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Modeling Players Personality in General Game Playing
Stefania Crotti
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Artificial agents’ skills need to become more relatable to humans’, and one approach
to solve this problem would be to associate a personality to the agents. When
games are used as a framework, General Game Playing (GGP) provides an unbiased
environment where new games are played without any prior knowledge of the rules,
and without applying any game-dependent heuristic. This thesis is expecting to infer
preferences from human played games, depending on the personality the players
recognised themselves in. The artificial player is aided with a Monte Carlo Tree
Search algorithm with tunable parameters, which associate evaluation values to each
move, consequently selecting the next state. The optimal set of parameters to fit the
human gameplay is found with the subsidy of a Genetic Algorithm where individuals
are represented as sets of parameters themselves. This approach is backed up with
a Bayesian probability model, and, finally, the outputted sets of parameters are
evaluated to determine if the artificial gamer has indeed learnt to behave accordingly
to a certain personality. After an extensive research on personality models has been
carried out to find a suitable one for the amount of data expected to be collected,
the choice has fallen over the Hippocrates’-Galen Four Temperaments. The results
however hint to the conclusion that a different model might have been easier to
be fit. Although the results are not astonishing, this thesis can be considered as a
first stepping stone into personality model fitting through Monte Carlo Tree Search
parameters tuning.

Keywords: General Game Playing, Monte Carlo Tree Search, Genetic Algorithm,
Personality Mapping, Bayesian Modeling.
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1
Introduction

The early developers of Artificial Intelligence (AI) were fascinated by having smart
agents that, when facing a problem, could find better solutions than humans, in
a possibly shorter time. However, when this approach started to be applied to
gaming agents, it eventually led to frustrating opponents[102], due to it being too-
challenging of a game, or a too-easy and boring one. At the same time, games
developers found themselves in need of offering more realistic content, with interest-
ing and authentic-looking Non-Player Character (NPC)[109], and automated and
reliable game testers[56]. To solve this problem, and make gaming a more enjoy-
able experience, research has started to develop interest in Artificial Intelligence
behaviour, trying to mimic humans’ game playing, mostly through Imitation Learn-
ing - the meaning of which is straightforward. To quote Gorman[51], Imitation
Learning is "the acquisition of skills or behaviors through examination of a demon-
strator’s execution of a given task". Few different strategies have been applied so far,
often associated to Artificial Neural Network (ANN), as in [102, 30, 118, 103, 74],
but also Reinforcement Learning algorithms[104], or Genetic Algorithm (GA)[70],
among others.
Monte Carlo Tree Search (MCTS) has been the object of focus in the process to
"humanize" artificial agents, applied, for example, on Spades[33], play testing[56],
or video games[62]. However, we find that the research could be exploited further
with this thesis project, which merges several different tools to model procedural
personæ, defined by Holmgård in [55] as: “Game playing agents that codify player
decision making styles, either from the designer’s holistic representation of these or
from observations of players collected directly from the game”. In this thesis, we
will use the terms personality and procedural persona as interchangeable.
This thesis work has mostly been carried out at Reykjavík University, on the basis of
an existing project that was conjoining virtual reality and general game playing[52].
The agent developed was a graphical representation of a version of CadiaPlayer[6], a
general game player implemented by the Reykjavík University team that has three
times won the international General Game Playing (GGP) competition[46].

1.1 Goal of the project
This project’s goal is to deduce if personality is a feature that can be inferred from
game playing. Aiming to do so, information about human played games have been
collected and used to train a Genetic Algorithm over a Monte Carlo Tree Search

1



1. Introduction

algorithm applied to the data gathered. The search algorithm would be returning a
move selection for the current state of the game, and the Genetic Algorithm would
return the set of parameters that would make the search match the same moves as
the human players. The outputted parameters will then be evaluated over a new
set of human-played matches, confirming or disproving the hypothesis behind this
thesis.
In the case that the results will be satisfactory, it can lead to the development of
more targeted agents, not necessarily only in the game playing field.

1.2 Structure of the thesis
The structure of this thesis is as follows: firstly, an introductory chapter with an
overview on the relation between games and artificial intelligence, in addition of a
general description of the problem. The following chapter is a survey on the theo-
retical notions necessary to understand the project and its implementation, starting
with a review of the personality models we came across; the definition of General
Game Playing; Monte Carlo Tree Search, as the algorithm we adopt in our General
Game Player; an overview on Machine Learning; and, lastly, the definition of Genetic
Algorithms. The third chapter then describes the methodologies applied at imple-
mentation time, justifying the choices made during the work process. Sequentially,
we redefine the problem; describe the data collection process and the base project
used as a starting point; define the Monte Carlo Tree Search variations adopted;
formalize the probability model; specify the Genetic Algorithm’s options selected;
and outline the evaluation process adopted. In the fourth chapter we include the re-
sults of each step, followed by an explicative discussion over the outcomes at various
stages of the project: the data collection, the output of the genetic algorithm, and,
finally, the results of the game playing evaluation. Lastly, chapter five includes the
conclusions drawn during this thesis work, together with a brief overview on how
this project could be expanded in the future.
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2
Background

Human behaviour is commonly associated to a personality that is generally unique
for each specific person. However, over the years, Psychology has been trying to find
common patterns in behaviours, mapping common traits into personality models.
It is believed that those common personality traits would lead the players to have
similar gaming styles, that would be inferred to our artificial gamer through tuning
parameters plugged into a Monte Carlo Tree Search algorithm. This chapter will lay
out the background requirements needed to understand and implement this thesis
project. Firstly, a brief introduction on the differences that can be expected be-
tween agents’ and human game playing, followed by a survey on personality models
in section 2.2. In section 2.3 is an overview of General Game Playing, which is the
general framework in this thesis. The following section, 2.4, is about Monte Carlo
Tree Search (MCTS), as it is the algorithm used by the General Game Player agent,
to decide which moves will be chosen at each state. Each set of tuning parameters
specific to the MCTS algorithm can change the outcome of the search. In section
2.5 will be given some machine learning background definitions. A Genetic Algo-
rithm is used upon the collected dataset, meant to find which sets of parameters are
associable to different personalities, and will be described in section 2.6.

2.1 Discrepancies between Players
Humans’ game playing considers some features that might sound obvious to the
reader, but are not to the artificial player. The human player, for example, has
common sense, which can influence the learning process of new tasks[58]. As a
smart algorithm might figure out that some moves are useless for the agent, or even
damaging for the outcome of the game, those choices still need to be evaluated a
number of times before being discarded. However, this might be more evident with
video games - as better exploited by Freed et al. in [42] -, than with classic board
games, which are the ones considered in this project. In [62], Khalifa et al include
along with those features the "recklessness" that seems to label human game playing,
while algorithms seem to adopt less risky strategies, and the "thoughtfulness" given
by the pauses that humans would take while playing, contrarily to the different ar-
tificial agents responsiveness.
Modeling players to behave in a human-like style has been an object of interest on
multiple occasions, as literature shows, for example, in [70, 59, 108], however, the
focus has been mostly on the video game environment. The reason behind this
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could be that the physical reactions are more defined, and can be better associated
to a certain pattern behaviour-situation, while strategies tend to change frequently
in a short period of time, depending on the state of the game, mood of the player,
and environment, amongst others[59]. In [101], Simon evaluates how grandmasters
in Chess recognize patterns in the game, having memorised small parts of game
trees. On a smaller scale, every human player recognizes patterns while playing, or
is able to associate knowledge coming from other games. This is confirmed as one of
the staple-points of Decision Theory: humans make decisions depending on subcon-
scious reasons that might seem like they have no rational base[60]. We would like to
point out that the General Game Player used in this project does not support this
feature, and forgets everything it has learnt right after the game has ended. This
limitation might affect our player’s behaviour, reducing the similarities with that
of the humans’. However, while playing, the search runs a 1000 simulation for each
move, which is most likely more than the average human player would do, supplying
our agent with some knowledge of the game. At this point, we find the difference in
knowledge between a human with some gaming experience, and an agent running
1000 simulations, irrelevant of the scope.

2.2 Personality Models
In order to have a more human-like behaviour, it has been decided to provide the
artificial agent with a personality. There are numerous models in Psychology to
characterize human behaviours, but most of them resulted in being too complicated
for our scope, being either too distinctive, or requiring a deeper analysis of our human
players. While researching for the best fit for this project, we have focused on some
game-related models, and on some amongst the most simplistic ones from classic
Psychology. Here is an overview of the models came across during the development of
this project, together with the reasons why they have or have not been adopted. We
find useful to have this overview, in order to give the reader a better understanding of
what is the state of the art, and the reasons behind the choices made in this project,
regarding which model to adopt. The chosen personality model, which selection is
discussed in section 3.2, will then be used to evaluate our data, trying to extrapolate
the parameters correspondent to the common move choices for people belonging to
the same personality group.

2.2.1 Bartle’s types
Bartle’s taxonomy has become the most famous personality model in the gaming
environment, it divides 4 different types of people: Killers, Achievers, Socialisers
and Explorers[16]. The taxonomy was created to suit Multi-User Dungeon (MUD)
games, specifically to help game designers to understand which kind of modifications
would have to be applied in order to get the attention of some specific players. As
it is clear in figure 2.1, players that are of the Killer type will prefer games where
actions involve other players, or NPCs (Non-Player Characters), while Achievers
would prefer acting on the world and the environment. Socialisers and Explorer
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Figure 2.1: Bartle’s taxonomy graph (adapted from [16]).

will favour interactions with other players or with the world, for example solving
quests. Even though it seems to be the most used model in game designing and game
analysis, it does not seem to suit our purposes. This taxonomy fits the role playing
scenario, but not the classical board games one. Agreeing with Bartle himself: it is
not always the right tool for the job[17].

2.2.2 Stewart’s Unified Model

In his article, Stewart analyzes a few different models -together with Bartle’s- and
matches all of them into a unified model[105]. This shows how similar those models
are, and that they could be almost interchangeable. Since Bartle’s model has been
excluded from the list of the ones that are suitable for this project, the ones men-
tioned in Stewart’s article have been excluded too. However, a brief description of
Keirsey’s model will be given further on in the chapter, as it will be useful for this
thesis as a middle step for models adaptation.

Figure 2.2: Example of Board Game Motivation Profile from Quantic
Foundry[41].
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2.2.3 Quantic Foundry
Quantic Foundry is a consulting company that works around psychology of gaming.
They developed the Quantic Lab[81], which is a survey project aimed at understand-
ing gamers preferences. They developed tools to test which gaming motivations are
behind every player, and on their website there are two tests available, one for
"Gamer Motivation Profile"[117] and one for "Board Gamer Motivation Profile". As
the first one is focused on videogames, it is outside of our scope.
In figure 2.2 can be seen an example of what are the results of the test. The profile
gives a percentile rank across various motivations, as Conflict, Social Fun, Immersion
and Strategy -and only secondly across Social Manipulation, Discovery, Aesthetics
and Cooperation. Even though the model seems to be pretty well-defined, it seems
too complicated for this thesis’ goal. It probably would be more appropriate if a
bigger amount of data to work on would be available, so to force preferences over
different types of games over the agent (i.e. the player that prefers immersive set-
tings would not focus as well on classic board games, playing more sloppily that he
would do if playing other games). Until the data is big enough, though, we prefer a
simpler model.

2.2.4 The Cardboard Republic Archetypes
The Cardboard Republic is a website that collects board games news. They also
have developed their own personality model, which consists of 6 different archetypes:
Tactician, Socializer, Immersionist, Daredevil, Architect and Striker[7]. Their idea
is to give an overview about those types, and suggest games that could be liked
by the different personalities. There is a quiz on their website[9], and the model
suggested here - based on gaming styles - seems to be highly appreciated among
board gamers[10]. In figure 2.3 is part of the description of the Tactician archetype,
to give an idea about how the the different personalities are defined. However, no
academic resource about those archetypes has been found, limiting the credibility
of being a valuable tool to use.

2.2.5 Timmy, Johnny and Spike
Timmy, Johnny and Spike are three different gamers personalities defined by Mark
Rosewater and the "Magic: The Gathering" designers. It describes the three main
different people that can be found while playing Magic. Timmy defines the player
who plays to enjoy "big" wins, Johnny is the player that prefers to win using hidden
or peculiar strategies, and Spike is the competitive type that plays to win at all
costs[89].
Even though this model would be simplistic enough to be used for this thesis, it feels
like its is too tied to the "Magic: the Gathering" game, as it can be perceived even
more in the "revisited" version of the same model[90], where the finer distinctions are
based on the different behaviours of the players depending on the deck they are play-
ing with. It had been used as a personality model for other games, like Dominion[49],
reaching the same conclusion about this model being game-dependent.
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Figure 2.3: Example of one of the Cardboard Republic Archetypes (from [7]).

2.2.6 BrainHex

BrainHex is the tool developed by International Hobo Ltd to help categorize gamers
while running a survey on their preferences. They associate personalities with the
parts of the brain responding to games in the specific classes, as can be seen in figure
2.4. The personalities remind of the archetypes in the Cardboard Republic, and even

Figure 2.4: On the left, BrainHex classes, on the right the corresponding parts of
the brain (red text) and chemicals (green text) involved. Figure from [79].

though it has a more scientific background -results of a survey can be found in the
article [79]-, has the same complexity problem as some models described above.
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2.2.7 Big Five Personality Traits
The Big Five Traits is a model widely used in psychology[50], and it analyzes how
personalities fall into five different scales: Openness, Conscientiousness, Extraver-
sion, Agreeableness and Neuroticism. Each personality corresponds to a combination
of the factors, helping the comprehension of behaviours and social interactions.
The five factors are described as:

• Openness (to experience): general openness towards emotions, new ideas, and
non-ordinary situations. Low scores would imply favouring routines, and more
traditional approaches.

• Conscientiousness: high self-discipline, sense of duty, aim for achievement.
Lower scores describe careless behaviour, spontaneity, and impulsive reactions.

• Extraversion: higher scores imply talkativeness, sociability, and tendency to
seek company of others. Lower scores describe reservedness and introversion.

• Agreeableness: people with high scores are usually kind, trusting, trustwor-
thy and considerate. Lower values imply skepticism, uncooperativeness and
suspicion.

• Neuroticism: also called emotional instability, describe the tendency to expe-
rience negative emotions and be vulnerable to stress.

Different scores in the factors match up in a range of various traits, giving a overall
better fitting description of different personality.[34]
Unfortunately, it is not really suitable for this project, as all the factors matter
equally and it would become too complicated to match users and gameplay be-
haviours to specific combinations. However, this was the model adopted by the
project this thesis is based upon, therefore an adaption to this model was needed
in order to have some continuity. A better understanding of this adaption will be
given in subsection 4.1.

