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Abstract

This master thesis evaluates the possibilities of using di�erent versions

of deep Arti�cial Neural Networks for identifying batteries at a battery

sorting facility. GPU implementations of di�erent versions of Deep Belief

Networks and Convolutionary Neural Networks are evaluated on data sets

made up by images of batteries. Di�erent ways to get higher performance

from the nets, in terms of percent correct classi�ed, are then explored.

The results suggest that the methods could be used to get a fast, and

therefore industrial usable system, that can handle the identi�cation of a

large number of battery classes, with an error rate within the demands of

the industry.
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Terms

Accuracy : Percent correct classi�ed images
Error rate : Percent incorrect classi�ed images
ANN: Arti�cial Neural Network
DBN : Deep Belief Network
RBM : Restricted Boltzmann Machine
CNN : Convolutionary Neural Network
Class: The fraction the batteries should be sorted into (eg: lead, alkaline, nickel metal hydride)
Sub-class : A certain kind of battery within a class (eg : Phillips power alkaline, Duracell plus)
Instance : A speci�c physical battery of a sub-class
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1 Introduction

This master thesis was carried out as part of the Master program Intelligent Sys-
tem Design at Chalmers University of Technology and Optisort AB in Gothen-
burg Sweden. The goal was to explore if Deep belief nets or Convolutionary
networks could o�er an alternative or supplement to the methods used by Op-
tisort.

1.1 Background

In Sweden alone, the amount of depleted portable batteries that is collected
each year, is estimated to be around 1450 ton [2]. There is a lot of hazardous
material in batteries and they must be sorted according to these to be properly
recycled. Batteries are today separated into 8 di�erent classes when sorted for
recycling. Sealed lead acid, alkaline/zinc carbon, nickel metal hydride(Ni-MH),
lithium primary, mercury, lithium ion(Li-ion) and nickel cadmium. The purity
of these fractions must exceed 95 % but many recyclers demand even higher
purity depending on the fraction [14].

There exists several approaches to sorting the batteries for recycling, but
manual sorting, sorting by weight and sorting by electrical conductivity are
the most used[14]. These methods are problematic in terms of both cost and
accuracy[14], and therefore it becomes interesting to look for alternative meth-
ods.

Machine vision has the potential of working as a stand alone system for
sorting, but can also be a part of a larger system, which also takes into account
some of the above mentioned properties.

What further makes a visual system interesting, is the extra information
it would be able to extract from the batteries. While weight and electrical
conductivity basically is the same for all batteries made from the same materials,
the label can give information on both the producer and in what time period
the battery was put on the market. This is information that the industry is
interested in, but for the moment has no good way of acquiring[14].

The obvious way to visually deduce what class the battery belongs to from
the label, would be to read the informative text. This is because of dirt and
damages often hard to do and the text is also only visible from some speci�c an-
gles. The approach taken in this thesis is therefore instead to train the networks
to identify the battery from all of what can be seen of the label. After �nding
out the exact identity(which will here after be called sub-class) of the battery
instance, it will be possible to retrieve what class it belongs to by looking this
up in a database.

-
It is estimated that sorting batteries in an industrial setting with machine vi-

sion, would mean to discriminate between around 2400 di�erent sub classes[14].
Something important to notice when considering the large number of sub

classes to be sorted, is the fact that not all sub classes will be occurring equally
frequent. In Sweden the relatively few sub classes produced by big brands like
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Figure 1: Frequencies of di�erent brands[14]

GP and Duracell, together with big house brands like IKEA and Claes Ohlsson,
makes up the absolute majority of the batteries (see �gure 1). An accuracy
of 95% in an industrial setting can therefore be accomplished by achieving a
slightly higher accuracy on a much smaller number of sub classes.

1.2 Purpose

The main goal of this thesis is to explore with what accuracy Arti�cial Neural
Networks(ANN) can manage to classify images of batteries, and with the use of
di�erent techniques try to achieve an as high accuracy as possible.

Because of the di�culties it means to acquire data sets of the thousands of
sub classes that exists on the market, the networks will not be tested on that
many sub classes in this thesis. The hope is instead that it will be possible to
arrive at an informed guess on how the system would perform, if it was tested
on such a data set, by noticing how it performs on some smaller sets.

The networks that will be examined are two versions of ANNs called Con-
volutionary Neural Networks(CNN) and Deep Belief Networks(DBN). To be
able to run as many tests as possible all tests will be done with the help of a
Graphical Processing Unit (GPU).

1.3 Questions

The following questions have by the author been identi�ed as important, and
will be examined in this thesis.
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What kind of network should be used to get the best results when
sorting batteries?

There exists benchmarks for DBNs and CNNs on image recognition tasks, but
with the data sets and the networks di�ering from the ones that will be used in
this thesis, these results don't give the �nal answer to what will work best for
sorting batteries.

What kind of data set should be used for the training?

How good the network in the end will be able to perform, is besides the network
architecture and the method of training the network, very dependent on what
kind of data it is trained on. It is especially important to know how a data
set should be constructed to enable the trained network to correctly classify
instances that, while being of the same sub class, still may look quite di�erent
because of dirt and corrosion.

Figure 2: Di�erent instances of the same sub-class

How does the performance of the networks relate to the number of
categories?

Although networks similar to the ones that will be investigated, has performed
well on some well known data sets [25], the data sets consists of quite few
categories. It is therefore important to see how well the network performs when
handling more classes and if something could be done to handle more classes in
a better way.

How will the option of using several images for classi�cation a�ect
the accuracy?

With more cameras, several images of the same battery, but from di�erent
angles, could be used to classify it. This should have the potential to give a
much higher accuracy.

How should the output of the networks be processed?

