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ABSTRACT 

The increasing demand of higher throughput in telecommunications has led to the 

development of backhaul network links which are working in the E-band region (70-80Ghz). 

A Backhaul link is a point to point network with a narrow laser lock alike beam which is 

sensitive for mast movements which causes misalignments of the antenna. Ericsson has 

solved the problem with misalignments with different beam-steering techniques, but the 

antenna does not know in which direction to steer. Therefore, this study evaluates the 

performance of two MEMS based acceleration/inclination systems (Murat SCL3300 and 

TDK IIM42652) which can be used for tracking mast movements. 

 

Findings from this project suggest that the SCL3300 is best suited for the tasks. For future 

work in the subject, the report points out the importance of following a well-established 

standard on how testing procedures and simulations should be conducted. 
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1 INTRODUCTION 

The increasing demand of higher network speeds, and the development of 5G, have led to the 

development of wireless backhaul links. The most effective solution to increase the throughput 

of a network is to increase the transmitting frequency and bring down the signals to the 

mmWave frequency range. One example of frequency ranges in this region is the E-band 

(which has a range between 70-80Ghz). Today, wireless backhaul links have a capacity of 

10Gbps and have the benefits of a fiber in terms of speed and are less costly. Furthermore, 

setting up wireless communication networks does not need extensive digging as fibers do. Other 

benefits of backhaul links with high frequency is that the components inside the link are smaller 

compared with lower frequency transmitters. Smaller components reduce material consumption 

and allow a shrinking of the formfactor. The drawback of higher frequency is that the 

transmitted information is concentrated on a very narrow signal (almost as a laser beam). The 

narrow signals make the links sensitive to misalignments, vibrations, and oscillations of the 

antenna and mast. Severe oscillations of telecommunication masts will result in a lower network 

capacity and can in some cases bring down a whole network. Ericsson has solved the problem 

regarding misalignment through a usage of beam-steering techniques. However, the antennas 

do not know in what directions to steer the transmitted beam and how it should steer it to find 

the optimal alignment.  

1.1 DESCRIPTIONS 
The focus in this project was on designing, building, and evaluating a compensation system that 

makes it possible for a beam-steering antenna to know where it should steer the signal to achieve 

maximum performance (i.e., throughput and efficiency). The compensation system consists of 

an inclinometer, actuator, with onboard microcontrollers.  

 

The evaluation of the sensor was performed both through a simulated test environment, using 

MATLAB, and through tests on two Inertial Measurement Units. Later, the results from the 

tests were compared to evaluate how precise the simulated tests where. Gathering of test data 

was conducted with a tilt table that had 2 degrees of freedom (DOF). To determine the 

performance of the sensor, following metrics was evaluated: 

 

• Precision of the measurement 

• Drift due to noise, bias 

• Lower detectable limit 

1.2 DELIMITATION 
To minimize the trouble shooting and the size of the project, following points were ignored: 

 

• How the antennas perform beam-steering 

• Laboratory environment based on Covid-19 restriction 

• Control and communication with the antenna 

• How the communication with the evaluation boards and IMU worked 

• Assume the evaluation software is correct (no fault in the settings) 



 

2 

 

If the aim is a professional work, following topics need to be read and understood to be able to 

correctly execute the level of perfection that is needed: 

• IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time 

Metrology—Random Instabilities [1] 

• IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Laser 

Gyros [2] 

• G. Langfelder, "Microelectromechanical systems integrating motion and displacement 

sensors," in Smart Sensors and MEMS Edition, Second Edition ed., Milan, Italy, 

Elsevier Ltd, 2018, pp. 395-428. [3] 

With this said, this project can be seen as a general approach on evaluation of Inertial 

Measurement Units and may give the reader some sources to examinate if a professional work 

must be done on the subject. 

1.3 CLARIFICATION OF THE ISSUE 
Misalignment between point-to-point links will result in signal quality reduction and lower 

throughput. Hence, this project will focus on evaluation system for sensors to detect the 

movements that causes misalignment. In the future the sensor system can be combined with a 

beam steering antenna that cancels out the misalignment caused by the movements. To design, 

build, and evaluate the evolution system, this project aims to answer following questions: 

 

Can simple trigonometry and normal equipment be used to determine the precision of 

the sensor 

 

Is it possible to simulate an IMU and get almost same values as the sensor would 

generate in reality? 

 

How to determine bias and drifts of the sensors? 

 

Is it possible to measure the lowest limit only using the evolution board and cheap tools 

from a normal metal store? 

 

Can a too sensitive sensor cause problem? 
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2 THEORY 

In this section theory regarding Inertial Measurements Units (IMU), sensors, noise terms, 

stability analysis, and constraints simulations of IMUs will be presented. Today, almost all new 

electrical systems that can be found in smartphones, cars, drones, and airplanes have one or 

several sensors that are used for navigation, stability control and motion detections [3] [4]. 

2.1 INERTIAL MEASUREMENT UNIT 
An electronical system that needs to know about its orientation or be able to measure an inertial 

motion are often equipped with one or many IMUs. An IMU contains sensors that can measure 

acceleration (relative the gravity), angular velocity (rotational force), and in some cases 

magnetic field (magnetometer). The magnetometer is used for determining its heading 

(horizontal reference) and it is commonly referred to the Magnetic North pole. 

 

It is common for a IMU to have three to six degrees of freedom (DOF) [3] [5]. An IMU with 

three DOF are usually equipped with one axis gyroscope and two axis accelerometers, while a 

three axis IMU has three axes on both its gyroscope and accelerometer. It is also possible to get 

nine DOF, by using a six DOF IMU plus a three-axis magnetometer in the same packet. Some 

IMUs can also be equipped with a three-axis accelerometer and is in that case just an 

accelerometer.  

 

In this section the accelerometer and gyroscope will be presented since the sensors that were 

evaluated did not have any magnetometer. First, the optical high-performance (and most 

expensive) gyroscopes Ring Laser Gyros (RLG) and Fiber Optic Gyros (FOG) will be presented 

[2] [3] [6]. After that, another solution will be presented that is based on the so called Micro-

Electro-Mechanical Systems (MEMS) [3]. The MEMS chapter will present both gyroscopes 

and accelerometer sensors.  

2.1.1 Optical Gyroscopes 
As stated before, gyroscopes are normally used to measure angular velocities. Todays most 

used gyroscopes are Ring Laser Gyros (RLG), Fiber Optic Gyros (FOG), and gyroscopes based 

on Micro-Electro-Mechanical Systems (MEMS) [4]. The most accurate variants, the RLG and 

FOG, are commonly used in applications where highest possible accuracy and the smallest drift 

over time is needed. An example of usage areas for FOG and RLG are unmanned aircrafts, 

autopilots, and higher level of autonomous systems (see Figure 1). According to [6] a low-level 

FOG, or a RLG (in the price class of 30 000$) can have more than 20 times the accuracy 

compared with a 1000$ MEMS for the same application. In other words, it is a trade of between 

redundancy, accuracy, and economics when choosing an IMU. But the MEMS technology has 

been better in the recent years see citation below. 

 

“New precision inertial navigation system (INS) markets are materializing and MEMS 

technology is also entering markets that were previously dominated by FOG technology. An 

apparent transition from FOG to MEMS technology is in antenna array stabilization 

applications”(p.1 [6]) 
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Optical gyros are using the so-called Sagnac effect to detect angular velocity when a rotational 

force acting on its body. According to [7] [8] a FOG uses the interference of light to detect the 

angular velocity. One of the main parts of a FOG is a long coil made of thin fiberoptic fibers 

[8]. Into this fiber a single light source is fired, but before the light entering the fiber it is divided 

into two beams. These two beams will be led into the coil in the opposite direction to each other. 

The light beam who travels in the same direction as the rotation acting on the gyro will have a 

longer path. The other beam who travels against the rotation will instead experiences a shorter 

path to travel. This is known as the Sagnac effect and this phenomenon resulting in a phase shift 

between the two beams when they are exiting the coil [7] [6]. This phase shift can be measured, 

and it is proportional to the rotational speed acting on the gyroscope.  

The RLG have a similar functionality as the FOG, the difference is that the RLG uses mirrors 

instead of a long fiber optic cable as the FOG dose.   

2.2 MICRO-ELECTRONIC-MECHANICAL SYSTEMS (MEMS)  
The price of the optically based gyroscopes is too high to be used in consumer graded 

applications, even though the first FOG was demonstrated for more than 40 years ago [7] [6]. 

