our field, describing the different approaches to automated
program testing and ultimately the reason why our approach is novel. We go on
to describe the details of our implementation in Chapter 4, so that we can then
elaborate on the evaluation of it in Chapter 5. Finally, we discuss the results and
their implications in Chapter 6, along with potential future areas of work.

1.4 Ethics and Sustainability

In this work, we develop a system that is intended to be used to discover security
vulnerabilities in programs. It is intended to be used by researchers or develop-
ers during development of security-critical applications. As with every security
research software, it can also be used by malicious actors to discover and exploit
vulnerabilities. This faces us with two choices: We can either withhold or release
this work. While not releasing it would intuitively prevent any abuse, it does not
prevent the existence of works similar to us. In fact, a number of similar open-
source and closed-source solutions already exist. By releasing our work however,
we can ensure that security researchers and developers benefit from our work, and
are able to improve the security of applications.

Aside from electricity, our work does not directly use any depletable resources.
The source of the electricity can be picked to come from renewable sources.

4



2
Background

This section will give a broad introduction into the concepts, algorithms, and
data formats this thesis depends on. We will describe the techniques necessary for
symbolic execution and the various frameworks that have been used in this thesis’s
work.

2.1 Dynamic Taint Analysis

In the area of program analysis, one of the main goals is to discover what transfor-
mations the program applies to a piece of data [SAB10]. This initial piece of data,
the taint source, needs to be defined at the start, and usually consists of some form
of input to the program, for example, files, command line arguments or network
traffic. Dynamic taint analysis then tracks the flow of data through the program
and identifies the operations performed on it. The result of these operations is
then also considered tainted, while any other data is considered untainted. In con-
trast to static taint analysis, which tracks information flow without execution of a
program, dynamic taint analysis does so by executing a program augmented with
callbacks, which notify the algorithm of the state of execution.

This fundamental technique opens up a number of uses in program analy-
sis [SAB10], where the particulars depend on the concrete use case. In malware
analysis, for example, one might consider sensitive information on the computer
(private documents, passwords, etc.) tainted and be alerted if any tainted data
ever reaches network functions, which might suggest unwanted exfiltration of data.
In program testing, the interest would largely be on what instructions operate on
the input data, so it could be used to generate better input data, leading to a
higher code coverage.

5



2.2. SYMBOLIC EXECUTION

Concretely, the tracking of taint through operations requires a good under-
standing of the semantics. Misrepresentations can lead to two potential errors:
When a derived value is marked as tainted, while, in reality, it is not, it is consid-
ered overtainted. Missing a flow of taint from an operation, and thus not marking
an actually tainted value as tainted is called undertainting. In some cases it might
be impossible to correctly propagate taint through an operation, due, for example,
uncertain semantics of intrinsic functions (I/O operations, hardware instructions)
or other non-deterministic operations. For these cases, the decision whether to
overtaint or undertaint depends on the particular use case. In malware analysis it
might, for example, be better to produce a false positive than a false negative.

2.1.1 Shadow Memory

Taint analysis requires bookkeeping of the taint state of the systems memory, in-
cluding I/O memory and CPU registers, in order to properly propagate taint. This
is sometimes called shadow memory [WLK13], the size of which depends on the
granularity of the analysis. When accuracy (i.e. as little overtainting as possible)
is desired, the shadow memory can track the taint state for every individual byte.
On the other hand, if accuracy is less important, and a certain amount of over-
tainting is an acceptable compromise, it could be lifted to word (two bytes) level.
Depending on the accuracy, each unit of memory needs to at least track the taint
state, i.e. one bit for whether the data is tainted or not. In reality though, more
information about where the taint is coming from is usually desired, leading to a
larger amount of information being tracked with each unit of memory.

Depending on the number of expected instructions, this leads to the need for an
efficient implementation of the shadow memory. A compromise needs to be made
between execution speed (lookup speed of the taint state) and memory usage, since
at taint state sizes of at least four bytes, it can quickly become impossible to fit
the fully allocated shadow memory in the operating systems memory, and perform
dynamic analysis.

2.2 Symbolic Execution

Symbolic execution is a way of extending taint analysis in order to learn about
how exactly the inputs to the program affect its execution [SAB10, Kin76, How77].
While taint analysis simply tracks which inputs reached the output, symbolic ex-
ecution also tracks how the input has been modified. For this, the program is
executed while all its inputs are treated as symbolic variables. Any transforma-
tions that happen on these inputs during the execution are tracked in the form of
logical formulas depending on these symbolic variables. For the system performing

6



CHAPTER 2. BACKGROUND

the execution, these symbolic values are kept in a symbolic state that mirrors the
memory locations of the system: Register, RAM and even hard disk storage.

As such, in addition to the mentioned symbolic state, symbolic execution main-
tains a path constraint (PC) in the form of a list of logical first-order expressions
depending on the input variables. Each time the execution arrives at a conditional
branch, the process forks. In one fork, the logical expression of the conditional is
added to PC, in another the negation of the expression is added. Through this,
both branches of the branch are covered. However, due to the existance of loops
which could be infinite, this forking process has to be restricted in some manner.

The forking process is one of symbolic execution’s great weaknesses: The ex-
ponential path explosion that follows each branch, leads to most naive implemen-
tations of it not scaling well to larger applications. Since every fork’s symbolic
state is kept in parallel, the system’s resources will eventually run out. There-
fore, most systems implement some form of path selection algorithm that prevents
uninteresting directions of branches to be explored further.

2.2.1 Concolic Execution

Concrete online symbolic (concolic) execution is a more restricted variant of sym-
bolic execution [QR11]. This variant restricts itself to analyzing a single execution
of a program, i.e. it does not fork on branches. The result of this is, that in-
stead of covering all possible execution paths in one execution, concolic execution
outputs the PC that is recorded during a single execution. A resulting PC can
then be used to generate new input files by selectively negating individual branch
constraints and solving the resulting, new, path constraint.

The advantages of this approach are, that concolic execution for program test-
ing generally scales better than pure symbolic execution. This is because only a
single program trace is ever analyzed at a time. The problem of infinite loops does
not disappear, however, but as long as an algorithm exists to prune uninterest-
ing execution paths, concolic execution can iteratively analyze each path without
exhausting resources due to the path explosion problem.

2.3 LLVM

LLVM is a compiler infrastructure project started as a research project in the Uni-
versity of Illinois [Lat02]. It has since turned into a large open-source project. Its
core is an intermediary language of the same name (“LLVM Intermediate Repre-
sentation”, or “LLVM IR”. When we refer to LLVM in the following sections, we
mean the IR) and a supporting optimizer for it. It supports native code generation
from its IR into a large number of architectures. It provides a well-developed API

7



2.4. PANDA

for its IR and consists of a small number of well-defined instructions. Extended
information can be read in its language reference manual1.

2.4 PANDA

The PANDA framework [DGHH14] has been selected to be used as a base for the
symbolic execution technique implemented in this thesis. While relatively young
and under constant development, PANDA’s unique record & replay structure,
coupled with an LLVM translation unit extracted from the S2E project [CKC11]
makes it an ideal framework for this thesis’s work. In this section, we elaborate
on the parts of PANDA necessary to understand the rest of this thesis.

PANDA was first specifically described in the technical report “Repeatable
Reverse Engineering for the Greater Good with PANDA” by Dolan-Gavitt et
al. [DGHH14]. It is built upon the QEMU whole-system emulator [Bel05] and
extends it with the ability to record system executions, store them on disk and
later replay them in exactly the same way they previously executed.