The outputs from the networks will be numbers that represent the probability
of the image to belong to a certain sub-class. By inspecting these probabilities
it might be possible to reduce the number of false classi�cations.
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1.4 Limitations

To stay on a level reachable for everyone with some experience with neural
networks, this thesis will not explain all of the mathematical justi�cations of
the examined ANNs.

The methods for training the networks that were tested in this thesis, were
not developed from scratch by the author, but based on the ones explored
in Yoshua Bengio's IFT6266 course at Montreal university Canada [8, 7]. The
alterations that were made to the networks, and motivations for these alterations
are described in chapter 8.

Even with most calculations done on the GPU, experiments on ANNs still
takes quite a lot of time. A choice was therefore made to test as many versions
of net architectures and data sets as possible instead of optimizing the speci�c
architectures. This means that the results presented in this thesis must be seen
as a lower, rather than upper, bound on the performance that is possible to get.

Because of limitations when it comes to data sets, it has not been possible
to test the networks on the 2400 sub classes that it is estimated it would need
to discriminate between. E�ort has instead been made to get an idea of what
kind of performance that would be possible to get on such a data set.

Recognizing di�erent sizes of batteries (AAA/AA) can be considered as an
�easy� task, in comparison to discriminating between the batteries of the same
size, this is therefore not discussed in this project.

The images of the same sub classes will in all data sets always have the
same orientation. While this will not be the case in a sorting facility, it will be
assumed that this problem can be solved. Either by including images of both
orientations when it is possible to acquire bigger data sets, or by constructing
one net for one of the orientations, and another for the opposite orientation.

2 Method

The project has been divided into four phases but with much iterations between
them.

Literature survey

The most studied literature, has been papers by the inventors of the networks
and methods to train these networks, that are investigated in this thesis, Geof-
frey E Hinton[3] and Yann LeCun[1]. The di�erent researchers and researching
groups that have made contributions to the �eld often use di�erent software.
This meant that �nding out what programing languages and librarys that were
most practical to use (chapter 7), became a major part of this stage.

Acquisition of data sets

Through out the project, several data sets were produced (chapter 9). They
were used to evaluate the relative performance of the di�erent ANNs, but also
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to see how the performance is depending on properties of the data set.

Construction of networks

Implementations of the studied networks were adapted to �t to the format of
the battery images. With these implementations as base, di�erent architectures
were developed (chapter 8).

Testing networks and data sets

The di�erent networks were tested on the data sets and the results were used
to identify what networks should be further explored (chapter 10).

Iterations, iterations, iterations...

Because it was necessary to test the networks to get an idea of which were
worth exploring further, the literacy survey had to be made iteratively with the
testing. In the same way, the adaptation of the algorithms and data sets, were
made iteratively with the experiments on the performance of the networks.

Part I

Survey of theory

This section describes the networks examined in this thesis. It will explain the
basics of Arti�cial Neural Networks and the core concepts of Deep Belief Net-
works and Convolutionary Neural Networks. This includes why it is important
to make the networks deep and how it with DBNs and CNNs is possible to train
such deep architectures.

3 Arti�cial Neural Networks

Arti�cial Neural Networks are interconnected sets of model neurons that simu-
late the function of biological neural networks . The neuron models consist of
weights, bias and an activation function [28].
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Figure 3: A neuron model [27]

For each neuron, the input signals are multiplied with the weights and the
products are summed up together with the bias. The output of the neuron is
then calculated as the activation function applied to this sum[28].

neuron output = activation function (input vector * weight vector
+ bias)

The activation functions most used are the sigmoid function and hyperbolic
tangent (tanh), they are both non linear and causes the output to vary between
0 and 1,and -1 and 1.

In a typical feed forward neural network (see �g 4) the neurons are ordered
in layers and send their output to the layer on top of itself[28]. All the networks
that are tested in chapter 10 are instances of such networks. When using such
nets for classi�cation, each neuron in the output layer is typically associated
with one class. The goal is to by adjusting the weights and biases in the net,
get a network that activates the core ct neuron in the output layer, according
to the label of the input.
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Figure 4: A fully connected feed forward network with one hidden layer

3.1 Depth of the network

It might be su�cient to use nets of two layers of neurons to do a classi�cation
task, but the same function can usually be represented in a much more compact
way with a deeper net [6]. The neurons then form a hierarchy of progressively
more complicated feature detectors and it has been argued that it is better to do
the classi�cation with such a net [21]. Single cell recordings in the visual systems
of mammals [11], have also shown that this is the way that brains process visual
input.

3.2 Training with back propagation

ANNs have been around for a long time, but there was not known of any good
way to training them before the back propagation algorithm [30].

The back propagation algorithm consists of one forward pass and one back-
ward pass. In the forward pass the outputs of the neurons in each layer are
computed one layer after another, starting from the lowest layer which has the
data vector as input. The outputs of the �nal layer is then compared to the de-
sired output vector to get an error for each neuron in the �nal layer. Derivatives
of those errors are then propagated backwards through the weights to form the
error derivatives of the neurons in the preceding layer. Once the error derivative
is computed for a neuron the weights leading to that neuron can be changed so
that the error is minimized.

Although back-propagation performs well on some problems it performs
poorly on many other were it doesn't manage to get better results with more
layers[21]. Back-propagation on multiple layered ANNs also have a tendency to
get stuck in local optimum at the same time as the learning rate becomes quite
slow [21]. Despite the above mentioned advantages of deeper architectures, they
have until quite recently because of a lack of a better training method not been
discussed much in the machine learning literature[6].
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4 Deep Belief Networks

�Deep belief nets are probabilistic generative models that are composed of multiple
layers of stochastic, latent variables� [18].

This means that in contrast to the above described feed forward networks,
which produce an output from a given input, Deep Belief Nets (DBNs) generates
output without the need for an input. After training a DBN on images, the
outputs it generates will be images similar to the ones it has been trained on.

The method of training a DBN, which will be described below, has showed
to be very useful also as a way of training an ordinary deep ANN [21].

