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To predict response to immunotherapy
JOHANNA SVENSSON
Department of Life Sciences
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Abstract
Introduction. Treatment of non-small cell lung cancer (NSCLC) was revolu-
tionised with immunotherapy. Particularly important is immune checkpoint block-
ade (ICB) targeting PD-1/PD-L1; nevertheless, two thirds are unresponsive to ICB.
Better biomarkers are warranted besides the FDA approved tumour mutational bur-
den (TMB). Genetic variants in a few selected genes have been suggested to predict
response to ICB alone or in combinations as co-variants in both blood an tissue.
This study aims to interpret variants in both blood plasma and tissue, and in addi-
tion analyse mutational signatures of the tumours, that might be used as biomarkers.

Material and Methods. The prospective study cohort includes n=50 stage III-IV
NSCLC patients that received ICB as first- or second line of treatment. Blood and
tumour tissue was sequenced with next-generation sequencing (NGS) with a panel
of 591 cancer-associated genes. A comprehensive variant interpretation and classi-
fication approach was used to subclass somatic variants into 6 different categories
based on standard workflows, in combination with several databases and prediction
tools. In addition, mutational signatures were extracted using SigProfiler tools and
analysed. For n=26 patients variants were also monitored in blood during treatment
with ICB using ultrasensitive methods for variant identification.

Results and Discussions. In total 859 true variants were identified. These in-
cluded 40 pathogenic, 96 likely pathogenic and 685 variants of unknown significance
(VUS). The VUS:es were further subclassed into different categories to identify those
with higher or lower driver properties and probability of pathogenicity. By using
this approach 34 VUS++ and 75 VUS+ were identified. Frequently mutated genes,
number of variants in different classes and their pathogenicity were related to ICB
response, as was mutational signatures and levels of ctDNA at various timepoints.

Conclusion. Understanding the genetic landscape and identifying biomarkers of
ICB are key considerations in development of personalised treatment. The approach
of a thorough classification including subclassification of the VUS:es led to identifi-
cation of variants that can potentially function as biomarkers, in combination with
other. Mutational signature analysis lead to differentiation of tumour types. The
analysis of the combination of mutational signatures and genetic variants further en-
hanced refinement of biomarkers of response to ICB. Monitoring variants in ctDNA
is a molecular tool for early identification of response or progress during treatment
in NSCLC.
Keywords: biomarker, ctDNA, ICB, mutational signature, NSCLC, variant classi-
fication.
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1
Introduction

One of this and future generations’ greatest issues to try to undertake is cancer.
Together with an aging population, cancer cases are increasing, leading to a greater
need for effective and well-functioning treatments. In fact, the second largest pro-
portion of cancer-related deaths is due to lung cancer, and most patients suffer
from non-small cell lung cancer (NSCLC) [1]. Although treatments have been rev-
olutionised with the introduction of immunotherapy [2], this field of research is of
importance to explore and understand further [1]. By analysing the variants in
the tumour cells, the immunotherapeutic treatments can be designed for a patient
group, eventually leading to more personalised treatment.

This thesis is a part of the BioLung project, which is a NSCLC patient cohort
study that is conducted in collaboration between Sahlgrenska University Hospital
and University of Gothenburg. The vast majority of patients in the BioLung cohort
are diagnosed at advanced stages of NSCLC.
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2
Theory

In the following section the most relevant theoretical background for the thesis is
described. The background includes concepts as immunotherapy, somatic variants,
biomarkers, circulating tumour DNA (ctDNA) and mutational signatures.

2.1 Non-small cell lung cancer
Lung cancer can be divided into two main subtypes, small cell lung cancer and
NSCLC, where 80-85% of cases belongs to the latter subtype [3]. Worldwide and
in the Nordic countries, among malignant tumours, lung cancer has the highest
mortality and morbidity rate [2, 3], with 1-8% as 5-year overall survival (OS) for
stage IV patients within the US [3]. Yearly, lung cancer contributes to over 12 000
deceased in the Nordics [2]. In NSCLC there are two main histological subtypes,
lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) [2]. Most
patients are diagnosis when they already have entered stage IV with metastases.
Few get diagnosed in early stages I or II, when the tumour has a limited spread;
the rest are diagnosed when the tumour has a locally advanced spread at stage
III. Even though NSCLC has a high mortality rate, diseases in stages I, II or III
are able to cure, but the cure rates are low [2]. There are different treatments for
NSCLC, where the main ones are surgery, chemo-, immuno- and radiation therapy
[4]. However, for the later stages (III and IV) the tumour is inoperable, and surgery
is no longer an option [2]. For most NSCLC patients in earlier stages (I-II) there
are no indications for need of immunotherapy.

2.2 Clinical concepts and terms
Clinical concepts as response measurement with RECIST 1.1 criteria, and endpoints
for clinical trials are presented.

2.2.1 Measurement of treatment response
RECIST 1.1 is an objective measure used to estimate treatment response [5]. RE-
CIST 1.1 is based on measurement of solid tumours from imaging methods e.g.
computed tomography (CT) scans. The tumour is measured where the diameter is
at the longest and targeted lesions are both primary tumour and metastases. The
reference value to compared change with is the sum of diameters of followed lesions,
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2. Theory

often at baseline. Definitions and concepts of RECIST 1.1 criteria for targeted
lesions are [5]:

• Complete response (CR). Total disappearance of targeted lesions.
• Partial response (PR). Targeted lesions have reduced by ≥30% from refer-

ence at baseline.
• Progressive disease (PD). An increase of ≥20% compared with the patient-

overall minimal reference value. PD also require that the sum of diameters of
targeted lesions have increased by ≥5 mm.

• Stable disease (SD). Change is not enough to be PR nor PD.

2.2.2 Endpoints in clinical trials

To test if cancer therapies are effective, clinical endpoints must be determined [6].
The most well-known endpoint is to use the objective measure OS, counted from
baseline, such as treatment start, until death. However, OS has disadvantages that
some might survive a long time even though early PD and includes non-cancer deaths
even though positive clinical response. Nevertheless, prolonging life is what most
treatments are used for, making OS the golden standard. Other measurements
are also suggested such as progression-free survival (PFS). PFS uses one of two
endpoints, either death or disease progression. The advantage of using PFS is to
assess short-term, although, longer PFS does not consistently correlate to longer
OS.

2.3 Immunotherapy in non-small cell lung cancer

Immunotherapy is a treatment where a person’s own immune system is used. A great
improvement in immunotherapy occurred with the introduction of antibodies called
immune check-point blockade (ICB) [1]. ICB is especially important for NSCLC
patients, with inhibitors targeting and blocking programmed cell death-ligand 1
(PD-L1) on tumour cell or programmed death protein 1 (PD-1) on immune cell, see
figure 2.1. However, most NSCLC patients do not respond to ICB treatment [2], and
for some patients ICB can cause immunotoxicity or lead to an accelerated disease
progression [3]. The mechanism of action of PD-L1 is to block the immune response
by binding to PD-1[7]. The blockade leads to the antibody being unable to bind the
antigen and destroy the tumour cell [7]; hence, high PD-L1 expression is associated
with suppression of the adaptive immune system [4]. Using ICB treatment with
antibodies targeting PD-L1 or PD-1, the blockade to immune response is removed.
Thereby, anti-PD-L1 or anti-PD-1 treatment leads to the immune cells being able
to reach and destroy the cancer cells [3]. A high expression of PD-L1 is also to some
extent associated with worse outcome in NSCLC [7].

4



2. Theory

Figure 2.1: Mechanism of action for PD-1/PD-L1 inhibitors. The top half shows
inhibition of PD-1 by PD-L1; the lower half shows how the T cell is activated by inhibition
of PD-1/PD-L1, leading to destruction of the tumour cell. Created with BioRender.com.

2.3.1 Immune check-point blockade

Treatment decisions for NSCLC are based on factors as general health, lung func-
tion, stage at diagnosis, treatment history and PD-L1 expression [2]. PD-L1/PD-1
inhibitors are a group of monoclonal antibody treatments used in cancers and in the
BioLung cohort four immunotherapeutic treatments with different active substances
are used. Anti-PD-1 treatments are pembrolizumab and nivolumab and anti-PD-L1
antibodies are durvalumab and atezolizumab [2]. ICB is given intravenously every
second to sixth week, depending on the active substance [8]. Side effects are com-
mon, can occur in many organs, e.g. liver, lungs and skin, and are characterised
by autoimmunity. Depending on the seriousness of the side effects the treatments
might have to be stopped or changed. Hence, two thirds of patients receiving ICB
do not respond [2], since side effects are undesirable giving immunotherapy only to
patients that will likely respond is preferable.
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2. Theory

2.4 Genes and variants

2.4.1 Nomenclature
The standard terminology will be shortly described, to clarify any inconveniences of
nomenclature used. In all cases, as the terms mutation, mutant and polymorphism
have underlying assumptions of degree of pathogenicity, a genetic alteration will be
referred to as a variant, in agreement with ACMG [9, 10]. Genes consist of coding-
regions i.e. exons and non-coding regions i.e. introns, splice sites are present at ends
of exons and essential in translation to mRNA [10]. Upstream of a gene refers to the
5’-end of the coding strand, while downstream of a gene is towards the 3’-end, see
figure 2.2. When describing up- or downstream of an exon +/- is used, respectively;
splice sites are present at flanking positions including -2/-1/+1 and +2 from exons.

Figure 2.2: Schematic illustration of an ordinary gene. Created with BioRen-
der.com.

Deletions or insertions can lead to the open reading frame shifting resulting in
a frameshift, or the indel can alter whole triplets causing inframe variants. Loss-
of-function (LoF) variants includes frameshift, stop-gain and splice site variants,
non-LoF variants are synonymous, non-synonymous, inframe indels, startloss and
stoploss variants. A protein change is denoted by p., e.g. the variant KRAS : p.G12C
is a variant in the gene KRAS and indicate that the amino acid glycine (G) at
position 12 is changed to cysteine (C).

2.4.2 Somatic variants
Somatic variants are, unlike germline variants, not congenital, but instead occur
spontaneous during the lifetime [11]. Somatic variants can occur in all cells, except
germ cells, and are associated with cancer and other developmental disorders. Nev-
ertheless, most somatic variants are harmless. Although, if accumulated over a long
period of time, a somatic cell can escape its intended function and uncontrollably
clone itself, eventually causing cancer.

In the genome, genetic alterations can appear in many ways, which can be divided
into one of two categories [12]. The first category containing changes to the DNA
sequence such as single-nucleotide variants (SNVs) and small insertions or deletions
(indels). The other category containing larger fractions and changes such as fusion
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2. Theory

genes, copy number variants (CNVs) and large indels [12], also essential in cancer
[13].

2.4.3 Functional effects of variants, oncogene and tumour
suppressor gene

Genetic variants can lead to the protein losing its original, changing, or gaining a
different function [11, 14], or the variant is silent and has no effect on the protein
[11]. To gain knowledge in tumour development, it must be establish if the variant
is present in an oncogene or a tumour suppressor gene [15]. One group of genes are
called proto-oncogenes, if in which a variant occurs, turns into an oncogene [16].
The normal function of a proto-oncogene includes regulation of cell differentiation,
division and death; all of which becomes uncontrolled if mutated into an oncogene.
Essentially, an oncogene can make a healthy cell develop into a cancer cell [17]. In
contrast, the normal function of a tumour suppressor gene is to protect healthy cells
from growing uncontrollably and turning into cancer cells. If a variant occur in a
tumour suppressor gene, the gene’s function is predicted to be inactivated, resulting
in a LoF [11, 14]. While, if a variant is in an oncogene, a gain-of-function (GoF)
is expected for the gene. The change-of-function variant is rare but can also occur
[14]. The functional effect of a variant in a gene can be different based on the
characteristics of the gene.

A few numbers of genes exhibit both oncogenic- and tumour suppressor charac-
teristics and is referred to as double agents [17]. Kinases and transcription factors
are the most common protein types in which some proteins act as double agents
in cancer. A variant in a double agent could either increase or decrease activity.
In some proteins, the change of activity is dependent on the domain in which the
variant occurs. However, which attribute each double agent gene exhibit needs to
be determined for each tumour type [14, 17].

2.4.4 Variants in cancer
In cancer an accumulation of variants occurs, however not all variants are driving
the development of the tumour [15, 14]. Variants are characterised as either drivers
or passengers [15]. A driver is defined as a variant that is crucial in development of
cancer [14], whereas a passenger variant is a variant without any phenotypical or bi-
ological effects [11]. The importance of classification is based on the complex nature
of tumour development [14]. Since variants are accumulated, it is of importance to
distinguish which drive and start the cancer development.

Understanding the variants in a tumour is necessary to be able to classify them
accordingly. The classification system for each variant often includes the classes
pathogenic, likely pathogenic, benign, likely benign or variant of unknown signifi-
cance (VUS). The mentioned classes are widely used clinically and is based on the
consensus The American College of Medical Genetics and Genomics (ACMG) and
Association for Molecular Pathology (AMP) guidelines and standards [9]. ACMG
and AMP guidelines are widely used for interpretation of germline and somatic vari-
ants. Tools to predict functionality of variants is combined with knowledge-based
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2. Theory

databases and included in ACMG and AMP criteria.
A hotspot is defined as a genetic position frequently mutated in cancer [18].

Driver variants in oncogenes are found in specific hotspot positions, for example in
the RAS -family genes (KRAS, HRAS and NRAS) p.G12 is a hotspot [19]. Hotspot
positions are not found at the same extent in tumour suppressor genes as in onco-
gene [18]. Tumour suppressor genes rather becomes harmful due to LoF variants or
if present in certain exons or domains[19, 18, 20]. Proofreading genes POLE1 and
POLD1 are examples of tumour suppressor genes where pathogenic or harmful vari-
ants are restricted to exons in a certain domain of the protein [20]. Also, hotspots
are not necessarily excluded to exons, variants with driving properties have been
found outside of coding regions, for example in TERT promoter regions [19, 18].
Oncogenic driver variants in NSCLC have been identified during the recent years
and more are expected to be found and make treatable [21]. Specific driver vari-
ants have treatments approved by the U.S. Food and Drug Administration (FDA),
the genes are EGFR, MET, ALK, ROS1, BRAF, NTRK, RET, HER2, NRG1 and
KRAS. Nevertheless, a third of the NSCLC cases seen has no known driving variant.