To extend analysis techniques performed on the program during execution,
PANDA uses a plugin architecture, allowing for individual plugins to be enabled
and disabled during runtime and to define APIs to interact between plugins.

As mentioned, PANDA is based on the QEMU2 [Bel05] open source emulator.
It allows operating systems, and programs running inside it, of one instruction
set to be executed on a host system of another instruction set. At the time of
this writing, it primarily supports x86, x86-64, ARM, MIPS, PowerPC and other
chipsets. Aside from its wide support of architectures, its main features are its
speed together with its relative simplicity.

2.4.1 QEMU

Guest code translation is done through a Just in Time (JIT) dynamic binary
translator: Individual guest basic blocks are converted to a simple intermediary
language (IL) by the Tiny Code Generator (TCG) and then translated to the host
system instruction set. The result of each translated basic block is cached, so that
subsequent invocations of them are performed faster.

While the TCG IL makes it easy for a developer to implement a new compiler
frontend by only having to work with a single language, it is not suitable for
analysis, for the same reason that assembly languages are not: It is not side-effect
free.

1http://llvm.org/docs/LangRef.html
2http://wiki.qemu.org/
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CHAPTER 2. BACKGROUND

Side-effects of an assembly language are commonly present in form of secondary
non-obvious operations performed by a specific instruction. For example, in the
x86 assembler, a single add instruction is expected to store the sum of two registers
in another destination register. It does however also modify a number of bit-sized
registers called the“condition codes”. Here, the CPU stores information on whether
the previous instruction has lead to an overflow, whether the result was zero or
negative, and others. Condition branch instruction that jump to other locations
in the code then depend on these condition codes. These side-effects do however
make binary analysis on pure assembly difficult, since they have to be properly
modeled for every single instruction [FPS11, SBY+08].

TCG shares these properties, in that it delays calculation of condition codes
until they are actually required, when execution reaches a branch instruction.

2.4.2 LLVM JIT

Since assembly languages and the TCG IL have side-effects, PANDA integrates a
module [CC10, CGZC09] from the S2E project that implements an LLVM code
backend for the TCG. The module translates each TCG operation to an equiva-
lent number of LLVM instructions, and constructs entire LLVM basic blocks by
chaining together several calls to these instructions into one LLVM function per
basic block. Afterwards, the LLVM code optimization passes are applied to each
translated basic block, as the originally generated code is far from optimal, due
to unused variables and unnecessary indirections due to the number of calls. The
generated LLVM code can then be translated back to the host system’s instruction
set, using LLVM’s built in JIT-compiler. Figure 2.1 details the translation process
inside QEMU, leading to LLVM-generated assembly. At the top, X86 guest code
is translated to the internal TCG micro-operations, at which point the TCG OP
to host instruction mapping is used to access equivalent LLVM snippets, which are
then combined into the equivalent LLVM bitcode.

As detailed in [CC10] however, the translation process is significantly more
expensive than the original TCG translation process. This is due to the fact that
for each basic block the full LLVM optimizer and compiler has to be run. The
higher emulation slowdown leads to the original work in [CC10] having issues with
timeouts in operating systems with LLVM translation enabled. PANDA solves
this problem with its record & replay functionality, described in the next section.

2.4.3 Record & Replay

For this, during execution, PANDA writes all inputs to the CPU, hardware in-
terrupts and RAM read/writes to a “non-determinism” log, along with the time
when the event occurred. Recording can be started at any point during QEMU’s

9
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Figure 1: The QEMU dynamic binary translator

In this section, we give a brief overview of LLVM
(§3.1), show how to convert micro-operations to LLVM
code (§3.2), how to optimize the resulting code (§3.3),
and how to execute it (§3.4).

3.1 The LLVM Assembly Language

LLVM uses a compact RISC-like instruction set and a
static single assignment (SSA) code representation. The
LLVM instruction set consists of about 30 opcodes. Only
the load and store instructions can access memory, all
other instructions operate on virtual registers. LLVM vir-
tual registers resemble registers in traditional instruction
set architectures (e.g., x86), except that there is no bound
on howmany of them can be used by LLVM code, which
enables SSA representation. In SSA, each register can be
assigned only once. Hence, SSA also provides a phi in-
struction. This instruction assigns a value to a variable
depending on the location from where the control flow
arrived. Without this instruction, it would be impossible
to modify the same variable in two different branches.

The conciseness and SSA-form of LLVM make
LLVM programs amenable to complex analysis and
transformations. The LLVM code implicitly embeds the
program’s data flow and def-use graphs. This enables
transformations like function inlining, constant propaga-
tion, dead store removal, etc. These transformations are
a key part of the x86 to LLVM translator, as we shall see
in §3.3.
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Figure 2: An LLVM backend for QEMU

3.2 Translating Micro-Operations to
LLVM

The DBT maps the micro-operations resulting from the
disassembly phase to LLVM functions, by using the
code dictionary. Each micro-operation is assigned to
one LLVM function that implements the behavior of that
micro-operation. The code for the micro-operation is
originally written in C and compiled by llvm-gcc into
LLVM bitcode. The set of LLVM functions implement-
ing micro-operations’ behavior is stored in the code dic-
tionary. Listing 1 shows a micro-operation simulating a
jump to a code location by assigning a value to the pro-
gram counter register, and another operation computing
the XOR of two registers. Micro-operations operate on
the virtual CPU state, which is passed to them as a pa-
rameter.
void op_jmp_T0(CPUState *env) {

env->eip = env->t0;
}

void op_xorl_T0_T1(CPUState *env) {
env->t0 ^= env->t1;

}

Listing 1: Examples of micro-operations.

After the DBT has mapped the micro-operations to
corresponding LLVM functions, it transforms the trans-
lation block into LLVM bitcode. The DBT converts
micro-operations to LLVM function calls, as shown in
Listing 2. In this example, the translation block is com-
posed of seven micro-operations. The translation block
is encapsulated into an LLVM function taking as a pa-
rameter a pointer to the processor state. The generated
LLVM code is equivalent to the original x86 code in ev-

2

Figure 2.1: The QEMU to TCG to LLVM to Host Instructions Translation
Pipeline [CC10]

execution. If recording begins after the guest system is already running, a QEMU
snapshot is first created, which captures the entire system’s state and can be
loaded again at any point. This information is then enough to accurately replay
the operations executed inside QEMU, and repeat the recorded process.

At this point the previously mentioned LLVM translation becomes viable: Since
the program’s execution no longer depends on any outside inputs such as timing
information, the overhead imposed by LLVM translation cannot cause timeouts
inside the guest operating system or application anymore. Instead, PANDA anal-
ysis plugins, such as the one responsible for taint flow analysis, can take enough
time to properly perform their work.

2.5 Satisfiability Modulo Theories

In computer science, the boolean satisfiability (SAT) problem deals with deter-
mining if an interpretation of boolean variables for a given boolean formula ex-
ists [Coo71]. Since this problem is generally NP-complete, there exist no algo-
rithms that can confirm or deny the existence of such an interpretation with a
non-exponential worse-case running time. Instead, however, there exist a num-
ber of efficient solvers that, while still having an exponential worst-case running
time, can solve the problem very efficiently for most formulas that arise in prac-
tice [DP60, DLL62]. Satisfiability modulo theories (SMT) [BSST09] builds upon
SAT by extending it with a number of theories from first-order logic, such as rea-
soning about equality, arithmetic, natural/real numbers, bit-vectors and arrays.
Similarly, a number of fast solvers exist for the SMT problem [Tin02].

