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Weighted Ensemble Distillation in Federated Learning with Non-IID Data
Leveraging auxiliary data to efficiently aggregate models in heterogeneous settings
OSCAR ERIKSSON
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
Federated distillation (FD) is a novel algorithmic idea for federated learning (FL)
that allows clients to use heterogeneous model architectures. This is achieved by
distilling aggregated local model predictions on an unlabeled auxiliary dataset into
a global model. While standard FL algorithms are often based on averaging local
parameter updates over multiple communication rounds, FD can be performed with
only one communication round, giving favorable communication properties when
local models are large and the auxiliary dataset is small. However, both FD and
standard FL algorithms experience a significant performance loss when training
data is not independently and identically distributed (non-IID) over the clients.
This thesis investigates weighting schemes to improve the performance with FD
in non-IID scenarios. In particular, the sample-wise weighting scheme FedED-
w2 is proposed, where client predictions on auxiliary data are weighted based on
the similarity with local data. Data similarity is measured with the reconstruction
loss on auxiliary samples when passed through an autoencoder (AE) model that is
trained on local data. Image classification experiments with convolutional neural
networks performed in this study show that FedED-w2 exceeds the test accuracy
of FL baseline algorithms with up to 15 % on the MNIST and EMNIST datasets for
varying degrees of non-IID data over 10 clients. The performance of FedED-w2 is
lower than FL baselines on the CIFAR-10 dataset, where the experiments display
up to 5 % lower test accuracy.

Keywords: federated learning, federated distillation, knowledge distillation, weighted
ensembles, artificial intelligence, privacy, image classification.
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Below is the list of acronyms that have been used throughout this thesis listed in
alphabetical order.

AE Autoencoder
AI Artificial Intelligence
ANN Artificial Neural Network
CE Cross Entropy
CNN Convolutional Neural Network
FD Federated Distillation
FL Federated Learning
GDPR General Data Protection Regulation
IID Independently and Identically Distributed
IoT Internet of Things
ML Machine Learning
MSE Mean Squared Error
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Nomenclature

Below is the nomenclature of indices, sets, functions, parameters and variables that
have been used throughout this thesis.

Indices

k Index for client
i,j Indices for data samples
c Index for class
l Index for image pixel
t Index for communication round

Sets

D Set of traning data
Dk Set of traning data for client k
D0 Set of auxiliary data
Ik Set of indices for data samples at client k
K Set of clients
B Set of batches from local data

Functions

fk Function representing the local model at client k
fS Function representing the student model
Lk Local objective function for client k
L Global objective function
LS Student loss function
LKL Kullback-Leibler divergence loss function
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LMSE Mean squared error loss function
LREC Reconstruction loss function
σ Activation function

Parameters

N Number of data samples
N Number of data samples at client k
N c
k Number of data samples at client k in class c

K Number of clients
C Number of classes
E Number of epochs
B Batch size
η Learning rate
α Dirichlet concentration parameter
µ Regularization parameter
T Number of communication rounds
γ Fraction of participating clients
W Input width of feature map
O Output width of feature map
F Kernel size
P Padding size
S Stride size
τ Temperature parameter

Variables

θ0 Initial global model weights
θt+1 Global weights at round t+ 1
θkt+1 Local weights for client k at round t+ 1
θS Student model weights
x0 Batch of auxiliary data
zk Model output from client k
wk Ensemble weight for client k
wjk Ensemble weight for client k at auxiliary sample with index j
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x(i) Data sample i
y(i) True label for data sample i
zT Aggregated predictions from clients (teacher predictions)
zS Student predictions
zk Predictions from client k
ȳ One-hot encoded true label
b Bias term in neural network model
q,v Temperature weighted class probabilities
b Communication cost
h Latent variable
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1
Introduction

In the last decade, significant progress has been made in the field of machine learning
and AI. Increased computing capabilities, improved algorithms and datasets have
made it possible to perform tasks such as image classification, object detection and
speech recognition with models that learn from data. Models used for such tasks
often thrive on big datasets, which might need to be built by collecting data at
different locations and user devices. In the standard case of machine learning, the
centralized case, this distributed data is sent to a central server where the machine
learning model is trained. However, with increasing privacy concerns among the
public, it has become undesirable and in some cases even illicit to move users’
private data to a central location. A recent study show that 9 out of 10 Americans
are concerned about their online privacy, which clearly demonstrates the hesitation
toward sharing private information [1]. As integrity becomes a more important
question regarding private data, new regulations have been introduced to protect
the users’ privacy. An example of such a privacy act is GDPR [2], which regulates
how companies and organizations are allowed to manage user data.

A technique proposed to overcome this privacy challenge in machine learning is
federated learning (FL) [3]. Since the data cannot be stored centrally, FL moves the
model training to the client where the private data is present. A global model is then
formed by combining information from locally trained models, without accessing
the private data. Aggregating the local models into a global model is a crucial
step for the end performance, and one of the many open challenges in FL [4]. The
standard algorithm for this is FedAvg [3], which iteratively averages over the local
model parameters into a global model. This is a simple approach to aggregate the
local models, but it has some drawbacks. Previous work has shown that FedAvg
converges to the centrally trained model when sampled client data is independently
and identically distributed (IID) over the clients [3, 5]. Unfortunately, the IID
assumption does not always hold in practice, and when client data is non-IID, the
performance of FedAvg decreases drastically [6]. Furthermore, FedAvg requires
all clients to train on identical model architectures, making it less flexible for system
heterogeneity.

The main constraint in FL is that client data needs to be kept private. However,
in many real-world applications, there are publicly available auxiliary data with
distributions similar to client data. For instance, many FL solutions for computer
vision and natural language processing could obtain auxiliary data from the public

1



1. Introduction

Figure 1.1: A schematic illustration of FD compared to the standard FedAvg
algorithm. FedAvg exchange model updates based on local training on private
data, whereas FD transmits local model predictions on unlabeled auxiliary data.

databases ImageNet [7] or WikiText [8]. These databases contain millions of data
samples but might lack the necessary label information for the specific FL problem.
In recent years, a novel algorithmic method called federated ensemble distillation, or
federated distillation (FD), has been proposed for FL problems where such auxiliary
data is available. In contrast to the parameter averaging algorithm FedAvg and
its recently modified versions [9–12], FD allows for clients to train heterogeneous
model architectures since clients only share predictions on the auxiliary data, which
are used to train a separate model on the central server (Figure 1.1). This flexibility
is beneficial for cases when clients are running heterogeneous systems, making it
possible to choose a model that suits the clients specific system or computational
capabilities. FD also has the potential to reduce the overall communication in
FL, since communication scale with the size of the auxiliary dataset rather than
the model size. Lastly, since it has been shown that local data can be partially
reconstructed based on parameter or gradient updates [13], FD could be a more
privacy-preserving alternative.

1.1 Problem formulation
FD-based algorithms have potential advantages in regards to system heterogeneity,
communication and privacy properties compared to algorithms based on parameter
averaging. However, as with FedAvg, an FD-based algorithm is not immune to
performance drops in the non-IID scenario. One way to approach this problem is

2



1. Introduction

to use a weighting scheme so the impact of each local model is weighted differently
towards the global model. The problem is the following: Consider a set of clients
K, where each client k ∈ K holds a private dataset Dk, a shared auxiliary dataset
D0 and a machine learning model fk(θk) with parameters θk. Each private dataset
consist of feature-label pairs (x(i), y(i)) and the local parameters have been adjusted
to minimize the local objective function Lk on this data. Let zk = fk(x0;θk) be the
output from client k on a batch of samples x0 ∈ D0. To perform distillation, the
aggregated predictions,

zT =
∑
k∈K

wkzk, (1.1)

referred to as teacher predictions, are used to train a student model fS on the data
pairs (x0, zT) with the goal of capturing the collective behavior of the local models.
The weights wk allow to control the impact of each client and is typically chosen
to 1/|K| when data is assumed IID. In the non-IID scenario, wk would need to be
chosen differently due to the varying performance of local models. This leads to the
main goal of this project, which is to investigate different weighting schemes wk to
improve performance in non-IID scenarios with FD.