A cost-effective alternative to the optical IMUs (i.e., FOGs and RLGs) is the Micro-Electro-

Mechanical Systems (MEMS). The definition for MEMS is following: 

 

“The term MEMS stands for Microelectromechanical systems (MEMS) and is defined as 

miniaturized electromechanical units (i.e., structures) that are produced using micromachining 

technologies. This allows for a very compact format and cost-effectiveness.” (p.1 [4]) 
 

MEMS sensors are partly made of silicon because it is well-established material in 

microelectronic industry, and the main reason manufacturers use silicon is the different 

crystallographic structures silicon can have, which affects the sensors electrical and mechanical 

Figure 1: Depiction of accuracy verses price of three different 

gyroscopes and what market they are used for. Source of the 

picture [4]. 
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properties [3]. Hence, using a well-known material that is used in almost every electric product 

on the market has led to a good understanding how the MEMS should be produced and is one 

of the contributing factors of the rapidly increases of performance in today’s MEMS. The 

MEMS market is not only for IMU applications, and it can also be used in telecommunication 

for oscillators and programable filters. 

2.2.1 Gyroscopes Based on MEMS 
Different types of MEMS gyroscopes that use micromachining technologies exists. Commonly 

used MEMS gyroscopes are: Cylindrical Resonator Gyroscopes (CRG), Piezoelectric 

Gyroscopes, Turning fork gyroscopes, Wine-glass resonator gyroscopes, and Vibrating wheel 

gyroscopes [4]. Despite the different mechanical structures that exists, they all are using the 

Coriolis Force to detect whether a sensor is affected by a rotational force. The Coriolis force 

states that an object with a certain mass m that travels with a velocity v in a rotating reference 

frame with the angular velocity 𝜔, will experience a force acting on it. This force is 

perpendicular to the rotational axis and the objects motion in the rotational frame and this force 

is the Coriolis forces.  

 

1 

𝐹𝑐  =  −2𝑚(𝜔 ×  𝑣) 

   

A depiction of how it works is presented in figure 2: 

 

 

Figure 2: The picture illustrates a gyroscope which has one drive axis and one sense axis. 

Source: [9] 

The gyroscope presented in Figure 2 is one of the simplest gyroscopes and consists of a given 

mass that hangs in a spring damped system. The working principles is as follow: The mass m 

oscillates along the drive axis (see Figure 3). When the sensor is rotating a perpendicular 

oscillation will be induced in the secondary axis, the so-called sense axis. The induced 

oscillation on the sense axis is caused by the Colonies effect and the oscillation is used to 

calculate the angular velocity [8].  
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Figure 3: Working principle of the Gyroscope. Source: [9] 

The main benefits of using MEMS based gyros over the optical alternative can be read in [6] 

[4] and some of the main advantages are: 

• smaller footprint 

• rugged construction 

• cheaper 

• faster startup time 

• low weight 

• high shock tolerant 

2.2.2 Accelerometers Based on MEMS 
As previously stated, an accelerometer is a sensor that is used to measure acceleration with 

respect to the gravitational forces. The traditional way to measure acceleration is to use an 

enforced spring system, that gives an output that is proportional to the acceleration given by 

Newtons second Law of motion and combining this knowledge with Hooke’s law of tension a 

model of an accelerometer can be constructed. 

 

Newtons law says that the acceleration 𝑎 of an object with a given mass 𝑚 is directly 

proportional to the net force 𝐹 acting on it, and the force is inversely proportional to the mass 

of the object. In other words, if the force that is acting on the mass increases, the acceleration 

on the mass increases, because the acceleration is directly proportional to the net force acting 

on it (see equation 2).  

2 

𝐹 = 𝑚 ∗ 𝑎 

 

Hooke’s law of spring states; the fore 𝐹𝑐 used to extend a spring is proportional to the extension 

distance 𝑥 times a spring constant 𝑘 (see equation 3). 

3 

𝐹𝑐 = 𝑘 ∗ 𝑥 

 

Combining (Newton’s) and (Hooke’s law) gives the relationship (see equation 4) that shows 

how the acceleration is inversible proportional to the mass and proportional to the distance (k 

is fixed).  

4 

𝛼 =
𝑘

𝑚
∗ 𝑥 
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Another type of MEMS accelerometer is the differential capacitance accelerometer. This type 

of accelerometer consists of a flexible spring system in which a given mass is attached. Parallel 

connected capacitors are placed around the mass and so-called electrode fingers are attached on 

the mass [10]. The purpose with the electrodes is to make it possible to change the distances 

between the capacitive plates on the parallel connected capacitors which is visualized in 4. 

 

 
Figure 4:The above figure illustrates a differential capacitive MEMS accelerometer. 

Source:(p.5 [11])  

 

When an acceleration is acting on the mass the springs will bend, and the electrodes will change 

the distances between the electrode plates, and this will change the capacitive differences in the 

circuit. This change will result in a change of voltage which can be measured and is proportional 

to the acceleration. 

 

The capacitance C0 is inversible proportional to the distance d between two parallel plates, and 

the capacitance depends on the plates area A, relative permittivity of free space 𝜀0 (between 

plates and electrode) and the relative permittivity of dielectric 𝜀𝑟 (in this case, it is the 

permittivity of the electrode) [10]. Halving the distance between the two plates will double the 

capacitance. Using the formula of capacitance between two capacitive parallel plates gives the 

following relationship (see equation 5).  

5 

𝐶0 =  
𝜀0𝜀𝑟𝐴

𝑑
= 𝜀𝐴

1

𝑑
 

 

Where εA = ε0εrA is the permeability constant between a capacitive plate and the electrode. 

According to [12] and [10] the displacements x1 and x2 between the plates is proportional to the 

change of capacitance and can be formulated as following: 
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6 

𝐶1 =
𝜀𝐴

𝑥1
=

𝜀𝐴

𝑑 + 𝑥
= 𝐶0 − ∆𝐶 
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𝐶2 =
𝜀𝐴

𝑥2
=

𝜀𝐴

𝑑 − 𝑥
= 𝐶0 + ∆𝐶 

 

Where the capacitance difference between the plates becomes: 
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𝐶2 − 𝐶1 = 2∆𝐶 = 2
𝜀𝐴𝑥

𝑑2 − 𝑥2
 

 

Rewrite the nonlinear function equation 8 gives:  
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∆𝐶𝑥2 + 𝜀𝐴𝑥 − ∆𝐶𝑑2 = 0 

 

And solve for displacement x with the assumption that a small displacement ∆𝐶𝑥2 is negligible, 

which leads to the following approximation:  

10 

𝑥 ≈ ∆𝐶
𝑑2

𝜀𝐴
= 𝑑

∆𝐶

𝐶0
 

 

Equation 10 states that the displacement is approximately proportional to the change in 

capacitance between the plates (i.e.., ∆C). 

 

A circuit of a differential capacitive accelerometer be simplified as following (see Figure 5) 

[10]. In Figure 5, the two adjustable capacitive plates and the capacitors are connected to a 

square wave voltage source and a phase shifter. 

 

 
Figure 5: The above figure illustrates a differential capacitive accelerometer. Source: [13] 

The voltage over C2 is 180 degrees phase shifted in relation to the voltage over C1. Hence, only 

two working conditions are possible in the circuit [10] [11]. The first gives a positive voltage 

V+ at point A, while the voltage at point B are 0 volt. The second state gives 0 volt at A and 5 
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volts at B. Therefore, a change of distance between the plates will result in a voltage difference 

which can be measured and can be written as a voltage divider between the capacitor plates: 

 

11 

(𝑉𝑥 + 𝑉0)𝐶1 + (𝑉𝑥 − 𝑉0)𝐶2 = 0 

 

Using equation 10,7,and 6 gives the output voltage [12]: 

12 

𝑉𝑥 =  𝑉0

𝐶2 − 𝐶1

𝐶2 + 𝐶1
=

𝑥

𝑑
𝑉0 

 

Now using the equations 2,3,4,12 set ma = kx and solve for the acceleration a give the 

following: 

 

13 

𝑎 =
𝑘𝑑𝑉𝑥

𝑚𝑉0
 

 

The above equation, 13, gives the simplest explanation on of how a capacitive accelerometer 

work. For example, the Murata SCL3300 used in this thesis has a high precision three axis 

capacitive micromachined accelerometer [14]. One of the advantages of using a capacitive 

based MEMS is its ability to self-compensate for temperature drifts caused by self-heating and 

fluctuation in the ambient temperature. More information about errors and drifts in MEMS is 

presented in later.  

2.2.3 Smart MEMS 
The MEMS that were evaluated in this thesis, are categorized as smart sensors [3]. A smart 

senor is a sensor that has an extra set of features over the necessary functions required for 

represent the physical measurement of interests [3].The author also points out different sorts of 

features that are needed to be categorized as a smart sensor. The sensors should be able to be 

reconfigured between different settings and have some level of on-board signal processing 

capabilities. It should therefore have different detection ranges, resolution ranges, and have 

basic signal processing capabilities such as low pass filtering. One important feature is self-
diagnostic; it lower trouble shooting time and can be used to estimate the lifetime the sensor 

will have. For example, if the sensor is undergoing hard accelerations and extreme temperatures 

its lifetime will be decreased. The springs inside a MEMS will be stressed if suddenly high 

accelerations are acting on it. It can be seen in the sensor’s data sheet what states the maximum 

stress the device can handle. The springs within the MEMS sensors can be compared to the 

dampers spring system in a car. Running over a speed bump in 120 km/h may not break the 

dampers the first time but doing it many times will shorting the life cycles of the damping 

systemin. 