4.1 Training with Restricted Boltzmann Machines

A way of training DBNs was found by considering two neighboring layers of
neurons as a Restricted Boltzmann Machine (RBM)[12].

A Boltzmann Machine is �a network of symmetrically connected, neuron-like
units that make stochastic decisions about whether to be on or o� �[19]. In a
RBM these neuron-like units are assumed to be divided in to two layers with
no connections between the units of the same layer. The lower layer, which in
training is initialized to the data vector (eg an image) is called �visible� and
the second layer �hidden�. While the connections in a feed forward network are
assumed to go in only one direction (from the lower layer to the higher) the
connections in RBM are bidirectional.

Figure 5: a Restricted Boltzmann machine

The learning of a RBM consists of changing the weights so that the model
gets higher probability of generating the data. Theoretically, this would involve
multiple iterations of parallel updating of the visible and hidden units, to get an
unbiased sample of the model states. However, a much faster way of training the
RBM was found, when discovering [19] that the learning works well in practice
also if a sample of a reconstruction is used.

Hinton calls this learning method "contrastive divergence" and is described
in Algorithm 1.
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Algorithm 1 Contrastive divergence [19, 21]

1.Starting with a data vector on the visible units, update all of the hidden units
in parallel.
2.Update all of the visible units in parallel to get a "reconstruction".
3.Update all of the hidden units again.
∆weightij =< vihj >data − < vihj >reconstruction

Were < vihj >data/reconstruction is the probability for unit i in the visible layer.
to be active at the same time as unit j in the hidden layer. This while the model
is driven by data, respective driven by a reconstruction of the data.

More informal: When driven by data (1.) the weight between a unit in the
visible and hidden layer should be strengthened if both units are on. When
driven by a reconstruction (3.) the weight between a unit in the visible and
hidden layer should be weakened if both units are on. In this way the RBM
learns to generate the data, instead of the reconstruction. If the reconstruction
is identical to the data there is no need to change the weights, and the changes
cancel each other. By leaving out the hj respective vi term, the same procedure
can be used to adjust the biases [19].

Figure 6: Example of the three steps of contrastive divergence[20]

4.2 Training multiple layers

Once one layer is trained, a new RBM can be added on top of the old net. The
topmost layer of the old net will be used as the visible layer of the new RBM,
and this visible layer will get its pre-training instantiation by propagating the
input data from the lowest layer to the new visible layer (see �gure 7).

This procedure can be repeated to create as many layers as wanted and in
this way constitutes a way to train a deep net in a fast and greedy manner.
By running the two topmost layers as a RBM and the rest of the network as a
feed forward net (see �gure 8), a Deep Belief Network is constructed which will
generate data similar to the data it has been trained on.
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Hinton claims that :�It can be proved that each time we add another layer
of features we improve a variational lower bound on the log probability of the
training data� [16].

In other words, the new multi-layer model that is created by adding another
hidden layer has a better lower bound on the probability of generating the
training data than the previous multi-layer model[21].

Figure 7: Training of the �rst and second layers of a DBN
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Figure 8: Generating data with a DBN

4.3 Using Deep Belief Networks to classify data.

While there are several ways to use a DBN for classi�cation[17], the best results
have been achieved when the weights of the trained network have been used as
initializations before �ne-tuning with back propagation [21]. Usage of the back
propagation algorithm, will now less often end up in a local optimum, as the
network already is close to a good solution. There is therefore only need for a
local search.

5 Convolutionary Neural Networks

Before the contrastive divergence algorithm, there was no good known way
to train deeper versions of fully connected feed forward ANNs. Good results
had however been reported with deep networks called Convolutionary Neural
Networks [24]. These are designed especially for classi�cation of images.

5.1 Exploiting the properties of an image

Edges, corners and other interesting features that can be used for classi�cation
of images, are most often local. This is exploited in many computer vision
systems, eg. in the widely used SIFT features [26].

15



CNNs takes advantage of this by limiting the neurons of the �rst layer, to
only be connected to pixels of a smaller area in the image. A neuron is in this
way extracting a local feature, and because the same features usually should
be extracted in the whole image, neurons that connect to di�erent areas can
share the same weights. To be able to extract di�erent features from the image,
the neurons are divided into di�erent sets, were weights only are shared within
the sets. The result is a number of convolutions of the image, were the shared
weights of the di�erent sets are forming the convolution kernels. Convolution
of the image with the kernels, creates one feature map for each kernel. These
feature maps are connected to a sub sampling layer that reduces the size of
the feature maps(see 9). In the CNN named le net 5 [24], this sub sampling is
done by connecting each non overlapping 2*2 region of the feature maps to one
neuron in the sub sampling layer. Each of these neurons computes the average
of its inputs and ad this to a trainable bias. The sum is then passed through a
sigmoid function. The process can then be repeated by convolving these down
sampled feature maps once more, this time with neurons that are connected
to the same small regions in all feature maps. The top layer feature maps are
connected to an ordinary feed forward net. The full setup of the convolutionary
network Le net [24] is shown in �gure 9.

Figure 9: The architecture of the convolutionary network Le net 5 [24]

While it is not totally clear why deep CNNs work so well, two (non excluding)
theories have been mentioned [6]. It might be that by limiting the number of
inputs to the neurons, the error derivatives don't get as spread out as they would
otherwise become (the cause of the good/bad performance doesn't become as
unclear). But with CNNs perform well, even with untrained random weights
in the �rst layers, this can not be the whole truth. Another theory is that the
hierarchical local connectivity structure by setting all the non-local connections
to zero instantiates the network in a setting close to the global optimum.

