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Abstract

The need for other security measures besides secret keywords has highlighted
the possibility to base a biometric security system on input device patterns.
This report explores the feasability of using mouse and keyboard biometry in
an online security system. After examining prior work in this area, an online
test environment was set up where subjects could remotely complete experiment
sessions by interacting with a web-site.

Artificial Neural Networks (ANN), k-Nearest Neighbor (k-NN) and Self Orga-
nizing Maps (SOM) were combined into profiles which predicted sample validity.
A final system accuracy of 0.92% False Accept Rate (FAR) and 43.16% False
Reject Rate (FRR) was achieved. The best profile in the system achieved a FAR
of 0.8% and a FRR of 0.0%. When one of the 19 subjects was browsing the
online test environment, the system could with an accuracy of 54.1% correctly
identify the user. Examining the results, it is clear that data of a higher quality
is needed and alternative collection methods should be explored. It seems feasi-
ble to recognize a registered user solely based on keyboard, mouse and browser
variables.

Keywords: User Identification, Biometric Security, Online, ANN, k-NN, SOM.

Sammanfattning

Behovet av andra säkerhetsmekanismer utöver lösenord har banat väg för möjlig-
heten att basera ett biometriskt säkerhetessystem p̊a användandet av inmat-
ningsenheter. Den här rapporten utforskar möjligheten att använda mus- och
tangentbords-biometri i ett online-baserat säkerhetssystem. Efter en granskn-
ing av tidigare arbete inom omr̊adet s̊a skapades en testmiljö där användare
genomförde experimentsessioner genom att interagera med en webbplats.

Ett system kombinerade Artificiella Neurala Nätverk (ANN), k-Nearest Neigh-
bor (k-NN) och Self Organizing Maps (SOM) till profiler som bestämde giltigheten
i ett sampel. Det slutgiltiga systemet uppn̊adde en säkerhet p̊a 0.92% False Ac-
cept Rate (FAR) och 43.16% False Reject Rate (FRR). Den bästa profilen i
systemet uppn̊adde en säkerhet p̊a 0.8% FAR och 0.0% FRR. Systemet kunde
även förutsäga vilken utav de 19 användarna som besökte webbplatsen med en
säkerhet p̊a 54.1%. När man granskar resultaten s̊a är det tydligt att det behövs
högre kvalitet p̊a den insamlade datan. Andra metoder för insamling behöver
ocks̊a undersökas. Slutligtvis verkar det möjligt att känna igen en registrerad
användare enbart utifr̊an mus, tangentbord och variabler fr̊an webbläsare.

Nyckelord: Användaridentifiering, Biometrisk säkerhet, Online, ANN, k-NN,
SOM.
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Preface

This report explores the feasibility of identifying users with the use of informa-
tion gathered from user interaction with a web page. The web page used in the
experiment was written in PHP and the code used to gather data from users
was written in JavaScript using jQuery [1]. Ruby was used in the analysis and
classification of data.

The Master’s Thesis proposal was presented to the authors by Nils Svang̊ard at
ICE House, who also worked as supervisor on the Master’s Thesis. Chalmers
University of Technology accepted the proposal as a Master’s Thesis in Com-
puter Science and Engineering, and Peter Dybjer was appointed examiner for
the Master’s Thesis.

Thanks to Peter Dybjer for the excellent work as examiner. Additional thanks
to Harald Hammarström for taking time to discuss different approaches as well
as general ideas. We would also like to thank all test persons that were willing
to help us by using the test page and Nils Svang̊ard for the supplied servers.
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1 Introduction

1.1 Background
Learning user behavior is of interest for security reasons, for example to prevent
the illegitimate use of an account and hinder session hijacking.

The problem of user identification based on other means than known secret
keywords is called biometric security [2] and utilizes techniques such as voice
recognition, iris analysis and finger print analysis. These techniques are difficult
and expensive to use since they require additional specialized hardware other
than mouse and keyboard; thus these techniques do not to adapt well for wide-
spread E-commerce.

Recent computer security reports [3–6] highlight the increased interest in ses-
sion security based on inputs from peripheral units and evaluate the proposed
security models based on these techniques. Due to the increased amount of spy-
ware and other digital attacks, there is now an interest from the E-commerce
to present stronger security to their users where the session is not only bound
to the user’s secret keywords, but also bound to their behavior.

The main problem to overcome for a behavior-based online security system is
to successfully learn user behaviors (profiles) and correctly map these profiles
to a known registered user.

The learning of user behavior requires large amounts of collected data which
can be analyzed to find biometric features which are fed to the security system.
Collecting data is one of the difficult tasks which requires access to mouse-
motion/keyboard-typing data. The other more problematic challenge is to an-
alyze and extract patterns in the data which can be used for user-identification
purposes. Deriving qualitative conclusions regarding the visitors from such ex-
tensive data is even harder, and thus for such a task, machine learning is par-
ticularly well suited.

Assuming that each user interacts almost uniquely with a web-page and also
handles input devices differently; a system incorporating machine-learning al-
gorithms should learn these individuals features and recognize the user. Some
features are hardware sensitive, such as mouse movements and keyboard typ-
ing [7]. Other features are more software dependent, such as browser variables.
Hopefully some features are clean from external influence and depend solely on
the user psychology.

An important measure used in biometric security systems are the False Accept
Rate (FAR), False Reject Rate (FRR) and Equal Error Rate (EER). These are
the per-say standard measures by which biometric security systems are com-
pared and evaluated. The FAR of a biometric system is how likely an illegit-
imate user is to be identified as a legitimate user, while FRR is how likely an
legitimate user is to be identified as an illegitimate user. If a system has several
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PURPOSE INTRODUCTION

settings which can be regulated and thus producing several different FAR and
FRR, the systems EER is the situation where the settings produce equal FAR
and FRR.

Roughly, given two systems A and B which have equal FAR and FRR, lowering
system A’s FAR while keeping system B intact will make system A more secure,
while lowering system B’s FRR and keeping system A intact would make system
B more user friendly.

If the system correctly identifies users, it can be used to identify multiple ac-
counts. Thus, not only creating strong session security for each individual user;
protecting them from session hijacking, but also creating a strong fraud security
for E-commerce by flagging accounts as duplicates if a user registers several ac-
counts. Such a user identification system could also be used to detect cross-site
users by cross referencing profiles.

1.2 Purpose
The proposed solution to the problem is to try to produce a system which identi-
fies web page visitors by means of collected mouse movements, keyboard typing
patterns, navigational patterns1 and session variables. In order to prevent unau-
thorized access, the system should accurately predict if two unique visits were
from the same individual. After performing literature studies on prior/related
work, suitable algorithms for each part of the user features will be used together
in a combined system to distinguish between users. The system should be able
to correctly answer the question: Does the user logged in as X behave as user
X?. The data for the tests will be collected from an experimental web page,
where the user interacts with the mouse and keyboard. The users actions will be
stored in a log file that should be easily parsed in order to extract features such
as typing speed, mouse movement speed, etc. Which pages the user browses
will also be stored in a web log. From the web log the users navigation paths
will be extracted and analyzed.

To learn the users behaviors, the algorithms should be of the class machine learn-
ing/artificial intelligence. There are however no specific preference on which
algorithms to use, as long as the system can be brought into production and
work efficiently.

1.3 Delimitation
After extensive search for related work it seemed as though there was no pre-
viously published work on combining mouse movements, keyboard typing and
navigation patterns for user identification. However, extensive material was
available on the possible subsystems incorporated within such a joint construct.
This material covered mouse movement analysis [5,8–15], keyboard typing anal-
ysis [4,6,7,16–23] and web navigation patterns extraction [24–35] separately in
each report. The focus was therefore put on the use of mouse movement data,

1Which was later-on discarded.
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keyboard typing data, navigation patterns (called click paths) and session vari-
ables as raw data for user identification.

The report does not cover the impact of identity-obfuscating techniques such as
User-Data spoofing [36], Onion routing [37] and other proxy-based [38] methods.
The users of these E-commerce systems will likely agree to activating the system
in exchange for a more robust security. From what we have read and found [7,
16, 23], it seems hard to find a good (efficient and accurate) solution to the
author attribution problem2, even if given a large corpus. Since this work is
aimed at the E-commerce arena, it is not likely that extensive amounts of texts
will be available.

1.4 Prior work

1.4.1 Keyboard-biometric

The features used in [7] were mostly based on averages and standard deviations
on keystrokes and on transition times between keystroke pairs such as digraphs3
The transitions between keystrokes were measured in two ways: from the release
of the first key until the second key is pressed and from the first keystroke to
the second keystroke. A total of 239 features were identified and stored in a
feature vector which was given to a Nearest Neighbor classifier using Euclidean
distance. This system performed well when presented with long enrollment
samples from each user. Given that E-commerce does not involve such extensive
enrollment samples, this might not be a good choice for identifying visitors, since
the sampled texts are too short and too sporadic. The results were also tightly
coupled with the hardware in question during enrollment. Accuracy of user and
sample matching under optimal conditions was greater than 98%.

In a study by [6], the data collection was performed with a higher accuracy
than most other studies. Keystroke collection was performed on Operating
System level (OS-level), with timing errors of down to 10 − 15 ms. From this
data, histograms of the keystroke durations (ignoring shift, alt and other special
keys) were produced for each user. Features extracted were named “dwell”4

and “flight”5. A k-Nearest Neighbor (k-NN) classification was performed on
the feature vectors (histograms) and results showed a correct classification rate
of user and existing profiles at 73%.