2.2.8 Galen-Hippocrates’ Four Temperaments
Dating back to Hippocrates and Plato, the four temperaments might be one of
the oldest personality models in psychology. It divides in four different categories:
Sanguine, Melancholic, Phlegmatic, and Choleric[72]. Shortly, the sanguine type is
described as easily bored, somehow careless and as a risk-taker. Phlegmatic people
are told to be diplomatic and to avoid conflicts. Cholerics are analytical, logical and
goal-oriented. Melancholics are traditional and extremely ordered and accurate.
Even though there is a difference between temperaments and personality (the first
one refers to innate behaviour, while the latter is built on top of the temperament,
i.e. through experiences), we use the two terms interchangeably here, as what we
are looking for is a simplistic model to categorize our players’ behaviours.
Using the descriptions of each type as a guideline, and associating the model to the
time responses for each type, as analyzed in [28], those archetypes are manipulated a
little, to get the results shown in table 2.1 describing the playing style of each type.
In table 2.1 are shown the "specifics" for each personality type. A set of suits has
been scaled from 1 to 4 depending on how fitting it is to each personality, where the
suits are competitiveness, strategy, analysis paralysis and contrast, and they will be
better described later. The scale system is applied instead of just pointing out if
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Table 2.1: Associated gaming skills to each of the four temperaments, in a scale
from 1 to 4, where 1 means it is a strong suit for the type.

Sanguine Choleric Melancholic Phlegmatic
Competitiveness 3 1 2 4

Strategy 4 2 1 3
Analysis Paralysis 4 3 2 1

Contrasts 1 2 3 4

they are descriptive of the archetype or not in a binary fashion, in consideration of
this not being exact, because of people showing different traits even if labeled with
the same personality type. The table has the purpose not to strictly define a player
type, but more to give an idea to our human players on what is to be expected from
each temperament.

• Competitiveness: shows how much a player cares about winning. It can be
assumed that player types with a high value of competitiveness would do any-
thing in order to win, without caring about how other players could perceive
them.

• Strategy: indicates if a player is careless in his moves or if there is a long-term
plan behind. Players scoring high in strategy might play unintuitive or non-
obvious moves, in order to satisfy the long-term plan. The lack of it might
end up with more of short-term game (obvious moves, which give gain in the
following few steps but not ultimately the best moves to win the game).

• Analysis Paralysis: high scores result in the player taking a long time between
moves, possibly getting overwhelmed by the game and stalling.

• Contrast: if the player likes contrasts, it can be assumed it would play in
a more aggressive and less defensive way, favouring risky moves over more
conservative ones.

There are more distinctions that could be added to the table, but this already
defines four very different playing styles and it feels it could be easily matched to
our human players. Unfortunately, the Phlegmatic type cannot really stand up for
its skills in the games chosen in this project. A better perception of this type would
be given with games that involve deception and contrast, like Werewolf[12] or the
Resistance[5].

2.2.9 Myer-Briggs
The Myer-Briggs model distinguishes among 4 different bipolar traits: extroversion
(E) and introversion (I), sensing (S) and intuition (N), thinking (T) and feeling (F),
and judgment (J) and perception (P). It is assumed that people have a preference
towards either ends of the scale, for each of those pairs, distinguishing then 16
different types of people[77, 78].
This model has being widely adopted in the business sector, although it is not
considered as fully effective and reliable[87, 21]. We have never considered this
model as suitable for our purposes -having a too broad variety of classifications-,
but since it is widely used in other contexts, we could find an adaptation between
it and Keirsey’s types[61, p. 23].
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2.2.10 Keirsey’s Temperaments
Keirsey distinguishes between two basic human behaviours: communication and ac-
tion. The first one could be further divided in either abstract or concrete, while
actions could be defined as utilitarian or cooperative. The combination of those
4 traits forms the temperaments, which would be Artisans (concrete utilitarians),
Guardians (concrete cooperators), Idealists (abstract cooperators), and Rationals
(abstract utilitarians)[61].
Those four types can be further distinguished in 4 sub-types each, for a total of 16
different personalities that can be matched one-to-one to the Myer-Briggs’ ones, as
can be seen in table 2.2. This model was described in Steward’s unified model[105],

Table 2.2: Keirsey’s types and associated Myer-Brigg’s types.

Guardian Artisan Idealist Rational
Supervisor Promoter Teacher Fieldmarshal

(ESTJ) (ESTP) (ENFJ) (ENTJ)
Inspector Crafter Counselor Mastermind

(ISTJ) (ISTP) (INFJ) (INTJ)
Provider Performer Champion Inventor
(ESFJ) (ESFP) (ENFP) (ENTP)

Protector Composer Healer Architect
(ISFJ) (ISFP) (INFP) (INTP)

and being proposed as interchangeable with Bartle’s taxonomy, not taken into con-
sideration as base model for the project.

2.3 General Game Playing
Games have been considered suitable for the development of Artificial Intelligence,
and have been adopted as a framework for many years now; in [95], Schaeffer and
van Der Herik present an interesting overview on the topic. In this project, we will
focus on the branch called General Game Playing (GGP), firstly described by Pell’s
thesis[85]. General Game Playing deals with agents learning new games without
prior knowledge or ad-hoc strategy. The rules are given to the player only once the
game has started, and the agent will have to work out a strategy while the match is
ongoing. Contrarily to gaming agents like Deep Blue[24] or AlphaGo[100], a General
Game Player is not supposed to know a-priori any game-specific heuristic, and the
heuristics it is supposed to be supplied with need to be applicable to any game,
hence the word General. The subject includes a broad range of topics in AI, as
knowledge representation, search algorithms, machine learning and, of course, game
playing[48].

2.3.1 Games Structure
Innumerable games could be proposed to General Game Players, as long as they
satisfy the common requirements: the games are supposed to have a fixed number
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of players, and can be defined as in definition 2.1.

Definition 2.1 A game in GGP can be described as an automaton defined by a
tuple < S,A, δ, s0,Γ, Gp >, where:

• S is a finite number of states;

• A is a finite set of actions;

• δ is the transition function, where δ : S × A→ S;

• s0 is the initial state, where s0 ∈ S;

• Γ is the set of final states, where Γ ⊆ S;

• Gp, the goal function associated to each player p, for each state s ∈ S.

Only a subset of the games available for General Game Playing will be considered
here: all of them are perfect information games, turn-dependent, and bounded to
2 players, as will be further described in section 3.3.1. Games are represented with
state machines (see appendix A for further information), specifically, they can be
seen as trees, where each node-successor represents the legal moves from the parental
node. Additionally, games are also Markov Decision Processes[18] -better described
in 2.5-, as the history of transitions between states is irrelevant in the decision
process for the future, at any given point[48, p. 189].
When the game starts, the players are provided with the rules of the games, described
in Game Description Language (GDL)[69] -a logic language, variant of Prolog. The
language has recently been extended (GDL-II) to allow description of imperfect
information games[107, 96].
In GGP, every game must be playable and weakly winnable - if multiplayer -, or
strongly winnable - if single-player -, according to definitions 2.2 and 2.3, as found
in [47].

Definition 2.2 (Playability) A game is playable if and only if every player has
at least one legal move in every non-terminal state.

Definition 2.3 (Winnability) A game is weakly winnable if and only if, for each
player, there is a sequence of joint moves of all players that lead to a terminal state
where that player’s goal is maximal. A game is strongly winnable if and only if, for
some players, there is a sequence of individual moves that leads to a terminal state
of the game where that player’s goal value is maximal.

The administration of the matches is left to the Game Manager, which communicates
to and with the players regarding the ongoing game, i.e. informing when the respec-
tive turns start -passing over the state of the board and the list of previous actions-,
or when the game is over. In figure 2.5 we can see the idea behind a GGP system[48].
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Figure 2.5: Diagram of a classical GGP environment (adapted from [48]).

The player used for this project uses a Monte Carlo Tree Search algorithm to find a
strategy, and has been modified to go through already played games, and it will be
further described in section 3.2.

2.4 Monte Carlo Tree Search Algorithm
Monte Carlo Tree Search has become more and more popular recently, due to the
simplicity of implementation and the generality of application. It has been applied
to a multitude of scenarios, giving satisfying results. Sticking to the games’ develop-
ment in the field of artificial intelligence, the Monte Carlo Tree Search algorithm has
been applied to a variety of games: Go[44, 45, 35], Hearts[93], Settlers of Catan[106],
Amazons[68], and Lines of Action[116, 115] among the others. Moreover, it can also
be associated with the best players participating in the General Video Game Playing
Competition[86].
The algorithm has been developed starting from the idea of Monte Carlo methods,
which obtain results relying on random sampling. In the search case, the Monte
Carlo sampling is associated to a tree structure, where - when applied to games -
each node represents a state in the game, and contains the current QValue and a
value n, where n is the number of visits for that specific state[27]. The algorithm
could be summarised in four main steps[26], as can also be seen in 2.6:

1. Selection: starting from root, and until a terminal node is hit, a leaf child node
is recursively selected for expansion;

2. Expansion: children nodes are added to the tree, depending on the available
moves in the current state;

3. Simulation: one play-out is run through until a value chargeDepth limit is
reached. A parameter epsilon decides whether a random move is picked, or if
Move-Average Sampling Technique (MAST) which will be better described in
the next paragraph is applied.

4. Backpropagation: the nodes in the tree get updated with the results from the
simulation, associating a value Q(s, a) to each node, defined as

Q(s, a) = 1
N(s, a)

N(s)∑
i=1

χi(s, a)zi (2.1)

where, using the same notation as [44] and [22], N(s, a) is the number of times
action a has been simulated from state s, N(s) describes how many times a
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game has been played out through state s, zi is the result of the ith simulation
played out from s, and

χi(s, a) =

1 if a was selected from state s during ith playout;
0 otherwise.

Figure 2.6: Iteration of MCTS (graph adapted from [22, 27, 116]).

In the case of this project, the search ends when Limit simulations - set as a constant
limit = 1000 - is reached, but could be replaced by any time or memory constraints.

2.4.1 Monte Carlo Tree Search Enhancements
The search can be associated to a set of other algorithms and tree policies, that can
lead to quicker results compared to the basic Monte Carlo Tree Search, and might
be preferred in some particular circumstances. In [22] we can find a comprehensive
survey of the Monte Carlo Tree Search methods that have been implemented so far,
and we would like to refer to it if the reader is interested in further information.
Different enhancements can be applied at different stages of the search, it is then
possible - and suggested - to apply multiple algorithms at once[40]; in our case, our
algorithm uses UCT with RAVE and GRAVE as extensions for the learning process,
and MAST as a search-control policy, and they will be better described later in this
chapter. First thing, though, it is necessary to define what bandit problems are.

Bandit problems and Upper Confidence Bound (UCB)

Bandit problems are a class of sequential decision problems that could be mod-
eled over slot machines (known as "one-armed bandit" in Las Vegas), and describes
the exploitation-exploration dilemma, which is the problem of finding equilibrium
between exploiting an action that appears to be optimal in the short run, and
exploring the search space for a temporarily less-optimal but overall better one. As-
suming to be in a room with K slot machines, while having no knowledge of the past
observations, our goal is to collect information about each slot machine by pulling
their levers, while maximizing our cumulative reward at the same time. A K-armed
bandit can then be described as a set of random variables Xi,n, with 1 ≤ i ≤ K
and n ≥ 1, and where Xi,n represents the reward of pulling arm i for the nth time.
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All Xi,n are independent and identically distributed for all n, accordingly to an un-
known distribution, with unknown mean µi. Which bandit to play is decided with
the aid of a policy, whose goal is to minimize the regret of the player, defined as
νn = µ∗n− µi

∑K
i=1 E[Ti(n)], where ETi(n) is the expected number of plays of arm i

in the first n tries, and µ∗ is the best possible reward[22, 13, 64, 65, 99]. It is known
that the slowest growing regret policy is O(lnn), as described by Lai and Robbins
in [67], and one the simplest applicable policies, with expected logarithmic growth,
is Upper Confidence Bound (UCB), first published by Auer et al. [13], and defined
as

UCB1 = X i +
√

2 lnn
ni

.

Upper Confidence Bounds for Trees (UCT)

Firstly proposed by Kocsis and Szepesvári [64, 65], Upper Confidence Bounds for
Trees (UCT) considers every state in the game as a multi-armed bandit problem,
taking advantage of UCB1 and its simplicity and efficiency for the children selection.
Then, the selection of child node i depends on maximizing

UCT = wi
ni

+ Cp ∗
√

lnN
ni

where wi is the number of wins after move i, ni is the number of simulations for move
i, N is the total number of simulations for the current node, and Cp is a constant
that we will be passing as a parameter called ExplorationFactor.

Rapid Action Value Estimation (RAVE)

Rapid Action Value Estimation (RAVE) is part of policies that are categorised under
the name of All Moves As First (AMAF)[23, 53]. In this case, it is combined with
UCT, as first done by Gelly and Silver[43, 44], and it is meant to speed up the
nodes’ values evaluation, updating the value of each action every time it is taken,
even in subsequent courses of action, and not only when it is specifically selected at
one state. RAVE is based on a class of AMAF algorithms called α-AMAF, which
calculates the score for each action as

αQa + (1− α)U

where U is the UCT score, and Qa is the Q value for action a. In the RAVE case,
we have a parameter β instead of α, which is calculated as

β =
√

Rave

3 ∗ n+Rave

where n is how many times the node has been selected, and Rave is the value passed
as parameter to our search, representing the number of visits a node can have before
RAVE is not used anymore[22, 43, 44].
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General Rapid Action Value Estimation (GRAVE)

General Rapid Action Value Estimation (GRAVE) can be considered a generaliza-
tion of RAVE, where a node is considered to have reliable statistics only when a
certain number of playouts has been carried out. This value is passed as parameter
Grave, and when the number of playouts is greater than this parameter, then the
values of the actions are calculated using general RAVE, otherwise the closest parent
with a satisfying number of playouts is used as a reference to calculate the value for
Qa[25].

Move Action Sampling Technique (MAST)

The MAST method has firstly been described in [38] and applied in CADIAPLAYER
[36]. This technique keeps track of the average value of each move, updated at back-
propagation, and independent from the state it has been played in. From literature
it is known that, on the long run, actions a with an higher average value Qmast(a)
are most likely to be better than the ones with lower average[39]. During playout
the move selection can then be biased, with probability distribution corresponding
to Gibbs distribution, as

P (a) = eQmast(a)/τ∑n
b=1 e

Qmast(b)/τ

where τ is a parameter that controls the distribution, and Q(a) = maxGGPscore =
100, if a hasn’t been explored yet[38, 36, 39].

Discounting

Two different discounts are applied to the moves’ values, controlled by two separate
variables. One discount, depending on a variable called ChargeDiscount, applied
at backpropagation, and the second, depending on TreeDiscount, is applied as a
discount in the tree. It is thought that the search tree results are more reliable
than the ones found at charge, therefore only a smaller discounting needs to be
applied[52].

