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Abstract

This thesis examines the use of Model Predictive Control (MPC) compared to tra-
ditional PID control. The purpose of the work is twofold: to enhance the under-
standing of MPC in the industry and to investigate the possibility to improve the
performance of a steam reformer process with MPC.

To give the industry a better knowledge of MPC an educational material for oper-
ators was developed. This complements an already existing lab tutorial for PID-
controllers. It exemplifies the controllers with two tank systems –– a single-tank
system and a double-tank system. The educational material consists of a simulation
of the tanks with Model Predictive Control and a manual for a lab tutorial. This
part has also been used to study MPC in preparation for deriving a Model Predictive
Controller for the steam reformer

A steam reformer is a process, reforming methane-rich natural gas into hydrogen gas
and purge gas. The part of the steam reformer addressed here intended to handle
is the uneven flow of purge gas into the combustion chamber. The models of the
systems, both of the tanks and of the steam reformer, were theoretically developed,
and a General Predictive Controller (GPC) was then implemented in Matlab. The
controller for the steam reformer system was also verified with a Hysys simulation.

The most important lesson from this thesis is how important it is to make a correct
model for a Model Predictive Controller. We can also see that a Model Predictive
Controller is superior when it comes to handling changes in setpoint and keeping
constraints. My conclusion is that it is useful to derive a Model Predictive Controller
for the steam reformer, but not in the way presented here. Instead, I suggest a more
holistic approach.



Sammanfattning

Det här examensarbetet jämför modellbaserad prediktiv reglering (Model Predictive
Control, MPC) med traditionell PID-reglering. Syftet med uppsatsen är tudelat: att
öka kunskapen om MPC i industrin och att undersöka möjligheten att förbättra en
ångreformeringsprocess med MPC.

För att förbättra industrins kännedom om MPC har ett utbildningsmaterial ta-
gits fram. Det kompletterar en redan existerande laborationshandledning för PID-
reglering. Där exemplifieras regleringen med tv̊a tanksystem – ett med en enkeltank
och ett med en dubbeltank. Utbildningsmaterialet best̊ar av en simulering av tanksy-
stemen med modellbaserad prediktiv reglering samt en laborationshandledning med
en introduktion till MPC. Den här delen av arbetet har ocks̊a använts som förstudie
inför utvecklandet av den modellbaserade prediktiva regulatorn för en ångreforme-
ringsprocess.

En ångreformeringsprocess omvandlar metanrik naturgas till vätgas och restgaser.
Den modellbaserde prediktiva regulatorn i det här arbetet syftar till att hantera det
ojämna flödet av restgaser in i förbränningskammaren. Modellerna av systemen, b̊ade
tanksystemen och ångreformeringsprocessen, togs fram ur teoretiska modeller. Sedan
implementerades modellbaserade prediktiva regulatorer av typen Genral Predictive
Controller (GPC) i Matlab. Regulatorn för ångreformeringsprocessen verifierades
slutligen med hjälp av en Hysys-simulering.

Den viktigaste lärdommen fr̊an arbetet var hur viktig en god modell av systemet
är för modellbaserade prediktiva regulatorer. Vi kan ocks̊a se att modellbaserade
prediktiva regulatorer är överlägsna för att hantera förändringar i börvärde och för
att h̊alla sig inom givna gränser. Min slutsats är att en modellbaserad prediktiv
regulator skulle vara mycket användbar för ångreformeringsprocessen, men inte p̊a
det sätt som den är genomförd här. Istället föresl̊ar jag att man angriper problemet
med ett större helhetsperspektiv.
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1 Introduction

When automatic control was first introduced there was a great resistance among the
affected personnel. The new technique was called PID control, named after its three
components: Proportional, Integral, and Derivative. Despite the first sceptics, the
new control method was implemented, and for a long time PID control was the main
method to control industrial systems. During the second half of the 20th century,
Model Predictive Control (MPC) was introduced, and at many industries also this
method was met with great resistance among the affected personnel. Nevertheless,
MPC is flourishing and the Model Predictive Controllers are here to stay.

This thesis examines the use of MPC compared to traditional PID control. The first
part of this thesis demonstrates how a Model Predictive Controller can be used in a
simple system with one or two tanks compared to a traditional PID controller. This
is intended to be included in the educational material for a shorter control theory
course e.g. for operators in the industry or as a part of an advanced vocational
training (KY). A suggestion for a Guide for Laboratory Practical is also included.
This serves as an examination of the benefits and drawbacks of Model Predictive
Controllers as a preparation for the second part.

The second part discusses MPC and the feedback of a hydrogen gas producing
steam reformer. The specific unit in this project is located at Akzo Nobel Pulp and
Performance Chemicals AB in Bohus, Sweden. ÅF Group has the responsibility to
make the steam reformer more efficient in order to save both money and environment.
This thesis examines if it is possible to do so using MPC. The intention is to make
the results general enough to be applicable to other similar production facilities.

In a steam reformer, methane-rich natural gas is heated, which releases hydrogen
gas. To extract the hydrogen gas from the other gas, here called purge gas, it is
filtered through a catalyst. The residual purge gas is collected in a buffer tank and
used as fuel to heat more natural gas. The flow of purge gas is not constant and
it therefore has to be controlled and evened out with new natural gas, all to match
the gas flow with a constant air flow. The air provides oxygen to the combustion.
If the air flow is too low the combustion will not be complete. If it is too high
the combustion costs extra energy without improved performance. The task in this
work is to control the total gas flow to be constant using MPC and compare its
performance with the PID controller currently in use.

In 1956 Coales and Noton published a first article in what today is seen as MPC
[7]. After this several people have suggested similar solutions. The type that is of
special interest in this project, the General Predictive Control (GPC), was developed
by Clarke et al. in 1987 [6][13, ch. 1]. This new control technique soon became
popular, especially in the chemical industry. At that point it was primarily with
models based on step or impulse response [5, ch. 1]. Today MPC is considered to be
the appropriate method when working with productions as large and expensive as

1



2 Chapter 1 Introduction

the steam reformer at Akzo Nobel. GPC is a well studied type and it is considered
stable [5, ch 2]. With the characteristics of the problem at hand it is thus natural
to think of an MPC application of GPC type for this case.

The purpose with the educational material is to make MPC more well-known in
industry and to give the operators confidence to work with this kind of controller.
If this technique becomes accepted and thus more used, the industry would have
access to more suitable controllers in the future.

ÅF Group has a general idea to make this steam reformer more beneficial and
environmentally friendly, and also to sell energy conservation solutions in a broader
sense. As a step towards this another M.Sc. thesis has been initiated to simulate
the whole steam reformer at Akzo Nobel with Hysys and then improve the PID
controller for the purge gas feedback presently implemented [11]. This thesis will
instead study the benefits of implementing MPC for this part of the process. The
Hysys model will be used for its verification.

Chapter 2 presents the general theory of MPC and its pertaining concepts are pre-
sented. Then Chapter 3 discusses the modelling of the tanks used in the educational
material, the development and analysis of the Model Predictive Controllers. Then
they are compared with PID controllers. Chapter 4 derives how the model of the
steam-reformer process is derived and implemented in the Model Predictive Con-
trollers. The results are compared to the PID controller presently implemented.
Chapter 5 discusses the result of the Model Predictive Controllers of the tank sys-
tems and the steam-reformer process. Finally, Chapter 6 lists the conclusions.