Some of the the mentioned oncogenic driver genes are mutually exclusive, mean-
ing that the probability of them co-occurring is very low [22]. Why mutual exclusiv-
ity occur is not fully understood but believed to be dependent on protein interactions
in tumour types. However, if one variant is found in an oncogene, it is believed that
the signalling pathway is already switched on. There are two established hypotheses
for mutual exclusivity, the first suggesting that two variants would not benefit the
cell and the second is that expressing two activating oncogenes leads to cell death.
Even though the oncogenic drivers, e.g. KRAS and EGFR, are thought to be mu-
tually exclusive, there are few exceptions of cases where co-occurring variants are
found [23].

2.5 Established biomarkers in non-small cell lung
cancer

Biomarkers can be specified either as agnostic, predictive or prognostic, to mention
some, and treatments can be decided upon the detected level of a specific biomarker
[24]. An agnostic biomarker is an indicator regardless of tumour origin, a pre-
dictive biomarker predict the livelihood of response to a specific treatment and a
prognostic biomarker indicates the outcome regardless of treatment. Currently, a
few biomarkers are approved for prediction of treatment and diagnostics in NSCLC
[2]. Nevertheless, there is conflicting evidence whether the used biomarkers are ac-
curately able to predict response to ICB. The most used predictive biomarker for
response to ICB is, as mentioned, tissue PD-L1 expression [24]. For example, radia-
tion or chemotherapy treatment can affect and modify the expressed level of PD-L1
[7]. Although, PD-L1 expression is an unreliable biomarker [24], it is approved for
clinical use for determination of treatment by the European Medicines Authority
(EMA) [2].

A suggested agnostic biomarker for NSCLC is the tumour mutational burden
(TMB), which refer to the number of mutated genes per megabase (Mb) of DNA in
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the sequenced tissue sample [13]. TMB is however also a conflicting biomarker with
varying results [13]; that is because there are different lab-specific calculations for
this parameter [24]. For example, some calculations only consider non-synonymous
variants while other consider all types of variants. Without standardisation, TMB
can be seen as a biased biomarker; despite this, TMB is approved as an agnostic
biomarker by FDA[2].

2.6 Circulating tumour DNA
Whole blood contains erythrocytes, leukocytes and thrombocytes that are encap-
sulated by plasma. The blood plasma contains, among other components, a small
proportion of cell-free DNA (cfDNA) [25]. The cfDNA represent all DNA in the
cells, additionally in cancer patients, some of the cfDNA comes from tumour cells
and is known as ctDNA. CfDNA is found in very small concentrations, approxi-
mately 10-30 ng/mL [26]. The ctDNA can be used for quantitative analysis, leading
to the possibility to analyse the prevalence of specific variants in ctDNA [25, 26].
There are different methods that can be used for detecting ctDNA, the methods
have in common that they are ultrasensitive to be able to detect the small amounts
of ctDNA [26, 27]. Usually, one of two approaches can be used, one is to monitor
already known variants over time to e.g. follow response to treatment, while the
other is to use a panel and screen for variants to identify a tumour or relapse.

In cancer patients, both cfDNA and ctDNA is found, the detected levels varies
between patients and tumour type [26]. CfDNA leaks from cells undergoing cellular
processes such as cell death and active secretion. Not only can cfDNA be found
in blood, but also other bodily fluids, such as sweat and saliva. Characteristics of
cfDNA is that its length is usually 146 bp, wrapped around a histone, connected by
a 20 bp long DNA-linker. The fragments can be longer if it comes from other pro-
cesses than apoptosis. A blood sample with cfDNA is a instantaneous measurement,
since cfDNA is quite unstable with half-life is between 15-150 min [26]. The process
of cfDNA clearance is a biological concept that is poorly understood, the clearance
does however take place in spleen, liver and kidneys. Cf- or ctDNA clearance has
no consensus definition but is study-specific and can be defined as the lack of de-
tectable variants, given a decent coverage [28]. CtDNA clearance is associated with
longer PFS and OS in NSCLC patients, the clearance possesses potential of being
a predictive and prognostic biomarker. Also, driver variant clearance is connected
to longer OS, but total ctDNA clearance is connected to even better OS.

As mentioned, two main different ctDNA approaches are suggested, screening
a panel with several variants of known drivers or use specifically selected variants
based on the variants detected in the tumour [29, 30]. As a third of NSCLC patient
has an unknown driver [21], to select what variants to follow patient- or tumour-
specific variants is suggested as an approach [29]. CtDNA analyses using panels
with the most common hotspots has also shown clinical applicability for NSCLC
patients but require optimisation [30]. However, the latter approach is suitable for
minimal invasive molecular pathological testing for treatment considerations more
than treatment monitoring.

CtDNA is reported using mutant molecules (MM) per mL plasma and variant
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allel frequency (VAF) in percentage [31]. Both VAF and MM/mL plasma is affected
by the input of cfDNA, which can lead to underestimation due to contamination of
germline or wild-type DNA molecules. MM/mL plasma is supposed to give more
accuracy in terms of tumour burden compared to ctDNA VAF. To calculate MM/mL
plasma equation 2.1 is used, where MM/mL plasma is dependent on PCR input in
ng and VAF in % is divided by 0.033 ng per haploid genome and the plasma volume
Vplasma in mL. MM/mL plasma is always rounded down to the nearest whole value.

MM/mL plasma = PCR input · VAF
0.033 · Vplasma

(2.1)

Physical quantities MM/mL plasma and VAF have shown to be in analytical
agreement, thus both should be reported as one might not be sufficient[31].

2.7 Mutational signatures

2.7.1 Biological impact and aetiology
Tumours with somatic variants often affect genes involved in cellular processes im-
portant in for example, replication or repair of DNA [32]. Somatic variants can be
caused by external factors such as UV-exposure or tobacco smoking. Combinations
of variant types can be generated from specific mutational processes; these are called
mutational signatures. What distinguishes and characterises a mutational signature
can be the type of variant, its context or distribution, the reconstructive ability or
stage of the cancer [11]. Mutational signatures are sorted as either single base sub-
stitutions (SBS), doublet base substitutions (DBS), small insertions and deletions
or CNVs [32]. Each reference signature consist of a unique pattern, of which the
sample-specific signature are composed of. The reference mutational signatures are
developed by the Wellcome Sanger Institute (Hinxton, UK), and is a project within
Catalogue Of Somatic Mutations In Cancer (COSMIC) [33]. Some of the COSMIC
signatures have a proposed aetiology related to factors such as tobacco smoking,
age and DNA mismatch/repair which can be used for analysis [32]. Specific cancer
types have some signatures higher expressed than other types. Apart from offering
deeper understanding of mutational processes and cancer aetiology, mutational sig-
natures are suggested to have potential to function as predictive biomarkers [34].
In addition, mutational signatures can be used to discover therapy sensitivities and
explore biological consequences of driver variants.

2.7.2 Mathematical background and algorithms
The combinatorics behind mutational signatures are basically the same for DBS
and SBS, thus will be described for SBS [35]. Generally, SBS can be sorted in 6
main combinations, being C-G, C-T, C-A, G-T, G-A, A-G or A-T base shifts, where
e.g. variant C-G represent both C>G and G>C. To characterise the variants even
further, it is determined where the variant is present in correlation to the 5’- and 3’-
ends by the surrounding nucleotides. The types for SBS can then be determined to
96; for 6 subtypes, 4 possible 5’ nucleotides and 4 possible 3’ nucleotides (6·4·4 = 96).
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96 are the most used types, since that is what COSMIC consists of, but without
consideration of flanking bases 6 types are created, while 2 flanking bases on each
side result in 1536 bases, to mention some [36]. Using additional flanking bases can
lead to discovering novel mutational signatures and further understand mutagenic
processes.

Moreover, SigProfiler is collection of bioinformatics tools to use for discovering
and deciphering signatures, and the general algorithm will be shortly described
[35, 37, 36]. Mathematically, each mutational signature is dependent on the number
of variants i.e. exposure; and the mutational process which in turn depends on
probability of the signature to be true [35]. The mutational catalogue of signatures
can be expressed as a matrix, where the mutational catalogue, M, is the product of
the mutational processes, P, multiplied with their exposure, E, see matrix notation
in equation 2.2.

M = P × E (2.2)
Non-negative matrix factorisation (NMF) is a method applied and used on bi-

ological data due to its ability to extract complex information [35]. Using NMF,
non-biological data and unidentified noise can be sorted out. When signatures are
reconstructed then cosine similarities for each sample is given. The cosine similarity
describe the average deciphering error, i.e. similarity between two non-negative mu-
tational profiles A and B, see equation 2.3, where K is the number of variant types
[35]. The cosine similarity varies from 0 to 1, where 1 is the exact same signature
structure [35, 38]. A cosine similarity below 0.75 can happen by chance and when
above 0.90, it is very likely to be true positives [37]. A low cosine similarity may be
due to errors due to insufficient calling of variants, too few variants or the sample
possessing a novel signature.

sim(A, B) =
∑K

k=1 AkBk√∑K
k=1(Ak)2

√∑K
k=1(Bk)2

(2.3)

SigProfilerExtractor is a completely unsupervised machine-learning method, mean-
ing it can discover hidden patterns in large scale data [37], while SigProfilerAssign-
ment is a supervised method which is based on already known patterns, i.e. the
COSMIC signatures, that the data is then fit into (unpublished). COSMIC signa-
tures has also been linked together into subgroups according to aetiology, to coun-
teract overfitting, subgroups can be excluded. To avoid overfitting of the model,
signatures with unlikely aetiology in terms of not arose from true biological pro-
cesses, can be excluded. Excluding subgroups can also result in a biased solution if
not excluded correctly, while overfitting might be an issue if keeping the subgroup.
Overfitting is also avoided with NMF in the program itself every iteration through
bootstrapping before NMF [35]. However, excluding subgroups can in turn also lead
to biased results and not detecting outlying samples (unpublished).

2.7.3 Formalin-fixed paraffin-embedded samples
Formalin-fixed paraffin-embedded (FFPE) samples have some mutational signatures
whose true aetiology cannot be connected to true biological processes, but rather
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degradation of a tissue in FFPE [39]. The main reason for storing tumour material
in FFPE is to preserve tissue morphology for clinical diagnosis. Most commonly, the
FFPE variants are variants where C is mutated to T, which results in false positive
mutational signatures. To try to increase the quality of the FFPE tissue, it can be
chemically repaired before sequencing. In degrading FFPE samples two signatures
are correlated, SBS1 and SBS30, these are biologically caused by deamination, i.e.
removal of amino group. The true deamination can be mistaken for FFPE-induced
deamination for SBS1; without chemically repairing the tissue before sampling, the
variants can be mistaken for the rare signature SBS30. To determine true biological
processes from FFPE-induced artefacts, the artefact variants can be computationally
removed [39].

2.8 Bioinformatical workflow
The main steps of a bioinformatical workflow is seen in figure 2.3.

Figure 2.3: Bioinformatical workflow for a general sequencing run. Created
with BioRender.com.

When a sequencing run is done, a lot of raw data is achieved [40]. Following
base calling is done and each read is given a quality score reflecting a probability
of the base being true. High quality reads reflect a score of above 30, with 99.9%
certainty. Then various filters were applied, trimming of reads and mapping to
reference genome were done, to in the end achieve vcf-files with the called variants.
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2.9 Statistical methods
In cancer studies survival analyses are done to be able to compare outcomes and
its contributing factors [41]. Clinical endpoints can be OS or PFS, characterised by
events, i.e death or progress [6, 41]. Statistical methods based on normal distribution
is not useful in the cases for survival analyses [41]. A phenomenon specific to survival
analyses is called censoring and can be due to patients lack follow-up data, suffered
a non-cancer related death or the event has not occurred. To correctly handle
censoring, special methods are required. Special non-normal statistical methods are
Kaplan-Meier (KM) survival analysis, logrank tests and Cox regression multivariate
analysis of proportional hazard for contributing factors.

KM survival function is described in equation 2.4, where S(tj) is the probability
of a patient being alive at time point tj, dj is number of events at time point tj and
nj is the number of patients alive right before time point tj [41]. Using KM survival
analysis, a KM survival curve for cumulative survival probability over time is used
to visualise survival [41].

S(tj) = S(tj−1)(1 − dj

nj

) (2.4)

Comparison between groups in survival curves can be made statistically with a
logrank test, a nonparametric test [41]. Logrank tests is used to calculate probability
of the null hypothesis being true. The null hypothesis for logrank test is that the
hazard ratio (HR) is equal to 1, when HR is defined as the relative survival between
groups. Logrank tests is then used to estimate if a one group is significantly different
compared to another group.

Cox regression is a statistical method for testing multivariate [42]. The Cox
statistical model is presented in equation 2.5, where h(t) is the hazard function, x
is a covariate, b is the size of the covariate, p is the number of covariates. Unlike
logrank tests, Cox regression model takes the size of the effect and also consider a
clinical assessment of the impact.

h(t) = h0(t) × exp(b1x1 + b2x2 + ... + bpxp) (2.5)

2.10 Aim
The thesis has an overall aim which is divided into two partial aims that combined
are meant to fulfil the overall aim. Overall, the thesis aims to give insight in iden-
tification of biomarkers in blood and tumour tissue, related to its effectiveness in
prediction ability, for use in clinical applications.

• The first partial aim is to predict and understand patients’ response to ICB
treatment. Individual variants as well as mutational signatures will together
with additional information be used to analyse the response to treatment in
tumour tissue samples.