A more abstract analysis was performed in [20]; namely the “rhythm”6. The
typing “rhythm” is independent of total time needed to enter a particular text,
as long as the timing relation between typed letters is preserved. Di-grams were
analyzed and from this analysis, the “rhythm” was extracted. No quantitative
results were presented. The classification was performed through sorting and
measuring the difference between the training set and the new rhythm.

2The problem of identifying authors based on text.
32-(di) letter sequences.
4Corresponded to keystroke duration.
5Corresponded to pause times between keystrokes.
6Corresponded to the time it took to write specific di-grams (two letter long sequences).
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Fuzzy logic was used in [17] where samples were fuzzified and stored as tem-
plates. Interval length was considered and each template was classified into a
fuzzy variable using Gaussian distribution as the membership testing function.
A predetermined threshold value determined acceptance or rejection if member-
ship of new fuzzified input data differentiated too much. The average final EER
of this system was 20%.

Tri-grams7 were timed and processed with the “A” measure in [4]. The duration
of trigraphs referred to the elapsed time between the first key pressed and the
third key pressed. Two arrays of trigraphs were then sorted according to the
duration of trigraphs and hence a distance in terms of degree of disorder between
these two arrays was counted as the sum of the number of disorder of each
trigraph in the array. A Clustering Based Keystroke Authentication Algorithm
(CKAA) was used to train and authenticate within clusters. FRR at 0% and
FAR at 0.045%, taking 19s for authentication/classification of 15 users, might
not scale well for E-commerce (hundreds of simultaneous users).

In a study by [18], intra key pressing times and key press durations were used
as features. A fixed string was entered several times during which the features
were extracted. Support Vector Machine (SVM) was the classifier and Particle
Swarm Optimization (PSO) tuned the SVM parameters (which features to use).
Reduction from full set of features to minimal set reduced the set with up to
77.59%. This also reduced the Classification Error to 1.57%. This approach
could be too memory heavy and process demanding when using one PSO with
an assigned SVM for each unique user when the user base is that of a large
E-commerce site.

In [22] several Decision Trees (DT) were created with commercial software in
parallel and by partitioning the input vectors amongst the DTs, the accuracy
of each tree could be increased. The input vectors were constructed from key
press and key release times from a fixed sequence of 32 letters typed in by each
user. The Monte Carlo (MC) method was used to generate more data since
the collected data was insufficient. Wavelet transforms were used to obtain the
training subsets from the partitioned sets. Results of 9.62% FRR and 0.88%
FAR were obtained by rigorous testing.

Duration of and interval between key presses were the selected features for use
in [19]. A feature vector was created for each user and clustering using K-
Means [39] was performed on which classification was possible using some kind
of Euclidean distance. The novel idea introduced in [19] was the notion of
Moving-/Growing-/Fixed- window samples. This window could be regarded as
the memory with which the algorithm adapted to new data which was seen.
Depending on the type of window, the window might change dynamically with
success on authentication. Measured values for EER: Moving window 3.8%,
Growing window 3.8%, Fixed window 4.8%.

k-NN, Artificial Neural Networks (ANN) and Bayesian classification were com-
7Three letter long sequences.
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pared in [21] on the task of identifying users with keystroke timing as input
data. The conclusion was that k-NN was suitable during initial classification
(when little input is available) but one should switch over to Bayesian classifi-
cation when the amount of data has increased. k-NN had an error rate of 2%
when using small amounts of data, but increased to 4.7% as the amount of data
increased. Bayesian classification had an error rate of 3.7% for the small initial
data set and 3.3% for the increased data set. The ANN approach performed
well with a moderate accuracy, but it would become too computationally cum-
bersome for larger inputs. Error rate was 2.3% for the small data set and 4.0%
for the larger data set.

1.4.2 Mouse-biometric

Mouse acceleration can be used as a distinguishable feature to identify users.
In [8] acceleration was one of the features which proved to be functional to
identify users using signatures which were written with the help of the mouse.
Geometric average mean was resistant to mismatching when comparing the
features. The use of a dynamic database was a performance improvement over
using a static database. 7% FRR and 4% FAR.

In [9], speed, deviation and angle were used as biometric features from mouse
movements. The amount of sampled mouse points were reduced by focusing on
dense regions only. [9] concluded that more research had to be done and that a
Hidden Markov Model maybe could be used to increase accuracy.

Mouse movements were extracted in [3] and feature vectors were created on
which nearest neighbor with Euclidean distance was used. Results varied be-
tween 66− 75% accuracy with high error rates when classifying. A base set of
206 samples from 10 users was generated by pressing 25 randomized buttons.
One of the main ideas in [3] was to use Dichotomy Model Transformation on
the values.

The raw feature set for mouse identification in [10] was derived from the follow-
ing sample points: mouse curve length in pixels and in points, time to complete
a curve (milliseconds) and average velocity (pixels/ms). From this set of raw
data, the following was computed

1. The average and standard deviation of these click durations
2. The average and standard deviation of these transition times
3. The average and standard deviation of the curvature measurements
4. The average and standard deviation of the transition velocities
5. The average and standard deviation of the transition accelerations

For classification, 1) - 5) constituted a feature vector. Given a new mouse
trail with extracted data; classification against the known feature vector was
computed with k-NN, with a result of 92% accuracy.

Similar results were shown in [5] as previously reported in [10]. This enforced
the belief that the features used in [10] were reasonable.
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Instead of focusing on mouse curvature and transition velocities [11] used mouse
actions as features to classify users. ANN were introduced as the classifiers.
Designating a small and fast ANN to each user, the input to the ANN was a
feature distribution set consisting of

1. Distribution of Mouse actions: Mouse movement, Drag and drop, Point
and click

2. Distribution of Traveled distance
3. Distribution of Time elapsed on each action

According to [11] other features could also be used. The produced ANN gave
confidence rates, degree of similarity which were used to classify users. Results
show that a FAR of 2.4% could be lowered to 0.4% and FRR of 2.4%. A Lower
FAR often results in higher FRR. The concept Mean Time To Alarm (MTTA)
was introduced, this is the time the system needed to detect a deviation.

In [15], mouse motion generated signatures were sampled and vectorized. A
Genetic Algorithm (GA) was used to create forged signatures which were similar
to the original vectorized data. These forged signatures were given to an ANN
which was trained to reject the forged copies and only accept the real signature
set. Thus the ANN would recognize false signatures as well as valid. The system
had an overall FAR of 8.5% and an overall FRR of 38.6%.

“Curve straightness” was measured in [12] by sampling and analyzing mouse
curves using a Cubic B-Spline. Other more advanced features could also be
extracted. Using this new measure (and others as well), the mouse curves were
classified into certain types. These classes were then used to construct a profile
consisting of a histogram which represented the particular users mouse curve
classification frequencies. A new curve could then be analyzed, classified and
tested against the users distribution profile using Euclidean distance between
the profiles. Error rates ranged from 1% to 44%.

The raw data used for re-authentication in [13] consisted of

1. Mouse “wheeling”
2. Mouse single-click
3. Mouse double-click
4. Mouse movements

Angle, Speed and Distance were calculated from the mouse movement set and
used as classification features. A commercial Decision Tree algorithm (C5.0)
was used for learning and classifying. Results produced showed a FAR of 0.43%
and FRR 1.75%. [13] also stated that anomaly detection would fail to detect an
attacker who did not use the mouse at all if the legitimate user seldom used the
mouse.
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1.4.3 Click path analysis

From [28] it became clear that in the action of mining web patterns, it is better to
regard the events as intervals instead of points. Intervals have (starttime, endtime)
and thus hold more data than just a time index T. One could also use stochastic
algorithms for navigation pattern extraction/modeling.

In [25], an ant colony model was used to construct a user-specific prediction
graph with the users pheromone trails. This graph could be used to predict the
user’s next page visit given a specific trail. This model proved to have accuracy
of 65% to 87% in predicting the next page when using sessions with lengths of
up to 8 pages.

Another ant algorithm was used in [27]: The Leader Ant Algorithm (LAA),
which focused on partitioning the web log data into clusters of similar clusters.
Similarity was based on IP, session variables and times. Results were determined
by measuring cluster tightness and intra cluster distances (Davies-Bouldin in-
dex). When testing LAA against Linearized Fuzzy C-Medoids (LFCMdd) and
Variant of Fuzzy C-Medoids (VFCM), the results were as follows LAA :=
0.38 − 0.88, LFCMdd := 0.64 − 0.94 and VFCM := 0.67 − 0.98, measured in
Davies-Bouldin index, lower is better.

The Active Ant Colony Clustering algorithm (A2C2) [40] used for incremental
Web Usage Mining (WUM) mined web logs for features which were used for
representing the objects as vectors. The algorithm was adaptive and handled
new data which was added later on. The F-measure8 of the proposed A2C2

algorithm ranged from 0.875 to 0.922 with number of sessions from 200 to 6000
thus making A2C2 near perfect for this range of sessions.

Another ant algorithm implementation AntClust (AC) [34] modeled ants as
combinations of data-set objects and templates. The templates controlled the
behavior of the ants throughout the simulation where ants meet and interact.
Ants clustered into nests which became the clustering of sessions. AC was tested
with both artificial and real data sets against K-Means and AntClass. AntClust
performed well, and did not rely on a predefined guess as K-Means. The rate
of which the AntClust algorithm produced the expected clustering ranged from
54% to 95%.