Notation

Abbreviations

ASA Active Set Algorithm
GPC General Predictive Control
IPA Interior Point Algorithm
MPC Model Predictive Control
SISO Single Input single Output

Nomenclature

A Output-signal matrix in state space model
Atank The bottom area of a tanks in the tank systems
B Control-signal matrix in state space model
c Factor to convert flow in m3/s to pressure difference in bar
g The gravitational acceleration
Hc Control horizon
Hp Prediction horizon
hi Tank level in Tank i in the tank systems
Kd The derivative factor in a PID controller
Ki The integral factor in a PID controller
Kp The proportional factor in a PID controller
Kv Flow factor: a design parameter of a control valve
N Pump speed in the tank systems
Pc Pressure in combustion chamber in the steam-reformer system
Pr Pressure in purge gas tank in the steam-reformer system
qc Flow into the combustion chamber in the steam-reformer system
qin Flow into a tank
qmax Maximal flow through a valve
qout Flow out from a tank
Ts The time step
u Control signal
vi Opening level of Valve i in the tank systems
vn Opening level of valve by the natural gas grid
vr Opening level of valve by the purge gas tank
y Output signal

λ Penalizing parameter for the control signal
τ Design parameter of a control valve of equal percentage type

3



2 Theory

The term Model Predictive Control (MPC) includes several control strategies with
the same general idea. This chapter discusses the theory of control engineering
in general and MPC in particular. First, these concepts will be presented briefly.
This is followed by a review of the benefits and drawbacks of MPC as found in the
literature. Thereafter MPC will be described more rigorously and with mathematical
detail. The increment method and optimisation with an active-set algorithm are also
explained, since these are important concepts for MPC.

MPC differs from traditional PID control in many ways, but they have one important
thing in common: their purpose. All controllers exist to make a system follow
a desired behaviour by adjusting some actuator, such as a valve, a pump, or a
motor. How this adjustment is done is what makes the difference between different
controllers. The choice of controller dramatically affects the system’s behaviour.

Whereas a PID controller uses the current and past states of the system to adjust the
actuator, a Model Predictive Controller tries to predict the future using information
from the current states and a model of how the system behaves. It is a bit like
playing chess – you do not care about what has happened but only about how you
should go on, by thinking about how different moves would affect the present game
situation. In Figure 2.1 the difference is illustrated with a car which should follow
a path under either MPC or PID control. Exactly how the adjustment of the car’s
path is done is decided by the control law. In a PID controller, this control law is

u(t) = Kpe + Ki

∫

edt + Kd

de

dt
(2.1)

where u is the desired control signal and e = e(t) = r(t) − y(t) is the measured
control error between the reference r and the output y [12, ch. 8].

The control law of Model Predictive Controllers builds, as the name indicates, on
a prediction model – a model that will predict the behaviour of the system. The
method of developing this model makes out the main difference between different
Model Predictive Controllers. It can be formulated from the impulse response, step
response, transfer function or state space model to mention some possibilities. In
this project the model of the controllers has been derived from theoretical physical
laws. The model is very important as it sets the standards for the whole controller
– A bad model leads to a bad controller, so one has to be sure to make as good a
model as possible of the system and all known disturbances.[5]

An optimisation algorithm is used upon the model to find the best future track
for the control signal. In this step it is also possible to include constraints. The
algorithm will then take those into account when deriving the control signal. This
procedure is then repeated for every sample: predict behaviour from the model, find
the optimal control signal for the future. Only the control signal calculated for the

4



2.1 Benefits and Drawbacks of Predictive Controllers 5
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(a) The PID knows only what has happened and adjusts the
controller based on the measured error.

Just follow

the model
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(b) The MPC follows its model and the present measured
value. If the model is good (green car, in the middle) it follows
the setpoint well, but a small error in the model can lead the
system astray (orange and blue car, on the sides).

Figure 2.1: The difference between PID control and MPC. [10]

very next time step is implemented, and the prediction always sees the same number
of time steps into future. It is, in other word, a receding horizon. The number of
time steps seen by the prediction is called the prediction horizon.

2.1 Benefits and Drawbacks of Predictive Controllers

The theory of MPC was first discussed during the middle of the 20th century and has
developed since, particularly because of the development of computational hardware.
Some general benefits and drawbacks of this very general theory are presented here.

MPC needs on-line calculations. When the technique was new, it was possible to
use it only for simple Single Input Single Output (SISO) systems and problems with
very low update rate. Larger and faster systems have to use a faster optimisation
algorithm or more computational power to find the solution on time for the system to
perform optimally. Now a days with faster computers this is no longer a limitation.[5,
ch. 1]

The main feature of MPC type controllers type is their natural way of taking con-
straints into account. This could be physical limits such as maximum opening of
valve or highest level allowed in a tank, as well as limits on the control signal. This



6 Chapter 2 Theory

way, the controllers can work close to the constraints. This is extra beneficial in all
applications where the optimal work point lies close to a limit, e.g. a heating process
which has to be warm enough but all extra heating is an unnecessary expense. In
this project, the problem is a fuel flow which should perfectly match a steady air
flow. If it is too low the extra air will be heated to no avail, but if it is too high the
combustion will be incomplete. [13, ch. 1]

The implementation and tuning of Model Predictive Controllers is considered to
be simple and can therefore be operated also by staff with a limited knowledge of
control theory. On the other hand, a drawback is that the controller can be quite
complex to derive compared to a PID controller. [5, ch. 1].

Another pitfall of MPC is finding a correct model and a good disturbance estimation.
If this is not obtained, the estimation will be erroneous and the controller will not
work properly. For systems with large unpredictable disturbances MPC is a bad
choice. On the other hand, the propagation of measurement noise is lower with
Model Predictive Controllers than with PID controllers. [5, ch. 1]

Furthermore systematic robustness and stability analysis known from traditional
control theory are not possible. The control law is time-varying and can therefore
not be written on standard closed-loop form [5, ch. 1]. For historical reasons, many
commercial predictive controllers just assume the plant is stable [13, ch. 1]. The
general conclusion is that for MPC to be a practical solution it has to be possible
to make a good model of the system including disturbances. MPC is superior when
it comes to set-point tracking and MPC is also beneficial for systems which have
constraints, especially when the optimal working point lies close to these constraints.

2.2 Mathematical Description of MPC

As explained in the beginning of this chapter MPC relies on a model of the system.
From this model a prediction of the system performance is made. Then optimisation
is used to find the best control signal [5, ch. 1]. Here, I will elaborate more on the
mathematical details of how this is done. An overview of the MPC framework is
presented in Figure 2.2. A hat, ,̂ is used to indicate that a value is predicted rather
than actual or measured.

The Model Predictive Controller consists of three different elements: the prediction
model, the objective function and the control law [5, ch. 2], which will be explained
more below. The objective function and derivation of control law is what previously
was labelled as “optimisation”. The objective function is constructed from the pre-
diction model as something which should be minimised. The control law is what is
obtained when the algorithm has done the minimisation. An analogy of objective
function in PID control is the control error which should be minimised.

The time frame for exactly how far into the future we want to see is called pre-
diction horizon, Hp. Sometimes the control values are not calculated for the whole
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Figure 2.2: Scheme over the operation of a Model Predictive Controller [1] when applied
to the steam reformer in Chapter 4. The model consists of the prediction model and the
objective function. The controller follows the control law and calculates the control output.

prediction. Another time frame called control horizon, Hc ≤ Hp decides how many
control values should be calculated. Using a shorter control horizon than prediction
horizon will save computational power. Then, the system output is calculated as
if all control signals after the control horizon are the same as the last calculated
one. In both parts of this project General Predictive Control (GPC) based on a
state space model was used. Here I described how these the different elements of
the Model Predictive Controller can be found for a GPC. [13, ch. 1]

The Prediction Model has to fully capture the process dynamics to allow a
good estimation of the future. To derive the prediction model a process model of
the physical system is needed. This can be derived in many different ways and,
every possible way has a given MPC formulation. [5, ch. 2]

Here, the derivation starts with the linear representation of a physical system, a
process model, on state space form:

ẋ = Ax + Bu

y = Cx + Du,
(2.2)

where x is the state variable, y is the output and u is the control signal [12, p. 89].
Without loss of generality, it can be assumed that D = 0 [13, ch. 2.1].

