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Preface

Each group member kept an individual time log during the project. We also kept a group log with
notes from our group meetings and the meetings with our supervisor.

Work process

During the project we have had group meetings approximately twice per week, as well as mee-
tings with our supervisor every 1-2 weeks. During the group meetings we decided on tasks to be
done until the next meeting, and followed up and gave feedback on work done since the last meeting.

All group members have been involved in and kept up to date on all parts of the project du-
ring the process, but we did also assign main areas of responsibility for each group member. Oskar
was responsible for the report, David was responsible for the theory and literature studies, Astrid
was assigned the role of project coordinator, and Adam was responsible for the MATLAB code.

During the work process, David has lead the literature studies. Oskar did much of the work on
and wrote the code for the global search algorithm. Astrid did everything related to the genetic
algorithm, including coding the algorithm. The numerical results were generated by Adam, who
also wrote the code for the local search algorithm as well as the code used for benchmarking.

All group members contributed with literature studies and creative input when developing the
neighborhoods and algorithms. The discussion and conclusion parts of the report are the results
of group discussions. All important decisions were discussed and made during group meetings.

Report

The writing of different sections of the report was divided between the group members. The authors
of each section are presented below, however, everyone has contributed with ideas, comments, and
proofreading of each section.

e Oskar Eklund: 3.1 Previous research, 3.2 Local Search, 3.3 Global Search, 4.1 Test problems,
5.2 Global Search Algorithm

e David Ericsson: 2 Mathematical optimization, 4.2 Benchmarking, 6 Results
e Astrid Liljenberg: Abstract, 1.4 Outline, 3.4 Genetic algorithm, 5.3 Genetic algorithm

e Adam Ostberg: 4 Assessment methodology, 5.1 Local search algorithm, 5.2 Global search
algorithm, 5.4 Benchmarking, 6 Results

The remaining sections, not mentioned above, were co-authored during group sessions.
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Popularvetenskaplig sammanfattning

Optimering handlar om att férséka finna bésta mdéjliga 16sning pa ett problem. Inom matematisk
optimering innebér detta att man har en funktion, som beroende pa de val man gor i problemet,
ger ett varde. Det &r detta virde man antingen vill minimera eller maximera. Man kan &ven sétta
upp villkor fér hur en 16sning far lov att se ut. Ett kiint exempel pa ett optimeringsproblem &r
kappsdcksproblemet. En person har dé en kappséck och ett urval av foremal att fylla kappsédcken
med. Varje foremal har ett virde, men kappsécken har en begriansat utrymme som gor det oméjligt
att packa ner samtliga foremal. Problemet &r alltsa att bestdmma vilka foremal personen ska packa
ner i kappséicken for att den ska fa sa stort virde som mojligt. I detta exempel utgors funktionen
av det sammanlagda virdet av féremalen i kappsécken, vilket ska maximeras, och villkoren utgors
av kappséckens utformning och volym.

Att 16sa optimeringsproblem &r av stort intresse for samhéllet, da vi har en begridnsad méngd re-
surser som vi vill anvéinda pa ett effektivt sitt. Av denna anledning har det under lang tid bedrivits
forskning inom &mnet optimering. I dagens datoriserade samhiille handlar denna forskning ofta om
att utveckla algoritmer, som med hjélp av datorer kan 16sa olika problem. I de flesta matematiska
optimeringsproblem utgors valen som funktionen beror pa, de sé& kallade beslutsvariablerna, av tal.
Dessa tal har en naturlig ordning vilket innebér att det for varje par av tal &r mojligt att jamfora
dem och séga att det ena ar stérre dn, lika med, eller mindre dn det andra. Fér denna typ av
problem finns det manga kinda algoritmer som anvénds for att hitta 16sningar. Men det dr inte
alltid fallet att variablerna &r tal, exempelvis om malet dr att maximera véirdet av ett hus genom
att mala om det i en populdr firg. Da handlar det istéllet om farger, vilka saknar en naturlig
ordning eftersom det inte finns ett sjalvklart sitt att avgora om till exempel réd ar storre 4n gron.
Detta ar vad kategorisk optimering handlar om; att 16sa optimeringsproblem med variabler som
inte har nagon naturlig ordning.

Volvo GTT bedrev aren 2012-2017 ett forskningsprojekt vid namn TyreOpt som behandlade op-
timeringsproblemet att vélja déck till lastbilar i syfte att minimera bransleférbrukningen. Detta
optimeringsproblem &r kategoriskt eftersom déck, likt farger, inte har ndgon naturlig ordning. Att
ett stort foretag som Volvo investerar i ett sddant projekt &r en god indikation péa att kategoriska
optimeringsproblem &r viarda att studera. Vi har darfér dgnat vart arbete till kategorisk optimering,
dér vi har studerat befintliga algoritmer och &ven med hjéilp av dessa utvecklat egna algoritmer
for den hér typen av problem.

Vart arbete har kretsat kring tre algoritmer: en lokalsokningsalgoritm, en globalsékningsalgoritm,
och en genetisk algoritm. Lokalstkningsalgoritmen letar inte nédvandigtvis efter den optimala
16sningen, utan ndjer sig med att hitta en 16sning som &r béttre &n alla andra 16sningar i dess
lokala omgivning. Omgivningar kan definieras pa olika sétt, i problemet med husfirgerna skulle
en omgivning till fargen rod exempelvis kunna inkludera fargerna rosa och orange, eftersom de i
nagon mening ligger néra fargen rod. Globals6kningsalgoritmen, som vi har utvecklat baserat pa
lokals6kningsalgoritmen, sdker & andra sidan efter den verkligt optimala 16sningen av problemet.
Bade lokal- och globalstkningsalgoritmen kréver en omgivningsdefintion f6r att anvindas, nagot
som vi ocksa har studerat i detta arbetet. Slutligen sa &r den genetiska algoritmen en algoritm
inspirerad av den biologiska evolutionen, med mekanismer som till exempel naturligt urval och
genmutation. Vi har implementerat alla tre algoritmerna i programmeringsspraket MATLAB.

Vidare har vi valt ut lampliga problem att testa algoritmerna pa, for att pa sa sétt kunna analy-
sera hur bra de presterar. Vi har anvint oss av ett pahittat, rent matematiskt problem, och ett
fysikaliskt problem som involverar en balk. Genom att testa hur bra algoritmerna 16ser problemen
har vi kunnat dra slutsatser om hur de kan anvindas i fortsdttningen. Exempelvis har vi sett att
lokals6kningsalgoritmen med avseende pa en viss omgivningsdefinition, som vi kallar kategorisk om-
givning, fungerade valdigt bra i jamforelse med den genetiska algoritmen. Vi har &ven sett att med
en annan omgivningsdefinition, som vi kallar diskret omgivning, fungerar globals6kningsalgoritmen
béttre dn lokalsokningsalgoritmen. En nackdel vi har kunnat se med globalsékningsalgoritmen &r
att den i vissa fall tar férhallandevis lang tid fér datorn att utfora.



Abstract

Optimization problems with categorical variables are common for example in the automotive
industry and other industries where mechanical components are to be selected and combined
in favorable ways. The lack of a natural ordering of the decision variables makes categorical op-
timization problems generally more difficult to solve than the discrete or continuous problems.
Thus it is important to develop methods for solving categorical optimization problems. This
report presents three different algorithms that can be used for solving categorical optimiza-
tion problems: a local search algorithm, a global search algorithm, and a genetic algorithm.
In addition, two different neighborhood definitions to use with the local search algorithm are
presented, a categorical one, and a discrete one. The algorithms were implemented in MATLAB
and were tested on two different categorical optimization problems: an artificial problem, and
a beam problem. The algorithms developed were applied to a large number of instances of
the problems and their performance was evaluated using performance profiles and data pro-
files. The local search algorithm equipped with the categorical neighborhood outperformed
the other algorithms considered.

Sammanfattning

Optimeringsproblem med kategoriska variabler ar vanligt forekommande exempelvis inom bil-
industrin och andra industrier dar mekaniska komponenter ska véljas ut och kombineras pa
gynnsamma sitt. Avsaknaden av naturlig ordning p& beslutsvariablerna gor att kategoriska
optimeringsproblem oftast &r svarare att l6sa &n diskreta eller kontinuerliga problem. Det
ar darfor viktigt att ta fram metoder som loser kategoriska optimeringsproblem. Den hér
rapporten presenterar tre olika algoritmer som kan anvindas for att 16sa kategoriska optime-
ringsproblem: en lokals6kningsalgoritm, en globalstkningsalgoritm, och en genetisk algoritm.
Dessutom presenteras tva olika omgivningsdefintioner att anvéinda ihop med lokals6kningsal-
goritmen, en diskret, och en kategorisk. Algoritmerna implementerades i MATLAB och testades
pa tva olika kategoriska optimeringsproblem: ett artificiellt problem, och ett balkproblem. De
framtagna algoritmerna applicerades pa ett stort antal instanser av testproblemen och deras
prestanda utvéirderades med hjilp av prestandaprofiler och dataprofiler. Lokals6kningsalgorit-
men utrustad med den kategoriska omgivningen presterade béast av de testade algoritmerna.
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C.6 Resultat och slutsats



1 Introduction

The field of optimization is concerned with finding the best solution to a given problem. The
problems are modelled using mathematical tools and can be divided into different branches based
on the domain of their decision variables, for example, continuous, and discrete optimization prob-
lems. Some discrete optimization problems have variables that lack natural order, that is, there is
no meaningful way to order them that corresponds to a physical meaning. Such discrete variables
are referred to as categorical variables. Optimization problems having only categorical variables
arise in various real life applications and are called pure categorical problems, e.g., an optimization
problem to select components in a mechanical construction, see [1].

The existing optimization methods developed for solving problems with continuous or discrete
variables cannot be used to solve the categorical optimization problems. This is due to the fact
that the usual definitions, for instance neighborhood, optimality, and continuity are not applicable
in the context of categorical variables with no natural ordering. In order to analyze and solve pure
categorical problems, alternative definitions and solution methods have to be introduced.

1.1 Background

This project was motivated by the research project TyreOpt ([2]) conducted by Chalmers Uni-
versity of Technology and University of Gothenburg in cooperation with Volvo Group Trucks
Technology (GTT). The main aim of the research project was to reduce the fuel consumption of
heavy duty trucks by optimizing the tire selection. The choice of tires for each axle of the truck,
that is, discrete variables with no natural ordering, were the categorical decision variables of the
tires selection problem.

Optimization methods and vehicle dynamics models to select the tires when described by their
inflation pressure, diameter, and width were developed in [2]. A possible way to improve the
methodology developed is to somehow also consider the tire patterns when selecting the tires.
Photos of tires are supplied by Volvo GTT, which can be found in Appendix A, with the purpose
to find suitable parameterizations of the tire tread patterns allowing for the tire patterns to be
considered as additional variables of the tire selection problem.

1.2 Purpose and aim

The purpose of this bachelor project is to analyze categorical optimization problems and to study
and develop algorithms to solve such problems. In particular, the aim is to assess how distance
and neighborhoods can be defined for categorical variables, and given suitable definitions of these
notions, how a categorical optimization problem can be solved efficiently. In order to do this,
several definitions of distance and neighborhood for categorical variables are explored with the
intention to develop algorithms solving specific categorical optimization problems. The algorithms
are developed utilizing existing approaches from the literature studied and our own ideas. In
addition, they are implemented in MATLAB and their performance are assessed on different test
problems.