6 The state of the art

There exists a number of data sets that are used for benchmarking image classi-
�cation methods. One of the most used is the MNIST database of handwritten
digits [25]. It consists of images of handwritten zero to nine digits, divided into
a training set of 60,000 examples and a test set of 10,000 examples.
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It should be mentioned that handwritten digits can be considered to be
rather di�erent from images of batteries. They are not as rigid in their form as
batteries are and while the images of MNIST are gray-scale, batteries come in
many colors. This is never the less one of the most used data sets, and good
performance on this set is a good indication of a method working well also on
other image classi�cation tasks.

Ranking error rate % method

1 0.35 6-layer NN (on GPU) [elastic distortions]
2 0.39 large conv. net, unsup pretraining [elastic distortions]
3 0.40 Convolutional net, cross-entropy [elastic distortions]
4 0.52 K-NN with non-linear deformation (P2DHMDM)
5 0.53 large conv. net, unsup pretraining [no distortions]
6 0.54 Trainable feature extractor + SVMs [a�ne distortions]
7 0.54 K-NN with non-linear deformation (IDM)
8 0.56 Virtual SVM, deg-9 poly, 2-pixel jittered

Table 1: The 8 best performing methods on the MNIST dataset of handwritten
digits[25]

It can be hard to compare the results because the images are sometimes
preprocessed by other methods. As can be seen in table 1 the three most
successful methods all used elastic distortions to enlarge the training set. (more
of this in chapter 10.5). That it is the deep and convolutionary neural networks
that gets the best results, should be seen as a motivation for examining such
nets in this thesis.

7 Using the GPU with the Theano library

Even with the reduction in parameters that one gets get with CNNs, and the
speed-ups that greedy RBM-training gives, experimenting with neural networks
is still a very time-consuming business. To do as much computation as possible
on a GPU to speed things up further, was in this thesis therefore identi�ed
as crucial. To avoid spending to much time on implementing the methods,
an ANN-library that had support for both RBM-training and convolutionary
networks was sought for. Comparisons was therefore made between some of the
GPU-librarys for Matlab and the python libraries Theano [4] and Gnumpy[29].
Theano was �nally chosen because of its ease of use, frequent use for deep neural
networks [8], and �nally because it unlike Matlab is free .

Theano generates automatically optimized c-code. This means that also
without use of the GPU, programs written in Theano can be very fast. It is
however claimed that when using a GPU, it can execute instructions up to 140
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times faster than on a CPU[4]. Another thing that makes Theano extra use-
ful for optimization tasks like the training of an ANN, is that it automatically
computes derivatives of functions. With the error of the network de�ned as
a function, it therefore becomes straightforward to train networks with gradi-
ent descent, without ever having to actually implement the back propagation
algorithm[4].

Part II

Sorting batteries: Implementing

the methods and analyzing the

results

8 Evaluated networks

This section describes the setup of the di�erent kinds of CNNs and DBNs that
were tested. The networks were adopted from the ones taught at Yoshua Ben-
gio's IFT6266 course [7, 8]. As explained earlier, the network's top layer is used
for deciding to which sub class the network assigns an image. Each neuron is
associated with a speci�c sub-class and if the neuron which is associated with
the correct class also is the one that has the highest output, then the network
has done a correct classi�cation.

While the nets follow the descriptions in part I, the detailed settings are as
following.

Deep Belief Network

A DBN as presented in chapter 4 is adopted to images of size 28 * 84 gray scale
pixels, with as many output neurons as sub classes in the experiment. It is
pre-trained with RBMs and then �ne-tuned with gradient descent. The number
of neurons are set to 1500 in the �rst layer, 1500 in the second, 1000 in the third
and the same number of neurons as the number of sub classes in the fourth.

Composite Deep Belief Network

The idea behind the construction of the network, which the author has chosen to
call Composite Deep Belief Network, is to train one DBN for each sub class. This
should make the top neurons of these networks become detectors for high level
features that are common in images of those sub classes. A shared output layer
that connects to the top units of all networks should then be able to use them
for discrimination(see �gure 10). Hinton[17] explains a similar approach but the
author has not been able to �nd any evidence for this method being used with
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several class speci�c DBNs before. The setup of the DBNs were identical to the
one explained above, with the di�erence that the �nal layer was removed. After
unsupervised training of the class speci�c DBNs, the �nal layer was connected
to the top neurons of those networks. The weights of this �nal layer was then
trained with gradient descent. The main advantage of this kind of network, is
that it would be possible to extend it for handling more sub classes, without
re-training the whole network.

Figure 10: Composite Deep Belief Network

Convolutionary Neural Network

A network with almost identical architecture to the Le-net 5 presented in �g
9, was adopted to images of size 84* 28 with as many output neurons as sub
classes in the experiment. It was trained and evaluated on gray-scale versions
of the images in the data set. The network uses two convolutionary layers with
following sub sampling steps. On top of this are two layers of fully connected
neurons. 20 �lters of size 5*5 were used in the �rst layer and 50 �lters of the
same size were used in the second. The layers of fully connected neurons consists
of one layer of 500 neurons and a �nal layer of one neuron for each sub class.
One of the di�erences from the Le-net 5 is that the sub sampling is done by
using the maximum value instead of the average. More details on the net and
how it di�ers from the original Le-net can be found in [5].
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CNN on RGB valued images

Batteries are quite colorful and it seems reasonable that using that information
should give a higher performance. By considering each RGB band as a separate
feature map (see �gure 9), the architecture above could be used with the single
adjustment of connecting the �rst �lters to three RGB bands instead of gray
scale images.

Figure 11: Adjusting the convolutionary network to work with RGB valued
images

CNN with down-sampled RGB image as extra input

The setup of this network was inspired by the good performance of a similar
network presented in [23]. The constructed network is identical to the examined
gray-scale version above, with the di�erence that an extra hidden layer of 40
neurons is connected to the topmost layer. This extra layer gets its input from
the RGB image down-sampled to size 9 *3 pixels.
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Figure 12: CNN with down-sampled RGB image as extra input

9 Construction of the data sets

When training machine learning algorithms, the goal is to learn from data by
exploiting the statistical regularities present in the signal . This said, the trained
model should also be able to generalize from this data, so that it can also perform
well on data it hasn't been trained on[10].