Discretisation gives

x(k + 1|k) = Ax(k) + Bu(k|k)

= Ax(k) + B (u(k − 1) + ∆u(k|k))

where the notation |k indicates that this is an estimation done in the k-th time step.
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Continuing this analogy we get:

x(k + 2|k) = Ax(k + 1|k) + B(u(k|k) + ∆u(k + 1|k))

= A2x(k) + (A + I)B∆u(k|k) + B∆u(k + 1|k) + (A + I)Bu(k − 1)

...

x(k + Hc|k) = AHcx(k) + (AH(c−1) + . . . + A + I)B∆u(k|k) + . . . +

B∆u(k + Hc − 1|k) + (AHc−1 + . . . + A + I)Bu(k − 1)

[13, p. 54-55].

For clarity this is best written as a matrix equation. Thus the prediction model is:












x(k + 1|k)
...

x(k + Hc|k)
...

x(k + Hp|k)












= Ex(k) + Fu(k − 1)
︸ ︷︷ ︸

past

+ G







∆u(k|k)
...

∆u(k + Hc − 1|k)







︸ ︷︷ ︸

future

where

E =












A1

...
AHc

...
AHp












F =













B
...

∑Hc−1
i=0 AiB

...
∑Hp−1

i=0 AiB













G =













B . . . 0
...

. . .
...

∑Hc−1
i=0 AiB . . . A0B

...
...

...
∑Hp−1

i=0 AiB . . .
∑Hp−Hc

i=0 AiB













[13, p. 55].

The matrices sizes are dependent of the horizons such that E and F are vectors with
length Hp and G is a matrix of size Hp ×Hc. The practice to control ∆u and not
u itself is called the Increment Method and eliminates a steady-state control error.
This will be further explained below. The same way y = Cx can be estimated with
the x predicted above.

The Objective Function is a concept in mathematical optimisation. When a
problem is been optimised, it is rephrased such that the best solution is found
through minimising the function. This rephrased version of the problem is called the
cost function. The optimisation problem may depend on several variables and can
also have constraints [14, ch. 1]. To find the optimal control signal, the state space
model is rephrased as a minimisation problem – and the cost function represents in
this context the objective function.

The goal with the controller is to eliminate the error e between the output y and
the set point r, hence to eliminate e = r − y, by making an appropriate choice of
the input values, u. Preferably the elimination should occur when the system is in
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steady-state where the change in control signal, ∆u, also is eliminated. Therefore
the objective function becomes

min
∆u

J = ∆u′H∆u + ∆u′f (2.3)

[5, ch. 4.2] that means “Find the value of ∆u that gives the smallest value if J .”,
where

H = 2(IHc
λ2 + G′G)

f = 2G′(Ey(k − 1) + Fu(k − 1)− r)

and λ is a parameter to penalise the control signal. H has the purpose to minimise
control signal and f to minimise the error. A objective function on this quadratic
form is typical for GPC. Sometimes, the set point is a vector instead of a point and is
then referred to as the reference trajectory [13, ch. 1]. To use a reference trajectory
gives the possibility to announce a change in setpoint in advance, and the system
can make the transition as smooth as possible. The variables, ∆u, which should be
chosen are the change in control signals for the future.

Increment method Both in the model and in the objective function ∆u, rather
than u, has been used as variable. This correspond to introducing integral action
in the PID case and has the purpose of eliminating the steady-state error. If not,
Equation 2.3 may find a local minimum instead, since J depends both of the error
(present value minus set point), and on the control signal.

To be able to introduce integral effect and eliminate the steady-state error, the
control signal is expressed as the last control signal plus the difference

u(k) = u(k − 1) + ∆u(k).

Then J can be minimised with respect to the difference in control signal and there
will be no steady state error as long as the model is correct.

The Control Law is the explicit expression to calculate the next value of the
control signal. The minimisation of J , Equation 2.3, is needed to find the control
law, and thus also to set the optimal values of u(k + i|k). To do this analytically
would be theoretically possible using the gpc approach, as long as there are no
constraints [13, ch. 4][5, ch. 2]. However the problem at hand, has constraints and
it is therefore solved with an iterative algorithm. Usually an Active Set Algorithm
or an Interior Point Algorithm are used [4]. In this project, the minimisation of the
objective function, Equation2.3, will be done with an Active Set Algorithm.

2.3 Quadratic programming: Active Set Algorithm

Active Set Algorithm (ASA) is an iterative optimisation method to find a solution
given some equal and unequal constraints. This is one of the most common algo-
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rithms for MPC applications [9]. To solve the problem an “active set” is formed
by setting some of the inequality constraints to be equal, those are the “active con-
straints”. Thus the optimisation is done for some constraints at a time. To optimise,
the algorithm starts at a point in the feasible area and from there takes a step in an
optimal direction. Step size depends on the allowance from all side conditions. Such
steps are calculated and taken until a solution is found for that active set. Then the
whole process is repeated iteratively until an optimal solution is found with respect
to all constraints. [14, ch. 16.5]

A pseudo code of the Algorithm [14, ch. 16.5]:

Chose a feasible starting point, x0;
Set W0 to be a subset of the active constraints at the starting point;
for k = 0, 1, 2 . . . do

Solve the objective function (2.3) to find ∆u.
if ∆uk = 0 or close enough then

Compute Lagrange multipliers, λ̂i, for the active set.
if λ̂i ≥ 0∀i ∈ Wk then

The found point is optimal. return
else

Remove constraints with negative Lagrange multipliers for Wk to form
Wk+1 and xk+1 ← xk

end

else
Compute an optimal step αk and search direction p, with respect to the
side-conditions.

∆uk+1 ← ∆uk + pα
if there are no blocking constriants then

Obtain Wk+1 by adding one constraint to Wk

else
Wk+1 ←Wk

end

end

end

You can read more about Lagrange multipliers in [14]. Very shortly this can be
concluded in four steps:
- Solve the problem defined by W, the active set.
- Compute the Lagrange multipliers λ̂i.
- Remove constraints with negative Lagrange multipliers from the active set.
- Search for infeasible constraints and adjust the active set.
Repeat until the solution is optimal enough.

In the MPC case when a function J (Equation 2.3) is minimised, the new output
lies as close to the reference value as possible given the side conditions. When the
plant has reached the set point, the difference between the output and the reference
is zero. Also the change in control signal, ∆u, is zero. This means that there is no
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error left, and the control signal has stabilised in a steady state. In this project a
Matlab built-in version of this algorithm was used.

2.4 Summary

We have here seen that Model Predictive Control is built on three parts: the predic-
tive model that is a description of the system used predict the future; the objective
function that describes what we want to obtain reformulated to a mathematical
optimization problem; and finally the control law that described how the problem
should be optimized and the optimal control value found, here obtained with an
active set algorithm.

We have also looked into the differences between Model Predictive Control and
traditional PID control, found in the literature. In the next chapter it can be
see how this theory can be used do develop a Model Predictive Controller for two
different tank systems, and what performance it gives the system compared to a
PID controller.



3 The Single and Double Tank Systems

ÅF Group has developed an educational material for a brief control engineering
course, primarily intended for operators and students in advanced vocational training
(KY). This material contains simulations of simple one- and two-tank problems,
controlled with P, PI, and PID controllers, to show the properties of the different
types. To enhance the knowledge about MPC in industry in general and among the
operators specifically, a part of this project is to extends the material with an MPC
simulation.

The work consists of constructing a theoretical model of the systems with one and
two tanks and implementing Model Predictive Controllers to control the tank lev-
els. The already existing parts of the educational materials was implemented in
WideQuick, a JavaScript based simulation tool developed by Kentima. The idea
is that also Model Predictive Controllers will be implemented here eventually, but
with the drawbacks of JavaScript, primarily with respect to matrix handling, this
was decided to be left outside the scope of this project.