 

The SCL3300 and the IIM42652 are the two sensors that were evaluated in this project. Booth 

sensors are characterized as smart, making them more versatile and adjustable for a wider 

market as well as higher performance over a wider operation area. The described features are 

just a few examples of features that are characteristic for a smart MEMS. Extra information 
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about MEMS and sensor types can be found in “Microelectromechanical systems integrating 

motion and displacement sensors” [3]. 

2.2.4 MEMS Error Characteristic 
In this section, three different types of noise will be presented where all resulting into 

uncertainties in the IMU measurement readings. According to [2] [15] [16] instability of most 

frequency sources can be modeled. This can be done due to that the power-law noise processes 

depending on its spectral density’s functional dependency on Fourier frequency [16]. 

 

“It has been showed that a Powe law noise processes are characterized for their functional 

dependence on Fourier frequency. Modeling of noise can therefore be done with the knowledge 

of that power-law noises have a spectral density of their fractional frequency fluctuations of 

the form Sy(f) ∝ f α , where f is the Fourier or sideband frequency in hertz, and α is the power 

law exponent.” [p.5 [15]] 

 

More information on the subject and how to model stochastic processes, noise of different 

kinds, and other types of analytical tool are named and referenced in the ”IEEE Standard 

Specification Format Guide and Testing Procedure for Sigle axis Laser Gyros” [2] and also in 

[1] [16] [15]. 

 

Later in this report, the relationship between two methods commonly used for noise analysis 

will be presented: the power spectral density (PSD) and the Allan variance. It has been showed 

that noise can be characterized because the noise will be treated differently by the PSD and 

Allan variance, based on what sorts of noise it is. The data will produce slopes that are typical 

for just a specific sort of noise when it is plotted on a log-log plot [16]. According to [2] PSD 

is it well suited for analyzing and characterizing data and stochastic modeling and is commonly 

used for representation of spectral decomposition of time series data. However, this method 

will not be presented in this project. 

2.2.5 White Noise and Random Walk 
White noise, also known as thermal noise, is caused by randomly motion of charge carriers and 

it is one of the most common noise types in today’s electronics [17]. White noise is generated 

in all passive components which has a loss, and the noise fluctuates at a rate that is much faster 

than the sensors sampling time and it is proportional to the temperature of the device [17] . The 

name white noise comes from its analogy with white light, due to the white light including all 

frequencies [17]. It can be seen as a flat noise floor on a PSD plot because the signal will have 

same intensity distributed over different frequencies. Both a gyroscope and an accelerometer 

are affected by this white noise, and it will be propagated to the devise’s output value and will 

be seen as uncorrelated random variables in the output data. The phenomenon is called angular 

random walk (ARW) for a gyroscope, given in °/√h, or as °/√s. While for an accelerometer it is 

called velocity random walk (VRW) and is given in g/√h, or as 
𝑚

𝑠2

1

√𝐻𝑧
. 

2.2.6 Bias Instability (Flicker Noises) 
Flicker noise is a common noise type in semiconductive material and can both be found in 

conductors and resistive material. The noise is a result from a small random variation in the 

resistive material inside the semiconductors. The noise is directly proportional to the current 

and temperature in the semiconductor, while its power is inversely proportional to the frequency 

and is therefore sometimes referred as 1/f noise [15]. The noise is not pure white, as it does not 

have any flat power spectrum over all frequencies which thermal noise has, instead it has bigger 
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impact on lower frequencies. Thanks for its low frequency characteristics the 1/f noise will be 

seen as a bias fluctuation in the recorded data [2]. 

 

The bias instability is a measurement on how the bias will drift over time at a constant 

temperature and sample rate. Finding the bias instability parameter is the same as finding the 

spot where the optimal accuracy is given. This can be performed when averaging many data 

points over a finite time and will later be seen in coming sections. The bias for an accelerometer 

is written as 
𝑚

𝑠2  or as 𝑔. 

2.2.7  Random Walk  
It might seem attractive to averaging data over a long-time span to get a good average value, 

but doing so will instead lead to problems with another noise phenomena, the so-called 

acceleration random walk (ARW) for accelerometer, and rate random walk (RRW), for an 

gyroscope [2]. The nose has no certain origin and can be seen when averaging of data over a 

longer time period. After a while will the noise be seen as a drift of the output data. This sort of 

noise exists in both mechanical and optical IMUs [2]. The RRW for an accelerometer can be 

written as 
𝑚

𝑠3

1

√𝐻𝑧
. 

2.2.8 Other Noise Types 
Not all sorts of noises that exists and affects IMU will be presented in this thesis. It exists more 

complex methods to find them as well as have more degree of freedom on the measurement 

data. The following sources give good information about how the different sources of noise can 

be distinguished, modeled, and what types of tools that exists to processing them [1] [2] [15] 

[16]. 

 

In the next section, one of the less restricted methods for analysis of stochastic models, the so-

called Allan variance, will be presented.  

2.3 ALLAN VARIANCE 
The original Allan variance (AVAR) was developed in 1966, as a result of D. W Allan’s master 

thesis studies [15]. AVAR was originally developed as a statistic method for analyzing 

frequency stability on oscillators, clocks, and amplifiers. Since then, newer types of the AVAR 

methods have emerged, which have better performance and wider field of use. Both the AVAR 

and PSD are of the less restricted methods today used for investigation and analysis of 

stochastic models. Hence, they are both used and preferred means for analysis in the inertial 

measurement community [2] [15]. The AVAR can be used for determining the stability of IMUs 

and for characterizing and estimating random stabilities coefficients (the coefficients will be 

presented in a later section). The method is used in data analysis, where an estimation of 

uncertainty and characterizing of an underlying noise processes is needed [2] [18]. 

“It can be used to determine the character of the underlying random processes 

that give rise to the data noise. As such, it helps identify the source of a given 

noise term present in the data; whether it is inherently in the instrument or in 

the absence of any plausible mechanism within the instrument, its origin should 

be sought in the test setup” [p.68 [2]] 

The citation above states that AVAR can be used to analyze noise of any instrument of interest. 

With this said, trying to analyze a high precision instrument with an instrument with higher 
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level of intrinsic noise, will fail drastically. The analysis-instrument will induce uncertainties 

into the data (i.e., unwanted noise), and as a result, the AVAR will show as the precision clock 

is noisy, when the noise in fact comes from the testing instrument and not the clock. 

2.3.1 Working Principles and Definition of Allan Variance 
The AVAR is computed by taking N data samples, with FS samples per second, resulting in a 

sample time of τ0. The data clusters will then be formed with a duration of τ0, 2τ0, mτ0 ,(m < (N 

- 1) / 2) and obtain the average of the data points in each cluster over the length of the cluster 

itself [2] [19] [20]. Where m is the averaging factor for each cluster. 

 

“The Allan variance is defined as the two-sample variance of the data cluster averages as a 

function of cluster time.” [p.68 [2]] 

 

In this thesis an alternative variant of AVAR was used, the so-called overlapped Allan variance. 

The overlapped AVAR does as name suggests, overlapping data clusters. The overlapped 

variant has superior performance over the non-overlapped variant, and it is especially good 

when it comes to bigger data sets [2]. 

 

The output data from a gyro, or accelerometer can therefore be written as 

14 

𝜃(𝑡) =  ∫ Ω(𝑡′)𝑑𝑡′
𝑡

 

 

The data samples are taken with the times t = kτ0 (τ0, 2τ0, 3τ0…)  and k varies from 1 to N 

samples [20]. Another possible way is to calculate the cumulative sum of the discrete data 

samples Ω times the sample period τ0. After this is done the Allan variance can be calculated as 

follow: 

15 

𝜎2(𝜏) =
1

2𝜏2
< (𝜃𝑘+2𝑚 − 2𝜃𝑘+𝑚 + 𝜃𝑘)2 > 

    

Where the < > is the ensemble average and is a function of τ = mτ0. When expanding the 

ensemble average the result will be following [2]: 

16 

𝜎2(τ) =
1

2τ2(𝑁 − 2𝑚)
∑ (𝜃𝑘+2𝑚 − 2𝜃𝑘+𝑚 + 𝜃𝑘)2

𝑁−2𝑚

𝑘=1
 

 

The above equation (Equation 16) is the equation used for calculating the overlapped Allan 

variance which is used in this thesis, and it is done for a particular value of τ using the IMUs 

data samples. This can only be done if we know the sample period and greatness measured. 