Early Cut-Off

Running Monte Carlo Tree Search algorithms might be time consuming, so a limit
can be introduced to try to skim the moves that look more unappealing, so to focus
better on the moves that are more promising[37]. A limit ChargeDepth is applied
to the tree size, in order to make sure that a response to the opponent is being sent
back in a decent amount of time. When this limit is hit by our search, a set of default
values is returned, controlled by an array of variables called ChargeDefaults, one
for each player[52].

Heuristics

Innumerable heuristics could be applied, either game-dependent (i.e. through piece
counting[52]), based on the move selection history[94], or used as personality bias.
The latter is the case applied in this project’s search, with two arrays of variables
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- one per each player - called Aggressiveness and Defensiveness, and one value
called NiceThreshold. As the names are mostly self-explicable, Aggressiveness
and Defensiveness are controlling the goals of the game, being an increasing or
decreasing factor, depending on the current state of the game. Considering that the
maximum goal is 100, and the minimum is 0, we have that:

• If goalcurrent > 85, the game can be considered as already won, and no biases
are applied;

• if 60 < goalcurrent < 85, then the goal is biased using the Aggressiveness
value;

• if goalcurrent < 35, then the goal is biased using the Defensiveness value;
• if 35 ≤ goalcurrent ≤ 60, then a value r is picked uniformly at random in [0, 1]

used to select with probability Pa,d = 0.5 which bias to apply, Aggressiveness
or Defensiveness.

It is to be noted that goalcurrent takes its value from the games rule, and most games
only expect a win, a loss, or a draw, corresponding to 100, 0, or 50 points each. The
values get then discounted, allowing to have some more flexibility with the goalcurrent
values described above.
Lastly, the value NiceThreshold controls which difference in goals sets the AI to
lower its standards and pick a sub-optimal move instead of the best one, to make
the gaming experience more enjoyable for the opponent[52].
Although those parameters have relatively less influence in the search outcome it-
self, it is easier to intuitively relate them to specific personality types. For example,
looking back at table 2.1, a higher Aggressiveness value would be expected for
higher "Contrasts", hence for Sanguine users, as well as lower NiceThreshold for
more competitive players, as Choleric and Melancholic people are supposed to be.

2.5 Machine Learning
Machine Learning (ML) refers to the concept of extrapolating patterns and infor-
mation from data. There are three main approaches that are applied in machine
learning: supervised learning, where the agent learns to map certain outputs de-
pending on specific inputs; unsupervised learning, where the agent is given an input
and is meant to discover patterns in the outputs, so to be able to draw any conclu-
sion about the data; and lastly, reinforcement learning, where behaviour is meant
to be learnt depending on rewards or punishments. In the case of unknown reward
functions that need to be withdrawn from observed behaviour, the problem becomes
an inverse reinforcement learning one. In the case of this thesis, the problem falls in
the supervised learning field. Classical methods for supervised learning could not be
applied in this project, due to the complexity of the model used. In this section will
be defined the information needed to understand the Bayesian probability model in
section 3.6. A Bayesian approach simply means calculating each hypothesis’ prob-
ability and using them to infer predictions from the data[92].
The combination of a Bayesian framework and excerpting of preferences has gotten
promising results in literature[91], as well as the combination of Bayesian statis-
tics and evolutionary algorithms, as for example in [110], where an Approximate
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Bayesian Computation algorithm (ABC) has been combined with a Differential Evo-
lution one; in [84], where Bayesian Networks were used instead; or in [113], where
Bayesian Inference has been matched with Genetic Algorithms.

2.5.1 Decision Theory and Preference Elicitation
Looking at the games’ structure, it is easy to associate the problem of selecting the
next move in a game to the topic of Decision Theory, which is an interdisciplinary
field intuitively defined as the analysis of choices between options, each one having
an expected utility value. The underlying idea in decision theory is called Maximum
Expected Utility (MEU), where "an agent is rational if and only if it chooses the
action that yields the highest expected utility, averaged over all the possible outcomes
of the action"[92]. In the specific, not having a full picture of the actions choices
for all states of each game, the problem tried to be solved in this thesis falls in
the class of "Decision Making Under Uncertainty", which, as the name hints, refers
to the problems where either information or knowledge are incomplete[97, p. 3-4].
Even more specifically, the goal to extract preferences depending on the personality
of the player would fit in the Preference Elicitation problem, as it tries to identify
the favourite events of a group of people, over the set of available actions that can
be selected from being in a certain state, depending on the group’s personality.
The choices throughout games are here extracted from a Monte Carlo Tree Search
algorithm, described previously, which has a set of controlling parameters the actions
picked depend on. Different sets of parameters lead to different actions, hence the
decisions should be able to be associated to a set of MCTS parameters. This set
is meant to be found using a Genetic Algorithm -described later in this chapter-
, with a fitness function that represents how close the AI’s moves choices are to
the humans’. Our hypothesis is assuming multiple major differentiation of people’s
behaviour in game playing, based on specific personalities. We are expecting that
games played by people with different personality would develop with different types
of underlying strategies, than if compared to people with the same personality. The
implementation of our algorithm is foreseeing the application of a diverse set of
parameters, depending on the personality of the player.

2.5.2 Markov Decision Process
It has been mentioned in 2.3 that each game in General Game Playing is seen as a
Markov Decision Process. In order to clarify what a Markov Decision Process is, it is
necessary to start defining the Markov property. Assuming to work in sample space
Ω, let I be a state-space, X is a random variable with values in I where X : Ω→ I,
then

λi = P(X = i) = P(ω ∈ Ω : X(ω) = i).

It is said that (Xn)n≥0 is a Markov chain with initial distribution λ and transition
matrix H = (hij : i, j ∈ I) if
(i) X0 has distribution λ;
(ii) for n ≥ 0, conditional on Xn = i, Xn+1 has distribution (hij : j ∈ I) and is

independent of X0, · · ·Xn−1.
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Theorem 2.1 A discrete-time random process Xn0≤n≤M is a Markov chain (λ,H)
(or just called Markov(λ,H)) if and only if ∀i i1, · · · , iN ∈ I

P(X0 = i1, X1 = i2, · · · , XN = iN) = λi1hi1i2hi2i3 · · ·hiN−1iN .

Additionally:
Theorem 2.2 Let (Xn)n≥0 be Markov(λ,H). Then, conditional on Xm = i,
(Xm+n)n≥0 is Markov(δi, H) and is independent of the random variables X0, · · · , Xm.
The proofs are let to be read in [82], where we have taken the cue from for the
above theorems and definitions. However, more informally speaking, the Markov
property is assuming that the Markov Chain X is in a current state st, then no
additional information is given by how st has been reached. Therefore, the current
state st provides enough information for the reward to be computed without looking
at previous states. Subsequently, Markov Decision Process can then be defined as
sequential decision processes with a Markovian transition function and a reward
function[92]. More formally, adapting from [88] and [80]:
Definition 2.4 A (finite) Markov Decision Process (MDP) is a tuple
< S,A, Psa, G.(·, ·), ξ >, where:

• S is a finite set of states;
• A is a finite set of actions;
• Psa(·) are the state transition probabilities upon taking action a in state s;
• Gp(s, s′) is the reward function;
• ξ ∈ [0, 1] is the discount factor.

2.6 Genetic Algorithm
The information to be inferred from the dataset is a set of parameters which can be
used as input to an agent, expecting that the output actions will match humans’,
when the human has the same personality as the agent being trained. In order to
determine this specific set of parameters, an optimization algorithm is applied over
the fitness function 2.1. The approach adopted is a Genetic Algorithm.
Genetic Algorithms (GA) are part of the family of stochastic optimization methods,
and are based on Evolutionary Algorithm (EA), having the purpose to study the
adaptation of individuals throughout time. First implemented by John Holland and
his colleagues and students between 1960s and 1970s[54], there has been a growing
interest in the topic in the past years. Evolutionary Algorithms take their terminol-
ogy from biology, being inspired by it in the first place. The concept of population is
then introduced as a set of individuals. Each individual has a chromosome, formed
by a set of genes. The individuals are then compared using a fitness function, which
is used to decide how the population should evolve throughout the generations. A
more detailed description of the biological terminology can be found in [75, p. 5] and
in [112, p. 35], while here the vocabulary will be limited to what is strictly related
to the purposes of this project.
Termination methods may be applied to Genetic Algorithms, however, there is no
complete certainty of finding the actual optimal solution, as the outputted solution
might be due to premature convergence and only be a local optima.
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2.6.1 General Structure

There is no final definition of GAs, but a general structure can be drawn from
literature:

• Individual: a set of genes. The genes have a defined encoding scheme, that
can be a binary encoding scheme, strings, real numbers, integers, and so on.

• Population: a family of Ψ individuals is initialized at random, forming the
first generation of the population.

• Fitness function: is a function F whose value is calculated at evaluation time.
The overall goal of optimization problems is to maximise (or minimise) the
value of this function.

• Evaluation: each individual i is evaluated, after being decoded in the relative
variable, and the value of F (i) is calculated, where F is the fitness function,
and i = 1, ...,Ψ.

• Selection: in order to form the next generation it is needed to select which indi-
viduals will survive evolution, and which will not. There are multiple strategies
for selection, where the more popular are tournament selection, roulette-wheel
selection and ranking selection. Those methods will be further described in
subsection 2.6.2.

• Elitism: keeping track of our best individual generation after generation re-
duces the risk of having a decreasing fitness due to mutation or crossover. It
has been shown that combining elitism to a selection algorithm improves the
final results[15].

• Crossover : the reproduction of the individuals happens through a crossover
algorithm, where, once two parents are picked, two new individuals containing
genes from either parents are added to the next generation. Further informa-
tion about the topic can be found in subsection 2.6.3.

• Mutation: Once the new generation is born, a mutation can happen to none,
one or multiple genes in each individual. A description of how mutation hap-
pens over this project’s encoding can be found in 2.6.4.

2.6.2 Selection

In this section we will describe three different algorithms for the selection process
will be described. Only the roulette-wheel selection has been used in this thesis, as
specified in 3.7, but the other two algorithms have been considered and might have
been applied for comparison if there were no time constraints.
Tournament selection Tournament selection, as the name hints, it is the se-
lection process carried out as a tournament. Once defined a tournament size ts,
ts individuals are taken and compete for survival. The lower ts is, the higher the
competition. This flexibility makes this approach one of the most widely used in
GAs[73].
Roulette-wheel selection The roulette-wheel strategy selects individuals pro-
portionally to their fitness value. To obtain the resemblance with an actual roulette-
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wheel, a cumulative fitness function is calculated as

φj =
∑i
j=1 F (j)∑Ψ
i=1 F (i)

, j = 1, ...,Ψ

where F (i) is the fitness value of individual i. A value r is drawn uniformly at
random in [0, 1], and the individual with the smallest j that satisfies r < φj is
selected[112].
Rank selection Firstly defined in [14], it ranks all the individuals depending
on the value of their fitness function, from rank Ψ for the best individual, to 1 for
the worst. Each individual i has then an associated probability of being selected,
calculated as

P (i) = 1
Ψ
(
η− + (η+ − η−) i− 1

Ψ− 1
)
; i ∈ 1, ...,Ψ

where the conditions η+ = 2 − η− and η− ≥ 0 are satisfied, since the population
size is constant, and η−

Ψ is the probability of selecting the worst individual in this
generation’s population, while η+

Ψ is the probability of selecting the fittest[20].

2.6.3 Crossover
We will describe two of the most used crossover algorithms: one because we think it
helps to have a better understanding of the crossover process; and the second one,
which is the algorithm that has applied in this project. Further techniques can be
found in [111].
Single Point Crossover A popular way of applying crossover is to decide on a
"barrier" c, and create the offspring o1 and o2 with c genes from one of the parents,
and (G − c) genes from the other one, where G is the total number of genes in an
individual. This approach is called Single Point, and it is represented in figure 2.7.

Figure 2.7: Example of Single Point crossover between two individuals.

Deriving from this idea, there is Two-Points crossover, as well as Multi-Points
Crossover, which explanation at this point is trivial.
Averaging Crossover Given two individuals as parents, this approach returns
two children o1 and o2 with genes calculated as an average from the parents’ p1 and
p2, as

go1 = αgp1 + (1− α)gp2

and
go2 = (1− α)gp1 + αgp2

where α is chosen uniformly at random in [0, 1][66], for each gene g.
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2.6.4 Mutation
Any gene in any individual could be subjected to mutation, depending on probability
Pmut. When dealing with genes encoded with real numbers, the most common
approach for mutation is the real-number creep, where a creep value limits the
range of values the new gene can take. Let Cr be the creep rate, then the new gene
is

g ⇐ g − Cr
2 + Crγ = g + Cr(γ −

1
2)

where γ is picked uniform at random in [0, 1][112, pp. 53-55].

2.6.5 Termination
Genetic Algorithms usually stop when there is stagnancy: either the fitness function
has not been increasing for generations, or the individuals converged to very similar
ones (leading to a very similar fitness function too). In some cases it is preferred to
give a fixed number of generations to run the GA for; in other, a decency fitness test
is added, stopping the algorithm when a minimum fitness value is reached, finding
an acceptable result instead of the optimal one. In this project, a stagnancy test
has been adopted, and will be further described in section 3.7.
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Methods

This chapter will contain the methodologies applied during the development of this
project. Firstly, in section 3.1 there will be the definition of the problem this the-
sis tries to solve. The selected personality model to be applied in the project is
described in section 3.2, followed by the explanation of how the data has been col-
lected, in section 3.3. Section 3.4 introduces the base project, that is the baseline
for the artificial agent the algorithms implemented in this thesis are training upon.
The description of the gaming algorithm involved will be found in section 3.5, which
is a Monte Carlo Tree Search algorithm. Section 3.6 includes the probability model
in association with our problem. The Genetic Algorithm used to infer information
from the dataset can then be found in section 3.7. Lastly, the evaluation of the set
of parameters outputted by the above mentioned algorithms can be found in section
3.8.