• The second partial aim is to find biomarkers in the blood plasma samples, to
investigate if they can be used to predict and understand the patient’s response
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to treatment. This aim will be fulfilled by interpreting results from ctDNA
analyses.
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Methods

The following section will describe the set-up and design of the study followed by the
methods used. An overview of next generation sequencing (NGS) and bioinformatics
will be given, followed by an in-depth variant interpretation and classification. How
the mutational signatures were produced will also be described. The two different
sequencing methods used for ctDNA will be presented, and finally how the pathway
analysis was performed.

3.1 Study design

The BioLung cohort is an ongoing prospective observational study, started in 2019
and where subjects (i.e. patients) are still included. Patients are recruited from
both Sahlgrenska University Hospital and Skövde Hospital. Clinical follow-up is
done every three months using computed tomography scan (CT scan). If responsive
to immunotherapy, the patient is treated at longest for 24 months. For this study, 9
months is used as a cut-off where responders and non-responders are evaluated. SD
for (at least) 9 months together with CR and PR are responders, while PD within
9 months is a non-responder.

Liquid biopsies in form of blood samples are collected at every treatment visit
for the first five treatment cycles, including baseline (A (baseline), B, C, D, and
E); schematic diagram of sampling times is presented in figure 3.1. Depending on
treatment, the cycles can be between 2-4 weeks. If a clinical progression of disease
is detected, a sample will be collected at the patient-specific time point F, if no
clinical progression is seen a follow-up sample will be collected 1 year from baseline.
To clarify, F does not necessarily follow E. F can be taken after the 1-year sample
or even before the first five treatment cycles are completed in case for an early
progression.
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Figure 3.1: Flowchart over study design and sampling in the BioLung cohort
study. Created with BioRender.com.

The tumour tissue was retrieved at diagnosis of the patient via a needle biopsy,
at a patient-specific time point somewhere before A. The tumour sample was then
analysed using a clinical NGS-panel that include hotspots with potential to influence
treatment decisions. For a subgroup of patients, the samples are sent to Eurofins
Genomics (Europe Sequencing GmbH, Ebersberg, Germany) for further analysis
using a larger sequencing panel, more described in section 3.2. The biopsy is taken
at time for diagnosis, following the time from tissue biopsy to inclusion in BioLung
is not standardised based on the study, as the liquid biopsy.

The patient groups in the project are split into subgroups based on what samples
are available. The main divider is if there are extended NGS data available, see figure
3.2. Further, the mutational signature analysis contain 50 patients, there after the
variant classification is done, and the data from there is used to select variants
to follow for ctDNA analysis. Where extended NGS data is missed, samples were
selected for ctDNA analysis with variants based on the clinical NGS data.

BioLung cohort
(n=110)

With extended NGS
(n=54)

Without extended NGS
(n=66)

ctDNA
analysis
(n=11)

Variant
classification

(n=49)

ctDNA
analysis
(n=15)

Mutational
signatures
(n=50)

Figure 3.2: Overview of patient selection for the different parts of the project,
where n is the number of patients included.
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3.1.1 Metadata

Tumour biopsy samples from 53 patients have undergone NGS analysis. 2 of the
53 patients were then excluded from the studied since it was determined they were
misdiagnosed with NSCLC; one originally had kidney cancer and the other had
small cell lung cancer, resulting in 51 patients. 1 of the 51 patients moved to
another country, hence were also excluded due to lack of follow-up data, see figure
3.3 for CONSORT diagram of patient selection to the NGS sub cohort.

BioLung cohort
2019–ongoing

n = 113

n = 53

n = 51

n = 50

Exclusions

No data from
extended NGS-panel

(n = 60)

Found to not be NSCLC
(n = 2)

Missing follow-up;
moved out of VGR

(n = 1)

Figure 3.3: CONSORT diagram of patient selection for the analyses. Number
of patients included are shown together with reasons for exclusions.

Table 3.1 shows the patient selection for variant classification as well as all pa-
tients together with parameters characterising the cohort, parameters such as histo-
logical diagnosis, PD-L1 expression and response to ICB. Note that only 49 patients
are presented in the NGS sub cohort, while the CONSORT diagram states 50 pa-
tients for the same analysis. One patient was excluded during the project according
to an analysis performed, the reason of exclusion will be explained in the results.
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Table 3.1: Metadata for patients from the cohort. NGS, i.e. included in variant
classification and mutational signatures of BioLung study and for the subcohort for ctDNA
analysis

n (%), NGS n (%), ctDNA
Patients 49 (100%) 26 (100%)
Sex
Female 27 (55%) 14 (54%)
Male 22 (45%) 12 (46%)
Age
≥70 19 (39%) 11 (42%)
>70 30 (61%) 15 (58%)
Median 72 74
Range (36–86) (53–83)
Stage
I 1 (2%) 2 (8%)
III 6 (12%) 8 (31%)
IV 42 (86%) 15 (58%)
Histodiagnosis
LUAD 36 (73%) 21 (81%)
LUSC 12 (24%) 4 (15%)
NOS 1 (2%) 1 (4%)
PD-L1 expression
High (≥50) 23 (47%) 12 (46%)
Low (<50) 26 (53%) 12 (46%)
Response to ICB
Responder 28 (57%) 11 (42%)
Non-responder 21 (43%) 13 (50%)
Smoking history
Smoker (current or previous) 44 (90%) 25 (96%)
Non-smoker 5 (10%) 0 (0%)

3.2 Next generation sequencing and bioinformat-
ics

The material from tumours were extracted from a BioLung patient in the cohort
and analysed clinically using NGS, as mentioned. Either the primary or metasta-
sised tumour tissue is sampled during a needle biopsy, then stored in FFPE un-
til sequenced. For samples in the NGS subgroup, the samples were sequenced by
Eurofins Genomics. The sequencing panel used was INVIEW Oncoprofiling (Eu-
rofins Genomics), which contains around 600 protein coding genes with a limit of
detection of 1% on indels and SNVs. The FFPE tissue was sequenced using the
genetic sequencer Illumina HiSeq (San Diego, CA, USA). Eurofins Genomics also
provided vcf-files with the called variants after processed through their bioinformat-
ical pipeline. During this project, Eurofins Genomics developed a new bioinformatic
pipeline, thus all samples were run through both pipelines. Only high-quality reads
(Q-score above 30) were considered and a vcf-file containing the variants was con-
structed. The vcf-file was then processed in-house through Alissa Interpret (Agilent,
Santa Clara, CA, USA) to sort out most synonymous variants, variants more com-
mon than 1% in the population and variants with reads less frequent than 5%. Alissa
Interpret returned an Excel-file listing the variants along with necessary information
for further analyses.
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3.3 Classification of somatic variants
The NGS data was further analysed to identify true variants in the genetic sequences.
The analysis was done with aid from various databases and predictive tools, following
a workflow for somatic variant classification, see figure 3.4 [14]

Exonic and
splice variant
fulfil technical
validation?

Ignore or repeat

Common in
the entire
population,

above threshold
of 0.1%?

Benign if ≥1%.
Likely benign if
<1% and ≤0.1%

In the CPV list?

In a hotspot?Likely
pathogenic

Clear LoF
variant?

Pathogenic

Move to
scoring table

Variant in
oncogene
or tumour

suppressor gene?

Double agent
gene or insuffi-
cient evidence

Tumour sup-
pressor gene Oncogene

VUS
Likely

pathogenic
Move to

scoring table

Yes

No

No

Yes

Yes
No

Yes

No

No

Yes

Figure 3.4: Workflow for classification of somatic variants.

The workflow presented in figure 3.4 is essentially as the standardisation workflow
described by Froyen et al. [14]. Starting with technical validation, where three
criteria needs fulfilment (VAF, in splice site or exon and not technically complex
mapping). Usualness of variants are checked in gnomAD. The Consensus Pathogenic
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Variant (CPV) list for solid tumours can be found in appendix, A.1. Hotspots are
found in the CPV list and cancer-hotspots.com. Non-LoF variants are moved to
scoring table. If a variant is in a TS- or oncogene is determined.

A clear LoF variant refer to variants with nonsense, frameshift or splice site vari-
ants. Non-LoF variants and LoF in the last exon of genes BRCA1 and BRCA2,
exonuclease domain variants in POLE and POLD1 and all TP53 variants are ex-
ceptions and thereby excluded from original the workflow, exceptions are further
described in 3.3.1.

In the first step of the workflow, exonic and splice variants were sorted out based
on their fulfilment of technical criteria. The variants were manually checked in
Integrative Genomics Viewer (IGV; v2.14.1(hg38)) [43] and variants were excluded
as artifacts if present in at least one of the criteria presented below. To be classified
as a true variant, it cannot be present in any criteria.

1. VAF <5% in IGV. Exceptions from criteria 1 were made, based on tu-
mour/healthy tissue ratio, to instead lower the threshold to <3%.

2. Splice site variant other than ± 2 or ± 1. Exception from criteria 2 were
made for splice variants surrounding MET exon 14, BRCA1 and BRCA2 ; in
coherence with recommendations from Froyen et al., where these variants are
described as pathogenic or likely pathogenic [14].

3. Variants with technical complexity. Technically complex variants were
sorted out as method- or panel-specific sequencing errors if present if VAF was
>10% while simultaneously having some-what technical complexity of mapped
reads. Also, technical complex variants include variants where reads are strand
biased, unevenly distributed between strands, in an error prone region (i.e.
towards the end of a read or surrounded by many errors), of insufficient read
depth or of poor mapping quality (e.g. surrounded by soft-clipped reads).

The second step was to determine if a variant is common in the population
according to Genome Aggregation Database (gnomAD; v2.1.1 (GRCh37) [44] and
v3.1.2 (GRCh38)[45]). As mentioned, during processing in Alissa, a filter was added
to remove variants with frequencies >1%, however when checking variants in gno-
mAD an even lower threshold of >0.1% was used. The variants with VAF >1% was
classified as benign, while the variants with VAF between <1% and ≥0.1% were di-
rectly classified as likely benignn unless previously classified as pathogenic or likely
pathogenic according to ClinVar [46].

If <0.1% in gnomAD, the variant was checked in a third step for its presence in
the Consensus Pathogenic Variant (CPV) list for solid tumours provided by Froyen
et al. [14] recreated in appendix/figure A.1. If present in a hotspot of a gene
described in the CPV list, the variant was instantly classified as pathogenic. If not
in the CPV list, but present in a hotspot according to the database Cancer Hotspots
(https://www.cancerhotspots.org/#/home, q-value/FDR <0.1) [47, 48], the variant
will be classified as likely pathogenic.

All genes containing variants were then checked in the following four databases:
COSMIC’s v.96 [33] project Cancer Gene Census (CGC) [49], a list provided by Vo-
gelstein et al. [50], TSGene 2.0 [51] and OncoKB [52]. If a gene is in the mentioned
databases, its characteristics in cancer was documented, either as a tumour suppres-
sor gene, an oncogene or a double agent. An overall evaluation of the information
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from the databases was used to determine what characterisation each gene exhibits.
This information was then used in the next step of the analysis.

Regardless of the gene characteristics, variants with clear non-LoF variants, are
handled via a scoring table to determine the variant’s probable effect, see table
3.2. For clear LoF variants in a tumour suppressor gene was classified as likely
pathogenic; in an oncogene, a clear LoF was described as VUS. Nevertheless, if a
LoF variants was present in a gene with double agent characteristics or insufficient
evidence, it was analysed in the to the scoring table for non-LoF variants, see table
3.2. Next, each parameter included in the scoring table, 3.2 is thoroughly described,
followed by the scoring table below.

1. # entries (COSMIC). The number of entries in COSMIC are described for
each variant. If the number equal to or exceed 50, 3 p was added, if 50>x>10
then 1.5 p was added. If ≤ 10, then no points was added.

2. Driver gene (CGC). If a gene is in CGC, it means that it is detected as a
driver in cancer [49]. CGC is a literature-based database, where the minimum
requirements for inclusion is that at least two separate research groups has
shown functional evidence of driving in cancer, in what way (tumour suppres-
sor gene or oncogene) and increased variant frequency in the gene. Divided
into two tiers, with tier I has higher confidence than tier II. No difference was
made between tier I and II genes. If present in CGC in a somatic cancer type,
1 p was added, otherwise no points.

3. Predicted driver gene (intOGen or cancer-genes.org). For genes not
present in CGC, the genes were checked in theoretical prediction tools pre-
sented in databases intOGen [15] and cancer-genes.org (Memorial Sloan Ket-
tering Cancer Center, New York Cite, USA; q-value/FDR <0.25). This pa-
rameter is only considered for genes not found in CGC. If a gene was detected
as driver in somatic cancers in either intOGen [15] or cancer-genes.org 1 p was
added, otherwise no points.

4. Interpreted variant effect (CGI). CancerGenomeInterpreter (CGI) [53, 54]
was implemented to predict if a variant was a driver or a passenger. If a variant
is interpreted to be a driver it result in an addition of 1 p to the total score.
If the variant is interpreted to be a passenger, the score remains unchanged,
the same goes for errors or if the interpretation of a variant is blank.

5. Described in functional studies (VarSome, LitVar, dbSNP, Master-
mind, CIViC, DoCM or UniProt). If a variant has been evaluated in func-
tional studies in VarSome [55], LitVar [56], dbSNP [57], Mastermind Genomic
Search Engine [58], Clinical Interpretation of Variants in Cancer (CIViC) [59],
Database of Curated Mutations (DoCM) [60] or UniProt [61], it is a strong evi-
dence of its class. If pathogenic, disease causing or connected to drug resistance
or response, a value of 1 p was added. If some evidence of being pathogenic was
found in studies, e.g. the variant is classified as likely pathogenic, 0.5 p was
added to the total score. Contrary, if a variant was described as benign based
on functional evidence, -1 p was subtracted. When no functional evidence was
found, the total score was unchanged.