To do this, images of batteries were divided into one training set and one
test set. The images were divided in such a way, that images taken of a special
instance only end up in one of the sets. Training is done with one set, and the
testing is done with the other. A model which is only performing well on the
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training set is said to be over �tted [10] and to avoid this, a third validation
set is used. By stopping the training when an evaluation on the validation set
starts to give worse results, some of this over �tting can be avoided. In some
of the tests below, the lack of data made it impractical to divide the data in
three parts and it will then be mentioned that the test set also is used as valid
set. This is not ideal but must be seen as an acceptable compromise, as the
performance on the valid and test sets through all the experiments have been
very similar.

The number of images in the training, validation and test sets will in all
the experiments always be 10 000. This will be unconditional of the number of
di�erent instances the images are taken from. This is accomplished by creating
copies of the images in the di�erent sets until the limit is reached.

The images used in this thesis were created by automatically rotating a
battery while 100 photos were taken from di�erent angles. While most of the
images were provided by Optisort, it was for experiment 10.4 necessarily to go
through this procedure to create a specialized data set. To be able to use fewer
weights in the �rst layers (which greatly reduces the time it takes to train the
networks), these images were downscaled from the original 318 * 100 pixels to
84 * 28 pixels. As mentioned above, some of the nets used the original RGB
images while others used gray scale versions.

Figure 13: Images of 318 * 100 and 84 * 28 pixels

10 Experiments

In this section the di�erent ANNs are tested for performance and the most
promising are chosen for further experiments.

These experiments tests if training on distorted images gives higher perfor-
mance, and how to best combine the classi�cations of di�erent images of an
instance. As a way of easily handle more sub classes, it is also tested if networks
trained on di�erent subsets of the sub classes can recognize which images they
were not trained on. Each test, is repeated three times and the best accuracy
achieved is presented.With no optimizations made concerning the number of
neurons, �lters and layers, a network must perform signi�cantly worse than the
others to be excluded from further tests.

10.1 Comparing the networks Part I

To compare the di�erent networks described in chapter 8 they were all tested
on the same data sets, consisting of images belonging to 10 di�erent sub classes.
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10.1.1 Data set

The data set consists of images taken of 10 di�erent battery instances for each
sub-class. For each sub-class, the images of two instances were added to the test
set, the images of two instances to the valid set, and the images of 6 instances
to the training set.

10.1.2 Results

classi�cation error training time (minutes) Classi�cation time (seconds)
DBN 2.89 % 147.04 0.000865

Composite DBN 13.27% 1325.03 not measured
CNN 0.08% 51.92 0.000997

CNN full RGB 0.08% 854.40 0.000995
CNN down sampled RGB 0.18% 120.03 0.000946

Table 2: Error rates for the di�erent nets on a data set of 10 sub classes

10.1.3 Conclusion

All CNNs performed well with error rates close to zero. It was therefore con-
cluded that these methods would have to be compared on a data set of more
classes to make a choice on which network-architecture to experiment further
with.

10.2 Comparing the networks Part II

The initial experiments did not reveal any clear di�erences in performance be-
tween the di�erent convolutionary networks, and the experiments were extended
to test how the networks performed when varying the number of sub classes
present in the data set. By testing on data sets of di�erent number of sub
classes, it is at the same time tested how the performance is dependent on the
number of sub classes.

10.2.1 Data set

Among the images provided by Optisort, there were only a few sub classes that
had images from as many as ten scanned instances. To be able to create a data
set of enough sub classes, the number of scanned batteries of each class had to
be limited to 4 . For each class, one instance was used in the test set and the
other three in the training set. Because of the limitations of instances, the test
set was also used as validation set.

Three data sets were constructed. One of 10, one of 20 and one of 30 sub
classes.
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10.2.2 Results

To easier be able to compare the results only the percent wrongly classi�ed is
presented. The classi�cation time and training did not change note-worthily
from the last experiment.

10 sub classes 20 sub classes 30 sub classes
DBN rejected - - -

Composite DBN rejected - - -
CNN 3.19% 10.60% 14.78%

CNN full RGB 4.90% 13.85% 13.84%
CNN down sampled RGB 3.28% 11.60% 14.74%

Table 3: Error rates for the di�erent nets on data sets of 10, 20 and 30 sub
classes

10.2.3 Conclusion

None of the versions of convolutionary networks that has been tested performs
signi�cantly better than any of the other. When choosing between the networks,
the gray scale versions seems preferable since it is the fastest to train and leaves
the color information untouched to be used as base for other classi�ers. The
performance is also getting worse the more sub classes that are included in the
data set.

10.3 Examining the relation between accuracy and num-

ber of instances in the training set

When comparing the results of 10.1.2 with those of 10.2.2 it seems like more
instances in the training set makes the performance go up. To further investigate
how the performance is related to the number of instances in the training set,
experiments were made with varying numbers of instances on both the data set
of 10 and 30 sub classes.

10.3.1 Data set

In the data set of 10 sub classes, the number of instances is varied from 1 to 6.
In the data set of 30 sub classes the number of instances is varied from 1 to

3.

10.3.2 Results

10.3.3 Conclusion

In the results it can be seen that adding a third battery to the training set
of 30 classes, actually reduce the accuracy. This is not what would have been
expected and doesn't �t with the rest of the results. An explanation might be
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number of instance used for training set 1 2 3 4 5 6
CNN 10 sub classes 8.45 6.39 3.32 0.48 0.0 0.08
CNN 30 sub classes 28.63% 12.02% 14.78% - - -

Table 4: Error rates on data sets of 10 and 30 sub classes

that this behavior arose because some of the third instances that were added
were heavily damaged or in some other way causing the images to divert from
the instance used for the test set.