1.3 Scope

The project is restricted to the study of pure categorical problems, not considering mixed variable
programs (MVP) where the variables may be of both the continuous and discrete (categorical)
type. In the theoretical part of the project where we discuss distances and neighborhoods, we
do not intend to come up with a completely new definition, but rather review current ones and
possibly modify them. We further restrict our project to analyzing three algorithms, called local
search, global search and genetic algorithm. For the implementation we restrict the work to two
different types of test problems, called the beam problem and the artificial problem, for testing
the performance of the three algorithms. In addition, no ethical aspects connected to project that
would require further analysis have been identified and will therefore not be discussed in the report.



1.4 Outline

In Section 2 we begin with an introduction to mathematical optimization, defining the concepts of
both the local and the global optimum. The optimization problems with categorical variables are
subsequently introduced and it is explained how they differ from the optimization problems with
discrete or continuous variables. Then, distances and neighborhoods for categorical variables are
discussed.

Section 3 introduces the three algorithms developed for solving optimization problems with categor-
ical variables, including a local search algorithm for finding local optima, a global search algorithm
with the intention to find global optima, as well as a genetic algorithm.

In Section 4 two categorical optimization problems are presented, an artificial, and a real world
optimization problem. It is also described how the so-called data and performance profiles can be
used to assess the performance of the algorithms. In Section 5 we describe how the algorithms
were implemented in MATLAB.

The results of numerical tests of the algorithms when applied to the test problems are presented in
Section 6, and discussed in Section 7, as well as the implications for the TyreOpt research project.
In Section 8 we draw conclusions regarding the algorithms developed for solving optimization
problems with categorical variables. Also, we draw conclusions about the TyreOpt project.

2 Mathematical optimization

Mathematical optimization is the discipline concerned with finding the best solution to a given
problem. To achieve this, a mathematical model of the problem is set up, and using mathematical
methods an optimal solution is searched for. To facilitate the understanding of the technicalities of
the report, this section begins by introducing relevant concepts in optimization on a general level.
Then, a more detailed account of categorical optimization is given.

2.1 Overview

We begin by setting up the mathematical environment for general optimization problems. In
order to describe the choices that can be made in the problem, a space of decision variables Y is
introduced. Each element y € Y represents a choice one can make in the problem. To be able to
determine which choice is the best, an objective function f : ¥ — R is needed, which measures
how well a decision y € Y solves the problem. In addition, there may be some constraints that
need to be satisfied, specifying a subset C of the decision space Y. The set C is often described
in terms of constraint functions g; : Y — R satisfying ¢;(y) = 0 or g;(y) < 0, where i belongs to
some index set Z. Equipped with these notions, a general optimization problem may be formulated
mathematically as

HIII;IEIngQ fly) "

subject to y € C,

where the minimization of the objective function f is taken by convention, since any maximization
problem may be converted into a minimization problem by changing the sign of f. We will
henceforth use the word optimum and minimum interchangeably. The goal is to find a feasible
point, that is, a decision y € Y that fulfills the constraints, i.e., y € C, such that there is no other
feasible point with a lower objective value. Such a point is called a global optimum.

Definition 2.1. (Global optimality) A point y € Y N C is said to be a global optimum for the
problem (1) if
fy) < f(x), ¥xeync.

In some problems a global minimum may not exist due to unboundedness of the objective function
over the decision space. Even if a global minimum exists, it may be difficult to find it. However, a



point may still have the lowest objective value in a small region around itself. This is the notion
of local optimality.

Definition 2.2. (Local optimality) A point y € Y is said to be a local minimum for the problem
(1) if
fly) < f(x), ¥xeN(y)nc,

where A (y) is a neighborhood of y.

A neighborhood is a set map N : Y — P(Y) which assigns to each point y in the decision space a
subset of points N (y) C Y, i.e., N(y) belongs to the power set! of Y, defining the points in this
subset to be similar or close to y. The neighborhood N (y) may be chosen differently depending
on the problem, in order to account for what points should be close to each other. For example,
when Y C R" the neighborhood is usually taken as a Euclidean ball, that is, N (y) = {x € YV :
Ix —y|| < e} for some € > 0. A more thorough discussion of neighborhoods can be found in [3].

2.2 Optimization with discrete and categorical variables

In the previous section general optimization problems were considered, without specifying the
underlying decision space nor assumptions on the objective function and the constraints. A discrete
optimization problem is a problem in the form (1) with Y C Z". Solving discrete optimization
problems can easily become cumbersome. Discrete decision spaces can quickly become enormous
in size. Consider for example a decision problem with 100 binary variables. For such a problem
there are 2100 different feasible solutions. The most naive way of solving optimization problems
is by means of enumeration, that is, computing the objective value for all feasible points in order
to check which has the lowest. Such an approach is not appropriate when the decision space
becomes enormous. For continuous decision spaces, such as Y C R™, that are of infinite size,
tools from calculus have been used to develop algorithms that take shortcuts in order to avoid
the enumeration; we refer the reader to [4] for a more in depth description of such algorithms.
For discrete cases, development of similar techniques has not been as successful, and the discrete
optimization algorithms require much higher effort ([5]).

Categorical optimization problems are ones where the variables represent configurations in some
manner. Examples are fixed configuration problems ([6]) and catalog-based design problems ([7]).
A fixed configuration problem is when a product with certain components have been decided for,
but it remains to choose the dimensions of each component. The catalog-based design problem can
be seen as more general, where one chooses components in order to design a tailor-made product.
The defining property for such problems is the fact that the decision variables have no natural
order. In other words, there is no natural way to compare two elements = and y, as is the case for
integers and real numbers.

A categorical optimization problem can be transformed into a discrete one by means of numer-
ization as described in [8]. Suppose we have a problem where we need to choose n components,
where for the j-th component there are m; possible choices, j = 1,...,n. We may then label the
choices for the j-th component by {1,...,m;} =: X7. Hence, the whole set of configurations can
be written as X = X' x --- x X", and each configuration can be denoted x = (z1,...,x,) with
x; € X 7. Thus, a categorical optimization problem may be stated as

minimize f(x). (2)
After a numerization, X can be considered a subset of Z™. Since the list of configurations can
be sorted in an arbitrary way, the actual ordering of the choices in the numerization does not
necessarily have any real physical meaning. Given all possible orderings of the configurations, one
gets a family of discrete problems that all correspond to the same categorical problem.

IThe power set of a set A, denoted P(A), is the set of all subsets of A.



We now want to define what it means for two configurations x,y € X to be close to each other.
However, since it is not certain that the ordering in the discrete problem has some connection to
the actual structure of the problem, it makes sense to consider a metric which is invariant under
different numerizations. The Hamming distance is such a metric ([8]).

Definition 2.3. (Hamming distance) The Hamming distance between two configurations x,y € X
is defined as dy(x,y) = card{i € {1,...,n} : z; # y;}.2

In terms of the Hamming distance, points in the decision space are considered to be close to each
other if they differ on few components. With this definition, two points will indeed be close to each
other no matter which ordering is chosen in the numerization. Given this metric, a categorical
neighborhood may be defined as follows.

Definition 2.4. (Categorical k-neighborhood) Consider the categorical decision space X with the
Hamming metric. The categorical k-neighborhood of x € X is defined as N¥(x) = {y € X :

Since the categorical problem is defined on Z™ after a numerization, one can also consider a discrete
neighborhood. This may be appropriate when there is some underlying structure in the ordering
of the configurations. An example is the fixed-configuration problem previously mentioned.

Definition 2.5. (Discrete t-neighborhood) The discrete ¢-neighborhood of x € X is defined as
Ni(x) ={y e X : 3501, |v — il <t}

The categorical k-neighborhood contains all configurations such that & components of x may be
changed. In the discrete neighborhood, we do not only consider points on the lines parallel to the
axes, but points that can be reached in ¢ unit steps. Examples of the categorical 1-neighborhood
and the discrete 2-neighborhood are illustrated in Figure 1 and Figure 2 for a categorical space
with two decision variables, each having five configurations.

7\ N (x)
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Figure 1: Categorical neighborhood, k =1 Figure 2: Discrete neighborhood, t = 2

Now when the notion of neighborhood for categorical spaces is defined, we can proceed to define
optimality conditions. While global optimality for a categorical problem is the same as in the
general case, local optimality is defined as follows.

Definition 2.6. (Local optimality with categorical k-neighborhood) A point x € X is said to be
a local categorical minimum for the problem (2) if f(x) < f(y) for all y € N¥(z).

Definition 2.7. (Local optimality with discrete ¢t-neighborhood) A point x € X is said to be a
local discrete minimum for the problem (2) if f(x) < f(y) for all y € N}(x).

Local optima are not guaranteed to be global optima. However, many optimization problems of
practical relevance exhibit multiple local optima, thus demanding the use of global optimization
techniques for their solution. Both local and global optimization techniques for categorical problems
are described in Section 3.

2The cardinality of a finite set A, denoted card A, is the number of elements in the set.



3 Algorithms for categorical optimization problems

In this section we commence with an account of the previous research related to our project. Then,
three algorithms for solving categorical optimization problems, inspired by the previous research,
are laid out. The three algorithms are local search, global search, and genetic algorithm.

3.1 Previous research

Optimization problems with categorical variables can be approached in different ways. One way is
discrete optimization algorithms, see for example [9] and [10]. In [9] we find a method for solving
discrete optimization problems with help of an auxiliary function. In each iteration this method
moves from a local minimum of the objective function to another, better one, with help of the
auxiliary function. In [10] a method based on splitting of the set of configurations is presented.
For a global descent approach, see [8]. Genetic algorithms have been previously used in many
component selection and catalog design problems, see for example [11], [7], and [6]. In our work we
utilize the local search algorithm described in [8] and come up with a suggestion for a global search.

In [8] a discrete global descent approach of solving categorical optimization problems is used by
extending the discrete global descent method described in [9] to categorical problems. There are
two suggested extensions: categorical local search and sorting. Categorical local search is also used
in our work, and described in the next section. Sorting is a procedure that is based on the fact
that different permutations of the variables of a categorical problem lead to categorically equivalent
problems. The idea with finding good sortings is to get well-behaved numerical problems which
are easy to solve with methods for numerical optimization.

3.2 Local search

The following algorithm for finding local minima of a categorical optimization problem (2) is pre-
sented in [8]. This algorithm requires a neighborhood definition and a starting point x° in the set
of configurations. We choose the starting point x° randomly from the set of feasible configurations.

The idea of this algorithm is to, in each iteration, loop through the neighborhood of the cur-
rent point and search for a point with lower objective value. Let f be the objective function and
let N (x) be the neighborhood of a configuration x. The steps of the local search algorithm are
presented in Algorithm 1. The algorithm terminates if we for some x, have looped through the
neighborhood without having found any y € N(x) \ {x} with f(y) < f*. That is, if we in one
iteration loop through the neighborhood and no configuration in the neighborhood of the current
configuration has lower objective value than the current configuration. By having this termination
criteria we guarantee that we find a local minimum, according to Definition 2.2. In the worst case
scenario we have to compute the objective function for each point in the set of configurations.