Instead both the Model Predictive Controller and a PID controller for these systems
have been implemented in Matlab and compared. This system might differ slightly
from the system implemented in WideQuick, due to uncertainties in the specifica-
tion. Nevertheless, their concepts are identical and the systems within the Matlab

models correspond and they can thus be compared. The comparison and evaluations
are similar to those that the student can do during the laboratory practical. The
guide for this can be found in Appendix A, but this is only available in Swedish.

First in this chapter the method used for constructing the models of both systems
and all controllers is described. Then their behaviour is analysed. The analysis
contains disturbance rejection with respect to measurement noise and input distur-
bance. Then, I review how well the controllers work close to a limit, i.e. an almost
full tank. As the tank systems do not exist as physical systems in this context but
only as a model these Model Predictive Controller is a built on a model of a model.
This gives an insight into how well a controller of this type can perform when it is
built on a faultless model.

3.1 Modelling

First the model of the single-tank system was made. The double-tank system was
divided into two parts of which each of them separately has a lot in common with
the single tank. Thus the model of the double-tank system was derived from the
single-tank system

All the tanks, valves, and pumps in both systems are identical. The tanks are 5 m

12
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tall and have bottom areas of 1 m2. The valves have maximum opening area of
0.0275 m2 and they take 15 s from being fully closed to fully opened and vice versa.
The pumps can give a maximum flow of 98.1 ℓ/s and they use 30 s to go from full
speed to zero speed and vice versa. Both the pumps and the valves are assumed
to be linear, which means that the percentage of the opening area is equal to the
percentage of maximal flow with that opening. This theoretical construction is
suitable as the purpose here is education about control strategies, not about control
valves. If there is such an interest it should not be too difficult to implement other
kinds of valves in this application.

3.1.1 Single tank

Tank 1

100 %

50 %

0 %

Pump 1

qin

h

qout

Valve 2 Valve 1

Figure 3.1: The single-tank system. The
tank level is controlled by the orange pump,
Pump 1. The opening of the valves are set
manually.

The single-tank system consists of one
tank, one pump and two valves, see Fig-
ure 3.1. Normally only one of the valves,
Valve 1 in the figure, is used. The flow
through Valve 2 is considered to be a
disturbance. This valve can be used in
case of emergency if the tank needs to be
emptied fast. The pump (orange in the
figure) is regulated by the controller to
keep the tank level at the setpoint. The
openings of the valves are set manually.

When Valve 2 is assumed to be closed,
the system is described as

Atankḣ = qin − qout.

where Atank is the bottom area of the
tank, h is the level of the tank, qin is the
inflow from Pump 1, and qout = v1

√
2gh

is the outflow from Valve 1. v1 is the opening level of Valve 1 and g is the gravita-
tional acceleration. Since the pump is linear qin ∼ N, where N is the pump speed.
Since the valves are identical, opening of Valve 2 would give qout = (v1 + v2)

√
2gh.

When linearised and discretised the system is described as

hn =

(

1 +
v1Ts

Atank

√

g

2hn−1

)

hn−1 +
Ts

Atank

qinn−1. (3.1)

where Ts is the time step. The linearisation is done with respect to the tank level
at the last time step, hn−1, since the controller should be able to work over a large
range of different levels. Ergo, the linearised model is recalculated at each time step,
but in the MPC context this is a minor part of the computational work.
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Pump 3

Tank 1

Valve 1

Valve 3

100 %

50 %

0 %

100 %

50 %

0 %

Valve 2

Pump 1

Valve 4

Pump 2

Tank 2

Figure 3.2: The double tank system. Valve 1 and Pump 3 (orange) are controlled by
the controller, Pump 2 and Valve 4 (light red) are only for emergency situations. The rest
(dark grey) are set manually.

3.1.2 Double tank

The double-tank system consists of two tanks, three pumps and four valves, see
Figure 3.2. Valve 1 and Pump 3 (orange in the figure) are controlled by one controller
each. Pump 1, Valve 2, and Valve 3 (dark grey in the figure) are set manually.
Pump 2 and Valve 4 (light red in the figure) are considered as a disturbances, and
can be used in case of emergency – Pump 2 as a back-up and Valve 4 if the tank
needs to be emptied fast.

The system can be separated into two parts: one upper part with Tank 1, Pump 1
and 2, and Valve 1 and 2; and one lower part with Tank 2, the inflow from Valve 1,
Pump 3, and Valve 3 and 4. Each of these parts are similar to the single tank
system, with some important differences.

The model of the upper part of the system differs from that of the single tank as
the pump (Pump 1) is set manually, while the output valve (Valve 1) is controlled
by the controller. This gives, with linearisation around the last value of the tank
level h1:

h1,n =

(

1 +
q1,inTs

Atankhn−1

)

h1,n−1 −
h1,n−1Ts

Atank

√
g

2h1,n−1
v1,n. (3.2)

The lower part of the system differs from that of the single-tank system with an
extra inflow, which depend on opening of Valve 1 and the level of Tank 1. This
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Figure 3.3: Overview of theMatlab software for the tank systems and their controllers.

gives, with linearisation around the last value of the tank level h2:

h2,n =

(

1− v3Ts

Atank

√
g

2h2,n−1

+
v1,n

h2,n−1

√

2gh1,n

)

h2,n−1 +
Ts

Atank

q3,in. (3.3)

3.2 Control

The Model Predictive Controllers for the tank systems were developed following the
theory of Chapter 2. This project is focused on MPC and therefore the most of the
work has been on developing proper a Model Predictive Controller for the problems
at hand. The development of the PID controller will only be mentioned briefly.

The general function of the Model Predictive Controller program is outlined in Figure
3.3. There are four different kinds of main functions which uses all the combinations
of the two different tank systems and the two different control types. In the main
functions the controllers are specified with design parameters, such as horizons and
time step. The controllers iteratively acquire state space matrices, A and B, of the
selected system, single or double tank. Those are sent to the selected controller, PID
or Model Predictive. The Model Predictive Controller gets the constraints from an
external function to get the control values. The PID controller checks the boundary
values with an external function and, if necessary, adjusts the control signal after it
has been calculated so that the control signal fulfils the physical constraints.

3.2.1 PID control

For both tank systems, classical PID controllers were implemented for comparison
to the MPC. In the pre-existing educational material, both Ziegler-Nichols method
and the lambda method for tuning are presented. Since these processes have such
simple dynamics the Ki (see Equation 2.1) will become too high with Ziegler-Nichols
method [12, ch. 8]. Therefore, the lambda method was used instead, with λ = 2 to
get a stable but not too slow controller. After some manual fine-tuning the control
parameters were set as in Table 3.1.

The constraints on the pump speed are fulfilled by a simple if-statement. If the
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Pump Valve

Kp 0.063 0.02
Ki 0.0015 0.00054
Kd 0.001 0.001

Table 3.1: Tuning parameters of the PID controllers. The controllers are named after
their actuators. The single tank and the lower tank in the double tank have controllers of
“Pump” type, while the upper tank in the double tank has a “Valve” controller.

control signal is higher or lower than physically possible it is just set to the highest
or lowest possible value. This may cause a windup, and if this PID was a real
implementation it would be wise to make adjustments for this, e.g. with an anti-
windup function [12, ch. 12].

3.2.2 MPC of the Single Tank System

The prediction model is constructed from Equation (3.1), since this is both the
system and the perfect model of the system, where

A = 1 +
v1Ts

Atank

√

g

2hn

B =
Ts

Atank

From this, the objective function is formed and the control law obtained. The size of
the objective function is decided by the prediction and control horizons. The exact
appearance of the objective function changes as it is reconstructed on-line by the
controller in every time step.