10



CHAPTER 2. BACKGROUND

One such solver is Z3 [DMB08], developed at Microsoft by Leonardo de Moura
and Nikolaj Bjørner. Z3 differentiates itself from other solvers by providing well-
developed APIs for C, C++ and Python to a very fast open source SMT solver.

A standardized format of representing SMT formulas is that of SMT-LIB3. The
Lisp-like language documents syntax and semantics for representing the different
theories, access to the solver and solver extensions.

For this thesis, a number of theories are relevant. The theory of fixed-size
bitvectors deals with logical and arithmetic operations and extraction and con-
catenation on bitvectors. The arithmetic (addition, subtraction, etc.) and logical
(and, or, etc.) operations represent those happening in the CPU, and thus include
side-effects such as overflows or underflows. Arithmetic instructions are gener-
ally repeated in two versions: one where the operation treats its arguments as
unsigned, one as signed. Examples for arithmetic operations are bvadd, bvsub,
bvuadd, bvumul and so on. Other operations include concat to concatenate two
bitvectors, and extract to extract a smaller bitvector from another.

The theory of arrays represents arrays in such a way that values can be stored
and retrieved from each index. A store function takes two arguments and returns a
new array with the given element stored at the passed position. Subsequent select
calls on that position and array do then return the previously stored element.

; Bitvector Example

(define-fun is-power-of-two ((x (_ BitVec 32))) Bool

(= #x00000000 (bvand x (bvsub x #x00000001))))

; Array Example

(declare-fun a1 () (Array Int Int))

(assert (= (select a1 x) x))

(assert (= (store a1 x y) a1))

Figure 2.2: SMT-LIB Example of the Bitvector and Array Theory

In Figure 2.2 we first see an example of a definition of a bitvector function that
asserts that its 32 bit parameter is a power of two. The shorthand #x00000000

describes the hex representation of a 32 bit bitvector equal to the number 0. A
second example shows the definition of an array, and two instructions asserting
the functionality of the select and store functions.

3http://smtlib.cs.uiowa.edu/
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3
Related Work

The foundation of this work is based upon several advancement in research per-
formed previously. In this chapter we present an overview and short history of the
field of program testing techniques relevant to this thesis. We further describe the
feature sets of market leaders in the different areas of fuzzing engines, including
the current state of art in symbolic execution engines.

3.1 Fuzzing Engines

The term “fuzzing” was introduced by Barton P. Miller in 1988 and is described
as the act of executing a program with (semi-)random inputs in an automated
fashion with the goal of causing errors in the program. Pure randomized fuzzing
has in the past been the base of a number of studies and has led to discoveries
of many problems in program suites [MFS90, MCM06, FM00, KKS98, MKL+95].
Its applicability is however limited, as most inputs would not lead to very deep
program paths. This can be easily illustrated with the example of a program
expecting certain magic bytes at the beginning of a file. A single four byte magic
value would have an incredibly low chance of one in 232 to be correct in full random
fuzzing.

More modern fuzzers either depend on grammars to generate better and valid
inputs, or are started with a number of already valid seed inputs. Further inputs
are then generated by only randomizing parts of a valid input file (mutation-based
fuzzing), or to use basic program instrumentation techniques to measure how much
of a program is covered by an input. Quality inputs can then be used to generate
new, better inputs (generational-based fuzzing). Other methods include the use
of pre-defined protocol grammars [Ait02, GKS05] to generate more efficient inputs

13
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at the cost of additional work required on the side of the developer to define the
grammar.

American Fuzzy Lop1 (AFL) is an advanced open-source automated fuzzing
suite that applies a number of these concepts. Its main features are its speed,
reliability and simplicity. By applying a number of preprocessing and mutation
strategies, it is able to achieve high coverage and has discovered a number of bugs
in image processors and parsers. By trading in expensive analysis techniques such
as symbolic execution for speed, it can generate high quality inputs. The common
problem with magic numbers however remains, and AFL is generally unable to get
past those without high quality seed inputs to start off with.

Other work has been done using information flow techniques to track which
bytes of the input can affect the control flow inside the program [BBGM12, LBB+07].
These approaches can fall into the category of hybrid systems between pure black-
box fuzzing, where no knowledge about the program internals exists, and more
advanced techniques involving symbolic execution.

3.2 Symbolic Execution

One of the technologies to generate smarter test inputs for software systems is to
utilize symbolic execution to derive constraint formulas on the input. While the
idea behind it is an old one [Kin76, Cla76, RHC76, How77, BEL75], it has only
recently again caught interest in the area of program testing. Due to this, there
are no big, open source projects comparable in ease of use to American Fuzzy Lop.

A large open source contender in the field is KLEE [CDE08]. Here the authors
extend on the previous work on the similar EXE [CGP+06] tool. KLEE works on
LLVM bytecode, by adding custom instrumentation to it that is used to perform
symbolic execution on designated inputs. As such, it generally requires the source
code for applications, so that they can be compiled to LLVM bytecode with, for
example, Clang [Lat02] in the case of C/C++. KLEE’s two primary goals are to
(1) cover every line of code in the executable program and (2) detect operations
and bugs that could be exploited. As a pure symbolic execution toolkit, KLEE
executes every branch simultaneously and thus faces the problem of exponential
path explosion. The authors have however developed more efficient caching struc-
tures and search heuristics in order to prioritize interesting execution paths, and
have successfully used their tool to detect tens of bugs in the well-tested GNU
Coreutils tool package, amongst others [CARB12].

An interesting development on top of KLEE is the S2E [CKC11] project. By
developing a module for QEMU that effectively translates assembly languages

1http://lcamtuf.coredump.cx/afl/
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to LLVM [CC10], the authors are able to provide symbolic execution even for
proprietary software systems, and, more importantly, to correctly symbolically
execute operating system and driver APIs instead of just emulating their behavior.
On top of that the authors’s main contributions are (1) selective symbolic execution
to limit expensive analysis to interesting parts of the system, and (2) execution
consistency models to reduce the computational overhead when it is not required.
The efficiency of the tool depends largely on custom-written analysis plugins, that
reduce the number of execution paths down to an interesting or relevant number,
thus allowing the execution to reach deeper execution paths before running out of
resources.

The described projects all perform full symbolic execution, meaning that at
each branch they have to fork off a separate execution, effectively doubling (ignor-
ing shared resources) the resource load.

S2E attempts to limit the impact of this exponential path growth, by providing
a plugin architecture that can prioritize exploration of certain paths and limit
the effect of the inherent path explosion of symbolic execution. It does however
mean, that certain executions will potentially never be explored. Since these path
selection plugins work with heuristics, a wrong guess can lead to missing important
bugs.

Following we describe some projects that attempt to circumvent this limitation.

3.2.1 Concolic Execution

The “Scalable, Automated, Guided Execution” [GLM+08] (SAGE) toolkit, is Mi-
crosoft’s research into applying symbolic execution to automatically generate test
cases for fuzz-testing of applications. The authors introduce a method known as
“whitebox fuzz testing” which effectively uses concolic execution to symbolically
execute a single execeution trace that resulted from a single input. With this,
SAGE is able to scale to much larger applications, without missing out on any
potentially vulnerable branches by dropping them to save resources.