Algorithm 1 Local Search

1: Choose starting point x = x° and let f* = f(x).

2: Compute N (x).

3: while Termination criterion is not fulfilled

4: for x' € N (x) \ {x}

5: if f(x) < f*

6: Let f* = f(x%) and return to Step 2 with x = x".
7 end

8 end

9: end

10: Return the locally optimal point x* = x with objective value f*.




3.3 Global search

In this section we describe a suggestion for a global search algorithm for categorical optimization
problems on the form (2). Although the name suggests this algorithm finds a global minimum, we
want to stress that this is an extension of the local search and does not guarantee that a global
minimum is found. The extension is focused on finding a good starting point x°, since Algorithm 1
does not provide any computation based suggestions on how to do this. We suggest a procedure on
how to select several starting points for Algorithm 1 resulting in a global search algorithm denoted
Algorithm 2.

Let us assume that we have the given optimization problem as in (2). As in Algorithm 1, we
require a neighborhood defined on X and we also need a set of starting points. Let S C X be the
set of starting points.

The first 6 steps of Algorithm 2 deals with performing local searches with different starting points,
where the starting points are suggested to be chosen randomly in X. By doing this we are later

able to construct a new starting point which is not randomly chosen. The vector u = (ul, ... ,ul® |)
consists of points where u* € X is the local optimum returned from Algorithm 1 for i =1,... S|
and v = (v1,...,v|g]) is a vector of objective values where v; = f(u’) for i = 1,...,[S].

In Algorithm 2 we aim to get a better starting point y than the starting points in S in the
sense that it is closer to the global optimum of the problem and thus, more often finds lower

values. In order to get such a y, we construct a vector of weights w = (w1, ...,wg|) in Step 7
of Algorithm 2. To construct w, we need the vector v = (v1,...,v|s)) of objective values of the
points in S. We define the index vector a = (a1, ...,a|g) by letting a; = |S| for the lowest value

vj of v, ay = |S| — 1 for the second lowest value vi of v and so on up to ay = 1 for the highest
value vy of v. For example, with |S| =4, if v = (0.13 0.01 1.57 2.31) then a = (3 4 2 1). We then
compute w as
a; .
Zj:l a;

We observe the following properties of w:

IS|
Zwk = ]., (4)
k=1
w; = w; <~ v; < vj, Vz’,je{l,...,|5|}. (5)

By (5) we can be sure that lower objective values implies higher weights, which is sought since we
in our upcoming construction of y want the points in u to be weighted such that a point u’ with
lower objective value than another point u/ has greater impact on y. Equation (4) says that the
sum of the weights is equal to 1, and thus it makes sense to refer to them as weights. When we
have computed a weight vector w which satisfies these conditions we are able to construct y in
Step 8 of the algorithm. Let N be the number of elements in a configuration x € X. Initially we
construct y as
S|

yi =Y wyuj, Vi€ {l,...,N} (6)
k=1

This construction does not guarantee that y is a feasible configuration. Thus if needed, we finish
this construction by simply rounding y to a feasible configuration to end Step 8. In practice, we
do this by letting y; = y; with

yi :=argmin (y; —yg), Vie{l,...,N}. (7)

yrEX?

The motivation behind the construction of y is that we anticipate that it is closer, in the sense
of the distance definition given, to the global optimum than just choosing a point randomly out



of X. This is due to the fact that each element y; of y is computed with respect to the objective
values of the outcome of the initial local searches, and in such a way that lower objective value
from the initial local search implies stronger impact on y;, for each y;. Further, if y is closer to
the global optimum compared to a starting point randomly chosen out of X, we hope that a lo-
cal search from y will result in finding a lower value. However, it is not certain that this is the case.

The final step of Algorithm 2 is doing a local search with our constructed y as starting point.
Since we can not be sure if f(y*) < f(u’) Vi € {1,...,|S|}, we return the point with the lowest
objective value of y* and the points of u.

Algorithm 2 Global Search

1: Choose a set of starting points S C X.

2: Let v and w be vectors with |S| elements and let u be a vector of points, with |\S| elements.
3: fors' € S

4: Perform Algorithm 1 with starting point x = st.

5: Let u’ = x* and v; = f(x*), where x* is the point returned from Algorithm 1.

6: end

7. Compute w with respect to u and v as in (2).

8: Compute y € X with respect to u and w as in (5).

9: Perform Algorithm 1 with starting point x =y and let y* =

x*.
10: Return the point x* = argmin f(x) with objective value f(x*).
uu{y*}

Note that we can not be sure that Algorithm 2 actually finds a better starting point y € X than
a randomly chosen starting point in X, since it certainly depends on the structure of the problem.
Later sections will show how well Algorithm 2 performs.

3.4 Genetic algorithm

In this section we describe a version of the genetic algorithm presented in [12]. The genetic al-
gorithm does not require a neighborhood definition for the problem at hand. This is a difference
compared to previous algorithms, and makes it an interesting alternative approach to solving a
categorical optimization problem. It is however important to note that there is no way of knowing
how good a solution will be found, not even a local optimum is guaranteed. In that sense the
genetic algorithm is more of a heuristic, and is usually only used when classical methods cannot be
utilized. Another drawback of the genetic algorithm is that there are a lot of parameter values that
can be varied. The best values varies between problems, making it difficult to know in advance
what parameter values to choose.

The genetic algorithm encodes a set of points or configurations x/ € X, j = 1,...,N in the
search space as a set of chromosomes ¢/, j = 1,..., N, called a population P of size N. It is
important that there is one-to-one correspondence between x7 and ¢?, so that a chromosome can
be decoded to find the original configuration or point. Chromosomes are also referred to as indi-
viduals. The chromosomes are strings of real or integer values, to which a number of biologically
inspired operators are applied to form a new population. Each value of a chromosome is called
a gene. There are different variations of the genetic algorithm depending on what operators and
variations thereof that are chosen during the implementation. One version of the algorithm will
be introduced below, followed by detailed descriptions of the different steps, and it is based largely
on the book on stochastic optimization by Wahde ([12]).



Algorithm 3 Genetic algorithm

1: Initialize a population P of size N by randomizing chromosomes ¢’, j =1,..., N.

2: while Termination criterion is not fulfilled.

3 for ¢/ € P

4: Using the encoding scheme, decode chromosome ¢’ to form configuration x/ € X.
5: Evaluate f(x7), where f is the objective function.

6 Based on the objective value, assign a fitness value 77 to the individual.

7 end

8 Let Pew := @ be an empty set of chromosomes.

9 for j=1,... %

10: Select with replacement two individuals i* and i* from P using the selection operator.
11: With probability p., crossover i* and i* to form new individuals i}, and iZ_,,.

12: Perform mutation on irllew and iiew.

13: Let Poow = Paew U {iLey, i2ew )

14: end

15: Replace an arbitrary individual in Py with ¢ € P such that Felite > F* k. =1,... N.
16: Let P := Pyew-

17: end

18: Return the configuration x/ € X such that 7/ > F* k =1,..., N, and objective value f(x/).

The first thing to decide on is what encoding scheme to use. The purpose of an encoding is to have
a translation between a point, or configuration for categorical problems, and a chromosome. An
example is binary encoding, which was first introduced by Holland ([13]). On a one-dimensional
continuous problem, the variable z € [—d,d] = X is encoded as a chromosome ¢ = (¢1,...cx) of
optional length k. Each gene c¢; is either a 0 or 1, and the corresponding point z is given by

2d

v=—dt T

(27ter 4 ... +27%¢).

Once an encoding scheme is selected, a population of individuals is randomly generated (Step 1) by
uniformly randomizing the values of the genes from the permitted interval or set of values. In the
case of binary encoding the set would be {0,1}. Based on this initial population, a new generation
will be formed.

In order to decide which individuals will be selected to make up next generation’s population,
we need to evaluate the current population (Step 5) and assign a fitness value to each individual
(Step 6). To evaluate a chromosome, it must first be decoded using the encoding scheme back-
wards (Step 4), and then the corresponding configuration is evaluated in the objective function. A
higher fitness value should always correspond to a better solution. For maximization problems the
fitness value of an individual is usually taken to be the objective value of the configuration, while
minimization problem instead usually uses the multiplicative or additive inverse of the objective
value.

Based on the assigned fitness values, individuals of the population should now be selected for
reproduction (Step 10). Two common methods of selection are roulette-wheel selection and tour-
nament selection. In the former, the probability of selecting an individual is directly proportional
its fitness value, while in the latter, individuals are compared and the one with a larger fitness
value is assigned a fixed, higher probability regardless of how much larger the fitness value is.

The selection operator is then repeatedly applied to the population, each time selecting two indi-
viduals i* and i% from P. Note that selection is done with replacement, i.e. the same individual
may be selected multiple times. To each pair, the crossover operator is applied with some proba-
bility p. (Step 11). The point of the crossover is to combine the two individuals to form two new
individuals, hopefully corresponding to better solutions to the optimization problem. Usually one
or more crossover points are generated and the genes are swapped accordingly, see Figure 3 for
an illustration of two point crossover. In the example, the lengths of the chromosomes are not



preserved. If desired, this is fixed by using the same crossover points on both individuals. There is
a 1 — p. probability of no crossover occurring, in which case the new pair of individuals is identical
to the old.

[1T2]3T4]5]6]7]8]9]10] [1T27]3[13]14]15] 10]

=

[11]12]13]14] 15 16] 17] 18] 19] 20] [Mi]12] 4 s[e6[7]8]9[1e[17]18]19]20]

Figure 3: An illustration of non length preserving two point crossover. The small arrows indicate
the randomly generated crossover points.

Each gene in each chromosome then has a probability p,,.: of mutating (Step 12). This means that
the gene is replaced with a new value. How the new gene is generated varies, the most common
method being to uniformly generate it at random.

Finally, the elitism operator copies the individual with highest fitness value in the current popula-
tion and inserts one or a few copies of it into the next generation (Step 15). This makes sure that
the best individual is never lost, which could otherwise happen due to bad luck during crossover
and mutation.

This process of forming new generations is repeated until some termination criterion is met. It
could be that a fixed number of generations have been evaluated, or that some convergence cri-
terion is fulfilled, for example that the optimal value has not improved for a certain number of
generations.

4 Assessment methodology

In order to evaluate the algorithms and different neighborhoods described above, the algorithms
will be applied to different test problems. In this section, we first describe the test problems
consisting of an artificial optimization problem without any physical interpretation and a beam
design optimization problem. Then, performance profiles used to assess how well the algorithms
perform will be explained.