3.1 Problem Definition

The aim of this thesis project is to understand if procedural personæ can be inferred
from human game playing, and if it is possible to recreate those personalities by
parameters tuning of a Monte Carlo Tree Search algorithm, so to return the opti-
mal move for each state, where optimal in this case means similar to the human
player’s moves. A set of parameters ~θj would return action asj for a state s, while
-for the same state s- we can expect a different ask for parameters ~θk. What we
aim to show by the end of this project, is that for a personality ρ, we can have
a set of parameters ~θρ that leads the artificial agent to pick the same actions (or
equivalent), as a human with personality ρ. In order to find the values associated
to those set of parameters, we will apply a Genetic Algorithm over the Monte Carlo
Tree Search, expecting the optimal set of parameters to match a set of training data.
Finally, each set of parameters ~θρ will be evaluated on new clusters of data, part
of which is of unknown users (with relatively unknown personalities), and part of
known testers. The influence that the choice of parameters ~θ will have on the search
outcome, matching or not the correct personality, will confirm or disprove our thesis.
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3.2 Personality Model

After an extensive research over personality models, the Galen-Hippocrates’ model
became the best suited for this project, as it seems like different players could be
easily mapped to a specific type, giving us some variety and not too subtle distinc-
tions. Furthermore, there is academic background, that gives it some reliability as
a model. Some other models, like BrainHex, or the Big Five, would give a more
accurate representation of personalities, however the expected amount of data re-
trieved will not give them justice. Every model listed in section 2.2 could succeed
in different settings, but they are either too complicated for our scopes, or they are
not backed up by enough academic research to be used as reliable models.

3.3 Data Collection

When dealing with Optimization Algorithms and Machine Learning, it is usually
suggested to have a discrete amount of data available. Knowing how slow data col-
lection could be, the best option for us would have been to find existing gameplay
databases. Unfortunately, as the existing platforms were unresponsive, or the data
was just not suitable for our purposes, this research was unsuccessful. Consequently,
we set up our own data collection system, taking advantage of the Tiltyard server[8]
as framework.
The Tiltyard server has been developed as a testbed for general game players, which
also implies it not meant to be strictly used by human players. Because of the
not extraordinarily user-friendly interface, we had to provide our testers with an
instruction file[32], as well as a couple of social platforms (a Facebook group and
an IRC Channel, to be specific) to find opponents to play against. Additionally, in
order to keep track of the personalities of the players, we asked our testers to fill
a questionnaire with the information not collected by the Tiltyard server, such as
usernames, perceived personality of the adversary, and player’s own personality.
In the instruction file[32], the testers can find a brief description of the personality
models, with a table representation (see table 2.1) to help them define their own
archetype, the rules of the games, as explained in subsection 3.3.1, together with
the actual instructions on how to use Tiltyard.
To simplify the game set-up process, we have implemented a second version of the
Tiltyard homepage, including the choice of playing against the latest version of
CadiaPlayer[6, 36, 19], a player previously developed at Reykjavik University. How-
ever, time constraints have not played in our favour, and the page has not been
available to the public early enough to make any actual difference in the data col-
lection process.
The participation in the data collection has not been very high, even after organiz-
ing periodic events trying to simplify finding an opponent. Only a small amount
of games were played in total, but we managed to gather an acceptably uniform
distribution of games and personalities, as will be better described in section 4.2.
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3.3.1 Selected Games
The games selected are two players, perfect information games: Checkers, Nine
Board Tic-Tac-Toe, Connect Four, and Skirmish. In figures 3.1, 3.2, 3.3, and 3.4 we
can see examples of the games while ongoing. Although a few of those games cannot
be considered new for our testers, the version implemented in Tiltyard might have
included a few variants of the rules as they are traditionally known.
The choice of games has been dictated by the list of available games in Tiltyard;
once we selected the ones with a usable human interface, we checked the average
number of moves, excluding the ones that had too little or too many, to avoid games
to be too short or too long.

Checkers

The game is played on a 8x8 squares chessboard, where each player has 12 pieces.
The goal of the game is to capture all the adversary pieces by jumping over them.
Pieces can move only diagonally, and on unoccupied squares. In this version of
the game, capturing is not mandatory, and it is possible to capture multiple pieces
during the same turn (if there is an empty square between every two). When a piece
reaches the adversary’s side of the board, it becomes a “king”, and gains the ability
to move backwards. The player who has no more pieces on the board, or cannot
move anymore, loses the game (see figure 3.1).

Figure 3.1: A game of Checkers.

Checkers has been selected because it is a classic game, where non-simple strategies
can be developed. It is also the most time consuming game among our choice, having
99.91 moves on average for each game on Tiltyard[1].

Nine Boards Tic-Tac-Toe

The game is played on a grid formed by 3x3 simple Tic-Tac-Toe grids. The first
player can play on any board, but his/her choice would force the second player to
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play in the grid corresponding to the square of the previous move (if player 1 picks
the central square, player 2 will have to play in the central grid). If the grid the
current player is supposed to play on is full, then any other move is allowed. To
win, the player has to win on any one of the boards (see figure 3.2).

Figure 3.2: A game of Nine Boards Tic-Tac-Toe.

Nine-Board Tic-Tac-Toe has 35.07 moves on average on Tiltyard[3], and has been
chosen because it is a variant of the more famous Tic-Tac-Toe, with the advantage
of not having too obvious moves.

Connect Four

The game is played on a 6x8 suspended grid. Taking turns, the players drop a token
of their colour in the grid. The goal is to have 4 tokens connected either horizontally,
vertically, or diagonally (see figure 3.3).

Figure 3.3: A game of Connect Four.

Connect Four has been selected for being the "quick game", with only 28.52 moves
on average on Tiltyard[2], and being mostly well known worldwide.
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Skirmish

The game uses a chessboard and the same pieces as chess, which are also moving in
the same way. The pieces are all worth the same, fixed, amount of points -from the
pawn to the king-. To win, the player has to eat the most amount of adversary’s
pieces. The game terminates when all the pieces of one player have been eaten, or
one of the players cannot move anymore. The rules of chess are not rules in Skirmish
(i.e. it is not possible to castle, there is no check mate, and so on...), however pawns
get promoted to queens when they reach the other side of the chessboard (see figure
3.4).

Figure 3.4: A game of Skirmish.

Skirmish has been chosen later in the thesis project, taking the place of another
game that had been selected first (called Battle), but was proving to be problematic
for our users to play. We then decided that a chess-like game, without falling into
the obvious choice of chess, was the perfect game for our evaluation process, having
a wide tree search as a consequence of its complexity. Only a handful of matches
have been played on Tiltyard, so we do not think that the average number of moves
of 59.67[4] is a reliable statistic.

3.4 Base Project
The implementation of this thesis project has been based on a work with the title of
"Virtual General Game Playing Agent"[52], previously carried out at Reykjavik Uni-
versity. The authors have joined the General Game Playing features with a Unity
Player who would mimic human behaviours when playing a game of Checkers or
Nine Men’s Morris. The player has a virtual reality interface, as we can see in figure
3.5, and it is meant to work with a joystick device and an Oculus Rift. Although
the graphic interface is fascinating, we have not taken advantage of it, focusing only
on the back-end GGP Engine.
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The back-end implementation is based on the ggp-base framework[98], which pro-

Figure 3.5: A screen-shot of the Virtual Agent while playing a game of Checkers.

vides API for the Game Manager, supplying libraries to handle the GDL reasoner
and the communication protocol, to create the game state machines, and to check
which moves are legal at each state. This framework has been improved with the
addition of a Monte Carlo Tree Search algorithm, tweaked depending on a wide
set of parameters that are supposed to give the virtual player a human-like gaming
style. Those parameters are the ones that are exploited in the current version of the
search, and are described in detail in section 3.5.1.
The Monte Carlo Tree Search is paired with an heuristic dependent on the number
of pieces on the board, which would affect the aggressiveness or defensiveness of the
virtual player’s next moves. However, having a more diverse selection of games in
our implementation, we are not adopting the same heuristic, relying on the evolu-
tionary algorithm to find a suitable balance in the 17 control parameters.
Lastly, in order to make the virtual agent more human, it has been provided with
the choice of a personality. When starting the game, the user can select values to
decide which personality the opponent will have. The personality model used here
is the Big Five, described in subsection 2.2.7, and in subsection 4.1 we can associate
the "older" model with the one chosen for the purposes of this thesis’ work.

3.5 Monte Carlo Tree Search
The search to evaluate which move needs to be played is implemented as a Monte
Carlo Tree Search algorithm with UCT. The algorithm satisfies the requirement
of not being game-dependent, and has been giving optimal results in the gaming
AI development. In section 2.4 we have seen the theory behind it and described
the different strategies that can be applied to a basic Monte Carlo Tree Search
Algorithm, while in this section we will understand the settings chosen for our
purposes.
We run our Monte Carlo Tree Search over each game sample, with a set of 17 different
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parameters that will affect the values in the tree and, possibly, the output. Those
parameters could be hand picked and hard coded (as they were in the old project we
based this thesis on), or chosen by the evolutionary algorithm described in section
3.7. As mentioned earlier, our algorithm is implemented allowing the addition of
RAVE and GRAVE over UCT, MAST, and other enhancements, as early cut-offs,
some personality-biased heuristics, and discounting.
Our algorithm runs over the matches collected, calculating the QValues for all the
moves in each state, but eventually forcefully selecting the same move as the user.
This is done to give us an easier way of mapping human behaviour over the states
available, focusing only on the knowledge we have available.

3.5.1 Parameters
The Monte Carlo Tree Search parameters are what truly affects the values of each
move, as we said earlier. Since each parameter represents and controls a different
piece of structure in the search, it is easy to assume that each of them will have its
own variable type and a range of meaningful values. More details about the intervals
are given in section 3.7.
The parameters can be described as:

• Rave is the threshold at which only the QValues are considered for selecting
moves, and Rave stops being used.

• Grave is the threshold setting when Grave stops being used, and only general
Rave is used for moves evaluation.

• ChargeDepth represents the depth limit for a play out.
• Horizon represents the maximum depth of the tree.
• ExplorationFactor is a UCT value that controls the exploration weight over

exploitation in the MCTS algorithm.
• Limit is the number of simulations the MCTS executes. It has been fixed to

be Limit = 1000, and will not be modified at any stage during the process.
• TreeDiscount decides how much discount there is on every move after ex-

panding a node in the tree.
• ChargeDiscount represents the discount applied after each play out.
• Epsilon represents the probability of using MAST instead of picking a random

move.
• ChargeDefaults is a couple of default values to be applied if a charge is

stopped in early stages.
• Defensiveness is a pair of values (one per each player) that bias the goal over

valuing defensive moves.
• Aggressiveness is a pair of values (one per each player) that bias the goal

towards aggressive moves.
• RandomError represents the probability of picking a random move instead of

the best one.
• NiceThreshold biases the move selection, forcing the AI to not always pick

the best move and becoming a too strong opponent.
The parameters Defensiveness, Aggressiveness, and ChargeDefaults are repre-
sented in the search as arrays of 2 items each, one per player. That explains the
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discrepancy between the number of parameters mentioned earlier, and the number
of items in the description list here above.

3.6 Probability Model
In this section the probabilistic model will be described, applying a Bayesian ap-
proach. Recapitulating, a set of parameters is plugged into a MCTS algorithm,
whose outcome changes the game actions. A dataset of several games where play-
ers can be distinguished depending on a personality is given as input. Let a set of
uniformly distributed parameters - within different ranges, as described in section
3.7 - be defined as ~θ = θ1, . . . , θL, where we know L = 17; ~ρ = ρ1, . . . , ρ4 indicates
any among the people’s personalities; and Dk

mcts with k = 1, . . . ,M , is the match
data retrieved from the MCTS, where M is the number of matches played. The
number of matches associated to a specific personality ρ will be indicated as Mρ.
It should also be distinguished from Dj

h, which refers to the human gameplay data
that has been collected, with j = 1, . . . ,M . As a simplification, we will refer to ρ as
any of the four personalities, as it is not necessary to singularly specify them in this
context, and to ~ρ as the set of all personalities in the model. We refer to Appendix
A for a brief summary of the probability rules and definitions referred to in this
section.
Overall, it is in the interest of this project to confirm the thesis where

P (~θ) 6= P (~θ|ρ), ∀ρ ∈ ~ρ (3.1)

as otherwise we would be proving that the set of parameters ~θ used will not be
relevant to distinguish a common pattern in the behaviour of a user with personality
ρ. Additionally, it would be favorable that Dj

h = Dk
mcts, ∀j, k ∈ [1, · · · ,M ], or in

other words, it would be optimal to have a set of moves resulting from the MCTS
that would match human actions.
In figure 3.6 is the Bayesian Network representation of the problem, to help clarify
the following statements.

ρ D ~θ

Figure 3.6: Bayesian Network representation.

The goal is to find the probability of P (~θ|ρ) over all the set of data, where

P (~θ|ρ) =
Mρ∑
j=1

P (~θ|Dj
h)P (Dj

h|ρ). (3.2)

Considering all matches in each set, and defining Dρ as the set of games [1,Mρ] for
a specific ρ, we can rewrite equation 3.2 as

P (~θ|ρ) = P (~θ|Dρ, ρ)P (Dρ|ρ) = P (~θ|Dρ)P (Dρ|ρ). (3.3)
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Knowing that ~θ is conditionally independent of ρ given Dρ, then P (~θ|Dρ, ρ) =
P (~θ|Dρ), and in order to maximise it we rewrite it as

P (~θ|Dρ) = P (Dρ|~θ)P (~θ)∑
~θj
P (Dρ|~θj)P (~θj)

. (3.4)

To break down equation 3.2, considering Dh as the set of all Dj
h, and starting from

the last term of the chain, let

P (Dh|ρ) = P (ρ|Dh)P (Dh)
P (ρ) .

As we are considering the datasets divided by personality ρ, we can assume for
our purpose that P (ρ|Dj

h) = 1 if the personality ρ is associated to the data Dj
h, or

P (ρ|Dj
h) = 0 otherwise.