After capturing the branch constraints of the execution, SAGE then uses them
to generate inputs for new executions. It uses a method called “generational
search”, to intelligently pick inputs that will have the highest chance of leading
to uncovered code. Aside from its scalability, SAGE has the advantage of running
on X86 assembly, and thus being able to detect errors that manifest themselves
during compilation or other build processes.

Microsoft has used SAGE to discover a number of possible high-profile bugs,
notably about one third of all the file-system related bugs discovered through
fuzzing during the development of Windows 7 [God09]. Since SAGE is an internal
toolkit at Microsoft, it has since not been released to the public, neither in source
nor binary form.
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With CREST [BS08], the creators built a symbolic testing program, that uses
the C Intermediate Language (CIL) [NMRW02] to perform source-to-source trans-
formation and insert instrumentation functions into the C code. CREST then
performs concolic execution of the instrumented program. Its main contribution
is the introduction of a number of new search strategies for exploring the space of
possible execution paths more efficiently.

In addition to the two extremes of pure symbolic execution and pure concolic
execution, other hybrid variations exist.

3.2.2 Hybrid Execution

With FuzzBALL [BMS11, MPC+13, CBP+13] the authors combine static and
dynamic analysis techniques to intelligently pick the locations of potential vulner-
abilities inside the program. They then use symbolic execution to direct the path
exploration towards the potential target vulnerability. FuzzBALL works on X86
assembly and the authors have recently made its source code public on GitHub2.

Mayhem [CARB12] is one of the newest generation of symbolic fuzzing frame-
works. Similarly to SAGE, it performs its analysis on X86 code. Its main features
are comprised of scaling online symbolic execution to large applications, while
keeping its speed compared to offline (concolic) execution, and a more accurate
representation of symbolic memory accesses. Mayhem can create test cases for
an application, discover possible bugs and automatically generate shell-spawning
exploits. Its scalability is achieved with “hybrid symbolic execution”: Online sym-
bolic execution is performed of the program until the memory pressure of the
system becomes too high, at which point Mayhem creates so-called checkpoints
for some execution states that contain all path constraints and additional informa-
tion required in order to restore the execution state for that point. Once execution
finishes, these checkpoints are restored by concolically executing the program with
the saved path constraints to reach the previous state, at which point online exe-
cution continues.

The authors of Mayhem ran their tool on almost every binary of Debian
Wheezy, generating about 1200 bug reports3. Most of the generated reports con-
cern minor issues and do not directly cause security issues, however. Like SAGE,
Mayhem remains an internal toolkit and the authors are working on providing a
commercial testing service using it4.

2https://github.com/bitblaze-fuzzball/fuzzball
3http://lwn.net/Articles/557055/
4http://forallsecure.com/mayhem.html
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3.3 Summary

We can see that the area of discovering program errors is rich with a wide range
of techniques and approaches, however a common trend of the existing research
and tools remains to only focus on the common x86 processor architecture. This
effectively rules out the application of any of these results in the area of embedded
systems development without significant further work. The extent of this work
depends on each project, but at a minimum consists of modeling the effects and
side-effects of additional assembly languages.

Additionally, even for toolkits that do claim multi-architecture support, they
remain proprietary or depend on the program’s source code in order to create
proper inputs. It has been shown however, that many potential errors only man-
ifest in the build-chain, or in (potentially) closed-source dependencies [CKC11,
CARB12, BMS11].

As such, we focus on bridging this gap with our work. We decided to utilize
the advantages of PANDA’s record and replay system in circumventing application
timeouts during expensive analysis, in order to perform concolic execution of a
record to generate domain-specific input files to test the program with. This
essentially gives us X86 and ARM support for free, with further architectures (X64,
MIPS, ..) available with limited extra work. Additionally, the implementation of
symbolic execution operates on LLVM, and thus remains detached from the CPU
architecture.

When looking at some of the top related work in our field, such as SAGE
and Mayhem, it might become apparent that fuzzing using symbolic execution is
already an advanced and nearly magical method. In contrast, the results of our
work might seem insignificant. However, we believe there are two primary issues
with that stance, that are largely in-sync with the results of a discussion started
by the developer of AFL5.

First and foremost, the programs developed in the most popular contenders are
largely non-public. This makes it impossible for anyone to reproduce the results
and thus confirm them. The developers of SAGE claim it is used internally at
Microsoft, on internal tools. No bugs discovered by it are made public, and anyone
reading the related publications has to take the authors’s word for the success.
Mayhem has become popular due to the impact it caused by releasing thousands
of bugs discovered in the GNU coreutils suite, however after investigation, nearly
all of these are in insignificant, non-critical areas, that could hardly be used to
compromise a system. The authors do not talk about the important limitations
their tools have, and since they remain non-public, it is not possible to determine
whether the tools would be applicable to real-world systems.

5http://lcamtuf.blogspot.se/2015/02/symbolic-execution-in-vuln-research.html
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Secondly, a number of authors in popular research in this field compare their
results to that of completely random input generation. While this is a good way
to establish a baseline, it does set the bar to reach incredibly low, as being better
than random mutations is almost guaranteed for any technique which is moderately
novel.

Consequently, we decided to compare our work to that of American Fuzzy Lop.
While AFL is a state-of-the-art fuzzing engine that has received significant work
and results of extensive research6, we chose it primarily because of its ease-of-use
and easy availability. We do not expect to beat AFL in all cases, but we do believe
it is a good measure of how close we can get. During our evaluation in Chapter 5,
we see that our solution even outperforms AFL in some cases.

6http://lcamtuf.blogspot.se/2014/08/binary-fuzzing-strategies-what-works.html
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4
Design and Implementation

This chapter describes the design of the system developed to maximize code cov-
erage, and the difficulties solved during implementation. We describe the general
structure of the approach and then go into detail of the individual steps involved,
the problems encountered and their solutions. We use the more scalable variation
of symbolic execution, concolic execution, in order to intelligently generate new
program inputs that target unreached parts of the program. Also, for reasons dis-
cussed in the introduction, the primary goals, aside from coverage maximization,
remain the following:

1. No access to program source code of the tested application.

2. Support for multiple architectures, such as ARM and X86.

3. Zero knowledge about the internals of the program.

4. Unsupervised execution of the system while it fuzzes the target program.

Whether the resulting system fulfills the goals, and how efficient it is compared
to blackbox fuzzing is then evaluated in the next chapter.

4.1 System Structure

The coverage frontier [LBB+07] describes the branch conditionals for which only a
single branch of the two available ones (true and false) have been taken. The gen-
eral goal when trying to maximize coverage, is to target branches on the coverage
frontier. By using specially crafted input files the execution is directed towards
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Figure 4.1: Flowchart of the project’s structure
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these branches, leading to the discovery of new basic blocks and new (uncovered)
branches thus extending the coverage frontier.

Our approach is separated into a system of several individually performed steps.
Figure 4.1 shows a general overview of the architecture. We will now outline the
responsibilities of each step:

(1) Initially, the algorithm needs to be initialized with a number of seed inputs.
These inputs are used to perform initial runs of the target program. The
quality of the inputs (i.e., how domain-specific they are) can greatly increase
the effectiveness of the algorithm, however, completely random inputs are
perfectly valid.

