
A Deep Learning based tracking frame-
work for passenger monitoring
Master’s thesis in Computer Science – algorithms, languages & logic and Computer Sys-
tems & Networks

Filip Granqvist
Oskar Holmberg

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

Master’s thesis EX058/2018

A Deep Learning based tracking framework for
passenger monitoring

Filip Granqvist
Oskar Holmberg

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden 2018

A Deep Learning based tracking framework for passenger monitoring

FILIP GRANQVIST
OSKAR HOLMBERG

© FILIP GRANQVIST, 2018.
© OSKAR HOLMBERG, 2018.

Advisor: Niclas Wennerdal, Smart Eye AB
Supervisor: Lennart Svensson, Electrical Engineering
Examiner: Tomas McKelvey, Electrical Engineering

Master’s Thesis EX058/2018
Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Gothenburg, Sweden 2018

iv

ADeep Learning based tracking frame-
work for passenger monitoring

Filip Granqvist
Oskar Holmberg

Department of Electrical Engineering
Chalmers University of Technology

Abstract
A substantial amount of traffic accidents are caused by distracted driving and drowsy
behaviour each year. Two important areas when tackling these inadequacies is
human-car interaction and the car’s awareness of the passengers. Tracking passen-
ger movements over time can result in a more intelligent vehicle that is able to react
to passenger actions, and thereby provide a more secure driver experience.

In this thesis, we present a Deep Learning based tracking framework for passenger
monitoring. The framework is divided into two separate parts: a human body pose
estimator and an object detector. Additionally, we demonstrate the use case of
the framework by developing a hand gesture classifier and a body action recognizer
upon the framework. The framework and additional modules are optimized for
efficiency, and we achieve real-time performance on a Nvidia Jetson TX2 embedded
system.

Keywords: Computer vision, Deep learning, Body pose estimation, Action recogni-
tion, Object detection, Hand gesture classification.

v

Acknowledgements
We would like to thank Henrik Lind and Smart Eye for hosting this thesis and
being supportive during the course of this project. Additionally we would like to
thank Niclas Wennerdal, our onsite supervisor, and the AI team at Smart Eye for
an enjoyable collaboration and a nice atmosphere. A special thanks to Lennart
Svensson who acted as our academic supervisor for this thesis and provided superb
insight.

Filip Granqvist & Oskar Holmberg, Gothenburg, June 2018

vii

Contents

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 Background . 1
1.2 System overview . 2
1.3 Objectives . 4
1.4 Delimitations . 5
1.5 Thesis Outline . 6

2 Deep Learning for Computer Vision 7
2.1 Supervised Learning . 7
2.2 Deep Learning fundamentals . 8

2.2.1 Artificial Neural Networks . 8
2.2.2 Activation functions . 9
2.2.3 Loss functions . 11
2.2.4 Mean Average Precision . 11
2.2.5 Backpropagation . 12
2.2.6 Optimization . 13
2.2.7 Weight decay . 15
2.2.8 Dropout . 15
2.2.9 Batch Normalization . 16

2.3 Convolutional Neural Networks . 17
2.3.1 Convolution . 17
2.3.2 Pooling . 19

2.4 Recurrent Neural Networks . 20
2.4.1 Long Short Term Memory . 21

2.5 Transfer Learning . 23
2.6 CNN Architectures . 23

2.6.1 LeNet . 24
2.6.2 AlexNet . 24
2.6.3 VGGNet . 24
2.6.4 GoogLeNet . 25
2.6.5 ResNet . 25
2.6.6 SqueezeNet . 26

ix

Contents

2.6.7 MobileNet . 27
2.7 Data Augmentation . 29
2.8 Human performance . 30
2.9 Deep Learning Work Flow . 30

2.9.1 Bias-variance analysis . 31
2.9.2 Error analysis . 32

3 Hand Detection 33
3.1 Previous work . 33
3.2 You-Only-Look-Once . 34
3.3 Implementation . 37

3.3.1 Fixed window hand detector 37
3.3.2 Deep learning hand detector 38

3.4 Results . 40
3.5 Discussion . 43

4 Hand Gesture Classification 45
4.1 Previous work . 45
4.2 Convolutional LSTM . 46
4.3 Implementation . 47

4.3.1 Dynamic hand gestures . 48
4.3.2 Static hand gestures . 50

4.4 Result . 52
4.4.1 Dynamic hand gesture classifier 52
4.4.2 Static hand gesture classifier 53

4.5 Discussion . 55

5 Action Recognition 57
5.1 Previous work . 57
5.2 Pose estimation using Part Affinity Fields 58
5.3 Implementation . 61

5.3.1 Pose Estimation component 61
5.3.2 Action recognition component 63

5.4 Results . 64
5.5 Discussion . 66

6 Real-time system 69
6.1 Implementation . 69

6.1.1 Deep inference guard . 70
6.1.2 Gesture recognition pipeline 71
6.1.3 Action recognition pipeline . 71
6.1.4 Merged feature extractor . 71

6.2 Results . 72
6.3 Discussion . 73

7 Conclusions 75
7.1 Future work . 75

x

Contents

7.2 Conclusion . 76

Bibliography 79

A Appendix 1 I
A.1 Hand detection . II

A.1.1 VIVA dataset predictions . II
A.1.2 EgoHands dataset predictions III

A.2 Human pose predictions . V
A.2.1 COCO dataset predictions . V
A.2.2 Keypoint heatmaps and affinity fields predictions VI

xi

Contents

xii

List of Figures

1.1 Overview of the system to be implemented. 4

2.1 A Feed-forward Neural Network with two hidden layers. All layers
are fully connected. 8

2.2 Neuron j at layer l. The input neurons are multiplied with their
respective weights and them summed together with the bias. The
output from the sum z

[l]
j is then propagated through an activation

function, resulting in the output a[l]
j 9

2.3 A common ConvNet structure. Input is the raw image, which is then
followed up by a number of convolutional and pooling layers stacked
upon each others. The network then ends up with a fully connected
layer into the output classes. 17

2.4 A convolutional operation performed on an input size of 4 × 4 with
filter size 2× 2. Stride is set to 1, thus only moving 1 step at a time,
resulting in a output size of 3× 3. No padding is used, which implies
a down-sampling. 18

2.5 A convolutional operation performed on an input size of 4 × 4 with
filter size 2 × 2. Stride is set to 2, thus sliding 2 steps at a time,
resulting in a output size of 2× 2. No padding is used. 19

2.6 A 3D convolution is performed over the input volume. It strides over
the input width, height and depth. 19

2.7 A max pooling operation applied with stride 2. Resulting in an output
size of 2× 2, reduced from its input size 4× 4. 20

2.8 A vanilla RNN architecture. The input from the previous layer at the
current iteration is combined with the internal state, generating an
output to the next layer and updating the internal state. 20

2.9 An unrolled RNN network, where the hidden state is passed on to its
successor of the sequence. 21

2.10 Internal representation of an LSTM cell. The input to the LSTM
cell is the previous cell state, hidden state and the input from the
previous layer at the current iteration. 22

2.11 The architecture of a fire module . 27
2.12 The depthwise and pointwise filter of a separable convolution 28
2.13 The components of a Separable Convolution module in the MobileNet

architecture . 28
2.14 Flowchart of our workflow to follow throughout the thesis project. . . 31

xiii

List of Figures

2.15 An example of how the performance of the different data set partitions
can be distributed and what gaps between the performances indicates. 32

3.1 Example of how the coordinate labels are calculated using an anchor
box and the ground truth coordinates. 35

3.2 Panel a) shows the result of Idiff ~ fv from line 12 of Algorithm
2, which is a feature map of exponentially moving averaged vertical
edges. Panel b) shows the result of Idiff ~ haarh from line 11 of
Algorithm 2, which is a feature map of exponentially moving averaged
horizontal edges. 40

3.3 Visualization of how Algorithm 2 predicts a bounding box. The per-
centile cutoffs of each histogram is shown in red, and its corresponding
bounding box is shown in green. 41

3.4 The resulting anchor box dimensions calculated using k-means clus-
tering on VIVA Challenge dataset 41

3.5 Train set and test set performance during training of object detec-
tor with different feature extractors as base. Orange represents Mo-
bileNet as feature extractor (82mAP) and Blue represents SqueezeNet
as feature extractor (85mAP). 42

4.1 An example of how the performance of the different data set partitions
can be distributed and what gaps between the performances indicates. 47

4.2 Architecture overview of the dynamic hand gesture classifier. A video
sequence is down-sampled to 30 frames and fed into a 3DCNN fea-
ture extractor. The spatiotemporal features are then passed into two
3DConvLSTM layers, applied with a spatial pyramid pooling and
finally a fully connected layer for classification. 49

4.3 The 3D Convolutional Neural Network architecture for dynamic hand
gestures. 50

4.4 The seven gestures available in our custom dataset. In addition to
the ones that previously existed we have added the No gesture- gesture. 51

4.5 Normalized confusion matrix on the Jester validation set. The model
used for predictions was with all augmentation techniques. 53

4.6 Train and test accuracy over time during the training procedure. Af-
ter 2000 iteration the training accuracy consequently performed 100%
and after 6000 iterations the test accuracy converged at 98%. 54

4.7 Normalized confusion matrix for the custom static hand gesture dataset. 55

5.1 The ground truth labels of a sample. a) is the original image, b) are
all heat maps concatenated into an image, c) are the x-values of the
part affinity fields and d) are the y-values of the part affinity fields. . 59

5.2 Architecture overview of Pose estimation using Part Affinity Fields . 59
5.3 Architecture overview of an improved model with respect to efficiency

of Pose estimation using Part Affinity Fields 62
5.4 Architecture overview of the action recognizer. An LSTM cell un-

rolled over time shows how the sequence of human vectors are used
as input for one prediction. 64

xiv

List of Figures

5.5 Mean average precision of the body pose estimator during training.
see [1] for more information about the metrics. 65

5.6 The train and test accuracy of the action recognizer during the train-
ing procedure. The train and test accuracy consequently performed
100% after convergence. 66

6.1 The final architecture of our prototype 70
6.2 The tracking framework with the merged feature extractor. After an

image has passed the deep inference guard it is first sent through the
first nine layers of a MobileNet before being divided into the object
detector and body pose estimator. 72

A.1 Some successful predictions for hand detection on the VIVA Challenge
dataset. II

A.2 Some successful predictions for hand detection on the EgoHands dataset. III
A.3 Some unsuccessful predictions for hand detection on the EgoHands

dataset. IV
A.4 Some successful predictions for body pose estimation on COCO dataset. V
A.5 Some unsuccessful predictions for body pose estimation on COCO

dataset. VI

xv

List of Figures

xvi

List of Tables

2.1 Overview of the SqueezeNet architecture. Global average pooling
averages over every input channel. 27

2.2 Overview of the MobileNet architecture. Filter size equals to K and
number of filters equals to M for separable convolutions. 29

3.1 Overview of the SqueezeNet architecture. Global average pooling
averages over every input channel. 39

3.2 Overview of the MobileNet architecture. A Separable Conv module
follows the architecture presented in Figure 2.13. 39

3.3 Comparison of performance and inference time for our different object
detector architectures. 42

3.4 Comparison of our hand detector to other methods in terms of per-
formance (mAP) and inference time (FPS). 43

4.1 Our implementation in comparison to other submissions. 52

5.1 The keypoints available in the dataset that were used when training 63
5.2 Comparison of our body pose estimator to other methods in terms of

performance (mAP) and inference time (FPS). 65

6.1 Inference times for the static hand gesture classifier with different
number of hands to classify at once. 72

6.2 Inference times for the Action Recognizer with different number of
hands to classify at once. 73

6.3 Inference times of separate modules and combined modules of the
real-time inference implementation. 73

xvii

List of Tables

xviii

1
Introduction

One important factor for traffic safety is the interaction between driver and car. For
example, you want the driver to be able to interact with the car while still focusing
on the road. Currently, the top cause of traffic accidents is distracted driving, which
includes operating the vehicle, adjusting audio and cellphone usage [2].

Another security issue is the car’s awareness of the passengers. An intelligent vehicle
needs to be aware of every passenger’s current position and their behaviour to be
able to provide a driver experience with maximum security. For example, certain
positions and rotations of a passenger’s body will potentially make the use of airbags
dangerous.

According to National Highway Traffic Safety Administration drowsy driving is the
cause of over two percent of the fatal car crashes [3]. One indication of a person
with strong drowsiness is unnecessary body movements. This includes movements
such as touching face, adjusting sitting position and shrugging of shoulders [4]. By
tracking passenger’s movement over time, change in behaviour can be detected and
thus prevent any accidents caused by human error before occurring.

With the aforementioned aspects in mind, Smart Eye, a technology company based
in Gothenburg, has commissioned the investigation of how to expand their product
segment through deep learning to provide increased passenger safety and comfort
with the particular application of hand gesture recognition and tracking body key-
points in mind. This is an open-ended request that enables this thesis to explore a
broad range of deep learning techniques and allowed the goals to evolve to best suit
the applicability of deep learning techniques in embedded environments.

1.1 Background

Deep Learning techniques in general, and Convolutional Neural Networks in partic-
ular, has dominated the area of Computer Vision in recent years. Along with the
successes of Deep Learning, the number of applications for monitoring passengers
inside vehicles has increased significantly. This can for example be used to detect
drowsiness of the driver [5] and monitor stress levels [6]. Therefore, the solutions

1

1. Introduction

proposed in this thesis will be heavily influenced by Deep Learning techniques and
state-of-the-art neural network architectures.

A way to track passenger motions over time is to extract their body poses from
sensor data. The change of pose over time can be mapped to certain activities or
behaviour within a car. An abnormal amount of shoulder shrugging indicates a
drowsy behaviour, which can let the infotainment advise the driver to take a break
[4]. Previous work by Bruce Xiaohan Nie et al. and Guilhem Chéron et al. have
shown that estimating a human body pose as a pre-processing step for recognizing
actions and behavior improves the performance and severely reduces the complexity
of the problem [7] [8].

A method that may increase passenger safety is human-car interaction through ges-
ture recognition. Instead of directly targeting the dashboard to perform commands
to the infotainment system of the car, it can be done through the use of hand
gestures. According to a market study performed by IHS Automotive, the global
market for gesture recognition within cars expects to grow from 700,000 in 2013 to
more than 38 million units in 2023 [9]. The use case for hand gestures also expects
to grow in 2018 due to the new law being put into use in Sweden, which prohibits
motorists from using their mobile phone while driving [10].

An existing passenger monitoring system currently in production is Depthsense Car
Library by SoftKinetic, wich was recently acquired by Sony. The library can be
divided into two categories: in-cabin monitoring and in-vehicle infotainment control
[11]. For in-cabin monitoring the library can extract body pose information from the
passengers. This can be used for automated adjustment of seats and mirrors, and
biometric recognition among others. For in-vehicle infotainment control, the library
supports hand tracking which can be used to classify a variety of hand gestures
which can be mapped to actions such as answer call.