6. ACMG classification (VarSome). In VarSome a build-in variant classifier
was present, based on a point system where the variants were scored. The
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scores used for the different classifications were as follows; ≥ 10 p = pathogenic,
9–6 p = likely pathogenic, 0–5 p = VUS (whereas 4–5 p are VUS+), -1 – -6 p
= likely benign and ≤ -7 p = benign. The scoring implemented in this table
was classified accordingly: pathogenic or likely pathogenic (9p) = 1 p, likely
pathogenic or VUS+ = 0.5 p, VUS = 0 p, likely benign = -0.5 p and benign
= -1 p. A few variants had various transcript version whereas the reference
base differ between transcript versions, these variants were described as VUS
in VarSome’s ACMG classification.

7. Bayesdel addAF algorithm (VarSome). Bayesdel addAF [62] is a scor-
ing parameter which was added in order to compensate for the strict ACMG
criteria in VarSome, affecting mostly novel genes. In some cases the Bayesdel
addAF score suggested that the variant was of pathogenicity, nevertheless, it
was discarded due to the gene not having any pathogenic variants. In the
cases described, the resulting ACMG classification was likely benign. There-
fore, when the algorithm suggested moderate to strong pathogenic and was
discarded for contradicting the ACMG classification, 0.5 p was added. Practi-
cally, the addition result in 0 p, since the ACMG classification of likely benign
decreased the score by -0.5 p. When tested on a set of variants, the classifier
Bayesdel addAF performed best (when tested on the IDUA gene) [53]. The
algorithm combines multiple deleteriousness predictiors with ClinVar [46], and
in addition addAF means that population VAFs are included [53].

8. Conservation of amino acid, Grantham distance (SOPHiA GENET-
ICS). In case the total score from the table was ≥ 1.5 p, the variant was
checked in SOPHiA GENETICS (Alamut Visual Plus v.1.4, Saint-Sulpice,
Switzerland). More precisely the conservation of the amino acid was checked
between orthologues (Ensembl), the Grantham distance, i.e. a measurement
of physiochemical difference between amino acids [63], was checked and the
predicted effect on splicing, which was a combined percentage from MaxEnt,
NNSPLICE and SSF. If highly conserved amino acid and moderate to high
Graham distance, 1 p was added to the total score. If the variant was predicted
to affect splicing more than 10%, then 0.5 p was added.
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Table 3.2: Scoring table for non-LoF somatic variants. The parameters seen in
blue are only checked under certain circumstances.

Note, in the workflow described by Froyen et al. [14] a variant must have ≥50
entries in COSMIC to be classified as likely pathogenic. Being in COSMIC, does
not mean that the gene is in CGC, i.e. the variant is in cancer samples but might
not cancerous. However, the implemented approach have other parameters weighted
higher. Further, the classes for classifying was also broadened regarding the VUS
classification, where very strong (++), strong (+) and weak (-) VUS:es were de-
termined from the original class. The following classifications are connected to the
total scores from the table; likely benign: ≤ -1, VUS-: -0.5 p, VUS: 0–2 p, VUS+:
2.5–3 p, VUS++: ≥ 3.5 p.

3.3.1 Exceptions from workflow
Rather than fitting every variant into the workflow, exceptions were made. The
excepted variants were to undergo a procedure in separate pipelines. The variants
excluded from the workflow described in figure 3.4 were found in the genes TP53,
POLE, POLD1, BRCA1 and BRCA2 [14].

TP53 variants were separately checked due to its complexness [14]. Databases
specified for use of TP53 variants were assessed, these were The TP53 Database
((R20, July 2019): https://tp53.isb-cgc.org) [64] and the predictive database Seshat
[65]. The special databases were combined with information from ClinVar [46] and
OncoKB [52]. For each variant an individual evaluation was performed wrighing in
the available information.

All non-LoF variants for BRCA1 and BRCA2 should be treated as exceptions,
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as should LoF variants in the last exons [14], exon 23 for BRCA1 and exon 27
for BRCA2. The excluded variants were similarly to TP53 evaluated in specific
databases, the data bases were ARUP (ARUP Laboratories, Salt Lake City, UT,
USA), InterVar [66], ClinVar [46], BRCA Exchange [67] and LOVD [68].

Variants in POLE and POLD1 were classified as VUS in case the variant was
outside of the exonuclease domains [20]. If the variant was in the exonuclease do-
mains, they were to undergo the original classification system.

3.4 Mutational signatures
To prepare the samples for mutational signature analysis, Mutect2 (GATK, v.
4.1.3.0, Broad Institute of MIT and Harvard, Cambridge, MA, USA) were ran on
the high-quality tumour and normal blood BAM-files to extract somatic variants.
FilterMutectCalls (filter within Mutect2) was applied for filtering with default set-
tings. Further, samples were grouped by clinical response (RECIST 1.1 criteria [5])
and ran in SigProfilerExtractor [37], with and without FFPEsig [39], and in Sig-
ProfilerAssignment. The mutational signatures were produced by bioinformatician
Katarina Truvé (University of Gothenburg). Each patient’s signatures was achieved,
and the mutational signatures were analysed. Patients were grouped based on mu-
tational signatures alone and in combination with genetic variants for statistical
analyses.

3.5 Genetic landscape and waterfall plot
To visualise the genetic landscape of the genes with variants, waterfall plots were
constructed. The plots were constructed in RStudio (v.4.2.2, R Core Team, Vienna,
Austria), essentially using the package GenVisR [69]. Separate plots were made
for all patients, then split into histological diagnoses (LUAD and LUSC). Clinical
data, as sex, histological diagnosis and response to ICB was also provided, together
with a list of patients and its belonging mutated genes and variant type. In addi-
tion, a TMB plot was constructed with information from each sample. The TMB
was calculated by Eurofins Genomics, using only non-synonymous SNVs. When
calculating the TMB, some criteria were setup for exclusion; the following variants
were excluded: non-coding variants, known germline variants in dbSNP or gnomAD,
predicted germline variants by algorithm, known somatic variants in COSMIC or
ClinVar [46], variants with read depth <50 reads, variants with VAF <5%, variants
in tumour suppressor genes. The code used for the construction of the waterfall plot
can be seen in appendix B.2.

3.6 Pathway enrichment analysis
The pathway enrichment analysis was performed in RStudio using the ReactomePA
package by Bioconductor [70]. ReactomePA uses Reactome’s database of pathways
to map the genes onto pathways, as one gene can participate in more than one
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pathway. A list of with only gene names in Gene Symbol-format was provided and
converted to ENTREZID. The code for the pathway enrichment analysis used can
be seen in appendix B.

3.7 ctDNA analyses

Briefly, the analysis of ctDNA was performed as follows, first extraction, then am-
plifications, detection and lastly data analysis. Two different workflows were used,
superRCA [27] and SiMSen-seq [26]. Since extraction and data analysis are equal
within the superRCA and SiMSen-seq, those paragraphs are generally described,
while the methods are separated where they differ.

3.7.1 Extraction

The extraction of cfDNA, which include ctDNA, was performed with various meth-
ods, whereas all were optimised for extracting cfDNA from plasma. The extraction
done in-house was performed using magnetic bead-based kits, manually using QI-
Aamp MinElute ccfDNA Mini Kit (Qiagen, Germany) or automated using EZ1&2
ccfDNA Kit (Qiagen, Germany). If extracted in-house then the quantity was mea-
sured using Qubit™ dsDNA High Sensitivity Assay Kit (Invitrogen™, Waltham,
MA, USA). Extraction of some samples were done at Simsen Diagnostics and Rar-
ity BioScience, using similar techniques.

3.7.2 superRCA

Some samples where only the clinical NGS panel had been used for tumour-sequencing
were analysed using the superRCA method [27]. The analysis was performed by Rar-
ity BioScience (Uppsala, Sweden), using their assay for KRAS and EGFR. The main
steps of superRCA can be seen in figure 3.5. For more in-dept method description,
see Chen et al, [27].
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Figure 3.5: Schematic workflow overview of superRCA. Inspired from Chen et
al [27], created with BioRender.com.

3.7.3 SiMSen-seq

The main steps of SiMSen-seq workflow can be seen in figure 3.6 [26]. For more
detailed method and protocol, see Ståhlberg et al. [71, 72].

SiMSen-seq was ran by Simsen Diagnostics, and also performed in-house. Several
different variants were followed in the analysis by Simsen Diagnostics, and assays
were designed accordingly. In-house the method was set-up for testing out and
following KRAS p.G12D variants.
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Figure 3.6: Schematic workflow overview of SiMSen-seq. Inspired from Ståhlberg
et al. [71, 72] and Andersson et al. [26], created with BioRender.com.

3.7.4 Data analysis
For the data analysis different plots were constructed together with charts over
all variants in patients. ctDNA load in percentage was calculated for all patients,
variants and time points and grouped based on response.

3.8 Statistical analyses
Statistical analyses were performed in IBM SPSS Statistics (v. 29, Armonk, NY,
USA) these were Kaplan-Meier survival analysis for OS, Cox-regression for con-
founding factor analysis.
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4
Results and discussion

Results for the main topics, mutational signatures, variant classification, pathway
analysis and ctDNA is statistically presented mostly in terms of OS. Discussion of
results are interlaced with the results, then ethical and societal aspects are pointed
out, together with delimitations of the thesis.

4.1 Mutational signatures
Firstly, SigProfilerAssignment was used as it can be applied to analyse each sample
separately (unpublished). The cohort was seen as quite diverse from earlier studies,
and SigProfilerAssignment was thought to better fit with these samples. However,
since the samples were panel-sequenced not enough variants were found which re-
sulted in overfitting. The overfitting was identified with support from creator Marcos
Díaz Gay, and avoided by using FFPEsig in combination with SigProfilerExtractor.
Even though different variations of mapping were tried to enhance quality, it was
not possible to reduce overfitting using SigProfilerAssignment.

4.1.1 Signatures and SBS’s for all patients
The number of de novo signatures that are extracted is based on the optimal num-
ber of solutions, which depend on stability in combination with mean sample cosine
distance. Aiming towards solutions with low mean sample cosine distance while
reassuring high stability [35]. The groups’ optimal numbers of solutions was deter-
mined in SigProfiler to be 2; SBS96A and SBS96B was then constructed for both
responders and non-responders, see figure 4.1. The y-axes represent percentage of
SBS’s and the x-axes are the 96 mutational types.

Figure 4.1: De novo SBS’s for all patients. Responders to the left and non-
responders to the right. Proportions of SBS’s are represented by a percentage.
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The de novo signatures were then reconstructed and then decomposed to COS-
MIC signatures, an examplary reconstruction and decompositon can be seen in figure
4.2. The example is for SBS96A for non-responders and is representative for the rest
of the de novo signatures as well.

58.74%

26.66%

12.56%

2.04%

Original

Reconstructed

Cosine Similarity: 0.906
Correlation: 0.814

L1 Error %: 45.0%
L2 Error %: 41.031%

KL Divergence: 0.2032

Figure 4.2: De novo reconstruction and decomposition. Here, SBS96A for non-
responders is shown as example of the process.

For the decomposed samples of the patients, a combined plot for proportionate
signatures from activities for all patients was made, see figure 4.3. Notably, the
same signatures were seen in both the non-responders and the responders group,
the groups were not diverse in terms of mutational signatures. The activity plot in
figure 4.3 show proportions of all signatures for all patients in the cohort, without the
outlier ID-31. The samples are composed of the signatures SBS1, SBS4 and SBS5
which are found in the majority of patients, also SBS90 and SBS54 were found in
both groups but in fewer samples.

30



4. Results and discussion

Figure 4.3: Activities for all patients, responders and non-responders. Pro-
portions of signatures are represented by SBS1, SBS4, SBS5, SBS54 and SBS90.

SBS1 is a clock-wise signature which is correlated with age at cancer diagnosis
[73]. Suggestively, SBS1 is generated at a rather constant rate from egg to tumour
cell and appear due to cell divisions. The signature can therefore be connected to
DNA replication substitutions occurring during mitosis. As most patients in the
BioLung cohort with NGS data are at a median of 72 years at diagnosis, SBS1 is
thereby expected to be seen in a lot of BioLung patients.

SBS4 is one of the signatures related to tobacco smoking [74, 24]. As expected,
many patients in the BioLung cohort possess the SBS4 signature, nevertheless no
distinct extinction between previous smokers, current smokers and non-smokers have
been seen in this study. Non-smokers also possess smoking signatures which was
expected, as already when discovering signature 4 it was seen in non-smokers but
elevated in smokers [74]. SBS4 in non-smokers most probably originated from passive
smoking, apart from possible misreported.

SBS5 is a signature connected to both age and smoking. However, the true
aetiology of SBS5 remain unknown [75].

SBS54 is a part of the subgroup of possible sequencing artefact signatures (COS-
MIC; Mutational Signatures v.3.3). As it is known that samples are of varying
quality, no further results will be presented with SBS54. Artefact signatures could
have been excluded from analysis, however, that could have led to biased results.

SBS90 is a signature correlated with duocarmycin exposure [76]. Duocarmycin
is an anti-cancer drug, and the signature in exposure is connected with duocarmycin
itself and its antibody-conjugate drugs. There is no clear connection or similarity
between patients in the BioLung cohort possessing SBS90. One hypothesis might
be that at least one patient in each group has received treatment for previous other
cancers using any of these duocarmycin-conjugates. The fact that it is seen in
multiple patients can be caused by spill over to other samples, as the number of
activities is quite few. Nonetheless, before investigating SBS90 further, it cannot be
removed or ignored. Patient records will be checked by clinicians to try to determine
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if any patient has gotten antibody-conjugate drugs, however results were not finished
in time to be included here.

DBS’s and ID’s were not possible to analyse when FFPEsig had been applied. In
the future, studying ID’s and DBS’s would be of interest as well, even CNV’s can be
analysed with mutational signature analysis. It was determined more important to
add FFPEsig than analysing the raw data and receiving potentially artefact variants.