(2), (3), (3b) At this point the fuzzing loop of our work begins, and a collection
of inputs available for testing is constantly kept. Each input is associated
with a score that is meant to give a hint of how high the potential for newly
discovered branches is. The input with the best score is then selected for
further analysis.

(4) The input and the target program are prepared to be executed and a trace of
the execution is recorded with PANDA. During both this stage and the next,
potential execution errors (bugs) in the target program can be detected by
a different system (5).

(5) At this point it becomes possible to detect crashes, memory errors and poten-
tial security vulnerabilities in the code. We do not handle this part in this
work.

(6) The heart of our approach: Using PANDA’s replay mode, the previously
recorded trace is executed again and bytes read from the input file replaced
with symbolic variables. During replay, instructions operating on the input
file are then executed symbolically (concolic execution). For each branch in-
struction depending on the input file, the symbolic expression is then output
as a constraint placed on the input by the branch condition.

(7), (8) After all constraints have been captured, some of them are selected to be
negated using a selection algorithm in (8). The new modified path constraints
are then attempted to be solved by a SMT solver, and for those that are
satisfiable, models are generated.

(9) The models from the previous stage are used in order to generate new potential
inputs based on the original input file and are scored accordingly using a
scoring metric algorithm (10).
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In the following sections, we will go into more detail of the stages and the
challenges involved in them.

4.2 Input Files

The input files, or test cases, of the program to be tested are the target of our
system. They get mutated into new versions using the constraint information
captured during the analysis phase. Initially, the system needs to be seeded with
a number of seed inputs that are used to perform initial runs of the program.

While randomly generated seed inputs are acceptable, it makes sense to provide
a number of different length seed inputs. This is because our system only varies
the content of the file, but not the length of it. An input of ten bytes will always
remain ten bytes long, even after being mutated by our algorithm multiple times.
It could then be possible to never reach certain code locations that depend on the
physical length of the input file.

4.2.1 Scoring

Each analysis phase can, depending on the number of captured constraints, pro-
duce a large number of new input files. A large number of those will most likely
not advance the coverage frontier any further. Since the analysis stage takes sig-
nificantly more time than that of a blackbox fuzzer such as American Fuzzy Lop,
we must take extra care in picking a good input.

Test cases are sorted with a scoring metric using the following values, prioritized
in order:

1. Targets the uncovered edge of a known branch.

2. Produces a new path of execution.

3. Number of inputs executed targeting this branch (less is higher priority).

4. Length of the path (shorter is higher priority).

These criteria have been determined through common procedures [GLM+08]
such as prioritizing uncovered branches, and through testing of different selectors.
Ultimately the current set of criteria has proven to be the best performing, however
it is possible to vary them further.

First, selecting an input that covers an uncovered branch of a conditional in-
struction is guaranteed to cover new code, as such it has the highest priority.
Second, there is no use in executing an input that would produce no new execu-
tion path, as it does not reveal any new information, therefore those inputs that do
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lead to new execution paths are prioritized. The next two selectors are primarily
the result of experimentation.

4.3 Recording

After an input file has been picked, it is packaged together with the application in
an ISO file. A QEMU instance is started and resumed from a snapshot in order
to avoid a lengthy boot process. The ISO file is mounted in the system, then
PANDA’s recording functionality is activated and finally the program executed.
After execution finishes, the recording is stopped and the system shut down. The
resulting execution trace is then used for the following concolic execution.

4.4 Branch Constraints

The largest and most important part of this work is the construction of branch
constraints on the input file that govern the execution path and thus parts of the
code it will reach during execution.

z == 12

x = i0 + 21
z = x / 2

i0 = 3

i1 = 5y = z + i1*10

y > 60

truefalse

false true

i0 = read();

x = i0 + 21;

z = x / 2;

if (z == 12) {

i1 = read();

y = z + i1 * 10;

if (y > 60) { /* ... */ }

else { /* ... */ }

} else { /* ... */ }

Branch Constraint

A (i0 + 21)/2 == 12

B (i0 + 21)/2 + i1 · 10 > 60

Figure 4.2: An example of concolic execution with branch constraints in our im-
plementation. The pseudo code example on the top right with its control flow graph
on the left, and the extracted branch constraints in the bottom right.

In Figure 4.2 we see an example of symbolically executing a single program
trace. We designate the variables i0 and i1 as inputs and treat them as symbolic
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variables. Since we symbolically execute an existing program trace (i.e. concolic
execution), we do have concrete values available (3 and 5 respectively). Therefore
at branch A the value of z is pre-determined and the execution takes the true
branch. At this point we output the constraint that this branch enforces on the
input. Concretely, this means that any execution of the program, that should
take the true branch of this conditional, requires the branch A constraint to hold.
When the execution reaches condition B and takes the true branch, we output a
second constraint on the input. Now, for any execution that intends to reach this
exact point, the branch constraints A and B have to hold for the input.

Using these branch constraints, it will then be possible to generate an input
file that leads a new execution down a different branch. We will now detail the
challenges involved in calculating these constraints from PANDA’s LLVM code
representation.

4.4.1 LLVM Instrumentation

To be able to extract runtime values from the target program and identify oper-
ations for symbolic execution, it is necessary to augment each line of LLVM code
with special callback functions. This technique is generally called instrumentation
or code tracing. It is implemented by a custom LLVM pass, that is executed on
every basic block translated by QEMU/PANDA. The pass inserts the necessary
tracing calls for both the taint flow and our symbolic execution system. For a
binary operation (add) this would, for example, look like the following excerpt:

%17 = add i64 %16, 1

call void @taint_mix(...)

call void @symbexec_binop(...)

Here taint_mix propagates the basic taint information for the addition and sym-

bexec_binop records the more detailed result of symbolically executing the two
operators. A symbolic execution callback is not always necessary, as the taint sys-
tem is capable of handling, for example, a pure copy between two LLVM registers.

It is worth noting that LLVM remains an abstraction of the assembly that’s
actually being executed during runtime. The LLVM registers do not directly rep-
resent locations in memory. The shadow memory implementation of the PANDA
taint system, however, does assign each LLVM register, LLVM return value and
others a unique location in the corresponding shadow memory. This does not af-
fect the correctness of the LLVM representation of its originating TCG IL from
QEMU, it merely adds an indirection during taint tracking through the intro-
duction of LLVM registers. For example, while an add instruction originating in
assembly is a single instruction, the corresponding representation in LLVM IR
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Name Purpose

RAM System memory

I/O I/O memory

LLVM LLVM variables of the current function

RET LLVM return value

GRV CPU registers

GSV Special CPU state flags (EFLAGS, FPU, etc.)

Table 4.1: Different types of shadow memory. We list the number of shadow
memory instances for the various emulator locations that we track taint flow through.

consists of two load operations storing the operators in LLVM registers, an LLVM
add instruction storing the result in a new LLVM register and lastly a store of the
register value into the destination register of the original add instruction.

We based our solution on an existing taint tracking plugin in PANDA [DGLHL13,
WLK13]. This plugin is a rewrite of an earlier, slower one from the developers,
and has a number of different shadow memories for different physical and logical
memories. Table 4.1 shows the different types of shadow memory used to track
taint across system execution.

During development, we discovered a number of errors in the implementation
that became particularly visible during symbolic execution. Undertainting in par-
ticular can cause a number of divergences from the program source. The errors we
corrected are, among others:

• Lack of taint tracking through I/O memory.