4.1 Test problems

The first test problem, referred to as the artificial problem, is to

1
minimize izTQz + p’'z + (diag(z)z)” Sz,

X,z
subject to  z' = Z;(x;), i=1,...,m, (8)

x; € X, 1=1,...,m,

where Q and S are diagonal matrices with elements Q;; € [—3,3] and S;; € [—3, 3] respectively,
which are uniformly randomly generated. Further, p is a row vector with elements p; € [—1,1],
which are also uniformly randomly distributed. The set of feasible designs X consists of vectors
x € R™ such that the number of feasible designs NV; in each choice domain X is randomized from
the integer uniform distribution on [10,30] for each ¢ = 1,...,m. Further, m is randomized from
the integer uniform distribution on [4, 8]. Lastly, Z is a table mapping which is randomly generated
such that Z; : X* — RY: maps each z; € X' onto a vector with N; elements, for each i = 1,...,m.
The mapping Z; is represented as a matrix where each element is chosen from the integer uniform
distribution on [5m, 10m].



The second test problem stems from an article written by Thanedar and Vanderplaats ([14]),
and regards a cantilever beam that is fixed to the wall at its left end and loaded with a constant
force F' at its right end, see Figure 4. The beam is of length L and consists of K parts, referred to
as segments.
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Figure 4: Stepped cantilever beam consisting of five segments loaded with a force at its right end

Each segment is considered to have two design variables, a height h and a width w. The origi-
nal problem in [14] was to minimize the volume of the beam subject to constraints regarding a
maximal allowable deflection and the bending stress in each segment. However, in this project we
will consider a simplified version, the problem to minimize the deflection of the beam subject to
an aspect ratio between the height and the width of each segment, namely h < 30w. We consider
the set of all configurations for each segment are combinations of heights and widths chosen from
the set of M uniformly spaced points in the interval [450,600] and [20, 50] respectively. Hence, the
distance between the points is fixed and will be the length of the intervals divided by the number
of configurations, namely ¢, := % and {y := %. The beam is modelled by partial differential
equations based on beam theory from Timoshenko and Gere ([15]), which then are solved using
the Finite Element Method. A more profound explanation of the modelling can be found in [14].

The problem to be solved is then

minimize  f(x)
X=(X1,...,XK)

subject to  x; = (z!, 2¥) € {(h,w) €R?: (h,w) € X" x X"} i=1,...,K )

where f measures the deflection, and X" := {h € R : h = 450 + kfy,k = 0,...,, M} and
X" :={weR:w=20+kly,k=0,..., M} are the sets of the heights and the widths respectively.

4.2 Benchmarking of algorithms

In order to assess and measure the performance of the algorithms we use the techniques introduced
by MorA®© and Wild ([16]), and Dolan and MorA@©) ([17]), namely data profiles and performance
profiles. Let A be the set of the algorithms. The idea is to gather data by applying each algorithm
a € A on a large set of test problems P. In our case the set of test problems consists of an equal
amount of instances of the beam problem and the artificial problem, where each problem will
be generated with a random number of variables as well as a random number of designs for the
variables. For a problem p € P and a algorithm a € A, the performance metric ¢, o, defined as the
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number of function evaluations required to satisfy a convergence test, will be used to construct the
profiles. The following convergence test, suggested by MorA@© and Wild ([16]), is used; a feasible
design z satisfies the convergence test if

f(2°) = f(2) = (1= 7)(f(2°) = fonin)- (10)

Here z° is the starting point for the problem, f,,i, is computed for each problem as the small-
est objective value found using any of the algorithms, and 7 € [0,1] is the tolerance parameter
representing the desired decrease from the starting objective value f(z°). Hence, the algorithm is
said to converge at the feasible point z if the reduction f(z°) — f(z) is at least (1 — 7) times the
reduction f(z°) — fin- By convention, if the algorithm a fails to satisfy the convergence test for
problem p, then t, , = o0.

The performance profile, originally introduced by Dolan and MorA@ ([17]), is obtained from the
performance metric by computing the the performance ratio, that is for problem p and algortihm a

tpa
min{t, ., :a € A}

Tp,a =
The performance profile for algorithm « is then defined as

pala) = %Size{p EP:rpa <al. (11)
Thus, the performance profile is the cumulative distribution function for the ratio r,,. Plotting
these functions for all algorithms provides information about the relative performance of each algo-
rithm and the probability for each algorithm to satisfy the convergence test. Note that evaluating
the function p,(«) at o = 1 gives the percentage of problems on which algorithm a converges with
the least amount of function evaluations compared to the other algorithms. Additionally, the value
of a when the function first attains the value 1, yields that the algorithm never requires more
than a times the best algorithm’s number of function evaluations in order to converge. However,
the performance profile does not provide sufficient information when the measure of interest is
expensive function evaluations, for instance if there is an upper limit on the number function eval-
uations allowed. In order to account for this, we use the data profile as additional way to measure
performance. The data profile for algorithm « is defined as

d.(B) = |$§‘,ize3~{p €EP:tyq < B}, (12)

1

|
that is, the percentage of problems that satisfy the convergence test in equation (10) within g
function evaluations.

Additionally, examples of plots of the objective value against the number of function evaluation
will be provided in order to illustrate the trajectory leading to the optimal value found.

5 Implementation in MATLAB

In this section a thorough description of how the algorithms, the test problems, and the bench-
marking were implemented in MATLAB is presented. The implementation was done in MATLAB
R2015b and carried out on a computer equipped with Intel Core i5 2.7 GHz and 8 GB RAM,
running macOS Sierra. The code implementing the algorithms can be found in Appendix B.

5.1 Local search algorithm

The implementation of the local search algorithm was decomposed into two parts; a main file
consisting of the basic steps of the algorithm and a function finding the neighborhood. We have
chosen to use the categorical 1-neighborhood and the discrete 3-neighborhood. These are hence-
forth referred to as the categorical and the discrete neighborhood. The decomposition allowed us
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to alter between the discrete and categorical neighborhood without affecting the remaining steps
of the algorithm. A description of the MATLAB implementation of the main steps of the pseudo
code introduced in Section 3.2 follows.

The first step of the local search algorithm, namely choosing a starting point, was made ran-
domly generating a uniformly distributed random integer between 1 and the number of feasible
designs for each of the variables.

The second step of the algorithm was to find the neighborhood for a given problem and a con-
figuration. In opposition to traversing the feasible set and successively add those configurations
that satisfies the definition, the neighborhood functions were implemented to construct the set of
configurations differing in the given number of elements.

Lastly, the termination criterion was implemented as a boolean variable, keeping track of whether
there was a configuration with a lower objective value in the neighborhood or not. Depending on
the value of this boolean variable either a new search iteration is performed resulting in a new bet-
ter configuration or the local search algorithm (Algorithm 1) terminates and returns the optimal
configuration found.

In addition, we created a function in MATLAB which returns the optimal point and has the starting
point as an input parameter. Also, this function includes a counter, allowing us to keep track of
how many function evaluations it takes to reach a minimum. Further, we implemented the local
search algorithm with both categorical and discrete neighborhood.

The MATLAB code finding the neighborhoods can be found in Appendix B.1 and the MATLAB
code performing the local search algorithm can be found in Appendix B.2.

5.2 Global search algorithm

The implementation of global search algorithm is partly based on the local search algorithm. In
addition to the local search algorithm described in the previous section, the global search algorithm
contains two additional steps: computing the weight vector and the new starting point. The global
search algorithm was only implemented with the discrete neighborhood and the MATLAB code can
be found in Appendix B.3.

The size of the starting set was chosen to be three points with the aim to increase the prob-
ability of finding a successful local minimum while still limiting the total number of function
evaluations until termination. These starting points were chosen randomly from the feasible set.
Then, three local searches were performed producing a vector of three local minima. The vector
of local minimum is sorted and then each local minimum is assigned its corresponding weight.
In order to obtain the new starting point we multiply the weight vector with the vector of local
minima. However, it is not assured that this new point is a feasible configuration. Thus, we round
this new point according to equation (7). Starting from this new point, we perform a local search
yielding a new local minimum. Lastly, we compare the four local minima found and return the
one with the lowest objective value.

5.3 Genetic algorithm

The genetic algorithm can be varied in many different ways, and what follows is a description of the
operators we used in our implementation of the algorithm. For full MATLAB code see Appendix B.4.

For our encoding scheme in the artificial problem with m variables a configuration x/ = (x{, )
€ X was encoded as a chromosome ¢/ = (c{, ...,c} ) with the genes c{ = x{, sl = al
For the beam problem, a configuration with K beam sections was encoded as a chromosome
¢ = (c?...,c%K) with genes c{ =z, c; = a:’f,..., C%KA = z¥, ch = a:’}(, where x}) is the
width of beam section k, and xZ is the height of beam section k. These types of encoding schemes
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are not very efficient for problems with few variables ([12]), but we used it for simplicity. Popu-
lation sizes anywhere between 30 and 1000 are common ([12]), but to keep down the number of
function evaluations, we used 20 individuals.

Since both the beam problem and the artificial problem are minimization problems, the fitness
values of the individuals were assigned as the additive inverse of the objective value. The reason
why we did not use multiplicative inverse is that the objective function in the artificial problem
may take on negative values. For example, individuals with objective values —2 and 2 would then
have been assigned fitness values —+ and % respectively, which does not comply with the conven-

2
tion that better individuals should be assigned higher fitness values.

The best set of parameter values depend on the problem and are not known beforehand. We
therefore chose parameters quite arbitrarily within reasonable intervals that usually perform al-
right. The tournament selection parameter should be in the interval (0.5,1), typically around
0.7-0.8 ([12]). We used tournament selection with a tournament size of two randomly selected
individuals, of which the one with higher fitness was selected with probability 0.7.

Crossover was applied using one randomly generated crossover point. The same point was used
for both individuals since the encoding used in both problems required a fixed chromosome length.
The crossover probability can be anywhere in the interval [0, 1] and varies a lot between problems,
and we set it to 0.6 in our implementation.

We used two kinds of mutations, regular mutation where a gene is replaced by a randomly gen-
erated one, and a variation of the so called creep mutation. We chose for mutation to happen
to each gene with probability %, where m is the number of genes, since can be shown that a
mutation probability somewhere around py,,; = - usually works well ([12]). Once it had been
determined that mutation should take place at all the probability of regular mutation was 0.5 and
creep mutation 0.5 since we did not know which type of mutation would work best.

Instead of generating the value of new gene randomly, the creep mutation in the beam prob-
lem either increased or decreased the value of the gene by the smallest amount allowed, or did
nothing to the gene, each with an equal probability of % In practice this means that a dimen-
sion of a beam section would be increased or decreased one step. For the artificial problem creep
mutation meant randomizing a new integer within the interval of £5% of the allowed variable
range surrounding the old gene. Looking at values close to the old one could be thought of as fine
tuning the solution. However, for the creep mutation to be able to do any fine tuning in the case
of a categorical optimization problem, there needs to be an underlying structure to the problem.
Without some sort of underlying structure, there would be no reason to believe that a value close
the old gene would result in a better solution than a value far away.

One copy of the best individual was inserted into the new generation in the elitism step each
iteration, and it always replaced the first individual in the generated population.

5.4 Benchmarking

In order to benchmark the algorithms we used 100 instances of the test problems, 50 beam problems
and 50 artificial problems. The beam problems were generated with a random number of segments
between 2 and 6 and a random number of feasible designs common for all segments between 10
and 30. The artificial problems were generated according to section 4.1.

The set of algorithms consists of the local search algorithm with categorical neighborhood LS-
C, the local search with discrete neighborhood LS-D, the global search with discrete neighborhood
GS-D, and the genetic algorithm GA. Hence we have that A = {LS-C, LS-D, GS-D, GA}.