Considering uniform probability over the personalities ρ, it is given that P (ρ) = 1
4 ,

concluding that

P (~θ|ρ) = 4
Mρ∑
j=1

P (~θ|Dj
h)P (Dj

h) (3.5)

where the matches taken into account are the one corresponding to the personality
ρ considered. Rewriting equation (3.5) for a specific ρ it is then obtained that

P (~θ|ρ) = 4P (~θ|Dρ)P (Dρ). (3.6)

From equation (3.6) the posterior is defined as P (~θ|Dρ), as the probability of having
a specific set of parameters ~θ matching a set of matches Dρ = D1

h, D
2
h, · · · , D

Mρ

h .
The problem of maximising the posterior can be reduced to maximising the numer-
ator of 3.4, as the denominator is the sum over all the possible data and parameters’
sets and is constant. Furthermore, P (~θ) is the prior of our model, constant as well,
and defined as

P (~θ) = 1
W

where W is the cardinality of the set of all possible parameters ~θ. Hence, the
maximisation problem has scaled down to

argmax
~θ

P (Dρ|~θ) (3.7)

which happens to be the likelihood of the model, where Dρ indicates all the matches
belonging to the same set, defined over a specific personality ρ. In other words, it
is the probability of selecting a list of certain actions given a set of parameters.
Being the games defined as Markov Decision Processes, the likelihood for each match
Dh can then be calculated as

P (Dh|~θ) = P~θ(a1, ..., aT |s1, ..., sT ) =
T∏
t=1

P~θ(at|st) (3.8)

where T is the number of turns in the match, and P~θ(at|st) is the probability of
choosing action a in state s, in turn t. It is to be noted that, on a higher level,
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multiple actions could be available for selection in any state s, due to the non-
deterministic policy of the games.
The probability of a human player selecting an action ahuman in a certain state s
is calculated using the Boltzmann-Gibbs distribution - which is often associated to
multi-armed bandit problems[31], hence applicable to MCTS - as

P~θ(ahuman|st) = eQ~θ(ahuman,st)κ∑A
j=1 e

Q~θ(aj ,sj)κ

where κ = 0.1 is a constant, Q~θ(ahuman, st) is the Q-value the search with parameters
~θ has associated to action ahuman in turn t, A is the total of all legal actions at current
state, and Q~θ is the Q-value of said actions, as calculated from equation (2.1).
The optimal outcome of the chosen set of parameters for a specific personality would
be to have

P~θ(amcts|st) = P~θ(ahuman|st)

where in the same state st, for any state t ∈ [1, . . . , T ], it is true that ahuman = amcts.
To maximise equation 3.7, we can calculate P (Dρ|~θ) as the product of P (Dh|~θ) over
all the matches Dh in Dρ. That is defined as the fitness function F (~θ) for the genetic
algorithm, where ~θ will - in the GA case - be an individual i. The fitness is then
defined as:

F (~θ) = M

√√√√√ M∏
m=1

T

√√√√ T∏
t=1

P~θ(a
t,m
human|st,m)) (3.9)

where T is the number of turns in each match, M is the number of matches gone
through, and, for each state s, at,mhuman is the action chosen by the human player. It is
easy to notice that the fitness function is the geometric mean over all the matches of
the probability of selecting the action ahuman picked by the human player in state s.
The fitness function uses the geometric mean over the matches in order to normalise
the fitness over matches with different number of turns, and the different cardinality
of the sets Mρ, for each ρ ∈ ~ρ.
The set of parameters ~θ that derives the likelihood for each set of data Di is, how-
ever, unknown. The optimization method used to find the values applicable to the
~θ is a Genetic Algorithm with a population of individuals ~θ and the likelihood (3.8)
is utilised as fitness function that needs to be maximised.

3.7 Genetic Algorithm
We have tried to solve the optimization problem with the implementation of a Ge-
netic Algorithm, as we previously mentioned in section 2.6.
We have taken a population of Ψ = 100 individuals, where each individual has a
set of chromosomes ci, with i = 1, . . . , 17, representing the parameters of the Monte
Carlo Tree Search, described in subsection 3.5.1, and initialized uniformly at random,
in a given interval. Each chromosome’s value is allowed to be in a meaningful range,
and will be better described at the end of this section.
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Each individual is used as parameters to run the search and, once the moves are
selected, the fitness F (i) is evaluated as the geometric mean of the Boltzmann-Gibbs
distribution function over every turn - or state s - of each match, using equation
(3.9) proposed earlier. For the GA purposes, ~θ will be referred to as individual i.
Different fitness functions could have been applied in order to possibly find a better
fitting one, however, only equation (3.9) has been considered due to time limitations.
The selection uses a roulette wheel approach, where each individual has probability

P (i) = F (i)∑Ψ
j=1 F (j)

of being selected, where F (i) is the fitness value of individual i. The cumulative
probability distribution is then calculated over all the individuals as

C =
Ψ∑
j=1

F (j)

and a value r is picked uniformly at random in [0, 1]. If∑i−1
j=1 F (j)
C

< r <

∑i
j=1 F (j)
C

then r sets the minimum threshold for selecting a specific individual, and individual
i is picked. The roulette-wheel method has been preferred over the other selection
algorithms, because of its non-biased approach[29].
Taking two selected individuals at the time, we apply crossover with probability
pc = 0.05. In case the crossover will not be carried out, the individuals remain
unchanged. We will be using averaging crossover, because of its closest analogy
with actual genetics[66]. Recapitulating, the gene g of the offsprings oi is derived
from the genes of parents pi, and is defined as:

go1 = αgp1 + (1− α)gp2

and
go2 = (1− α)gp1 + αgp2

where α is chosen uniformly at random in [0, 1] for each gene.
Mutation has probability pmut = 0.1 to happen, with a creep rate Cr = 0.4, which
represents the width of the distribution. We are adopting a uniform distribution to
apply the creep mutation, so the new gene would be obtained as

gm = g − Cr
2 + Crγ

where γ is uniformly distributed between [0, 1].
The values of pc, pmut and Cr have been tuned with few testing over a set of the
available games, and have been selected depending on the resulting number of gen-
erations, in order to try to avoid premature convergence.
The algorithm continues evolving the population until it becomes stagnant, or until
one of the individuals reaches an acceptable fitness fa = 0.9. To define a population
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as stagnant, we first calculate the variance of the chromosomes in all the individuals
of the current population, as

σ2
k =

∑Ψ
j=1

(
gkj−g

k
µ

sup(gk)−inf(gk)

)2

(Ψ− 1)

where gkj is the kth gene in individual j, gkµ is the average value for gene k, with
k = [1...C] and j = [1...Ψ], where C is the number of chromosomes and Ψ is the
population size. The population is considered then stagnant when

maxC,Ψk,j (σk) <= σa

where σa = 0.005 is what we can consider an acceptable standard deviation for our
gene’s values pool.
When the algorithm stops, the fittest individual will be the best set of parameters
to represent the personality of that gameplay set, being it the one with the highest
likelihood.

3.7.1 Parameters Intervals
This paragraph contains details about the values each gene in the chromosome can
possibly take. It is to be reminded that each gene represents a MCTS parameter,
as have been described in section 3.5. The genes are then said to be:

• long Rave, where Rave ∈ [0, (y ∗ Limit)], with y a small integer constant,
and limit the number of simulations the search runs for (for us, y = 5 and
Limit = 1000);

• long Grave, where Grave ∈ [0, 120];
• long ChargeDepth, where ChargeDepth ∈ [0, 100];
• long Horizon, where Horizon ∈ [1, 20];
• long ExplorationFactor, where ExplorationFactor ∈ [1, UCTlimit], with
UCTlimit = ΛJ +

√
2 lnn
ni

, where Λj is the average reward for the state j, n is
the number of simulation so far, and ni is the number of simulations after the
ith move. We can approximate UCTlimit = 140;

• double TreeDiscount, where TreeDiscount ∈ [0.9, 1];
• double ChargeDiscount, where ChargeDiscount ∈ [0.9, 1];
• double Epsilon, where Epsilon ∈ [0, 1];
• double[2] ChargeDefaults, where ChargeDefaults[i] ∈ [35.00, 45.00];
• double[2] Defensiveness, where Defensiveness[i] ∈ [0, 3];
• double[2] Aggressiveness, where Aggressiveness[i] ∈ [0, 3];
• double RandomError, where RandomError ∈ [0, 1];
• float NiceThreshold, where NiceThreshold ∈ [0, 100].

The types of the variables refer to Java primitive data types[83], where long is a 64-
bit two’s complement integer, double is a double-precision 64-bit IEEE 754 floating
point, float is a single-precision 32-bit IEEE 754 floating point, and with the no-
tation [2] we indicate arrays of 2 elements, or the element of index i if indicated as [i].
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3.8 Evaluation
The evaluation process involves the Skirmish games not used for training, of which
we have user-associated personalities, and a set of games from the 2013 and 2014
match archives available on the GGP researchers’ website[11]. The archives have
been filtered, leaving us with human-played games, with no errors in the match,
and that are either completed, or with an acceptable number of moves - to avoid
considering games that have been aborted only after a couple of turns.
Once recovered the winning individuals from the Genetic Algorithm, the evalua-
tion matches are run through both with the correct parameters, and with random
ones, calculating the Action Agreement Ratio (AAR)[56], which is the percentage
of matching moves between the users’ results and the search’s. We also calculate
∆Q = Q(ahuman) − Q(asearch), where Q(a) is the Q-value associated to action a in
state s. The magnitude of ∆ will be significant to evaluate if the parameters we
plugged in are having any influence.
The results of the evaluation process will be further discussed in the results chapter
4.4.
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4
Results

This chapter summarises the results collected along the stages of this thesis project.
In section 4.1 is a comparison between the personality model of choice and the base
project’s, so the interested user can translate the personality-based results to either
works. In section 4.2 are collected the results from the data collection. The output
from the Genetic Algorithm will be discussed in section 4.3. Lastly, the results from
the evaluation process will be discussed in section 4.4.

4.1 Comparison of Personality Models
It has been mentioned in section 2.2.7 that the original project this thesis is basing
itself on adopted the Big Five as personality model. Due to its complexity, it is
harder to be applied in this context, therefore a comparison of the two models, the
Big Five and the Four Temperaments, had to be searched upon. Unfortunately,
such direct comparison does not seem to be directly available. We then compare
Galen-Hippocrates’ four types to Keirsey’s and then to Myers-Briggs.
It is easy to find association between Keirsey’s types, Galen-Hippocrates’ and Myer-
Briggs’, as for example in Keirsey’s book[61]. In table 4.1 we can see a summary of
those types, and how they are equated to each other.

Table 4.1: Comparison of Galen-Hippocrates’ Four Temperaments with Keirsey’s
Four Temperaments and Myer-Briggs personality types, as from [61].

Models Types

Galen-Hippocrates Sanguine Choleric Melancholic Phlegmatic
Keirsey Artisan Idealist Guardian Rational

Myer-Briggs ESTP ENFJ ENTJ ESTJ
ISTP INFJ INTJ ISTJ
ESFP ENFP ENTP ESFJ
ISFP INFP INTP ISFJ

Common traits Myers-Bryggs SP NF NT SJ

There has been a study to correlate the Myers-Briggs types to the Big 5, and the
results are described in [71], and shown in table 4.2. The results were collected by a
population of 267 men and 201 women, and it was found that the correlation values
for men and women have negligible difference. Hence, we can just as well consider
the results gathered from the men population, and consider it valid. Given table
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4.1, we can easily define a table with the probability of being any of the Myer-Briggs
types, given the Galen-Hippocrates’, and it can be seen in table 4.3.

Table 4.2: Correlation of Big 5 factors with Myer-Briggs (data from [71]).

Big 5
Myer-Briggs

E-I S-N T-F J-P

Neuroticism 0.16 -0.06 0.06 0.11
Extraversion -0.74 0.10 0.19 0.15

Openness 0.03 0.72 0.02 0.30
Agreeableness -0.03 0.04 0.44 -0.06

Conscientiousness 0.08 -0.15 -0.15 -0.49

Table 4.3: Probability of each Myer-Briggs preferences given the
Galen-Hippocrates’ type.

E I N S F T J P
Choleric 0,5 0,5 1 0 1 0 0,5 0,5
Sanguine 0,5 0,5 0 1 0,5 0,5 0 1

Phlegmatic 0,5 0,5 0 1 0,5 0,5 1 0
Melancholic 0,5 0,5 1 0 0 1 0,5 0,5

Table 4.4: Extension of table 4.2, with clarification of the preferences scale.

E I N S F T J P
Openness 0 0,03 0,72 0 0,02 0 0 0,3

Conscientiousness 0 0,08 0 0,15 0 0,15 0,49 0
Extraversion 0,74 0 0,1 0 0,19 0 0 0,15

Agreeableness 0,03 0 0,04 0 0,44 0 0,06 0
Neuroticism 0 0,16 0 0,06 0,06 0 0 0,11

Table 4.4 shows the same values as in table 4.2, just written in a way that emphasises
the correlation values of each of the Myer-Briggs preferences, given the Big 5 types.
Finally, the relation between tables 4.3 and 4.4 can be calculated. Let J be a matrix
containing the values in table 4.3, and K be a matrix containing the values in table
4.4. Then it can be said that

R = JKT

where R shows the correlation between the Four Temperaments and the Big 5, and
which values can be seen in table 4.5.

Table 4.5: Correlation between the Four Temperaments and Big 5.

Openness Conscientiousness Extraversion Agreeableness Neuroticism
Choleric 0,905 0,285 0,735 0,525 0,195
Sanguine 0,325 0,265 0,615 0,235 0,28

Phlegmatic 0,025 0,755 0,465 0,295 0,17
Melancholic 0,885 0,435 0,545 0,085 0,135
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Figure 4.1: Correlation between the Four Temperaments and Big 5 factors.

In figure 4.1 we can see the comparison between all the temperaments, while in
figure 4.2 we can see the temperaments singularly. Since the old project allows only
three settings for each of the Big 5 traits (low, medium, high), we thought it could
be useful to normalize the results in 4.5 in a scale 0-2, and consequently round up
at the closest integer. The results are shown in table 4.6.

Table 4.6: Correlation of Big 5 factors with Myer-Briggs (table 4.5) normalised
to 2.

Openness Conscientiousness Extraversion Agreeableness Neuroticism
Choleric 2 1 1 1 0
Sanguine 1 1 1 0 1

Phlegmatic 0 2 1 1 0
Melancholic 2 1 1 0 0

The conclusion that can be drawn from looking at the results, is that the Neuroti-
cism value is mostly irrelevant for the Four Temperaments model, nonetheless, we
believe it might influence the game play, proving in this way that the chosen person-
ality model is not complete to represent human behaviour properly in the general
game play field. However, the magnitude of data collected for this project reduced
the option of utilising any other complicated model, which would maybe be more
suitable for modeling human behaviour in games.

4.2 Data Collection
Trying to counterbalance the lack of user-friendliness of the Tiltyard server, and the
time-consumption of some of the games that have been chosen, the data collection
process has been ongoing from the beginning of this project to the very last weeks.
However, once the data training had started, only the collection of Skirmish games
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(a) Choleric (b) Melancholic

(c) Sanguine (d) Phlegmatic

Figure 4.2: The four graphs representing the correlation between each of the
Four Temperaments and the factors that define the Big 5 model.

was allowed, namely the matches required for the evaluation process.
Overall, data has been collected from 84 matches, in 46 different games, with 17
different users. The games involving two human players have been considered as
two different matches by the genetic algorithm training, being associated to two
different personalities and gaming styles. All users had different background and
board games experience, and the most experienced players have been asked to try
multiple games changing their playing style, trying to associate it to each of the dif-
ferent procedural personæ. Thanks to this, although the amount of games collected
has been lower than expected, the distribution of games and personalities has been
tendentially homogeneous in both personality and games distribution, as it can be
seen from table 4.7.
In the questionnaire given to the users, aside their own personality, they also

have been asked to specify which personality they were perceiving from their oppo-
nent. Considering some bias toward the Phlegmatic personality due to Tiltyard’s
slow response, we can generally see a tendency in associating the opponents to the
Melancholic and the Phlegmatic personalities, while the self-definition results in a
more homogeneous spread. In table 4.8 can be seen the summary of the perceived
personalities of the opponents.
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Table 4.7: Summary of the games collected and the personality the users
self-associated to themselves.