Genetic Algorithms (GA) also seemed to work within the field of navigation
pattern analysis. The work in [29] was based on automatic discovery of the
sequential accesses from web log data files by the use of genetic algorithms.
Web log data was migrated to a database and redundant data were removed. A
specialized GA was used where chromosomes represented page access sequences
(sessions). An extremely high mutation rate and low crossover rate was used.
Only individuals with a sufficiently high fitness were passed on to the result
queue, others were sent to next generation. Highest fitness obtained was 0.8.
Fitness was measured as support*similarity-rate.

8The F-measure relates each clusters intra distances to the clustering inter distances (F-
measure of 1.0 is perfect).
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On the topic of stochastic modeling, one may also choose a pure Markovian
Model for this purpose, [31] modeled the users web navigation path as a Marko-
vian process, and tried to predict the next page from this. No results were
presented.

One of the pure clustering approaches [24] clustered the log data into web ac-
cess patterns and used a combined system of Feed Forward Neural Network
(FFNN) and PSO. Web logs were mined for URLs and access times, features
were fuzzified and sessions were transformed into a fuzzy vector. The fuzzy
vectors were used as input to an Learning Vector Quantization (LVQ) - 2 layer
FFNN, PSO was then applied for parameter tuning for the LVQ. Clustering re-
sults were measured in the Davies-Bouldin index and proved good (0.496) [lower
is better].

Fuzzy logic were used in [30] to construct behavior patterns, but presented no
qualitative prediction or accuracy analysis.

Another rule extracting algorithm [35] mined user navigation patterns as prece-
dents and sequents through click path analysis. A Frequent Transition Matrix
(FTM) was created from web log data, pruned and processed into a Frequent
Behavior Path tree (FBP-tree). From the FBP-tree, rules were calculated in the
form PathIn → PathOut, where PathIn and PathOut were sequences of pages.
The rules were probabilistic in the sense that if you traversed all the pages in
PathIn, you would likely traverse the pages in PathOut with a high probabil-
ity. No consideration to chronological order of page visits was made. Thus
the PathIn was a conjunction of preconditions and PathOut was a conjunction
of results. All algorithms were custom-made, but in validation, Advanced Log
Analyzer was used. From experiments, rules with as high probability as 99.2%
could be obtained, that is, if PathIn was traversed, with 99.2% probability
PathOut was visited as well.

By considering page access and time spent on each page, the User Access Ma-
trix (UAM) and Preferred Navigation Tree (PNT) algorithms presented in [33]
seemed to learn and predict the visitors habits with an accuracy of 100% to 70%
given paths of 50 to 220 pages. This approach seemed very successful.

N-gram analysis of page visits using Temporal information [26] yielded a next
page prediction of approximately 55%.

1.5 Report layout
Chapter 2 describes how the data was collected, how the features were extracted
from the data, which algorithms were used and how the complete system should
work. Chapter 3 presents the results and Chapter 4 the conclusions and discus-
sion on the results. The appendices contains additional information and results
for the interested reader and should therefore be thought of as a complement to
the report.

1. Appendix A contains detailed tables with results which are already spec-
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ified in the report.

2. Appendix B contain supplementary images for the interested reader search-
ing for more clarification.

3. Appendix C roughly explains algorithms used in the report, with refer-
ences to more detailed explanations.

4. Appendix D is a short list of frequent abbreviations with their respective
meaning.
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2 Collection to Classification

2.1 Data acquisition
A data collection experiment was set up to be able to acquire the amount of
data needed for feature extraction and algorithm application. The experiment
was performed as follows.

1. A group of people were contacted and asked to perform at least 10 data
collection experiments each by visiting a particular page (discussed in
The data collection page). Each data collection experiment consisted of
10 iterations and took approximately 5 − 12 minutes to complete. Thus
once a subject had completed all his/her 10 (or more) experiments, the
subject would have provided 100 raw data files (also called post-backs).

2. Subjects were told to use the same computer for each data collection ses-
sion if possible. This was done to increase the consistency of the data
since mouse and keyboard features have shown to be very hardware de-
pendent [3, 7]. However not all subjects did this.

3. The subjects could access the data collection page during a whole week,
thus enticing them to perform the data collections whenever they wanted
to within that week. This was done to increase the chances of the subjects
not loosing interest too much as well as letting the subjects establish their
own pattern.

4. Once the collection experiment was finished, the collected data was ana-
lyzed. All errors and anomalies were corrected. This will be described in
Section 2.1.3 (Error correction).

2.1.1 The data collection page

The data was collected from users interactions with an experimental web page.
At the start of each session, the user was asked to enter his/her name and email
as seen in Figure B.3, this data was coupled to a randomly generated alphanu-
meric session-string (hereafter called the session-ID) which persisted throughout
the ten data collection cycles. The (hopefully unique) random session-ID was
later on used together with the name and email to validate the classifications.

By coupling each generated data set to a session-ID, it was possible to couple
web log entries to a specific IP even though the web log entries defined one IP
and the post-back defined another.

The user was asked to repeat four steps 10 times to gather enough data from
each user

1. Text copying with the keyboard. The first step was to re-write a
short text that was taken randomly from The Project Gutenberg E-Book

14
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The Adventures of Sherlock Holmes by Sir Arthur Conan Doyle [41] as
seen in Figure B.4. This step was aimed at collecting keyboard data from
the user, such as keystroke times, di/tri -gram times and distribution of
special keys, etc.

2. Number marking with the mouse. In the second step, the user had
to move the mouse over several numbers in order, as seen in Figure B.5,
this was solely for mouse data acquisition, and the user was not allowed
to proceed before this step was finished.

3. Image viewing. The third step was purely optional, and the subjects
could choose to look at randomly selected images belonging to the previ-
ously selected category. For the first iteration, these images were selected
as one image from each category. The intention of this step was to keep
users longer on a page which exhibited images of interest. Thus, the view
time would be bound to the interest. Figure B.6 shows a snapshot of this
step.

4. Category clicking. The last step as seen in Figure B.7 presented the
user with several category links. When the user clicked an image, the user
was sent to the next page where the same steps were repeated, but with
the exception that all images that were presented on the page came from
the sole selected category.

The images shown were an attempt at avoiding the problem resulting from the
controlled test environment since there was no easy way to acquire the user
interest in such a predefined web-page hierarchy. The authors had to figure out
how to capture such a feature as user interest in a particular subject. Naturally,
users visit pages which fit their needs or is of interest in some way or another.
It was also claimed that the time spent on the pages could be used as a user
interest measure for that particular page [25,30,31,33].

The assumption was made that the controlled test environment would render
some of the algorithms useless depending on the view time [40]. It was also
hypothesized that the controlled environment made the subjects bored and thus
there was rather quickly no interest whatsoever. This lack of interest has also
been stated by the subjects themselves after ending the experiment. This result
together with the fact that all the algorithms for web navigation mining were
not aimed at user recognition but aimed at interest path extraction or clustering
made it hard to use or implement the Click Path data (which was qualitatively
and quantitatively poor to begin with).

An attempt was made to perform user identification based on a Markov model,
but the results proved to be poor. Thus it was chosen not to use or implement
the Click Path data as part of the recognition.

2.1.2 Data is sent back to the server

As the user clicked a category in the fourth step, the gathered mouse, keyboard
and session variables were sent back to the main server by means of a HTTP-
POST. This was performed each time a click began a new cycle (set of four
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tasks) and so the stored log of times and actions was kept small on the client
side.

All data was sent in verbatim and was immediately parsed and stored into a
specific session-ID catalog where all the data for a particular session was stored
in separate files named by time instance. These files contained the raw data
from the post-back. An example file could look like this

fN6tRwu0Z1Y8COKW3JMkWpHs0himOV
SWE
SWEDEN
129.16.195.51
Netscape Mozilla/5.0 (X11; U; ...... )
1280
800
24
2
null
Tue Feb 24 2009 11:54:41 GMT+0100 (CET)
8,547,353,1849
8,539,360,2037
9,[object HTMLTextAreaElement],2

where the first column’s numbers corresponded to codes who’s descriptions can
be found in Table A.1.

2.1.3 Error correction

The error correction of the data was performed as follows

1. Backwards time correction. Entries in the raw log file which contained
time entries in reverse order were corrected by setting the incorrect time
instance as the latest correct time entry and adding the (currently seen)
average time difference between all entries so far. Thus the average time
difference between entries was kept unchanged. It is not known why this
type of errors occured.

Ti+1 = Ti +
∑i

j=1(Tj − Tj−1)
i

(2.1)

2. Same time correction. Entries in the raw log file where the mouse had
performed two or more move actions during a very small time instance
were considered erroneous. The correction was performed by adding one
time instance to the following entry which reported the same time, increas-
ing an accumulation counter and the accumulated value to subsequent non
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erroneous entries.

if Ti+1 equals Ti let Ti+1 = Ti + 1
accumulated = accumulated + 1

All the following time entries which did not have any errors were then
increased with the accumulated value.

if Ti+1 does not equal Ti let Ti+1 = Ti+1 + accumulated

3. Missing code/time correction. Due to unknown problems, the inter-
action between the user and the information retrieving script caused some
erroneous entries in the raw logs. Examples are entries without codes
(missing 8 in second entry below)

8,543,357,1987
,544,356,1976
8,540,359,2024

or entries without timestamps (missing number after last ’,’ in second
entry below)

8,543,357,1987
8,544,356,
8,540,359,2024

Such entries were discarded since correcting such missing data would lead
to creating (forging) data.