One outlying sample was identified which lead to further investigations of patient
ID-31. The signature profile for ID-31 can be seen in figure 4.4.

4.1.2 ID-31 and SBS7a/b
Based on the results from mutational signatures in the group of responding pa-
tients, ID-31 stood out compared to the rest of the responders, possessing SBS7a and
SBS7b.

Figure 4.4: Pie chart representing of
mutational signatures for outlying pa-
tient ID-31.

Interestingly, SBS7 consist of activities
strongly connected to UV light expo-
sure and are most frequently found in
skin cancers [73]. Since SBS7 is so
rarely found in lung cancer, the sig-
natures had to be further investigated.
SBS7 has however been found in two
previous NSCLC cohorts, where those
samples were re-reviewed by patholo-
gists [24, 77]. In one of the studies the
tumours had originated from skin squa-
mous cell carcinomas [77] and melanoma
in the other [24] In both studies, the
findings lead to exclusion since it origi-
nated from skin cancers in both cohorts [24, 77].

Moreover, the findings were brought to attention of clinicians and pathologists,
whom from patient records found that ID-31 have had surgery for skin squamous
cell carcinoma a few years before the lung tumours were found and hence included
in the BioLung study. ID-31 was diagnosed with LUSC. Pathologists has not yet
been able to confirm if the primary source of the tumour was skin squamous cell
carcinoma. From a genomic or genetic point of view, as the SBS7 signatures hardly
exist in lung cancer, patient ID-31 must be excluded as an outlier in accordance with
previous studies [24, 77]. The mutational signatures leads to hypothesising that the
tumour seen in the lungs was a metastasis. Clinically, ongoing investigations are
taking place to determine the origin of cancer, which unfortunately could not be
completed in time to include in this thesis. The cosine similarity was 0.984 for ID-
31 which indicate that the true signatures were found for the sample. Detecting
SBS7 in ID-31 highlights the robustness of mutational signature analysis, before the
analysis no suspicions were made for ID-31 not being lung cancer.

A few number of the other responders had SBS7a/b signatures too. Nevertheless,
after excluding ID-31 none of the remaining samples showed SBS7 signatures. This
could be explained by the algorithm of SigProfilerExtractor, since it extract what
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signatures are in each group of patients and uses only them to assign to the samples,
the algorithm aims to find all possible solutions. Resulting in SBS7a/b was used
to explain ID-31 and the signatures spilling over to other samples as well. After
exclusion, and re-analysis no SBS7 signatures were found in any of the remaining
samples, as hypothesised.

4.2 Classification of somatic variants
In total, 5184 variants were found in the 49 patients after the processed in both
bioinformatic pipelines and analysed in Alissa. Out of the 5184, 2700 were only
present in the first pipeline, 1112 only in the second and 686 were found in both
pipelines, visualised in figure 4.2. From here, only the total number of variants will
be referred to, not split into pipelines. 4323 variants were classified as artefact due
to not fulfilling at least one of the technical criteria, resulting in 859 true variants
classified according to the workflow described in figure 3.4.

Total= 5184
Pipeline 1=2700
Pipeline 2=17982700 1798686

Figure 4.5: Venn diagram of variants from the two different bioinformatical
pipelines.

The number of true variants within the samples varied from 0 to 70 per sample.
In total the classification was as follows, 40 (4.7%) pathogenic, 96 (11.2%) likely
pathogenic, 34 (4.0%) VUS++, 75 (8.7%) VUS+, 501 (58.3%) VUS, 75 (8.7%)
VUS-, 35 (4.1%) likely benign and 3 (0.3%) benign, see table 4.2. No true variants
were found in ID-10, ID-32 nor ID-37; therefore, these samples together with ID-9
were exceptions in terms of lowered VAF cutoff to 3% in the technical validation.
The decision was based on not finding any variants and also low tumour/healthy
tissue ratio of 2%, 5%, 5% and 20% corresponding to ID-9, ID-10, ID-32 and ID-37,
respectively.

Table 4.1: Result from classification of somatic variants. The true variants have
been classified as pathogenic, likely pathogenic, VUS++, VUS+, VUS, VUS-, likely benign
or benign. Both number of variants and the percentage it represents are presented.

Pathogenic Likely pathogenic VUS++ VUS+ VUS VUS- Likely benign Benign
40 (4.7%) 96 (11.2%) 34 (4.0%) 75 (8.7%) 501 (58.3%) 75 (8.7%) 35 (4.1%) 3 (0.3%)

Variants classified as pathogenic from the CPV list were found in genes BRCA1
(LoF frameshift variant), BRCA2 (LoF frameshift variant), IDH1 (p.R132C), KRAS
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(p.G12C/A/V, p.G13C and p.Q61L/H), MET (exon 14 skipping). In addition, 17
LoF or non-LoF variants in TP53 were classified as pathogenic.

The majority of variants are VUS. However, we have managed to extract in-
formation to further refine the VUS category. Here, we manage to differentiate
between VUS with more pathogenic influences and VUS that appears to be more
benign. Upon introduction of VUS++, VUS+ and VUS-, the original VUS category
was thereby reduced from 685 to 501 variants. A classification like this with new
VUS categories has to our knowledge in this context not been reported before.

There are very few benign variants overall because these are already sorted out
with filters in Alissa interpret. Even though, not all variants are driving and as
involved in cancer, the variants cannot yet be classified as benign without functional
evidence. Both versions of gnomAD were used since v2.1.1 with GRCh37 included
a lot more data compared to the later version having fewer sequenced genomes
available. Even though information differs between genomes, it is reasonable to use
the available information from both.

Originally, it was planned that LoF variants with insufficient evidence of being a
tumour suppressor gene or an oncogene or non-LoF variants with evidence of being
a double agent gene, also should have been excluded from the workflow in figure 3.4.
Froyen et al. [14] suggested to use the characteristic that the gene exhibited in the
specific tumour type investigated. However, this was not practically doable due to
for example lack of information on how double agents act in different cancer types
[17]. A decision was made to treat these variants in the same scoring table as non-
LoF variants, table 3.2. However, in the future when there is available databases,
the workflow for variants mentioned should be modified to fit double agent genes
according to functionality in tumour types.

VarSome’s ACMG classification can potentially be biased by the fact that pre-
dictive data is discarded, when not in conclusion with other combined evidence, this
can cause issues when looking at potential harmful variants in an unknown gene.
Clinically, this is the way to go, however, not when trying to find novel genes in
research. Resulting in a circular argument, for example, if the gene LRP1B has
no pathogenic variants, the evidence suggesting this variant’s pathogenicity is dis-
carded due it not having any pathogenic variant. To try and solve this issue, the
predictive meta score from BayesDel addAF algoritm was added, in cases where it
was discarded due to it not being in conclusion with the other evidence.

4.3 Genetic landscape
The following section gives an overview of BioLung cohort and the most common
variants throughout the NGS subcohort. The genetic landscape of mutated genes
for the NSCLC cohort is presented in figure 4.6. [21, 78].

Figure 4.6 shows the 8 most mutated genes through out the NGS cohort. The
genes are ranked from the most mutated, as followed TP53, CSMD3, LRP1B, KRAS,
FAT3, SPTA1, TRRAP, ERBB4. The number of patients seen in the waterfall plot
are 49.
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Figure 4.6: Waterfall plot showing the most frequently mutated genes in the
NSCLC patients. The top plot shows the TMB for each sample and the bottom show
clinical data.

Based on histodiagnosis, waterfall plots were also constructed for LUSC and
LUAD patients separately, see figures 4.7 and 4.8. Apart from TP53 and CSMD3,
LUSC patients possess variants in other genes compared to LUAD. Recent studies
has suggested that LUAD and LUSC are genetically diverse and should be separated
from each other [79]. LUAD and LUSC are treated as different diagnoses, neverthe-
less, in terms of treatments, no differences are made. Moreover, the results shown
in figures 4.7 and 4.8 identifies differences in the genetic landscape of the two diag-
noses.However, in the BioLung cohort the vast majority are LUAD and the number
of patients with LUSC is rather limited. For future considerations, histodiagnosis
could also be a factor affecting treatment decisions.
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Figure 4.7: Waterfall plot showing the most frequently mutated genes in the
LUAD patients. The top plot shows the TMB for each sample and the bottom show
clinical data.

Figure 4.8: Waterfall plot showing the most frequently mutated genes in the
LUSC patients. The top plot shows the TMB for each sample and the bottom show
clinical data.

Statistically in an NSCLC cohort, more variants should be expected in driver
genes ALK, EGFR, BRAF, MET, RET and ROS1 [78]. In this study, we will not see
the usual distribution of NSCLC drivers. As there are well-functioning treatments
for many of the known alterations, those patients will not get ICB. What is present
here are the patients with other drivers, or unknown drivers.
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4.3.1 Co-occuring variants
Patients with co-occuring variants in various genes were also generated. The variants
presented in table 4.2 represent the eight genes with most variants. A series of
programmed Excel-sheet calculations was applied to minimise human errors when
combining big sets of data.

Most co-occuring variants was seen between TP53 and CSMD3, but also com-
binations of LRP1B, TP53, CSMD3, FAT3 was observed among several patients.
Co-variants has been suggested as possible biomarkers and can affect response to
treatment, but also be a way for investigation of mutational exclusivity. For ex-
ample, in this cohort, only one co-variant is seen in ERBB4 and KRAS, possibly
suggesting mutual exclusivity between them. More cases of KRAS/ERBB4 would
need to be studied and the pathways they are part of. Also, functional studies in
model organisms is needed to confirm mutual exclusivity.

Table 4.2: Co-variants within the most mutated genes in the cohort.

4.4 ctDNA
An overview of ctDNA found in tumour and also in blood plasma is shown in
figure 4.9. In figure 4.9 genes with variants tested in ctDNA, divided into clinical
responders to the right and clinical non-responders to the left, is shown. Artefacts
discovered post-analysis when re-reviewing tumour variants are coloured in blue,
this also in accordance with no ctDNA alteration found for the artefact variants
presented. Variants detected in both tumour and plasma are red and those tested in
ctDNA but only found in the tumour is presented with yellow boxes. Detection of
ctDNA is determined if present in at least one time point within the first five cycles
(baseline, B, C, D and E). The variant must be present in >1 MM to be considered
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found in ctDNA, as 1 MM is too uncertain to confidently be determined as true.
The white box indicate that the variants were not tested in this personalised ctDNA
analysis. Two patients, ID-53 and ID-59, were excluded from the ctDNA analysis
due to lack of follow-up data to determine response.

Figure 4.9: Genes tested in ctDNA in responders (right) and non-responders
(left). Artefacts are shown in blue, variants found in both tumour and blood plasma in
red and variants found in only the tumour are in yellow.

As presented in figure 4.9, there is more yellow in responders, i.e. only detected
in tumour, while the non-responding group contain more red boxes, i.e detected in
both tumour and ctDNA. The results indicate that detection of ctDNA is correlated
with worse response to treatment.

Non detectable (ND) levels of ctDNA during all time points was observed in
seven patients. The patients with ND levels were ID-1, ID-4, ID-6, ID-18 and ID-
27 analysed with SiMSen-seq all of which were responders. ID-60 and ID-51 also
had ND levels and was analysed by Rarity, where only ID-51 was classified as a
clinical responder. For ID-60 and ID-56 it was harder to determine response since
these patients are stage III, receiving durvalumab (PD-L1) to reduce risk of relapse
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after chemo- and radiation therapy. ID-60 had SD for 6 months and had PD at 9
months, to properly assess ctDNA for these patients, more samples or variants to
follow would have been needed, and especially a follow-up at every three months or
more often to be able to detect PD earlier. ID-56 also had SD when the samples
were taken and had only 2 MM at baseline, then clearance.

In figure 4.10, plots for responding patients with at least 1 detectable MM in at
least one time point can be seen. The patients presented are ID-58, ID-61, ID-3,
ID-29 and ID-42, with the corresponding MM/mL also is presented in tables, all of
which has ND levels in at least one time point. VAF’s shown are for the ctDNA load
(%) meaning that the sum of the MM’s were divided by the sum of coverage. ID-51
and ID-57 only had two samples each and are therefore not presented in figures 4.11
nor 4.10
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Figure 4.10: Responding patients with detectable values with corresponding
VAF’s in the plot and MM/mL in the table next to it.

Non-responding patients are presented in figure 4.11, ctDNA load (%) is plotted
against time from inclusion in days. All non-responders except ID-7 have ctDNA
in detectable levels already at baseline. And generally, 50-fold higher VAF’s were
detected in non-responders compared to responders already at baseline for this co-
hort.
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Figure 4.11: Non-responding patients with with corresponding VAF’s in the
plot and MM/mL in the table to its right.

Correlations between tumour size and ctDNA levels in plasma has been found
in previous studies [80]. For example ID-7 would be a patient interesting to study
further to understand the levels detected. Investigating the tumour proliferation
rate and also the tumour size for ID-7 would might explain the ctDNA MM/mL
and VAF. PD was detected clinically at 3 months for ID-7, and as the baseline
MM/ml and VAF was ND suggests ID-7 might have a resistance variant to ICB or
had developed one.

Showing only SiMSen-seq patients, the variations in VAF’s for responders and
non-responders respectively can be seen in figure 4.12. Also, notice the difference in
x-axes here, responding patients all have below 0.3 % while responders have much
more. For all responders a decrease is seen while increase in ctDNA is seen for
non-responders.
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Figure 4.12: Responding and non-responding patients from baseline to D *or
C if D is missing.

For both responding and non-responding patients, the response to treatment
seems to be able to be detected early and followed during treatment in blood. As
mentioned, some patients had different patterns, ID-7 for instance had ND in A,
B and C. Usually with biomarkers it does not work for all patients and some cases
will be more difficult and tricky to interpret. To follow-up this research it would be
interesting to take samples every month when patients have appointments to see in a
more long-term perspective how ctDNA can be followed to detect PD earlier. Most
patients included here are early non-responders, i.e. they have PD at 3 months. It
would be interesting to follow more non-responders with initial response and later
PD to see trends there as well.