The Depthsense Car Library is the most well-known deep learning based implemen-
tation for passenger monitoring. However, they are gaining information through the
use of multiple sensors, such as depth cameras, which significantly reduces difficulty
of the tracking problem because of the rich multimodal data available. Smart Eye’s
product segment as of today is focused on the use of a single near infrared camera.
As a result, this increases the difficulty of the problem, but with the benefit of only
requiring a single camera to implement the solution in a vehicle.

1.2 System overview

Smart Eye has mandated this thesis work to investigate how state-of-the-art deep
learning techniques can be used in order to increase passenger safety with the subject
of human-car interaction in mind. This thesis answers this open-ended request in
the form of a deep learning based tracking framework for passenger monitoring. The
tracking framework is developed in a generic way to be freely integrated into more

2

1. Introduction

explicit solutions for passenger safety and comfort such as models for automated
adjustment of seats and mirrors, and observing passengers in a variety of ways.
In particular, Smart Eye has commissioned two standalone prototypes that puts
the framework to use in practice to support action recognition and hand gesture
classification.

As input to the system Smart Eye will provide one vision based sensor. Desirably,
the proposed solution should support near infrared cameras as it is the most common
sensor in their product segment as of today. The aforementioned vision based sensor
is going to be placed above the dashboard inside a car. The exclusive use of vision
based sensors restricts this thesis to only explore computer vision based solutions.
As a result, our architecture will make a substantial use of Convolutional Neural
Networks (CNNs) in combination with other deep learning techniques that are found
useful.

The tracking framework. The intent of the tracking framework is to extract
useful passenger information from a given image into a more intelligible feature
representation, which can be used to solve a multiple of problems within a car. The
tracking framework should at least be able to extract the information that is found
useful from the driver, but desirably all the passengers. The framework consists
of two modules with separate tasks, an object detector and a human body pose
estimator. As a starting point, the object detector is specifically trained to locate
hands, but can be extended to find arbitrary objects. The body pose estimator is
responsible for detecting a number of upper body keypoints and matching them into
human poses.

Action recognition. A use case for the body pose estimator from the framework
is to map a given pose to a specific action and/or their position in relation to the
car in question. For example, a body pose can be mapped to actions such as both of
the driver’s hands on the steering wheel. Having a pose estimation stage as a pre-
processing step for action recognition can significantly reduce the complexity of the
problem. The body pose estimator can potentially be used for several other tasks,
such as detecting drowsiness of the driver and detecting if the position of passengers
makes the use of airbag dangerous.

Hand gesture classification. To reduce the amount of distractions for a driver,
such as directly targeting the infotainment system of the car, hand gestures can be
used. By recognizing hand gestures, they can be translated into commands such
as increase volume, change song and answer call. A minimum requirement is to
be able to successfully develop an architecture that supports static hand gestures,
while support for dynamic hand gestures is a bonus.

Real-time integration. The solutions presented in this thesis are implemented
with the goal of working real-time in an embedded environment with limited re-
sources. As a result, this thesis will experiment suitable trade-offs between per-
formance and efficiency. All models are to be deployed, and able to operate, on
a Nvidia Jetson TX2 embedded platform. In Figure 1.1 the entire pipeline of the

3

1. Introduction

described system can be seen.

Figure 1.1: Overview of the system to be implemented.

1.3 Objectives

To evaluate the overall system as described in the previous section, a set of measur-
able objectives were composed. All implementations will be assessed with relevant
metrics on the most popular data sets and compared with pre-existing state-of-the-
art implementations both in terms of performance as well as efficiency. The objec-
tives are divided into a group of minimal requirements and a group of nice-to-have
features. The minimal requirements are divided into the following objectives:

• A tracking framework with the support for tracking arbitrary objects and body
keypoints.

• The tracking framework should be able to extract sequences of hands in a
video.

• The tracking framework should be able to extract human body poses in a
video for at least the driver.

• There should be support for classifying static hand gestures from the tracking
framework for at least the driver.

• There should be support for recognizing human body actions from the tracking
framework for at least the driver.

• The entire system should be able to operate real-time on a Nvidia Jetson TX2
embedded platform.

• The real-time implementation should not waste computing power performing
deep inference even when its not needed.

In addition, depending on time resources and applicability, this thesis will investigate
and potentially implement the following nice-to-have features:

4

1. Introduction

• Dynamic hand gestures should be supported, i.e. gestures that are performed
as a movement over time.

• Multi-person pose tracking should be supported to enable tracking of every
passenger present inside the car.

• The object detection module and pose estimation module should be merged
into a single multi-task neural network for increased efficiency.

• Models should be trained on gray-scale images to enable support for near
infrared camera input.

1.4 Delimitations

Due to the requirement of our solution being integrated in a car with limited com-
puter power available, a few delimitations has to be made regarding our implemen-
tation. We will not be able to utilize the power of the very deep neural networks,
but instead focus on making shallower networks more efficient. The execution time
of the algorithm is also of high importance to be suitable for a real-time setup, which
restricts our vocabulary of deep learning algorithms available.

A majority of the state-of-the-art computer vision algorithms are nowadays influ-
enced heavily by the field of deep learning. This doesn’t make other algorithms
obsolete in any way, but in this thesis, we will mainly focus on investigating the
potential of deep learning algorithms for our purpose.

The implementation part of this thesis should result in a prototype, which means
that there are no demands for the implementation to be production ready.

Another delimitation of our implementation is to restrict the input to a single RGB
camera. One can argue for including other sensor data and even multiple cameras
that might be able to improve the results, but our implementation is restricted to
be cost-effective using a single camera.

One of the most important parts of any Deep Learning project is obtaining data with
labels of high quality. Gathering data and labeling will, if not completely necessary,
not be a part of this thesis. Neither is any of Smart Eye’s existing data sets relevant
to the problems this thesis will face. As a result, only data sets found online will be
considered. Therefore, there may be a disparity between general data sets and the
environment inside a car. However, we will still reason around how the models to
be implement may be used in such environments.

For a true measurement of efficiency on the Jetson TX2 platform, the models should
be implemented in C++ using Nvidia’s real-time framework for deep learning called
TensorRT. Unfortunately, the Python API for TensorRT has not yet been released

5

1. Introduction

for the Jetson series. Therefore, we exclude any TensorRT implementation from our
scope because of time constraints, and instead focusing on efficiency measurements
using GPU accelerated Tensorflow implementations.

1.5 Thesis Outline

The remainder of this report is divided into seven chapters: Deep Learning for
computer vision, Hand detection, Hand gesture classification, Action recognition,
Real-time system and Conclusions. In Deep Learning for computer vision we go
through general background theory. The models with their respective previous work,
implementation and result is divided into three standalone chapters: Hand detection,
Hand gesture classification and Action Recognition. Finally, this report will wrap
up with a real-time system implementation of our proposed tracking framework
along with the gesture classifier and action recognizer, and a chapter summarizing
our conclusions that are connected to our initial analysis of the problem and our
objectives of the thesis project.

6

2
Deep Learning for Computer

Vision

This thesis will only consider the use of vision based sensors. Thus, the solutions
presented will be based on Computer Vision techniques. In the wake of the success
from Machine Learning in general and Convolutional Neural Networks(CNNs) in
particular, Deep Learning has been a dominating part in recent year’s state-of-
the-art solutions for Computer Vision. The following sections will go through the
general Deep Learning techniques and theories used in this thesis to solve said
problems.

2.1 Supervised Learning

Machine Learning tasks can roughly be divided into three categories: Supervised
Learning, Unsupervised Learning and Reinforcement Learning. This thesis will al-
most exclusively make use of Supervised Learning for our models. Put in the simplest
of terms, Supervised Learning can be described as learning a function f : X → Y ,
i.e. mapping a given input X into a predicted output Y. By considering examples, a
model predicts an output Ŷ and thereafter adjust its parameters for the prediction
becoming more close to the ground truth Y . By iterating through examples, the
model performs this correction until it has fit the data.

Supervised Learning is extensively used to learn models to deal with classification
tasks as well as regression tasks. In the case of a classification task, the purpose is to
train a model to output a discrete categorical representation of the given input. An
example could be to predict if a given image represents a cat or a dog. In contrast,
the output from a regression task is continuous, for example predicting a housing
price given its size and location.

7

2. Deep Learning for Computer Vision

2.2 Deep Learning fundamentals

Deep learning is a subset in the field of Machine Learning. A definition by Mi-
crosoft goes as following: “A class of Machine Learning techniques that exploit
many layers of non-linear information processing for Supervised or Unsupervised
feature extraction and transformation, and for pattern analysis and classification”
[12]. This includes deep neural networks with several hidden layers between the
input and output layer. The following sections will go through the basic building
blocks for implementing a deep neural network architecture.

2.2.1 Artificial Neural Networks

Inspired by biological neural networks, Artificial Neural Networks (ANN), consists
of a set of artificial neurons. By considering examples, as in Supervised Learning,
an ANN is able to learn underlying attributes and features of the very problem it is
trying to solve.

The most common Neural Network architecture, a Feed-forward Neural Network,
can be seen in Figure 2.1. The input, for example an image, is fed through a multiple
of hidden fully connected layers, which are made up of a set of neurons. The data is
forward-propagated through the layers, until output layer, which are used to predict
either classification or regression tasks. The parameters that is used to approximate
the function f : X → Y are called weights and biases. Each edge in Figure 2.1
represents a learnable weight which is multiplied with the output from the previous
layer.

Figure 2.1: A Feed-forward Neural Network with two hidden layers. All layers are
fully connected.

The output of a neuron of the hidden layers all follow the perceptron algorithm
presented by Frank Rosenblatt in 1957 [13], which mathematically can be seen in
Equation 2.1 and visualized in Figure 2.2. In a fully connected layer, each output
from the previous layer is multiplied with a weight and then summed together with

8

2. Deep Learning for Computer Vision

a bias, a constant that moves the activation function right or left. The sum is then
passed on through an activation function, making a non-linear transformation of the
input.

Figure 2.2: Neuron j at layer l. The input neurons are multiplied with their
respective weights and them summed together with the bias. The output from the
sum z

[l]
j is then propagated through an activation function, resulting in the output

a
[l]
j

The mathematical representation of the perception algorithm is defined as

a[l] = g(z[l]) = g(w[l]Ta[l−1] + b[l]), (2.1)

which introduces the notation that will be used throughout this thesis. a[l] is the
output from layer l, which comes as a result of the weights w[l] multiplied with
the output from the previous layer a[l−1], added with the bias b[l] and propagated
through an activation function g.

2.2.2 Activation functions

Activation functions are the part of the network that perform non-linear transfor-
mations. Without them a neural network would work as a linear regression model,
and not able to solve non-linear problems. The activation functions are applied at
each neuron of a layer, performing a non-linear transformation over the input signal,
i.e. weights, inputs and bias.

The most commonly used activation functions in a Deep Learning perspective is the
sigmoidal function, tanh and the ReLU function, which will be described in detail
in the following subsections.

Sigmoid
The sigmoid function is defined as

σ(x) = 1
1 + e−x

(2.2)

and squashes its input between 0 and 1. In the early stages of Machine Learning, this
was a common choice of an activation function. It behaves as a saturating neuron in

9

2. Deep Learning for Computer Vision

real life [14]. However, the sigmoid function had some unattractive characteristics
that were absent in it’s successors. Saturating neurons were actually a problem since
it makes the gradient vanish for large and small values of the input. In addition,
the exponential value in the sigmoid function is expensive to compute. The sigmoid
outputs are neither zero-centered, making back-propagation less efficient because
the gradients are either going to be all positive or all negative. [14].

Tanh
Similiar to the sigmoid function, the tanh function squashes it’s inputs, but in
between -1 and 1:

f(x) = tanh(x). (2.3)

This solved the issue with the outputs from neurons not being zero-centered when
using the sigmoid function. Nevertheless, the tanh function still makes gradients
vanish when saturated.

ReLU
The Rectified Linear Unit (ReLU) function outputs the maximum of either its input
or zero, i.e. outputs the positive part of its arguments:

f(x) = max(0, x). (2.4)

It was proved to be much more efficient than its predecessors tanh and sigmoid [14].
ReLU has several desirable characteristics, such as not saturating (in the positive
region), computationally efficient, converge 6 times faster than tanh and sigmoid
and is more biologically plausible [14].

In addition to the original ReLU function there exists several variants. Notable
mentions is the Noisy ReLU which adds some Gaussian noise, Leaky ReLU, which
multiplies the input with a small number if less than zero, and ELU, which tries
to make the mean activation closer to zero. The purpose of the substitutes were
originally to improve the performance, but in practice the gain is often negligible in
relation to the extra computation.

Softmax
For classification tasks, the output from a neural network represents a score for each
class. In order to calculate the probability of a given class in relation to the other
possible classes the softmax function can be used, creating a categorical probability
distribution over the set of classes. The probability for a given class i is defined as

σ(z)i = ezi∑
j e

zj
, (2.5)

which like the sigmoid function, squashes the input score between zero and one.
This is done by exponentiating the scores and normalizing them through division
with the sum off all exponents, making all outputs together add up to 1.

10

2. Deep Learning for Computer Vision

2.2.3 Loss functions

When dealing with classification and regression tasks within Machine Learning we
need to define a way to measure how good the predicted output is in relation to the
ground truth. This is done using a loss function, or cost function as it also often is
called, that measures the error of the prediction.

Consider the scenario where we have three categories; A, B and C. Then given a
sample from category A, it would have a ground truth probability vector y = [1, 0, 0],
and a network predicts ŷ = [0.2, 0.4, 0.4]. The loss functions purpose is to measure
the cost of the deviation, ŷ in comparison to y, which is L = 1

3((1 − 0.2)2 + (0 −
0.4)2 + (0− 0.4)2) = 0.43 in the case of mean squared error.

Cross-entropy
One way to measure the deviation between the network prediction and the ground
truth is the loss function cross-entropy, or log loss as it is also called, which is defined
as

L(ŷ,y) = −
∑
i

yi log(ŷi). (2.6)

The error output by the cross-entropy increases logarithmically with the deviation
from its ground truth label. Cross-entropy loss is often used in classification tasks
as it offers a way to compute the divergence of two probability distributions, the
true distribution y and the predicted distribution ŷ.

Mean squared error
A common way of measuring the cost of regression tasks is the mean squared error
loss function, defined as

L(ŷ,y) = 1
N

N∑
i=1

(yi − ŷi)2. (2.7)

As the name indicates, the function will measure the average of the squares of the
deviations between every network output ŷi and the ground truth yi.