4. Missing or more than expected entries in the web log. As each
session consisted of 10 iterations, 10 pages should be recorded in the web
log as visited by the user. Due to what could possibly be explained as
browser differences or the refreshing of the same page, some logs recorded
more than 10 page visits for a user and some had less than 10. Such logs
were modified to only contain 10 page visits. If one or more entries were
missing, a prior entry was duplicated.

2.2 Feature extraction
When the user had completed a session (10 iterations with 4 steps in each
iteration), the stored log files were automatically parsed by a program written
in Ruby. The program extracted features for mouse, keyboard and stored the
browser variables. For features that involved time durations, the mean and
standard deviations were calculated. Click Path features such as navigation
paths were extracted from the HTTP log on the server. The features were
stored in four separate files named accordingly.

EMAIL.mouse(NUMBER + EXPERIMENT*10)
EMAIL.keyboard(NUMBER + EXPERIMENT*10)
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EMAIL.session(NUMBER + EXPERIMENT*10)
EMAIL.weblogEXPERIMENT

Where EMAIL is from the initial registration, NUMBER is the particular
iteration data number n ∈ [0, 9], and EXPERIMENT was the particular
experiment iteration number n ∈ [0, 9] (each person performed 10 data collection
experiments). Only one web log file was created for each experiment since it
was created upon termination of the collection cycles. The web log file held the
mined Click Paths specific to that session-ID.

2.2.1 Extraction step

The features extracted from the mouse, keyboard, web log and session data can
be seen in Tables 2.1, 2.2, 2.3, 2.4. Features extracted were chosen with support
in the reports which used them for their particular algorithms. Thus we used
the features and tested how well they worked for the proposed techniques and
algorithms taken under consideration.

Number Feature Description
0 Move move distr % of all mouse actions that were mouse movements
1 Left click distr % of all mouse actions that were left clicks
2 Middle click distr % of all mouse actions that were middle clicks
3 Right click distr % of all mouse actions that were right clicks
4 Double click distr % of all mouse actions that were double clicks
5 Mouse over distr % of all mouse actions that were mouse overs
6 Mouse-wheel distr % of all mouse actions that were mouse wheel actions
7 M Stroke time Mean time used for a mouse stroke (ms)
8 M Stroke length Mean length in pixels for a mouse stroke
9 M Mouse-wheel scroll steps Mean mouse wheel steps in each mouse-wheel-stroke
10 M Time on Left Click Mean time used for each left click (ms)
11 M Time on Middle Click Mean time used for each middle click (ms)
12 M Time on Right Click Mean time used for each right click (ms)
13 Mean stroke speed As the name implies (pixels/ms)
14 StD stroke time Standard deviation time for the stroke times (ms)
15 StD stroke lengths Standard deviation of the stroke lengths (pixels)
16 StD Mouse-wheel scroll steps Standard deviation of the mouse wheel scrolls (amount)
17 StD time on Left Click Standard deviation time for left clicks (ms)
18 StD time on Middle Click Standard deviation time for middle clicks (ms)
19 StD time on Right Click Standard deviation time for right clicks (ms)
20 StD time on stroke speed Standard deviation time for mouse stroke speed
21 Mouse vector data (avg speed) Average mouse movement speed in each direction
22 Mouse vector data (num moves) Distr of mouse moves in each direction

Table 2.1: The extracted and calculated mouse data from each user mouse data
file.
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Feature number Feature
0 Mean Key-press time
1 Mean pause time between keys
2 Mean Di-gram time
3 Mean Tri-gram time
4 Mean time between key presses
5-24 Mean common Di-gram times
25-34 Mean common Tri-gram times
35 Std-Deviation Key-press time
36 Std-Deviation pause time between keys
37 Std-Deviation Di-gram time
38 Std-Deviation Tri-gram time
39 Std-Deviation time between key presses
40-59 Std-Deviation common Di-gram
60-69 Std-Deviation common Tri-gram
70 Arrow-Up distr
71 Arrow-Down distr
72 Arrow-Left distr
73 Arrow-Right distr
74 Esc distr
75 Tab distr
76 Shift distr
77 Ctrl distr
78 Alt distr
79 Space distr
80 Del distr
81 Backspace distr
82 Enter distr

Table 2.2: The extracted and calculated keyboard data from each user keyboard
data file.

Variable/Feature
IP Address
User Agent String
Category distributions
Category navigation history
Category transition matrix (occurrences)
Category transition matrix (probabilities)
Category viewing times
Fictional HTML page transitions

Table 2.3: Features and variables extracted from the web log.
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Number Variable
1 Country code
2 Country name
3 IP Address
4 User Agent String
5 Screen width
6 Screen height
7 Color depth
8 History length
9 Visit time and date

Table 2.4: Session variables stored in .session files.

2.2.2 Mouse feature extraction

The mouse movements stored in the raw logs consisted of the mouse movement
action code 8, the final x and y coordinate on the screen, and the corresponding
millisecond (in reference to data capture start) the movement was performed.
Thus, mouse movement data could be as follows.

8,548,353,1833
8,547,353,1849
8,546,353,1870

To extract mouse strokes S from this data, a maximal pause interval between
time values was chosen. This time interval would separate clusters of mouse
strokes. The chosen interval value was

Tmouse−stroke = 280 ms (2.2)

This value was chosen based on the result of empirical testing. The empirical
testing was performed by the authors iteratively generating fixed amount of
mouse strokes, parsing the generated data and evaluating how near the parsed
system estimated the amount of mouse strokes to the actual (by the authors
perceived) amount of mouse strokes. Thus, a mouse stroke S was defined as a
chronologically ordered set of points in (x, y) in R2 such that no time difference
between each pair of consecutive points was greater than Tmouse−stroke.

S = {pi|pi = (xi, yi) ∧ |Time(pi)− Time(pi+1)| < Tmouse−stroke} (2.3)

The size of a mouse stroke S was then the amount of points pi ∈ S. Mouse
strokes with less than 4 consecutive points were ignored [10].

size of S = |S| (2.4)
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The length of the mouse stroke S was defined as the arc length of the curve.

length of S =
|S|∑

i=2

|pi − pi+1| (2.5)

Likewise, the time Time(S) of the mouse stroke S was defined as the difference
in time between the last and the first points in S

Time(S) = Time(p|S|)− Time(p1) (2.6)

Based on the defined measures; mean stroke times, mean stroke lengths and
standard deviations for mouse stroke times and stroke lengths were computed.

Despite the already mentioned features, two other feature vector were also ex-
tracted from the mouse movement data. These were called Mouse Vector Data,
listed as 21 and 22 in Table 2.1. Each element in the vectors constitutes one
of 64 angles in which average speed and movement distributions were recorded.
For each movement into a direction, the system collected the movement speed
in that direction and increased a movement counter. Elements in the vectors
which represented that particular angle were then updated, a neighboring set
of size 8 were also updated on each side with a smoothing function. A visual
example of these vectors can be seen in Figures B.8 and B.9.

2.2.3 Keyboard data feature extraction

The raw data file contained key-codes indicating which key was pressed or re-
leased and at which time instance in relation to the beginning of the data cap-
ture that the event occurred. As for the mouse feature extraction, an interval
dividing sets of key-presses was defined.

Tkey−press = 2000 ms (2.7)

The pause between two keystrokes ki and ki+1 was defined as the time between
the release time of ki and the down press event time of ki+1 [6, 18,19,22].

Pause(ki, ki+1) = Time(Press, ki+1)− Time(Release, ki) (2.8)

From the way the pause is defined, it is possible to find negative pauses, this
implies overlapping between ki and ki+1 [6, 7, 18].

Thus, key-presses could now be clustered together into keystroke-sets K con-
sisting of an ordered set of key-codes k such that no two consecutive ki’s had a
pause greater than Tkey−press.

K = {ki||Pause(ki, ki+1)| < Tkey−press} (2.9)
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These keystroke sets could then be used to analyze di-gram and tri-gram times [4,
7, 20]. A set of the 10 most common tri-grams and the 20 most common di-
grams [42] were selected and their corresponding mean times and standard devi-
ations were computed as well. The time of an N-gram was defined as the down
press event time of the first key in the sequence and the release event time of
the last key in the sequence. This was equal to the time of the keystroke-set K
consisting of the di-/tri-grams.

Time(K) = Time(Release, k|K|)− Time(Press, k1) (2.10)

The typing speed could now be defined as the mean pause time. The smaller
the mean pause time, the faster the typist.

Using the above defined measurements, the mean pause, mean general di-gram
and tri-gram times, mean specific di-gram and tri-gram times and their corre-
sponding standard deviations were computed [7, 22].

The distribution of the key-presses on the set of special keys was also recorded.
The set of special keys was the set of { Arrow-Up, Arrow-Down, Arrow-Left,
Arrow-Right, Esc, Tab, Shift, Ctrl, Alt, Space, Del, Backspace, Enter} [7]

2.2.4 Click Path features

The transitions between categories and view-times (for how long a visitor stayed
on a page in ms) for each page were extracted from the web log. The category
transitions were mapped to a fictional URL structure by the simple algorithm
seen in Algorithm 1.