For patients with ND ctDNA levels, we cannot be sure that the variants were true
throughout all treatment points. However, when following multiple tumour-specific
variants the risks of all disappearing with tumour evolution or being artefacts is
low. Especially when following driving variants, they should not disappear due to
clonal evolution. To ensure that the tumour variants are still present, we would also
like to have another tissue biopsy some months into treatment to ensure the tumour
still has the variants followed. Also, the importance of analysing both MM/mL and
VAF is shown in figures 4.11 and 4.10. Variations in VAF’s for equal concentrations
of MM/mL is due to the amount of cfDNA is higher in some patients resulting in
lower and perhaps underestimated VAF. Therefore, both VAF and ctDNA should
be reported.
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4.4.1 Special cases
ID-52 in figure 4.9 possesses variants in KRAS and EGFR and the variants were
found in both tumour and ctDNA; even though variants within these genes are mu-
tually exclusive. Nevertheless, as presented by Lee et al. [23], a few NSCLC patients
possess both EGFR and KRAS variants. It should not be beneficially for the tu-
mour cell as the pathway already is activated by one of the variants. For ID-52, it is
of interest to determine which of the variants are more driving in tumourigenesis to
discover the best treatment regime. The biopsy was taken from the primary tumour,
where both variants were found.

Figure 4.13: VAF curve for ID-52
for ctDNA for KRAS and EGFR
separately. KRAS is in red and EGFR
is in blue.

In figure 4.11 the ctDNA load was shown,
but in figure 4.13 the contribution of each
variant is seen more clearly. In ID-52, EGFR
is found in higher VAF and MM/mL com-
pared to KRAS, which could be a slight in-
dication of EGFR being more driving com-
pared to KRAS. If present in the same cells,
KRAS is downstream of EGFR suggesting
abnormal activation of KRAS [81]. ID-52
is a stage IV patient having spread disease,
leading to another explanation for difference
in VAF’s being that EGFR is present in
more metastases while KRAS is present in
only a subclonal population of the cells. Dif-
ferences in VAF and MM/mL can also be
due to tumour heterogeneity. It would need
further investigations to determine if vari-
ants are found in the same tumour cells. No
conclusion can be drawn from only one patient.

Figure 4.14: VAF curve for
ID-31 ctDNA analyses. The red
line show the time for clinical PD.

ID-31 is as mentioned excluded due to mu-
tational signatures, but shown as an example of
ability to detecting progress earlier than in clin-
ical settings, see figure 4.14. As an increase in
ctDNA indicating lesser response to treatment
is seen after 1 year but clinical progress (PD)
is not detected until three months later, at the
red dashed line. The time point with the high-
est VAF is in fact not the progress sample F, the
last sample in figure 4.14. When clinical progress
was seen another treatment was started, so the
results in F shows decreased levels. The patient
responded well (PR) to the new treatment, as
confirmed by lowered ctDNA levels. Showing
how ctDNA can potentially be used to monitor
treatment and detect progress earlier than with

clinical measures.
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4.4.2 In-house method comparison
For two patients, ID-60 and ID-62 with samples from five available time points
analysed with superRCA, and also with SiMSen-seq in-house. The patients both
had KRAS p.G12D variants. In figure 4.15, for ID-60 samples A, B, C, D and E is
presented while ID-62 samples are A, B, C, D and F, as clinical progress was seen
before E.

Figure 4.15: ID-60 is shown at the top while ID-62 is shown below.

Interestingly, plasma volumes for ID-62-B and ID-62-D were only 0.5 mL, still a
sufficient amount of cfDNA was extracted and gave comparable results. This was an
important discovery, since it shows such small amounts still can give similar results.
Small differences in VAF’s and MM/mL are expected to see, as aliquots from same
tube of blood results in different cfDNA amounts. Through amplification steps,
small errors between aliquots also grow larger. More samples ran with both methods
are needed to properly assess the differences.

4.5 Pathway analysis
A pathway analysis was performed using ReactomePA, some pathways were signifi-
cantly more mutated than others. However, the pathway analysis was aimed to use
for discovering genes with variants connected by being in the same signalling path-
ways. Nevertheless, ReactomePA was not designed for genomics data, and required
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RNA-seq data, i.e transcriptomics. Despite the unsatisfactory results from the path-
way analysis this time, further, we would have liked to develop this analysis by doing
transcriptomics data also. The analysis could have been done manually for all genes,
however that would be time-consuming and another programming approach using
other pathway databases focused on signalling pathways would be preferable.

Using expression data could differentiate more between pathways and the genes in
them. The differentially expressed genes is determined by a fold-change and p-value,
requiring transcriptomics. The results we achieved did not take into consideration
the number of mutated genes, i.e. if TP53 had 35 variants, it was only counted as
one. Also, if the groups of responders and non-responders that were more genetically
diverse, clearer results could also have been observed when splitting groups.

4.6 Statistical analysis of biomarkers for ICB re-
sponse

In the following section statistical survival analyses are presented, to achieve statis-
tical significance, a p-value <0.05 was required.

4.6.1 Established biomarkers
There are two established predictive biomarkers for ICB response in NSCLC, TMB
and PD-L1 expression. TMB was tested and results for OS is presented in figure
4.16 (logrank p-value: 0.698). The cut-off for high TMB was ≥10 mut/Mb, since
that is the FDA approved threshold.

Figure 4.16: KM survival curve for TMB with cut-off ≥10 mut/Mb.

Figure 4.17 show KM OS curves for PD-L1 expression calculated in two ways.
In figure 4.17 A the expression cut-off is ≥50% (logrank p-value: 0.288), in figure
4.17 B, <1%, 1-49% and ≥50% as cut-offs (logrank p-value: 0.372). No significant
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difference can be seen in the KM survival curves for PD-L1 expression, for neither
of the calculations.

Figure 4.17: A: KM survival curve for PD-L1 expression for cut-off of ≥50%.
B: KM survival curve for PD-L1 expression for cut-off of <1%, 1-49% and
≥50%.

TMB and PD-L1 expressions are far from statistically significant in prediction
of ICB response in terms of OS. As PD-L1 expression is affected by surrounding
factors such as previous treatments and TMB calculations has no standardisation,
there is an urge for other biomarkers. In this cohort, the biomarkers approved for
use were unable to predict the response to ICB in terms of OS. The results presented
in figures 4.16 and 4.17 emphasise the bias in established biomarkers.

Further, the OS was investigated. The sections below shows the most promising
and significant data from the analyses.

4.6.2 Individual genes

For individual genes, TP53 (logrank p-value: 0.316), CSMD3 (logrank p-value:
0.920), KRAS (logrank p-value: 0.041, Cox regression p-value: not significant (ns)),
LRP1B (logrank p-value: 0.041, Cox regression p-value: ns), FAT3 (logrank p-value:
0.506), SPTA1 (logrank test p-value: 0.843), TRRAP (logrank p-value: 0.865) and
ERBB4 (logrank p-value: 0.575) were investigated for OS. Only KRAS and LRP1B
is presented in figures 4.22 and 4.18 as the other individual genes did not gave
significant difference between wild-type and mutated gene. Variants in other genes
appeared in too few of the patients to be properly assessed. Even when dividing
LRP1B into its classes patients with variants classified as VUS were connected to
longer OS (logrank p-value: 0.043, Cox regression p-value: ns).
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Figure 4.18: A: KM survival curve for LRP1B, also divided into classification,
VUS or of pathogenic influence (denoted by LP/VUS++/VUS+). B: KM
survival curve for LRP1B

Figure 4.19: KM survival curve for KRAS.

Most studies find KRAS correlated with longer OS, however there are contra-
dicting evidence on the efficiency of KRAS as a predictive biomarkers [82]. Different
studies have came to different conclusions. In this study, KRAS seems to be con-
nected to longer OS with immunotherapy treatment.

4.6.3 Co-occuring variants and groups of variants
KRAS/STK11 and KEAP1 represent genes where variants within them lead to
worse outcome with ICB treatment in comparison with no treatment [7]. The num-
ber of patients possessing KEAP1 or KRAS/STK11 in this cohort was insufficient
for OS analysis.
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Co-occurring variants in genes LRP1B and KRAS correlated to prolonged sur-
vival compared to wild-type of both genes (logrank p-value: 0.003, Cox regression
p-value: 0.025), see figure 4.20 B. KRAS/LRP1B is also correlated with longer PFS,
hence better response to treatment (figure will not by shown here, unpublished). Our
data also suggests double mutants being better responders and longer survival than
only KRAS and LRP1B individually see figure 4.20 A.

Figure 4.20: A: KM survival curve for KRAS/LRP1B, also showing only
LRP1B variants and KRAS variants individually. B: KM survival curve
KRAS/LRP1B.

The significant OS seen in KRAS and LRP1B genes individually is probably
due to the subgroup of patients having the co-occurring variants are all responding
well and have long OS. Purely speculative, LRP1B might enhance immunotherapy
and tumour infiltration by being involved in cellular processes involving exocytosis.
Furthermore, LRP1B would be interesting to test more, alone and in combination
with KRAS and correlate to immune-related factors, conduct functional experiments
and also sequence more KRAS patients with a larger NGS panel to find more patients
with the combination of LRP1B.

As previously mentioned, different studies came to different conclusion regarding
KRAS individually [82]. The difference might have been due to KRAS co-occurrence
with LRP1B variants not investigated in those cohorts. It has might been differing
between wild-type or mutated LRP1B, with wild-type LRP1B and mutated KRAS
indicate no difference from wild-type of both KRAS and LRP1B; suggesting the
co-occuring variant to drive the response to ICB and longer OS.

Large variations in actual numbers of variants were seen when comparing the
patients to each other, apart from pathogenic variants, which were either zero, one
or two. For other classes and combinations of classes, different cut-offs were tried
but without successfully addressing issues the intra-patient variations. Instead of
using a number as cut-off, percentage of variants within classes were calculated and
used. As seen in figure 4.21 A, there is a clear trend, suggesting that having less than
25% of the variants within the categories pathogenic, likely pathogenic, VUS++ has
shorter survival, however not significantly correlated with survival (logrank p-value:
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0.12 (ns)). Combining classes propose as a refinement of TMB. Nevertheless, refined
TMB has lower p-value compared to TMB and PD-L1 expression.

For variants classified as pathogenic, having at least one pathogenic variant is
significantly correlated with longer OS (logrank p-value: 0.037, Cox regression p-
value: ns), see figure 4.21 B. The pathogenic class however depends more on the
variants and genes within it, e.g., KRAS and/or TP53 for most patients, knowing
also KRAS is significant by itself. Although, the variant classification also showed
a handful of patients with other pathogenic driving variants apart from KRAS.

Figure 4.21: A: KM survival curve for percentage of variants within classes
pathogenic, likely pathogenic or VUS++ (denoted P/LP/VUS++ in figure).
Cut-off at 25%. B: KM survival curve for pathogenic variants with cut-off of
at least 1 variant.

When mutational signatures were evaluated for OS, no threshold for cosine sim-
ilarity was made; thresholds were instead set to 20% of activity frequency of the
signature, and the signature being composed of at least 10 activities. Suggestively,
patients with an oncogenic driver in combination with SBS4 signature show signif-
icantly longer OS as well (logrank p-value: 0.022; Cox regression p-value: 0.044).
Both KRAS and EGFR is common in smokers and it is known that smokers with
KRAS respond well to immunotherapy, however, what really respond might be the
patients with smoking signatures, i.e also some of the non-smokers.
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Figure 4.22: KM survival curve for SBS4 and an oncogenic driver.

None of the other classes tested were found to be significantly correlated with
OS, hence will not be presented.

4.6.4 Biomarkers in plasma
Having ND ctDNA levels in at least one time point throughout the first five treat-
ment cycles is even more strongly correlated to prolonged OS, see figure 4.23 A
(logrank p-value: <0.001, Cox regression p-value: <0.001). In addition, Having
ND ctDNA levels at baseline i.e. ≥1 MM, is significantly correlated to longer OS,
see figure 4.23 B (logrank p-value: 0.049, Cox regression p-value: ns). As only 24
samples are considered, there is a need for more samples, and then perhaps ctDNA
levels already at baseline can be a predictive biomarker. In one previous study 16
patient-specific variants were followed, the variants were selected based on among
other factors, tumour VAF [29]. The results showed significant differences between
increased or decreased ctDNA levels from baseline to third treatment cycle, in terms
of OS and PFS. Increased ctDNA levels were associated with shorter OS and PFS.

Figure 4.23: A: KM survival curve for ctDNA detection in at least one time
point. B: KM survival curve for ctDNA detection at baseline.
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The cohort is rather limited, nonetheless monitoring ctDNA is essential, already
within the first treatment cycles, absence of ctDNA is a strong indicator of response
to treatment. Clinical treatment monitoring today is based on CT scans performed
every third month. CtDNA is thought to function as a complement to CT scans
and depending on future studies might lead to fewer CT scans and perhaps only if
indicated PD by ctDNA levels. CtDNA can by itself might be used as a prognostic
and predicative biomarker. Before implementing clinically, the importance of using
ctDNA monitoring must be established further with more research. Further, it
would be of interest to have samples at more timepoints to further investigate the
monitoring opportunities, perhaps one sample per month. The ctDNA project is
ongoing and more patients are waiting to be included in the analysis, hopefully
strengthening our current results.

4.7 Ethical and societal aspects
Since lung cancer has the second most incidents of cancer worldwide, a lot of people
will benefit with more research in this field [1]. It has been established that most
patients with NSCLC will not respond to treatment with ICB [2]. Therefore, it
is inconvenient, economically and for patient safety, to give treatment to a patient
who is unlikely to respond. Both for society at large, and for the cancer community,
it is of great interest to establish biomarkers with higher efficiency. Treatments
for cancer are very expensive, and the total health care costs for cancer patients
in Sweden were in 2013 around 36 billion SEK [83]. The costs are expected to be
around 70 billion SEK in 2040, with lung cancer being one of the four most costly.
The increase is expected due to for instance, an aging population. If treatments
can be more personalised, the cost of treatment would be reduced since only the
patients likely to respond will be treated.