3.2.3 MPC of the Double Tank System

Since the original PID controller of the double tank was divided in two parts, the
MPC will also be handled that way. The upper part of the double-tank system is
derived from Equation 3.2, and is hence described by

Aupper = 1 +
qinTs

Atankh1,n−1

Bupper = −h1,n−1Ts

Atank

√
g

2h1,n−1

.

The lower part of the double-tank system is constructed from Equation 3.3, and is
hence described by

Alower = 1− v3Ts

Atank

√
g

2h2,n−1

+
v1,n

h2,n−1

√

2gh1,n Blower =
Ts

Atank

.

The prediction model is derived from these state space models. The objective func-
tion is then formed and the control law is obtained, as in the single-tank case.
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Figure 3.4: Step response with different prediction horizons, Hp. The step in tank level
set point is from 10% to 50% of full tank. Hc = 1 for the first, Hc = 8 for the others.

3.2.4 Tuning

Tuning of a Model Predictive Controller is to choose appropriate values for Hc, Hp,
and λ. A common method used for industry purposes is to look at a step of the
unregulated system and see how long time it takes before it reaches steady state
again, that is to measure the time constant, T . The horizon is then chosen to be
same size as T . In this way, the controller predicts the behaviour of all the way to
the steady state. [5, ch 5] [13, ch 7]

The single-tank system has T ≈ 200 s, when a step in the pump speed occurs. The
exact value depends on the opening degree of the valve at the bottom of the tank.
This is also valid for the lower part of the double tank system. The upper part of
the double-tank system has also T ≈ 200 s. The exact value depends on the speed
of the pump at the top of the tank.

In Figure 3.4, the step responses of the single tank system with MPC with different
Hp values have been plotted. The step is from 10% to 50% in tank level set point.
Hc = 1 where Hp = 1, and Hc = 8 in the other cases.

With a low Hp the controller behaves as a poorly-tuned PID controller. When
Hp = 200, the controller is not as aggressive as in the other cases. This behaviour
is eliminated if a more appropriate control horizon is chosen such, as Hc = 20. If it
is desired to have a lighter control it is better to do this with a higher penalising λ.
Thus, Hc = 20 is used in the analysis of the controller.

The penalising factor λ is chosen depending on how aggressive the controller should
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be. Most times it is chosen as a constant, and that is the case also here, but
sometimes it can be exponentially increasing [5, ch 2]. The sampling interval is
chosen with respect to computational power and aliasing effects. Here it is set to
1 s. It is short enough and the computational power is not an issue for making
calculations at this rate.

3.3 Results

The performance of the controllers has been analysed with respect to a step, with
different prediction horizons and also with different types of disturbances. If nothing
else is stated, the design parameters are λ = 0.1, Hp = 200 and Hc = 20, and the
time step is 1 s for all controllers.

3.3.1 Step response

The single-tank system has been tested with two different steps in setpoint from
steady state, see Figure 3.5. In this analysis the openings of Valve 1 is set to 36%
and Pump 1 is working at 30% of maximum speed.
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(a) Response of step from 10% to 50% in
tank level setpoint.
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(b) Response of step from 70% to 98% in
tank level setpoint.

Figure 3.5: Step response of single tank system with PID and Model Predictive Con-
troller. The red circle indicates when the error gets below 10−4 m.

With a step in tank level setpoint at t = 0 from steady 10 % to 50 %, it takes more
than four times longer time to reach an error below 10−4 m with the PID controller
than with the Model Predictive Controller (see Figure 3.5a). In Figure 3.5b the
controllers are keeping the tank at 70 % and at t = 0 the setpoint is changed with at
step to 98 %. Not only is the Model Predictive Controller finished in a much shorter
time, but it also keeps the tank level under the maximum. In an actual case the
PID controller would cause the tank to flood, while the Model Predictive Controller
keeps in within the given constraints. This is a good example of how the predictive
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controller inherently handles constraints. Not only constraints on the control signal
but also constraints on the states and outputs.

The double tank system has been tested with step from 10 % to 40 % in Tank 1 and
from 20 % to 50 % in Tank 2 (see Figure 3.6). During the examination of the double
tank system, Pump 1 is working at 30 % of maximum speed while Valve 3 at the
bottom of the second tank is completely open. When the t = 0, the controllers had
reached a steady state.
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Figure 3.6: Step response of double tank system with PID and Model Predictive Con-
troller. Step from 10 % to 40 %in Tank 1 and from 20 % to 50 % in Tank 2. The small
circles indicate when the error is gets below 10−4 m.

In this double tank system it is even more clear that the Model Predictive Controller
sees ahead and therefore is neater then the PID controller – the time to reach steady
state at the new setpoint is several times shorter.

3.3.2 Disturbance rejection

From the literature it is known that Model Predictive Controllers do not handle
un-modelled disturbance very well. The rejection of measurement noise is expected
to be somewhat better, but constant disturbances will give a residual error. [5, ch.
1]

In this section the different controllers’ capability of handling unmodelled distur-
bances, both constant and varying, has been analysed. The figures in this section
show the single-tank system, but the same principles apply also to the double-tank
system, only resulting in messier plots.
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When adding a constant disturbance, for instance if the pump gives more flow a or
valve is opened more than expected, the PID controller corrects this after some time,
while the Model Predictive Controller leaves a small error. Figure 3.7 illustrates how
the respective controllers react to an increase in the flow by 10 percentage points.
In that case, the error left by the Model Predictive controller is 0.017 m above the
setpoint.
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Figure 3.7: Single tank system with PID and Model Predictive Controller with constant
disturbance from t = 10 s. The pump gives a 10 percentage points higher flow than the
controller expects.

The system response when adding a white noise disturbance is a disturbed tank level.
The noise rejection is better with the Model Predictive Controller than with the PID
controller. This can be seen in Figure 3.8a, where the pump gives a 0−10 percentage
points higher flow than expected. The variance of the tank level is 1.2× 10−5 with
the Model Predictive Controller and 3.1× 10−4 with the PID controller.

To better understand what to expect from the steam reformer in part two of this
project a sine-shaped disturbance has also been applied, see Figure 3.8b. The distur-
bance varies between −5% and +5% of maximum pump flow. The Model Predictive
Controller rejects the disturbance much better, and gives a tank level variance of
1.6× 10−5 m while the PID controller gives a tank level variance of 1.0× 10−3 m. It
should also be noted that the mean of the system under PID control lies much closer
to the setpoint then the system while controlled by the Model Predictive Controller.
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3.4 Summary

In this chapter we have seen how a Model Predictive Controller of two different tank
systems has be derived from a theoretical model. We have also seen how it can
be tuned with respect to penalising of the control signal and horizons. Finally the
performance of the Model Predictive Controller was compared to a PID controller,
and it was seen to confirm what we know from the literature.
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4 The Steam Reformer

Steam reforming is a very common method for producing hydrogen gas by heating
methane-rich natural gas. When the gas has reached a temperature of 600 ◦C it is
filtered with catalysts to extract the hydrogen gas. The remaining gas, or the purge
gas, is collected in a buffer tank, and will be used in the heating of new natural gas.
The purge gas consists of hydrogen, methane, carbon monoxide, and some water,
and has an energy content of about 20% to that of the natural gas [11]. To heat new
gas, it is not enough to use only the purge gas as fuel. Thus extra natural gas is
added. A sketch of the process where the important parts in this context are shown
in Figure 4.1.
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buffer tank:

purge gas  

vn

max

min

Pr

combustion

Pc

Pn

exhaust

methane rich

natural gas

air

H2

catalyst to

extract H2

Figure 4.1: Simplified scheme of steam reformer process.

The transportation and filtering are executed by pressure differences. Therefore, the
pressure in the purge gas tank can not be too high or the gas would not leave the
catalysts, nor too low or the purge gas would not enter the combustion for heating
new gas. The combustion is taking place in atmospheric pressure and the pressure
in the tank may vary between 1.32 and 1.82 bar(a)1.