Example of how the overlapped Allan variance operates over a given data samples is depicted 

in Figure 6.  
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Figure 6: The above picture illustrates the overlapped Allan variance, with an averaging factor 

m = 3 and the time duration of each cluster is averaged over is therefore  𝜏 = 3𝜏0.  Source [20]  

 

The relationship between AVAR and the two side PSD 𝑆Ω(𝑓) is then given: 

17 

𝜎2(𝜏) = 4 ∫ 𝑆Ω(𝑓)
𝑠𝑖𝑛4(𝜋𝑓𝜏)

(𝜋𝑓𝜏)2
𝑑𝑓

∞

0

 

 

The above equation (Equation 17) is used when characterizing the different noise terms PSD 

when calculation of the AVAR has been carried out [2]. This function is used to operate on the 

different clusters describe above, and the AVAR is proportional to the total noise power when 

passed through a filter of the above characteristics (see equation 17). The filter is depending on 

𝜏 and therefore it is possible to examine the stochastic processes just by changing the 𝜏 [2]. 

Hence, AVAR is used for quantifying different types of noises terms that could exist in each 

data set of interests. The most common way to extinguish between noises are to use the square 

root of AVAR which gives the rms value and is called Allan deviation (ADEV). An illustration 

of the noise terms are commonly depicted a on log-sigma log-tau plot and will produce slopes 

that is characteristic for the nose terms (see Figure 7).  

 

 
Figure 7:The Allan deviation of data which includes different power law noise terms. Source 

[15] 
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2.4 NOISE PARAMETRIC IDENTIFICATION 
This section will present how noise identification of bias instability, rate/acceleration random 

walk, and random walk are performed by using (equation 17,18) and the respective PSD 

association to respective noise term. In the following source [2] answers are given on how the 

PSD associates with different power law noises and their characteristic slopes.  

2.4.1 Angular/Velocity Random walk  
The ARW / VRW is characterized by the PSD of white noise and can be written as equation 

18, where N is the random walk coefficient [2]: 

18 

𝑆Ω(𝑓) =  𝑁2 

 

The equation 18 is then substituted into the formula 17 which is used for identification, 

integrating the formula gives the AVAR of the data: 

19 

𝜎2(𝜏) =
𝑁2

𝜏
 

 

Plotting the ADEV σ(τ) versus τ on a log-sigma log-tau plot gives the characteristic slope of -

1/2 for Random Walk. The numerical value of the coefficient N can be read directly from the 

line at τ = 1 [2]. 

2.4.2 Bias Instability 
The noise resulting in bias fluctuation in the IMU is caused by random flickering from the 

semiconducting material properties in the device. The noise is of a low-frequency characteristic 

and is depending on the frequency of the device under tests. The PSD following association to 

the flicker noise, see below in equation 20 [2]: 

20 

𝑆Ω(𝑓) = {
(

𝐵2

2𝜋
)

1

𝑓
, 𝑓 ≤ 𝑓0

0, 𝑓 > 𝑓0

 

 

Where the constant B is the bias instability coefficient and the f0 is the cut off frequency. The 

cut off frequency will, in this case when measuring an IMU, be dependent on following: 

• Internal filters  

• ADC and sampling bandwidth of the MEMS IMU itself 

• Drop of frames between the IMU and host systems or overflowing on hardware 

registers, which in the long run will look like noise in the data 

• External noise such causing slow oscillations, one example is AC-power grid sounds 

from power supplies. 

 

The equation 20 is then substituted into equation 17, then by integrate the formula gives the 

𝜎(τ), see following equation 21: 



 

15 

 

21 

𝜎2(𝜏) =  
2𝐵2

𝜋
[ln(2) + −

𝑠𝑖𝑛3(𝑥)

2𝑥2
(sin(𝑥) + (4𝑥)𝑐𝑜𝑠(𝑥)) + 𝐶𝑖(2𝑥) − 𝐶𝑖(4𝑥)] 

 

In this function, x = πf0τ, while Ci is the cosine-integral function.  

If τ is bigger than the invers of the cutoff frequency, the following simplification can be made: 

22 

𝜎2(𝜏) =  
2𝐵2

𝜋
ln(2) 

 

The above equation 22, will give us a line on a log-sigma log-tau plot with a slope of 0 for a 

𝜎(τ) [2] [19] . 

2.4.3 Rate / Acceleration Random Walk 
As stated, before in section 2.2.7 the problem caused by rate random walk can be seen when 

averaging data over a longer period of time. Suddenly, the power noise level will start to 

increase. This occurs due to a randomly process of uncertain origin and it is stated to have some 

few cases of exponentially correlation noise that happens over a long correlation time [2]. 

 

The PSD has following association for the noise causing RRW [2], see in equation 23: 

23 

𝑆Ω(𝑓) = (
𝐾

2𝜋
)

2 1

𝑓2
 

 

Where the coefficient K is the rate random walk. Substitution of PSD equation 23 into over 

filter function and integrate, the result gives us the following equation: 
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𝜎2(𝜏) =
𝐾2𝜏

3
 

And the square root of the AVAR gives:  

 

25 

𝜎(𝜏) = 𝐾√
𝜏

3
 

 

The slope produced by random walk is ½ on a log-sigma log-tau plot. The value for K can be 

directly read from this line at 𝜏 = 3 [2]. 
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3 HARDWARE AND SOFTWARE 

In this section, the hardware and software used in this thesis will be presented. First, the two 

IMUs (SCL3300 and IIM42652) with their key features. After the IMS, a Pitch and Yaw table 

for fiber optics and last two different evaluation software will be presented and discussed. 

3.1 HARDWARE TO EVALUATE 
Today’s smart MEMS sensors can come equipped with features as adjustable filters, internal 

signal processing units, self-calibration, self-diagnostic, digital interface, and in some cases 

even FIFO buffers, to name a few. This chapter will therefore be focusing on describing the 

hardware that was evaluated in this thesis. First the two MEMS IMUs will be presented 

followed by a presentation of the fiber optic precision pan tilt table.  

3.1.1 Murata SCL3300 Inclinometer 
The SCL3300 is 3 axis smart MEMS accelerometer from the manufacture Murata. The sensor 

is an accelerometer with inbuilt processing capabilities for inclination calculations. The sensor 

is built on Muara’s 3D MEMS technology, and it is Murata’s third generation MEMS 

technology, which come packed with extra features (several of them are out of this study’s 

scope and is not presented). The main smart features for the SCL3300 are: 

• Signal processing 

• Different modes to adjust sensitivity and dynamic range 

• Self-diagnostic 

• Self-calibration on command 

• Low pass filtering 

• Digital interface  

To get the full specification of the SCL3300 visit the manufactures home page [21]. 

3.1.2 TDK IIM42652 Gyroscope 
The IIM42652 gyroscope is a new six axis solution from TDK portfolio. Despite its small size 

the IMU comes packed with more features than the SCL3300. The main advantage by using 

this IMU is the capability to use the onboard First-In-First-Out (FIFO) register. The FIFO can 

be used to letting the host system to be in sleep mode while the IMU is filling up its own register, 

allowing reduction of power consumption. The FIFO will be usable for long time measurements 

that relays on battery power. The main smart features for the IIM42652 are: 

• Signal processing 

• Different modes to adjust sensitivity and dynamic range 

• Self-diagnostic 

• Self-calibration on command 

• Low pass filtering 

• Digital interface 

• Trip and fall detection  

• FIFO 

The full specification of the IIM42652 can be found visiting the manufactures home page [22] 

and a picture of the IMU can been seen below in Figure 8. 
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3.1.3 Pitch and Yaw Table 
The APY002/M is a pitch and yaw table made by Thorlabs, its primary made for application as 

alignment of fiber optic and laser. Hench it has the accuracy that is necessary for conduct the 

test of interests, and with a known reference point could the sensors be evaluated. The table has 

a motion range of ±4 degrees with an accuracy on 10 arcsec. During testing of the sensors was 

the manual knobs used for adjusting the axis. Hence uncertainties caused by human error could 

occur. The table has the potential to change from manual knobs to electrical driven actuators 

and result in minimizing the human error and the motion can be programmed. The table and the 

two evaluation boars with respective sensors on, can be seen below in Figure 9. 

Figure 8: In the above picture is a pointer pointing on a 6 DOF IMU named IIM42652 made by 

the manufacture TDK 
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3.2 SOFTWARE FOR EVALUATION 
To simplify and save time of the evaluation of the two sensors two evaluation softwares were 

used. The two IC chips manufacturers have made evaluation programs for their sensor chips 

which simplifies the evaluation of the sensors where no programming is necessary. The Murata 

SCL3300 inclinometer was used with “Murata MEMS Demo” software, which simplified the 

evaluation process [21] [14]. Instead of building up a data logging system from scratch, this 

evaluation kit will handle time sampling and communication with the SCL3300. This is done 

with an Atmel SAM4S MCU that acts as a middleman between the host PC and the MEMS 

inclinometer. This gives the user the ability to change between different mode of operations, 

data recording and error handling. 