2.2.4 Mean Average Precision

Mean Average Precision (mAP) is a common evaluation metric in information re-
trieval. To understand mAP, one must first have an understanding of the precision
and recall metrics. Precision is defined as

precision = # true positives
true positives + # false positives (2.8)

and can be interpreted as the percentage of how many of your predictions that are
correct. Recall is defined as

recall = # true positives
true positives + # false negatives (2.9)

11

2. Deep Learning for Computer Vision

and can be interpreted as the percentage of total positive samples that were recog-
nized as positive by the classifier.

Using mAP as an evaluation metric is a common choice for computer vision re-
gression tasks, but calculating precision and recall uses statistics from a confusion
matrix, which requires a classification task. For example when converting an object
detection problem into a classification task, a threshold on the Intersection-over-
Union can be used [15], and for converting a pose estimation problem into a clas-
sification task, a threshold on the Object Keypoint Similarity (OKS) can be used
[1].

The process of calculating mAP is to first calculate the confidence of the predictions
for every sample in the dataset. Thereafter, the predictions are sorted by the confi-
dence levels in descending order, and precision and recall is thereafter calculated for
the top k predictions, ranging from k = 1 to k = K, where K is some number less
than the number of predictions. The result is a table of precision and recall values
for different top k predictions. Thereafter, AP is calculated by

AP = 1
11

∑
r∈0.0,0.1,...,1.0

max
r̃≤r

precision(r̃), (2.10)

where precision(r) is the maximum precision for any recall values exceeding r, which
is retrieved by looking at the table of precision and recall values from the top k
evaluations. In other words, to calculate the average precision as seen in Equation
2.10, you iterate over different minimum recall values, r ∈ {0.0, 0.1, ..., 1.0}, and
find the maximum precision value present in the table given the recall constraint,
and then averages the precisions. AP is calculated for each class separately, and to
calculate mAP, AP is simply averaged across the available classes [16].

2.2.5 Backpropagation

When training any artificial neural network, the gradients of each trainable weight
with respect to the loss function needs to be calculated. The gradient of a weight
with respect to the loss function will tell in which direction the weight vector should
move towards to output a more favourable prediction. The procedure of computing
the gradients are known as the backpropagation algorithm.

By utilizing the chain rule of derivatives, the gradients are calculated recursively
through each layer, starting at the loss function. The gradients to calculate are ∂L

∂w[l]

and ∂L
∂b[l] for each layer l. To first calculate the gradients that belong to layer l, the

gradient first has to be propagated from layer l + 1 down through the activation
function of layer l, called δ[l]. This gradient can be implemented using the recursive
formula

δ[l] = ∂L
∂z[l] = ∂L

∂z[l+1]
∂z[l+1]

∂a[l]
∂a[l]

∂z[l] = δ[l+1]∂z[l+1]

∂a[l]
∂a[l]

∂z[l] =
∑
j

δ
[l+1]
j w

[l]
ij g
′(z[l]), (2.11)

12

2. Deep Learning for Computer Vision

where z, a and g has the same representation as in Section 2.2.1 about feed-forward
networks.

The formula for the gradients dw[l] and db[l] at layer l can now be expressed in terms
of the gradient that flows through from the previous layer:

dw[l] = ∂L
∂w[l] = ∂L

∂z[l]
∂z[l]

∂w[l] = δ[l]a[l−1], (2.12)

db[l] = ∂L
∂b[l] = ∂L

∂z[l]
∂z[l]

∂b[l] = δ[l] · 1. (2.13)

What remains is the special case of calculating the gradient from the loss to the last
layer L,

δ[L] = ∂L
∂z[L] = ∂L

∂a[L]
∂a[L]

∂z[L] . (2.14)

Here, ∂L
∂a[L] is the partial derivative of the loss function, and will vary depending

on what loss function is used, for example cross-entropy or MSE. Lastly, ∂a[L]

∂z[L] is
the partial derivative of the output activation function, for example softmax or
linear.

When the gradients has been calculated, they can be used in the optimization pro-
cedure to change the weights in a way that moves the predicted output closer to the
ground truth.

2.2.6 Optimization

The optimization, also called training for Artificial Neural Networks, performs the
weight updates using the gradients received from backpropagation. The standard
training loop is described in Algorithm 1. The gradients are calculated by mea-
suring the loss of a batch of predictions using the backpropagation algorithm. The
optimizer is thereafter responsible for updating each weight.

1 X, Y ← Get next batch of training data;
2 Y ′ ← Predict using a forward pass of the batch X;
3 ∇ ← Calculate the gradients using backpropagation with respect to the loss

L(Y ′, Y);
4 foreach Weight wi and Bias bi in the network do
5 wi ← update the weight using an optimizer OPT (wi,∇)
6 bi ← update the bias using an optimizer OPT (bi,∇)
7 end
Algorithm 1: The training procedure for updating the weights to result in predic-
tions closer to the ground truth.

13

2. Deep Learning for Computer Vision

The ancestor of all neural network optimization strategies is called Stochastic Gra-
dient Descent (SGD), and its update formula for a weight w is

w ← w − η ∂L
∂w

. (2.15)

The weight w is updated by a fraction η of the computed gradient, which is called
the learning rate [17].

The stochastic part of SGD comes from the fact that only a single data sample is
used to measure the loss and compute the gradients. A more common approach
nowadays is calculating the gradients using the average of a mini-batch of samples
from the dataset at once (usually a collection of 2-64 samples). This modification is
called Mini-batch Gradient Descent, but it is common to use the words mini-batch
and batch interchangeable in the context of deep learning.

Even when averaging the gradients from a batch of samples, Mini-batch Gradient
Descent is still pretty stochastic in nature. Momentum is a method for helping the
gradient vectors to accelerate in the right direction by instead using a rolling mean
of gradients to update the weights, which changes the update rule into

vt = γvt−1 + η
∂L

∂w
, (2.16)

w = w − vt. (2.17)

This means that γ percent of gradients from previous steps will be taken into consid-
eration before making the update. A simple explanation of the impact of momentum
is to think of vt as the velocity of parameter change at time t and the gradient acts
as a small change in velocity. A common value of γ is 0.9.

The most popular optimizer strategy as of the writing of this thesis is called Adam.
In this optimization strategy, a learning rate is maintained for each network weight
and separately adapted as learning unfolds. With this feature, the learning proce-
dure is much more effective and it has been shown that using Adam can often lead
the network to the state of convergence much faster than other optimizers [18].

The formulas for implementing Adam are shown in Equations 2.18-2.22, where ⊗ is
element-wise multiplication and � is element-wise division. mdθ is a rolling mean
of the first moment of the gradients,

mdθ = β1mdθ + (1− β1)∂L
∂θ

, (2.18)

very much like Equation 2.16 for momentum. sdθ is calculated in a similar way,

sdθ = β2sdθ + (1− β2)∂L
∂θ
⊗ ∂L

∂θ
, (2.19)

14

2. Deep Learning for Computer Vision

but has the responsibility for storing a rolling mean of the second moment of the
gradients, i.e. the squared gradients.

mdθ = mdθ

1− β1
(2.20)

and
sdθ = sdθ

1− β2
(2.21)

perform bias corrections on mdθ, and lastly

θ = θ − ηmdθ �
√

sdθ + ε (2.22)

performs the weight update, where η is the base learning rate and β1, β2 and ε are
hyper-parameters specific to Adam. Common default values are: β1 = 0.9, β2 = 0.99
and ε = 10−8. In summary, there exist a velocity mdθ and a oscillation dampener
sdθ for each trainable weight θ. Keeping a separate instance of these properties for
every weight makes Adam into the highly adaptive optimizer it is.

2.2.7 Weight decay

Weight decay is a common regularization technique to improve generalization. To
implement weight decay, an additional term is added to the loss function,

L = L0 + 1
2λ

∑
i

w2
i . (2.23)

The term includes the squared value of every weight in the network and is sometimes
called L2 regularization. The higher in magnitude of a weight, the higher the loss is,
which results in the optimization procedure preferring weights with low magnitudes.
λ is a constant used for tuning the strength of the weight decay.

The effect of penalizing large weight magnitudes are twofold. Firstly, it minimizes
any irrelevant components of the weights by choosing the smallest weight that solves
the problem. Secondly, a good choice of λ results in a model more robust to noise
due to increased bias in the network, hence the regularization [19]. There exists
other types of weight decays, such as penalizing the absolute value of every weight,
called L1 regularization, but it is not as popular as L2 regularization.

2.2.8 Dropout

Fully connected layers within a neural network often hold a huge number of param-
eters and is therefore prone to overfitting, where the network fails to perform well
on data points that has not previously been seen. To overcome this issue, Hinton et
al. developed a new regularization technique called Dropout [20]. Randomly “turn-
ing off” a percentage of all neurons within a fully-connected layer at each training

15

2. Deep Learning for Computer Vision

iteration have shown to make a network less prone to overfitting, and thus making
it more robust and better at generalizing. This is because at every iteration, a dif-
ferent subset of neurons are turned off, and therefore the entire layer can not rely
on a small set of neurons to forward propagate the information and instead every
neuron is forced to learn valuable features.

2.2.9 Batch Normalization

Batch Normalization is another technique that provides regularization, but it is ac-
tually not its main purpose. Instead, the purpose of Batch Normalization is to make
the optimization procedure more stable. It lowers the importance of careful initial-
ization of weights, enables the use of higher learning rates, and can significantly
reduce the amount of training steps needed to converge. The idea of Batch Normal-
ization is to normalize the output of a neural network layer before passing through
the activation function. Normalizing the inputs of a neural network to make the
learning easier is a well known fact, and Batch Normalization sees any output of a
neural network layer as the input to a smaller subsequent network [21].

The formulas for implementing batch normalization are presented in Equations 2.24
through 2.27. Firstly, the mean µB is computed by

µB = 1
N

∑
i

z(i) (2.24)

and variance σ2
B is computed from only the current batch output z by

σ2
B = 1

N

∑
i

(z(i) − µB)2, (2.25)

where z(i) is a particular sample from the batch. Secondly, the normalized version
of the original output z(i) is calculated in by

z(i)
norm = z(i) − µB√

σ2
B + ε

, (2.26)

where ε is a small number to avoid division by zero. Lastly, z(i)
norm is scaled into a

more appropriate representation

z̃(i) = γz(i)
norm + β. (2.27)

What is a more appropriate scale is determined during training, i.e. γ and β are
trainable parameters. Because µB and σ2

B are computed using only the current
batch and not the entire dataset, the variables will include a little bit of noise, and
this causes Batch Normalization to also have a regularization effect.

16

2. Deep Learning for Computer Vision

2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNN), or ConvNet, is a subclass in the field of
Neural Networks that is specifically designed to perform well on inputs with spatial
dependencies, such as images. Just like Feed-forward Neural Networks, ConvNets
consists of neurons, with their respective weights and biases. However, using the
fact that the input to the network has spatial dependencies, opens up for several
architectural choices to make the network much more efficient. An issue with Feed-
forward Neural Networks when working with image classification is that the network
size grows tremendously as the image grows in size. For example an image size of
200× 200× 3 would result in 120,000 weights for the first layer.

Inspired by the connectivity arrangement of neurons in animals visual cortex, Con-
vNet operations are divided into receptive fields (filters), only responsible for a small
region of its input. In contrast to FC layers, a ConvNet will, as the name indicates,
convolve with the input using filters or kernels. Compared to traditional approaches
such as Viola-Jones [22], the filters to find patterns such as edges, will not be engi-
neered by hand. Instead the network itself will figure out the relevant filters during
training.

ConvNets are composed of an input layer (commonly a 2D image), a number of
hidden layers and finally the output layer. In addition to the Fully Connected
layers described in Section 2.2.1, the hidden layers for ConvNets are made up of
Convolutional layers as well as Pooling layers. An example architecture can be seen
in Figure 2.3.

Figure 2.3: A common ConvNet structure. Input is the raw image, which is then
followed up by a number of convolutional and pooling layers stacked upon each
others. The network then ends up with a fully connected layer into the output
classes.

2.3.1 Convolution

The core part of the ConvNet architecture, the convolutional layer, consists of sev-
eral filters of trainable weights. The filters are convoluted across the input image,

17

2. Deep Learning for Computer Vision

resulting in a new set of images called feature maps. What those feature maps rep-
resents is up to the network to learn through backpropagation. For instance this
could be vertical edges and horizontal edges in the earlier layers, and more abstract
objects in the later layers.

Mathematically, the output from one convolution with filter size Kx×Ky×D, where
D is the depth of the input (for example color channels at the first layer and features
maps thereafter) can be described as

a
(l)
k,n = φ(zk,n) = φ(b(l) +

Kx∑
i=0

Ky∑
j=0

D∑
d=0

w
(l)
i,j,da

(l−1)
k+i−Kx

2 ,n+j−Ky
2 ,d

). (2.28)

An example of one convolution operation can be seen in Figure 2.4. A 2 × 2 × 1
filter is convolved with a 4× 4× 1 input. The same filter is applied at all locations
of the input, implying a stride of size 1, i.e. the filter is just slided one step at the
time over the input volume.

As seen in Figure 2.4, the 2× 2× 1 filter will just slide three times in the horizontal
and vertical direction, resulting in an output size of 3 × 3 × 1. If this is done
consecutively, the initial image will be down-sampled significantly, especially if a
large filter size is used. In order to preserve the spatial size padding can be used.
The most common way to do this is through zero-padding, which increases the input
image with zeros around the border, which will help preserving the input size.

Figure 2.4: A convolutional operation performed on an input size of 4 × 4 with
filter size 2× 2. Stride is set to 1, thus only moving 1 step at a time, resulting in a
output size of 3× 3. No padding is used, which implies a down-sampling.

Another example with the same input and filter size, but with stride 2 can be seen
in Figure 2.5. The filter will slide over the input 2 steps at a time, resulting in a
larger down-sampling of the input.

18

2. Deep Learning for Computer Vision

Figure 2.5: A convolutional operation performed on an input size of 4 × 4 with
filter size 2×2. Stride is set to 2, thus sliding 2 steps at a time, resulting in a output
size of 2× 2. No padding is used.

3D convolution
Instead of 2D inputs, CNNs can also handle 3D volume inputs by increasing the
dimension of the filters to 3D as well. In contrast to a 2D CNN, which strides the
filter over input width and height on all feature maps from the previous layer and
thus generating a 2D output, the 3D convolution strides in depth as well, creating
another 3D dimensional output from one filter.

The 3D convolution is illustrated in Figure 2.6. As aforementioned, the depth of
the filter d is smaller than the entire depth D. The filter will as a result stride over
all input dimensions, width, height and depth respectively.

Figure 2.6: A 3D convolution is performed over the input volume. It strides over
the input width, height and depth.

2.3.2 Pooling

The Pooling Layer is a building block in the ConvNet architecture used to truncate
the spatial size of its input into a more dense representation [23]. The pooling oper-
ation will merge a number of neurons from the previous layer using a predetermined
operation into a single neuron in the next layer [24]. The most common type of

19

2. Deep Learning for Computer Vision

pooling is max pooling, which extracts the maximum value from a set of neurons
and passes it on to next layer. An example of the max Pooling operation can be
seen in Figure 2.7. Just like when convolving a filter, the pooling operation will
convolve with the input.