1.2 Purpose and research questions
This study intends to implement a test framework to compare FD against standard
FL algorithms based on parameter averaging in non-IID settings. Both FD and
parameter averaging algorithms suffer significant performance loss when client data
is non-IID, but it is not established whether one method outperforms the other in
this scenario. The first research question for this project is therefore:

How does the performance of FD compare to standard FL algorithms in
non-IID settings?

Using weighting schemes is a way to directly control the impact of each client, which
motivates the investigation of suitable weighting schemes to improve FD in non-IID
scenarios. The second research question is hence:

What is a suitable weighting scheme to improve FD in non-IID settings?

Implementing FD also introduces the problem of choosing the student model and
having enough auxiliary data available. This leads to the final research question:

How do the student model and quantity of auxiliary data affect the per-
formance of FD?

1.3 Delimitations
The primary focus of this study is to investigate the performance of FD compared
to standard FL algorithms on different distributions of client data. It is therefore
the performance relative to these chosen baselines that are of interest and not the

3



1. Introduction

absolute performance. For this reason, local models have relatively low complexity
for most experiments and hyperparameters have only been tuned to some extent.

In the real case FL scenario, local models are trained in parallel at client devices.
Since the purpose of this project is to evaluate the algorithmic performances, imple-
mentations have been simplified to execute model training sequentially on a single
device where the data is pseudo-distributed. This means that system heterogeneity
based on different bandwidths and computational power among the clients is not
considered.

The algorithms covered in this study are only designed and tested for supervised
image classification. It is therefore not certain that the result presented in this study
would translate to other machine learning tasks.

1.4 Contributions
This project contributes with extended knowledge on the limits of FD and its relative
performance to standard FL algorithms in non-IID settings. Insights on how to
improve FD in the presence of data heterogeneity is given by introducing a sample-
wise weighting scheme that achieves good performance compared to FL baselines.

4



2
Theory and related work

This chapter will explain the theory and current research related to the problem
addressed in this thesis. The first section will cover the essentials of image clas-
sification with supervised machine learning and what kind of models will be used
in this project. This is then followed by an overview of FL where the main appli-
cation areas and challenges are discussed. The algorithmic paradigm FD is then
introduced, which sets the foundation for the algorithm that is investigated in this
project. Lastly, a literature review is given on related FD studies.

2.1 Supervised image classification

Machine learning (ML) is a branch of artificial intelligence (AI) that covers the use
of data and algorithms to enable computers to perform certain tasks without being
explicitly programmed. This project will consider the task of image classification,
using supervised learning. In this case, data is available in the form

(x(1), y(1)), (x(2), y(2)), . . . , (x(N), y(N)), (2.1)

where y(i) is the label (or class) for image x(i). The goal is to learn a function
f(x;θ) ≈ y with parameters θ that predicts a label y based on input image x
as accurately as possible. This is typically done by tuning the parameters θ for a
chosen function f(x;θ), using the optimization problem

min
θ
L(θ) with L(θ) = 1

N

N∑
i=1

l
Ä
f(x(i);θ), y(i)

ä
, (2.2)

where l
(
f(x(i);θ), y(i)) is the loss function evaluated on (x(i), y(i)). The loss function

should be defined such that correct predictions by f(x(i);θ) results in a low value,
and a high value for incorrect predictions. The predictions from f(x;θ) are usually
given as an output vector z, where each element zc corresponds to the probability
of sample x belonging to class c ∈ {1, . . . , C}. Similarly, the true labels y are
represented with one-hot encoding ȳ, where all elements are zero except element y,
which is one. This label representation is used in the cross-entropy (CE) loss
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l
Ä
f(x(i);θ), y(i)

ä
=

C∑
c=1
−ȳ(i)

c log z(i)
c , (2.3)

which is the default choice of loss function for classification problems in supervised
ML, and will be used throughout this thesis.

2.1.1 Gradient descent
With a loss function defined, the next question is how to minimize the loss function
in (2.2). In the ML context, the method chosen to minimize the loss function is
called an optimizer. A common technique to find the minimum or maximum of a
function is to find where the derivative of the function is zero. In the gradient descent
optimizer, a minimum is searched for by taking steps in the negative direction of
the derivative ∇L with respect to θ. This is done by calculating ∇L for a number
of samples, and then updating the parameters according to

θ := θ − η∇L where ∇L =
Å
∂L

∂θ1
, . . . ,

∇L
∂θ|θ|

ã
(2.4)

Here, η is the chosen step size, known as the learning rate in ML. With large datasets
it can be computationally infeasible to perform gradient descent on the complete
dataset in one iteration. This can be solved by doing gradient descent on one batch
of data at a time. This is referred to as batch gradient descent, or mini-batch
gradient descent when the batch size is fairly small (roughly between 10 and 103).
This is typically done by shuffling the data samples before splitting it into batches
and proceeding with gradient descent. Many optimizers have been developed to
further accelerate the training with gradient descent. A popular optimizer is Adam
[14], which is one of many improved optimizers that introduce an adaptive learning
rate.

2.2 Convolutional neural networks
What remains to be defined in the optimization objective (2.2) is the model f(x;θ).
A popular choice of model for image classification is a convolutional neural network
(CNN), which will be explained in this section.

2.2.1 Fully connected neural network
CNN’s are special types of artificial neural networks (ANN’s) that have been devel-
oped in particular for data with spatial dimensions. The main building block in an
ANN is the neuron, which applies a non-linear activation function σ(·) on the dot
product between input x and parameters θ, plus a bias term b, as

f(x;θ) = σ(x · θ + b). (2.5)
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The neuron computation is illustrated in Figure 2.1.

x1

x2

xn

ŷ

θ1θ1

θ2θ2

θnθn

...
= σ (x · θ + b)

Figure 2.1: Schematic view of a neuron with n input variables.

A fully connected ANN can be formed by stacking neurons in multiple layers, where
each neuron has its specific weights connected to each neuron from the previous
layer. With more neurons and layers, the complexity of the network increases, which
gives the model a higher ability to learn non-linear patterns. However, this is only
possible if non-linear activation functions are used in the network. A popular choice
of activation function for the intermediate layers is the rectified linear unit (ReLU),
σ(x) = max(0, x). For the final layer, a softmax function σ(x)c = exc/

∑C
j=1 e

xj for
c = 1, . . . , C is the default choice for classification problems. Intermediate layers
in an ANN are usually called hidden layers, as indicated in Figure 2.2 where an
example of a fully connected ANN is presented.
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Figure 2.2: Schematic view of an ANN with 3 hidden layers.

2.2.2 2D convolutional layer
When using a fully connected ANN with images as input data, each pixel in an
image would have a weight connected to each neuron in the next layer. This can
result in lots of parameters and lead to inefficient training of the network. This
is one motivation for the introduction of CNN’s where the number of parameters
are reduced by using a convolutional kernel operation. This operation can be done
for various dimensions but this project only considers the 2-dimensional case. The
kernel holds a number of weights, determined by the kernel sizeK, and iteratively do
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the neuron computation (2.5) on aK×K window of the input data. Since the kernel
weights are shared over all input data, the number of parameters are significantly
reduced. The complexity of a 2D convolutional layer can then be increased by having
multiple kernels with separate weights.