Figure 9: The picture includes two evaluation boards, pan tilt table, and a 3D printed 

anchoring plate. The tilt table are also screwed on a stable plate. 
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Figure 10: The above figure illustrates “Murata MEMS Demo” software. The same MCU 

evaluation board can be used to evaluate many different sorts of MEMS sensors; hence it is 

easy to evaluate different sensors with the same MCU and software. 

Some of the features previously discussed in the section “smart MEMS” will be seen in the 

SCL3300. For instance, the possibility to change between operation mode (1-4 in this case) to 

suit different applications on the market. Mode 1 is the sensor’s multi-functional operation 

mode for wider range of acceleration, inclination, and higher filter cut off frequency. Mode 4 

is used purely as inclination mode and gives the highest possible resolution and a 10Hz Low 

Pass filter (see below in 11). 
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Figure 11: The above figure illustrates the different settings that are possible to select when 

running the SCL3300 on Murata’s MEMS Demo software [14] 

One of the most useful features in Murata MEMS Demo was the ability to store data with “time 

stamps”. Time stamped data are time information when each data point was captured. Hence, 

it is possible to backtrack the data and see when special event has occurred or if the development 

MCU has failed to capture a time stamp at a given point.  

 

Evaluation of the sensor from TDK IIM42652 was done with “SmartMotion Platform 1.9.6” 

software. It has almost identical functionalities as the software used for the Murata, but it is 

missing information about when the data was taken. It will only be returning the index number 

for each data point. Therefore, the user needs to know the sampling speed to be able to correct 

the time axis. 

 

A potential problem with software made by a third part, is to know if the software is fully 

functional or not. Hence, this type of evaluation boards used in this thesis should not be 

expected to fully utilize the sensors full potential. This fact is based on a bus that was 

discovered, and possibilities to be more could have a noticeable impact on the evaluation of the 

IMUs. The bug found in “SmartMotion Platform 1.9.6” was found when the data plots did not 

have the same smooth shape on the Allan deviation plots and the files seems less dens on data. 

It was later observed that even the 25 samples per second generated more data than an option 

on 500 (The TDK support has been notified). The TDK chip IIM42652 is used by the 

“SmartMotion software”, it can also record data, and select between different mode of 

operation. 
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4 EXPERIMENTAL TESTING 

This chapter clarifies what kinds of experimental tests that were conducted during this thesis. 

It will answer why certain tests were conducted, what the hypothetical and/or expected results 

was, and how they were performed. First, the simulations (performed in Matlab) of the sensors 

are presented. After that, the real experimental tests on hardware are presented. 

4.1 SIGNAL PROCESSING AND SIMULATIONS USING MATLAB 
A cost-effective way for testing systems and applications, is to simulate them. The simulations 

were done in sensor fusion which can be found in Matlab. Sensor fusion has many inbuilt 

functions but for evaluating the sensors only a handful of them was used. 

 

A cost-effective method for testing an IMU is to simulate the sensor in an artificial environment. 

The IMU itself will be modeled using the parameters given in the IMUs data sheet. To be able 

to do this the Sensor Fusion toolbox in Matlab was used. The toolbox includes functions that 

make it possible to simulate gyroscopes, accelerometers, magnetometers, GPS- sensors, and 

much more.  

 

The name, sensor fusion, implies that multiple sensors can be fused together to improve the 

accuracy of the measurement. This can be seen in [6], where the paper compares two types of 

IMUs and a GPS for determine the positioning of a car. The highest accuracy and less drift of 

the position was established when booth the GPS and the IMU was working and used, while 

when the GPS lost its position less accurate results were given of the position. The same thing 

can be done in sensor fusion and different types of filters can be used to get even better final 

estimation of the system of interests. 

 

The same approach of fusing multiple types of sensors and transmission performance 

parameters can be used for finding the optimal alignment of an antenna in telecommunication, 

and it will result in a better estimation in which direction the beam steering should concentrate 

its transmission signal. This could be done when combining the data from an IMU, with 

performance parameters given by the network. Typical parameters that are typically for 

performance in telecommunication are signal to noise ratio (SNR) and network speed. 

Before conducting simulations on the sensors data was needed from each IMU’s data sheet. 

Usually, the data sheets can provide enough information to make a model of the device with 

similar performance as the real one. The limiting factor is how complex the simulation model 

is and how well detailed the data sheet is. 

 

The working principle in sensor fusion are following: 

1) Create the characteristic parameters of the IMUs of interest by data from manufacture’s 

datasheets. 
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2) Pass the parameters to an IMU object, in other words, give the simulated IMU same 

parameters as the real example (if possible, not all manufactures give the required 

parameters and there is not a same standard used to name the parameters). 

 
 

3) Run the IMU object and store the generated data. 

4) Now you are done with the generation of data, next step is to gathering data from the 

hardware itself and a comparison can be done if needed. 

The data sheet provides the IMUs working characteristics and limits. The SCL3300 

specification can be read here [21]  and the TDK is given in [22]. 

 

4.1.1 Gathering IMU Parametric Data 
One of the experiments was to gathering data from the IMU. This was performed with software 

from the evaluation boards made by respectable IMUs manufacturer (see section 3.2 for 

evaluation software). The following plot (Figure 12) illustrates an example of how the capturing 

window in Murata MEMS demo software looks like. The software that was used for gathering 

data from the TDK has nearly identical workflow as the Murata. 
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Figure 12: The capturing window of the Murata MEMS demo software. 

 

The tests can be sensitive to the surrounding environment. Hence, it is important to plan 

accordingly. An example is static testing where it should be conducted with no temperature 

difference. The static test was important to quantify how noisy and accurate the sensor was. 

Knowing the margin of error makes it possible to determine if the sensor is of interests to 

investigate or if it has so large noise level that it cannot be used. The last test was performed to 

quantify the inclination performance of both sensors. 

4.2 STATIC TESTS 
In the static tests, the goal was to estimate the stability of the two MEMS sensors and what the 

long time and short time noises have for impact. Therefore, the Allan deviation was used to find 

how much different noise sources impacted the sensors’ performance, as well using the normal 

standard variance.  

 

This test was conducted over an eight-hour time in a static environment. It is important that the 

environment is static due to the method’s requirements. Therefore, it is important to have as 

fixed temperature as possible and as little external noise as possible. Otherwise, the 

measurement will be affected by temperature and external noise changes and if so, it will instead 

be more suitable to do a dynamic test [1] [2]. The eight-hour long static test was conducted in 

an empty apartment. However, in the apartment the temperature was not static which drives one 
uncertainty in this experiment. To reduce this uncertainty, a temperature regulated laboratory 

room should be used to which will minimize errors caused by temperature changes. Both 

sensors were used with their respective high-performance mode, which yields the best possible 

accuracy of the devices. The gathered data from the long-time test can be seen in Figure 13. 
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Figure 13: Data sampled during an eight-hour hour static test. It is a noticeable difference 

between the two sensors, the Murata SCL3300 inclinometer has less noise and more precise 

accuracy. While the TDK IIM42652 has much higher noise levels. 

It is well noticeable that the signal from the TDK has more noise in its signal. The normal 

standard variance of the TDK is much wider than the Murata, see Table 1. 

 

Table 1: The table below Table on the 3sigma standard deviation and the samples mean values. 

 Mean Variance 3σ 

TDK IIM42652 -0.4045  9.9557e-04 0.0947 

Murata SCL3300 -0.0197  1.1874e-04 0.0327 

TDK/MURATA  8.38ggr  

 

The above table indicates that the TDK has 8.38 times wider variance between its samples. 

 

Calculating the Allan deviation should then point in the same direction, see (Appendix 

10Appendix ) for Matlab code example. The AVAR plots is depicted in Figure 14 and Figure 

15. 
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Figure 14: Allan deviation plot of the TDK IIM42652 

 

 
Figure 15: Allan deviation plot of the Murata SCL3300 

 

From the Allan deviation plot above, can it visually be distinguished which MEMS that has the 

lowest noise parameters. Hence, given the sensors settings and measured data has the Murata 

SCL3300 lower noise levels then the TDK IIM42652. The parameters stored as variables and 

can be seen in Table 2. 
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Table 2: Allan deviation data from which was found in Figure 14 Figure 15  

 Velocity Random 

Walk 

Bias instability Acceleration Random 

Walk 

Hz = 1/time 

unit 

𝑚

𝑠2

1

√𝐻𝑧
 

𝑚

𝑠2
 =  g 

𝑚

𝑠3

1

√𝐻𝑧
 

Murata 0.1298 × 10−4

= 12.98 𝑢𝑔/√𝑠 

0.0214 × 10−4

= 2.14 𝑢𝑔 

0.004 × 10−4 = 0.4 𝑢𝑔

× √𝑠) 

TDK 1.470 × 10−4

= 129.8 𝑢𝑔/√𝑠 

0.155 × 10−4

= 15 𝑢𝑔/√𝑠 

0.011 × 10−4 = 1.1 𝑢𝑔

× √𝑠) 

 

 

The test results from the Allan deviation suggests that the Murata has lower noise values over 

the hole time span, (the TDK has only better performance when the sensors has been on for 

more than 23min without recalibration). The Murata has also 10 times lower noise levels when 

compared to the TDK for estimated noise levels at short time interval. 