The chosen mapping generated from Algorithm 1 from category transitions to
URL pages produced a spheroidal Deterministic Finite Automaton (DFA) where
each new click on a category link delved deeper into that category, and each
click on a new category link performed a jump to the most shallow level of that
new category. This can be visualized for 2 categories A and B as seen in Figure
2.1.

The previously described URL mapped set of pages was stored together with
auxiliary data that was intended to be used with other algorithms (which was
previously explained to not be used).

2.2.5 Session data features

The extracted session data variables are listed in Table 2.4. This data was
extracted by means of the jQuery [1] script on the page used for the data
collection experiment. Note that no previous work based on session variables
was found.
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Figure 2.1: This example has a maximal depth of 4 but could be repeated for any
depth. Note that A and B represent the first page for each respective category,
and that A1...A4, B1...B4 represents the delving deeper into each category.
Please note that this image does not comply with the formal definition of a
DFA since edge labels, initial state and accepting states are not defined.

2.3 Comments on the data
Beforehand, it was suspected that the data acquired would be inferior in quality
to the data used by the authors of the prior works. Much of the data in the
prior work reports were created in a controlled environment with full access to
OS timings, thus their reported times for the events would have less erroneous
timing values and less noise.

It was also known that many of the reports used a repetitive and simple task for
enrollment sample acquisition. This improved their quality of their data whilst
our data was generated freely (within some limits) by our subjects in time and
space.

It was therefore expected beforehand that the results would be worse than each
independent result of the prior works which presented FARs down to 0.045% [4]
and FRRs down to 0% [4].

The acquired data was partitioned as shown in Figure 2.2. The data set marked
(A) was solely used for training and validation on each component, while the
data set marked as (B) was used solely for final validation. Thus the validation
of the system was performed on data from the same source, but which had never
been used before.

2.4 Initial selection
Algorithms and methods which seemed feasible were selected from prior works
and implemented in Ruby which was the requested language of choice from ICE
House AB. During the time of implementation, a basic set of data was generated
by the authors themselves as well as others. A total of six subjects had then
supplied a set of 10 iterations each (corresponding to one full experiment per
person), this was the basic testing-corpus on which the rough trial-evaluations
were performed.
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Figure 2.2: All the acquired, processed and feature-extracted data was parti-
tioned into a main validation set which was used to validate the final system
(1) and a training set which would be used to train and validate the internal
components of the final system. The training set (dark gray) was then addi-
tionally split into a training set and a validation set (2). This was done so that
the classifiers of the system would use the same training and validation set.

The initially implemented algorithms1 together with the type of data they were
tested with can be seen in Table A.2.

The basic testing-corpus was divided into two sets, one training set consisting
of 80% and a validation set consisting of 20%. In this early testing phase it
was concluded that ANN, ID3 and k-NN worked well for both Keyboard and
Mouse data. It was also concluded that most of the Click Path algorithms
should be left out due to being ill-defined and containing errors, also too many
of the algorithms were simply clustering algorithms, something that was known
in before-hand, but the authors felt that the clustering could maybe still be
used in some way.

What remained after the initial selection were the algorithms seen in Table A.3.
The chosen algorithms were selected based on the fact that they performed
well enough (more correct classifications than expected amount of classifications
based on pure chance) and had strong support in the reports.

The algorithms qualifying from the initial selection were then re-tested with the
acquired data from the data collection experiment. This will be described in
Section 2.5(Additional testing).

1It shall be said that numerous other Click Path directed algorithms were intended to be
implemented but the reports in which they were stated either contained numerous errors or
the algorithms were insufficiently described.
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2.5 Additional testing
As the collection experiment was finished, 19 users had provided 10 experiments
each. This data was corrected and partitioned into a 80% training and 20%
validation set. A computational server was acquired for the algorithms to run
on, during which the ANNs and SOMs were trained and the ID3’s were created.
The features previously chosen for each algorithm were also retested as well,
since more data was available and this could change the outcome.

Let I denote a set of algorithm implementations where each implementation
Ii ∈ I was of type ANN, SOM or ID3.

I = {I1, ...Iu} (2.11)

Each implementation Ii was positively trained for a particular class i ∈ [1, u]
(class was the same as a user) and negatively trained for the other classes. The
measure of accuracy for I was both the FAR and the FRR for these implemen-
tations. Given a set of implementations of one particular algorithm and one set
of validation samples S where each si ∈ S is denoted (X, f(X)), such that X
was the feature vector and f(X) was the class of the vector X, the FAR and
FRR for this particular validation set S were calculated as follows.

S = {(X, f(X))1, ..., (X, f(X))l} (2.12)

FR2((X, f(X)) =
{

1 if Answer(If(X)) = 0
0 otherwise (2.13)

FRR(S) =
∑

s∈S FR(s)
|S| (2.14)

FAR((X, f(X)) =
|{Ik|k %= f(X) and Answer(Ik) = 1}|

u− 1
(2.15)

Thus, given a training set S consisting of l 2-tuples of samples (X, f(X))

The accuracy for an algorithm implementation for this set S was defined as the
total FAR and FRR

Accuracy(S, I) = (
∑

s∈S

FAR(s), FRR(S)) (2.16)

This was the measure by which the additional testing was based to further select
which algorithms were suitable based on the new (larger) data set. Running the
additional tests, with features selected with support from the reports, the final
set of suitable algorithms can be seen in Table 2.5.

2False Reject
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Algorithm Keyboard Mouse Session Click Path
Artificial Neural Networks X
K-Nearest Neighbor X X
Self Organizing Maps X

Table 2.5: The final set of algorithms. As can be seen, no algorithm was present
for Click Path data since discussions and results led the authors to exclude the
low grade and erroneous Web log data. A cross (X) in the field of Keyboard,
Mouse, Session or Click Path indicates that the algorithm would be used for
that type of data.

The ANN implementation for Mouse data was excluded since repeated testing
with different ANN configurations could not map the profiles correctly (or within
acceptable bounds). Finally, more time could not be wasted on forcing good
results out of a bad algorithm-data match and the authors had to conclude that
ANN could not handle the mouse data as specified by the reports, given this
particular setting. Initially the set of data was small, and the initially good
results could be attributed to the low amount of classes and the low amount of
samples.

ID3 was discarded since the results were very poor. Most ID3-trees created
could not decide whether or not to accept or reject a sample. This can probably
be attributed to the fact that ID3 is most suitable for binary decision problems
with discrete values and does not handle real valued problems well [43]. In the
reports that use decision trees, the commercial decision tree algorithm C5.0 was
used which is superior to C4.5 [44] which in turn is an extension of the ID3
algorithm.

The final selection of algorithms also excluded the Click Path algorithms com-
pletely after trying a final Markov Model with smoothing unsuccessfully.

Note that the Self Organizing Map (SOM) algorithm was employed before the
calculation servers were acquired. The basis for the SOM was that some kind of
system for Session variable data had to be found/created. Luckily, a computer-
security report focusing on analyzing digital attacks had employed the SOM
with impressive results [45]. With this in mind, a SOM class was implemented
and used to learn Session profiles.
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2.6 Learning and classification
Once proper algorithms had been selected based on the initial and additional
testing, the ANNs and SOMs were trained, the k-NN algorithm was used for
keyboard and mouse. The results are presented with corresponding comments
in Tables A.4, A.5, A.6 and A.7. For the final classification system, a voting
system based on ANN was created. This will be described in Section 2.7.

2.6.1 Keyboard

The keyboard data was used by both the k-NN classifier and the ANN classifier.
The best result for the k-NN classifier (K-value 3) when applied to the keyboard
data had FAR 0.0239 and FRR 0.4309 can be seen in Table A.4. The number
of features used by the particular result were 0, 1, 35, 36. Their corresponding
feature names can be found in Table 2.2.

The best result for the ANN was acquired by using the features numbered 70−82
yielding a FRR of 0.3586 and a FAR of 0.4128 as seen in Table A.5.

2.6.2 Mouse

The mouse data was used solely by the k-NN classifier with the best result, FRR
of 0.5526 and FAR of 0.0307 (K-value 9) as seen in Table A.6. The number of
features used by the particular result were 7, 8, 10, 11, 12, 14, 15, 21, 22. Their
corresponding feature names can be found in Table 2.1.

2.6.3 Session

The SOM implemented for the session data used a vector of length 5 as models
from the absolute value of the hashed User-Agent string of the browser, screen
width, screen height, and the hour and minutes of the day at which the visit
was made. These features are numbered 4, 5, 6, 7, 9 in Table 2.4. The results
for the SOM were a FRR of 0.3322 and a FAR of 0.1080. The hashing of the
User-Agent string was made with the Ruby string hash function.

The IP was not used since there was a risk for over-fitting if this feature had
been used.

The session data was used by the implemented SOM which produced the results
seen in Table A.7.