• Incorrect tainting of LLVM function call arguments.

• Loss of taint on LLVM allocated stack variables.

• Use of unallocated variables during instrumentation leading to insertion of
erroneous calls.

As of the writing of this thesis these corrections have not been merged back into
the original project yet, however the developers have been informed of the errors
and work is being done on integrating them into the source repository.

4.4.2 Memory I/O

Values read from and written to memory need to be instrumented and specially
mirrored to shadow memory. We need to capture potential symbolic values read
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from (or written to) shadow memory, while still mixing in concrete values from
the underlying storage if no symbolic values are present.

To achieve this, whenever an instruction reads a value from memory as an
operator, and that memory is marked as tainted, we construct a new bit-vector
expression with the size of the read. The expression is constructed by iteratively
concatenating one of two bytes at the memory location of the read: If the memory
location is not tainted, the byte from the concrete memory is picked and turned
into a bit-vector. However, in case the read location contains an expression, that
expression is concatenated instead. Values of multiple bytes are considered stored
in common least significant byte (LSB) first order therefore, the value has to be
concatenated in reverse.

Figure 4.3: Example of two memory reads, showing symbolic and concrete memory

Two examples of read operations are shown in Figure 4.3. Operation one
performs a read on the first four bytes, containing a total of two symbolic and two
concrete values. As the value is constructed from left to right, LSB first, it results
in the following SMT-LIB expression: (concat #x61 (concat (bvadd x #61)

(concat (concat #xFF (bvsdiv w #22)))). The concrete bytes 0x03 and 0x4A

are thus ignored, since symbolic expressions are available for these. Operation
two similarly results in an expression of (concat #x30 (concat (bvadd z 3)

(concat (bvmul y 31) #x61))).
Writes to the shadow memory happen in a very similar way, but here, instead

of concatenating bytes together, the full multi-byte expression is available and has
to be split into its individual bytes before being written. This is done using SMT-
LIB’s extract instruction and the example in Figure 4.4 shows the result of that
operation. It is worth noting that all writes at this point refer to writes to the
shadow memory, i.e., the data structure used to track the flow of information.

While Figure 4.4 shows the end-result of the write, the expressions temporar-
ily become much more complex, due to the repeated concatenation and extract
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Memory

SymVal

81 A3 D3 

(concat (bvadd x #33) (concat #xA3 #x81))

x+33 

Figure 4.4: Example of a symbolic write to memory

Byte Expression Simplified Expression

0 (extract 7 0 (concat (bvadd x #33) (con-

cat #xA3 #x81)))

#x81

1 (extract 15 8 (concat (bvadd x #33)

(concat #xA3 #x81)))

#xA3

2 (extract 23 16 (concat (bvadd x #33)

(concat #xA3 #x81)))

(bvadd x #33)

Table 4.2: Result of extracting bytes from the expression in Figure 4.4

processes. Table 4.2 signifies the importance of Z3’s simplify() function for
expressions: The table shows both expression versions, the one before the sim-
plification, after multiple concatenations and extractions, and the much shorter
expression after simplification. Intuitively, this becomes even more important in a
real application with hundreds or thousands of I/O operations.

4.4.3 Operator Translation

As the most important part of symbolic execution, it is necessary to correctly
mirror each LLVM instruction in the form of a symbolic SMT-LIB expression.
To properly perform this, the following information needs to be passed on during
instrumentation:

1. type of backing shadow memory

2. source operands and destination address and size in shadow memory

3. concrete values for all source operands

4. type of instruction
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Most of LLVM’s operations translate directly to SMT-LIB format. Both have
support for unsigned and signed operations of addition, subtraction, division, mul-
tiplication, remainder and all binary operations on bit-vector integers. Floating
point operations remain unhandled for the moment. Similarly, for comparison
instructions, SMT-LIB instructions exist for unsigned and signed variants of all
inequality operations.

LLVM however has a few so-called intrinsic functions that perform common
operations that can not be modeled with existing instructions, or would require
too many instructions. These functions are normally translated to corresponding
assembly instructions by LLVM’s compiler backends, however in our case we have
to model their operations on top of symbolic memory. Only two operations were
required to be modeled in PANDA: uadd_with_overflow performs an unsigned
addition and produces an extra bit designating if an overflow occurred in its result
type { i1, i32 }. bswap performs a byte swap of its single operator, effectively
reversing the bytes of it.

4.4.4 Symbolic Pointers

A special case of memory I/O is when the address read from or written to is tainted,
i.e. is a symbolic value. This involves that the exact result of the operation depends
on the input. This is a common case in array lookups, or lookup tables in general
and needs to be handled. We currently handle the most common event, symbolic
pointer read operations, by using the theory of arrays for SMT. In the event of such
a memory read, we first determine the bounds of the pointer expression by using the
SMT solver to iteratively refine the minimum/maximum value of the expression.
Once the bound is determined, an array expression is created and all concrete
memory values present at the possible pointer locations are stored inside it. To
finalize the resulting expression, an array theory read operation at the location
of the pointer expression is then performed on the created array expression. The
resulting expression can then be as an accurate modeling of the symbolic pointer
read and used in further constraints.

4.5 Test Case Generation

In the final phase, once the constraints of the current test case have been cap-
tured, new inputs are generated using the solutions to the constraints produced
by Microsoft’s Z3 SMT solver. The conjunction of all captured constraints during
symbolic execution are called a path constraint. In order to generate new inputs
that will lead the executed branches into different directions, those individual con-
straints are iteratively negated, as can be seen in AnalyzeLog of Figure 4.5. The
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process is very similar to that of SAGE’s [GLM+08] generational search. For each
new test case the depth at which it has been generated at is kept as a lower bound
for further children to be generated from this test case. This is to prevent redun-
dant creation of already existing children from further up in the path constraint.

AnalyzeLog(input, log) {

PC = symbolicallyExecute(log)

for (i = input.bound; i < length(PC); i ++) {

newPC = PC[0 .. i-1] + not(PC[i])

if (newPC is SAT) {

newInput = input + model(newPC)

newInput.bound = i

AddInput(newInput)

}

}

}

Figure 4.5: Pseudo code showing how new test cases are generated from a program
recording and its corresponding previous input.

In the example of Figure 4.2, this process would result in two new inputs. Here,
the original path constraint consisting of the two branch constraints A and B is
expanded to not(A) and A, not(B).
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5
Evaluation

In this chapter we evaluate the developed system with respect to the set goals,
its efficiency and comparison to blackbox fuzzing. Initially we describe the meth-
ods and metrics used in this chapter, then we elaborate on the individual tests
performed. Finally we present the test results.

5.1 Methodology

To determine the effectiveness of our system, we compare it to a sophisticated
conventional blackbox fuzzing engine, American Fuzzy Lop (AFL). Since it is in-
feasible to measure coverage for each executed input for AFL, because it executes
thousands of test cases per second, AFL outputs test cases every time a new pro-
gram path is executed. Using a third-party tool named afl-cov1, which uses gcov
to determine line coverage, we also determine increasing line coverage with each
test case.

Our goal is to test how our implementation handles complex programs. Com-
plexity can appear in different forms. Here, we handle it in two cases: First, we
consider complicated branch conditions, such as equations in integer arithmetic or
comparison against certain magic values that are hard to guess. Secondly, com-
plexity can appear in the form of the size of the code and the number of control
flow construct, loops in particular. This case in particular tests the ability to scale
to larger applications and handle the problem of non-terminating loops.