However, the overall conclusion must be that it is very important to have
many instances of each sub class to get good performance.

10.4 Examining the in�uence of clean instances in the

training set

While images from a large number of instances gives better results, it might not
be practical to �nd many instances of the same battery in an industrial setting.
It would therefore be better if it was enough with a smaller number of instances.
While having several instances in the training set avoids making the network
too dependent on the dirt and damages in speci�c instances, this should also be
possible to accomplish by training on a single relatively �clean� instance of each
sub-class. A new data set was therefore created to see how well the networks
would perform if it was only given images from one, by hand cleaned instance,
of each battery-class for the training set.

10.4.1 Data set

The data set included images from one �clean� and one �dirty� instance of 30
sub classes. The clean is used for training and the dirty is used for validation
and test set. As there were no such �clean� instances in Optisorts images, the
data set had to be constructed from scratch.

10.4.2 Results

classi�cation error time to train(minutes)
CNN down sampled RGB 6.20% 8.26

CNN 6.26% 8.24
CNN RGB 5.24% 916.45

Table 5: Error rates on a data set of 30 sub classes were images in training set
are from one clean instance for each sub class
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10.4.3 Conclusions

Using relatively clean instances for the training set proves to give a signi�cantly
higher performance when compared to the results in 10.3.2. This means that
care must not only be taken to use enough instances for the training set, but
that accuracy can be improved by using relatively clean instances to make sure
that the instances are representative for the sub-class as a whole.

10.5 Using simulated dirt

Using one relatively clean instance for each sub-class , avoids some of the over
�tting of training the networks to recognize the speci�c dirt and damages of
the speci�c instances in training set. This said, the network might still become
over-�tted in such a way that it only recognizes relatively clean instances. To
avoid this, experiments were done to see if introducing noise in the images of
clean instances in the training set would give better results. It has been shown
[9]that creating deformed copies of images, if done in the right way, can greatly
increase the accuracy of the network by enlarging the data set. This experiment
should be seen as an attempt to emulate soiling and bleaching of the batteries.
With the number of images of a data set, in all experiments being 10 000, the
actual number of images is not larger for this experiment than the other. But
the size of the data set can still be said to have increased in the way that the
number of exact copies in the data set is decreased.

10.5.1 Data set

For this experiment the data set that was described in 10.4.1 was used. The only
di�erence is that each image in the training set was processed by a function that
added noise to the image. Besides adding a random amount of speckle noise
at random positions in each image, the function also made the image darker or
or lighter to a random degree. No e�ort was spent on trying to optimize the
frequency of speckles, how big and distorting they should be, or how much the
light in the image should be allowed to change.

Figure 14: Three noisy versions of the same image

10.5.2 Results

10.5.3 Conclusions

Adding noise to the clean images seems to reduce the number of errors for all
of the networks. With no attempt made to optimize the noise to look more like
genuine dirt, this should be interpreted as a proof of concept and not as a limit to
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classi�cation error
CNN 30 classes 5.17%

CNN down sampled 30 classes 5.50%
CNN RGB 5.10%

Table 6: Error rates on a the 10.4.1 data set were the training images were
distorted by noise

how much the results can be improved. With perfectly clean instances together
with a better function for generating arti�cial noise, it should be possible to
achieve much better results.

10.6 Discriminating between more sub classes

In 1.1 it is stated that the network not only should be able to categorize the
batteries with an error rate below 5 percent, but that it also must be able to do
this while handling up to 2400 sub classes.

With no way of acquiring a data set of this many sub classes, experiments
were done to with data sets of fewer sub classes still get an idea of the perfor-
mance on such a data set. Experiments are here done to see how the error rate
follows from the number of sub classes that the net should be able to handle.

10.6.1 Data set

The earlier experiments has shown the importance of the number of instances
represented in the training set. When using enough instances the error rates
approached zero. The problem in testing how the error rates depend on the
number of sub classes to discriminate between, is that it would take to much
time to create a data set of that many sub classes, without decreasing the
number of instances of each sub class used for the training set. To avoid this
problem an arti�cial data set was created. Instead of using several instances for
each sub class only one instance was used, and the di�erence between images
taken of di�erent instances, was instead simulated by adding the same kind of
arti�cial noise that was used in 10.5.

This means that the images in the test set and training set originally looked
exactly the same, but the di�erent kind of noise added to the images makes them
di�erent in much the same way as images of di�erent instances of the same sub-
class look di�erent. With di�erent noise added to every image a �perfect� data
set of size 10 000 is simulated, were each image seems to be taken from a di�erent
instance.
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number of sub classes 10 50 100
CNN 23.01% 4.07 % 0.08 %

Table 7: Error rates on the test set with arti�cial data sets of 10 ,50 and 100
sub classes

10.6.2 Results

10.6.3 Conclusion

The network delivers impressive results when trained and evaluated on 100 sub
classes, but gets far worse results on 50 and 10 sub classes. As the data sets are
arti�cial it is hard to do any reliable conclusions from this, but the fact that the
networks manges to classify an arti�cial data set of this many sub classes this
well is still encouraging.

It might at �rst seem contradictory to the earlier conclusions that the result
gets worse for fewer classes, but an inspection of the intermediate results from
the training gives an explanation. From the table 8, which shows the classi�ca-
tion error on the valid set for each training epoch, it is clear that the behavior is
caused by early over �tting. Over �tting can be associated with to much mod-
eling capacity [10] which causes the network to model the noise and therefore
loses its capability to generalize. Considering that a net needs less modeling ca-
pacity, the fewer categories it needs to discriminate between, the results seems
more reasonable. It is harder to explain why over �tting happens much ear-
lier here, than when discrimination between the same number of sub classes in
10.1.2. One explanation could be that the images in the arti�cial data set, even
after the noise has been added, are to similar to each other. The training of the
network then doesn't spend so much time trying to �nd the similarities between
the images of the same sub class, and therefore starts to modeling the noise
earlier.