Before we applied the algorithms to these problems we computed the convergence criterion, that

is the right hand side of inequality (10). That requires a starting point, a known approximate op-
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timal solution to the problem and a value of the tolerance parameter 7. To make the performance
comparison as fair as possible we let the genetic algorithm generate an initial population and then
randomize the starting point for the rest of the algorithms from this population. Further, the best
approximate solutions were found in different ways depending on the type of problem. The beam
problems have a known optimal solution, namely the maximal height and width of each segment.
However, the optimal solutions to the artificial problems are not known. We did empirical tests,
comparing the different algorithms, which yielded that the local search with categorical neighbor-
hood was the best algorithm to apply the artificial problem in order to get an approximate optimal
solution. The tolerance parameter, representing the sought decrease from the starting objective
value, was chosen to be 7 = 0.1 and 7 = 0.01.

Then, equipped with starting points and a convergence criterion, we applied the algorithms to
each of the problems and recorded the number of objective function evaluations until the conver-
gence criterion was satisfied. If the algorithms failed to satisfy the convergence criterion before
terminating, the performance metric was set to infinity. Note that for the genetic algorithm, the
maximum number of function evaluation is predetermined by the population size times the number
of generations. We set the number of generations to 300 yielding a maximum number of evaluations
to 6000. If, however, the genetic algorithm did not converge within this number of function eval-
uations the performance metric were set to infinity. This resulted in a matrix with the dimension
100 - |A]. Further, we created the vectors o and 8 with 100 uniformly spaced points in [1,40] and
[1,6000] respectively. Then, after using equation (11) and (12) with the acquired matrix and o
and 3 we plot the data profile and the performance profile.

6 Results

This section presents the benchmarking results of the algorithms introduced in Section 3. First,
the data and performance profiles will be illustrated alongside some underlying numerical values
for the two choices of the tolerance parameter 7. Then, for two specific examples of the beam and
artificial problem, an illustration of the objective value against the number of function evaluations
is shown.

In Figure 5 the performance profile and data profile for the algorithms are shown with tolerance
parameter 7 = 0.1. The main numerical results are illustrated below in Table 1.

Table 1: The number of problems where the algorithm a € A converges according to (10) with
7 =0.1,1n, = card{p € P : t,, < o0}, and the number of problems for which the algorithm
converges in the least amount of function evaluations compared to the other algorithms, p,(1).

LS-C LS-D GA GS-D
Na pa(1) Tla pa(1) Tla pa(l) Ma pa(l)
Beam 50 34 50 7 45 3 50 6
Artificial | 50 49 6 1 50 0 22 0
Total 100 83 56 8 95 3 72 6
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Figure 5: Data profile d,(«) and performance profile p, () for the algorithms applied to 50 in-
stances of beam problems and 50 instances of artificial problems with 7 = 0.1.

For this randomized set of 50 instances each of the test problems, the categorical local search
was the only algorithm that converged in all problem instances. In addition, it converges in the
least number of function evaluations in 83% of the problems. In contrast, the genetic algorithm
converges for 95% of the problem instances, but only in 3 cases with the least number of function
evaluations. The discrete local search converges in all instances of the beam problem, but only
in 3 instances of the artificial problem. In comparison, the discrete global search also converges
in all instances of the beam problem, however, it converges in 22 cases of the artificial problem.
Additionally, since p,(a) = 1 when « > 8 for the categorical local search algorithm, this algorithm
never requires more than 8 times the number of function evaluations needed for the best performing
algorithm.

In Figure 6 the performance profile and data profile for the algorithms are shown with the tolerance
parameter 7 = 0.01. The main numerical results are illustrated below in Table 2.

Table 2: The number of problems where the algorithm a € A converges according to (10) with
T = 0.01, n, = card{p € P : tp, < oo}, and the number of problems for which the algorithm
converges in the fewest function evaluations compared to the other algorithms, p,(1).

LS-C LS-D GA GS-D
Na pa(l) Na pa(l) a pa(l) Na pa(l)
Beam 50 32 50 13 4 0 50 5
Artificial | 50 49 3 1 43 0 8 0
Total 100 81 53 14 47 0 58 5
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Figure 6: Data profile d,(«) and performance profile p, () for the algorithms applied to 50 in-
stances of the beam problems and 50 instances of the artificial problems with 7 = 0.01.

With this stricter tolerance parameter, the categorical local search is still the only algorithm that
converges in all problem instances. The number of problem instances where it converges in the
least number of function evaluation is about the same, this time 81%. Similarly to the case 7 = 0.1,
both the discrete local search and the discrete global search algorithms converge in all instances
of the beam problem. The number of instances of the artificial problem in which they converge is
smaller though. Finally, the number of instances where the genetic algorithm converges is reduced
by over 50% from 95 to 47, converging only in 4 instances of the beam problem. In addition, it
is never the first algorithm to converge. This time we see that for the categorical local search,
pa(a) =1 for @ > 5, hence it never requires more than 5 times the number of function evaluations
needed for the best performing algorithm before it converges.
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Figure 7: Example of a plot of the objective value against the number of function evaluations for
all algorithms on the two test problems.

In Figure 7, an example of the algorithms solving an instance of the beam problem (a) and an
instance of the artificial problem (b) is shown. The objective value is plotted against the number of
function evaluations. In the beam problem, the genetic terminates at 6000 function evaluations and
the global search algorithm terminates at 9640 function evaluations. The corresponding numbers
of function evaluations for the artificial problem are 6000 for the genetic algorithm and 4541 for the
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global search algorithm. However, the graphs are cut at 2000 function evaluations since neither the
genetic algorithm nor the global search algorithm descend in any of the problem instances after that.
Similarly to the results from the profiles, both the local searches and the global search performs
better than the genetic algorithm on the beam problem. In the artificial problem, the local search
with categorical neighborhood and the genetic algorithm terminates at the same configuration.

7 Discussion

Initially we will discuss the results of the numerical tests of the different algorithms. Then the
possible implications for TyreOpt research project will be laid out.

7.1 Algorithms

The results show that according to the data and performance profiles, the categorical local search
algorithm performs the best out of the tested algorithms. We will now discuss the credibility of
this result.

Firstly, although we have used a total of 100 different test problems, it may not necessarily be
the case that these are representative enough. It could have been valuable if there were more test
problems of different character, rather than only two. Secondly, while the choice of f,;, for the
beam problems was given since the global optimum was known, it could have been done differently
in the case of the artificial problems. In order to find a better approximate optimal solution, one
could have let all algorithms solve the problem and take the best one. However, the choice of using
the categorical local search was made because it is faster. It could have been interesting to only
include test problems with known optimal solutions a priori, in order to see how many times the
global optimum was found. However, the convergence test served as an adequate substitute.

Although the categorical neighborhood performs better than the discrete one in general, it is worth
noting that the discrete local search converged first in 13 instances of the beam problem. Since the
beam problem has an underlying structure, it may be beneficent to use a discrete neighborhood
in situations where this is the case. As the categorical local search converges first in 49 out of
the 50 instances of the artificial problem (see Table 2) with the stricter convergence criterion, the
categorical neighborhood seems to be the appropriate choice when there is no underlying structure.

The fact that the genetic algorithm took such a downfall when the tolerance parameter was changed
from 0.1 to 0.01 to get a stricter convergence criterion is a sign that it manages to find approximate
solutions, but not exact and efficient ones, where the latter is measured in number of function eval-
uations. Improvements of the genetic algorithm could be made by adjusting the parameter values
depending on the problem at hand. Choosing different implementations of the operators, such as
roulette-wheel selection or two-point crossover could also possibly improve the performance of the
algorithm. Another possible enhancement could be to choose a different encoding scheme that pro-
duces longer chromosomes. However, all of these possible improvements are problem dependent,
and it is difficult to know beforehand what modifications will improve the algorithm when solving
a specific problem.

In the global search algorithm one can think of several ways to improve the algorithm. One example
of a way to improve the algorithm is to change how to choose the starting points in .S. In our version
of the algorithm, we simply chose them randomly out of the set of feasible configurations but with
an a priori known underlying structure of the problem the choosing procedure could for example be
based on some computations. One thing to compute could be distance between points and it may
be a good idea to have a large distance between starting points since we want to minimize the risk
that the different local searches make the same function evaluations. If we have a discrete problem
a suggestion of a different starting point set would be the corner points, or some of the corner
points. The set of corner points X ¢ of a configuration set X, with n elements in each configuration,
is simply defined as X¢:={x€ X |[x+de€ X = x—-d¢g X, de {*e' |i=1,...,n}}, where
e’ is the vector with e! = 1 and eé- =0 Vi # j. Some other examples of improving the global
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search algorithm could be to change the construction of the new starting point y or having several
new starting points instead of one.

It is noteworthy that an algorithm such as the local search yields better results than the ge-
netic algorithm, while being very simplistic in nature based on basic optimization theory. Further,
there does not exist many algorithms for categorical optimization, and much research has not been
done within this topic.

7.2 TyreOpt

The photos of tires provided by Volvo GTT can be found in Appendix A. These photos were
supposed to be used to parametrize the tire patterns. When a suitable parametrization is found,
the tire tread patterns can be used as additional decision variables in the tires selection problem
being solved with TyreOpt. However, in our opinion the supplied photos were not sufficiently well
taken. The photographs of the tires were not taken straight from the front but slightly from the side
making it complicated to do further numerical analysis. If the photos were taken from the front we
suggest three possible parameterizations using image analysis. Firstly, one could define variables
based on the percentage of the photo of the tire that consists of groove. Secondly, one could
use the number of different directions of the groove patterns. Lastly, one could extract variables
based on the direction in which the majority of the grooves were directed. The tread pattern
then results in several additional decision variables to be added to the vehicle dynamics models
developed within TyreOpt project. For all the parametrizations suggested both the neighborhoods
definitions introduced in Section 2 can be used allowing the optimization methodology developed
within TyreOpt research project to be applied for the extended tires selection without any further
changes.

8 Conclusion

In this project we have implemented three algorithms for solving categorical optimization problems.
Two of these algorithms depend on neighborhoods that we have introduced. We have found that
with a suitable neighborhood and a relatively simple algorithm, it is possible to outperform genetic
algorithms, which have previously been used frequently within categorical problems. In addition,
we have improved the local search algorithm by expanding it into a global search algorithm.
Nonetheless, we believe that the global search algorithm could become more sophisticated after
further development.

With regards to the TyreOpt project, we found that the photos of the tires provided were not
sufficiently useful. However, if the photos are taken as we have recommended, the tread pattern
can be directly used as an additional set of decision variables in the tire selection problem. For
this purpose, we have suggested three parametrizations of the tire treads.