 

 
Figure 16: Allan deviation plots between Murata SCL3300 and TDK IIM42652, where lower 

values are preferred and indicates that the sensor are of good quality and have low instinct 

noise which is preferred. 

4.2.1 Thermal Test 
In this chapter, one thermal test is presented. The thermal test was conducted to see how much 

drift of the bias that was affected by rapid change in temperature. Rapid change in temperature 

is common in countries which have high plateaus climates, as well in cities where reflection 
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and shadowing of sunlight are common. These types of tests are important because the static 

test will not show how the bias is affected by the heat.  

This test was conducted to see how fast the sensors drifted away when they were exposed to 

significant amount of heat in a short time. The test was performed using a kitchen oven given 

circumstances caused by Covid-19 restrictions. A dedicated heater made for testing of 

electronic devices would be preferred to use instead of a kitchen oven since it has much more 

stable temperature regulation and does not induce the same vibrations. The tests were conducted 

from ambient temperature to a maximum around 80°C. It is necessary to check the max allowed 

temperature on the components, otherwise its ease to break something. 

 

In this test the Murata SCL3300 was used with its acceleration mode and had therefore a 40Hz 

LP filter and half of the accuracy compared with its inclination mode. Figure 17 shows how the 

thermal tests were conducted (see Appendix 7) for more pictures. A plate was used to protect 

the sensors from direct radiated heat, otherwise they can be grille by the oven temperature 

hysteresis.   

 

 
Figure 17: Thermal testing by using kitchen equipment. 

 

Figure 18 depicts an example of generated heat data from the tests. From the figure it can be 

noticed that both the sensors have drift caused by temperature. In Figure 19, two tangents have 

been approximated between the data’s endpoints. It is visually noticeable that the TDK has a 

bigger drift (the lower data in the plot) when comparing it with the Murata (the higher data in 

the plot). Temperature drift and the results from the long-time test point toward Murata as the 

better alternative if the two sensors are compared. 
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Figure 18: Heat test of the sensors. This test compared the Murata’s accelerometer setting 

mode 1, and it will therefore drop half of its resolution compared to inclination setting. 

 
Figure 19: The above figure illustrates how the heat affect the sensors. The black lines are two 

approximate straight line between the endpoints of the sampled data mean values. It shows that 

the TDK has the biggest drift. 
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4.2.2 Inclination Testing with Tilt Table 
One of the key points in this project was to measure the inclination with as high accuracy as 

possible. Based on the facts gained in section 6.2 Static Tests, was it noticed that the Murata 

SCL3300 has the lowest noise levels, therefore will only one test of booth sensors be presented 

together. And a separate test will be presented for the Murata SCL3300, which shows how small 

inclination it can measure. The SCL3300 has an option to use the inbuilt processing power to 

calculate the inclination angle. Meanwhile, the inclination on the IIM42652 was needed to be 

calculated. This can be performed using its onboard accelerometer sensors and using equation 

26.  
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𝜃 = 𝑡𝑎𝑛2𝑑 (
𝑔𝑥

√𝑔𝑧
2 + 𝑔𝑦

2
) 

 

The equation tan2 can be found in almost all popular programing language libraries, and tan2d 

is just a Matlab version, which returns the answer in d = degrees. It is also the same formula 

used internally by the SCL3300.  

 

The tilt table was used in the inclination tests and the first test was a series of incremental steps 

where each step was an incremental of 500um, which corresponds to an inclination of 0.58139°. 

Six steps were taken in each direction, with a start and ending at a horizontal plane of zero-
degree inclination, see Figure 20. 

 
Figure 20: Processed data from an inclination test. The green (lowest line is the TDK and the 

red (highest line) is the Murata (for bigger picture see Appendix 5). 

 

In Table 3 shows a comparison of the data which is not generated from the smoothed data 

visualized in Figure 20. The data has been taken from its raw data and processed (raw data see 

Appendix 5). The data given in the plot is only an illustration of what it looks like when the 

data has been filtered. 
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Table 3: The measured angles of the two sensors compared with the theoretical set value. 

Tilt table° Murata 

SCL3300° 

Error ° TDK IIM42652° Error ° 

     

0 0.003849 0.003849 0.1771 0.1771 

0.5813 0.5869 0.0056 0.7487 0.1674 

1.1627 1.181 0.0183 1.326 0.1633 

1.7441 1.775 0.0309 1.909 0.1649 

2.3255 2.366 0.0405 2.5 0.1745 

2.9069 2.956 0.0491 3.07 0.1631 

3.4883 3.544 0.0557 3.659 0.1707 

2.9069 2.974 0.0671 3.106 0.1991 

2.3255 2.386 0.0605 2.527 0.2015 

1.7441 1.8 0.0559 1.944 0.1999 

1.1627 1.208 0.0453 1.364 0.2013 

0.5813 0.614 0.0327 0.786 0.2047 

0 0.0137 0.0137 0.1994 0.1994 

 

To be able to do this sort of test correctly (i.e., in order to get accurate results) a motorized tilt 

table is a must. The human error is one of the biggest factors for errors in the inclination tests. 

Therefore, these reading results should be taken with care.  

 

The second inclination test was conducted only to verify how accurate the Murata SCL3300 

was. This test was also performed with six steps of incremental steps. Each step corresponds to 

0.05813° increment and an illustration of it can be seen in Figure 21. The non-filtered data can 

be seen in Appendix 4. 

 

Data from the test can be seen in Table 4, which shows that the SCL3300 has a very accurate 

inclination capability. This is without using any digital filtering of the data more than what is 

included in the sensor itself. The illustrated data in Figure 21 were not used to compute the data 

presented in the Table 4. The data were extracted from the plots given in Appendix 4, where 

only the stable regions on the steps were used for calculating the inclination, mean value, and 

deviation. 

 

Table 4: The table consists of data from the smaller incremental test done on the Murata 

SCL3300 

Tilt Table Angle SCL3300 Compensate the 

offset error  

Resolution 

0,00277778 

Mean value ± 3σ  

0° -0.0483 ± 0.0164° 0 ± 0.0164° 

0.05813° -0.1051 ± 0.0152° -0.0568 ± 0.0152° 

0.11627° -0.1657 ± 0.0179° -0.1174 ± 0.0179° 

0.17441° -0.2238 ± 0.0166° -0.1756 ± 0.0166° 

0.23255° -0.2856 ± 0.0169° -0.2373 ± 0.0169° 

0.29069° -0.3467 ± 0.0150° -0.2984 ± 0.0150° 

0.34883° -0.4108 ± 0.0148° -0.3625 ± 0.0148° 
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Figure 21: The precision test on the Murata SCL3300; the data has been filtered to take away 

noise which was caused during adjustments of the tilt tables inclination.  

4.3 UNCERTAINTIES 

This section highlights the used methods’ uncertainties. 

A known reference: To know if the measurement is right or not a known reference point is 

needed (e.g., a high precision tilt table). This make it possible to know what the measurement 

should be when reading the sampled data from the sensors.  

 

A manual reference: Will induce human errors when adjusting the table inclination. This can 

be canceled out if a motorized drive stage is used to control the device. 

 

Human errors: Caused by programming or by evaluation software has an impact on the results. 

The first thing to do is to check if all functionalities in the evaluation software are correct before 

doing any testing. During the testing of the MEMS was 500 samples per seconds used. After 

many hours of testing and troubleshooting Matlab cod, was a bug discovered in the 

“SmartMotion Platform 1.9.6” software. The option to use 500 samples per second gave instead 

12.5 samples per seconds. Which is another inbuilt option which can be used if the 

configuration bits are initialized wrong. Therefore, it can be important to test other settings, so 

they are not incorrect, such as: 

• Sample time, filter settings, time between samples. 

• Calibration 
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• Placement of sensor 

Environmental effects: The impact of environmental effects on the measurements is something 

that needs to be considered. It can be everything from temperature, external vibrations, or just 

the sound from the PC power supply. An example of this can be seen in Figure 22, which 

illustrates the spectra power density of the measurement data signal. It can be seen that a 50Hz 

AC signal has eaten its way into the MEMS device. The below data comes from the laboratory 

room in MC2. 