Figure 2.7: A max pooling operation applied with stride 2. Resulting in an output
size of 2× 2, reduced from its input size 4× 4.

2.4 Recurrent Neural Networks

Recurrent Neural Networks (RNN), is a type of Artificial Neural Networks that is
primarily used in order to extract features within the temporal domain in order to
be able to handle problems involving sequences of data. In contrast to Feed-forward
networks, RNNs also allow for a feedback loop with the use of an internal state, a
memory that works as a link between forward-propagations of different time steps,
thus allowing to save sequential information. An example of a recurrent connection
can be seen in Figure 2.8, where the hidden state ht is determined as a function of
the previous hidden state ht−1 and the new input xt. RNNs are commonly used in
order to solve problems such as speech recogniton, language translation and video
classification.

Figure 2.8: A vanilla RNN architecture. The input from the previous layer at the
current iteration is combined with the internal state, generating an output to the
next layer and updating the internal state.

An unrolled version of the RNN can be seen in Figure 2.9 with the entire sequence
of length n.

20

2. Deep Learning for Computer Vision

Figure 2.9: An unrolled RNN network, where the hidden state is passed on to its
successor of the sequence.

2.4.1 Long Short Term Memory

While the standard versions of RNNs are good for capturing short term dependen-
cies, they become less effective as the relation gap between the input and the output
grows in time and tends to suffer from exploding- or vanishing gradients [25] [26].
In order to handle long term dependencies, Hochreiter and Schmidhuber developed
a new RNN architecture, Long Short Term Memory [27].

In contrast to Vanilla RNNs, a basic LSTM implementation consists of two feedback
connections instead of one: the hidden state h, and the cell state c. The hidden
state represents the output from the LSTM from the previous iteration, while as
the cell state represents the memory that is kept from the earlier stage. In addition
to the feedback connections the output from the previous layer, x, is fed into the
LSTM. The hidden state and the cell state will be manipulated and updated through
different types of gates as seen in Figure 2.10.

21

2. Deep Learning for Computer Vision

Figure 2.10: Internal representation of an LSTM cell. The input to the LSTM cell
is the previous cell state, hidden state and the input from the previous layer at the
current iteration.

Forget Gate
The first operation within the LSTM cell is the Forget Gate,

ft = σ(Wf · [ht−1, xt] + bf), (2.29)

which decides what information from each element that are to be passed on from
the previous cell state.

As mentioned earlier, the sigmoid function outputs a value between zero and one.
A value of zero would result in completely forgetting the element in the cell state
from the previous iteration and a value of one to keep it altogether. As input to
the sigmoid a weight is applied on the previous hidden state and the new input,
together with the bias [28].

Input Gate
After deciding what information to keep from the previous cell state, the LSTM
decides which values that are to be updated. This is done through the Input Gate,

it = σ(Wi · [ht−1, xt] + bi), (2.30)
which applies a sigmoid activation on the new input and the previous hidden state
[28].

Candidate Values
After the Input Gate decides which values to update, new Candidate Values, C ′t,
will be proposed to be added to the new cell state. A tanh activation function is
applied on the input and the previous hidden state:

C ′t = tanh(Wc · [ht−1, xt] + bc). (2.31)

22

2. Deep Learning for Computer Vision

Cell State
After the candidate values have been proposed, the new updated Cell State will then
be defined as the of the old state multiplied with the forget gate added together with
the new candidate values:

Ct = ft ∗ Ct−1 + it ∗ C ′t. (2.32)

Hidden State
Finally the output of the LSTM cell, the hidden state, is set by

ot = σ(Wo · [ht−1, xt] + bo) (2.33)

and
ht = ot ∗ tanh(Ct). (2.34)

A sigmoid gate, ot, will be used to determine which information from the cell state
that are going to be passed on as output from the cell. A tanh activation function
is then applied on the cell state, resulting in the output from LSTM cell.

2.5 Transfer Learning

Transfer Learning is a method that is commonly applied in Deep Learning projects
to ease the training procedure. Several Deep Learning tasks faces deficiencies such as
limited data available, which often lead to overfitting. Instead of initializing weights
of a neural network randomly, a common approach is to copy a well-known network
architecture with pre-trained weights on a closely related problem.

For image classification tasks, there exists several CNN architectures with their
respective weights that have been trained on the large dataset ImageNet with 1.2
million images for classification [29]. The weights at the first layers are often frozen
and not updates during transfer learning as they are already trained for extracting
common features from images. A common case is to only make the last layers of
the network trainable to fine-tune them for the new task.

2.6 CNN Architectures

A fact in visual recognition problems is that the human brain is naturally good
at it while machines have historically been particularly bad at it. For example,
detecting and classifying objects comes very easily for humans. In the recent couple
of years this fact has however become less of an issue because of the developments of
Convolutional Neural Networks. Over the years there have been several architectures
implemented with both their pros and cons. Many architectures are developed solely
to score a high accuracy on data sets such as the ImageNet, which result in a large
model size, and thereby not always applicable in a real-time scenarios [30][31].

23

2. Deep Learning for Computer Vision

2.6.1 LeNet

The first practical implementation of a Convolutional Neural Network was presented
by LeCun et. al in 1998. Inspired by the work presented by Hubel and Wiesel in
the 50s which showed that visual cortexes consists of neurons that are individually
responsible for small regions of the visual field [32]. With LeCun’s invention, simple
recognition tasks could be automated, such as recognizing hand-written numbers.
The network architecture consisted of CONV-POOL layer combinations followed up
with two Fully Connected layers. The convolutional layers used 5 × 5 filters with
stride 1, whilst the pooling layers used 2× 2 applied at stride 2 [33]. The activation
function of choice at this time was the sigmoid function.

2.6.2 AlexNet

Inspired by the ideas of LeNet, AlexNet was the first real breakthrough of ConvNets,
designed by Alex Krizhevsky, Ilya Sutskever and Geoffrey Hinton [24]. It was the
first large scale neural network that was able to achieve state-of-the-art performance
on the ImageNet classification challenge. For the yearly ImageNet classification chal-
lenge, it severely outperformed all non Deep Learning based approaches. AlexNet
performed the record breaking top 5 test error rate of 15.4%, in contrast to the
second best, non deep-learning based approach, of 26.2%.

The network architecture followed the same principles as LeNet - simply with more
layers [24]. In total, the network architecture consists of 5 convolutional layers,
max-pooling layers, dropout layers and 3 fully connected layers. In contrast to
LeNet, AlexNet introduced the ReLU activation function, to the disadvantage of
the sigmoid/tanh functions.

As AlexNet was the first substantial network of this kind it is often used as a
comparison in benchmarks in terms of performance, number of parameters and
model size.

2.6.3 VGGNet

VGGNet was the runner up at the yearly ImageNet classification challenge in 2014.
Even though it failed to deliver state-of-the-art in terms of accuracy, it had other
characteristics that historically have showed to make the architecture noteworthy
anyway. In the original paper, Very Deep Convolutional Networks for Large-Scale
Image Recognition [34], the authors demonstrate that the VGGNet performs well on
other data sets outside of ImageNet, i.e. the feature representations generalize well.
This is an indication that this architecture will be exceptional for transfer learning
tasks, which is also established by the community as it is the most favored choice
for extracting features from images.

24

2. Deep Learning for Computer Vision

The architecture follow its predecessors AlexNet and LeNet, with exclusive use of
convolutional- and pooling layers stacked upon each other. It was architectured
with simplicity and depth in mind. All convolutional layers are applied with a 3× 3
filter with stride 1, and 2 × 2 pooling layers with stride 2. The big jump from
AlexNet’s 11× 11 filter size to 3× 3 drastically reduced the number of parameters
per layer, and model size was instead increased by focusing on building a deeper
architecture.

2.6.4 GoogLeNet

For the winner of the ImageNet classification challenge in 2014, GoogLeNet, things
drastically started to change from the conventional CONV-POOL layer combina-
tions. The earlier, fully sequential process, where either a convolution or a pooling
operation was applied at each step, was replaced with the Inception module. Dif-
ferent convolutional filter sizes as well as max pooling operations was now being
applied at all steps in parallel. The results from all operations are then concate-
nated together [35] and passed on to the next layer.

The architecture proposed in the paper stacked the Inception module together with
the occasional conventional convolution layer or pooling layer. In total it resulted in
a 22 layers deep network(counting only depth), with over 100 layers in total. Fully
connected layers was not part of the GoogLeNet, instead an average pooling layers
was used at the end. Together with the 1×1 filters used within the Inception module
GoogLeNet actually reduced the number of parameters in comparison with AlexNet
by a number of 12.

2.6.5 ResNet

In 2015, the creative nature continued with ResNet, short for Residual Network -
the winner of the ImageNet classification challenge the same year. A common issue
with previous conventional ConvNet implementations was the fact that adding more
layers actually made the network perform worse. The hypothesis by the Microsoft
team designing ResNet was that larger networks were harder to optimize. If op-
timized correctly, deeper networks should perform atleast as good or better than
shallow network architectures.

ResNet was designed with a different approach than typical ConvNets. Rather than
trying to learn features, it tries to learn residuals. The residual innovation, the
Residual block, consists of a conv-relu-conv series. Given an input x to the Residual
block, it propagates through the conv series and constitutes a result F(x). The
output from the last convolutional layer is then added together to the original input
x, the residual connection. The resulting output of a residual block if therefore
H(x) = F (x) + x, and instead of learning H(x) directly, the residual H(x) − x

25

2. Deep Learning for Computer Vision

is learned instead, allowing for the signal to easier flow through the layers during
backpropagation [36].

This new approached made it possible to stack many additional layers on top of
each other without causing vanishing gradients. The winning architecture of the
ImageNet challenge used 152 layers in depth, with an error rate of 3.6% - better
than human performance.

2.6.6 SqueezeNet

The development of new neural network architectures has mainly focused on improv-
ing the accuracy for different challenges. The purpose of SqueezeNet is to instead
maintain the accuracy of previous architectures, while focusing on reducing the net-
work size instead. Reducing the network size has many benefits, for example smaller
models implies less memory references and by extension requires less energy. In ad-
dition, smaller models often runs faster, especially if they fit into SRAM [37].

The authors of SqueezeNet had two strategies in mind when designing a neural
network architecture that should have competitive performance and minimal number
of parameters. Firstly, limit the number of 3 × 3 filters and prefer 1 × 1 filters
instead because it simply has the fewest parameters (9 times fewer than a 3 × 3
filter). Secondly, decrease number of input channels of 3× 3 filters. This resulted in
the fire module [38].

A fire module, see Figure 2.11, consists of a squeeze layer and an expand layer.
Using 1 × 1 filters in both the squeeze layer and the expand layer is a result of
the first strategy mentioned, and the squeeze layer is a result of the first strategy
mentioned, limiting the number of input layers to the expand layer. A fire module
can be stacked like any other convolutional layer to form a deep architecture. The
original SqueezeNet is shown in Table 2.1, consisting of one convolutional layer,
followed by eight fire modules, and lastly another convolutional layer. To keep the
number of parameters small, there are no fully connected layers at the top of the
network. The resulting SqueezeNet architecture has a x50 reduced size compared to
AlexNet, but performs just as well.

26

2. Deep Learning for Computer Vision

Figure 2.11: The architecture of a fire module

Type Filter size / Stride # Filters
Conv 7× 7 /2 96

Max Pooling 3× 3 /2 -
Fire module - s1×1 = 16, e1×1 = 64, e3×3 = 64
Fire module - s1×1 = 16, e1×1 = 64, e3×3 = 64
Fire module - s1×1 = 32, e1×1 = 128, e3×3 = 128
Max Pooling 3× 3 /2 -
Fire module - s1×1 = 32, e1×1 = 128, e3×3 = 128
Fire module - s1×1 = 48, e1×1 = 192, e3×3 = 192
Fire module - s1×1 = 48, e1×1 = 192, e3×3 = 192
Fire module - s1×1 = 64, e1×1 = 256, e3×3 = 256
Max Pooling 3× 3 /2 -
Fire module - s1×1 = 64, e1×1 = 256, e3×3 = 256

Conv 1× 1 1000
Global Avg pooling Pool 13× 13 /1 -

Table 2.1: Overview of the SqueezeNet architecture. Global average pooling aver-
ages over every input channel.

2.6.7 MobileNet

Like SqueezeNet, MobileNet is a CNN architecture aiming for efficiency [39]. It
builds upon the theory of separable convolutions. Separable convolutions is charac-
terized by factorizing a convolution with a regular filter up into two stages, illustrated
in Figure 2.12. The first stage, called the depthwise convolution, uses a k × k × 1.

27

2. Deep Learning for Computer Vision

Instead of the filter also including the depth, a depth of 1 is used and the filter is
instead applied once for each input channel. The second stage, called the point-
wise convolution, uses a 1 × 1 ×M filter to combine the outputs of the depthwise
convolutions. In theory, the depthwise convolution should be able to learn spatial
patterns within an input map, and the pointwise convolution should be able to learn
any patterns between these maps, enabling similar learning capacities as a standard
convolution filter but with many fewer parameters.

Figure 2.12: The depthwise and pointwise filter of a separable convolution

Assume DK × Dk is the dimensions of an input channel, M is the input channel
depth, DF is the filter size and N is the number of filters. The computational
complexity of a standard convolution will therefore be DK×DK×M×N×DF×DF .
Because of the factorization that a separable convolution brings, its computational
complexity is only DK × DK ×M × DF × DF + M × N × DF × DF . In the case
of a 3× 3 filter, the separable convolution alternative will use between 8 to 9 times
less computations.

The components of a separable convolution module that MobileNet implements
is illustrated in Figure 2.13. Batch normalization and ReLU both follows after
the depthwise convolution layer and the pointwise convolutions layer. The batch
normalization also enables the removal of biases of the filters for fewer computations.
The full MobileNet architecture is shown in Table 2.2.

Figure 2.13: The components of a Separable Convolution module in the MobileNet
architecture

28

2. Deep Learning for Computer Vision

Type Filter size # Filters / Output
Conv 3× 3 32

Separable Conv module 3× 3 64
Separable Conv module 3× 3 128
Separable Conv module 3× 3 128
Separable Conv module 3× 3 256
Separable Conv module 3× 3 256

Separable Conv module ×6 3× 3 512
Separable Conv module ×2 3× 3 1024

Avg pooling Pool 7× 7 -
FC - 1024 Neurons

Softmax - # Classes

Table 2.2: Overview of the MobileNet architecture. Filter size equals to K and
number of filters equals to M for separable convolutions.

According to the original paper, the version 0.50 MobileNet-160 has about the same
amount of trainable parameters as SqueezeNet, but has higher accuracy on ImageNet
classification (60.2% versus 57.7%) [39].