The Regional Ethical Review Authority in Gothenburg has given their permission
to perform the BioLung study. All patients participating in the study have given
their informed consent and are aware of what their samples is going to be used
for. The patients also have the right to withdraw their consent if desired. Due
to regulations regarding disclosure of information between regions in Sweden, all
patients in the cohort are residents of the Västra Götaland region.

Inclusion in the BioLung cohort study is still ongoing. Their samples will be
stored at Sahlgrenska Biobank (nr. 890) marked with an anonymous code that
is protected by the Swedish Biobank in Medical Care Act (SFS 2002:297). The
patients’ integrity is always a high priority, therefore solely the study supervisors
are aware of the patients’ personal details. The personal details are also protected
by the General Data Protection Regulation (EU 2016/670).

The samples used for the BioLung cohort study are collected at the regular
sampling appointments, then a few additional blood samples are taken. A risk
assessment has been done, showing that the additional samples are suggested to
perhaps cause minor discomfort, however, the risk for long-term discomfort is mini-
mal. The Swedish pharmaceutical insurance and the Swedish patient insurance are
protecting the participants. In the consent form it is also clearly stated that the
research probably will not benefit the participants directly, but this research could
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rather help others get more personalised treatment.
The vast majority of lung cancer cases seen today are caused by smoking, actually

around 85% of the patients are smokers or have been [84]. Worldwide, the num-
ber of people that smokes have increased, even though the proportion of smokers is
decreasing. Among the never-smokers with lung cancer, exposure to for example as-
bestos and radon are some probable causes for their cancer. As lung cancer patients
have a worse expected outcome compared to many other cancer types [84], it is cru-
cial to investigate treatments more. In a purely hypothetical case, that the number
of smokers would decrease, and thereby also the lung cancer incidence. Then some
might argue that it should not be as important to focus the resources on lung cancer
research. However, it is not exclusively smokers that get lung cancer, about 10-20%
of the cases are not directly connected to smoking [84], meaning that they will still
benefit from this research. Nevertheless, even in this hypothetical case, lung cancer
research would still benefit other cancer form; to exemplify, insight in lung cancer
could give knowledge on what determines responders from non-responders to ICB.

4.8 Future perspectives
Further, it is of great interest to analyse other omics apart from genomics, both
transcriptomics and proteomics can give valuable information [15]. For example,
analyses can be performed on if the mutated proteins are functioning or even tran-
scribed. Analysing multiomics is however a costly process. In addition, recent
attention has been directed towards identifying DNA methylation events in cancer,
and there are long-read sequencing methods able to detect these events as simulta-
neously sequencing. In addition, single-cell sequencing techniques is also a hot-topic
in cancer research, with the ability to breakdown complexity and also investigate
cell types in normal and diseased material.

Difficulties remain with extracting mutational signatures for each sample from
a sequencing panel, as more input data is needed to achieve trustworthy results. If
WES or WGS is used, single samples can be used for extracting signatures, however,
aiming to implement in clinical setting, a single sample must be able to extract data
from, without having to rely on other samples. Factors as treatment cost, has to be
weighted against cost of WGS or WES and also against the benefit of mutational
signatures as a possible biomarker. An option may be to only select the patient with
an oncogenic driver for WES/WGS and in turn mutational signatures, to reduce
cost. A combination between SBS4 signature and an oncogenic driver, here KRAS
or EGFR, has been correlated to longer OS in one previous study, and our results
are in line.

Personally, I think that the future is to find more subgroups within NSCLC re-
sponders and non-responders with specific characteristics in common and thereby
understand they response more. The development and mechanism behind of cancer
and tumourigenesis is widely unknown and require more research, where investigat-
ing mutational signatures might be a natural point to start. To date, whole genome
or exome sequencing is not standard procedure in clinical practice, although, the
importance of implementation and molecular diagnostics have been proved. Clini-
cally implementing whole genome or exome sequencing together with liquid biopsies
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and ctDNA analyses would be a first step towards better and more equal cancer
care treatment.

4.9 Delimitations
When the tumour samples are extracted from patients, they are stored in FFPE
for conservation until further analyses. FFPE may result in reduced quality of the
tumour DNA after biopsy, leading to an increased number of artefacts and false
positives in the data. Some artefact structures have been linked to FFPE storage
[39]. Nevertheless, FFPE storage is needed for pathology and determination of
histodiagnosis.

When the true variants are determined, the artefacts are manually sorted out
by analysis in IGV. On one hand, since this is a manual process, it introduces the
human reliability as a possible source of error in the analyses. To ensure high quality,
uncertain variants should be checked with the supervisor, to minimise discardment
of the true variants. On the other hand, it is favorable that the variants are manually
checked to sort out false positives and sequencing artefacts that otherwise, would
still be in the data. Here, if the variants were not to be manually checked, if would
have been over 5000 variants instead of 850 that is true.

The variant search is limited to SNVs and indels, leading to some important
genes such as fusion genes not being considered. It would indeed be interesting to
analyse other types of gene alterations as well, but this thesis have not considered
those. It should also be noticed that there are a few limited cancer-related genes
investigated, meaning that only some parts of the exons are sequenced. Only consid-
ering limited number of genes minimises the chance of investigating unknown genes
and information present in the non-coding sequences and non-sequenced genes are
not included.

Ethnicity is another factor that could effect the variant search and classification,
as some variants are proved to be more common in some ethnic groups compared to
other. The variant classification analysis takes ethnicities into account in the step
to check if a variant is common in the general population. However, the ethnicity of
the patients are unknown, hence this cannot be addressed properly. To exemplify,
a non-Asian patient has a variant common in Asians, this variant is then removed
as (likely) benign, when it in fact can be uncommon in non-Asians.

Perhaps it can be conflicting evidence since not all patients get immunotherapy as
first-line treatment. Some have gotten for example radiation or chemotherapy, either
before or in combination with immunotherapy. The observations of progression can
possibly come from the other treatments as well. Especially concerning stage III
patients, where immunotheraphy is given to ensure lower relapse rates. Nevertheless,
effects of other treatments can be identified with for example mutational signatures,
since some have a proposed aetiology of for instance chemotherapy, in addition is
also known from the patient data.
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Conclusion

Understanding the genetic landscape and identifying biomarkers of ICB are two key
considerations for development of personalised treatment for patients. By applying
mutational signature analysis, a deeper understanding of cancer origin and drivers
was given, eventually leading to exclusion of one patient. Without analysing muta-
tional signatures, the primary cancer would probably not have been noticed as an
outlier, and the patient would have blurred results in finding biomarkers for NSCLC.
The combination of mutational signatures and genetic variants further enhanced re-
finement of biomarkers of response to ICB, as hypothesised. Further, being in-line
with the latest research suggesting SBS4 in combination with KRAS, or oncogenic
driver, also poses as one of the best prognostic biomarkers from the analyses here.

The approach of a thorough classification including subclassification of the VUS:es
led to identification of variants that can prognostically function as biomarkers, in
combination with pathogenic and likely pathogenic variants. In particular the tu-
mour suppressor gene LRP1B was found in multiple patients and were even more
refined when split by classification. Also, suggesting that the classification is suffi-
cient for less well-known potential cancer-causing genes. The sub-group of patients
possessing co-occurring variants in LRP1B/KRAS, is a group responding well and
correlate with long term response and significantly longer survival, which to our
knowledge has not been shown priorly.
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A
Appendix 1

Table A.1 show the Consensus Pathogenic Variants list for solid tumours, the list is
an essential part of the workflow for variant classification.
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B
Appendix 2 - RStudio script

B.1 ReactomePA

# ReactomePA , 230102 Johanna Svensson

b=table ( g e n e l i s t )

#Required packages
i f ( ! require ( " BiocManager " , q u i e t l y = TRUE) )
in s ta l l . packages ( " BiocManager " )
BiocManager : : in s ta l l ( v e r s i on = " 3 .16 " )

#BiocManager : : i n s t a l l ( v e r s i on = " 3 . 1 5 " )
BiocManager : : in s ta l l ( "DOSE" )
BiocManager : : in s ta l l ( "ReactomePA" )
BiocManager : : in s ta l l ( " c l u s t e r P r o f i l e r " )
BiocManager : : in s ta l l ( " org . Hs . eg . db " )
BiocManager : : in s ta l l ( " ggnewscale " )
BiocManager : : in s ta l l ( " e n r i c hp l o t " )
BiocManager : : in s ta l l ( " enrichMap " )
BiocManager : : in s ta l l ( " b i t r " )
BiocManager : : in s ta l l ( " B i o cPa r a l l e l " )
BiocManager : : in s ta l l ( " c l i " )
BiocManager : : in s ta l l ( " purrr " )
BiocManager : : in s ta l l ( "RSQLite " )
BiocManager : : in s ta l l ( " ggupset " )
BiocManager : : in s ta l l ( " europepmc " )
BiocManager : : in s ta l l ( " f o r c a t s " )

# Sta r t from here
l ibrary ( "ReactomePA" )
l ibrary ( "DOSE" )
l ibrary ( " c l u s t e r P r o f i l e r " )
l ibrary ( " org . Hs . eg . db " )
l ibrary ( " ggnewscale " )
l ibrary ( " e n r i c hp l o t " )
l ibrary ( " ggupset " )

III



B. Appendix 2 - RStudio script

l ibrary ( " europepmc " )
l ibrary ( " ggp lot2 " )
l ibrary ( " f o r c a t s " )
l ibrary ( " g raph i t e " )

#Load data and prepare data s e t s ( a l l genes )
g e n e l i s t <− read . table ( f i l e = "~/Chalmers/MPBIO−2/
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣Exjobb/Pro j ec t/Pathway␣Ana lys i s/
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ g e n e l i s t . txt " , sep = " \ t " )

colnames ( g e n e l i s t ) <− c ( " sample " , " gene " )
c l i n i c a l <− read . table ( f i l e = "~/Chalmers/MPBIO−2/
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣Exjobb/Pro j ec t/Pathway␣Ana lys i s/
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ b io lung . txt " , sep = " \ t " )
c l i n i c a l <− c l i n i c a l [ −1 , ]
c l i n i c a l <− as . data . frame ( c l i n i c a l [ , c ( 1 , 3 1 ) ] )
colnames ( c l i n i c a l ) <− c ( " sample " , " r e sponse " )

non_l i s t <− c l i n i c a l [ c l i n i c a l $response %in%
c ( " Responder " ) , ]

colnames ( non_l i s t ) <− c ( " sample " , " r e sponse " )
non_l i s t <− non_l i s t [ , c ( " sample " ) ]

r e sp_l i s t <− c l i n i c a l [ c l i n i c a l $response %in%
c ( "Non−responder " ) , ]

colnames ( re sp_l i s t ) <− c ( " sample " , " r e sponse " )
re sp_l i s t<− re sp_l i s t [ , c ( " sample " ) ]

non_r e sponder s <− g e n e l i s t [ g e n e l i s t $sample
%in% non_l i s t , ]

r e sponder s <− g e n e l i s t [ g e n e l i s t $sample
%in% resp_l i s t , ]

#Al l
x_a l l <− unlist (c ( g e n e l i s t $gene ) )
a l l <− (mapIds ( org . Hs . eg . db , x_all , ’ENTREZID ’ , ’SYMBOL’ ) )

pw_a l l <− enrichPathway ( gene=al l ,
pva lueCuto f f =0.05 ,
r eadab le=T)

pw2_a l l <− pa i rw i s e_termsim (pw_a l l )
barplot (pw_all , showCategory=8, t i t l e=

" Enriched␣pathways , ␣ in ␣ a l l ␣ pa t i e n t s " )
dotplot (pw_all , showCategory=20, t i t l e=

IV
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" Enriched␣pathways , ␣ in ␣ a l l ␣ pa t i e n t s " )
emapplot (pw2_all , t i t l e=

" Enriched␣pathways , ␣ in ␣ a l l ␣ pa t i e n t s " )
cne tp l o t (pw_all , c a t ego ryS i z e=" pvalue " ,

t i t l e=" Enriched␣pathways , ␣ in ␣ a l l ␣ pa t i e n t s " )
cne tp l o t (pw_all , c i r c u l a r = T,

t i t l e=" Enriched␣pathways , ␣ in ␣ a l l ␣ pa t i e n t s " )

#Responders vs non−responders
x_non <− unlist (c ( non_r e sponder s$gene ) )
non <− (mapIds ( org . Hs . eg . db , x_non ,

’ENTREZID ’ , ’SYMBOL’ ) )

x_re sp <− unlist (c ( r e sponder s$gene ) )
re sp <− (mapIds ( org . Hs . eg . db , x_resp ,

’ENTREZID ’ , ’SYMBOL’ ) )

pw_non <− enrichPathway ( gene=non ,
pva lueCuto f f =0.05 ,
r eadab le=T)

pw2_non<− pa i rw i s e_termsim (pw_non )
#head ( as . data . frame (pw_non ))

s e l e c t e d_pathways <− c ( "DNA␣Repair " ,
" D i s ea s e s ␣ o f ␣DNA␣ r epa i r " )

barplot (pw_non , showCategory=8, t i t l e=
" Enriched␣pathways , ␣ in ␣non−responding