The system has are four catalysts which let the hydrogen pass through and collects
all the purge gas. After 15 minutes a catalyst is full and needs cleaning. The cleaning
takes 5 minutes. Thus, there are always three catalysts working and one cleaning.
More purge gas is leaving the catalyst in the beginning of the cleaning than in the
end, which gives a uneven inflow into the buffer tank.

1bar(a) is the unit of absolute pressure, where 0 bar(a) is perfect vacuum and 1.013 bar(a) is
atmospheric pressure.

22
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The flow into the combustion chamber has to be constant to keep same combustion
temperature at all times. This also allows the air flow to stay constant giving a
complete combustion. The control goal is now, by controlling the valves vr and vn,
to keep the pressure of the purge gas tank between the given values and keep the
energy flow into the combustion chamber as constant as possible. For details on the
chemical process see e.g. [8] or [3].

Thus the control goals are:

- Keep the energy flow into the combustion chamber constant to allow for a
constant inflow of air.

- Keep the pressure in the purge gas tank, Pr, between 1.32 and 1.82 bar(a) to
keep the process running.

This shall be achieved by setting the opening level of the control valves, vr and vn.
The measured input is the pressure in the purge gas tank level Pr.

4.1 Performance and Control of Today

Since 2008, Emerson’s DeltaV system is in operation which offers advanced control
possibilities such as an MPC implementation, but this possibility is currently not
in use. The controller currently implemented is a PID with feed forward and an
on-line tuning. The energy inflow into the combustion varies and thus the air inflow
is over-estimated at most times – with the present control, the exhaust has to have
a set point at 1.5% oxygen. The exhaust can not contain less than 0.5% of oxygen
to always ensure an efficient combustion.

A benefit with lower residual oxygen content is that less air has to be heated, which
means that less natural gas needs to be combusted. Natural gas stands for the greater
part of the production cost. If the residual oxygen content is lowered from 1.5% to
0.5%, the use of natural gas will decrease with 44 Nm3/h (the unit refers to normal
cubic meter, which is a cubic meter of gas at normal pressure and temperature).
With a price for natural gas price of 3 SEK/Nm3 the savings would be around 1 000
000 SEK (about CC110 000) per year. [11]

The air inflow to combustion is currently controlled with respect to the oxygen
content in the exhaust gas. With the MPC solution this project is aiming for this
control to be kept but optimally it would be redundant.

The idea in this project was to compare the PID Controller’s and the Model Pre-
dictive Controller’s performances in a Hysys model. It was intended to be finished
before the work of this thesis was started. Unfortunate this has not been as expected
and the Hysys model do still not perform as the process in the factory. Hence it
has not been possible to make a proper comparison of the two control types. In this
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part I will therefore mainly focus on the development and performance of a Model
Predictive Controller for the Steam Reformer process.

4.2 Modelling

The system was modelled using Matlab. The model of the system without any
control can be seen in Figure 4.2, where the valve openings are the average of what
is given with full control.

As noted previously, when using MPC it is very important that the model is as
accurate as possible. In this case the main uncertainty is the inflow to the purge gas
tank that depends on the emptying of the catalysts. This process works in cycles of
about 5 minutes, if it is assumed that the four catalysts are identical, otherwise in
cycles of 20 minutes. In the process model the flow from the catalysts was modelled
as a rough sawtooth wave, with appropriate max and min values known from mea-
surements2. When verifying the controller, this was exchanged to a recording of the
inflow of one short cycle. It is recommended for future implementations in reality
to use a full 20-minute record, as it has been seen that the catalyst varies somewhat
in behaviour. I also suggested an investigation of their behaviour over time, as this
controller is intended to work for several years with preserved high performance.
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Figure 4.2: The steam reformer process without control. The inflow to the combustion
chamber varies with 21.4%. The valve openings, vr and vn, are kept constant, and the
inflows to both purge-gas tank, qin, and to combustion, qc, are in percent of maximum
flow. Pr is the pressure in the purge-gas tank and the grey band indicates its desired span.

Both the control valves, vr and vn, are of the Equal Percentage type, but the first

2The details regarding the size of the flow are industrial secrets.
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has a flow factor approximately 10 times larger than the second.3 That a control
valve is of Equal Percentage type means that the maximal flow is scaled with τ vr−1,
where vr ∈ [0, 1] is the opening of the valve and τ is a valve design parameter.

The maximal flow when the valve is fully opened is calculated as

qmax =
KvN

3600

√

(P − Pc)Pc

ρNTPT
, (4.1)

where Kv is the flow factor of the valve, N = 5144, P is the pressure before the valve,
Pc is the pressure after the valve, ρNTP is the density of the gas at normal pressure
and temperature, and T is the temperature of the gas. The constant 1/3600 is to
get the result per second instead of per hour. The gas is assumed to keep constant
temperature and composition due to good mixing.

The pressure in the purge gas tank, Pr, is measured but to control it we need to
make an estimation of how it will change depending on the inflow:

P̂r(k + 1) = Pr(k) + c
(

qin(k) + qmaxτ
vr(k)−1

)

c =
ρNTPRT

MVtank

· 10−5
(4.2)

where qin is the inflow to the purge gas tank and vr is the opening degree of the
valve. c converts the flow from m3/s to a pressure difference in bar and is assumed
to be constant, R is the gas constant, M is the molar mass of the purge gas, and
Vtank is the volume of the purge gas tank. The constant 10−5 is to convert from Pa,
the SI unit for pressure, to bar, which is more convenient here.

This gives the flow vr · qmax,r into the combustion. The flow from the natural gas
grid is constant and expressed as qn = vn · qmax,n, where qmax,n according to Equation
(4.1). What is interesting here is not the total gas inflow but the total energy inflow.
The purge gas contains about 20 % of energy per mass compared to natural gas, and
thus the flow of the purge gas has to be scaled. Hence the inflow to be controlled is
calculated as

qenergy, c(k) = 0.2qmax,rτ
vr(k)−1 + qmax,nτ

vn(k)−1. (4.3)

4.3 Controller

The controller developed here consists of two coupled Model Predictive Controllers:
the first to control the pressure in the purge gas tank, the other to adjust the flow
from the natural gas grid to match the flow from the purge gas tank. The controllers
are coupled in such that the predicted values of the first controller are used in the
second.

3The details regarding the flow factors of the valves are industrial secrets.
4Known from working experience with control valves. [2]
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An element in MPC theory is that constraints are implemented naturally in the
solving process [13, ch. 2]. The control valves, vr and vn, have physical limitations,
and can take values between 0 and 1, for fully closed to fully opened. Furthermore
the pressure in the purge gas tank, Pr is limited to stay between 1.32 and 1.82 bar(a).

4.3.1 Linearisation

To use the model developed in Section 4.2 in the controller, Equations 4.2 and 4.3
had to be linearised. Linearisation of Equations (4.2) gives:

P̂r(k + 1) = Pr(k) + cqin(k) + cqr,maxτ
vr(k−1)−1 (1 + ln τ(vr(k)− vr(k − 1)))

Since the valve by the purge gas tank has to be able to work in a large range of
flows and pressures the linearisation point is the valve opening of the last iteration,
vr(k − 1).

Linearisation of Equations 4.3 gives:

qenergy,c(k + 1) = 0.2qmax,rτ
vr(k)−1 + qn,maxτ

vn(k−1)−1 (1 + ln τ(vn(k)− vn(k − 1)))

The valve for the natural gas has a much smaller working range, and like the purge
gas tank valve it does not have a constant set point. Therefore the linearisation
point is vn(k − 1). Here, vr(k) is already known.