We encourage further use and development of neighborhood-based algorithms in favor of the genetic
algorithms, as they provide an opportunity to deepen the understanding of categorical optimization.
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Figure 8: Photos of tires supplied by Volvo GTT.
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B MATLAB code

B.1 Neighborhoods
B.1.1 Categorical

function neighborhood = catNeigh(currentSetting,nFeasDes)
% Initiate

neighborhood=[];

n0fVar=length(currentSetting) ;

% Loop through each variable
for i = 1 : nOfVar
% Configurations that differ in variable i
neighTemporary = zeros(nFeasDes(i),n0fVar);
for k = 1:nFeasDes(i)
newSetting = currentSetting;
newSetting(i) = k;
neighTemporary(k,:) = newSetting;
end
% Concatenate neighbourhood
neighborhood = [neighborhood ; neighTemporaryl];
end
% Randomly order the neighborhood
neighborhood=neighborhood(randperm(length(neighborhood)),:);
end

B.1.2 Discrete

function neighborhood = discreteNeighForReport (setting,n0fVar,nFeasDes)

% Configurations that differs
sizeNeighl= length(setting)*4+4*sum(length(setting)-1);
neighl = zeros(sizeNeighl,length(setting));
k=1;
for i = 1 : nOfVar
for 1 = 1:n0fVar
if 17=1i
% Both up
neighl(k,:) = setting;
neighl(k,i) = setting(i) +1;
neighi(k,1) setting(l) +1;

1]

% Both down

neighl(k+1l,:) = setting;
neighl(k+1,i) = setting(i) -1;
neighl(k+1,1) = setting(l) -1;

% First down, second up
neighl(k+2,:) = setting;
neighl (k+2,i) = setting(i) -1 ;
neighl (k+2,1) = setting(l) +1;

% First up, second down
neighl(k+3,:) = setting;
neighl (k+3,1) setting(i) +1 ;
neighil (k+3,1) = setting(l) -1;

21



k =k + 4;
end
end
end

% Configuretaions wich differ in 1-3 indexes in one variable
k=1;
for i = 1 : nOfVar

% Two index up
neigh2(k,:) = setting;
neigh2(k,i) = setting(i) + 2;

% One index up
neigh2(k+1,:) = setting;
neigh2(k+1,i) = setting(i) + 1;

% One index down
neigh2(k+2,:) = setting;
neigh2(k+2,i) = setting(i) -1;

% Two index down
neigh2(k+3,:)
neigh2(k+3,1)

setting;
setting(i) -2;

% Three index up
neigh2(k+4,:) = setting;
neigh2(k+4,i) = setting(i) + 3;

% Three index down
neigh2(k+5,:) = setting;
neigh2(k+5,i) = setting(i) - 3;

k =k + 6;
end

% Configurations which differ in two index in one variable, and one index
% in another variable

neigh3Size = sum(1l:(n0fVar-1));

neigh3=zeros(neigh3Size,n0fVar);

k=1;

for i = 1 : nOfVar

% Change one index two up or two down
neighTmp = setting;
neighTmp (i) = setting(i) + 2;

neighTmp2 = setting;
neighTmp2(i) = setting(i) - 2;

for index = 1 : nOfVar
if index "= 1
% Config. where first change was 2 up
neightempol = neighTmp;
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end

neightempo2 = neighTmp;

% Config. where first change was 2 down
neightempo3 = neighTmp2;
neightempo4 = neighTmp2;

% Change one index one up or down
neightempol(index) = neighTmp(index)+1;
neightempo2(index) = neighTmp(index)-1;

% Change one index one up or down
neightempo3(index) = neighTmp2(index)+1;
neightempo4(index) = neighTmp2(index)-1;

% Add new configurations to the neighbourhood

neigh3(k,:) = neightempol;
neigh3(k+1l,:) = neightempo?2;
neigh3(k+2,:) = neightempo3;
neigh3(k+3,:) = neightempo4;
k=k+4;

end

end

% Configurations that differ in 3 variables by 1 index
neighd=[];

for

i =1 : n0fVar

% Change one index up
neightmpl = setting;
neightmpl(i) = setting(i) + 1;

% Change one index down
neighTmp2 = setting;
neighTmp2(i) = setting(i) - 1;

for o = 1:n0fVar
if o 7=i
% Change index:
% First was up. Change second to second up
neightmpll = neightmpil;
neightmpl1(o) = setting(o) + 1;

% First was up. Change second to second down
neightmpl2 = neightmpl;
neightmp12(o) = setting(o) - 1;

% First was down. Change second to second up
neightmp21 = neighTmp2;

neightmp21 (o) = setting(o) + 1;

% First was down. Change second to second down
neightmp22 = neighTmp2;
neightmp22(o) = setting(o) - 1;

for p = 1:n0fVar
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if p "= 0 && p "=1i

% First up. Second second up, third up
neightmpl1l = neightmplil;
neightmp111(p) = setting(p) + 1;

% First up. Second second up, third down
neightmpl112 = neightmpilil;
neightmp112(p) = setting(p) - 1;

% First up. Second second down, third up
neightmp121 = neightmpl2;
neightmp121(p) = setting(p) + 1;

% First up. Second second down, third down
neightmpl122 = neightmpl2;
neightmp122(p) = setting(p) - 1;

% First down. Second second up, third up
neightmp211 = neightmp21;
neightmp211(p) = setting(p) + 1;

% First down. Second second up, third down
neightmp212 = neightmp21;
neightmp212(p) = setting(p) - 1;

% First down. Second second down, third up
neightmp221 = neightmp22;
neightmp221(p) = setting(p) + 1;

% First down. Second second down, third down
neightmp222 = neightmp22;
neightmp222(p) = setting(p) - 1;

% Concatenate

neigh4=[neighl;neightmpl1l;neightmp112;...
neightmp121;neightmp122;neightmp211;...
neightmp212;neightmp221;neightmp222];

end
end
end
end
end

% Concatenate all different neighborhoods
neigh = [neighl;neigh2;neigh3;neigh4];

% Find index of configurations that are infeasible
index = [];
for n = 1 : nOfVar
indexTmpl = find(neigh(:,n) <= 0);
indexTmp2 = find(neigh(:,n) > nFeasDes(n));
index = [index;indexTmp1l;indexTmp2] ;

end

24



% Remove duplicate index
index = unique(index);

% Remove configurations with the found index

for o = length(index) :-1 :1
neigh(index(o0),:) =[1;

end

% Randomly order the neigh
neigh = neigh(randperm(length(neigh)),:);

% Return neighborhood
neighborhood = neigh;

end

B.2 Local search
B.2.1 Artificial problem

% Generate random starting point

for i = 1 : numberOfVariables
currentSetting(i) = randi(nFeasDes(i));

end

currentBestObjValue = ObjFunc(currentSetting,zMapping) ;

% Local Search
while true
abort = true;

% Discrete neigh
neigh = discreteNeigh(currentSetting,numberOfVariables,nFeasDes);

%Categorical neigh
% neigh = catNeigh(currentSetting,nFeasDes) ;

for i = 1 :length(neigh)
candidate = ObjFunc(neigh(i,:),zMapping);
if currentBestObjValue > candidate
currentBestObjValue = candidate;
currentSetting = neigh(i,:);
abort = false;

break
end
end
if abort == true
break
end

end

B.2.2 Beam problem

% Generate random starting point
for i = 1:numBlocks
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currentSetting(:,i) = Z(:,randi(N));
end

% Objective value of startingpoint
currentBestObjValue=trueObj(currentSetting(:));

while true
abort = true;
% Categorical neigh
Jneigh=catNeigh(currentSetting,numDesigns,numBlocks) ;

% Discrete neigh
neigh = discreteNeigh(currentSetting, numDesigns);

% Loop through neighbourhood
for i = 1:length(neigh)/2
candidateSetting = neigh(2*i-1:2%i,:);
candidate = objectiveFunction(candidateSetting(:));
if candidate<currentBestObjValue % Check if new point is better
currentBestObjValue=candidate; % Update to better point
currentSetting = candidateSetting; % Update best objective value
abort = false; % Set termination critera to false
break
end
end

% Check if termination criteria is true
if abort == true
break
end
end

B.3 Global search
B.3.1 Artificial Problem

function [counter,objVector,globMin]=globSearch(n0fStartingPoints,...
n0fVar ,nFeasDes, zMapping)

% Generate starting points
for i=1:n0fStartingPoints
for j=1:n0fVar
% Random integer in [0, number of designs]
startpoints(i, j)=randi(nFeasDes(j));
end
end

% Initiate
nextPoints=zeros(nOfStartingPoints,n0fVar) ;
counter=0;

objVector=[];

% Loop through starting points
for j=1:n0fStartingPoints
% Perform local search from starting point
[counter,objVector,nextPoints(j, :)]=locSearchWithCounter(. ..
startpoints(j,:) ,n0fVar,nFeasDes,zMapping, counter,objVector) ;
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end

% Objective value of the new acquired points

objValuesOfNewPoints=zeros (n0fStartingPoints,1);

for k=1:n0fStartingPoints
objValuesOfNewPoints(k)=objectiveFunction(nextPoints(k,:),zMapping) ;

end

% Sort objective values descending
[7, indexes] = sort(objValuesOfNewPoints,’descend’);

% Find weights
weight=(1/sum(indexes))*indexes;

% Construct new starting point
y=zeros (n0fVar,1);
for m=1:n0fVar
for n=1:n0fStartingPoints
y (m)=y (m) +weight (n) *nextPoints(n,m) ;
end
end

% Round to closest points in order to make it feasible
y=round(y) ;

% Perform local search from the new point
[counter,objVector,y]l=locSearchWithCounter (y,n0fVar,nFeasDes,...
zMapping, counter,objVector) ;

% Compare all local min. and return the lowest
if objectiveFunction(y,zMapping)>objectiveFunction(nextPoints(. ..
indexes(end), :) ,zMapping)
globMin=objectiveFunction(nextPoints(indexes(end),:),zMapping);
else
globMin=objectiveFunction(y,zMapping) ;
end
end

B.3.2 Beam Problem

function [counter,objVector,globMin]=beamProblemGlobalSearch(. ..
numBlocks,numDesigns,Z,N)

% Number of starting points

n0fStartingPoints=3;

% Construct startpoints
startpoints=cell (n0fStartingPoints,1);
for i=1:n0fStartingPoints
for j = 1:numBlocks
% Random design
startpoints{i}(:,j) = Z(:,randi(N));
end
end

% Initiate
nextPoints=cell (n0fStartingPoints,1);
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counter=0;
objVector=[];

% Loop through starting points
for j=1:n0fStartingPoints
% Perform local search from starting point
[counter,objVector,nextPoints{j}]=beamLocalSearchWithCounter(. ..
startpoints{j},numBlocks,numDesigns, counter,objVector) ;
end

% Objective value of the new acquired points

objValues=zeros (numBlocks, 1) ;

for k=1:numBlocks
objValues(k)=objectiveFunction(nextPoints{k}) ;

end

% Sort objective values descending
[7, indexes] = sort(objValues,’descend’); % descend

% Find weights
weight=(1/sum(indexes))*indexes;

% Construct new starting point
y=zeros (2,numBlocks) ;
for r=1:2 %, rows in setting
for m=1:numBlocks
for n=1:numBlocks
y(r,m)=y(r,m)+weight (n)*nextPoints{n}(r,m);
end
end
end

% Round to closest points in order to make it feasible
newB=B;
newH=H;
for j=1:numBlocks
newB=sort ([newB y(1,3)1);
y(1,j)=B(find(newB==y(1,j),1)); % Width
newB=B;
newH=sort ([newH y(2,3)1);
y(2,j)=H(find (newH==y(2,j),1)); % Height
newH=H;
end