The output from a convolutional layer is usually called a feature map. The spatial
width O of the feature map is determined by the width W of input data, kernel
size F , padding P and stride S, according to O = (W − F + 2P )/S + 1. This
formula assumes that all sizes spans equally in both dimensions. An example of a
convolutional kernel computation is illustrated in Figure 2.3.

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

I

∗
1 0 1
0 1 0
1 0 1

K

=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

I ∗K

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Figure 2.3: Output values from a 2D-convolution of input I and kernel K with
W = 5, F = 3, P = 0 and S = 1.

2.2.3 Pooling layer

In CNN’s, convolutional layers are usually followed by a pooling layer. A pooling
layer is used to reduce the spatial dimension of the feature map. This means that
the computational cost of training the network is reduced since fewer parameters are
required in subsequent layers. A pooling layer also allows the following convolutional
layer to extract features at a different resolution than previous layers. A commonly
used pooling layer is max pooling, where the output is maximum values for patches
of the preceding feature map, see Figure 2.4. Pooling layers do not contain any
parameters and are therefore not trainable layers.
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Figure 2.4: Output values from a max pooling operation with W = 4, F = 2 and
S = 2 and P = 0.
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2.3 Federated learning

Due to the growing computational power on our devices, such as mobile phones,
wearable technology and autonomous vehicles, it has become more attractive to
move computations previously done on a central server to the edge device. In the
case of training ML models, the rising public concern for privacy makes it undesirable
to move client data to the central server, which also motivates the interest in moving
the model training to the devices. These two motives have together led to a growing
interest in a decentralized and collaborative approach to machine learning, called
federated learning. The term federated learning was coined in 2016 by McMahan et
al. [3] and given a broader definition by Kairouz et al. [4] as:

Federated learning is a machine learning setting where multiple en-
tities (clients) collaborate in solving a machine learning problem, under
the coordination of a central server or service provider. Each client’s
raw data is stored locally and not exchanged or transferred; instead, fo-
cused updates intended for immediate aggregation are used to achieve
the learning objective.

FL was initially introduced with a focus on applications for mobile phones and
edge devices, referred to as the cross-device case. Since then, interest has also been
shown for applications with a smaller number of clients involved, for example, a
collaboration between multiple companies or organizations, referred to as the cross-
silo case. Both of these cases have many possible applications, some of which are
discussed below.

Mobile phones. Machine learning models can be trained for next-word prediction,
face detection and voice recognition by utilizing data from several mobile phones [15–
17]. Due to privacy concerns, users may not want to share their data. FL has the
potential to transform the development of these personalized and assistive features
on mobile phones to be more privacy-preserving, which has already been applied
in consumer digital products. One example of this is Google’s keyboard for mobile
phones (Gboard mobile keyboard) [15, 16], which uses FL to build models for next
word suggestions. The same technique is also integrated with Android Messages to
give better and more personalized smart features, such as Smart Reply and other
assistive suggestions [18]. Apple has also introduced cross-device FL in iOS 13 when
training models for personalized suggestions in the QuickType keyboard and voice
classification in the application “Hey Siri” [17].

Organizations. A client, or device, can also be an organization or institution in the
FL context. This case has gained great interest in healthcare, since hospitals have
big collections of patient data that could aid ML models for predictive healthcare.
Hospitals have strict privacy rules that require patient data to remain inside the
hospital. FL has the potential to solve this problem for predictive healthcare, as it
would allow hospitals to collaboratively train ML models, without exposing sensitive
patient data. This is an ongoing field of research in FL, and applications have been
proposed for medical data segmentation [19, 20] to predicting clinical outcomes in
patients with COVID-19 [21].
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Internet of things. Autonomous vehicles, smart homes and wearable devices are
all examples of modern IoT systems. These systems can have multiple sensors that
allow them to adjust their behavior based on incoming data. This adjustment could
be an updated model of traffic or construction for a fleet of autonomous vehicles,
which is needed for the vehicles to continue operating safely. Due to data privacy
and limited connectivity of devices, it might be a problem to safely aggregate models
in these scenarios. FL could be used in this scenario to train models that adjusts
to system changes and keeps user data private [22]. Another possible advantage of
using FL for autonomous vehicles is that the heavy communication of transmitting
the big data from the vehicles to the central server can be avoided.

2.3.1 Challenges in federated learning
FL faces many practical challenges, where the main ones are how to secure the
privacy of client data, how to address heterogeneities among clients and how to
handle expensive communication. These challenges are discussed shortly below. See
Kairouz et al. [4] and Li et al. [23] for a more in-depth discussion.

Privacy. FL has partially emerged by the motivation to solve the privacy problem
in training ML models, where the solution is to only communicate information
from locally trained models. In many FL algorithms, the information shared is
model parameters or gradients. However, these algorithms alone cannot guarantee
complete protection of client data, since its been shown that input data can be
partially reconstructed based on the observed model updates [13]. To this extent,
tools like multiparty computation [24] and differential privacy [25] have emerged to
enhance the privacy of federated learning. Unfortunately, these methods often come
at the cost of reduced model performance.

Data heterogeneity. Each client connected to a federated network has a dataset
that is generated by a specific user or organization. In both of these cases, clients
may observe or generate different data points based on , e.g., their location, time
zone or user preferences. These differences could be present between local label or
feature distributions, as well as differences in the quantity of data [4, Sec. 3.1].
All of these scenarios are referenced as cases with non-IID data in FL. It is also
possible for the set of active clients to change over time, which introduce another
dimension of non-IID. The original goal in FL to train a single global model on
the union of client data becomes harder in the non-IID scenario. This is a widely
researched topic in FL, and proposed solutions ranges from techniques to balance the
local data [26], weight client contributions [27] or to modify existing algorithms, e.g.
using probabilistic ML or ensemble methods [28]. However, in some cases training
a single global model might not be the right goal. Clients could benefit by having
a personalized model for their specific data, e.g. for next word prediction in mobile
phones. In this case, non-IID data could be more of a feature than a problem.

Systems heterogeneity. The devices participating in a federated network could
use different hardware and have different network connectivity or power available,
leading to varying capabilities in regards to storage, computation and communica-
tion. Devices can also be unreliable and drop out from the FL process due to bad
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connection or low energy. This problem is most relevant for the cross-device scenario,
and algorithms developed for this case must therefore be robust to a low amount of
participation, heterogeneous hardware and drop-out clients. In the cross-silo case,
system heterogeneity might be less of a problem, since a participating device at a
company or organization will probably not face the same limited resources.

Communication. Federated networks can potentially consist of millions of de-
vices, e.g. a network of smartphones, and communication in the network might
be much slower than the local computations. It is, therefore, necessary to develop
communication-efficient algorithms to enable training a model to fit the data gen-
erated by the devices. This means that the messages or model updates from the
local training process, and the total number of communication rounds, should be
minimized.

2.3.2 Federated averaging
The problem in FL is to learn a global model based on data that is partitioned
over multiple clients. This global model is learned under the constraint that client
data cannot be transmitted to a central server. Instead, local model parameters
are communicated. What has become the standard algorithm for this problem is
federated averaging (FedAvg) [3], where McMahan et al. rewrites the ML objective
(2.2) as

min
θ
L(θ) =

K∑
k=1

Nk

N
Lk(θ) with Lk(θ) = 1

Nk

∑
i∈Ik

li(θ), (2.6)

where K is the number of clients, Ik is the set of indices of data examples on client
k and Nk = |Ik|. Here, li(θ) is an abbreviation for l(f(x(i);θ), y(i)). In FedAvg, a
selected fraction γ of K clients starts with the same initial model and performs E
epochs of gradient descent (2.4) on its private data. The central server then takes
a weighted average over the resulting local model parameters, which is then sent
to the clients once again for another training round. The details of FedAvg are
outlined in Algorithm 1.