From above, equations on the form P̂ (k + 1) = ArP (k) + Brvr(k − 1) + constants
and qc(k + 1) = Anqc(k) + Bnvn(k − 1) + constants are found.

4.3.2 Verification

To verify the controller that is implemented in Matlab a simulation of the whole
steam reformer was used. This simulation is developed inHysys as a part of another
master thesis at ÅF Group [11]. To use the data from the controller in the simulation
during runtime, Microsoft Excel was used as an adapter. The Excel macros can
retrieve data from and send data to Hysys during runtime. It may also do so with
text files, a capacity that also Matlab has. The whole set up is illustrated in Figure
4.3. The usage of text files is necessary since Matlab’s reading from and writing
to Excel files is very slow.

It was not possible to make Matlab and Hysys communicate, but by running them
both in real-time, they at least get each other’s data continuously. The Matlab

controller gets the present pressure in the tank and the Hysys simulation gets the
calculated best opening of the valves in each time step. The Hysys simulation was
updated twice every second. Retrieving and sending data was performed once every
second in both directions.

For the verification, the inflow to the purge-gas tank was recorded and used in the
model of the controller. Also, instead of using the tank pressure, the pressure just
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vr, vn .txt.txt
HYSYS EXCEL text files MATLAB

Ptank Ptank

vr, vn vr, vn

Ptank

Figure 4.3: The work flow of the verification process.

before the valve was used. The discrepancy, between these pressures can be seen
in Figure 4.4. The pressure decreases in the pipes between the tank and the valve.
For the model of the controller to be correct and the Model Predictive Controller to
work, a correlation needs to be found.
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Figure 4.4: Pressure in purge-gas tank and just before the valve.

The correctness of the Model Predictive Controller is determined from the energy
inflow into combustion. This can not be measured in the factory but only in the
simulation model.

4.4 Results

The MPC keep the pressure of the tank within the limits and gives a close to con-
stant inflow to the combustion, see Figure 4.5. The measured flow into combustion
has a variation of 11 %.

The inflow to the combustion chamber seems to get an additional contribution from
Valve 2, the valve controlling the natural gas. This contribution is not known by
the controller.
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Figure 4.5: The performance of the Model Predictive Controllers used in the Hysys

simulation. Valve openings, vr and vn are in percent of its maximum. The inflow to the
combustion chamber, qin, is in percentage of its mean. Pr is the pressure in the purge-gas
tank and the grey band indicates its desired span.

4.5 Summary

In this chapter we have looked closer at the performance of a Steam Reformer
process, especially at the feed back of purge gas into the combustion chamber. A
Model Predictive Controller for the system has been developed from a theoretical
model and then it’s performance has been examined with the Hysys model. Here
we have seen how important it is to have a model that matches the system well.
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As seen in the results of the tank systems, a Model Predictive Controller is not very
good at handling unmodelled constant disturbances or disturbances that contain a
constant element. They will then have a remaining error, an offset from the setpoint.
In known from literature that propagation of measurement noise is lower with Model
Predictive Controllers than PID [5, ch. 1], which can also be seen here. It has been
verified in both parts of the project that the Model Predictive Controller is as good
as its model, as the literature states.

Furthermore the Model Predictive Controller works very well with the given con-
straints and it is fast and accurate in comparison with the traditional PID controller.
This has been seen theoretically in the tank systems, and is a great benefit in the
steam reformer system discussed in Chapter 4 where it is so important to keep the
constraints.

The Model Predictive Controller for the steam reformer, when verified with the
Hysys simulation, does not work as well as expected. There as some possible
sources of errors, which can be divided into parameter errors, unmodelled behaviour
and errors in the Hysys simulation.

Regarding the parameter errors there is an uncertainty about the valve design pa-
rameter τ , in both the real system and in the simulation. Typically, the parameter
should be between 20 and 50. Unfortunately it seems impossible to set this value
for the Hysys valve element, and the parameter of the value in use cannot be found
either. During simulations, different values of τ have been tried in the model, but
it is difficult to tune it precisely without knowing the value of τ .

It has been assumed that the mixing of the gas in the purge gas tank is good, and
therefore the composition, the temperature, and the density of the purge gas is
constant. If the average time the gas stays in the tank is too short, this might not
be true and to make a correct model it needs more investigation.

Another possible unmodelled behaviour is the speed of the control valves. They
might have a short dead time when getting the signal to change until the valve
actually moves. This was not modelled in my controller, nor the Hysys simulation
at the time of verification, but of course it needs to be taken into account before
implementing a controller onto the steam reformer system. If the dead time is
implemented in the model of the Model Predictive Controller it should not be a
problem, but it is necessary to investigate what is happening when the valve is
moving constantly during several time steps.

As previously mentioned the Hysys simulation was not completely verified for the
time of verifying the Model Predictive Controller of the steam reformer. This intro-
duces a huge uncertainty. The fact that it was chosen to use two controllers, instead

29
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of one, does not seem to have affected the quality of the behaviour.

Very large amounts of gas flows in the steam-reformer system and a lot of money
is spent on the production. With good system control, great savings can be made.
This system has constraints which need to be obeyed. This would be well-handled
using MPC, and the risk of failure with a subsequent halt of production would be
decreased. It is therefore suggested that a Model Predictive Controller is used. Such
an implementation also follows the practise used by the industry today. Nevertheless,
the MPC developed in this project should not be implemented, since it has too bad
performance.



6 Conclusion

The most important take-home message from this work is how well Model Predictive
Controllers follows their model, with the consequence that errors in the model leads
to pour results. In the model of the steam reformer, some parts – first appearing
as mere details – were left out. This meant that the controller did not work as
well as indicated. Nevertheless it has been seen that Model Predictive Controller is
outstanding when comes to following a reference and stay within given constraints
on several different parameters.

The model predictive controllers have not been thoroughly embraced by the industry,
partly because they further shift the supervision of the process from the operator
to the automatic controller. The educational material developed in this project can
hopefully deal with some of this resistance. Another way to get around this problem,
and to save computational power, MPC can be implemented on a higher level, giving
reference signal to the actuators, but letting a traditional PID controller handle the
details. This way an operator still may take over the system and handle it manually
if needed.

Therefore, a better approach to this problem would probably be to have a more
holistic view of the system, and to observe the flow and temperature of the exhaust.
By specifying desired output, the expected exhaust can be calculated. From this,
the desired flow from the purge-gas tank and natural-gas grid can be calculated.
This may be more work than suitable for a M.Sc. thesis, but if it is possible to save
1 000 000 SEK it might be worthwhile hiring an engineer for the job.
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A Appendix: Guide for Laboratory Prac-

tical on MPC on Tanks

A.1 Syfte och m̊al

Laborationens syfte är att visualisera modellbaserad reglering (Model Predictive
Control, MPC) i jämförelse med traditionell PID-reglering.

Efter avslutad laboration ska du ha kunskaper om de grundläggande principer som
MPC-reglering bygger p̊a ur ett användarperspektiv. Du ska även ha kännedom om
begrepp som styrsignalsstraff, prediktions- och reglerhorisont, och hur de används
inom MPC-reglering.

Denna laboration förutsätter kännedom om PID-reglering t.ex. genom reglertekniks-
laboration 1-4.

A.2 Introduktion till modellbaserad reglering

Modellbaserad reglering bygger p̊a en teoretiskt eller praktiskt framtagen modell
av systemet som ska regleras. Utifr̊an denna kan man förutsäga i vilket tillst̊and
systemet kommer att befinna sig i om en viss tid. Tiden mäts i tidssteg, allts̊a
det intervall med vilket regulatorn uppdateras. Antalet s̊adana tidssteg som man
vill förutse tillst̊andet kallas för prediktionshorisont och betecknas Hp. En algoritm
hittar sen det optimala värdet p̊a styrsignalen för framtiden. Det beräknade värdet
för kommande samplingsintervall är det som används.