2.7 Voting for acceptance
Once the algorithms had been trained for their respective data, each user U
had a collection of classifiers {C1, ..., Ck} which constituted the profile P of the
user. Some kind of majority vote system had now to be implemented in order
for a profile to work properly once a new sample (X, f(X)) was presented. It
was also necessary to allow majority voting with bias towards the classifier with
the best precision. In the most basic form, a profile P would have accepted a
sample (X, f(X)) as belonging to the profile if the majority of the classifiers
classified the sample positively (classified the sample as belonging to the pro-
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file). This was the basic way in which a profile would either reject or accept a
sample. Let V ote(Ci, X) denote the vote of the classifier Ci for the sample X.
The acceptance of the profile P for the training sample (X, f(X)) can then be
expressed as

Accept(P, (X, f(X))) =
{

+ if majority of Ci ∈ P vote +
− otherwise

However, some users provided more distinct keyboard data than mouse data,
while others had more unique patterns in their generated mouse data. This
was exploited by simulating bias in the classification system so that the most
correct classifier would have the strongest vote when necessary. Some kind of
learner which would learn the classifiers results for the input data had to be
implemented. A simple 4 input, 2 hidden and 1 output ANN was used for this
purpose where it was presented the results from the classifiers and the correct
result for such a vote. This ANN was called the Meta-ANN and was responsible
for whether a profile P would accept the sample (X, f(X)). Thus, the Meta-
ANN would have each classifier on an input node and output the final vote +
or −. The acceptance for a profile P and the sample (X, f(X)) would now be
expressed as

Accept(P, (X, f(X))) = MetaAnn(V ote(C1), V ote(C2), V ote(C3), V ote(C4))
(2.17)

Each profile would then have their own personal Meta-ANN which was trained
with the output resulting from the classifiers voting on a sample. Figure 2.3
shows a schematic view of the voting mechanism.

Figure 2.3: Acquired raw user data (1) is processed and features are extracted
(2) which are given to the profile classifiers (3) (including Meta-ANN) which
votes for acceptance of the raw data sample (4).
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2.8 Complete system

Figure 2.4: From the user interaction with the web page to extracted features
are sent to algorithms.

The steps from user interaction with the test web page to the extracted features
getting fed into the algorithms can be viewed in Figure 2.4. As previously
stated, Click Paths from web log were not used in any algorithm in the system.
The results from the algorithms were saved in a similar fashion as the log files,
which can be seen below. Each user profile consisted of one ANN for the selected
keyboard features, one SOM for the selected session features and a Meta-ANN
which was used for voting. As nothing was trained or created for k-NN, all
feature files for mouse and keyboard were stored in order to run k-NN when
testing a new sample.

EMAIL.keyboard ann
EMAIL.session som
EMAIL.meta ann

Those three files together with the stored log files for mouse and keyboard,
should be used to predict if a new sample is accepted or rejected. A perfect
system should for all user profiles accept the matching samples from the user
and reject all samples coming from other users.

Figure B.1 shows a schematic view of how the system would work if deployed
in a real life scenario. As the system should add a level of security by re-
authenticating the users of a web page, each user needs a profile that should be
created when the user creates a new account on the web page. When a user A is
logging in as U , session data will be stored and checked against the stored user
U ’s profile. If it’s a match, the user can continue its session and the profile of
U is updated with the new session data. If it’s a mismatch, the system should
raise suspicion that A is not U . The system should work in silence and user A
should be unaware of its presence.
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The evaluation of the complete system worked similarly to how the deployed
system should work. Instead of having a web page where users trying to log in
as a specific user, the data from the validation set noted as (B) in Figure 2.2
was used to create login attempts on all users. Figure 2.5 shows how a sample
from the validation set got tested. For all 19 user profiles, all samples in the
validation set were tested against the user profile. With 20 samples from each
user, a total of 380 login attempts were tested on each user profile. As 20 of
those samples were the users own samples they should have been accepted as
coming from the user and any rejection of the user’s own samples would be
counted towards FRR. The remaining 360 samples should have been rejected
as not coming from the user and would be counted towards FAR if accepted by
the user profile. With 380 login attempts for each user, a grand total of 7220
login attempts were evaluated.

Figure 2.5: Validation system.
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3 Results

A number of final systems were validated several times using different Keyboard-
ANN configurations where the size of the negative training set was varied be-
tween 5.6% of the original negative set to 100% of the original negative set. The
variation of this fraction parameter was introduced to slack the bias towards
rejection. Introducing too many negative samples in comparison to positive
samples could result in a system biased towards rejection since rejection would
easily result in a low error during ANN training. The raw Keyboard-ANN
results for each fraction setting can be seen in Table A.5.

The final results for the system can be seen in Table 3.1 where different voting
techniques as well as different fractions where used for the Keyboard-ANN im-
plementation. The results were based on the 20% of untouched initially acquired
data which constituted the validation set.

Voting mechanism Keyboard-ANN Fraction (%) FRR (%) FAR (%)
Meta-ANN 100 43.42 0.99
Meta-ANN 89.6 43.16 0.92
Meta-ANN 44.8 45.79 0.89
Meta-ANN 22.4 43.95 0.79
Meta-ANN 11.2 47.11 0.86
Meta-ANN 5.6 46.58 0.99
Majority Voting 100 55.53 0.95
Majority Voting 89.6 53.95 0.67
Meta-ANN (SOM,Keyboard k-NN) Not used 65.53 1.05
Meta-ANN (No SOM) 100 48.95 1.11

Table 3.1: Based on 7220 samples in total, 6840 should be rejected by the correct
profiles and 380 should be accepted by the correct profiles.

Majority-Voting without additional modifications was also tried on the 100%
and 89.6% Keyboard-ANN sets without improvement contra Meta-ANN. This
was to be expected and no further tests were made with the unmodified basic
Majority-Voting technique. The results in Table 3.1 conclude that the Meta-
ANN was better than plain Majority-Voting.

Judging by the plot in Figure 3.2, it is possible to be mislead and believe that
only SOM and keyboard k-NN ought to perform better than the final system
which uses ANNs trained with 89.6%. However this is not the case. The point
marked as Meta-ANN (SOM and Keyboard k-NN) in the same plot (upper left
corner) visualizes such a combined system with Meta-ANN and shows that the
distance to origo is 0.66 which is a decrease in performance.

The FAR and FRR values for each individual profile can be seen in Figure
3.4 and Table A.8. Profiles 4 and 17 had the best individual results with FAR
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Figure 3.1: The Keyboard-ANN implementation trained with differing fractions
of the negative set. The respective implementations are plotted based on their
FAR and FRR values. Closer to origo is better, distance to origo can be seen
within the brackets [ ].

Figure 3.2: Image showing the best final system together with each classifier.
The 5.6% keyboard ANN classifier is shown since it had the best accuracy
amongst the keyboard ANN fractions. Note that the final system uses the
89.6% keyboard ANN fraction. Closer to origo is better, distance to origo can
be seen within the brackets [ ].
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Figure 3.3: Image showing the accuracy of the various systems based on the
differing ANN negative training set fractions. The Majority Vote classification
is also plotted (based on 100% and 89.6%). Closer to origo is better, distance
to origo can be seen within the brackets [ ].

between 0.8% to 1.9% and both with FRR of 0.0%. The worst individual profiles
were profiles 6 and 18, which rejected everything.

Figure 3.4: Image showing the accuracy of each profile for the best system
(based on 89.6%). Closer to origo is better (note that the axis are not equal).
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An alternative validation method which was explored was to subject the sys-
tem, using the keyboard ANNs which were trained using 89.6% of the negative
training set, to one sample and record which profiles were the ones to accept
the sample as their own. Such a validation would be to guess which registered
(if previously registered) user is currently browsing a website. This validation
method proved to be very successful. An accuracy as high as 54.1% was ob-
served. The statistics for this alternative validation method can be seen in Table
A.10. For each sample, there were three cases considered.

1. The correct profile solely accepted the sample. This was the best case
since all other profiles rejected the sample as belonging to them. In the
alternative validation, there were 195 such correct classifications out of
380 samples.

2. The correct profile accepted (together with others) the sample. This was
the next best case, since the correct profile also accepted the sample. A
natural question is then; how many other profiles accepted the sample at
the same time as the correct profile? The statistics shows that maximally
(only) one other profile accepted the sample at the same time as the true
profile. A total of 21 such cases were observed out of 380 samples.

3. The correct profile did not accept the sample. Such cases were ignored.
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4 Conclusions

The best system was the one using Meta-ANN as a final voting technique where
the the keyboard ANNs were trained with 89.6% of the negative training set as
seen in Table 3.1. The high FRR (43.16%) can be attributed to the low grade
of the collected data as a result from the several parts mentioned below.

1. High number of negative samples in training The proportion of
negative samples was a factor 18 in comparison to the positive samples
(64 positive and 1152 negative). This could impact the training of ANN to
bias rejection and reduce the Root Mean Square Error (RMSE) drastically
when training by favoring negative output classification. This hypothesis
was tested as previously seen in Table 3.1 and the conlusion was that the
negative sample size did not affect the final results noticeably.

2. Data collection through a web page instead of a local application
and local hardware. Since the data collection was performed remotely
through a web page using jQuery [1], the collected data was distorted in
time (and space) by differing hardware configurations and browser capa-
bilities. This caused the time resolution to differ on slower and faster ma-
chines. Differing hardware such as mouse and keyboards could also affect
the data in space by noisy mouse movements. Had a fixed computer been
used by all the subjects during the data collection, the hardware-specific
distortions could maybe have been neglected since it would contribute
equally for all the subjects.