From the above reasoning it follows that it might become important to adjust
the number of layers and �lters depending on how many sub classes the net
should be able to handle. The function for introducing noise should also be
altered to get more trustworthy results on further tests.

Results on arti�cial data sets of 10 sub classes
epoch 1 2 3 4 5 6

validation error 80.37% 58.06% 54.02% 22.92% 89.11% 90.10%

Table 8: Error rates of the network during training shows that the network is
becoming over �tted

10.7 Experiments with classifying �unknown� instances

While an ideal network would have a 0% error rate, this might in practice be
impossible. The instance in the image might be heavily corroded or in other
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ways so damaged that its impossible to see what sub-class it belongs to. The
battery might also be to new, or for some other reason not been added to the
training set.

To handle this it will be explored how well a net that is only trained on
a subset of the sub classes in a data set, manages to classify the ones it was
trained on while acknowledge the ones it doesn't recognize as �unclassi�able�.

If it turns out that the net manages to classi�es the absolute majority the
unknown instances as �unclassi�able� it might be a good idea to create a com-
posite net similar to the DBN model explained in 8. The sub classes could then
be divided into di�erent partitions with one net trained on each partition which
would eliminate the need to test the net on larger number of sub classes to get
an idea of what kind of error rates that would be possible to achieve on the
wanted 2400 sub classes. If the net on the other hand doesn't manage to do this
it would be a better solution to use the same net for all classes.

An image is considered as �unclassi�able�, if the neuron with the second
highest activation in the output layer, has an activation that is higher than a
factor times the activation of the neuron with the highest activation in the same
layer. Setting the factor to 1 means that no images will be classi�ed as unknown
while a smaller factor will cause more unknowns. An alternative would be to
set a threshold value that the highest activation must be over, but based on the
results of [26] the �rst method was judged as superior, and therefore used in the
experiments.

10.7.1 Data sets

The data sets used for this experiment are the same sets of 50 sub classes as
was used in 10.6. The only di�erence is that for this experiment, images from
another 50 sub classes were added to the test set. These images were all labeled
so as to belong to the same sub-class. As this label was not included in the
training set, all images of this extra sub-class would be wrongly classi�ed if
they were not considered as �unknown�. This means that the best classi�cation
that can be done on the 50 sub classes data set would assign around 50% of the
images as �unclassi�able� while having an error rate of 0%.

10.7.2 Results

factor net trained on 50 sub classes
unclassi�able classi�cation error

0.3 72.31% 34.67%
0.5 54.91% 44.97%
0.7 35.20% 52.69%
0.9 12.66% 59.68%
1.0 0% 63.14%

Table 9: Error rates as a function of reliability of the classi�cation
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10.7.3 Conclusions

While a lower factor helps to give lower error rates, the percent unclassi�able
gets much higher than the percentage of the images that comes from �unknown�
images. That this happens while the error rate still is far from the low values in
10.6 , shows that a lot of the images that would otherwise have been correctly
classi�ed are now being judged to be �unclassi�able�.

The conclusion must bee that it is better to use one single net that is trained
on all sub classes than to divide the sub classes as suggested.

10.8 Using images from di�erent angles for classi�cation

The time for a net to process one image was in 10.1.2 measured to be around one
millisecond. With sorting frequency not expected to be more than 5 instances
per second in a sorting facility line[14], this leaves plenty of time that can be
used for increasing the accuracy. One way to do this would be to train several
nets and combine their classi�cations of the same image, for instance by letting
them vote. While this probably would produce a more reliable classi�cation
compered with using a single net, a method that is more specialized for battery
sorting will here be examined.

An image of an instance may look very di�erent depending on which side of
the battery that is shown. Using several cameras to acquire images from di�erent
angles of the battery should therefore be a very promising way of increasing
the accuracy. In this experiment this is tested by repeating experiment 10.4,
while this time making the classi�cation based on a series of images of the
same instance. To see how the networks top layer neuron activities should best
be combined with those for another image, two methods are evaluated. The
methods that are evaluated are to either compute the class-prediction as the
sum of the activities generated by the di�erent images, or to compute it as
the product of these activities. This can be compared to what Hinton[15] calls
�mixture of experts� and �product of experts� .

To get more information on the kind of mistakes the net makes, there was
for this experiment also created a confusion matrix.

10.8.1 Data set

The experiment was performed on the data set of 30 sub classes used in 10.4.
To easier make the classi�cation based on several images, the test set had to be
changed so that random images, but from the same instance, was tested after
each other.
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10.8.2 Results

number of images used 1 2 3 4 5
with the top layer activities multiplied 5.43% 3.43% 2.53% 2.32% 1.96%
with the top layer activities added 5.43% 3.54% 3.35% 3.05% 2.80%

Table 10: Error rates when using using several images for classi�cation

sub class 1 2 3 7 9 10 11 19 20 23 25 29 30

1 16 46
2 10
3 4 1 4 3 1 14
9 4 2
12 17
20 4 22
21 3 3
30 2 1

Table 11: The number of false matches for images of di�erent sub classes when
basing the classi�cation on three images. (that a sub class not is present means
that it always was classi�ed correctly)

10.8.3 Conclusions

Using more images for the classi�cation manages to reduce the error rate sub-
stantially and it is the multiplicative method that works best. To have in mind
is that the images are from a random sides of the battery and therefore may
overlap so that less than an optimal part of the batteries label is covered. By
positioning the cameras so that they cover as large part of the label as possible
the result should improve.