Checkers Skirmish Connect Four Nine Board Tic-Tac-Toe Tot.
Melancholic 1 3 4 17 25

Choleric 5 1 8 8 22
Phlegmatic 0 1 3 9 13
Sanguine 4 3 11 6 23

Tot. 10 8 26 40 84

As mentioned above, the Phlegmatic’s numbers might be slightly skewed, inferring

Table 4.8: Summary of the games collected and the perceived personality the
users associated to their opponents.

Checkers Skirmish Connect Four Nine Board Tic-Tac-Toe Tot.
Melancholic 5 3 5 22 35

Choleric 1 2 6 11 20
Phlegmatic 4 2 10 5 20
Sanguine 0 1 5 2 8

Tot. 10 8 26 40 84

some false positive when the Tiltyard server was being unresponsive, and some false
negative when the users realised that the long turns might have been caused by the
system (ignoring completely - in such case - the possible phlegmatic tendency of
the opponent). However, considering that a good part of our testers were in com-
munication with each other - either in the same room, or in the IRC channel set
up for them - we still think that, overall, the collected results could be meaningful.
Nonetheless, this is the reason why only the self-described personality is taken into
consideration for the training of our genetic algorithm. It is interesting to see that
among the 84 matches collected, in 16 of them (almost 20%) either of the players
perceived the personality that was self defined by the opponent. The distribution of
the success in matching the opponents personality can be found in table 4.9. Check-

Table 4.9: Summary of the games where the users recognized successfully the
opponent’s personality.

Checkers Skirmish Connect Four Nine Board Tic-Tac-Toe Tot.
Melancholic 1 0 0 5 7

Choleric 0 0 1 3 4
Phlegmatic 0 1 2 1 3
Sanguine 0 0 1 1 2

Tot. 1 1 4 10 16

ers and Skirmish were unknown games to most of the users before participating in
the data collection, and that would excuse the inability to recognize any pattern,
or strategy, in the opponent’s game. Whilst Nine Boards Tic-Tac-Toe was a new
game as well, the simple correlation to basic Tic-Tac-Toe, could have improved the
process of following the gameplay. On the other hand, it can be assumed that the
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Melancholic type has been the most recognized as it might be easier to understand,
by the end of the game, if the opponent has had a long term strategy ongoing during
the whole match.

4.3 Genetic Algorithm
The Genetic Algorithm has been executed a few times, over different sized sets of
data, and the first thing to be noticed it is that the general fitness was much lower
than hoped for, causing the terminating test depending on acceptable fitness value
fa = 0.9 to be unused. Only stagnancy of the individuals was then defining whether
the algorithm would have terminated or not.
It has been mentioned in 3.7 that a few test runs have been carried out in order
to define which values to assign to the probabilities of crossover and mutation, pc
and pmut, and creep rate Cr. Those values have been tuned after several tests over
the Phlegmatic’s batch of games, which was the quickest to execute. The execution
time of each block of games depended heavily on the games played, rather than on
the parameters selection themselves. It is found that the Choleric and Sanguine
batch, containing a higher number of Checkers games, are noticeably slower than
the Phlegmatic group. In figure 4.3 it can be seen how the Phlegmatic individuals
have running time on the scale of 104ms, while Choleric and Sanguine have it on the
scale of 106ms. The graphs also show how much impact the different parameters
have on the execution times, which is generally consistent in the same personality
data group, if we exclude a few noticeable peeks that reduce in number and intensity
with the increasing of the generations.

4.3.1 Results Overview
In Appendix B can be found the plots of the single individuals over three runs of
the genetic algorithm. Each page contains the plots of the single genes, for each
individual in each generation. Of those three runs, the first one has a different
set of "algorithm" values pc, pmut, and Cr than the ones described in section 3.7.
Specifically, the first run adopts pc = 0.8, pmut = 0.015, and Cr = 0.2. The first
thing to be noticed from those plots is the number of generations. Although differ-
ent "algorithm" values have been tested over a set of the data in order to maximise
the number of generations - as mentioned earlier -, after the first tests, the results
have become inconsistent. Several runs took long to stagnate (over 40 generations),
whilst took other only few (8, for example). It has finally been decided to keep the
same set of values, given the unpredictability of the number of evolutions.

It is to be noticed that different personalities tend to different values for the same
gene. However, it is also to be pointed out that different runs aim at different results
as well. That can be excused as the optimal individual that is picked does not
look the same for each execution, leading to slightly different values combinations.
Looking in more detail to some of the graphs in Appendix B it can be seen when,
for each personality, different executions return very diverse values for the same
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(a) Choleric (b) Melancholic

(c) Sanguine (d) Phlegmatic

Figure 4.3: The four graphs represent the running times (in ms) for all the
individuals in each generation, on y and x axis respectively.

parameter. What it means is that each parameter alone is not really relevant in
the actions-matching for the personality in exam, as for example, the ChargeDefault
(see figure 4.5). This statement can be clarified looking at figure 4.4.

Figure 4.4: Correlation between specific Charge Default (x-axis) and fitness
(y-axis).

It can be seen that each genes clusters around some specific values, although not in a
meaningful distribution. Further correlations need to be investigated, to understand
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which combination of parameters is indeed useful to influence the agent’s game, and
which are not. It can also be noted from figure B.7 that the Exploration Factor gene

(a) Phlegmatic - I run (b) Phlegmatic - II run (c) Phlegmatic - III run

Figure 4.5: Charge Default gene for Phlegmatic personality, where the
generations are on the x-axis, and Charge Default values are on the y-axis.

seems to tend to the same value independently of the personality.
From the horizon graphs in figure B.9 it can be seen that the Melancholic type has
generally a higher valued outcome, as it would be expected, being it the personal-
ity with the higher correlation to game strategy. In the same way, the parameter
NiceThreshold seems to generally be higher for Phlegmatic and Sanguine, and our
model confirms them to be the two personalities with lower competitiveness. Figure
4.6 collects the results for the gene, after the third run. Contrarily to our expec-

(a) Choleric - III run (b) Melancholic - III run

(c) Sanguine - III run (d) Phlegmatic - III run

Figure 4.6: Nice Threshold gene’s results of the III run, the generations are on
the x-axis, while the values for Nice Threshold are on the y-axis.
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tations, the RandomError variable tends to a probability P (RandomError) = 0.5,
or higher in some cases (see figure 4.7 for a clearer picture). We recall that this
parameter controls the probability of picking a random move instead of the one
suggested by the search. This means that half of the actions the MCTS outputs
are aleatory, and that influences the fitness of the individuals, decreasing the help-
fulness of elitism in keeping the individual with the highest fitness for the following
generations.

(a) Choleric - III run (b) Melancholic - III run

(c) Sanguine - III run (d) Phlegmatic - III run

Figure 4.7: Random Error gene’s results of the III run, where the x-axis
represents the number of generations, and the y-axis the value of Random Error.

4.3.2 Fittest Individuals
After a few executions of the Genetic Algorithm, the fittest individuals for each of
them have been picked to feed the evaluation process. The values are collected in
table 4.10. The Genetic Algorithm returns all doubles; the parameters are casted
to the supposed type when plugged into the MCTS algorithm. The table afore-
mentioned contains values that are partially already rounded (the ones with type
long, to be exact), while the floating point ones are rounded to the third decimal
place. In figure 4.8 can be seen the evolution of the fitness function, generation after
generation. The red line represents the fitness of the fittest individual, calculated
with equation (3.9); the blue line represents the average fitness of the individuals
in that generation, while the blue errorbars are the standard deviation. Lastly,
the black line represents the probability of picking a random move, referred here
as "random-fitness". It was calculated as the geometric mean over all the matches
of the probability P (AnyMove) = 1

AvailableMoves
for each state. Considering that
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Table 4.10: Fittest individuals picked for evaluation.

Parameter Phlegmatic Sanguine Choleric Melancholic
epsilon 0.264 0.507 0.435 0.045

rave 2328 2744 4102 832
grave 65 71 84 55

chargeDiscount 0.937 0.947 0.985 0.930
treeDiscount 0.952 0.943 0.972 0.969

aggression 1.259 1.533 1.796 2.622
defensiveness 1.161 1.878 0.208 0.725
chargeDepth 53 54 47 61

horizon 12 12 11 19
randErr 0.503 0.451 0.398 0.380

chargeDefault 41.768 40.014 39.984 35.782
explorationFactor 68 81 71 105

niceThreshold 33.903 55.308 24.593 12.885

the MCTS is run always from the same state, it is expected that the probability
P (AnyMove) is constant throughout the generations. The optimal outcome would
have been having the fitness of the fittest individual topping the random-fitness, but
that is not true for most of the personalities. Figure 4.8 presents data from two dif-
ferent runs, as it is expected to be equally meaningful, the presented data has been
chosen only on the basis of being clearer, although the results between executions
are slightly different, they are equivalent nonetheless. It is to be noted that, while
the fittest individual is -averagely- not much better than only picking random moves
at each turn, it is still above the average fitness among the individuals in the same
generation, as expected.
For completeness, it is to be pointed out that only at report composing time it
has been found a discrepancy between the geometric mean calculated by MATLAB
(plotted in the graphs), and the one returned in the genetic algorithm logs. This is
indeed a problem to be fixed, but considered the demanding computation required
by the algorithm, it has been decided that this difference is irrelevant for the con-
clusions to be drawn.

4.4 Results Game Play

Among the games collected, only the Skirmish ones are used for evaluation purposes.
Together with the skimming over the games recovered from the Tiltyard’s bulks, it
lead us to a total of 8 Skirmish games from the data collection and 54 games from the
archives, divided in 22 Connect Four, 24 Nine Boards Tic-Tac-Toe, and 6 Checkers
matches. The evaluation algorithm has been running with the fittest individuals
outputted by the genetic algorithm (see table 4.10), and a set of random ones. The
results are described below, while a selection of the gameplays’ graphs can be found
in appendix B.
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(a) Choleric - III run (b) Melancholic - IV run

(c) Sanguine - IV run (d) Phlegmatic - III run

Figure 4.8: Fitness evolution (y-axis) throughout the generations (x-axis), for
each personality.

4.4.1 Skirmish Games with Fittest Individuals
The first evaluation process has taken the fittest individuals resulting from the
genetic algorithm. Figure 4.9 shows the results of one Skirmish game for each
personality, played with the "correct" parameters outputted by the GA. Although
the logs confirm that search moves are not actually the same as the user’s, figure 4.9
shows that the selected moves had an extremely similar QValue. It is necessary to
point out that Skirmish is a game with a lot of legal moves at each state, averaging
then the values of all of them. Table 4.11 contains the list of last moves in the
Choleric game, to show that the actions selected are, as matter of fact, different,
but essentially with the same weight. It is to be noticed that the Melancholic game
seems to be the least moderate, however the search is still following pretty closely
the trend set by the user.

4.4.2 Random Games with Fittest Individuals
Plugging in the "correct" individuals in a set of games we have no knowledge about
returned some interesting information. Appendix B contains plots of a few repre-
sentative games, while here we would be describing only the most relevant ones.
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(a) Choleric (b) Melancholic

(c) Sanguine (d) Phlegmatic

Figure 4.9: Evaluation of Skirmish matches, where the moves are represented on
the x-axis, and their QValue on the y-axis.

In figure 4.10 can be seen three examples of tendency of game development, for
the Sanguine personality, in games of Nine Boards Tic-Tac-Toe (NBTTT): figure
(a) represents a mostly matching game, with divergence in the last states; figure (b)
indicates more correlation between the search and the user’s selection; finally, figure
(c) shows a totally scattered selection. This can indeed mean that a few of those
games were played by users with Sanguine personality, while others are related to
other sets of parameters, therefore, another personality type.
Looking at the single matches, for both Nine Boards Tic-Tac-Toe and Connect Four,
in figures B.17, B.18, B.19, B.20, B.21, B.22, B.23, and B.24, it can be noticed that
Choleric and Sanguine tend to be a better fit. This implies that those two person-
alities might be easier to mimic, as well as that the personality model used in this
thesis is not truly representative.
From figure B.25, presenting the results for the Checkers game, it can be seen that
it has some of the Skirmish behaviour. Due to Checkers extensive state space, the
difference in value between them is minimal. However, the Melancholic personality’s
search seems to have more difficulties matching the users’, then the other personal-
ities, confirming once more what said earlier about personalities that are easier to
represent.
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Table 4.11: Last moves in the Choleric-Skirmish game.

Search Action QValue User Action QValue
[( move 1 5 4 8 ), noop] 49.495 [( move 6 7 4 5 ), noop] 49.720
[noop, ( move 5 4 6 6 )] 49.791 [noop, ( move 5 4 4 6 )] 49.773
[( move 4 5 3 4 ), noop] 49.953 [( move 3 8 4 7 ), noop] 49.271
[noop, ( move 4 6 5 8 )] 49.217 [noop, ( move 4 6 6 5 )] 49.045
[( move 4 7 6 5 ), noop] 42.226 [( move 8 4 6 5 ), noop] 42.222
[noop, ( move 2 7 2 6 )] 39.652 [noop, ( move 2 7 2 5 )] 39.413
[( move 3 1 2 2 ), noop] 47.195 [( move 1 5 2 5 ), noop] 26.864

(a) Sanguine - NBTTT - Match 2 (b) Sanguine - NBTTT - Match 9

(c) Sanguine - NBTTT - Match 19

Figure 4.10: Evaluation of Nine Boards Tic-Tac-Toe for Sanguine personality,
where the moves are represented on the x-axis, and their QValue on the y-axis.

Figure 4.11: Evaluation of AAR with Fittest Individuals (percent).
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Recapitulating, in figure 4.11 is the summary of the Action Agreement Ratio for each
game, once the search has been fed with the parameters from the genetic algorithm.
It has to be pointed out that figure 4.11 only includes the perfectly matching actions
chosen by both the search and the users, while the graph in figure 4.9 only compares
the moves’ QValues. It is to be noticed that the Choleric parameters obtained from
25% to 35% matching moves, while Sanguine only 15% in the best case. However,
looking at figure 4.9, it would look like more. That means that the actions chosen
by the search is extremely similar in QValue to the one picked by the human player.
Therefore, that might imply that the choice between the two moves is equivalent,
and still achieve a human-like gaming style.

4.4.3 Skirmish Games with Random Individuals

The skirmish games that had been collected, and associated to a personality, have
also been tested with 3 random sets of parameters. In figure 4.12 is an extract
of the graphs collected, showing how the behaviour of the search changes, on the
same match, depending on the parameters plugged in. We found irrelevant to show
the graphs relative the rest of the matches for Melancholic and Sanguine, as the
behaviour is tendentiously the same as the one showed in figure 4.12. The individuals
used have the values shown in table 4.12.