␣␣␣␣␣␣␣␣ pa t i en t s " )
dotplot (pw_non , showCategory=

s e l e c t e d_pathways , t i t l e=" Enriched␣pathways ,
␣␣␣␣␣␣␣␣ in ␣non−responding ␣ pa t i e n t s " )
emapplot (pw2_non , t i t l e=" Enriched␣pathways ,
␣␣␣␣␣␣␣␣␣ in ␣non−responding ␣ pa t i e n t s " )
cne tp l o t (pw_non , ca t ego ryS i z e=" pvalue " ,

t i t l e=" Enriched␣pathways ,
␣␣␣␣␣␣␣␣␣ in ␣non−responding ␣ pa t i e n t s " )
cne tp l o t (pw_non , c i r c u l a r = T, t i t l e=" Enriched␣pathways ,
␣␣␣␣␣␣␣␣␣ in ␣non−responding ␣ pa t i e n t s " )

pw_re sp <− enrichPathway ( gene=resp ,
pva lueCuto f f =0.05 ,
r eadab le=T)

pw2_re sp <− pa i rw i s e_termsim (pw_re sp )
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#head ( as . data . frame (pw_resp ) )
barplot (pw_resp , showCategory=8,

t i t l e=" Enriched␣pathways , ␣ in ␣ responding ␣ pa t i e n t s " )
dotplot (pw_resp , showCategory=20,

t i t l e=" Enriched␣pathways , ␣ in ␣ responding ␣ pa t i e n t s " )
emapplot (pw2_resp , t i t l e=" Enriched␣pathways ,
␣␣␣␣␣␣␣␣␣ in ␣ responding ␣ pa t i e n t s " )
cne tp l o t (pw_resp , c a t ego ryS i z e=" pvalue " ,

t i t l e=" Enriched␣pathways , ␣ in ␣ responding ␣ pa t i e n t s " )
cne tp l o t (pw_resp , c i r c u l a r = T,

t i t l e=" Enriched␣pathways , ␣ in ␣ responding ␣ pa t i e n t s " )

heatmap (pw$ r e s u l t )

hea tp lo t (pw_all , showCategory = 5)

#Treep lo t
t r e e p l o t (pw2_all , c l u s t e r . params =

l i s t (method = " average " ) )
t r e e p l o t (pw2_non , c l u s t e r . params =

l i s t (method = " average " ) )
t r e e p l o t (pw2_resp , c l u s t e r . params =

l i s t (method = " average " ) )

#Comparison , responders vs non−responders
compare <− l i s t ( non = non , resp = resp )

require ( c l u s t e r P r o f i l e r )
comparison <− compareCluster ( compare ,

fun = " enrichPathway " ,
organism = "human" ,
pva lueCuto f f =0.05)

comparison2 <− pa i rw i s e_termsim ( comparison )
dotplot ( comparison , showCategory =

s e l e c t e d_pathways , i n c l ud eA l l = F)
emapplot ( comparison2 , showCategory =

s e l e c t e d_pathways , p i e . params =
l i s t ( p i e = " count " ) )

cne tp l o t ( comparison , showCategory =
s e l e c t e d_pathways ,

c a t ego ryS i z e=" pvalue " ,
name)

upse tp l o t (pw_a l l )
pmcplot (pw_a l l $Desc r ip t i on [ 1 : 5 ] , 2010 :2020 ,

VI



B. Appendix 2 - RStudio script

propor t ion = F)

B.2 Waterfall plot

#GenVisR , 230511 Johanna Svensson

#Required packages
i f ( ! require ( " BiocManager " , q u i e t l y = TRUE) )

in s ta l l . packages ( " BiocManager " )
BiocManager : : in s ta l l ( v e r s i on = " deve l " )
BiocManager : : in s ta l l ( " remotes " )
remotes : : in s ta l l_github ( " cran/FField " , f o r c e = T)
BiocManager : : in s ta l l ( "DOSE" , f o r c e = T)
BiocManager : : in s ta l l ( " dbplyr " , f o r c e = T)
BiocManager : : in s ta l l ( "GenVisR " , f o r c e = T)
BiocManager : : in s ta l l ( " ggtext " )
BiocManager : : in s ta l l ( " gp l o t s " )
BiocManager : : in s ta l l ( "TxDb. Hsapiens .UCSC. hg38 . knownGene " )
BiocManager : : in s ta l l ( "BSgenome . Hsapiens .UCSC. hg38 " )
BiocManager : : in s ta l l ( "GenomeInfoDb " , f o r c e = T)
BiocManager : : in s ta l l ( " GenomicFeatures " , f o r c e = T)

dev . of f (dev . l i s t ( ) [ "RStudioGD" ] )

#Sta r t from here
l ibrary ( "ReactomePA" )
l ibrary ( "DOSE" )
l ibrary ( " c l u s t e r P r o f i l e r " )
l ibrary ( " org . Hs . eg . db " )
l ibrary ( " ggnewscale " )
l ibrary ( " e n r i c hp l o t " )
l ibrary ( "DOSE" )
l ibrary ( "GenVisR " )
l ibrary ( " gr idExtra " )
l ibrary ( " ggp lot2 " )
l ibrary ( " reshape2 " )
l ibrary ( " gp l o t s " )
l ibrary ( "GenomeInfoDb " )

#Load data from t e x t f i l e s
genes <− read . table ( f i l e = "~/ to_wa t e r f a l l_p lo t . txt " ,

sep = " \ t " )
genes = genes [ −1 , ]
tmb <− read . table ( f i l e = "~/tmb3 . txt " , sep = " \ t " )
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tmb = tmb[ −1 , ]
c l i n <− read . table ( f i l e = "~/bio lung . txt " , sep = " \ t " )
c l i n = c l i n [ −1 , ]

set . seed (426)

#Import a l l data
mutationData <− as . data . frame (c ( genes ) )
colnames ( mutationData ) <− c ( " sample " , " va r i an t_c l a s s " , " gene " )
mutation_p r i o r i t y <−

as . character (unique ( mutationData$var i an t_class ) )
mutationColours <− c ( " nonsynonymous "=’#CCCCFF’ ,

" synonymous "=’#c c 9 9 f f ’ ,
" f r ame sh i f t "=’#6666 f f ’ ,
" s p l i c e ␣ s i t e "=’#000000 ’ ,
" s topga in "=’#330066 ’ ,
" d e l e t i o n "=’#750054 ’ ,
" in frame "=’#A80079 ’ ,
" s t a r t l o s s "=’#ca66ae ’ ,
" s t o p l o s s "=’#FFCCFF ’ )

#Customised TMB
mutationBurden <− as . data . frame (c (tmb ) )
colnames ( mutationBurden ) <− c ( " sample " , "mut_burden " )
mutationBurden$sample <− gsub ( " ŴU(0)+ " , " " ,

mutationBurden$sample )

#C l i n i c a l in format ion
c l inData <− as . data . frame ( c l i n [ , c ( 1 , 3 , 8 , 4 ) ] )
colnames ( c l inData ) <− c ( " sample " , " Sex " , " Response " ,

" H i s to logy " )
c l inData <− reshape2 : : melt (data=cl inData ,

id . vars=c ( " sample " ) )
c l i n i c a lC o l o u r s <− c ( "Male "="#0066cc " , " Female "="#c c 6 6 f f " ,

" Responder "="#f f 9 9 c c " ,
"Non−responder "="#f f 6666 " ,
"LUAD"="#99 c c f f " ,
"LUSC"="#cc3399 " ,
"NOS"="#000033 " )

c l i n i c a lO r d e r <− c ( " Responder " , "Non−responder " , " Female " ,
"Male " , "LUAD" , "LUSC" , "NOS" )

#Water f a l l p l o t f o r a l l

VIII



B. Appendix 2 - RStudio script

wa t e r f a l l ( mutationData ,
f i l eType = "Custom" ,
va r i an t_class_order = mutation_p r i o r i t y ,
mainRecurCutoff = 0 .05 ,
maxGenes = 8 ,
mainXlabel = F,
mainGrid = F,
c l inDat = cl inData ,
mainPalette = mutationColours ,
mutBurden = mutationBurden ,
c l inVarCol = c l i n i c a lCo l o u r s ,
c l inVarOrder = c l i n i c a lO rd e r ,
c l inLegCo l = 4 ,
s e c t i o n_he i gh t s=c (2 , 7 , 2 ) ,
mainDropMut = F,
main_geneLabSize = 12)

#Water f a l l p l o t f o r LUAD.
#Load data from t e x t f i l e s
genes <− read . table ( f i l e = "~/ to_wa t e r f a l l_p lo t_LUAD. txt " ,

sep = " \ t " )
genes = genes [ −1 , ]
tmb <− read . table ( f i l e = "~/tmb3_LUAD. txt " , sep = " \ t " )
tmb = tmb[ −1 , ]
c l i n <− read . table ( f i l e = "~/bio lung_LUAD. txt " , sep = " \ t " )
c l i n = c l i n [ −1 , ]

#Import a l l data
mutationData <− as . data . frame (c ( genes ) )
colnames ( mutationData ) <− c ( " sample " , " va r i an t_c l a s s " , " gene " )
mutation_p r i o r i t y <−

as . character (unique ( mutationData$var i an t_class ) )
mutationColours <− c ( " nonsynonymous "=’#CCCCFF’ ,

" synonymous "=’#c c 9 9 f f ’ ,
" f r ame sh i f t "=’#6666 f f ’ ,
" s p l i c e ␣ s i t e "=’#000000 ’ ,
" s topga in "=’#330066 ’ ,
" d e l e t i o n "=’#750054 ’ ,
" in frame "=’#A80079 ’ ,
" s t a r t l o s s "=’#ca66ae ’ ,
" s t o p l o s s "=’#FFCCFF ’ )

#Customised TMB
mutationBurden <− as . data . frame (c (tmb ) )
colnames ( mutationBurden ) <− c ( " sample " , "mut_burden " )

IX



B. Appendix 2 - RStudio script

mutationBurden$sample <− gsub ( " ŴU(0)+ " , " " ,
mutationBurden$sample )

#C l i n i c a l in format ion
c l inData <− as . data . frame ( c l i n [ , c ( 1 , 3 , 8 ) ] )
colnames ( c l inData ) <− c ( " sample " , " Sex " , " Response " )
c l inData <− reshape2 : : melt (data=cl inData ,

id . vars=c ( " sample " ) )
c l i n i c a lC o l o u r s <− c ( "Male "="#0066cc " ,

" Female "="#c c 6 6 f f " ,
" Responder "="#f f 9 9 c c " ,
"Non−responder "="#f f 6666 " )

c l i n i c a lO r d e r <− c ( " Responder " , "Non−responder " ,
" Female " , "Male " )

#Water f a l l p l o t f o r LUAD
wa t e r f a l l ( mutationData ,

f i l eType = "Custom" ,
va r i an t_class_order = mutation_p r i o r i t y ,
mainRecurCutoff = 0 .05 ,
maxGenes = 10 ,
mainXlabel = F,
mainGrid = F,
c l inDat = cl inData ,
mainPalette = mutationColours ,
mutBurden = mutationBurden ,
c l inVarCol = c l i n i c a lCo l o u r s ,
c l inVarOrder = c l i n i c a lO rd e r ,
c l inLegCo l = 2 ,
s e c t i o n_he i gh t s=c (2 , 7 , 2 ) ,
mainDropMut = F,
main_geneLabSize = 12)

#Water f a l l p l o t f o r LUSC.
#Load data from t e x t f i l e s
genes <− read . table ( f i l e = "~/ to_wa t e r f a l l_p lo t_LUSC. txt " ,

sep = " \ t " )
genes = genes [ −1 , ]
tmb <− read . table ( f i l e = "~/tmb3_LUSC. txt " , sep = " \ t " )
tmb = tmb[ −1 , ]
c l i n <− read . table ( f i l e = "~/bio lung_LUSC. txt " , sep = " \ t " )
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c l i n = c l i n [ −1 , ]

#Import a l l data
mutationData <− as . data . frame (c ( genes ) )
colnames ( mutationData ) <− c ( " sample " , " va r i an t_c l a s s " , " gene " )
mutation_p r i o r i t y <−

as . character (unique ( mutationData$var i an t_class ) )
mutationColours <− c ( " nonsynonymous "=’#CCCCFF’ ,

" synonymous "=’#c c 9 9 f f ’ ,
" f r ame sh i f t "=’#6666 f f ’ ,
" s p l i c e ␣ s i t e "=’#000000 ’ ,
" s topga in "=’#330066 ’ ,
" d e l e t i o n "=’#750054 ’ ,
" in frame "=’#A80079 ’ ,
" s t a r t l o s s "=’#ca66ae ’ )

#Customised TMB
mutationBurden <− as . data . frame (c (tmb ) )
colnames ( mutationBurden ) <− c ( " sample " , "mut_burden " )
mutationBurden$sample <− gsub ( " ŴU(0)+ " , " " ,

mutationBurden$sample )

#C l i n i c a l in format ion
c l inData <− as . data . frame ( c l i n [ , c ( 1 , 3 , 8 ) ] )
colnames ( c l inData ) <− c ( " sample " , " Sex " , " Response " )
c l inData <− reshape2 : : melt (data=cl inData ,

id . vars=c ( " sample " ) )
c l i n i c a lC o l o u r s <− c ( "Male "="#0066cc " ,

" Female "="#c c 6 6 f f " ,
" Responder "="#f f 9 9 c c " ,
"Non−responder "="#f f 6666 " )

c l i n i c a lO r d e r <− c ( " Responder " , "Non−responder " ,
" Female " , "Male " )

#Water f a l l p l o t f o r LUSC
wa t e r f a l l ( mutationData ,

f i l eType = "Custom" ,
va r i an t_class_order = mutation_p r i o r i t y ,
mainRecurCutoff = 0 .05 ,
maxGenes = 10 ,
mainXlabel = F,
mainGrid = F,
c l inDat = cl inData ,
mainPalette = mutationColours ,
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mutBurden = mutationBurden ,
c l inVarCol = c l i n i c a lCo l o u r s ,
c l inVarOrder = c l i n i c a lO rd e r ,
c l inLegCo l = 2 ,
s e c t i o n_he i gh t s=c (2 , 7 , 2 ) ,
mainDropMut = F,
main_geneLabSize = 12)
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