If the local data distributions Dk were formed by distributing data examples uni-
formly at random over the clients, it would hold that EDk

[Lk(θ)] = L(θ), meaning
that minimizing any local objective Lk would be the same as minimizing the global
objective L. This IID assumption is typically a criterion for algorithms in dis-
tributed optimization, where the partitioned data is initially contained in a central
dataset. In contrast, FL scenarios gives no control over the distribution of client
data, which could make the IID assumption invalid and complicate the minimization
of the global objective (2.6).

Previous studies [6, 29] have shown that local weights tend to diverge in the non-
IID setting with FedAvg, which makes the global objective hard to reach when
aggregating the local models. One idea to counteract the weight divergence for each
client is to add a regularization term towards the latest global weights. This is done
in FedProx [11], where the local minimization objective is modified to
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Algorithm 1: The FedAvg [3] algorithm. γ is the fraction of participating
clients, K is the total number of clients in the federated network, η is the learning
rate and Dk is the local dataset at client k with Nk = |Dk| and N = ∑

k∈Kt
Nk.

Server executes:
initialize θ0

for each round t = 1, . . . , T do
Kt ← random subset (γ fraction) from K local models
for each client k ∈ Kt do
θkt+1 ← ClientUpdate(k,θt)

end
θt+1 ←

∑K
k=1

Nk

N
θkt+1

end

ClientUpdate(k,θ):
B ← (split Dk into batches of size B)
for each local epoch i = 1, . . . , E do

for each batch (x,y) ∈ B do
ŷ = fk(x;θk)
θ ← θ − η∇Lk(ŷ,y)

end
end
return θ to server

min
θ
Hk(θ,θt) = Lk(θ) + µ

2‖θ − θt‖
2, (2.7)

which only changes the weight update to θ ← θ−η∇(Lk(θ)+ µ
2‖θ−θ

t‖2) compared
to FedAvg (Algorithm 1). Here, µ is hyperparameter that determines the impact
of the regularization term. FedProx has been shown to improve the convergence
behavior of FL in non-IID settings.

2.4 Federated ensemble distillation

In recent years, a novel algorithmic paradigm for FL problems has been proposed
for dealing with many of the challenges described in Section 2.3.1. This method
is called federated ensemble distillation, or federated distillation (FD), which ap-
plies the knowledge distillation (KD) procedure [30, 31] in a federated setting. KD
is a technique that uses an auxiliary dataset to transfer the knowledge of one or
multiple ML classifiers into one single classifier. In the centralized setting, this can
be done before deployment to reduce model size and complexity. This process is
often explained in terms of a teacher-student analogy, where the goal is to transfer
knowledge from the teacher model to a student model.
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2.4.1 The algorithm
There exist many variations on FD algorithms in the literature. In this project,
the simplest approach is considered where only one communication round of local
predictions is needed, referred to as FedED, which is then used to perform KD at
the central server. This procedure starts by letting each client train a local model
fk(θk) on its local dataDk. The clients then generate predictions zk on the unlabeled
auxiliary dataset D0. These predictions are then aggregated at the central server to
form the teacher predictions zT, which are used as targets to train a student model
fS(θS) with a chosen loss function LS for T distillation steps. The details of FedED
are outlined in Algorithm 2.

Algorithm 2: The FedED algorithm.
Local Training: Train each local model fk(θk) with Dk.
for each distillation step t = 1, . . . , T do
Kt ← random subset (γ fraction) from K local models
x0 ← a batch of public data from D0 with size B
for each local k ∈ Kt do
zk ← fk(x0;θk)

end
zT ← aggregate {zk|k ∈ Kt}
zS ← fS(x0;θS)
Update: θS ← θS − η∇LS(zS, zT)

end

When choosing the loss function LS, it is common to use a measure based on the
softmax output, i.e. class probabilities, between teacher and student model, since
valuable information can be retrieved from the ratios of these probabilities. In the
standard distillation procedure, Hinton et al. [31] softens the class probabilities as

qcT = ez
c
T/τ∑

c e
zc

T/τ
, (2.8)

with a temperature parameter τ , before applying the Kullback-Leibler divergence

LKL(qT, qS) =
∑
c

qcT log q
c
T
qcS
, (2.9)

as loss function for training the student model. Here, qS is the temperature weighted
class probabilities from the student model. When using a high temperature τ ,
minimizing (2.9) simplifies to minimizing the mean squared error (MSE) [31]

LMSE(zS, zT) = 1
C

∑
c

(zcS − zcT)2, (2.10)

which can also be used in combination with LKL [32] by summing the losses.
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The simplest approach to aggregate the teacher predictions is by averaging:

zT = 1
|Kt|

∑
k∈Kt

zk, (2.11)

where Kt is the set of participating clients for distillation round t. However, this
approach deteriorates when local models have varying performance, for example due
to data heterogeneity. Ideas on how to improve this aggregation in non-IID scenarios
are presented in Section 3.1.

2.4.2 Distillation vs. averaging
Using FD has three major benefits compared to parameter sharing algorithms. These
benefits are summarized below.

Model agnostic. In contrast to FedAVG, the FD approach is independent of the
model architecture used at each client and therefore allows clients to train mod-
els of different type and size. This gives an additional flexibility which could be
particularly beneficial when clients are running on heterogeneous systems.

Low communication cost. The distillation process does not require the raw model
parameters to be communicated with a central server. Instead, the only information
leaving the clients is the softmax output on the auxiliary dataset. This changes the
communication cost, which now scales with the size of the auxiliary dataset |D0|
and the number of classes C as

b ∈ O(|D0|C), (2.12)

instead of the shared model parameters

b ∈ O(T |θ|) (2.13)

as in FedAVG. This can give significantly reduced communication when the aux-
iliary dataset is smaller than the local models, especially since FD can be executed
with only one communication round, whereas parameter sharing algorithms often
need multiple rounds.

Robustness and privacy. By sharing model parameters, FL algorithms based on
parameter sharing leaves the models completely exposed to adversarial or malicious
clients that could influence the training. This is a severe privacy vulnerability as
the model parameters contain all information a model has about the data its been
trained on [33, 34]. FD is potentially a better choice in this aspect, since it is
protected against attacks directly on the global model parameters. Furthermore, it
would not be possible to reconstruct local data from model predictions, as is possible
to some extent when sharing intermediate model updates [13].
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2.5 Related work
The most common differences among currently published FD algorithms are the
assumptions on auxiliary data, the communication procedure and what information
is being sent from the clients to the central server. This project will consider a one-
shot FD approach where only one round of communication is used between clients
and the central server. It is assumed that an unlabeled auxiliary dataset is available,
on which clients share its predictions after local training is finished. This approach
is also considered by Guha et al. [35] and Gong et al. [36]. Guha et al. compare
one-shot FD against different ensemble methods and show that performance of FD
approach the ensemble performance as the size of the auxiliary data is increased.
However, there is no comparison against FedAvg and no experiments are presented
for non-IID settings.

Different approaches have been proposed for dealing with non-IID data using FD
algorithms. This project will specifically consider the approach of using a weighting
scheme to control each clients’ impact on the aggregated predictions. While weighted
ensembles have been widely studied for centralized ML [37–39], the weights are often
based on each models’ performance on a shared validation set, which consequently
need to be labeled. Among the published FD algorithms that have been found during
this literature review, only two studies considers the use of a weighting scheme to
handle non-IID data. In the first one, FedAD by Gong et al. [36], a class-wise
weighting scheme is proposed, such that the predictions from client k in class c is
weighted by N c

k/
∑
kN

c
k . Their method is shown to outperform FedAvg in non-IID

settings, but it is uncertain if this is due to the weighting scheme or the additional
sharing of attention maps. This weighting scheme also cause additional privacy
concerns, since the label distribution for all clients would need to be stored at each
client or the central server.