 

 
Figure 22: Frequency spectra of measurement data. A 50Hz signal have caused some 

disturbances in the data, it has almost no effects on the measurements. This can be solved by 

having extra filtering of the data. 
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5 SUMMARY  

Given the todays circumstances have two MEMS been evaluated if they have the needed 

performance   to detect misalignment on backhaul antennas. In this report, it has been verified 

that simple trigonometry can be used to generate the same inclination angle as onboard 

hardware. It has also been verified that onboard signal processing and compute of inclination, 

works as good as calculate it by trigonometry. If a host device has limiting computational power 

could a MEMS with internal computing capabilities be used to offloading the host. It has also 

been showed that it is necessary to have a good reference point to evaluating the inclination. In 

the report also has three different noise characteristics been presented, which was one of the 

evaluating methods used to evaluate the MEMS. The report describes and points out how to set 

up a model of the MEMS in sensor fusion. It is noticed that the data sheet parameters were not 

enough to fully utilize the simulation software. It has been confirmed that sensitivity of the 

MEMS can get worse if a bigger measurement range and higher cutoff frequency is used. 

 

The conclusion which can be drawn from the projects data, states the Murata SCL3300 is the 

best candidate for inclination detection, based on less noise, higher accuracy, and more robust 

design. 

 

For future work would it be interesting to use a motorized actuator for steering the tilt table, 

which make it possible to do dynamic testing of MEMS and simulating mast movements. Future 

work may consider investigating into merging antenna data with a set of sensors to get the best 

possible estimation. This work has gathered the needed sources to be able to do a correct 

evaluation of the sensors in a static system. It has also pointed out one well-established standard 

used for qualifying noises in precision instruments and to find random drifts. The sources; IEEE 

Standard Definitions of Physical Quantities for Fundamental Frequency and Time Metrology—

Random Instabilities [1] and IEEE Standard Specification Format Guide and Test Procedure 

for Single-Axis Laser Gyros [2] are two well described standards, which the last named includes 
information about dynamic and static modeling, and a “A-Z guide” on a how a complete testing 

procedure of (laser gyros) on a professional level. The source is not the same as a MEMS 

accelerometer, but it will give the insight needed on what are needed to fully quantify the 

sensors performance and if a modeling of them is of interests.  
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APPENDIX 1 

 

Below is the most important part of Murata SCL3300 data sheet 

 
 

Below is the most important part of TDK IIM42562 data sheet 
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APPENDIX 2 

 

Allan deviation plots of Murata Inclinometer SCL3300 
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Following values is in g: 
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tauParams = 1×3 

    1.0000    3.0000   63.1240 

params = 1×3 

10-4 × 

    0.1298    0.0040    0.0214 

B = 3.2223e-06 
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tauParams = 1×3 

    1.0000    3.0000   88.3460 

params = 1×3 

10-5 × 

    0.9219    0.0195    0.1306 

B = 1.9662e-06 
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tauParams = 1×3 

    1.0000    3.0000    0.0480 

params = 1×3 

10-4 × 

    0.1361    0.0029    0.4656 

1. B = 7.0091e-05 

 

Observe the Bias has been stuck on a local minimum… 
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APPENDIX 3  

Allan deviation plots of TDK IIM42652 IMU  

 

 

2. t0 = 0.0800 tdk sample speed  
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3. tauParams = 1×3 

4.     1.0000    3.0000  144.4800 

5. params = 1×3 

6. 10-3 × 

7.     0.1470    0.0011    0.0155 

8. B = 2.3272e-05 

9. t0 = 0.0800 
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10. tauParams = 1×3 

11.     1.0000    3.0000  144.4800 

12. params = 1×3 

13. 10-3 × 

14.     0.1470    0.0011    0.0155 

15. B = 2.3272e-05 

16. t0 = 0.0800 
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17. tauParams = 1×3 

18.     1.0000    3.0000  144.4800 

19. params = 1×3 

20. 10-3 × 

21.     0.1792    0.0031    0.0348 

22. B = 5.2414e-05 
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APPENDIX 4 
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APPENDIX 5 
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Figure 23:This is calculated by using the other angles 
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APPENDIX 6 
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Inclination data  

[283.280000000000,-0.199376272677576] 

[283.066000000000,-0.0137637867288582] 

[258.080000000000,-0.785978497600122] 

[257.862000000000,-0.613953533809969] 

[237.840000000000,-1.36372555742020] 

[237.500000000000,-1.20792188777993] 

[216.560000000000,-1.94400315823971] 

[216.332000000000,-1.79978149730462] 

[194.960000000000,-2.52675337009779] 

[195.160000000000,-2.38551118001140] 

[152.400000000000,-3.65882437721625] 

[152.016000000000,-3.54425241405594] 

[173.440000000000,-3.10646794529606] 

[173.186000000000,-2.97371358340857] 

[131.840000000000,-3.06979971898281] 

[131.854000000000,-2.95573884015897] 

[110.720000000000,-2.50035288320266] 

[110.282000000000,-2.36624041734731] 

[88.3200000000000,-1.90924477851761] 

[88.3080000000000,-1.77500140293583] 

[66.5600000000000,-1.32565307645398] 

[66.7320000000000,-1.18100599551796] 
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[43.7600000000000,-0.748682277575355] 

[43.7500000000000,-0.586945655700750] 

[13.9200000000000,-0.177123829453360] 

[13.9120000000000,0.00384886598028883] 

 

23. mean_error_murata = 0.0369 

24. l2_murata = 0.0638 

25. var_error_murata = 4.5214e-04 

26. mean_error_tdk = 0.1836 

27. var_error_tdk = 2.9754e-04 

28. l1_tdk = 0.0517 
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APPENDIX 7 

This section includes plots, photos, and calculated data from heat test 

Example of X-value data from both sensors 

TDK 

varis2 = 1×3 

10-5 × 

    0.1145    0.0434    0.3315  Variance 

me2 = 1×3 

   -0.0254    0.0231    1.0220 Mean 

l2 = 1×3 

    0.0032    0.0020    0.0055 3sigma 

Murata SCL33000 

varis = 1×3 

10-6 × 

    0.5422    0.2845    0.2770 Variance 

me = 1×3 

    0.0042   -0.0003   -0.0004 Mean 

l = 1×3 

    0.0022    0.0016    0.0016 3sigma 
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APPENDIX 8 

 

Program used for collecting the data that the IMUs have stored on the user’s PC 

 

It can handle multiple files when longer sample series are done. The Murata MEMS Demo 

software will make new files when the files groves to big. To manually downloading 20 files 

will take forever and therefore following program was developed. 

 

 

%%%% LONG TIME TEST JOELS APARTMENT %%%%%%%% 

  

% STATIC TESTING % 

  

%Prompt user to select the data, of type txt 

%Path is the path of the files, files is the file names 

clc; 

clear all; 

  

%Inint parameters 

data_in = table; 

  

% Is it static test? Same angle but many files 

% 1 if static 

% 2 if different measurements and angles 

% 3 default -> prompt user 

static_value = 3; 

  
  

%%%%%%%%%%%% Start of program %%%%%%%%%%%%%%% 

  

%Prompt user to select the file to read from 

%Returning noumber of files file/files names, path and  

[num_of_files,string_of_files,pth,files] = number_of_files_function(); 

  

%Mean value of the angles 

%Extract the data 

  

[tdk,data,static_value] = 

extraction_and_comput_mean_value(data_in,num_of_files,pth,files,static_value); 

  

%[mean_value,data,static_value] Not used anymore 

  

if(tdk == 1) 

    data_tdk = data; 

else 

     

   data_murata = data; 

    %Murata has proper timestamp from start 
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end 

APPENDIX 9 

Need to extract the data first before using the example below. 