3. Corrupted data which had to be adjusted. The collected data con-
tained many entries which had to be corrected manually. Some entries
had to be removed since correcting said data would involve direct data-
forgery. This introduced the possibility that there might even be many
errors which stayed undiscovered. Errors could be involuntary mouse-
movements (gliding mouse pointer), involuntary double-clicks, etc. Other
errors could be sporadic but still frequent enough to modify the already
weak data sufficiently so as to make pattern recognition difficult. Still all
the corrected data was used since data acquisition for this type of data
was very time-expensive.

4. No static enrollment samples from mouse. Prior work reports uti-
lized static enrollment samples from each user. Such enrollment samples
were based on fixed mouse trajectories or mouse written signatures. The
work in this report has not been subject to the same luxury since it was
meant to be as real as possible. Based on the idea of a free E-commerce
site, the mouse and keyboard interactions were to be as little restricted
as possible (within reasonable bounds)1. It was also the case that the
measures in the reports had been naturally selected to work well with the
static enrollment sample scenario.

1Mouse data still had to be acquired somehow
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5. No static enrollment samples from keyboard. As for the mouse
data, prior work reports utilized static enrollment samples from each user.
Such enrollment samples were based on text input in the form of user-
name and password or copying a long fixed text. In this manner, N-gram
statistics were successfully captured and could be used by proper measures
to identify users. However, static enrollment samples were not used in this
master thesis.

When analyzing the results from the best profiles mentioned in Chapter 3, some
interesting occurrences were noted.

1. For the best profiles, the SOM always accepted the samples from
the correct profile. But this alone was not enough for the profile to
accept the sample. Whenever the profile accepted a sample, either the
keyboard or mouse k-NN accepted that sample as well.

2. For the best profiles, the keyboard ANN never accepted any
samples as belonging to the profile.

A number of questions arise naturally after performing such an analysis with
the mentioned findings. These questions are posed together with their likely
explanations below.

1. Why was SOM always 1 for the best profiles when the sample indeed was
from the profile?
One possible explanation could be that many of the subjects chose to per-
form their experiments in batches, thus performing several experiments
one after another during a short period of time. Indeed, this was the case.
Interviews and log reviews suggest that many of the subjects actually dis-
played this kind of behavior. Thus, many of the time stamps recorded
in the session files were indeed close in time. Another contributing fac-
tor for the SOM’s high accuracy could be that many of the User-Agent
strings were indeed unique; thus resulting in a set of unique2 hash values.
However, even though the User-Agent strings were unique, some of them
had a short Levenshtein Distance to others as can be seen in Table A.9.
The User-Agent strings often differed greatly (different OS or Browsers)
or little (different browser versions but same OS, etc).
A first plan was to extract OS information, Browser Information and Ver-
sion; however it was found that there is no real standard for the User-Agent
string. It is also possible to forge User-Agent strings and send whatever
data one would like to. Locking the implementation to a certain type
of User-Agent formatting would be unwise given that the known set of
User-Agent strings is tremendous3.
Analysis of the various access times for the experiments also reveal that
many of the access times occur around the same time (between 17:10 to

2The absolute value reduced the uniqueness mapping
3At 2009-05-05, [46] reported 4094 different User-Agent strings
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23:50), as can be seen in Figure B.2. There was a logical explanation to
this; many of our friends work or study, thus there was often only spare
time to perform such forced experiments in the evening. Such a clustered
access time pattern reveals that there is no simple way to perform a poly-
chotomy evaluation. Which could have contributed to the bad results of
the SOM.

2. Why did the Meta-ANN not accept the SOM vote as a veto?
For all profiles, the Meta-ANN would not accept the SOM’s answer as
definite when the SOM accepted the sample. During training of the Meta-
ANN, the SOM made too many False Accept mistakes which forced the
Meta-ANN to inhibit of the SOM input neuron. This can also be seen in
Table A.7 where SOM achieved a FAR value of 10.8% during evaluation of
the algorithm. Since the keyboard-ANN almost always rejected a sample,
any one of the keyboard- or mouse-k-NN would have to accept the sample
in order for the profile to accept it.

3. Why did the keyboard-ANN perform so badly?
With a high FRR (35.9−87.8% during evaluation, Table A.5), the keyboard-
ANN rejected almost every sample during validation. Even though it
lacked support in prior works, the distribution of special keys were chosen
as the features for keyboard-ANN due to the fact that it outperformed
any other feature combination mentioned in prior works, such as N-gram
times. The distribution of special keys remained unchanged even if the
timing values were incorrect. This was not true for other features that rely
heavily on the correctness of the timing values, such as typing speed and
N-gram times. If a static text would have been used in the data collection
as well as getting the correct timing information, other feature combina-
tions might have been possible and the keyboard-ANN performance could
have been improved.
According to [43], ANN suits problems where data can be noisy and com-
plex. The Backpropagation algorithm for training the ANN should also
be a good choice for our setting. The data should be represented by
attribute-value pairs such as our features on keyboard. The training data
can contain noise and errors, which should cover the problem of timing
errors in the data collection. It also handles all kind of input values, ei-
ther discrete- or real-valued. In addition, a multilayer network like the
one used, should also be able to separate the data set with non-linear
expressions. Seeing as both ANN and the Backpropagation algorithm
should work well for our setting, the most likely explanation to the poor
performance of the keyboard-ANN would be that the features from the
profiles were too similar, the samples were too scattered or the samples
were incosistent, such that they could not be separated.

Given that the alternative validation method proved to be so accurate (54.1%),
it seems feasible to construct a system which recognizes registered users as they
visit a web-page without logging in. It would then be quite simple to transfer
collected profile data from one website where a user A has registered a profile
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and apply that profile to other websites. The profile of user A could then be
used to find user A on other sites. This could lead to a method where one could
map people’s internet-habits by tracking them across web-sites.

If one would have access to several profiles from different websites, one could also
compare the profiles in the hope of finding the same user on several websites.
Such practice could increase the accuracy by which targeted advertisement is
used and could also help in finding multiple accounts from one user.

Yet one other possible field of study could be to analyze the keyboard and
behavioral patterns of certain demographic profiles, thus one could maybe say
with a certain certainty whether the user visiting a web-page is male/female,
child/adult and so forth.

4.1 Future work
Future work would emphasize improvements to performance, mainly to reduce
the high FRR. Improvements to algorithms could also be made, such as extend-
ing k-NN to weighted k-NN. The user supplied data for authentication could
be used to improve the stored profile with more and newer data. The systems
should then be analyzed to check whether or not the performance improves over
time as more data is gathered from each user. Implementing the system into
a live E-commerce web-site would be needed to be done as well, in order to
evaluate how well the system would work in a real-life scenario.
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A Tables

Code Format Description
0 A Key down
1 A Key up
2 B Mouse-down left
3 B Mouse-up left
4 B Mouse-down middle
5 B Mouse-up middle
6 B Mouse-down right
7 B Mouse-up right
8 B Mouse move
9 C Mouse over
10 B Double-click left
11 B Double-click middle
12 B Double-click right
13 D Mouse-wheel

Format Includes
A Character code
B X,Y position
C HTML object that mouse moved over
D X,Y position, direction of scroll

Table A.1: Description of actions stored in the log files.

Algorithm Keyboard Mouse Session Click Path
Artificial Neural Networks X X
K-Nearest Neighbor X X
ID3a X X X
Antclust X
Particle Swarm X
GA X
Subsession analysis X
Ant colony model X
Efficient mining X
K-Means X
Self Organizing Mapsb X
Web Navigation Markov Model c X

Table A.2: The implemented algorithms and for which kind of data they where
tested. A cross (X) in the field of Keyboard, Mouse, Session or Click Path
indicates that the algorithm was tested for that type of data.

aReport used C5.0
bAdded later
cAdded later
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Algorithm Keyboard Mouse Session Click Path
Artificial Neural Networks X X
K-Nearest Neighbor X X
ID3a X X
Self Organizing Mapsb X
Web Navigation Markov Model c X

Table A.3: The selected algorithms, based on prior work and own tested data.
A cross (X) in the field of Keyboard, Mouse, Session or Click Path indicates
that the algorithm would be used for that type of data.

aReport used C5.0
bAdded later
cAdded later

K-value FRR FAR
1 0.4572 0.0254
2 0.5033 0.0280
3 0.4309 0.0239
4 0.4507 0.0250
5 0.4605 0.0256
6 0.4671 0.0260
7 0.4901 0.0272
8 0.5033 0.0280
9 0.4934 0.0274
10 0.5000 0.0278
11 0.5132 0.0285

Table A.4: k-NN on keyboard data based on 304 samples using features num-
bered 0, 1, 35, 36 as seen in Table 2.2

Fraction of negative set FRR FAR
√

FAR2 + FRR2 Comment
0.056 0.3586 0.4128 0.3585 Equal amount positive and negative

0.112 0.5493 0.2098 0.5493 Double amount negative contra positive

0.224 0.7237 0.0656 0.7267
0.448 0.8553 0.0095 0.8554
0.896 0.875 0.0044 0.8750
1.0 0.8783 0.0026 0.8783

Table A.5: ANN on keyboard data using features numbered 70− 82 as seen in
Table 2.2. Each ANN consisted of 13 input, 13 hidden and 1 output neuron
trained with 2 ∗ 106 iterations with a stop-error at 0.01. Each row corresponds
to the results of the implementation based on differing sizes of negative values
(Fraction).
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K-value FRR FAR
1 0.5954 0.0331
2 0.6118 0.0340
3 0.5789 0.0322
4 0.5954 0.0331
5 0.5789 0.0322
6 0.5789 0.0322
7 0.5559 0.0309
8 0.5691 0.0316
9 0.5526 0.0307
10 0.5592 0.0311
11 0.5526 0.0307

Table A.6: k-NN on mouse data using features numbered 7,8,10,11,12,14,
15,21,22 as seen in Table 2.1

FRR FAR
0.3322 0.1080

Table A.7: SOM on session data using 304 samples with features numbered
4, 5, 6, 7, 9 as seen in Table 2.4. Each SOM consisted of 252 neurons trained for
1000 iterations each.