The second study that considers a weighting scheme in FD is by Sattler et al. [40],
who propose the algorithm FedAux where weighting is performed sample-wise by
using certainty scores. The certainty scores are based on the loss from a logistic
regression classifier that is trained to separate the local data from a subset of the
auxiliary data. Their method is shown to outperform FedAvg in the considered
experiments and to maintain stable performance when the level of non-IID is in-
creased. In contrast to Algorithm 2 considered in this study, the communication
procedure in FedAux is customized to run for multiple rounds. However, FedAux
was also shown to outperform the considered baselines by a large margin when only
using one round of communication.

As mentioned before, many variations on FD algorithms have been published. FedMD,
proposed by Li and Wang [41], assumes a labeled auxiliary dataset and start each
round by letting the clients train on both auxiliary and private data and then trans-
mits predictions on the auxiliary data to the central server for aggregation. In the
subsequent rounds, the aggregated predictions are used as targets on the auxiliary
data during training. Lin et al. [42] propose FedDF, where ensemble distillation
is performed on top of FedAvg to refine the global model. This is shown to result
in fewer communications rounds compared to federated averaging methods, but it
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is still based on the same communication protocol as FedAvg. A probabilistic ap-
proach is considered in FedBE by Chen and Chao [28], where Bayesian tools are
used to select a subset of all local models as teacher models. Distillation is then per-
formed with unlabeled auxiliary data to transfer the Bayesian teachers’ knowledge
into a global student model, which then acts as an initial model for the next round
of local training. This approach is also more related to FedAvg than FD since
model parameters are communicated between clients and central server, making it
impossible to have heterogeneous models.
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3
Method

This chapter will first introduce and motivate the weighting schemes integrated with
FD in this project. The following sections will then cover the datasets used and how
non-IID distributions of data have been generated. Lastly, some details are given
on the experimental setup and hyper parameters used for training the ML models.

3.1 Weighting schemes
In this study, three different weighting schemes have been considered for improving
the one-shot FD algorithm (Algorithm 2) in non-IID settings. The first one considers
the case where clients are weighted based on their local data sizes

zT =
∑
k

wkzk, wk = Nk

N
, (3.1)

which is the same weighting that is used in the original FedAvg algorithm. Since
clients share their softmax output on a batch of auxiliary data, FD also allows to
weight client contributions class-wise, as

zcT =
∑
k

wckz
c
k, wck = N c

k∑
kN

c
k

, (3.2)

where N c
k is the number of samples client k has in class c. This weighting scheme

has earlier been tested by Gong et al. [36], but its properties have not been fully
investigated in different non-IID scenarios. This weighting scheme has therefore also
been included in the experiments of this study.

Another possibility is to weight client contributions sample-wise, as previously in-
vestigated by Sattler et al. [40], where a client prediction on a sample is weighted
based on the similarity of that sample with the local dataset. This means that each
client k would have a weight wjk for each sample xj ∈ D0. With this approach, local
data sizes or class distributions do not have to be shared directly, as is the case with
weighting schemes (3.1) and (3.2).

To measure the data similarity, the naive approach would be to model the local data
distributions Pk(x) and use some metric (i.e distance to mean of Pk(x)) to determine
how much a sample xj ∈ D0 deviates from Pk(x). However, when using high
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dimensional data such as images, defining a distribution that models the complex
correlations between all pixels is a challenging task. From the studies in this thesis,
it is proposed to simplify this problem by introducing a latent variable h, and instead
define a conditional distribution Pk(x|h) for the local data Dk. The latent variable
is a low-level representation of the high-dimensional input data and can be used to
provide an abstract view of the data distribution.

This thesis has specifically investigated the possibility of modeling the conditional
distribution Pk(x|h) using ML with an ANN architecture called autoencoder (AE).
This network has a bottleneck structure and is trained to minimize the reconstruc-
tion loss LREC when samples are compressed and then expanded, see Figure 3.1. A
common choice of reconstruction loss is the mean squared error

LREC(x,x′) = 1
n

n∑
l=1

(xl − x′l)2, (3.3)

where x′l is the l’th pixel of the autoencoder output x′.
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Figure 3.1: The AE network architecture.

When the AE has learned a conditional distribution Pk(x|h) by minimizing the
MSE (3.3) on data Dk, the loss for samples x0 ∈ D0 will be low if x0 is similar to
samples in Dk. For the AE, this means that these samples map to the same location
in latent space. This is illustrated with an example in Figure 3.2. To apply this in
a federated setting, each client k would train an AE model on local data Dk and
calculate the losses lk(xj) := LREC(xj,x′j) for all auxiliary samples xj ∈ D0. Since
low reconstruction loss corresponds to a similarity between sample xj and the local
data Dk, the weight wjk should be high when lk(xj) is low. This can be achieved
with the relation wjk = 1/lk(xj)β, where β ∈ R+. This concludes the third weighting
scheme implemented in this project, defined as

zjT =
∑
k

wjkz
j
k, wjk = 1

lk(xj)6 , (3.4)
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where β = 6 was chosen by means of experimentation. This was done by tuning
among the integers 1-7.

(a) Example distribution of client data D.

(b) The AE maps training data D into
clusters in latent space.

(c) Similar samples from D0 are
mapped to the same clusters.

(d) The local reconstruction loss is low
for the most frequent digits.

(e) Similar samples from D0 will also
have a low reconstruction loss.

Figure 3.2: An example showing how data similarity can be measured with the
reconstruction loss from an AE, using the MNIST dataset. The auxiliary data is
here taken as a subset of the complete dataset.
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3.2 Datasets

This project considers the task of image classification. For this purpose, three com-
mon datasets for computer vision problems have been used in the experiments.
These datasets are summarized below.

MNIST. The MNIST [43] dataset is a collection of gray scale images of handwritten
digits that is commonly used for training and testing models for computer vision
tasks. Since its introduction in 2010, it has become a standard benchmark for image
classification models. Each image has one color channel and a size of 28x28 pixels.
The dataset is divided into a training set and test set of 60000 and 10000 examples,
respectively, both of which are balanced over the 10 classes.

Figure 3.3: Sample images from the MNIST dataset, corresponding to handwritten
digits 0-9.

EMNIST. EMNIST is an extension of the MNIST dataset, which contains hand-
written upper and lower case letters in addition to handwritten digits. The images
have the same format as MNIST and there are 6 different splits available for the
dataset. This project uses the letters split of the dataset, which consists of 125600
training examples and 20000 test examples. The training and test set are both
balanced over the 26 available classes.
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Figure 3.4: Sample images from the EMNIST letters dataset, corresponding to
handwritten letters a-z and A-Z.

CIFAR-10. A more advanced dataset that is also very common as benchmark for
image classification is the CIFAR-10 [44] dataset. This dataset consists of 32x32
pixel images of objects in the categories: airplane, automobile, bird, cat, deer, dog,
frog, horse, ship and truck. The data is divided into a training set of 50000 examples
and a test set of 10000 examples, both of which are balanced over the classes.

Figure 3.5: Sample images from the CIFAR-10 dataset, corresponding to objects
in the categories: airplane, automobile, bird, cat, deer, dog, frog, horse, ship and
truck

3.3 Generation of non-IID data
Local training data has been generated with the commonly used Dirichlet sampling
procedure proposed by Hsu et al. [29]. This strategy involves a concentration
parameter α that allows to easily adjust the level of heterogeneity among clients.
The data is generated by sampling a matrix
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P = [p1, . . . ,pC ] ∈ RK×C , p1, . . . ,pC ∼ Dir(α) (3.5)

from the symmetric K-categorical Dirichlet distribution, where K is the number of
clients and C the number of classes. It then holds that ‖pi‖1 = 1 for i = 1, . . . , C.
Each client i is then assigned PijN j non-overlapping samples, where N j is the total
number of training samples in class j. The data splitting procedure is illustrated in
Figure 3.6 with K = 10 and C = 10.