Table 4.12: Random individuals picked for evaluation.

Parameter Ind. 1 Ind. 2 Ind. 3 Ind. 4 Ind. 5 Ind. 6 Ind. 7 Ind. 8 Ind. 9 Ind. 10 Ind. 11 Ind. 12
eps. 0.299 0.540 0.205 0.206 0.617 0.191 0.757 0.778 0.292 0.308 0.155 0.394
rave 4508 1464 4904 4798 285 3867 3223 3778 3455 3818 3332 4852
grave 88 9 69 117 90 97 67 29 73 15 45 8

chargeDis. 0.928 0.945 0.950 0.989 0.996 0.984 0.980 0.901 0.923 0.931 0.964 0.995
treeDis. 0.971 0.958 0.925 0.987 0.945 0.965 0.934 0.964 0.930 0.972 0.902 0.978
aggr. 0.784 2.612 2.927 2.044 0.430 1.634 2.684 0.139 1.936 0.701 0.907 2.172
defen. 1.500 1.866 1.052 1.316 0.946 0.645 1.956 1.503 0.995 1.075 0.123 2.998

ch.Depth 65 20 94 60 19 67 34.248 21.756 62.990 29.706 75.676 30.799
horizon 9 7 2 6 17 17 15 19 8 3 3 13
randErr 0.290 0.485 0.248 0.754 0.075 0.392 0.427 0.624 0.450 0.095 0.566 0.024

ch.Default 39.706 37.803 39.729 42.191 41.370 37.540 42.251 39.168 44.157 38.380 38.980 44.756
expl.Fac. 125 81 120 49 36 35 5 13 121 47 137 12
niceTh. 38.448 49.630 45.040 8.273 46.950 28.877 18.790 61.309 19.282 45.644 41.199 35.793

Approximately, it can be seen the same behaviour as with the "correct" parame-
ter, excused by the magnitude of the state space of the game, as discussed earlier.
However, it is possible to see some sloppiness in the search selection, compared to
the user’s. Figure 4.13 shows the percentage of matching moves having random
individuals playing over the matches that were associated to personalities from the
data collection.
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Figure 4.13: Actions Agreement Ratio for Skirmish games with random
individuals, divided by personality (percent).

This result shows an higher average of agreed moves, confirming the hypothesis of the
genetic algorithm hitting a local maxima and not returning the optimal individuals,
as well as that the personality model adopted might not be correctly modeled.

4.4.4 Random Games with Random Individuals
Lastly, four random individuals (A, B, C, D) have been plugged in the games we have
no knowledge about, and the summary of it can be seen in figure 4.14. Comparing it
with figure 4.11, it can be seen that individual D has more matching moves than the
Choleric individual from the genetic algorithm (which was the one with the highest
frequency of match, as seen in section 4.4.2).

Figure 4.14: Evaluation of AAR with Random Individuals (percentage).

The meaning behind this result, in addition to what can be interpreted from the
graphs in appendix B, can once more be that the personality model used for this
thesis is not a true fit, as well as the genetic algorithm hit a local maxima, and
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would require some more parameters’ tweaking to return improved results.

4.5 Limitations and Improvements
The project has been subject to limitations due to both time, and power constraints.
The remarkable time complexity of the Genetic Algorithm, together with time con-
straints, forced us to restrain the number of tests for parameters’ tweaking, increas-
ing the chances of hitting a local maxima or having premature stagnancy. More
tweaking would lead to better results, overall, but we have to bound this thesis to
a few choices of Genetic Algorithm parameters. It is to be recalled also that the
geometric mean plotted on the graphs turned out to be slightly different than the
one calculated in the genetic algorithm. Further investigations about this matter
will have to be performed. In the case this would be fixed, it would be natural to
suppose that the average fitness for each generation would be closer to the proba-
bility of picking one move at random, at least at initial states.
Mostly, however, the limitation lies on the data collection. Due to non-optimal re-
sources, the data this thesis bases itself on, for both training and evaluation, has
not been enough to infer a proper state-action distribution and get properly defined
results overall. If a larger dataset would be available, it would be interesting to
notice how the genetic algorithm would react to a more demanding training, and if
the fittest individuals would be a better match for the personality model adopted
here. In the case of more training data, it could also be possible to adopt a more
detailed personality model, which could help reproducing gameplay more closely.
The data to feed the genetic algorithm with will have also to be from more reliable
sources, as self-assigning personality might not be accurate. Furthermore, some of
our players have been acting other personalities, which could have affected the data
in a negative way, considering how hard it could be to suppress emotions in some
cases. Lastly, understanding how the MCTS parameters can be changed, and how
they are correlated to each other would supposedly help having more precise indi-
viduals as output from the GA.

4.6 Evaluation Results
Recapitulating the results collected during the evaluation process, it can be said
that the individuals returned from the genetic algorithm do not have a relevantly
better match than random parameters, over games that have been divided on the
basis of our personality model. However, applied to a different set of games, random
individuals seem to have a better fit (as seen in section 4.4.4), leading to the idea
that a different personality model might be more suitable for gaming styles repre-
sentation.
It is then confirmed from section 4.4.3 that equation (3.1) is true, however a more
polarised result would be ideal.
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(a) Choleric Match 1 -
Random Individual 1

(b) Choleric Match 1 -
Random Individual 2

(c) Choleric Match 1 -
Random Individual 3

(d) Melancholic Match 1 -
Random Individual 4

(e) Melancholic Match 1 -
Random Individual 5

(f) Melancholic Match 1 -
Random Individual 6

(g) Sanguine Match 1 -
Random Individual 7

(h) Sanguine Match 1 -
Random Individual 8

(i) Sanguine Match 1 -
Random Individual 9

(j) Phlegmatic Match 1 -
Random Individual 10

(k) Phlegmatic Match 1 -
Random Individual 11

(l) Phlegmatic Match 1 -
Random Individual 12

Figure 4.12: Evaluation of the Skirmish games with random individuals, where
the moves are represented on the x-axis, and their QValue on the y-axis.
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Conclusion

In order to infer a personality from human playing styles, a genetic algorithm has
been trained with the aid of collected human-played games. The data has been gath-
ered through the Tiltyard server[8], which is a platform for General Game Playing
where to test and develop General Game Players. General Game Playing is also the
framework used in this project (see section 2.3), where no knowledge of the game
is priorly required. This encouraged having a relatively wide selection of games,
allowing the users to select any among the games of Checkers, Connect Four, Nine-
Boards Tic-Tac-Toe, and Skirmish. The users also provided information about their
personality, based on the Galen-Hippocrates’ Four Temperaments model (see section
2.2.8), which has purposely been chosen as model for this thesis due to its simplicity.
The games collected have then been partially used to feed a genetic algorithm (see
section 2.6), where each individual represented a set of parameters for a Monte Carlo
Tree Search algorithm (see section 2.4). The Monte Carlo Tree Search is the main
algorithm behind the artificial player used in this thesis, and has been supplied with
a set of enhancements, each of which is depending on a control variable. The set of
those control variables is the aforementioned individual from the genetic algorithm.
Once the GA has been running on a set of game representing a specific personality,
the fittest individual is selected for evaluation 3.8. This reduced to 4 different sets
of parameters, one for each personality in the model, that have been plugged in the
artificial player, and checked with games that have been left out from the training
process.
The evaluation process consisted in calculating the Action Agreement Ratio (AAR),
together with confronting the QValues of the chosen moves as ∆Q. The results of
this evaluation, collected in chapter 4, proved that many search-selected moves have
an imperceptible ∆Q, whilst still not reaching perfect matching. This could mean
that the gaming style achieved is comparable to human’s, although not taking the
exact same decisions. However, it is still to be confirmed if it is indeed personality
biased.
The results obtained in this project are promising enough to believe that a prob-
ability model could be inferred from games data. Although the dataset collected
and utilised as testbed was not adequate to be considered fully statistically relevant,
therefore not confirming nor disproving the thesis where a personality model can be
inferred from games data, we are confident that a final conclusion can be drawn
with further research.
Additional focus would be applicable in determining the best MCTS enhancements
and how they affect the search; tweaking the GA parameters so to find a better
environment for games data training; applying a different personality model that
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could be a better representative of the players’ behaviours; and implement some
machine learning strategies to capture patterns in actions’ selections for different
players. However, none of the above would have meaningful results if the dataset
would not be remarkably increased.
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A
Preliminaries

In this appendix we have decided to add a summary of the basic notions needed to
fully understand the development of this project.

A.1 Data Structures
We will define here the data structures that will be come across during this thesis.
The definitions are adapted from [63],[92] and [114].

A.1.1 Graphs
Definition A.1 A graph G is a triple consisting of a collection V of nodes, or
vertex; a set E of edges, and a relation that associates with each edge two vertices
(not necessarily distinct) called its endpoints. In other words, we represent an edge
e ∈ E as a two-element subset of V : e = u, v for some u, v ∈ V , where u and v are
the endpoints of e.

A.1.2 Directed Graphs
Definition A.2 A directed graph G′ is a graph with a set of nodes V , and a set
of directed edges E ′. Each e′ ∈ E is an ordered pair (u,v). The roles of the
nodes are not interchangeable, and we call u the tail of the edge, and v the head.
We also say that an edge is an edge from its tail to its head.

A.1.3 Paths and cycles
Definition A.3 A path in a graph G = (V,E) is a sequence H of nodes v1, v2, ..., vk−1, vk
with the property that each consecutive pair vi, vi+1 is joined by an edge in G.
Definition A.4 A cycle is a path v1, v2, ..., vk−1, vk in which k > 2, the first k − 1
nodes are all distinct, and vk = v1. A graph with no cycle is acyclic.

A.1.4 Connected Graphs
Definition A.5 A graph G is connected if each pair of vertices in G belongs to a
path; otherwise, G is disconnected.
Definition A.6 A directed graph is strongly connected if, for every two nodes u
and v, there is a path from u to v and a path from v to u.
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A. Preliminaries

A.1.5 Trees

Definition A.7 A tree T is a connected acyclic graph. Picked a node r as root,
each other edge is oriented away from it. For each node v, a parent (or ancestor)
of v is defined as the node u that directly precedes v on its path from r. A node w is
defined child (or descendant) of v if v is the parent of w. A leaf is a vertex with
no descendants.

A.1.6 State Space

Definition A.8 The state space of a problem is the set of all the states reachable
from the initial state by any sequence of actions.

A.2 Finite State-Machines

State machines are defined as sets of states connected through transitions, which
are controlled by inputs. Here we will define them differentiating whether they are
deterministic, an example of which can be seen in figure A.1, or non-deterministic,
as in figure A.2. Definitions are adapted from [57]; we will be using the terms "state
machine" and "automaton" interchangeably.

A.2.1 Deterministic Finite Automata (DFA)

Definition A.9 A Deterministic Finite Automata is a tuple < S,Σ, δ, s0,Γ >,
where:

• A finite set of states S.
• A finite set of input symbols, or alphabet, Σ.
• A transition function that takes as argument a state and an input symbol,

and returns a state. The transition function will commonly be denoted δ,
and δ : S × Σ → S. In informal graph representation of automata, δ was
represented by arcs between states and the labels on the arcs. If s is a state,
and σ is an input symbol, then δ(s, σ) is the state q such that there is an arc
labeled σ from s to q.

• A start state s0, one of the states in S.
• A set of final or accepting states Γ, where Γ ⊆ S.

s0start s1 s2
1

0

1

Figure A.1: Example of simple DFA.
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A. Preliminaries

A.2.2 Non-Deterministic Finite Automata (NFA)
Definition A.10 ANon-Deterministic Finite Automata is a tuple < S,Σ, δ, s0,Γ >,
where:

• A finite set of states S.
• A finite set of input symbols, or alphabet, Σ.
• A transition function δ that takes as argument a state and an input symbol,

and returns a subset of states, δ : S × Σ→ P(S).
• A start state s0, one of the states in S.
• A set of final or accepting states Γ, where Γ ⊆ S.

s0start s1 s2
1

0,1

0

Figure A.2: Example of simple NFA.1

A.3 Probability
Here is a small recap on the probability basics needed to understand the logic behind
the probability model in section 3.6. This appendix will not contain more formulas
and definition than strictly needed, so we refer to [76] for further information. In
this thesis, P (E) indicates the probability of event E being true. It is known that
0 ≥ P (E) ≥ 1, where P (E) = 1 means the event will certainly happen.

A.3.1 Elementary rules
Definition A.11 (Joint Probability) Given two events A and B, the probability
of both happening jointly is given by the product rule:

P (A ∧ B) = P (A,B) = P (A|B)P (B).

Definition A.12 (Sum Rule (Marginal Distribution)) Given a joint distribu-
tion of two events A,B, the marginal distribution is defined as:

P (A) =
∑

b

P (A,B) =
∑

b

P (A|B = b)P (B = b).

Definition A.13 (Chain Rule) Given a set of N events A[1,...,N ] the probability of
them happening jointly is given by the chain rule:

P (A[1,...,N ]) = P (A1)P (A2|A1) . . . P (AN |AN−1,AN−2, . . . ,A1).
1Note that for state s1 the input 0 can lead indistinctly to either state s1 or s2.
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Definition A.14 (Conditional Probability) Given two events A and B, the prob-
ability of event A, given that B is true, is:

P (A|B) = P (A,B)
P (B) if P (B > 0).