Profile FRR FAR
1 0.7000 0.0083
2 0.3000 0.0139
3 0.4000 0.0028
4 0 0.0083
5 0.2500 0.0083
6 1.0000 0
7 0.6500 0.0083
8 0.2500 0.0056
9 0.3000 0.0167
10 0.7000 0
11 0.4500 0.0139
12 0.1500 0.0083
13 0.3500 0
14 0.5500 0.0250
15 0.6000 0.0306
16 0.2000 0.0028
17 0 0.0194
18 1.0000 0
19 0.3500 0.0028

Table A.8: Individual profile results with FRR, FAR and fitness values.
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2 88
3 79 129
4 33 87 47
5 33 87 49 2
6 84 110 99 81 81
7 30 102 71 42 43 91
8 54 104 26 21 23 87 55
9 34 87 53 6 4 79 47 27
10 29 86 53 6 4 83 47 27 8
11 31 86 53 6 4 83 47 27 8 2
12 88 116 100 85 85 14 95 88 84 87 87
13 25 82 76 35 36 86 40 52 36 32 34 90
14 88 1 130 87 87 110 102 104 87 86 86 117 82
15 26 101 75 46 47 91 4 59 51 43 45 95 36 101
16 40 89 77 30 30 60 60 51 27 26 28 65 41 89 56
17 84 110 98 83 83 4 91 88 81 81 81 18 84 110 91 58
18 18 80 74 27 28 87 33 48 30 24 26 91 14 80 29 35 85
ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Table A.9: Levenshtein distance between unique User-Agent strings recorded in
session files. The ID is an assigned number only to keep track of which unique
User-Agent string is being tested.

Case Observed
Correct classifications where correct profile is single guess 195.0
Correct classifications where correct profile is in guess set 21.0
Average amount of other classifiers in guess set 1.0
Maximal amount of other classifiers in guess sets 1
Minimal amount of other classifiers in guess sets 1

Table A.10: The recorded results of the alternative validation method based on
the same untouched validation data as for the final validation system.
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B Figures

Figure B.1: How the system is supposed to work once deployed into a real life
scenario.
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FIGURES

Figure B.2: The amount of access times plotted against the hour of the day and
the minute.

Figure B.3: A screenshot of the login page with the disclaimer text. Users
entered their name, email and proceeded to the collection steps.
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FIGURES

Figure B.4: A screenshot of step 1 in the collection experiment. This step
involved re-writing the text as seen in the image “another vacancy open which
entitles a member of the League to a salary of 4 pounds a red-headed men who
are sound in body and mind and above the”.

Figure B.5: A screenshot of step 2 in the collection experiment. The user was
forced to move the mouse over the numbers in order, to proceed to the next
step. The numbers seen as black in the image have been moved over by the
mouse and the grey numbers have not been moved over yet.
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FIGURES

Figure B.6: Step 3 showed a sequence of images from some category which the
user had previously selected. The current image seen by the subject was the
enlarged one (former president of the United States of America George W Bush
with former British prime minister Tony Blair). A jQuery plugin slid between
the images seen in the bottom.

Figure B.7: A screenshot of step 4 of the data collection. The user could choose
any category he/she preferred. Images from this category would be shown in
step 3 in the next iteration of the data collection.
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FIGURES

Figure B.8: 2 visual examples of Mouse Vector data features from the authors
with average movement speeds in 64 directions. The images shows 10 Mouse
Vector features each, extracted from 10 iterations.

Figure B.9: 2 visual examples of Mouse Vector data features from the authors
with total number of mouse moves in 64 directions. The images shows 10 Mouse
Vector features each, extracted from 10 iterations.
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C Algorithms

C.1 URL mapping

Input: Transitions between categories
Output: Mapping of viewed pages
First mapped page is automatically “/index.html”
Initially DEPTH = 0
foreach Transition from category Ci to Ci+1 do

if Ci+1 == Ci then
DEPTH = DEPTH + 1
mapped page becomes “/Ci+1/DEPTH.html”

else
DEPTH = 0
mapped page becomes “/Ci+1/index.html”

end
end

Algorithm 1: Transition to URL mapping

C.2 k-NN
The k-NN algorithm is an example of instance-based supervised learning algorithm which
forms no hypothesis upon execution. Classification is performed for a certain m-dimensional
vector based on the k nearest m-dimensional samples in the training set.

The inductive bias of the k-NN algorithm is that each sample will be most similar to other
samples of it’s own class. This inductive bias seems reasonable for the user classification setup
by assumption that a user’s generated data lies within a fixed personal distribution.

However, the inductive bias makes the k-NN algorithm suffer from “the curse of dimension-
ality”. There is no way for the algorithm to know which attributes are irrelevant and each
attribute carry equal weight. This could be slightly avoided by attribute normalization, or
adding weights to each attribute.

Input: Training set X, Sample xc to be classified
Output: Classification of sample xc

foreach Training sample (x, f(x)) ∈ X, where x is the feature vector and f(x) is the
class of x. do

Calculate standard Euclidean distance to xc from all vectors in training set, and
decide most common class amongst the K nearest instances.

end

Algorithm 2: Short description of k-NN algorithm. A more extensive
description can be found in [43].

C.3 Self Organizing Map
The Self Organizing Map (SOM) is a competitive unsupervised learning algorithm which con-
verts nonlinear statistical relationships between high-dimensional data into simple geometric
relationships. A self-organized similarity graph of the input data is created by topologically
clustering similar objects. The SOM algorithm is partially based on the LVQ [47] algorithm
and models the synaptic plasticity of the brain.
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ANN ALGORITHMS

Input: Set V of n-dimensional vectors Rn with labels L
Output: Kohonen Neural Network trained on the input set
Initialize the lattice of n-dimensional vectors Rn (model) bound to each neuron.
t← 0
for K iterations do

t← t + 1
foreach vector v in the set V do

mc ← argmin
i

{||v −mj ||} : mj are models of neurons

Update mc and it’s neighbors mi ∈ Neigborhood(mc)
mc ← mc + α(t)[v −mc]
foreach mi ∈ Neighborhood(mc) do

mi ← mi + α(t)hci(t)[v −mi]
end

end
end
foreach vector v in the set V do

Find the most similar neuron and label it with the label of v
end

Algorithm 3: A brief description of the SOM algorithm as presented
in [47, 48]. Where α(t) is a scalar valued “learning factor” which should

decrease over time. The Gaussian function hci(t) = e
− (||mc−mi||)

2

2σ(t)2 is the
smoothing kernel. σ(t) is the width of the kernel.

C.4 ANN
ANN is another instance-based learning method that origins from biological learning systems,
especially those with neurons connected in a network. An Artificial Neural Network mimics
biological neural networks with neurons (or nodes) that are connected to other nodes by links
which serves to propagate a signal between the nodes. When calculating the output from a
node, the weighted sum of its input links are sent through an activation function. Link weights
are often set by the use of the supervised learning algorithm Backpropagation explained in
Algorithm 5.

The inductive bias of Backpropagation algorithm lies in the continous hypothesis space that is
created by the n-dimensional hypothesis space from the n link weights. The continous hypoth-
esis space leads to a well-defined error gradient which can be efficiently searched using gradient
descent search for the best hypothesis. The inductive bias can be roughly characterized as a
smooth interpolation between data points.

Input: An Artificial Neural Network and an input vector.
Output: The output from the network.

1. The first layer in the network is the input layer which simply
transmits the values from the input vector to the hidden layers
(there can be several hidden layers).

2. A simple operation is performed in each neuron in the hidden
layers and the signal propagates until it reaches
the output layer which gives the output of the network.

3. Each link between neurons in the hidden layers has a weight which should be
set by using a training algorithm, such as Backpropagation.

Algorithm 4: A brief description on how an ANN computes the output
for a given input. [49] gives a more thorough description.
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ANN ALGORITHMS

Input: A training set T with input vectors and desired output.
Output: An ANN with weights trained according to training set.

1. Initialize the network with chosen layers and set neuron weights to a
small random vale.

2. In each epoch, generate a permutation Tp of the training set.
foreach t ∈ Tp do

Calculate output for t and the error e between
the output and the desired output. Update the weights
of the neurons according to equations found in [49].

end
3. After a set amount of epochs, compute the RMSE over the whole training set.
4. Repeat 2 and 3 until the error has dropped below a desired level.

Algorithm 5: Backpropagation algorithm for setting neuron weights in
ANN.
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D Abbreviations

Abbreviation Meaning
ANN Artificial Neural Network
k-NN K-Nearest Neighbor
SOM Self Organizing Map (Kohonen Neural Network)
FRR False Reject Rate
FAR False Accept Rate
RMSE Root Mean Square Error

Table D.1: Common abbreviations and their respective meaning.
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