Both our solution and AFL are allowed to run for up to two hours after no
change in coverage has been observed or until all reachable locations are covered.
For AFL this means the process is canceled after the creation of the last test case

1https://github.com/mrash/afl-cov

31



5.1. METHODOLOGY

was more than two hours ago, for our solution it means no change in line coverage
has occurred for more than two hours. Our tests and results later show that this
relatively arbitrary time does not favor our solution over AFL, because if AFL
manages to cover a code location for our small program samples, it does so within
seconds to minutes.

After the time has expired, the process is aborted and the coverage results
are extracted. We then compare the number of lines covered over the number of
inputs and over time. For some of our tests, we perform a more detailed analysis
to determine if certain conditionals have been covered.

The measurement of code coverage becomes a challenge on its own, due to
the Assembly -> TCG -> LLVM recompilation performed by PANDA. PANDA,
together with QEMU, performs dynamic recompilation of the source binary into
LLVM (and later the host system’s architecture), as such only code locations vis-
ited by the program are actually visible to PANDA. This poses a difficulty in
determining the maximum number of basic blocks, which is a necessity in order
to derive a total percentage of covered code. This is further complicated, because
of QEMU’s helper functions (i.e. for divisions) introduce additional branches and
basic blocks that could be influenced by input data.

Due to this reason we have decided to use gcov2 to measure the coverage
during each run. gcov is linked into the binary during compilation, and results in
a trace file being created each time the binary is executed. Using this data, we
can determine the number of basic blocks of the original program covered during
a run. There are a number of limitations to this: First, gcov can not capture
coverage if the application crashes (because of, for example, a division by null),
however, proper crash detection is an additional challenge that we do not handle
in this work. Secondly, only coverage of the C sources of our test applications is
captured. This does not include the mentioned QEMU helper functions, nor any
use of library (such as libc) functions where file taint could reach further branches.
However, since we generally assume that source code is not available anyway, and
our test cases are strictly controlled, this remains an acceptable inaccuracy for our
evaluation.

For each test we place the precompiled binary into the folder that will be
provided to the QEMU virtual machine and modify the run.sh script to start the
target executable. A single seed input consisting of several repetitions of a single
character is used. After fuzzing is finished, we use the target executable, compiled
with gcov coverage support, to generate coverage statistics for each executed test
case.

2https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
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5.2 Tests

We separate the performed tests into two categories: The first (from now, pre-
fixed with t) contains a number of tests that attempt to validate the correctness
of the symbolic execution implementation and its performance against complex
branch conditions in isolation. It does so by performing a number of arithmetic
calculations and comparing their results, and presenting loops that require several
iterations in order to generate the expected result that lead to further uncovered
code. In order to compare the results better, we also note if AFL managed to
generate test cases that cover the target of each test.

The second is a number of samples from real-world applications. This involves
larger programs with more complicated logic and loops running for several itera-
tions. This is to test if our solution can handle the combination of complex branch
conditions combined with multiple iterations of loops and other execution flows
indirectly influenced by the input. We use the test suite from previous work on
analyzing static program checkers [ZLL04]. The suite has been used in a number
of other works on program testing to varying degrees [LBB+07, Zit03, ZLL05].
Unfortunately not all of the samples could be run with our implementation. This
was either because the samples were not easily convertible to our dynamic analysis
technique (due to non-deterministic side-effects such as network activity), or be-
cause they hit other current limitations in our implementation, such as scalability
issues with the Z3 SMT solver among others.

5.2.1 Complex Branch Conditions

We begin by describing the results of the tests in the first category. Each test has
one or more target branch conditions which represent a category of complex
operations. The goal for each test is for both our implementation and AFL to
cover them in as few test cases as possible.

t1 Simple Comparison: Three nested if statements comparing input bytes to
constant values.

t2 Simple Arithmetic: A number of arithmetic operations to verify common
binary operations (division in particular). Operations are performed on two
bytes which are read from the input file.

t3 Loop: Usage of atoi converts a string read from the file to an integer, and
compares it to a constant value. The target branch condition is atoi(input)
== 31337.
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Covered by

AFL Ours Inputs needed by our solution

t1 Yes Yes 4

t2 Yes Yes 12

t3 No Yes 22

t4 No Yes 6

t5 No Yes 5

Table 5.1: Results of the performed tests. Our solution, as opposed to AFL,
managed to cover all branches. We also list the number of inputs our solution had
to generate to achieve full coverage.

t4 Complex Arithmetic: A larger equation based on two integers read from
the input file is compared to a constant value. Target condition (with a,
b as four byte integer inputs) is (a*a + 512*b - 912) / (b - 5 * a) ==

31337.

t5 strcmp: A constant string compared to the input using libc’s strcmp.

We ran those tests in AFL and our system. For AFL, we noted if it managed
to cover all the branches within the time limit of two hours, for our system, we
noted the number of inputs it took to cover the target branch conditions.

We can see from the results in Table 5.1 that our solution performs exception-
ally well with the more complicated branch conditions. Even the slightly more
difficult t3 depending on atoi is solved after 22 inputs.

Both t1 and t2 have two one byte integers as input, which provide a state space
of 28 + 28 = 512 for naive bruteforcing. Since AFL is executing ten thousands of
input variations each second, it quickly solves the branch constraints present in
the tests. Its limits become clearly visible with t3 to t5, where more complex
conditions are present and our solution easily solves them within the minimal
amount of executions.

However, AFL still outperforms our solution on the simpler tests operating on
two one byte integers. Of note is, that if AFL managed to cover all target branches,
then it did so after a few seconds.

5.2.2 Complex Control Flow Logic

The second category consists of the following three tests. The entire static code
checker test suite consists of fourteen tests from the previously mentioned test suite
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for static code checkers [ZLL04]. Out of the remaining eleven tests not present in
the following list, one third was not applicable to input file fuzzing as outlined in
Section 5.2, or consisted of very similar variations of other tests. The remaining
tests had problems with our unoptimized handling of pointer arithmetic and got
stuck during SMT solving of the constraints. For the three samples we kept the
names from the original test suite: crackaddr (also called s1), mime1 (s3) and
prescan (s5). All three samples are between 500 and 600 lines of code (LOC),
including comments. In the following results, we only measure the reachable LOC,
also called effective lines of code, or ELOC.

We plot the results of both our solution and AFL both as a function of execution
time, and as a function of the number of generated test cases. Test cases in AFL
require some clarification: While AFL executes hundreds of thousands of different
inputs per second, it only stores inputs that cause the program to exhibit new
behavior, i.e. a new execution path. AFL also calls those “test cases”. As such,
each test case from AFL can correspond to a large number of actual program
executions and corresponding generated inputs.
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Figure 5.1: crackaddr test results. In the tested time, our solution does not
reach the same coverage as AFL. Over the number of test cases, our coverage stays
superior than AFL for a while.