Definition A.15 (Bayes’ Rule) Given two events A and B,

P (A = a|B = b) = P (A = a,B = b)
P (B = b) = P (A = a)P (B = b|A = a)∑′

a P (A = a ′)P (B = b|A = a ′) .
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B
Collection of Graphs

In this appendix chapter it is possible to find a collection of graphs showing the
development of the single genes in each individual in the population, throughout
the generations. On the y-axis it will be the values accepted for the specific gene,
while the x-axis will indicate the generations. The blue line in each of those graphs
represents the average value. The discussion over the following graphs can be found
in section 4.3.
Hereafter, there are scatter plots of the single genes in each individuals correlated
to their fitness value. X-axis represents the interval the gene’s values are in, while
Y-axis represents a variation of the fitness value. We refer once more to section 4.3
for further information.
The graphs relative to the evaluation process can be found in this appendix as well,
where the x-axis indicates the turns of the game, and the y-axis the Q-value of the
actions selected by the search and the users. The graphs will be further discussed
in section 4.4.
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B. Collection of Graphs

B.1 Single Individuals

(a) Choleric - I run (b) Choleric - II run (c) Choleric - III run

(d) Melancholic - I run (e) Melancholic - II run (f) Melancholic - III run

(g) Sanguine - I run (h) Sanguine - II run (i) Sanguine - III run

(j) Phlegmatic - I run (k) Phlegmatic - II run (l) Phlegmatic - III run

Figure B.1: Aggressiveness gene, with generations on x-axis, and value of each
individual on y-axis.
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B. Collection of Graphs

(a) Choleric - I run (b) Choleric - II run (c) Choleric - III run

(d) Melancholic - I run (e) Melancholic - II run (f) Melancholic - III run

(g) Sanguine - I run (h) Sanguine - II run (i) Sanguine - III run

(j) Phlegmatic - I run (k) Phlegmatic - II run (l) Phlegmatic - III run

Figure B.2: Charge Default gene, with generations on x-axis, and value of each
individual on y-axis.
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B. Collection of Graphs

(a) Choleric - I run (b) Choleric - II run (c) Choleric - III run

(d) Melancholic - I run (e) Melancholic - II run (f) Melancholic - III run

(g) Sanguine - I run (h) Sanguine - II run (i) Sanguine - III run

(j) Phlegmatic - I run (k) Phlegmatic - II run (l) Phlegmatic - III run

Figure B.3: Charge Depth gene, with generations on x-axis, and value of each
individual on y-axis.
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B. Collection of Graphs

(a) Choleric - I run (b) Choleric - II run (c) Choleric - III run

(d) Melancholic - I run (e) Melancholic - II run (f) Melancholic - III run

(g) Sanguine - I run (h) Sanguine - II run (i) Sanguine - III run

(j) Phlegmatic - I run (k) Phlegmatic - II run (l) Phlegmatic - III run

Figure B.4: Charge Discount gene, with generations on x-axis, and value of each
individual on y-axis.
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B. Collection of Graphs

(a) Choleric - I run (b) Choleric - II run (c) Choleric - III run

(d) Melancholic - I run (e) Melancholic - II run (f) Melancholic - III run

(g) Sanguine - I run (h) Sanguine - II run (i) Sanguine - III run

(j) Phlegmatic - I run (k) Phlegmatic - II run (l) Phlegmatic - III run

Figure B.5: Defensiveness gene, with generations on x-axis, and value of each
individual on y-axis.
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B. Collection of Graphs

(a) Choleric - I run (b) Choleric - II run (c) Choleric - III run

(d) Melancholic - I run (e) Melancholic - II run (f) Melancholic - III run

(g) Sanguine - I run (h) Sanguine - II run (i) Sanguine - III run

(j) Phlegmatic - I run (k) Phlegmatic - II run (l) Phlegmatic - III run

Figure B.6: Epsilon gene, with generations on x-axis, and value of each
individual on y-axis.
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B. Collection of Graphs

(a) Choleric - I run (b) Choleric - II run (c) Choleric - III run

(d) Melancholic - I run (e) Melancholic - II run (f) Melancholic - III run

(g) Sanguine - I run (h) Sanguine - II run (i) Sanguine - III run

(j) Phlegmatic - I run (k) Phlegmatic - II run (l) Phlegmatic - III run

Figure B.7: Exploration Factor gene, with generations on x-axis, and value of
each individual on y-axis.
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B. Collection of Graphs

(a) Choleric - I run (b) Choleric - II run (c) Choleric - III run

(d) Melancholic - I run (e) Melancholic - II run (f) Melancholic - III run

(g) Sanguine - I run (h) Sanguine - II run (i) Sanguine - III run

(j) Phlegmatic - I run (k) Phlegmatic - II run (l) Phlegmatic - III run

Figure B.8: Grave gene, with generations on x-axis, and value of each individual
on y-axis.
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B. Collection of Graphs

(a) Choleric - I run (b) Choleric - II run (c) Choleric - III run

(d) Melancholic - I run (e) Melancholic - II run (f) Melancholic - III run

(g) Sanguine - I run (h) Sanguine - II run (i) Sanguine - III run

(j) Phlegmatic - I run (k) Phlegmatic - II run (l) Phlegmatic - III run

Figure B.9: Horizon gene, with generations on x-axis, and value of each
individual on y-axis.
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B. Collection of Graphs

(a) Choleric - I run (b) Choleric - II run (c) Choleric - III run

(d) Melancholic - I run (e) Melancholic - II run (f) Melancholic - III run

(g) Sanguine - I run (h) Sanguine - II run (i) Sanguine - III run

(j) Phlegmatic - I run (k) Phlegmatic - II run (l) Phlegmatic - III run

Figure B.10: Nice Threshold gene, with generations on x-axis, and value of each
individual on y-axis.
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B. Collection of Graphs

(a) Choleric - I run (b) Choleric - II run (c) Choleric - III run

(d) Melancholic - I run (e) Melancholic - II run (f) Melancholic - III run

(g) Sanguine - I run (h) Sanguine - II run (i) Sanguine - III run

(j) Phlegmatic - I run (k) Phlegmatic - II run (l) Phlegmatic - III run

Figure B.11: Random Error gene, with generations on x-axis, and value of each
individual on y-axis.
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B. Collection of Graphs

(a) Choleric - I run (b) Choleric - II run (c) Choleric - III run

(d) Melancholic - I run (e) Melancholic - II run (f) Melancholic - III run

(g) Sanguine - I run (h) Sanguine - II run (i) Sanguine - III run

(j) Phlegmatic - I run (k) Phlegmatic - II run (l) Phlegmatic - III run

Figure B.12: Rave gene, with generations on x-axis, and value of each individual
on y-axis.
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B. Collection of Graphs

(a) Choleric - I run (b) Choleric - II run (c) Choleric - III run

(d) Melancholic - I run (e) Melancholic - II run (f) Melancholic - III run

(g) Sanguine - I run (h) Sanguine - II run (i) Sanguine - III run

(j) Phlegmatic - I run (k) Phlegmatic - II run (l) Phlegmatic - III run

Figure B.13: Tree Discount gene, with generations on x-axis, and value of each
individual on y-axis.
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B. Collection of Graphs

(a) Aggressiveness (b) Charge Default

(c) Charge Depth (d) Charge Discount

(e) Defensiveness (f) Epsilon

(g) Exploration Factor

Figure B.14: Correlation between specific genes (values of which are on x-axis)
and fitness (y-axis) (continued on the next page).
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B. Collection of Graphs

(a) Grave (b) Horizon

(c) Nice Threshold (d) Random Error

(e) Rave (f) Tree Discount

Figure B.15: Correlation between specific genes (values of which are on x-axis)
and fitness (y-axis).
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B. Collection of Graphs

B.2 Evaluation

(a) Choleric - Skirmish -
Match 1

(b) Melancholic - Skirmish -
Match 1

(c) Melancholic - Skirmish -
Match 2

(d) Melancholic - Skirmish -
Match 3

(e) Sanguine - Skirmish -
Match 1

(f) Sanguine - Skirmish -
Match 2

(g) Sanguine - Skirmish -
Match 3

(h) Phlegmatic - Skirmish -
Match 1

Figure B.16: Evaluation of the Skirmish games with fittest individuals, with
moves on x-axis and QValues on y-axis.
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B. Collection of Graphs

(a) Match n.2 (b) Match n.4 (c) Match n.8

(d) Match n.9 (e) Match n.10 (f) Match n.12

(g) Match n.18 (h) Match n.19 (i) Match n.20

(j) Match n.21 (k) Match n.23 (l) Match n.24

Figure B.17: Evaluation of Nine Boards Tic-Tac-Toe for Sanguine Personality,
with moves on x-axis and QValues on y-axis.
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B. Collection of Graphs

(a) Match n.2 (b) Match n.3 (c) Match n.4

(d) Match n.5 (e) Match n.8 (f) Match n.10

(g) Match n.13 (h) Match n.16 (i) Match n.18

(j) Match n.20 (k) Match n.21 (l) Match n.23

Figure B.18: Evaluation of Nine Boards Tic-Tac-Toe for Phlegmatic Personality,
with moves on x-axis and QValues on y-axis.

XXIII



B. Collection of Graphs

(a) Match n.2 (b) Match n.3 (c) Match n.4

(d) Match n.5 (e) Match n.8 (f) Match n.9

(g) Match n.10 (h) Match n.15 (i) Match n.16

(j) Match n.19 (k) Match n.22 (l) Match n.23

Figure B.19: Evaluation of Nine Boards Tic-Tac-Toe for Melancholic Personality,
with moves on x-axis and QValues on y-axis.
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B. Collection of Graphs

(a) Match n.3 (b) Match n.4 (c) Match n.6

(d) Match n.5 (e) Match n.8 (f) Match n.10

(g) Match n.13 (h) Match n.16 (i) Match n.18

(j) Match n.20 (k) Match n.23 (l) Match n.24

Figure B.20: Evaluation of Nine Boards Tic-Tac-Toe for Choleric Personality,
with moves on x-axis and QValues on y-axis.
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B. Collection of Graphs

(a) Match n.2 (b) Match n.5 (c) Match n.9

(d) Match n.11 (e) Match n.12 (f) Match n.13

(g) Match n.14 (h) Match n.16 (i) Match n.18

(j) Match n.19 (k) Match n.20 (l) Match n.22

Figure B.21: Evaluation of Connect Four for Sanguine Personality, with moves
on x-axis and QValues on y-axis.
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B. Collection of Graphs

(a) Match n.2 (b) Match n.4 (c) Match n.5

(d) Match n.8 (e) Match n.9 (f) Match n.11

(g) Match n.12 (h) Match n.14 (i) Match n.18

(j) Match n.19 (k) Match n.20 (l) Match n.21

Figure B.22: Evaluation of Connect Four for Phlegmatic Personality, with moves
on x-axis and QValues on y-axis.
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B. Collection of Graphs

(a) Match n.2 (b) Match n.5 (c) Match n.7

(d) Match n.10 (e) Match n.12 (f) Match n.13

(g) Match n.14 (h) Match n.18 (i) Match n.19

(j) Match n.20 (k) Match n.21 (l) Match n.22

Figure B.23: Evaluation of Connect Four for Melancholic Personality, with
moves on x-axis and QValues on y-axis.
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B. Collection of Graphs

(a) Match n.2 (b) Match n.3 (c) Match n.5

(d) Match n.10 (e) Match n.12 (f) Match n.13

(g) Match n.16 (h) Match n.18 (i) Match n.19

(j) Match n.20 (k) Match n.21 (l) Match n.22

Figure B.24: Evaluation of Connect Four for Choleric Personality, with moves on
x-axis and QValues on y-axis.
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B. Collection of Graphs

(a) Sanguine - Match 1 (b) Sanguine - Match 2 (c) Sanguine - Match 3

(d) Phlegmatic - Match 1 (e) Phlegmatic - Match 2 (f) Phlegmatic - Match 4

(g) Melancholic - Match 1 (h) Melancholic - Match 4 (i) Melancholic - Match 6

(j) Choleric - Match 2 (k) Choleric - Match 4 (l) Choleric - Match 6

Figure B.25: Evaluation of Checkers Games, with moves on x-axis and QValues
on y-axis.
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B. Collection of Graphs

(a) Match n.2 (b) Match n.4 (c) Match n.8

(d) Match n.9 (e) Match n.10 (f) Match n.12

(g) Match n.18 (h) Match n.19 (i) Match n.20

(j) Match n.21 (k) Match n.23 (l) Match n.24

Figure B.26: Evaluation of Nine Boards Tic-Tac-Toe for Random Individual A,
with moves on x-axis and QValues on y-axis.
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B. Collection of Graphs

(a) Match n.2 (b) Match n.3 (c) Match n.4

(d) Match n.5 (e) Match n.8 (f) Match n.10

(g) Match n.13 (h) Match n.16 (i) Match n.18

(j) Match n.20 (k) Match n.21 (l) Match n.23

Figure B.27: Evaluation of Nine Boards Tic-Tac-Toe for Random Individual B,
with moves on x-axis and QValues on y-axis.
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B. Collection of Graphs

(a) Match n.2 (b) Match n.3 (c) Match n.4

(d) Match n.5 (e) Match n.8 (f) Match n.9

(g) Match n.10 (h) Match n.15 (i) Match n.16

(j) Match n.19 (k) Match n.22 (l) Match n.23

Figure B.28: Evaluation of Nine Boards Tic-Tac-Toe for Random Individual C,
with moves on x-axis and QValues on y-axis.
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B. Collection of Graphs

(a) Match n.3 (b) Match n.4 (c) Match n.6

(d) Match n.5 (e) Match n.8 (f) Match n.10

(g) Match n.13 (h) Match n.16 (i) Match n.18

(j) Match n.20 (k) Match n.23 (l) Match n.24

Figure B.29: Evaluation of Nine Boards Tic-Tac-Toe for Random Individual D,
with moves on x-axis and QValues on y-axis.
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B. Collection of Graphs

(a) Match n.2 (b) Match n.5 (c) Match n.9

(d) Match n.11 (e) Match n.12 (f) Match n.13

(g) Match n.14 (h) Match n.16 (i) Match n.18

(j) Match n.19 (k) Match n.20 (l) Match n.22

Figure B.30: Evaluation of Connect Four for Random Individual A, with moves
on x-axis and QValues on y-axis.
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B. Collection of Graphs

(a) Match n.2 (b) Match n.4 (c) Match n.5

(d) Match n.8 (e) Match n.9 (f) 11

(g) Match n.12 (h) Match n.14 (i) Match n.18

(j) Match n.19 (k) Match n.20 (l) Match n.21

Figure B.31: Evaluation of Connect Four for Random Individual B, with moves
on x-axis and QValues on y-axis.
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B. Collection of Graphs

(a) Match n.2 (b) Match n.5 (c) Match n.7

(d) Match n.10 (e) Match n.12 (f) Match n.13

(g) Match n.14 (h) Match n.18 (i) Match n.19

(j) Match n.20 (k) Match n.21 (l) Match n.22

Figure B.32: Evaluation of Connect Four for Random Individual C, with moves
on x-axis and QValues on y-axis.
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B. Collection of Graphs

(a) Match n.2 (b) Match n.3 (c) Match n.5

(d) Match n.10 (e) Match n.12 (f) Match n.13

(g) Match n.16 (h) Match n.18 (i) Match n.19

(j) Match n.20 (k) Match n.21 (l) Match n.22

Figure B.33: Evaluation of Connect Four for Random Individual D, with moves
on x-axis and QValues on y-axis.
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B. Collection of Graphs

(a) Ind. A - Match 1 (b) Ind. A - Match 2 (c) Ind. A - Match 3

(d) Ind. B - Match 1 (e) Ind. B - Match 2 (f) Ind. B - Match 4

(g) Ind. C - Match 1 (h) Ind. C - Match 4 (i) Ind. C - Match 6

(j) Ind. D - Match 2 (k) Ind. D - Match 4 (l) Ind. D - Match 6

Figure B.34: Evaluation of Checkers games for Random Individuals, with moves
on x-axis and QValues on y-axis.
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