%Solving the offset value; 

m6 = mean(angle_X_ROI_6); 

m0 = mean(angle_X_ROI) -m6 

m1 = mean(angle_X_ROI_1) -m6 

m2 = mean(angle_X_ROI_2) -m6 

m3 = mean(angle_X_ROI_3) -m6 

m4 = mean(angle_X_ROI_4) -m6 

m5 = mean(angle_X_ROI_5) -m6 

m6 = m6 -m6 

 

 

varis0 = var(angle_X_ROI)            %Variance 

m0 =  mean(angle_X_ROI)            %Mean value 

l0 = 3.*sqrt(varis0)                 %Standard deviation 

 

 

varis1 = var(angle_X_ROI_1)            %Variance 

m1 =  mean(angle_X_ROI_1)            %Mean value 

l1 = 3.*sqrt(varis1)                  %Standard deviation 

 

 

varis2 = var(angle_X_ROI_2)            %Variance 

m2 =  mean(angle_X_ROI_2)            %Mean value 

l2 = 3.*sqrt(varis2)                  %Standard deviation 

 

 

varis3 = var(angle_X_ROI_3)            %Variance 

m3 =  mean(angle_X_ROI_3)            %Mean value 

l3 = 3.*sqrt(varis3)                  %Standard deviation 

 

 

varis4 = var(angle_X_ROI_4)            %Variance 

m4 =  mean(angle_X_ROI_4)            %Mean value 

l4 = 3.*sqrt(varis4)                  %Standard deviation 
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varis5 = var(angle_X_ROI_5)            %Variance 

m5 =  mean(angle_X_ROI_5)            %Mean value 

l5 = 3.*sqrt(varis5)                  %Standard deviation 

 

 

varis6 = var(angle_X_ROI_6)            %Variance 

m6 =  mean(angle_X_ROI_6)            %Mean value 

l6 = 3.*sqrt(varis6)                  %Standard deviation 
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APPENDIX 10 

%Example on Allan deviation 

 

 

Mura = table2array(data_murata); 

Mura = Mura(:,1:11); 

Mura(:,3:5) = Mura(:,3:5);%.*9.819; 

 

t0 = Mura(2,1); 

Fs = 1/t0; 

omega = Mura(:,5);  %X-axis 

 

%Calculate the ensamen average of discreet data 

theta = cumsum(omega, 1)*t0; 

maxNumM = Fs; 

L = size(theta, 1); 

maxM = 2.^floor(log2(L/2)); 

                    %The averaging intervals 

m = logspace(log10(1), log10(maxM), maxNumM).'; %transpose 

m = ceil(m);        % m must be an integer 

m = unique(m);      % Remove duplicates of same value       

 

h = L./m(:,:).';    %start on error calculation 

Kerror = (1./(sqrt( 2.*(h - 1)))).'; %Error calculation 

%It will be extreamly small with the data used in this project 

 

 

%Matlab function computes the Allan variance 

[avar, tau] = allanvar(omega, m, Fs); 

 

%Square root of the variance gives the deviation  

adev = sqrt(avar); 

 

 

%Computing the Bias instability 

slope = 0; 

logtau = log10(tau); 

logadev = log10(adev); 

dlogadev = diff(logadev) ./ diff(logtau); 
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[~, i] = min(abs(dlogadev - slope)); 

 

%Find the y-intercept of the line 

b = logadev(i) - slope*logtau(i); 

 

%Determine the bias instability coefficient from the line 

scfB = sqrt(2*log(2)/pi); %Approximation 

logB = b - log10(scfB); 

B = 10^logB; 

tauB = tau(i); 

lineB = B * scfB * ones(size(tau));  

 

%Random walk slope causing noise for short integration times 

slope = -0.5; 

logtau = log10(tau); 

logadev = log10(adev); 

dlogadev = diff(logadev) ./ diff(logtau);     

[~, i] = min(abs(dlogadev - slope));         

 

 

%Find the interception of the line 

b = logadev(i) - slope*logtau(i); 

logN = slope*log(1) + b;     

N = 10^logN;         

tauN = 1; 

lineN = N ./ sqrt(tau); 

 

%Find rate/Acceleration random walk 

%Will cause more uncertainties in the data if longer integration  

%of data is done 

slope = 0.5; 

logtau = log10(tau); 

logadev = log10(adev); 

dlogadev = diff(logadev) ./ diff(logtau); 

[~, i] = min(abs(dlogadev - slope)); 

 

%Find the interception of the y-line  

b = logadev(i) - slope*logtau(i); 

logK = slope*log10(3) + b; 

K = 10^logK; 

tauK = 3;    

lineK = K .* sqrt(tau/3); 
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tauParams = [tauN, tauK, tauB]; 

params = [N, K, scfB*B]; 

 

 

figure 

loglog(tau, adev, tau, [lineN, lineK, lineB],'-.', ... 

    tauParams, params,'o') 

%tau,(adev + adev.*Kerror),tau,(adev - adev.*Kerror)    %Messy with error 

%function, will be better if the data is calculated to hr 

title('Murata SCL3300 Allan Deviation X-axis','FontSize',16) 

ylabel('\sigma(\tau) [g]','FontSize',16) 

xlabel('Avaraging time \tau (s)','FontSize',16) 

text(tauParams, params, {'\sigma_N', '\sigma_K', '\sigma_B'},'FontSize',15) 

legend({['\sigma  = Acceleration data'],['\sigma_N = Velocity Random Walk'],['\sigma_K = 

Rate Random Walk'],... 

    ['\sigma_B = Bias Instability']},... 

    'Location','northwest') 

grid on 

axis equal     

 

 

tauParams = [tauN, tauK, tauB]  %Time where the noise terms was discovered 

params = [N, K, scfB*B]         %Value of the noise terms 

B 
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APPENDIX 11 

A simplified version of plotting the data  

Mura = table2array(data_murata); 

Mura = Mura(:,1:11); 

Mura(:,3:5) = Mura(:,3:5).*9.819; 

 

t0 = Mura(2,1); 

Fs = 1/t0; 

time = Mura(:,1); 

accelData = Mura(:,3:8); 

 

%Inclination 

angle_Z = accelData(:,4);    

angle_Y = accelData(:,5); 

angle_X = accelData(:,6); 

 

%Acceleration 

acc_Z = accelData(:,1); 

acc_Y = accelData(:,2); 

acc_X = accelData(:,3); 

 

 

%smoothedData2 = smoothdata(acc_X,'gaussian','SmoothingFactor',0.035); 

%small = min(smoothedData2); 

%figure 

%smoothedData2 = smoothedData2 + abs(small); 

smoothedData2 = smoothdata(angle_X,'gaussian','SmoothingFactor',0.008); 
small = min(smoothedData2); 

 

smoothedData2 = smoothedData2 + abs(small); 

 

 

figure 

plot(Mura(:,1),smoothedData2,'Color','r','DisplayName','Input data X') 

 

%title('Murata Small Steps Acceleration','FontSize',16) 

%ylabel('Acceleration [m/s^2]','FontSize',16) 

%xlabel('Number of samples [N]','FontSize',16) 

title('Murata Small Steps Inclination','FontSize',16) 

ylabel('Inclination [° ]','FontSize',16) 
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xlabel('Time [s]','FontSize',16) 

legend('Gaussian smoothed','Location','northwest') 

grid on 

 

figure 

plot(Mura(:,1),angle_X,'Color','r') 

%title('Murata Small Steps Acceleration','FontSize',16) 

%ylabel('Acceleration [m/s^2]','FontSize',16) 

%xlabel('Number of samples [N]','FontSize',16) 

title('Murata Small Steps Inclination X-axis','FontSize',16) 

ylabel('Inclination [° ]','FontSize',16) 

xlabel('Time [s]','FontSize',16) 

legend('Raw-data X-axis','Location','northwest') 

grid on 

 

figure 

plot(Mura(:,1),acc_X,'Color','r') 

%title('Murata Small Steps Acceleration','FontSize',16) 

%ylabel('Acceleration [m/s^2]','FontSize',16) 

%xlabel('Number of samples [N]','FontSize',16) 

title('Murata Small Steps Acceleration X-axis','FontSize',16) 

ylabel('Acceleration [m/s^2]','FontSize',16) 

xlabel('Time [s]','FontSize',16) 

legend('Raw-data X-axis','Location','northwest') 

grid on 

 

figure 

plot(Mura(:,1),acc_Y,'Color','r') 

%title('Murata Small Steps Acceleration','FontSize',16) 

%ylabel('Acceleration [m/s^2]','FontSize',16) 

%xlabel('Number of samples [N]','FontSize',16) 

title('Murata Small Steps Acceleration Y-axis','FontSize',16) 

ylabel('Acceleration [m/s^2]','FontSize',16) 

xlabel('Time [s]','FontSize',16) 

legend('Raw-data Y-axis','Location','northwest') 

grid on 

 

figure 

plot(Mura(:,1),acc_Z,'Color','r') 

%title('Murata Small Steps Acceleration','FontSize',16) 

%ylabel('Acceleration [m/s^2]','FontSize',16) 

%xlabel('Number of samples [N]','FontSize',16) 

title('Murata Small Steps Acceleration Z-axis','FontSize',16) 

ylabel('Acceleration [m/s^2]','FontSize',16) 

xlabel('Time [s]','FontSize',16) 

legend('Raw-data Z-axis','Location','northwest') 
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grid on 

 

 

 

 

 

 

 

 

 

Long time sample data 

 

me_tdk = -0.4045 

var_tdk = 9.9557e-04 

sigma3_tdk = 0.0947 

me_murata = -0.0197 

var_mur = 1.1874e-04 

sigma3_murata = 0.0327 
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