Om samplingsintervallet är för l̊angt blir regulatorn l̊angsam. Om samplingsinterval-
let är för kort finns en risk att regulatorn inte hinner genomföra alla beräkningar och
ta fram en ny styrsignal innan den ska uppdateras, eftersom det tar mer datorkraft
att ha ett kortare samplingsintervall.

Detsamma gäller prediktionshorisonten: är den för kort blir regulatorn d̊alig och
l̊angsam. Är den istället för l̊ang tar det för mycket datorkraft att beräkna det
bästa värdet. Det skapar en risk för att styrsignalen inte hinner beräknas innan
den ska implementeras. Därför gäller det att hitta en bra avvägning b̊ade för sam-
plingsintervallet och prediktionshorisonten.

Vidare finns även en parameter som kallas λ (lambda) som är ett straff p̊a styrsig-
nalen, allts̊a ett styrsignalsstraff. Denna parameter ska inte förväxlas med lamb-
dametoden. Med ett högt värde p̊a λ kommer regulatorn inte använda för stark
styrsignal för att kontrollera systemet. Insvängningen blir d̊a mjukare med risk för
att bli l̊angsammare. Omvänt ger ett litet lambda blir regulatorn mer aggressiv.
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En av de främsta fördelarna med modellbaserad reglering är att det är möjligt att
lägga in restriktioner när modellen byggs; s̊a som att niv̊an i tanken inte f̊ar överstiga
100% och inte understiga 0%, att pumpen inte kan varva upp eller ner hur snabbt
som helst och att ventiler inte kan öppnas eller stängas hur snabbt som helst. Detta
är extra användbart i system där den optimala arbetspunkten ligger nära en gräns,
t.ex. vid förbränning som det m̊aste ha åtminstone en viss temperatur, men om
temperaturen blir för hög kostar det mer än nödvändligt.

I industrin har den modellbaserade regulatorn framför allt f̊att genomslag inom pro-
cessindustrin men den har ocks̊a använts till allt fr̊an robotarmar till cementproduk-
tion. Till skillnad fr̊an PID-regulatorn är den oftast kr̊angligare att utveckla, men
enklare att implementera. I m̊anga fall har att en välgjord modellbaserad regulator
kunnat vara i bruk under l̊ang tid utan nästan n̊agra åtgärder.

A.2.1 Viktiga begrepp

omodellerad störning: En, troligen okänd, störning som inte är modellerad i sys-
temmodellen.

prediktionshorisont: S̊a m̊anga samplingsintervall in i framtiden som regulatorn
ska förutse (prediktera) systemets beteende.

styrsignalsstraff: Betecknas oftast med den grekiska bokstaven λ (lambda). Gör
det sv̊arare för regulatorn att använda en aggressiv styrsignal.

systemmodell: Teoretisk beskrivning av systemets dynamik som regulatorn bygger
p̊a.

samplingsintervall: Tidsintervallet mellan uppdateringarna av styrsignalen.

stegsvar: Den tid som det tar för systemet att n̊a jämviktsläge efter ett steg.

A.3 Laboration

I de här tre laborationerna f̊ar du bekanta dig med modellbaserad reglering och
jämföra dess egenskaper med PID-regulatorns. Först f̊ar du lära känna systemet
och testa p̊a att regulatorn naturligt implementerar gränser – en av de viktigaste
egenskaperna hos modellbaserade regulatorer. Nästa steg är att göra en lämplig
avvägning och ställa in regulatorns parameterar. Sista delen handlar om störningar
och hur de kan hanteras av modellbaserade regulatorer jämfört med PID-regulatorer.
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A.3.1 Uppgift 1: Lär känna systemet och testa gränserna.

I den här uppgiften ska du testa att l̊ata regulatorn svänga in till ett börvärde som
ligger nära en fysisk gräns, i det här fallet begränsningen att tanken inte f̊ar bli
överfylld.

G̊a in i “Enkeltank med MPC” och gör följande inställningar:

Inställningar, uppgift 1

Pump 1 Auto
Horisont 100
λ 1
Tidssteg 1
Börvärde 75
Ventil 1 30%
Ventil 2 0%

När systemet har svängt in, ändra börvärdet i ett steg till 95%.

Vad händer?

Vad tror du hade hänt med en PID-regulator? (Om du känner dig osäker,
g̊a gärna in och testa.)

A.3.2 Uppgift 2: Ställ in regulatorn.

I den här uppgiften ska du ställa in parametrarna för en s̊a bra modellbaserad
regulator som möjligt. Detta sker genom att undersöka hur snabbt systemet svarar
p̊a ett steg utan reglering, detta kallas stegsvar.
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Gör följande inställningar:

Inställningar, Uppgift 2

UT 300
Ventil 1 40%
Ventil 2 0 %

När tanken har n̊att jämviktsläge, allts̊a när utflödet är lika stort som inflödet och
niv̊an i tanken h̊alls konstant, ändra ”UT” till 600. Klicka fram ”Trend”-grafen och
se hur l̊ang tid det tar innan systemet åter befinner sig inom 2% fr̊an jämviktsläge
och kalla den tiden T .

Vad brukar man kalla termen T?

För enkelhetens skull kan vi till att börja med välja λ = 1 och Ts = 1 s, där Ts är
samplingsintervallet. Sätt sedan Hp = T/Ts. Sätt Hc ≈ 0.1Hp, avrunda upp̊at till
närmaste heltal.

Vad skulle hända med T om du valde en annan storlek p̊a ditt steg?

Gör om experimentet med steget fr̊an början av den här uppgiften, fast l̊at den här
g̊angen pumpen vara i ”Auto”med inställningarna ovan.

Vad är skillanden mot ett helt oreglerat system?

Prova n̊agra olika värden p̊a λ och se hur det p̊averkar regleringen. Testa t.ex.
λ = 10 och λ = 0.1.

Hur p̊averkas regleringen av ett stort respektive litet λ med avseende p̊a
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insvängningstid och aggressivitet?

Använd värdena fr̊an Laboration 2, ”Uppgift 7: Optimering” för PID-regulatorn.

Hur skiljer sig den modellbaserade regulatorn fr̊an PID-regulatorn?

A.3.3 Uppgift 3: MPC och störning

I den här uppgiften ska du se hur den modellbaserade regulatorn klarar störningar
som inte finns i modellen och sedan jämföra detta med hur PID-regulatorn klarar
samma sak.

Använd värdena som togs fram för den modellbaserade regulatorn i Uppgift 2. An-
vänd värdena fr̊an Laboration 2, ”Uppgift 7: Optimering” för PID-regulatorn.

Utflödet genom ventil 2 är inte implementerat i modellen som regulatorn bygger
p̊a, utan kallas omodellerad störning. Du ska nu undersöka hur väl regulatorn kan
hantera en s̊adan.

Ställ in systemet med de värden du kom fram till i förra uppgiften.

Inställningar, uppgift 3

Pump 1 Auto
Horisont Enligt förra uppgiften
λ Enligt förra uppgiften
Tidssteg Enligt förra uppgiften
Börvärde 60
Ventil 1 30%
Ventil 2 0%

L̊at systemet svänga in. Sätt Ventil 2 till 10%.
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Vad händer? Hur hanterar regulatorn störningar?

Vad tror du hade hänt med en PID-regulator? (Om du känner dig osäker,
g̊a gärna in och testa.)

A.4 Sammanfattning

Som du har sett här har modellbaserade regulatorer m̊anga fördelar som PID-
regulatorer saknar. En av fördelarna för operatören är att de är lättare att ställa
in och inte har lika m̊anga driftstopp som traditionella regulatorer eftersom de kan
h̊alla sig inom vissa givna gränser.

När den här laborationen är godkänd har du grundläggande kännedom om modell-
baserade regulatorer när de dyker upp ute i verkligheten.
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