Inspecting table 11 gives that 66 out of the total 154 misclassi�cations in-
volves the same image nr 1, and by inspecting the images in training and test
set it becomes obvious that there has been made a mistake when this data set
was created. The instance that was used to create the training set is of a rather
di�erent version than the one that was used to create the test set. A proper
training set must include images of every version of a sub class and the result
of this not being the case is higher error rates.

Figure 15: Images showing the accidental di�erence between two instances used
for the test and the training set
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11 Conclusions

This section presents a summarized version of the conclusions that has been
drawn from the tests.

11.1 The best network to use

The convolutionary networks seems to be the preferable choice, but no tested
version performs signi�cantly much better than the others. The versions that
uses color information did not give signi�cantly better results than the simple
gray scale version.

11.2 How to create a good training set

Three conclusions concerning the training set was made in this thesis.
1. Using images from as many instances as possible is very important to

avoid over �tting and achieve good accuracy.
2. Training the nets on images of relatively clean instances improves the

accuracy further.
4. Adding virtual dirt to images of clean instances, allows for bigger training

sets without using as many instances and is another way of improving accuracy.

11.3 Techniques that helps to give better accuracy

Experiment 10.7 showed that it does not work to train a CNN on a sub set
of the sub classes, and trust that the network will assign low probabilities to
all sub classes, when classifying an instance of a sub class it has not trained
on. This means that the accuracy not can be increased by specializing certain
networks on smaller sub sets of the sub classes.

The accuracy was in experiment 10.8 however greatly increased by basing
the classi�cation on several images of the instance to classify. Classi�cations
based on �ve images taken of random sides of the battery reduced the error
rate to almost a third (5,43/1,96 = 2,77).

11.4 How the accuracy depends on the number of sub

classes

In 10.3 a CNN delivered error rates of 0.0% with training sets using images from
5 di�erent sub classes. This did however not say much about how the network
would perform when discriminating between more sub classes. Experiment 10.2
showed that the error rate goes up with the number of sub classes that is included
in the data set. It became clear that sorting between the 2400 kinds of batteries,
that is estimated to be sorted in a real battery sorting facility, is a demanding
task.

Because of problems in acquiring large data sets, no reliable results on test
sets of more sub classes than 30 was ever produced. For that data set however,
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error rates were by basing the classi�cation on several images, achieved that are
way below the 5% limit(see experiment 10.8). This was achieved even though
the training set was made up of images from a single instance for each sub class,
and the conclusions from 10.3 made it clear that data sets must be constructed
by images from many instances to give good results.

The error rate of 0.08% that was achieved on an arti�cial data set of 100 sub
classes, can because of the limitations in the way this data set was produced(see
experiment 10.6) not be seen as totally reliable. It should however bee seen as a
hint that it is possible to achieve very good accuracy, also when discriminating
between many more sub classes than 30. Just as long as the images in the
training set are representable for the test set.

11.5 Performance in a battery sorting facility

It has in this thesis been shown that CNNs that base a classi�cation on sev-
eral images of a battery, can achieve a very high accuracy when discriminating
between up to 30 sub classes.

On the other hand it is still very unclear if it is possible to keep that kind of
accuracy while sorting between thousands of sub classes. The �nal conclusion
must be that bigger data sets must be constructed to get a stronger indication
on how well a CNN would perform in a real sorting facility.

12 Further work

12.1 Create larger data sets

The tests conducted in this thesis doesn't give any clear indications on perfor-
mance in a real setting. This is mostly because the data sets were to small to
draw any conclusions about this. Creating data sets of thousands of sub classes
will be extremely time consuming, but might in the end prove to be necessarily.

12.2 Combining the opinions of multiple networks

It was brie�y mentioned in chapter 10.8 that training several nets on the same
data set should be able to increase the accuracy if the networks opinions are
averaged. This claim is repeated in [12] and is de�nitely something which should
be investigated. While the networks that used color information didn't get lower
error rates than the gray scale versions, it should be possible to use the color
information by processing the color information in a separate net. By training
a net on only the color histograms of the images, this network should be able
to exclude all sub classes that doesn't resemble the image color wise, while the
gray scale nets takes care of the 2-dim structure of the image.

33



12.3 Create more realistic distortions

Introducing arti�cial noise in the training set, in chapter 10.5 made it possible
to reduce the error rates. But the improvement was not as substantial as the
improvements that has been achieved with similar methods on other image
recognition tasks [12].

Since both networks and recognition tasks are similar to the ones were the
method has proved e�ective, the limited improvements should depend on the
somewhat naive noise function. Re�ning the noise function to create more
realistic images should therefore be a very promising way to achieve better
results.

12.4 Use more modern versions of ANNs

Recent studies have with good results combined the structure of Convolutionary
Neural Networks with the training methods of Deep Belief Networks[13]. The
author has not been able to �nd any public available code for these nets, and
they were therefore never investigated in this project. When code becomes more
available, changing to these more modern nets should give lower error rates.

Another interesting architecture that should be kept under watch is the
�Factored 3-Way Restricted Boltzmann Machines� which in [22] presents the so
far best performance on the CIFAR-10 data set.

12.5 Optimizations

Besides optimizing the number of layers, �lters, and �lter sizes, there is also
room for optimizations of the activation function used in the networks. Ex-
changing the usual tanh(X) with a more complex abs(g. tanh(X)) function,
were g is a trainable parameter, has proved to substantially improve the net-
works performance [31].

12.6 Validate the classi�cation

The experiments in 10.7 showed that the CNN wasn't very useful for judging
when an image belong to a sub class it wasn't trained on.

Optisort has developed so called template matching methods where images
are compared pixel by pixel with the battery's label. These methods have given
good results in tests but shown to be to slow to be used on data sets of many sub
classes. The method should however be a good way of validate the classi�cation
of a network and thereby solve the problem that the method examined in this
thesis did not. Another way this method could be used, is by working as a
post-classi�cator that decides which of the sub classes the networks picked as
most likely, that should be the �nal choice.
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