% Perform local search from the new point
[counter,objVector,y]=beamLocalSearchWithCounter (y,numBlocks,...
numDesigns,counter,oijector);

% Compare all local min. and return the lowest

if objectiveFunction(y)>objectiveFunction(nextPoints{indexes (numBlocks)})
globmin=objectiveFunction(nextPoints{indexes(numBlocks)});

else
globmin=objectiveFunction(y) ;

end

end
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B.4 Genetic algorithm
B.4.1 Artificial problem
Main file

main_artificial; % Generates problem (nFeasDes and zMapping)

populationSize = 20;

number0fGenes = length(nFeasDes); % number of variables/dimensions
crossoverProbability = 0.60;

mutationProbability = 1/number(0fGenes;

creepMutationProbability = 0.50;

tournamentSelectionParameter = 0.70;

variableRange = nFeasDes; J different range for different variables
numberOfGenerations = 20;

numberOfEvaluations = populationSize*numberOfGenerations;

fitness = zeros(populationSize,1);

population = InitializePopulation(populationSize,number0fGenes,variableRange) ;
for iGeneration = 1:numberOfGenerations

% Evaluation of individuals
maximumFitness = -Inf;
xBest = zeros(1,2);
bestIndividualIndex = 0;

for i = 1l:populationSize

chromosome = population(i,:);
X = chromosome;
fitness(i) = EvaluateIndividual (x,zMapping);

if (fitness(i) > maximumFitness)
maximumFitness = fitness(i);
bestIndividuallndex = i;
xBest = x;
end
end

tempPopulation = population;

% Selection of individuals
for i = 1:2:populationSize

i1 TournamentSelect (fitness,tournamentSelectionParameter) ;
i2 = TournamentSelect(fitness,tournamentSelectionParameter);
chromosomel = population(il,:);
chromosome2 = population(i2,:);

% Crossover individuals

r = rand;
if (r < crossoverProbability)
newChromosomePair = Cross(chromosomel,chromosome?) ;

tempPopulation(i,:) = newChromosomePair(1,:);
tempPopulation(i+1,:) = newChromosomePair(2,:);
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else
tempPopulation(i,:) = chromosomel;
tempPopulation(i+1l,:) = chromosome2;
end
end

% Mutate individuals
for i = 1l:populationSize
originalChromosome = tempPopulation(i,:);

mutatedChromosome = Mutate(originalChromosome,mutationProbability,. ..

creepMutationProbability,variableRange) ;
tempPopulation(i,:) = mutatedChromosome;
end

% Elitism (best individual is cloned into next generation)
tempPopulation(l,:) = population(bestIndividualIndex,:);
population = tempPopulation;

end

Function initializing population
function population = InitializePopulation(populationSize,...

numberOfGenes,variableRange)

for i = l:populationSize

for j = 1:numberOfGenes

population(i,j) = randi(variableRange(j));

end
end
Function evaluating an individual
function f = EvaluateIndividual(x,zMapping)
objectiveValue = ObjFunc(x,zMapping); % Calls objective function
f = -objectiveValue;
Tournament selection function

function iSelected = TournamentSelect(fitness,tournamentSelectionParameter)

populationSize = size(fitness,1);

iTmpl = 1 + fix(rand*populationSize);
iTmp2 = 1 + fix(rand*populationSize);
r = rand;

if (r < tournamentSelectionParameter)
if (fitness(iTmpl) > fitness(iTmp2))
iSelected = iTmpl;
else
iSelected = iTmp2;
end
else
if (fitness(iTmpl) > fitness(iTmp2))
iSelected = iTmp2;
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else
iSelected = iTmpil;
end
end

Crossover function

function newChromosomePair = Cross(chromosomel,chromosome?2)

nGenes = size(chromosomel,?2);
crossoverPoint = 1 + fix(rand*(nGenes-1));

for j = 1:nGenes
if (j < crossoverPoint)
newChromosomePair(1,j) = chromosomel(j);
newChromosomePair(2,j) = chromosome2(j);
else
newChromosomePair(1,j) = chromosome2(j);
newChromosomePair(2,j) = chromosomel(j);

end
end

Mutation function

function mutatedChromosome = Mutate(chromosome,mutationProbability,...
creepMutationProbability,variableRange)

nGenes = size(chromosome,?2);
mutatedChromosome = chromosome;

1:nGenes

Il

for j

r = rand;
if (r < mutationProbability) % mutation happens

q = rand;
if (q < creepMutationProbability) % creep mutation happens

fivePercent = round(variableRange(j)/20);
newGene = chromosome(j) - fivePercent + randi([0 2*xfivePercent]);

% check variables within range
newGene = max(newGene, 1);
newGene = min(newGene, variableRange(j));

mutatedChromosome (j) = newGene;
else ’, regular mutation happens
mutatedChromosome (j) = randi(variableRange(j));
end
end
end

B.4.2 Beam problem
Main file

numBlocks = 6; % number of blocks of the beam
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numDesigns = 30; % number of designs for each block
volFac = 0;

populationSize = 20;

number0fGenes = numBlocks*2; % number of variables/dimensions
crossoverProbability = 0.6;

mutationProbability = 1/number(0fGenes;
creepMutationProbability = 0.5;

tournamentSelectionParameter = 0.7;

variableRange = [20 50; 450 600]; % [Bmin Bmax; Hmin Hmax]
numberOfGenerations = 30;

numberOfEvaluations = populationSize*numberOfGenerations;
fitness = zeros(populationSize,1);

population = InitializePopulation(populationSize, numberOfGenes,...
variableRange, numDesigns) ;

for iGeneration = 1:numberOfGenerations

% Evaluation of individuals
maximumFitness = 0.0;

xBest = zeros(1,2);
bestIndividuallndex = 0;

for i = 1:populationSize
chromosome = population(i,:);
X = chromosome;
fitness(i) = EvaluatelIndividual (x,volFac);

if (fitness(i) > maximumFitness)
maximumFitness = fitness(i);
bestIndividuallndex = i;
xBest = x;
end
end

tempPopulation = population;

% Selection of individuals
for i = 1:2:populationSize

i1 TournamentSelect (fitness,tournamentSelectionParameter) ;
i2 = TournamentSelect(fitness,tournamentSelectionParameter);
chromosomel = population(il,:);
chromosome2 = population(i2,:);

% Cross over indiviuals

r = rand;
if (r < crossoverProbability)
newChromosomePair Cross(chromosomel, chromosome?2) ;

tempPopulation(i,:) = newChromosomePair(1,:);
tempPopulation(i+1,:) = newChromosomePair(2,:);
else
tempPopulation(i,:) = chromosomel;
tempPopulation(i+1,:) = chromosome2;
end
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end

% Mutate individuals
for i = 1:populationSize
originalChromosome = tempPopulation(i,:);
mutatedChromosome = Mutate(originalChromosome,mutationProbability,...
creepMutationProbability,variableRange,numDesigns) ;
tempPopulation(i,:) = mutatedChromosome;
end

% Elitism (best individual is cloned into next generation)
tempPopulation(l,:) = population(bestIndividualIndex,:);
population = tempPopulation;

end

Function initializing population
function population = InitializePopulation(populationSize, numberOfGenes,...

variableRange, numDesigns)

for i = 1:populationSize
for j = 1:numberOfGenes

if mod(j,2) == 1 % odd dimension, i.e. W (width)
population(i,j) = min(variableRange(1,:)) + ...
(randi (numDesigns)-1)*diff (variableRange(1,:))/(numDesigns-1);

else 7, even dimension, i.e. H (height)
population(i,j) = min(variableRange(2,:)) + ...
(randi (numDesigns)-1)*diff (variableRange(2,:))/(numDesigns-1);
end
end

end
Function evaluating an individual
function f = EvaluateIndividual(x,volFac)
objectiveValue = objfunc(x(:),volFac); % Calls objective function
f = -objectiveValue;
Tournament selection function and crossover function

The tournament selection and crossover functions were the same for the artificial problem and the
beam problem. See section B.4.1 for code.

Mutation function

function mutatedChromosome = Mutate(chromosome,mutationProbability,...
creepMutationProbability,variableRange,numDesigns)

nGenes = size(chromosome,?2);
mutatedChromosome = chromosome;

1:nGenes

for j

r rand;
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if (r < mutationProbability) J mutation happens

q = rand;
if (q < creepMutationProbability) % creep mutation happens

if mod(j,2) == 1% i.e B
mutatedChromosome(j) = chromosome(j) + ...
(randi([0 2])-1)*diff(variableRange(1,:))/(numDesigns-1);

% Check variables within range

if mutatedChromosome(j) > max(variableRange(1,:))
mutatedChromosome (j) = max(variableRange(1,:));

elseif mutatedChromosome(j) < min(variableRange(1,:))
mutatedChromosome (j) = min(variableRange(1,:));

end

else % i.e. H
mutatedChromosome(j) = chromosome(j) + ...
(randi([0 2])-1)*diff (variableRange(2,:))/(numDesigns-1);
% Check variables within range
if mutatedChromosome(j) > max(variableRange(2,:))
mutatedChromosome (j) = max(variableRange(2,:));
elseif mutatedChromosome(j) < min(variableRange(2,:))
mutatedChromosome (j) = min(variableRange(2,:));
end
end

else % regular mutation happens
if mod(j,2) == 1 7% i.e. B
mutatedChromosome(j) = min(variableRange(1,:)) + ...
(randi(numDesigns)-1)*diff (variableRange(1,:))/(numDesigns-1);

else % i.e. H
mutatedChromosome(j) = min(variableRange(2,:)) + ...
(randi (numDesigns)-1) *diff (variableRange(2,:))/(numDesigns-1);
end
end
end
end
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C Summary in Swedish

C.1 Inledning

Det hér kandidatarbetet grundar sig pa forskningsprojektet TyreOpt utfért av Chalmers tekniska
hogskola och Goteborgs universitet i samarbete med Volvo Group Trucks Technology. Det huvud-
sakliga syftet med forskningsprojektet var att minska bransleférbrukningen hos lastbilar genom
att optimera valet av ddck. Déacken betraktas som diskreta variabler utan naturlig ordning. Detta
innebér att det ej gar att ordna dem, sdsom man kan ordna tal efter deras storlek. Variabler av
detta slag kallas kategoriska. Avsaknaden av naturlig ordning gor att befintliga metoder f6r kontin-
uerliga och diskreta optimeringsproblem inte kan anviandas i samma utstrackning. Darfor studerar
vi inledningsvis grundliggande koncept sdsom avstand och omgivning f6r kategoriska variabler.
Dérefter &mnar vi undersoka befintliga algoritmer samt utveckla egna varianter av dem. Avslut-
ningsvis kommer algoritmernas prestanda att utvirderas.

Utéver detta fors en en diskussion kring vilka forbéttringar som kan goras av modeller utveck-
lade i TyreOpt. I synnerhet analyserar vi bilder pa ddckmonster i syfte att skapa nya kategoriska
variabler som kan inkluderas och forbattra modellerna.