2.7 Data Augmentation

Data augmentation is one of the easier and most common method for preventing
overfitting of a Convolutional Neural Network. The concept of augmentation is to
artificially enlarge the data set by performing a collection of label-preserving image
transformations and hopefully result in a more generalized neural network when
trained on. As a result, a single augmentation of flipping every image horizontally
will double the amount of data available. Performing a variable augmentation,
for example translate image x pixels, will create even more new samples out of
one original image. Performing multiple augmentations in a sequence will have an
exponential effect on the augmented data available, but may result in too aggressive
augmentation if one is not monitoring the augmented images and adjusting the
sequence of augmentations properly.

Some of the most common augmentations include image transformations like flip,
warp, rotate, scale and translate, but also image enhancement techniques like con-
trast normalization and gamma correction.

29

2. Deep Learning for Computer Vision

2.8 Human performance

An important metric when evaluating new models is how they compare to human
performance. Until very recently, humans have been way ahead of Machine Learning
algorithms for classifying images. The use cases for applying Deep Learning for
certain tasks is thus limited by how well it measures up against humans.

Andrej Karpathy, director of AI at Tesla, argues that human performance is not a
point in terms of accuracy. Human performance should rather be seen as a trade-off
curve [40]. In order to achieve a better accuracy from a human perspective effort and
expertise is required. After one week of training on the ImageNet, Andrej Karpathy
was able to achieve an error rate of 5.1%. ImageNet consists of 1000 different classes,
including 120 species of dogs. [40] estimates that 37% of human errors fall into the
category of failing on such fine-grained decisions, whilst for GoogLeNet, only 7% of
its errors do.

2.9 Deep Learning Work Flow

This thesis follows a particular method for structuring Machine Learning projects,
teached by Andrew Ng, 2017, which is integrated into the work flow of Google
Brain and Baidu AI research projects [41]. This structured work flow prevents
undercomplicated and overcomplicated results and continuously provides a clear
direction on how to make further progress with the project.

A flow chart of the concept of the work flow to use in this thesis project is demon-
strated in Figure 2.14. The initial steps are to set up an evaluation metric, and
split data into train and test set. Thereafter, the goal is to implement the ini-
tial model quickly, without over-complicating things. The initial models define a
starting point that will help to confirm or reject our hypotheses about which parts
should be prioritized to spend time on. The prioritization is decided by the second
step, which is performing bias-variance analysis and error analysis, explained below
in the next subsections. The earlier steps are thereafter revisited with the current
model as starting point, and an improvement is made to the models according to
the results of the analyses of what change can be most beneficial with respect to
time required. A bias-variance and (but not necessarily every time) an error analysis
is performed on the improved model, which hints about any new directions in how
to improve the model further. Hereon, the research and development becomes a
continuous loop that iterates between improving the model and analyzing what to
improve next.

30

2. Deep Learning for Computer Vision

Figure 2.14: Flowchart of our workflow to follow throughout the thesis project.

2.9.1 Bias-variance analysis

The purpose of bias-variance analysis is to gain insight into whether a method for
reducing the bias or a method for reducing the variance has the most potential for
performance gain on the validation set.

The analysis makes use of the Bayes error to pinpoint the theoretical performance
limit of a classifier to analyze. In most cases, the Bayes error is unknown and
human-level performance is used as a landmark of what is at least possible in terms
of performance. When deciding whether the next step is to reduce bias or to reduce
variance, the gaps between the human-level performance, training set performance
and validation set performance is examined. An example is shown in Figure 2.15
where the gap between training set performance and validation set performance is
larger than the gap between human-level performance and training set performance,
which indicates that the most potential gain lies in trying to reduce the validation
set error by reducing the variance.

31

2. Deep Learning for Computer Vision

Figure 2.15: An example of how the performance of the different data set partitions
can be distributed and what gaps between the performances indicates.

Methods for reducing the bias includes increasing capacity of the model by using
a larger network, train longer, try other optimization algorithms, try different net-
work architectures and hyperparameter search. Methods for reducing the variance
includes decreasing the capacity of the model, gathering more data and regulariza-
tion techniques.

2.9.2 Error analysis

Error analysis involves investigating the misclassified samples to gain insight into
which classes are hard to classify. This will determine which classes are worth
improving the accuracy for to make the highest impact on the overall accuracy.
Techniques for improving the accuracy of a particular class includes gathering more
data samples and further data augmentation of that class.

When examining the misclassified samples, one can also approximate the percent-
age of incorrectly labeled data to decide whether its a problem that is worthwhile
fixing.

32

3
Hand Detection

The human mind is extremely accurate at locating and recognizing objects in a
scene. An object detection algorithm comparable to human performance would en-
able computers to perform tasks that right now requires a human’s visual recognition
system, which is therefore a research area of high importance. The process of object
detection is defined as localization and recognition of objects in an image. Namely,
first locate the position of an object in the image, and then classify what type of
object it is. An image can contain a variable number of objects of different sizes,
which makes it a much more complex problem than simple recognition.

We include object detection as a part of the thesis by addressing locating hands
that needs to be input to the gesture classifier as an object detection problem. A
general object detector implementation is scalable when there is need of recognizing
additional objects other than hands. But for the sole purpose of gesture classification
by the driver only, a hand detector only able to detect one hand at maximum inside
a bounded area near the dashboard is also acceptable. This thesis will implement
and evaluate both alternatives

3.1 Previous work

The classical approach towards solving object detection problems involves the Viola-
Jones method and using HOG features [22] [42]. Deep learning has significantly
overcome these classical approaches and are now the main ingredient in state-of-
the-art object detection algorithms.

One of the first breakthroughs of deep learning based object detection algorithms
was called R-CNN, published by Ross Girshick et al. in 2013 [43]. The concept
was to first use a method for proposing regions inside the image that could contain
an object. Every region is thereafter put into a CNN image recognizer to classify
whether the proposed region contains any of the object classes available. In the
original paper, the region proposal method used was selective search, and have since
then been replaced by more efficient region proposal methods, evolving its name to
Fast R-CNN and later Faster R-CNN [44] [45]. Even though the name is Faster
R-CNN, its only efficient enough to be able to operate in real-time (5 fps) on a

33

3. Hand Detection

high-end Nvidia Tesla K40 GPU. Faster-RCNN introduces a module called Region
Proposal Network (RPN) to replace the selective search algorithm, which was the
bottleneck in the previous approaches. Using a RPN, the entire model also becomes
trainable end-to-end. Some of the most accurate object detectors as of the writing of
this thesis are Mask-RCNN [46], Deformable Convolutional Networks [47] and Path
Aggregation Networks [48], but they all build upon the theory of Faster R-CNN and
thereby can only perform multiple inferences a second using a high-end GPU.

There exists another family of object detection algorithms using a technique called
You-Only-Look-Once (YOLO) [49]. The original publication can reach up to 155
fps on a Nvidia TitanX GPU, but not quite exceeding the performance of Faster
R-CNN. The improved method however, YOLOv2, still retains its real-time infer-
ence speed while exceeding the performance of Faster R-CNN ([46], [47] and [48]
have since exceeded YOLOv2). M.J. Shafie et al. have improved inference time
of YOLOv2 even further for video sequences by implementing logic that only al-
lows deep inference of the object detector if there are enough pixels in the image
that has changed compared to a reference image [50]. B. Wu et al. have also im-
proved the inference time of YOLOv2 by replacing the original feature extractor
with a SqueezeNet [51]. Worth mentioning is also the Single Shot MultiBox Detec-
tor (SSD), which outperforms the accuracy and inference time of YOLOv1, but not
YOLOv2 [52].

T.H.N. Le et al. has tackled the problem of detecting hands within a car multiple
times [53] [54] [55]. Inspired by the theory of Faster R-CNN, their different publica-
tions reveal a inference speed of 0.06 fps, 0.234 fps and 4.65 fps on a Nvidia TitanX
GPU for respective publication and their latest version currently holds state-of-the-
art performance for the VIVA Challenge dataset [56].

3.2 You-Only-Look-Once

YOLO, shorthand for You-Only-Look-Once, is an object detection technique pub-
lished in 2015, that was invented with the purpose of being able to perform real-time
inference. YOLO introduces the ability to detect objects in an image using only a
single forward pass of the image through the network, which was a shortcoming of
previous methods [49].

The network first divides the input image into a grid (13 by 13 cells are used in the
paper). Each cell is responsible for predicting a fixed amount of bounding boxes
(5 bounding boxes per cell is used in the paper). Along with every bounding box
prediction, each box is associated with a confidence score prediction and a class
prediction. The confidence score is a value of how certain the network is that
the predicted bounding box encloses an object of any kind. An example is shown
in Figure 3.1, where panel a) demonstrates the grid and panel b) demonstrates
predicted bounding boxes where a thicker box border represents a higher confidence
score. The class prediction output of every predicted bounding box is similar to a

34

3. Hand Detection

Figure 3.1: Example of how the coordinate labels are calculated using an anchor
box and the ground truth coordinates.

regular image recognizer, i.e. outputs a distribution of class probabilities. The class
probabilities are combined with the confidence score into a final value that represents
the probability of the bounding box containing a specific type of object. If two
bounding boxes has a high overlap, the bounding box with the highest confidence
score is kept, while the other one is discarded. This procedure is called non-max
suppression and it will remove redundant predicted bounding boxes. A last step is
to remove any bounding boxes with a confidence score below a certain threshold.
Panel c) of Figure 3.1 shows how only the bounding boxes above a certain confidence
score are kept using these steps.

Its successor, YOLOv2, adopts the RPN idea from Faster R-CNN. Instead of pre-
dicting the actual dimensions of the bounding box, an anchor box is instead used and
an offset from that anchor box is predicted. Predicting offsets instead of coordinates
simplifies the features to learn and by extension makes the learning process easier.
If each cell in the image grid is responsible for predicting 5 bounding boxes, there
will be 5 anchor boxes that an offset is predicted from. The width and height of the
anchor boxes are predetermined before training. Suitable dimensions of the anchor
boxes can be calculated by performing k-means clustering on the set of ground truth
bounding boxes before training [52].

When implementing YOLOv2, a general feature extractor is used as a base. J.
Redmon et al. uses a custom architecture that they call darknet [52]. Thereafter,
the prediction layer is put on top that makes up for the grid previously mentioned.
For each grid cell, there are K × (4 + 1 + C) outputs. K is the number of anchor
boxes to use, and each anchor box will have 4 coordinate outputs, one confidence
score output and C class probability outputs. If the grid has I columns, J rows and
K anchor boxes, then there will be I × J × K bounding box coordinate outputs
(δxijk,δyijk,δwijk,δhijk) that are relative to the corresponding anchor box coordinate
(x̂i,ŷj,ŵk,ĥk).

How the absolute bounding box prediction coordinates (xpi , y
p
j , w

p
k, h

p
k) are pre-

dicted from the relative coordinate predictions and the anchor boxes are calculated

35

3. Hand Detection

by:

xpi = x̂i + ŵkδxijk,

ypj = ŷj + ĥkδyijk,

wpk = ŵke
δwijk ,

hpk = ĥke
δhijk .

(3.1)

Since object detection is a multitask problem, both localization and recognition, the
loss function consists of multiple terms. The loss function is

λbbox
Nobj

W∑
i=1

H∑
j=1

K∑
k=1

Iijk
[
(δxijk − δxGijk)2 + (δyijk − δyGijk)2

+(δwijk − δwGijk)2 + (δhijk − δhGijk)2
]

+
W∑
i=1

H∑
j=1

K∑
k=1

λ+
conf

Nobj

Iijk(γijk − γGijk)2 +
λ−conf

WHK −Nobj

Īijkγ
2
ijk

+ 1
Nobj

W∑
i=1

H∑
j=1

K∑
k=1

C∑
c=1

Iijkl
G
c log(pc).

(3.2)

It consists of mean squared error terms for each relative coordinate output, a mean
squared error term for the confidence score, a regularizing term for confidence scores
and a cross-entropy term for class predictions. G symbolizes ground truth and the
ground truth bounding box (δxGijk,δyGijk,δwGijk,δhGijk) is calculated by

δxGijk = (xG − x̂i)/ŵk,
δyGijk = (yG − ŷi)/ĥk,
δwGijk = log(wG/ŵk),
δhGijk = log(hG/ĥk),

(3.3)

where (xG,yG,wG,hG) is the ground truth bounding box coordinates. The hyperpa-
rameters of the loss function are λbbox, λ+

conf and λ−conf , which determine the strengths
of the different loss terms. Iijk is an indicator function, equating to 1 if the kth an-
chor at position (i,j) has the largest overlap with a ground truth bounding box,
otherwise 0. Iijk makes sure to penalize the squared difference between the ground
truth confidence score γGijk and the prediction γijk only if anchor box k of grid
cell (i,j) has a ground truth bounding box assigned to it. Īijk is its counterpart
(Īijk = 1− Iijk) and it makes sure to penalize the confidences of bounding box pre-
dictions that does not have any ground truth bounding box assigned to it with a
squared error of the confidence score. The class prediction cross-entropy loss term
is also masked by Iijk because there should be no class prediction loss for bounding
box predictions that does not have a ground truth object assigned to it.

36

3. Hand Detection

3.3 Implementation

The detection of a hand as pre-processing step before gesture classification can be
either very flexible by using an object detector to detect hands at any location inside
the vehicle, or can be very restricted by limiting the use to one gesture at a time,
only performed at the area in front of the infotainment system. We consider both
alternatives, implementing both a deep learning object detector and a simple fixed
window hand detector.