Figure 3.6: Illustration of the Dirichlet splitting procedure used in this project.
The dot size is relative to the total number of samples over the clients. The data
splits are more non-IID for lower values of α.

3.4 Experimental setup
This section explains the details of the setup used in the performed experiments.
Code implementation can be found at Github1.

Datasets and models. The algorithm FedED (Algorithm 2) have been evaluated
on MNIST, EMNIST and CIFAR-10 with weighting schemes (3.1), (3.2) and (3.4),
referred to as FedED-w0, FedED-w1 and FedED-w2. For each dataset, one
half is distributed as local data, and the other half is used as auxiliary data. For
MNIST and EMNIST, three different CNNs have been tested in the experiments.
These models are referred to as CNN1, CNN2 and CNN3. The local model is the
CNN1 model for all MNIST and EMNIST experiments and the student model has
been tested for all three architectures. More details on these models are presented
in Appendix A. For CIFAR-10, a Resnet-18 [45] architecture was used for both local
models and student model. Autoencoder architectures used for FedED-w2 are
presented in A.2.

Table 3.1: Sizes of used models, assuming a float is 24 bytes.

Name CNN1 CNN2 CNN3 Resnet18
Dataset MNIST EMNIST MNIST EMNIST MNIST EMNIST CIFAR-10

Size (MB) 0.03 0.06 0.10 0.50 0.20 0.57 28.36

1https://github.com/oscareriksson/FedML-master-thesis
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Federated environment. Each experiment were conducted with K = 10 clients
and client data generated with α values 10, 1, 0.1 and 0.01, according to the Dirichlet
sampling procedure explained in Section 3.3. The fraction γ of participating clients
each round was set to 1.

Distillation settings. The number of local epochs was set to E = 20 for all
distillation experiments. The weighting schemes have been tested for five different
sizes |D0| of auxiliary data for each dataset. The student loss function has been
tested as both MSE (2.10) and CE (2.3).

Optimization. Local models were trained with SGD (stochastic gradient descent)
optimizer with learning rate 1e−3 and momentum 0.9. Student models were trained
with the Adam optimizer with learning rate 1e−3 for FedED-w0 and FedED-w1.
For FedED-w2, performance was improved with a lower learning rate, and was
therefore set to 1e−5. The AE models in FedED-w2 were also trained with the
Adam optimizer with learning rate 1e−3.

Baselines. The performance is compared against to the state-of-the-art FL algo-
rithms FedAvg and FedProx. The auxiliary dataset is assumed unlabeled in this
project and is therefore not included as training data for FedAvg and FedProx.
For these algorithms, the local epochs was set to E = 1 and communication rounds
to T = 100. These settings was observed to be enough for converged performance
and therefore seen as sufficient for a fare comparison. The proximal parameter µ
was chosen to 0.1 for all datasets and distributions after tuning among the val-
ues [0.01, 0.1, 0.5, 1]. Included in the comparison is also the ensemble performance,
referred to as Ensemble-w0, Ensemble-w1 and Ensemble-w2, which is the
aggregated predictions from all local models.

Hardware. Experiments have been executed on a virtual machine provided by
AI Sweden, using Nvidia RTX5000 with 4 cores, 32 GB ram and 1 TB disk space.
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Results

The results are divided into three parts, based on the different datasets explored. All
algorithms are evaluated and compared based on the accuracy on the test dataset for
different values of the concentration parameter α. Each weighting scheme is tested
for different auxiliary data sizes |D0|. MNIST and EMNIST results are presented for
different student models with varying complexity. For further details, see Section
3.4. The loss function used when training the student model is MSE, unless stated
otherwise. See model details in Appendix A. The results have been generated and
averaged over 10 different seeds, such that each algorithm has been tested for the
same distributions of local data for a given α. For more detailed results on training
progresses and global test performances, the reader is referred to Appendix B, where
training curves are presented for all considered datasets and algorithms.

4.1 MNIST

Table 4.1 shows how the implemented FD weighting schemes compares to the chosen
baselines for different values of α. The auxiliary data size is here set to |D0| = 30000
samples and the student model is CNN3, which is the largest model considered in the
experiments, but still with a lower model size than all clients combined. For a low
degree of data heterogeneity (α = 10 and α = 1), FD displays similar performance
as the baselines. However, algorithm FedED-w2 seems to perform slightly worse
for these α values. For increased data heterogeneity (α = 0.1 and α = 0.01), the
performance drop is greatest for FedED-w0 and FedED-w1, while FedED-w2
maintains high accuracy and performs better than baselines. Algorithm FedED-
w2 with CE loss is the only case where test accuracy seems to increase with higher
degree of non-IID data.

Figure 4.1 shows how the auxiliary data size |D0| affects the performance of the
considered weighting schemes. In general, FedED-w2 needs more auxiliary samples
to reach high accuracy, while the performance of FedED-w0 and FedED-w1 do
not change that much when |D0| is increased. As presented in Table 4.1, FedED-w2
achieves significantly higher accuracy than the other weighting schemes for α = 0.1
and α = 0.01.
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Table 4.1: Mean test accuracy and standard deviation on MNIST for different α
with |D0| = 30000 and the CNN3 student model.

Algorithm α = 10 α = 1 α = 0.1 α = 0.01
FedAvg 94.14±0.75 93.96±0.92 91.83±1.16 88.37±1.39

FedProx 94.11±0.74 93.99±0.91 91.93±1.14 88.30±1.47
FedED-w0 94.08±0.65 93.78±0.62 76.43±6.53 42.23±6.65
FedED-w1 94.27±0.73 94.19±0.62 80.94±9.60 37.12±3.58
FedED-w2 93.05±0.58 93.02±0.46 90.98±1.88 90.36±1.94

FedED-w2 (CE) 92.14±1.20 92.73±0.86 93.28±1.10 93.87±0.92

Ensemble-w0 90.70±1.47 91.11±1.14 75.52±6.79 39.58±5.89
Ensemble-w1 90.78±1.45 91.66±1.09 88.46±2.86 38.06±13.27
Ensemble-w2 90.87±1.43 92.02±0.96 93.08±1.16 92.73±1.48

Figure 4.1: Comparison of test accuracy on MNIST for the implemented weighting
schemes with varying data size |D0|. The student model is CNN3 and loss function
is MSE.
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Figure 4.2 compares the test accuracy of the weighting schemes with different student
models and α = 10. The choice of student model mostly affects the performance of
FedED-w2. As mentioned in Section 3.4, the local model for each client is CNN1.
In this case, CNN1 can also be used as student model and achieve good performance.
However, the performance increases with model complexity, as can be seen from the
results with CNN2 and CNN3.

Figure 4.2: Comparison of test accuracy on MNIST for different student models
with α = 10.

4.2 EMNIST
As with MNIST, Table 4.2 shows that when using enough auxiliary data and student
model complexity, FD is comparable with the baselines for lower levels of non-
IID data. Overall, FedED-w2 with CE loss is the best performing algorithm on
EMNIST, whose performance increases with lower α.

Table 4.2: Mean test accuracy and standard deviation on EMNIST for different α
with |D0| = 60000 and the CNN3 student model.