C.2 Optimeringslara

Optimeringsléra ar den gren inom matematiken som soker metoder for att hitta den bésta 16snin-
gen till ett givet problem. For att astadkomma detta stélls en matematisk modell av problemet
upp bestédende av en malfunktion som beskriver hur vél en uppséttning val, sa kallade beslutsvari-
abler, loser problemet. En sddan uppsédttning kallas en l6sning. Méngden av 16sningar som &r
tillatna specifieras genom bivillkor. Malet &r att minimera eller maximera méalfunktionen, det vill
séga hitta en tillaten 16sning som ger ett lagre respektive hogre virde an alla andra 16sningar pa
malfunktionen, ett sa kallat globalt optimum. Ett maximeringsproblem kan alltid uttryckas som
ett minimeringsproblem genom att &ndra tecken pa malfunktionen. Av denna anledning anvénder
vi fortsattningsvis orden optimum och minimum synonymt.

Det &r inte alltid ett globalt optimum existerar, till exempel om malfunktionen &r obegrénsad.
Déremot kan en 16sning ha légst eller hogst malfunktionsvirde i en omgivning kring sig sjélv.
En sddan 16sning kallas ett lokalt optimum. Omgivningen till 16sningen kan véljas pa olika sétt
beroende pé vilka l6sningar som ska ligga nédra varandra i l6sningsrummet, och bestams vid up-
pstéllningen av problemet. Till exempel brukar omgivningen tas som en Euklidisk boll om 16s-
ningsrummet ar R™.

Ett diskret optimeringsproblem &dr ett problem vars losningsrum &r en delmangd av Z". Jam-
fért med problem vars I6sningsrum ar en delméngd till R™, &r dessa svarare att 16sa. Detta beror
pa att antalet tillatna losningar véixer snabbt ndr antalet beslutsvariabler okar. Detta utesluter
mojligheten att evaluera malfunktionen for samtliga l6sningar for att hitta det storsta eller lagsta
vardet. Givetvis existerar inte denna mdojlighet fér R™ heller, som har odndligt manga punkter.
Daremot finns verktyg fran matematisk analys tillgingliga, som gor det mojligt att ta genvigar
och undvika evaluering av samtliga l6sningar. Sadana tekniker har inte utvecklats for diskreta
problem med samma framgang, och diskreta algoritmer &r didrav mer krévande.

C.3 Kategorisk optimering

I vissa problem utgérs beslutsvariablerna inte av tal. Ett exempel &r om man ska minimera virme-
flédet ut ur ett hus genom att vilja ett lampligt material. De olika tillatna materialen, som kallas
instdllningar, utgér d& 16sningsrummet. Till skillnad fran tal finns det inget naturligt satt att
jamfora olika material sdsom det 4r mojligt sdga att ett tal ar storre dn ett annat. Med andra ord
ar dessa variabler kategoriska, och problemet ar ett sa kallat kategoriskt optimeringsproblem.

Ett kategoriskt optimeringsproblem kan omvandlas till ett diskret optimeringsproblem genom att
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numrera de olika installningarna. Antag att vi har ett problem dér vi behéver vélja n komponen-

ter, och for komponent j finns det m; mojliga instéllningar, dar j = 1,...,n. Vi kan da tilldela
varje instdllning ett tal £ € {1,...,m;} =: X7, och saledes kan 16sningsrummet uttryckas som
X = X! x --- x X7, Varje losning kan da representeras som x = (z1,...,x,) dir x; € X7. Fol-

jaktligen kan 16sningsrummet X ses som en delméngd till Z". Eftersom instéllningar kan tilldelas
tal pa ett godtyckligt sétt, kommer ordningen som skapas inte nédvandigtvis representera en un-
derliggande struktur i problemet.

Ett sétt att definiera avstandet mellan tva l6sningar &r genom Hamming-avstandet. Hamming-
avstandet mellan tva 16sningar x och y definieras som antalet komponenter som skiljer dem at,
det vill séiga storleken pd méngden {i € {1,...,n} : z; # y;}. Utifrdn Hamming-avstandet kan
vi definiera en kategorisk omgivning till x som de losningar som skiljer sig fran x p& hogst en
komponent. Denna omgivning anvinds for att definiera ett lokalt kategoriskt optimum. Det gar
ocksa att definera en diskret omgivning, eftersom det kategoriska problemet omvandlats till ett
diskret problem. Den diskreta omgivning &r en diskretiserad version av en Euklidisk boll.

C.4 Algoritmer for kategoriska optimeringsproblem

For att 16sa kategoriska optimeringsproblem anvénde vi oss av tre olika algoritmer. Den férsta
algoritmen &r en sa kallad lokal s6kmetod. Givet att vi har definierat en omgivning och bestdmt
en startpunkt, sa evalueras méalfunktionen for varje 16sning i startpunktens omgivning tills att
ett lagre virde pa malfunktionen d&n méalfunktionens vérde i startpunkten hittats. Nér en sddan
16sning patraffats &r nésta steg i algoritmen att upprepa proceduren fast for omgivningen till den
forbattrade 16sningen. Detta upprepas fram tills att vi har 16pt igenom en hel omgivning utan att
hitta ett lagre malfunktionsviarde. D& terminerar algoritmen och returnerar startpunkten fran den
senaste iterationen.

Med hjélp av den lokala s6kmetoden utformar vi en global s6kmetod, som &mnar 6ka chansen
att hitta ett globalt optimum till problemet. Denna metod inleds med att slumpméssigt generera
tre olika startpunkter, och utifran dessa tillampa den lokala s6kmetoden for att fa tre lokala min-
ima. Déarefter konstrueras en ny startpunkt genom att vikta de tre erhallna lokala minima utifran
hur lagt deras malfunktionsvirde &r med férhoppningen att hitta en béttre startpunkt. Denna
konstruktion garanterar ej att den nya startpunkten faktiskt &r en tillaten 16sning. For att komma
runt detta anvdnder vi en avrundning. Sedan utfér vi en lokalstkning fran den nya férvirvade
startpunkten och erhaller ytterligare ett lokalt minimum. Slutligen returnerar vi det minsta av de
fyra lokala minima vi hittat.

Den tredje algoritmen &ar en sa kallad genetisk algoritm. En egenskap hos den genetiska algo-
ritmen &r att den inte kréver en omgivningsdefinition, vilket gor den till en alternativ metod att
tillimpa péa kategoriska optimeringsproblem. Algoritmen gar ut pa att man kodar konfigurationer
eller punkter i sokrummet som stringar av tal, vilka kallas kromosomer. Varje tal i en kromosom
kallas for en gen. Det forsta man gor ar att slumpméssigt generera en population bestaende av ett
antal kromosomer. Dérefter evalueras alla kromosomer i malfunktionen och tilldelas ett sa kallat
lamplighetsvarde, déar ett hogre vérde innebér att kromosomen motsvarar en battre 16sning till
optimeringsproblemet.

Baserat pa kromosomernas lamplighetsvirden s& gors dérefter en dragning av individer som far
foroka sig till nésta generation av populationen. Dragningen gors med aterldggning. Kromosomer
med hogre lamplighetsvirde har storre sannolikhet att véljas. Kromosomerna véljs ut i par om
tva, och for varje par ar det en viss sannolikhet att nagot som kallas &verkorsning dger rum. Det
innebér att kromosomerna byter vissa gener sinsemellan.

Nér urvalet och Gverkorsningen &dr avklarad sa utfér man nagot som kallas mutation. Det in-
nebér att varje gen i varje kromosom i den nya populationen har en viss sannolikhet att mutera,
det vill sdga bytas ut mot en helt ny. Slutligen sa kopierar man 6ver den bésta kromosomen fran
den gamla till den nya populationen, for att forsdkra sig om att inte forlora den, vilket kallas for
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elitism. Hela processen upprepas antingen i ett forbestdmt antal generationer, eller tills nagot
konvergenskriterium ar uppnatt.

C.5 Bedtmningsmetodik

For att utviardera hur vil algoritmerna presterade sa valde vi ut tva kategoriska testproblem som
algoritmerna fick forsoka 16sa. Det forsta testproblemet kallar vi fér det artificiella problemet. En
instans av det artificiella problemet genereras genom att slumpméssigt vélja bade storleken pa och
innehallet i de matriser och vektorer som utgér malfunktionen. Det andra testproblemet, som vi
kallar for balkproblemet, bestéar i att optimera dimensionerna pa en utskjutande balk s& att bojnin-
gen minimeras nér en kraft appliceras langst ut pa balken. Balken bestar av flera delsektioner déar
varje sektion ska tilldelas en viss h6jd och bredd. En instans av balkproblemet genereras genom
att slumpmassigt vélja bade antalet delsektioner i balken och vilka dimensioner pa delsektionerna
som ar tillatna.

Som méattstock fér hur val algoritmerna l6ste problemen s& anvéndes sé kallade data- och pre-
standaprofiler. Vi ldt algoritmerna l6sa en stor méngd testproblem och registrerade antalet maél-
funktionsevalueringar som utforts fram tills att ett specifikt konvergenstest &r uppfyllt. I vart fall
bestod méngden av testproblem av lika manga instanser av balkproblem och artificiella problem,
dér instanserna genererats slumpmaéssigt med avseende pa antalet variabler samt installningar.
Data- och prestandaprofilerna ger sedan information om den relativa prestandan for varje algoritm
och andelen av de genererade testproblemen som varje algoritm uppfyller konvergenstestet for.

C.6 Resultat och slutsats

Data- och prestandaprofilerna visade att lokalsdkningsalgoritmen med kategorisk omgivning i kon-
vergerade samtliga testproblem. Dessutom konvergerade den forst i 83% av testproblemen. Jam-
forelsevis konvergerade den genetiska algoritmen i 95% av testproblemen, men endast i 3% av
samtliga testproblemen konvergerade den forst. Bade lokalséknings- och globalsékningsalgoritmen
med den diskreta omgivningen konvergerade i alla balkproblem, men presterade betydligt sdmre
pé de artificella problemen.

Resultaten visar att av de algoritmer vi har testat, baserat pa vara testproblem, sa presterar
lokalsokningsalgoritmen med kategorisk omgivning bést. Vart att ndmna &ar att lokalsckningsalgo-
ritmen med diskret omgivning &ar klart sdmre &n den kategoriska. Vi ser alltsa att inte bara valet
av algoritm spelar roll utan adven valet av omgivning. Vidare sag vi att den genetiska algoritmen
krévde relativt manga evalueringar av méalfunktionen for att hitta bra l6sningar.

Vi har utvecklat lokalsékningsalgoritmen genom att utvidga den till en globalsékningsalgoritm.
Den presterade nagot battre dn lokalsokningsalgoritmen med diskret omgivning. Emellertid tror
vi att globalstkningsalgoritmen har potential att férbéttras ytterligare.

Betraffande forskningsprojektet TyreOpt sa kom vi fram till att de foton av dick som vi forsags
med inte var tillrackligt védltagna. Fotona togs ej rakt framifran, vilket forsvarade vidare analys
av ddckmonstren. Déarfor foreslog vi hur de borde tas, och rekommenderade utifran detta tre olika
parametriseringar, till exempel andelen av décket som utgors av monsterskaror.
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