3.3.1 Fixed window hand detector

We decided to first implement a simple solution that would only be able to recognize
gestures of the driver when the hand is located close to the infotainment system. The
complete algorithm for implementing our approach is shown in Algorithm 2. First,
the area of the input that captured the space in front of the infotainment system was
cropped out (line 1). Our theory was that a good enough prediction of extracting
the hand from this cropped area was to extract the largest moving object. Since
the hand needed to be moved into the space near the infotainment system before
performing the gesture, we assumed that the hand would be the largest moving
object in this area. Since only moving objects would be considered, an exponential
moving average of the cropped images was kept in memory (lines 3-5 and line 17). To
extract moving pixels from the current image, the absolute difference of the moving
average image and the current image was calculated (line 6). To only filter out
the more significant movements of the image, a binarization threshold was applied
(lines 7-8). Thereafter, two hand crafted convolutional filters were convolved with
the binary image of moving pixels to extract vertical and horizontal edges. The
resulting image of vertical edges was used to create a histogram along the horizontal
axis of the image, and the same was done to create a histogram of horizontal edges
along the vertical axis of the image (lines 9-12). Lastly, the bounding box coordinates
are calculated from respective histogram. The starting point of an axis is set at the
pth percentile and the end point is set at the (1− p)th percentile, i.e. the bounding
box captures 100(1 − 2p) percent of the moving edge pixels at any axis. Lines 11-
16 can better be understood by illustrating the resulting histograms from the edge

37

3. Hand Detection

maps, shown in in Figure 3.3 in the Results section.

input : I as the input image from camera, θ as the binarization threshold, γ as
the moving average period, p as the percentile cutoff

output: (x1, y1, x2, y2) as a predicted bounding box
1 Ic ← cropImage(I);
2 if Ima == null then
3 Ima ← Ic;
4 return null;
5 end
6 Idiff ← |Ima − Ic|;
7 Ibin ← Idiff [Idiff <= θ] = 0;
8 Ibin ← Ibin[Ibin > θ] = 255;

9 fh ←
[

1 1 1 1
−1 −1 −1 −1

]
;

10 fv ←

−1 1
−1 1
−1 1
−1 1

;
11 histh ← sum(Idiff ~ fh)axis=vertical;
12 histv ← sum(Idiff ~ fv)axis=horizontal;
13 x1 ← getIndexAtPercentile(histh, p);
14 x2 ← getIndexAtPercentile(histh, 1− p);
15 y1 ← getIndexAtPercentile(histv, p);
16 y2 ← getIndexAtPercentile(histv, 1− p);
17 Ima ← γIma + (1− γ)Ic;
18 return (x1, y1, x2, y2)

Algorithm 2: The fixed window hand detector algorithm. The input is an image
from the camera, and the output is a bounding box prediction.

3.3.2 Deep learning hand detector

After reviewing the inference time and hardware requirements of the techniques dis-
cussed in Section 3.1, we concluded that SSD and YOLOv2 was the only techniques
efficient enough for our purpose. Of the two alternatives, we chose YOLOv2 because
of its superior performance. The original architecture uses Darknet-19 as feature
extractor, which is similar to VGG-16 [52], but we decided to implement YOLOv2
using a more efficient feature extractor. We adopted the idea of SqueezeDet [51],
implementing YOLOv2 with a stub of SqueezeNet as feature extractor. We also
implemented an alternative architecture using a stub of MobileNet as feature ex-
tractor.

The SqueezeNet architecture can be seen in Table 3.1 and the MobileNet architecture
in Table 3.2. The label pre-processing was adopted from Equation 3.3 and the

38

3. Hand Detection

loss function was constructed according to Equation 3.2. Originally, there are nine
anchor boxes for each grid cell, but since there is a low chance that many hands
are cluttered together for the application of hand detection in cars, we decided to
set the number of anchor boxes to 5. As for the anchor box dimensions, they were
calculated by performing k-means clustering on the bounding box dimensions of the
labels of the dataset. k was initialized to 5, which was the number of anchor boxes
to use, and the clusters were fit on the labels using bounding box width and height
as features.

Type Filter size / Stride # Filters
Conv(Frozen) 1 3× 3 /2 64
Max Pooling 1 3× 3 /2 -
Fire module 2 - s1×1 = 16, e1×1 = 64, e3×3 = 64
Fire module 3 - s1×1 = 16, e1×1 = 64, e3×3 = 64
Max Pooling 3 3× 3 /2 -
Fire module 4 - s1×1 = 32, e1×1 = 128, e3×3 = 128
Fire module 5 - s1×1 = 32, e1×1 = 128, e3×3 = 128
Max Pooling 5 3× 3 /2 -
Fire module 6 - s1×1 = 48, e1×1 = 192, e3×3 = 192
Fire module 7 - s1×1 = 48, e1×1 = 192, e3×3 = 192
Fire module 8 - s1×1 = 64, e1×1 = 256, e3×3 = 256
Fire module 9 - s1×1 = 64, e1×1 = 256, e3×3 = 256
Fire module 10 - s1×1 = 96, e1×1 = 384, e3×3 = 384
Fire module 11 - s1×1 = 96, e1×1 = 384, e3×3 = 384
Dropout layer 11 - -

Conv 3× 3 /1 anchors per grid *(classes+1+4)
Softmax - # Classes

Table 3.1: Overview of the SqueezeNet architecture. Global average pooling aver-
ages over every input channel.

Type Filter size # Filters / Output
Conv 3× 3 32

Separable Conv module 3× 3 64
Separable Conv module 3× 3 128
Separable Conv module 3× 3 128
Separable Conv module 3× 3 256
Separable Conv module 3× 3 256

Separable Conv module ×5 3× 3 512
Separable Conv module 3× 3 1024

Avg pooling 2× 2 -
Conv 3× 3 anchors per grid *(classes+1+4)

Softmax - # Classes

Table 3.2: Overview of the MobileNet architecture. A Separable Conv module
follows the architecture presented in Figure 2.13.

39

3. Hand Detection

The datasets used for experiments were VIVA Challenge dataset [56] and EgoHands
[57], and data simple augmentation techniques were performed online while train-
ing.

3.4 Results

A visualization of how the fixed window hand detector creates its bounding box pre-
diction is shown in Figure 3.2 and Figure 3.3. The image of exponentially moving
averaged vertical edges is shown in panel a) of Figure 3.2, the image of exponen-
tially moving averaged horizontal edges is shown in panel b) of Figure 3.2 and the
original image is shown in Figure 3.3. The resulting histogram for each edge image
is also shown. Figure 3.3 also shows how the bounding box coordinates are calcu-
lated by aligning the histograms and calculating the specified percentiles (shown in
red).

Figure 3.2: Panel a) shows the result of Idiff ~ fv from line 12 of Algorithm 2,
which is a feature map of exponentially moving averaged vertical edges. Panel b)
shows the result of Idiff ~haarh from line 11 of Algorithm 2, which is a feature map
of exponentially moving averaged horizontal edges.

40

3. Hand Detection

Figure 3.3: Visualization of how Algorithm 2 predicts a bounding box. The per-
centile cutoffs of each histogram is shown in red, and its corresponding bounding
box is shown in green.

Figure 3.4 shows the result of performing k-means (k = 5) clustering on the bounding
boxes of the VIVA challenge dataset. The dimensions of these clusters are saved to
disk and thereafter used as priors (anchor boxes) for the YOLOv2 algorithm.

Figure 3.4: The resulting anchor box dimensions calculated using k-means clus-
tering on VIVA Challenge dataset

41

3. Hand Detection

The performance over time during training of the object detector using different
feature extractors on the EgoHands dataset is shown in Figure 3.5. Comparing the
train and test accuracy reveals that both architectures manage to generalize well on
the test data.

Figure 3.5: Train set and test set performance during training of object detector
with different feature extractors as base. Orange represents MobileNet as feature
extractor (82mAP) and Blue represents SqueezeNet as feature extractor (85mAP).

Table 3.3 shows the final performance and inference time of respective architecture.
The model using a stub of SqueezeNet is superior in this particular case, both in
terms of performance and inference time.

Method mAP FPS
YOLOv2 + SqueezeNet 85 16.7
YOLOv2 + MobileNet 82 12.8

Table 3.3: Comparison of performance and inference time for our different object
detector architectures.

Table 3.4 summarizes the performance and inference time of different methods for
the VIVA Challenge dataset. Our method is superior to many of the VIVA Chal-
lenge contestants in terms of mAP, but a significant performance gap remains when
comparing to the state-of-the-art hand detector MS-RFCN. Nevertheless, the infer-
ence time of our model is by far the best when considering our inference time is
measured on a Jetson TX2 embedded platform.

42

3. Hand Detection

Methods mAP FPS
MS-RFCN [55] 86.9 4.65 (TitanX)
MS-FRCNN [54] 77.6 0.234 (TitanX)
YOLOv1 [49] 69.5 35 (TitanX)

ACF_Depth4 [58] 60.1 -
CNN with Spatial Region Sampling [59] 57.8 0.78 (Tesla K20)

Ours (YOLOv2 + SqueezeNet) 78.9 16.7 (Jetson TX2)

Table 3.4: Comparison of our hand detector to other methods in terms of perfor-
mance (mAP) and inference time (FPS).

3.5 Discussion

The simple hand crafted solution worked amazingly well for creating a bounding
box around the largest moving object within the specified area. The drawback is
obvious though, any eventual gestures are restricted to the area in front of the
infotainment system and any large object other than a hand will result in a false
positive detection. If the hand gesture classifier to use upon the detections are
trained with any category resembling "no gesture", false positives from the object
detector will be acceptable.

DepthSense CARlib by Sony is a car infotainment gesture control system currently
deployed in a few BMW car models, and it also uses the restriction of only being
able to perform the gestures in front of the infotainment system because their depth
camera only monitors that area. Smart Eye on the other hand, use their camera
to monitor a much bigger area, and therefore this additional cropping or detection
step is necessary.

Additional to the simple hand crafted solution, we also implemented a deep learning
solution. The argument for also implementing a deep learning solution was that it
is scalable with respect to expanding the categories of objects to track, and would
result in a more general framework to build upon for Smart Eye. The inference
times of our two YOLO architectures are extremely fast compared to the R-CNN
family of implementations, see Table 3.3. This comes with the drawback of worse
performance, but when the inference time is critical, this performance loss can be
acceptable and our object detector implementations are suitable for the task. With
the high train mAP of almost 100 in Figure 3.5, we believe that there are plenty of
capacity left for adding additional object classes to track, but time constraints and
lack of labels has left this topic for future work.

Regarding differences between the SqueezeNet YOLOv2 implementation and the
MobileNet YOLOv2 implementation, the SqueezeNet variant was superior, see Ta-
ble 3.3. Even though the SqueezeNet variant also has a faster inference time, Mo-
bileNet still can’t be excluded. It seems that the Tensorflow implementation of

43

3. Hand Detection

depthwise convolution is slower than normal convolution [60] and therefore it is
misleading to compare its inference time in Tensorflow with other methods. Also,
the Applied Solutions department of Smart Eye states that a separable convolution
implementation in C++ can be much faster. With respect to the performance on
the EgoHands dataset and the inference times of our Tensorflow Python implemen-
tation, SqueezeNet with YOLOv2 is superior, but the same may not be the case
for other datasets and implementations in other frameworks. Whether we decide
to implement our object detector with a SqueezeNet stub or MobileNet stub, one
thing is for certain, that there will be even better substitutes in the near future.
During the time of this thesis, multiple substitutes for efficient feature extraction
has already been published, such as MobileNet V2 [61] and SqueezeNext [62].

44

4
Hand Gesture Classification

Human hand gestures can be divided into two categories: dynamic or static [63]. To
recognize a static hand gesture from recorded sensor data you only need to consider
spatial features such as the posture of the hand. In addition, dynamic hand gestures
also involves tracking the hand motion over time, and therefore temporal features
need to be extracted as well.

This thesis will only address solving hand gesture classification from vision based
sensors with the explicit purpose to communicate directly with a computer, i.e. the
infotainment inside a car. With inspiration from how humans interact with each
other, the use of hand gestures have become one of the most applicable ways for
Human Computer Interaction (HCI) [64]. The use of vision based sensors is desirable
because it requires no physical contact with the user, which is especially beneficial
for a motorist whom can remain focused on driving.

In contrast to the entire body, a hand has many degrees of freedom, which makes
it a complex task to solve with a RGB camera alone. In addition, classifying hand
gestures within environments with changing lightning conditions, such as the inside
of a car, further increases the complexity of the classification task [65].

4.1 Previous work

The classical approach for recognizing dynamic hand gestures is to use Hidden
Markov Models (HMM). With the rise of deep learning in general and Convolutional
Neural Networks in particular, there have been a transition phase with hybrid so-
lutions with HMMs and Deep Learning methods used in combination. However,
this thesis will only consider the most recent state-of-the-art techniques, which are
purely Deep Learning based.

In 2015, Tran et al. introduced the 3D ConvNet which showed to be a good fit
for learning spatiotemporal features from video sequences [66]. The 3D ConvNet
architecture was quickly recognized and applied for video classification in general
[67], as well as on classifying hand gestures. On ChaLearn, a dynamic hand gesture
dataset, (which contains color images and depth data) the 3D ConvNet showed

45

4. Hand Gesture Classification

state-of-the-art performance when applied by the FLiXT team in 2016 [68].

Time dependencies that are learned from applying 3D convolutions only go as far
as the size of the receptive field, the size of the convolutional filters in the depth
dimension. As a result, longer sequences would require a severe amount of layers
with the use of 3D convolutions alone. Recent publications tackle this deficiency in
different ways. Bolei Zhou et al. introduces the Temporal Relation Network (TRN),
which makes a fusion of frames at a multiple of time scales from a given sequence
[69].

Another approach for classifying longer video sequences is to add one or several
LSTM layers on top of the 3D convolutions. However, an issue with fully connected
LSTMs (the conventional version) is that it removes the spatial structure from the
feature maps because the hidden state is a one-dimensional vector. Xingjian Shi
et al. extended the LSTM with convolutional operations to solve this deficiency,
introducing the Convolutional LSTM [70] described in Section 4.2. In addition, to
further increase the performance from Convolutional LSTM, work such as [71] by
Guangming Zhu et al. also employs Spatial Pyramid Pooling on the output. Spatial
Pyramid Pooling performs pooling operations of different filter size, which are then
concatenated together and passed on to the next layer [72].

The most well-known hand gesture implementation is Sony’s Depth Sense CARlib
which have been successfully integrated into BMW’s Gesture Control for their luxury
7 series [11]. With a depth camera placed above the gear stick the Gesture Control
supports five dynamic hand gestures which are all used to perform actions with the
infotainment inside a car. It support one time actions such as Swipe Right and Point.
Furthermore the system also support continuous actions with the infotainment such
as raising the volume through circling a finger.

4.2 Convolutional LSTM

Convolutional LSTM Network: A Machine Learning Approach for Precipitation
Nowcasting by Xingjian Shi et al. extended the traditional FC LSTM into a Con-
vLSTM, to keep the spatial relations, similar to a CNN [70]. They use it for the
purpose of precipitation nowcasting where it consequently outperforms fully con-
nected LSTMs as well as the previous state-of-the-art ROVER algorithm. Work
such as [71] by Guangming Zhu et al. have applied the ConvLSTM architecture on
hand gesture classification and perform 98.89% validation accuracy on the multi-
modal SKIG dataset, achieving state-of-the-art performance.

Xinjian Shi et al. claim that the original fully connected LSTM is good for handling
temporal correlation, but is heavily redundant for dealing with spatial data [70].
Traditionally, when dealing with sequential vision-based data the output from the
convolutional layers are flattened and passed on to an LSTM as a one dimensional
vector and thereby "losing" the spatial information. In contrast, the convolutional

46

4. Hand Gesture Classification

LSTM uses convolutional structures in both input-to-state and state-to-state tran-
sitions. The gate equations introduced in Section 2.4.1 are extended with convolu-
tional operations resulting in the following ConvLSTM equations [70]:

it = σ(Wxi ~ xt + Whi ~ ht−1 + Wci ◦Ct−1 + bi),
ft = σ(Wxf ~ xt + Whf ~ ht−1 + Wcf ◦Ct−1 + bf),

Ct = ft ◦Ct−1 + it ◦ tanh (Wxc ~ xt + Whc ~ ht−1 + bc),
ot = σ(Wxo ~ xt + Who ~ ht−1 + Wco ◦Ct + bo),

ht = ot tanh (Ct).