The results are plotted in Figure 5.1, 5.2 and 5.3. The graphs are truncated
shortly after the maximum in coverage was reached until the previously described
two hour timeout. In Figure 5.1 this resulted in a total execution time of nearly
seven hours, because our solution always managed to cover more lines before the
chosen timeout has expired.
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Figure 5.2: mime1 test results. Our solution reaches full coverage after roughly
two and a half hours. Results over number of test cases are similar.
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Figure 5.3: prescan test results. Full coverage is achieved after two hours. Again,
results over number of test cases are similar.
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Ours (s) AFL (s)

Average Median StdDev Average Median StdDev

crackaddr 51.0 50.0 3.4 5.7 0.3 29.0

mime1 123.0 125.0 24.7 36.0 0.4 184.0

prescan 64.0 59.0 12.0 2.0 0.1 5.0

Table 5.2: Execution time per generated test case

The maximum coverage primarily differs from 100% due to the presence of
unreachable lines of code that gcov counts towards the total. This means that
any branches leading to those lines are unaffected by the input and could not be
reached by either AFL or our solution.

We can see from the results that our solution performs much worse than AFL
in the time dimension. This is not unexpected, as AFL is a matured software
developed on a large number of well-known and well-tested techniques. While
AFL reached its maximal coverage within a few minutes for all three cases, our
solution took several hours to reach the same (or similar, in the case of crackaddr)
percentage.

The results look different if plotted in comparison to the number of inputs.
Here our solution shows much clearer that it produces test cases of at least as
good quality as AFL. It is however also noticeable where our solution has to ef-
fectively blindly try to explore conditionals in order to discover new, uncovered,
conditionals. This becomes visible in the form of plateaus, where the coverage does
not increase. Since we do not perform analysis of the program’s control flow graph,
we can not detect which conditionals would advance an internal loop, or reveal a
nested, uncovered, conditional. This is primarily a result of our simplistic scoring
algorithm, which we did not focus on. The algorithm can be further improved in
a number of ways, as expanded upon in Chapter 6.

Furthermore, we look at the execution time results in Table 5.2. We show the
average and median time taken between produced test cases for our solution and
AFL, along with the standard deviation. While it was clear from the beginning
that AFL would perform significantly better, we still provide the time it took to
find new test cases for completeness’s sake. We see that the execution time for our
solution varies with the executed sample, but remains relatively constant. It is not
viable to interpret these numbers as execution time per program run, since there
are thousands of actual executions between generated test cases in AFL, while ours
produces a new test case with each execution.
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6
Future Work

As became clear from the results, our work is merely a stepping stone towards a
full binary symbolic fuzzing engine. In this section we describe potential future
work to improve the results.

6.1 Error Detection

An important part of fuzzing aside from high quality input is the actual detection
of errors in the program. Since those errors do not always manifest in the form of
very obvious program crashes, or return codes, detecting them is a challenge on its
own that we did not address in this work. Future work could investigate analysis
of the program’s runtime during replay or recording as to undesired side-effects.

One category of well-studied errors is that of use-after-free or buffer overflow
bugs. To detect those, there exists software libraries such as Address Sanitizer1

which could be possible to integrate into the tested executable. The project im-
plements forms of taint-tracking and shadow memory techniques to detect access
to unallocated or freed memory locations. Since this brings additional overhead
into the analysis, it would be best to perform this as a parallel step on the al-
ready available input file. Address Sanitizer currently requires the LLVM source
in order to add instrumentation to the executable, however it could be possible
to integrate this directly into PANDA’s LLVM representation on a block level. A
different choice might be Valgrind2, since it does not depend on the availability of
the source and it is a well-tested, matured toolkit.

1http://clang.llvm.org/docs/AddressSanitizer.html
2http://valgrind.org/
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The Mayhem [CARB12] framework goes one step further, by providing a proof
of concept script for each detected exploit that causes the fuzzed program to spawn
a shell. While this is an extreme example, the representation of the program’s con-
straints during symbolic execution performed by our work can be further analyzed
in order to detect exploits that could lead to control flow hijacking or leakage of
secret information. The basis for this analysis is given by our modeling of pointer
arithmetic if during a pointer read, the bounds intersect with secret information
(which could be tracked through the taint tracking system). Similarly, if during a
write to a symbolic address, the bounds intersect with sensitive locations on the
stack, such as the return value, the input could be used to hijack the control flow.

6.2 Performance Improvements

The slowdown involved during symbolic execution is not ideal. With runtimes of
about one minute for a very small program, the improved test accuracy comes
at a big cost, while fuzzers like AFL can test thousands of inputs per second.
There have been arguments3 that this slowdown destroys the usefulness of more
expensive analysis techniques, however we believe that this is not true, mostly due
to the fact that even relatively advanced fuzzers fail simple magic value checks (we
expand on this later).

There are numerous ways to improve the performance of our approach, since
we paid little attention to this in our proof of concept. Aside from improvements
of the code’s performance, a powerful technique is the parallelization of the steps
involved in our analysis. Due to the atomicity of most steps, it lends itself perfectly
to the problem. For example, a considerable amount of time is spent launching
QEMU and setting up the recording environment for each attempt. A better
approach would be to keep an instance of QEMU running in the background and
delegating the creation of new recordings for inputs to it. Any number of machines
or processes can then work on analyzing the recorded log files and generating new
inputs.

Currently, our handling of pointer arithmetic is sub-optimal. We replicate large
amounts of expressions in order to model the array logic necessary to solve pointer
dereferences. A better solution would be to investigate solve strategies and tactics
implemented by most SMT solvers (including Z3) that are optimized for a certain
amount of duplication in the assertions.

Finally, instead of chosing randomized fuzzing or symbolic execution, it is prob-
able that by combining our technique to continuously generate new and better
quality input files with AFL’s significant speed, a much faster coverage could be

3http://lcamtuf.coredump.cx/afl/README.txt
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achieved. Here, if AFL gets stuck in complicated conditionals in the code, our
approach will quickly move through it, allowing AFL’s techniques to continue at-
tempts on the code that lies beyond the conditional.

6.3 Improved Input Scoring

As a consequence of the large slowdown imposed on the execution, it becomes also
more important to intelligently pick previously generated input files to symbolically
execute. Each analyzed input that does not bring the execution closer to uncovered
code is essentially wasted time.

Our current ranking algorithm for potential test cases is simple. This becomes
noticeable in the results, where long stretches of test cases are executed leading
to no new line coverage. A more advanced algorithm could analyze the program’s
control flow graph from previous executions and prioritize inputs based on how
close their execution traces operate to uncovered branches. It would also be sensible
to implement some of the techniques AFL uses.
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7
Conclusion

In this thesis we explored the concept of using binary analysis techniques to au-
tomate program testing. We described symbolic and concolic execution and its
application to the field, and designed and implemented a system that applies this
to test case generation. Some of the work has lead to corrected errors in the orig-
inal open source project, as outlined in Chapter 4. We compared our system to
a state-of-the-art fuzzer, American Fuzzy Lop, and determined that our solution
has merit.

The results show promise when compared to AFL. Our solution performs better
in certain cases of difficult branch conditionals where AFL consistently gets stuck.
It is however clear from the tests with larger programs that our approach requires
significant more work. In particular, the exploration of loops needs to be sped up
significantly in order to get close to the performance of advanced fuzzers. This
becomes very visible from the differences in the graphs for coverage by time, and
coverage by test cases. While the produced test cases are of similar or better
quality than those of AFL, the speed of analyzing them in the current version is
very low.

We conclude that symbolic execution is a promising field in dynamic program
testing, and that we have contributed to the field by implementing a prototype
using it on top of the promising PANDA framework. We do however realize that
our prototype and the field requires more work in order to be competitive with
more blunt program testing systems, and hope that this work will lead to future
versions.
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