Algorithm α = 10 α = 1 α = 0.1 α = 0.01
FedAvg 78.85±1.14 78.29±1.11 72.36±1.51 65.95±1.92

FedProx 78.79±1.15 78.30±1.13 72.39±1.45 66.00±1.90
FedED-w0 77.11±0.64 76.11±0.65 62.64±3.78 37.91±4.23
FedED-w1 77.29±0.48 77.81±0.26 63.26±8.92 31.22±6.78
FedED-w2 75.10±0.74 74.98±0.49 71.80±1.33 70.37±1.82

FedED-w2 (CE) 78.47±1.25 78.92±1.06 78.58±1.32 80.12±1.20

Ensemble-w0 78.09±1.05 78.23±1.07 64.79±3.52 34.93±4.36
Ensemble-w1 78.18±1.08 79.08±0.98 70.59±4.53 38.34±14.52
Ensemble-w2 78.26±1.10 79.74±0.89 80.48±1.12 81.18±1.06

Similar to MNIST, Figure 4.3 shows that FedED-w2 needs more auxiliary samples
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to reach high accuracy also on EMNIST, compared to FedED-w0 and FedED-w1.
For α = 0.1 and α = 0.01, test accuracy is significantly higher with FedED-w2.

Figure 4.3: Comparison of test accuracy on EMNIST for the implemented weight-
ing schemes with varying data size |D0|. The student model is CNN3 and loss
function is MSE.

In Figure 4.4, the results show that the complexity of the student model affect the
performance considerably for all weighting schemes. In this case, the local model
architecture CNN1 does not achieve comparable performance to baselines when used
as student model. The larger models, CNN2 and CNN3, are needed to achieve
comparable performance.
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Figure 4.4: Comparison of test accuracy on EMNIST for different student models
with α = 10.

4.3 CIFAR-10

CIFAR-10 is a harder image classification task than previously considered MNIST
and EMNIST, which can be seen from the overall lower accuracy in Table 4.3. For
this dataset, the FD algorithms do not achieve higher test accuracy than baselines
for any α with the considered student model and auxiliary data. However, the
ensemble model Ensemble-w2 performance is close to baseline for α = 0.1 and
α = 0.01.

Table 4.3: Test accuracy for different α with |D0| = 25000 and the Resnet-18
student model.

Algorithm α = 10 α = 1 α = 0.1 α = 0.01
FedAvg 51.36±0.46 50.17±0.51 40.42±2.33 29.99±2.62

FedProx 51.58±0.59 49.83±0.75 40.27±2.96 29.91±2.69
FedED-w0 48.36±1.29 47.77±0.63 37.41±2.51 24.16±5.56
FedED-w1 48.27±0.99 46.88±1.98 33.81±4.69 15.87±3.93
FedED-w2 47.37±0.73 46.31±0.87 35.38±1.45 24.17±7.47

FedED-w2 (CE) 45.05±0.82 44.03±0.73 35.32±1.53 24.82±6.68
Ensemble-w0 50.65±0.59 49.98±0.58 38.04±3.34 24.52±5.84
Ensemble-w1 50.61±0.58 49.96±0.49 38.14±5.07 18.55±5.75
Ensemble-w2 50.53±0.51 49.79±0.68 40.14±1.73 28.43±7.89
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Figure 4.5: Comparison of test accuracy for the implemented weighting schemes
with varying data size |D0|. The student model is Resnet-18 and loss function is
MSE.

4.4 Communication costs
The communication costs presented in Table 4.4 shows that FedED transmits less
data than FedAvg and FedProx in all of the considered experiments. The differ-
ence in communication is especially large on the CIFAR-10 dataset, which has the
smallest size of auxiliary data and the largest model size among the experiments.

Table 4.4: Communication costs for the experiments conducted, measured in MB
transferred between clients and central server and assuming a float is 24 bytes. The
auxiliary data size |D0| is here set to the largest size used for each dataset.

Cost formula MNIST EMNIST CIFAR-10
FedED |D0|KC 7.2 37.4 6.0

FedAvg/FedProx 2|θ|KT 25.0 63.0 28359.4
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Discussion

This chapter provides an analysis of the results obtained in this study. A short
discussion is also given on the practical use of FD.

5.1 Performance analysis of weighting schemes

The results presented in the previous section indicate that the one-shot FD algo-
rithm can outperform standard FL algorithms on MNIST and EMNIST by using
the sample-wise weighting scheme FedED-w2. Weighting schemes FedED-w0
and FedED-w1 achieve baseline performance when data is close to IID (α = 10).
However, the performance is much lower than baseline for lower values of α. A pos-
sible reason for this is the loss of information in class probabilities when clients do
not have enough data in all classes. In this case, local models will only generate class
probabilities in classes they have been trained on, independent of the input sample
from the auxiliary dataset. This would make the aggregated class probabilities less
useful for training a student model since they will more likely represent the global
class distribution, rather than provide a valid prediction on an auxiliary sample.

As an example, assume a client only have data in classes 0 and 1 out of 10 total
classes. The local model then only learns to distinguish between class 0 and 1,
and hence only generates class probabilities in these classes when predicting on
auxiliary data. In this case, FedED-w0 and FedED-w1 can only reduce these
class probabilities if the local data size is small relative to other clients. If the local
data size is large relative to other clients, these class probabilities will be amplified
and the aggregated class probabilities will be heavily weighted towards classes 0 and
1, which makes them less informative for training the student model.

This thesis introduces the novel weighting scheme FedED-w2, which is shown
to obtain high performance with non-IID distributions of MNIST and EMNIST.
The best performance is achieved when using CE as loss function when training
the student model, where the results show an increase in test accuracy when data
heterogeneity is increased. This is a reasonable outcome since it is easier for the
local AE to achieve low reconstruction loss if training samples have few and similar
features. This is the case when the level of non-IID is high since this means that
clients only have data in a few classes, resulting in fewer features that the AE needs
to reconstruct with low loss.
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The performance of FedED-w2 is improved when using CE loss compared to MSE.
A possible reason for this improvement is that when the reconstruction loss is low
for a certain sample, the local model have likely seen many similar samples. This
in turn means that the model probably has a confident prediction for this certain
sample, which receives a large weight when forming the aggregated predictions zT
due to the low reconstruction loss. In this case, the MSE loss will diminish faster
compared to CE loss when student predictions zS are improved, and therefore halts
the training of the student model at an earlier point. This can be understood by
observing the MSE loss (zcS − zcT)2 converges to 0 faster than the CE loss − log zcS
when zcS approaches 1, assuming that the aggregated class probabilities produce a
confident prediction zcT ≈ 1.

On CIFAR-10, the overall test accuracy is lower with FD compared to the considered
baselines. However, Table 4.3 shows that the ensemble performance is close to
baselines in some cases, e.g. for Ensemble-w2 with α = 0.1. Since the results
on MNIST and EMNIST show that the student model can achieve the ensemble
test accuracy for many cases, given enough complexity and auxiliary data, some
performance gain could be obtained on CIFAR-10 by improving the distillation
procedure. This could be done by changing the student model architecture, use
more auxiliary data, or try different distillation techniques, such as softening the
class probabilities as explained in section 2.4.1.

5.2 Using federated distillation in practice
FD introduces some additional challenges compared to standard FL algorithms that
need to be addressed. First, an unlabeled auxiliary dataset need to be available.
This is no problem for general use cases where public datasets from the same domain
could already be available, but it might be a problem for more specific tasks. An
advantage with the FD algorithm considered in this study is that the auxiliary data
can be unlabeled. This algorithm is thus suitable for cases where auxiliary data is
unlimited but labeling is expensive. One example is image segmentation or object
detection in video material. Video material can in some cases be an unlimited
resource, but the labeling might be time consuming or require an expert.