(4.1)

In Figure 4.1 we can see a simplified visualization of the equations. A 2× 2 filter is
applied on the previous cell state and hidden state as well as the new input, which
are then added together, creating the new output and cell state. Instead of doing
vector multiplication we stride over a 3D tensor, M ×N ×P , where N and M could
represent the input image, and P the number of feature maps. A larger filter implies
a larger receptive field and will thus also be able to capture faster motions, while a
smaller filter will be able to capture slower motions.

Figure 4.1: An example of how the performance of the different data set partitions
can be distributed and what gaps between the performances indicates.

Furthermore Xingjian Shi et al. concludes that a ConvLSTM may very well be
applied after a number of vanilla convolutional layers instead of on the raw image.
This was quickly recognized by work such as [71], which even go so far as applying
3D convolutions before. Thereby the 3D convolution performs well on extracting
short term dependencies, while as the ConvLSTM will cover the long term.

4.3 Implementation

The goal was to implement a hand gesture classifier working in an embedded envi-
ronment with the purpose to reduce distractions for motorists. The use of dynamic
gestures was desirable because it opens up for making incremental changes to the

47

4. Hand Gesture Classification

car’s infotainment. Interviews with stakeholders at Smart Eye directed this thesis
into not considering depth, as it not commonly used as a part of their core product
segment.

Performed hand gestures will be directly mapped to perform actions with the car’s
infotainment. False positives would result in annoyance for the passengers and
counteract the purpose of what was to be implemented. Because of that, a low
false-positive rate as well as a high accuracy is highly beneficial. In addition, re-
sponse times over 100ms have also been showed to be annoying [73], which creates
a window where a solution is viable to work within a car. Initial experiments with
dynamic hand gestures forced the final solution to be divided into two different
models; a prototype of dynamic hand gesture classification that requires additional
hardware and a static hand gesture solution working in real time within an embed-
ded environment.

4.3.1 Dynamic hand gestures

Smaller models for classifying dynamic hand gestures were quickly discarded as
they failed to predict gestures better than random. We decided to create a larger
model which will work as a prototype to demonstrate what is achievable with more
expensive hardware. The implemented model however will not apply deep, state-
of-the-art, solutions that is far from applicable in real-time scenario even with non-
embedded hardware.

An almost unanimous part of state-of-the-art solutions for dynamic hand gestures
is the use of the 3D convolutions mentioned in Section 4.1 by Tran et al. [66].
They excel especially on learning spatiotemporal features throughout a sequence.
However, the time dependencies that are learned only go as far as the size of the
receptive field, the size of the convolutional filters in the time dimension. To solve
this issue we choose to add the 3D Convolutional LSTM layers introduced by [70] in
general and the implementation of [71] in particular at the end of our network. The
architecture of [71] also consists of spatial pyramid pooling after the 3D convolutional
LSTM layers as explained in Section 4.1 to further increase the performance of the
model.

The final architecture can be seen in Figure 4.2. It can be divided into three separate
components which are used to extract features from the video sequence; a 3DCNN
feature extractor, two stacked convolutional LSTM’s and Spatial Pyramid Pooling.
Due to the static nature of 3DCNN’s, each input sequence is down- or upsampled
to 30 frames before being feed as input to the network.

48

4. Hand Gesture Classification

Figure 4.2: Architecture overview of the dynamic hand gesture classifier. A video
sequence is down-sampled to 30 frames and fed into a 3DCNN feature extractor.
The spatiotemporal features are then passed into two 3DConvLSTM layers, applied
with a spatial pyramid pooling and finally a fully connected layer for classification.

Dataset The dataset of choice was going to be THE 20BN-JESTER DATASET
V1, or simply Jester, the world’s largest RGB based dynamic hand gesture dataset
[74]. The dataset contains 27 different gestures performed by crowd workers in front
of a web camera in different environments. The dataset exists of 148,092 videos
which are split among the training set, validation set and test set with 118562,
14787 and 14743 videos respectively. The test set is as of this thesis unlabeled due
to the ongoing contest. Noteworthy gestures within the dataset is No gesture and
Doing other things, which are both a necessity in real applications to avoid false
positives.

In order to reduce the likelihood of overfitting extensive augmentation was done.
During offline augmentation each gesture is flipped horizontally, doubling the dataset.
Gestures such as Drumming fingers remained the same class, while as Swipe Left
changed label to Swipe Right. Additionally, classes such as Stop Sign and Thumb Up
was also played backwards. Finally, some gestures were both horizontally flipped
and mirrored in the time domain. For example Swipe Right, was double negated
and thus remained the same class. Online augmentation was done with the following
operations: random cropping, padding, add and multiplication on input channels,
dropout, rotation and Gaussian noise.

3DCNN feature extractor
The first part of the final model is a 3D Convolutional Neural Network, which is
used to extract spatiotemporal features. The input to the 3DCNN is 30 frames
from a given dynamic hand gesture reshaped to 176 × 100 × 3 size. The output
from the 3DCNN feature extractor has been down-sampled to 8 frames in the time
dimension. The final implementation consists of three consecutive convolutional and
pooling layers on top of each other, and an additional convolutional layer at the end,
as seen in Figure 4.3. The output is then passed on to the LSTM component to
learn the long term dependencies.

49

4. Hand Gesture Classification

Figure 4.3: The 3D Convolutional Neural Network architecture for dynamic hand
gestures.

3DConvolutional LSTM
Through the convolutional and pooling layers from the 3DCNN feature extractor,
the initial input is reduced to 8 × 13 × 22 × 256. Each of the output channels
from the previous stage were sent into separate ConvLSTM cells, together forming a
3DConvLSTM cell. As aforementioned in Section 4.2, convolutional LSTMs keep the
spatial structure in input-to-state as well as state-to-state transitions [71]. “SAME”-
padding is used, which implies that the same number of time frames will be passed
on to the second 3D convolutional LSTM layer. The first 3DConvLSTM layer uses
256 filters, passing on 256 feature maps to each respective cell in the next layer.

As seen in Figure 4.2, only the last ConvLSTM cell in the second layer passes on
an output, i.e. the time frames have been reduced to a size of 1. This means that
all temporal features have been extracted. 384 filters are used for the second layer,
passing on a 384 two dimensional feature maps.

Spatial Temporal Pooling
From the input spatial size of 176× 100 to the output of the ConvLSTM layers the
spatial size have been reduced to 13×22. By the very nature of fully connected layers,
they often lead to a huge amount of parameters. To reduce the spatial size further
before passing it on to the FC layer, spatial temporal pooling was performed.

Four type of pooling operations was performed with filter sizes of 28 × 28, 14 × 14
7× 7, and 4× 4 respectively. The results was concatenated together, flattened and
then fully connected to the last layer for predicting hand gesture class.

4.3.2 Static hand gestures

For static hand gesture classification, we gathered ideas and inspiration from general
deep neural network image classification architectures. However, for static hand
gesture classification, datasets were limited, small in size and outdated.

50

4. Hand Gesture Classification

Without aid from specific deep neural network solutions within static hand gesture
classification the architecture of choice was going to be SqueezeNet, introduced in
Section 2.1, specifically the first five layers are used in our implementation [30].
It has an appropriate trade off between accuracy and inference time suitable for
embedded implementations.

Dataset. This thesis started of by trying out the Marcel dataset [75] with the fol-
lowing sign language based gestures; A, B, C, Five, Point and Peace. The dataset
was small and quickly lead to overfitting for a relatively deep architecture like
SqueezeNet. Instead, a custom dataset was created with the same gestures in mind,
which can be seen in Figure 4.4. In addition the No gesture class was added, to avoid
false positives which is a necessity in real scenarios. In total the train set consists
of over 18000 images from two persons with ∼ 3000 images from each respective
gesture. The test set contains 3000 images distributed among classes from a yet
unseen person by the network.

Due to the still relatively small dataset, the training procedure lead to overfitting.
According to the bias-variance analysis described in Section 2.9.1, a direction to
reduce the likelihood of overfitting, and by extension the variance problem is in-
creasing the data size. As a result, the custom dataset was extended with offline
and online augmentation. Offline augmentation involved simply flipping all images
and saving them to disk, which doubled the dataset. In addition, online augmenta-
tion was performed in RAM during training with the following operations; random
cropping, padding, add and multiplication on input channels, dropout, rotation and
Gaussian noise.

Figure 4.4: The seven gestures available in our custom dataset. In addition to the
ones that previously existed we have added the No gesture- gesture.

51

4. Hand Gesture Classification

4.4 Result

4.4.1 Dynamic hand gesture classifier

In Table 4.1 the result of our dynamic hand gesture classifier can be seen in compar-
ison to other submitted result in terms of accuracy. Notably among the top results
is the Bidirectional 3DConvLSTM, an extension of our proposed solution, however
with an increased forward-propagation time.

Model Top 1 acc(%)
DRX3D 96.6%
Ford’s Gesture Recognition System 94.11%
Our Model 89.97%
Twenty Billion Neuron’s Jester System 82.35%
Our 3DCNN Model 73.00%

Table 4.1: Our implementation in comparison to other submissions.

The normalized confusion matrix on the validation set can be seen in Figure 4.5. The
last 1000 sequences is used, with the model that is trained with all augmentation
techniques. Drumming Fingers, No gesture and Pushing Hand Away are all correctly
classified correctly above 97% of the time. The worst classes are Turning Hand
Clockwise, Turning Hand Counterclockwise and Zooming Out With Full hand, which
are correctly classified 42%, 63% and 56% of the times respectively.

52

4. Hand Gesture Classification

Figure 4.5: Normalized confusion matrix on the Jester validation set. The model
used for predictions was with all augmentation techniques.

4.4.2 Static hand gesture classifier

In Figure 4.6 the accuracy during the training procedure can be seen. After 2000
iterations the train accuracy started to consequently perform at 100%. After 6000
iterations the test accuracy converged at 98% without augmentation. An iteration
represents one batch of size 100. The final architecture runs at 48 fps on a Jetson
TX2 platform.

53

4. Hand Gesture Classification

Figure 4.6: Train and test accuracy over time during the training procedure. After
2000 iteration the training accuracy consequently performed 100% and after 6000
iterations the test accuracy converged at 98%.

In Figure 4.7 we can see the normalized confusion matrix when making predictions
on the test set. Apart from the Point-gesture, which is classified as the Peace-
gesture six percent of the times, the actual gestures all perform well. The No gesture
class are correctly classified 81% of the times, often for the benefit of the A or B
gestures.

54

4. Hand Gesture Classification

Figure 4.7: Normalized confusion matrix for the custom static hand gesture
dataset.

4.5 Discussion

The goal was to implement a hand gesture classifier working in a real time environ-
ment. The use of dynamic gestures was desirable because it opens up for making
continuous changes to the car’s infotainment. The final result for dynamic gestures
required a huge network design in order to provide a good-enough accuracy on the
large Jester dataset. Because of this, it is not suitable for an embedded real-time
scenario. However, for a solution that is purely built for working within an au-
tomobile environment, with a static background we believe the complexity of the
classification would be reduced tremendously. In addition a specific camera location
opens up for solutions in which the gesture can be performed within a hard-coded
area of the image, such as above the gear stick. Nevertheless, for a general dataset
as Jester, where gestures can be performed at all areas in the picture and with sev-
eral different backgrounds, we were not able to scale down our architecture. Smaller
solutions often failed to learn anything at all when including all classes. As a result,
our solution for dynamic gesture classification fail to run on the Jetson TX2 due
to memory issues. The final presented model performs 89.97% on the large Jester
dataset, which is a bit off from state-of-the-art solutions at 96% but is reasonable
because of the still relatively small architecture.

55

4. Hand Gesture Classification

The final dynamic hand gesture implementation failed to operate in real time in
an embedded environment. If dynamic hand gestures are very desirable to use, we
believe an almost necessary step is going towards the use of depth cameras. It allows
to remove all background noise, severely reducing the complexity of the classification
task. Another direction could be too use connectionist temporal classification loss,
which requires a more sophisticated labeling of sequences. Currently, on the Jester
dataset a dynamic hand gesture includes frames that are not necessarily a part of
the gesture, such as the pre-gesture step when the capture just have been started.
If you label these situations as No gesture, sequences can be divided into smaller
chunks and fed one at a time through a much smaller 3D CNN architecture.

As a result of the large, dynamic model, a static hand gesture model was imple-
mented on a Jetson TX2. The model is using the first five layers of the SqueezeNet
architecture together with a FC layer for classification. Static hand gestures do
not rely on the motion in time, and therefore our implemented hand detector was
used as a pre-processing step in order to remove unnecessary information from the
complete image in our real time implementation. In addition this made it possible
to classify a multiple of hand gestures in parallel from multiple agents.

The final model performs 100% and 98% for the training set and test set respectively
on our custom dataset. The dataset is still rather small, which made some degree of
overfitting inescapable. The small dataset in combination with a rather simple un-
derlying problem, similar to digit recognition, made deeper architectures redundant.
In addition, even shallower architectures could be examined in the future. However,
the final static hand gesture model runs at 48 fps on a Jetson TX2, which is more
than enough to make it applicable in real scenario.

For live implementations a reduced amount of gestures might be a good choice. By
examining the confusion matrix, similarities between gestures can be seen. Such
gestures are hard to separate and often lead to a high number of false positives, to
the benefit of the related gesture. For example, the dynamic gestures of the Jester
dataset Rolling Hand Backward and Rolling Hand Forward are naturally similar and
just using one of them live could be beneficial. For static hand gestures, we can by
investigating the confusion matrix (Figure 4.7), see that the No gesture class is often
mis-classified as another hand gesture. This is most likely because the No gesture
class contains random backgrounds as well as hand gestures which are not included
as an actual gesture in the dataset. Therefore, some images in the No gesture class
are probably more related to the other gestures in the data set than its own class. As
a consequence it might be a good idea to split the No gesture class into two separate
classes: Background and Other gestures. Additionally in the confusion matrix we
can see that the Point gesture is classified as the Peace sign six percent of the time.
This makes sense as they are naturally closely related, and therefore it would be
beneficial to only use one of them in a live implementation.

56

5
Action Recognition

Action recognition can be explained as the classification of any activity by one or
multiple agents from recorded sensor data. The word action and activity are used
interchangeably through this chapter. The activity can require multiple agents,
such as playing chess, but this thesis will only address single person activities, such
as hand-waving. Some practical applications of action recognition include assisted
living applications for smart homes, health care monitoring applications and secu-
rity and surveillance applications. This thesis will consider recognizing actions of
passengers within a car.