Second, the student model architecture and distillation procedure need to be se-
lected. The results from this study indicate that the choice of student model can
have a large impact on the final performance, as well as the choice of loss function for
training the student model. However, this problem can be addressed separately from
local training when only using one communication round in FD, meaning that tuning
the student model training would not impose additional communication costs.
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Conclusion

The experiments in this study indicate that the considered FD algorithm can achieve
similar performance to standard parameter averaging algorithms when data is close
to IID on less complex image classification tasks. When local data is non-IID, the
experiments show that FD experience a greater performance loss than parameter av-
eraging algorithms, which is not improved with weighting schemes based on the local
data size or label distribution. This study has shown that the sample-wise weighting
scheme FedED-w2 can withstand this performance loss and outperforms the con-
sidered baselines for two of the used datasets in the experiments. The FD approach
introduces many challenging problems, where this study considers the problem of
aggregating local model predictions on auxiliary data when local training data is
non-IID. An important aspect of this method is to ensure the quantity and quality
of auxiliary data. This study has shown that the size of auxiliary data is important
to achieve high performance, especially with FedED-w2, which also demands a
certain similarity between the local and auxiliary dataset. Therefore, future work
includes investigating FD algorithms that are less dependent on auxiliary data.
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A
Model architectures

A.1 CNN architectures

Table A.1: Architecture used for CNN1, CNN2 and CNN3 in the MNIST ex-
periments. CNN1: NCh = 2, 1042 trainable parameters. CNN2: NCh = 8, 4138
trainable parameters. CNN3: NCh = 16, 8266 trainable parameters.

Layer #Channels F S P Activation Output size
Input layer - - - - - 1x28x28

Conv NCh 5 1 2 ReLU NChx28x28
Max Pooling - 4 2 - - NChx7x7

Fully Connected - - - - Linear 10

Table A.2: Architecture used for CNN1 and CNN2 in the EMNIST experiments.
CNN1: NCh = 2, 2626 trainable parameters. CNN2: NCh = 16, 20826 trainable
parameters.

Layer #Channels F S P Activation Output size
Input layer - - - - - 1x28x28

Conv NCh 5 1 2 ReLU NChx28x28
Max Pooling - 4 2 - - NChx7x7

Fully Connected - - - - Linear 26
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A. Model architectures

Table A.3: Architecture used for CNN3 in the EMNIST experiments. 23834 train-
able parameters.

Layer #Channels F S P Activation Output size
Input layer - - - - - 1x28x28

Conv 8 5 1 2 ReLU 8x28x28
Max Pooling - 2 2 - - 8x14x14

Conv 16 5 1 2 ReLU 16x14x14
Max Pooling - 2 2 - - 16x7x7

Fully Connected - - - - Linear 26

A.2 Autoencoder architectures

Table A.4: Autoencoder architecture used for MNIST and EMNIST.

Layer #Channels F S P Activation Output size
Input layer - - - - - 1x28x28

Conv 8 3 2 1 ReLU 8x14x14
Batch norm - - - - - -

Conv 16 3 2 1 ReLU 16x7x7
Batch norm - - - - - -

Conv 32 3 2 0 ReLU 32x3x3
Flatten - - - - - 288

Fully Connected - - - - ReLU 128
Fully Connected - - - - Linear 4
Fully Connected - - - - ReLU 128
Fully Connected - - - - ReLU 288

Unflatten - - - - - 32x3x3
ConvTranspose 16 3 2 0 ReLU 16x7x7
Batch norm - - - - - -

ConvTranspose 8 3 2 1 ReLU 8x14x14
Batch norm - - - - - -

ConvTranspose 1 3 2 1 ReLU 1x28x28
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A. Model architectures

Table A.5: Autoencoder architecture used for CIFAR-10.

Layer #Channels F S P Activation Output size
Input layer - - - - - 3x32x32

Conv 32 3 2 1 ReLU 32x16x16
Batch norm - - - - - -

Conv 64 3 2 1 ReLU 64x8x8
Batch norm - - - - - -

Conv 128 3 2 0 ReLU 128x3x3
Flatten - - - - - 1152

Fully Connected - - - - ReLU 128
Fully Connected - - - - Linear 64
Fully Connected - - - - ReLU 128
Fully Connected - - - - ReLU 1152

Unflatten - - - - - 128x3x3
ConvTranspose 64 3 2 0 ReLU 64x8x8
Batch norm - - - - - -

ConvTranspose 32 3 2 0 ReLU 32x16x16
Batch norm - - - - - -

ConvTranspose 3 3 2 0 ReLU 3x32x32
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B
Training curves

B.1 MNIST

Figure B.1: MNIST: FedAvg local training accuracies with the CNN1 model for
3 different seeds.
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B. Training curves

Figure B.2: MNIST: FedProx local training accuracies with the CNN1 model
for 3 different seeds.

Figure B.3: MNIST: FedAvg global test accuracy with the CNN1 model for 5
different seeds.

Figure B.4: MNIST: FedProx global test accuracy with the CNN1 model for 5
different seeds.
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B. Training curves

Figure B.5: MNIST: FedED local training accuracies with the CNN1 model for
3 different seeds.

Figure B.6: MNIST: FedED-w0 student training accuracy with the CNN3 model
and MSE loss for 1 seed.
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B. Training curves

Figure B.7: MNIST: FedED-w1 student training accuracy with the CNN3 model
and MSE loss for 1 seed.

Figure B.8: MNIST: FedED-w2 student training accuracy with the CNN3 model
and MSE loss for 1 seed.

VIII



B. Training curves

Figure B.9: MNIST: FedED-w0 student training accuracy with the CNN3 model
and CE loss for 1 seed.

IX



B. Training curves

Figure B.11: EMNIST: FedProx local training accuracies with the CNN1 model
for 3 different seeds.

B.2 EMNIST

Figure B.10: EMNIST: FedAvg local training accuracies with the CNN1 model
for 3 different seeds.
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B. Training curves

Figure B.12: EMNIST: FedAvg global test accuracy with the CNN1 model for
5 different seeds.

Figure B.13: EMNIST: FedProx global test accuracy with the CNN1 model for
5 different seeds.

Figure B.14: EMNIST: FedED local training accuracies with the CNN1 model
for 3 different seeds.
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B. Training curves

Figure B.15: EMNIST: FedED-w0 student training accuracy with the CNN3
model and MSE loss for 1 seed.

Figure B.16: EMNIST: FedED-w1 student training accuracy with the CNN3
model and MSE loss for 1 seed.
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B. Training curves

Figure B.17: EMNIST: FedED-w2 student training accuracy with the CNN3
model and MSE loss for 1 seed.

Figure B.18: EMNIST: FedED-w0 student training accuracy with the CNN3
model and CE loss for 1 seed.
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B. Training curves

Figure B.20: CIFAR-10: FedProx local training accuracies with the Resnet-18
model for 3 different seeds.

B.3 CIFAR-10

Figure B.19: CIFAR-10: FedAvg local training accuracies with the Resnet-18
model for 3 different seeds.
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B. Training curves

Figure B.21: CIFAR-10: FedAvg global test accuracy with the Resnet-18 model
for 5 different seeds.

Figure B.22: CIFAR-10: FedProx global test accuracy with the Resnet-18 model
for 5 different seeds.

Figure B.23: CIFAR-10: FedED local training accuracies with the Resnet-18
model for 3 different seeds.
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B. Training curves

Figure B.24: CIFAR-10: FedED-w0 student training accuracy with the Resnet-
18 model and MSE loss for 1 seed.

Figure B.25: CIFAR-10: FedED-w1 student training accuracy with the Resnet-
18 model and MSE loss for 1 seed.
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B. Training curves

Figure B.26: CIFAR-10: FedED-w2 student training accuracy with the Resnet-
18 model and MSE loss for 1 seed.

Figure B.27: CIFAR-10: FedED-w0 student training accuracy with the Resnet-
18 model and CE loss for 1 seed.
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