5.1 Previous work

The latest advances in human action recognition all involve deep neural networks.
A popular approach for capturing the temporal dependencies is clever use of 3D
convolutions [76] [77]. Another possibility is leveraging the region proposals of an
object detector, since in theory there will be particular regions of the image that are
of high importance when classifying which activity is occurring in an image [78]. A
third popular approach for classifying an action is utilizing the dense representation
of humans from body pose estimation networks, which is claimed to be of high
importance when classifying the action of humans [7] [8].

Body pose estimation can be divided into two categories: single-person and multi-
person. The technique to solve single-person pose estimation is dominated by
stacked hourglass networks among the state-of-the-art architectures [79] [80] [81]
[82]. A. Newell el al. discloses that their small stacked hourglass architecture has
an inference time of 75 ms on a Nvidia TitanX GPU.

A pose estimation architecture that excels in inference time (5ms on a Nvidia GTX
1080) is Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields by
Z. Cao et al. [83]. This technique is not only multi-pose and has an inference time
that has the potential to enable real-time inference on embedded platforms, but
also was accurate enough to win COCO 2016 keypoints challenge. Since then, a few
publications has exceeded the performance of the part affinity fields architecture,
like Mask R-CNN [46], RMPE [84] and Cascaded Pyramid Networks. Unfortunately,

57

5. Action Recognition

these new architectures does not exceed the affinity fields technique in efficiency
because they either make use of a 101-layer deep ResNet or the highly inefficient
stacked hourglass technique. The authors of Mask R-CNN shows an inference time
of 200 ms, but this is achieved using the high-end Nvidia Tesla M40 GPU.

5.2 Pose estimation using Part Affinity Fields

Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields by Z. Cao et
al. published in 2016 was the first body pose estimation technique both exceeding
state-of-the-art performance (winner of COCO 2016 keypoints challenge) and claim-
ing to have real-time inference capabilities. A common side effect of multi-person
pose estimation is that inference time tends to increase with with the number of
people present in the image, but this technique enables simultaneous keypoint de-
tection and association of all bodies present, which result in reasonable inference
time even for images involving many people.

Pose estimation using Part Affinity Fields is best explained by referencing to the
original network architecture, shown in Figure 5.2. Like many deep learning solu-
tions to vision tasks, the first few layers of the network consists of a general feature
extractor CNN. This component can be any of the architectures presented in Section
2.6 for easy access to pre-trained weights, but the original paper uses the first 10
layers of VGG-19. The output of the feature extractor is thereafter branched into
two isolated components; one responsible for learning to detect body keypoints in
the form of returning heat maps S1, and one responsible for learning associations
between the keypoints L1, called the party affinity fields. There exist one heat map
in S1 for each unique keypoint to track. For example, one heat map could be re-
sponsible for detecting every occurrence of a left shoulder in the input image. An
association represented by an affinity field can be thought of as a directed limb
between two different keypoint categories.

Illustrations of the ground truth heat maps and affinity fields are shown in Figure
5.1. Panel a) is the original image, panel b) represents every heat map concatenated
into one image, panel c) represents the x-values of the vectors of every part affinity
field and panel d) represents the y-values. In this example, we can clearly see
that the part affinity fields act as relations between keypoints where there exists
an association in form of a limb. By inspecting the Figure more carefully, we can
see that limbs aligned vertically with the image has a brighter y-value of the part
affinity field, and limbs aligned more horizontally along the original image has a
brighter x-value in of the part affinity field, hence the joint vector is directed from
one limb to another. Since a part affinity field is represented by a feature map of
x-values and a feature map of y-values, Li will consist of twice as many feature maps
as there are keypoint associations.

58

5. Action Recognition

Figure 5.1: The ground truth labels of a sample. a) is the original image, b) are
all heat maps concatenated into an image, c) are the x-values of the part affinity
fields and d) are the y-values of the part affinity fields.

Figure 5.2: Architecture overview of Pose estimation using Part Affinity Fields

The remaining part of the network follows the principle of refinement stages, first
introduced in Convolutional Pose Machines by Wei et al. [85]. S1, L1, along with
the output of the feature extractor F from stage 1 is concatenated and used as

59

5. Action Recognition

input to stage 2, shown within the dashed lines in Figure 5.2. Every refinement
stage consists of five layers with 7 × 7 filters and two layers with 1 × 1 filters for
both the keypoints branch and the affinity fields branch. What characterizes the
refinement stages are that they all learn to produce the same output, each stage an
improvement of the previous stage. This is possible due to intermediate supervision
at each stage by the loss f t1 and f t2. The original paper show results from using
four refinement stages, but there is no set rule for how many refinement stages one
should implement. It becomes a performance/efficiency trade-off.

The formula for calculating the output of keypoint heat maps are

St = ρt(F,St−1,Lt−1),∀t ≥ 2 (5.1)

and affinity fields for a refinement stage t are

Lt = φt(F,St−1,Lt−1),∀t ≥ 2. (5.2)

The functions ρt and φt represents forward propagation through refinement stage t
for the keypoints branch and affinity fields branch respectively.

The loss function for each refinement stage t is calculated by

f tS =
J∑
j=1

∑
p

W(p)
∣∣∣∣∣∣Stj(p)− S∗j(p)

∣∣∣∣∣∣2
2
, (5.3)

f tL =
C∑
c=1

∑
p

W(p)
∣∣∣∣∣∣Lt

c(p)− L∗c(p)
∣∣∣∣∣∣2

2
, (5.4)

and
f =

T∑
t=1

(f tS + f tL), (5.5)

which is regular L2 loss conditioned on whether an annotation at point p is present or
not. W(p) equals 0 when image location p is missing an annotation and 1 otherwise.
S∗j is the ground truth heat map of the jth keypoint and L∗c is the ground truth part
affinity field of the cth limb/association. Equation 5.5 is the total loss which makes
up for the objective function to minimize when training.

The procedure of creating body pose predictions using heat maps of keypoints and
affinity fields from the last refinement stage is approached as a graph matching prob-
lem. With K unique keypoint categories, the matching problem is K-dimensional
and usually NP-Hard. But with the help of the affinity fields, the matching problem
can be divided into smaller subproblems of dimension 2, called maximum bipartite
matching.

X. Zhu et al. has proposed some small improvements upon the original work of pose
estimation using Part Affinity Fields [86]. One of the suggestions being redundant
Part Affinity Fields, i.e. each keypoint will have more than one association to
another keypoint. They conclude that this makes it easier for the optimization
problem to pair the keypoints into humans correctly.

60

5. Action Recognition

5.3 Implementation

A few recent publications on action recognition presented in Section 5.1 pointed out
the importance of estimating a body pose to use for classifying an action. By having
a pose estimation stage and an action recognition stage isolated from each other, the
complexity of the time dependency needed to be captured will be severely reduced.
This is because the body pose estimation will be evaluated on a frame-by-frame basis
and the time dependencies are learned only from the body pose keypoint detections
available. Because of the above benefits, we chose to divide up our action recognizer
into a body pose estimation stage and classification stage.

5.3.1 Pose Estimation component

Due to the reasons all of the recent state-of-the-art single person pose estimation
architectures mentioned in Section 5.1 using the highly inefficient stacked hourglass
technique, we had to look elsewhere for inspiration. Among the more efficient but
less accurate alternative solutions is Convolutional Pose Machines. Thereby we
decided to transition into developing a multi-person pose estimator straight away
because the multi-person variant of Convolutional Pose Machines is Pose estimation
using Part Affinity Fields described in section 5.2. This choice will also scale well
with the number of passengers present in the vehicle.

We adopted the idea and architecture of Z. Cao et al. [83] for efficient and accurate
multi-person pose estimation. The original paper uses a pre-trained stub of VGG19
as feature extractor and 7 × 7 filters within the refinement stages, so there were
room for further experimentation of reducing the number of parameters. These are
the efficiency changes we decided to implement:

• Replaced all convolutional layers with its separable convolution equivalent (see
Section 2.6.7).

• Replaced the VGG19 feature extractor with the first nine layers of a pre-trained
MobileNet.

• Replaced every 7× 7 filter with a smaller 3× 3 separable convolution filter

• Reduced the number of layers in each refinement stage from 7 to 5

• Removed any tracked keypoints for the face and below the waist

The argument for removing some of the available keypoints is that the legs of pas-
sengers will not be visible while sitting properly in the car and the face keypoints
are redundant because of Smart Eye’s existing facial tracking algorithms. Also, the
face and legs keypoints are not of interest for the specific actions to learn in the
later stage.

61

5. Action Recognition

Figure 5.3: Architecture overview of an improved model with respect to efficiency
of Pose estimation using Part Affinity Fields

The modified architecture for improved efficiency is shown in Figure 5.3. F consists
of the first nine layers of a pre-trained MobileNet, branching out to a sub network
for learning keypoint heat maps and another sub network for learning the affinity
fields. Both the confidence branch and the affinity branch have identical architec-
ture design in every stage. A branch of the first stage consists of five layers. the
first three are using 3 × 3 separable convolution filters and the last two are using
1 × 1 separable convolution filters. Unlike the refinement stages of the original ar-
chitecture, Figure 5.2, our refinement stages have identical architecture as stage 1.
There is no underlying thought of having the same architecture at every stage in our
architecture, but only a coincidence after converting the 7×7 filters to 3×3 and re-
moving two layers. Non-max suppression is performed on the final output keypoint
heat maps St to obtain a small discrete set of keypoint predictions, and thereafter
fed into a maximum matching optimization problem along with the affinity fields
to simplify the procedure, just like in the original approach [83]. The output of the
maximum matching optimization is a list of humans. If a total of k keypoints are
tracked, then a human is represented by a vector of size 2k, containing the x and y
coordinates of every keypoint.

The keypoints to be tracked are determined by the keypoint labels available in the
dataset. We used the COCO keypoints 2017 dataset for training. This dataset
was used because it is the largest pose estimation dataset available (120,000 labeled
images) and it is backed by Microsoft. A total of 17 unique keypoint categories are
available in this dataset, and which ones we decided to exclude due to the unique
application of monitoring passengers of cars are shown in Table 5.1

62

5. Action Recognition

Keypoint category Z. Cao et al. our implementation
nose

left_eye
right_eye
left_eat
right_ear

left_shoulder
right_shoulder
left_elbow
right_elbow
left_wrist
right_wrist
left_hip
right_hip
left_knee
right_knee
left_ankle
right_ankle

Table 5.1: The keypoints available in the dataset that were used when training

5.3.2 Action recognition component

Our thesis about the action recognition is that estimating a body pose as a prepro-
cessing step will not only improve the results (concluded by [7] and [8]), but also
significantly reduce the complexity of the problem if only the predicted body pose
is used as input. If the type of actions involve interacting with the environment,
such as cooking food, that information will of course be lost by only considering the
body pose. We thereby make sure to use a dataset that is predictable using only
information from the body pose. This restriction will also be enough for the type of
actions Smart Eye is interested in recognizing.

The spatial information was lost by extracting the body pose, but by storing se-
quences of body pose estimations, the problem of capturing temporal dependencies
was introduced. Therefore, when designing the architecture, a combination of fully
connected layers and recurrent layers were considered. By following the work flow
principles of Section 2.9, an initial simple model was implemented using only one
LSTM cell and a softmax function, see Figure 5.4. As the unrolling of the LSTM
cell shows in the Figure, the model follows the many-to-one principle, i.e. given a
sequence of inputs, predict an output only at the last time step.

The dataset used for experiments while Smart Eye’s dataset was under development
was KTH action database, containing 2391 videos of dynamic actions performed by
one human without the need of interacting with the environment. The actions
available are: walking, jogging, running, boxing, hand waving, and hand clapping.

63

5. Action Recognition

Figure 5.4: Architecture overview of the action recognizer. An LSTM cell un-
rolled over time shows how the sequence of human vectors are used as input for one
prediction.

To have as reliable pose estimation inputs as possible when training the action
recognition component, we used a pre-trained model of the original part-affinity
fields body pose estimator. This would not limit the performance of the action
recognition component by the slightly worse performance of our light implementation
of the part-affinity fields pose estimator. Also, if the body pose estimator was not
able to detect a pose for at least 50% of the images of a particular video sequence,
then we removed that video sequence from the dataset.

5.4 Results

The mean average precision of our final body pose estimator model is 8.7 mAP and
the inference time on Jetson TX2 is 3.6 FPS. The mAP over time during training
can be seen in Figure 5.5. Compared to the best methods published as of today,
shown in Table 5.2, we perform the worst, but with the trade-off of being able to
perform real-time inference on the Jetson TX2 platform.

64

5. Action Recognition

Figure 5.5: Mean average precision of the body pose estimator during training.
see [1] for more information about the metrics.

Methods mAP mAP50 FPS
Mask R-CNN 69.2 90.4 2.5 (Tesla P100)
RMPE [84] 68.8 87.5 0.5

Part Affinity Fields original [83] 60.5 83.4 10 (GTX 1080)
Stacked Hourglass Network [79] 46 75 12 (TitanX)
Ours (MobileNet + light PAF) 8.7 23 3.6 (Jetson TX2)

Table 5.2: Comparison of our body pose estimator to other methods in terms of
performance (mAP) and inference time (FPS).

Figure 5.6 shows the train accuracy and test accuracy during training of the action
recognition module. The dataset used was KTH action database. The training
procedure was very fast and 100% accuracy on a training batch were achieved already
at iteration 500. The test accuracy after training is 100%, but keep in mind that
some video sequences were excluded from the dataset.

65

5. Action Recognition

Figure 5.6: The train and test accuracy of the action recognizer during the train-
ing procedure. The train and test accuracy consequently performed 100% after
convergence.

5.5 Discussion

Our light implementation of multi-person pose estimation using affinity fields has
successfully proven to be able to show real-time performance on a Nvidia Jetson TX2
embedded platform. The inference time should be about three times faster than the
original affinity fields architecture but with the cost of a significant reduction in
robustness. This becomes a trade-off where the number of layers and filter sizes of
the refinement stages can be increased to utilize any available computing power that
is left while still satisfying the inference time requirements.

The use of a body pose estimator as a preprocessing step for the action recogni-
tion component has enabled a feature otherwise not available using an end-to-end
network like many other publications mentioned in Section 5.1. This feature being
the support of recognizing different actions from multiple persons in one video. The
body pose estimator also introduces a limitation that can be critical depending on
the type of actions to learn, namely the environment has been stripped away. This
will remove the ability to learn any action that involves interaction with an object,
such as using the mobile phone in different ways.

A practical benefit of separating the problem into a pose estimation step and an
action recognition step is modularity. Smart Eye is a tracking company and by
separating the problem into a body pose estimation stage, this output can act as
a general body joint tracking framework that any future component can use in
addition to the action recognition component.

As for the action recognizer module, its highly likely that removing some of the
video sequences because of too few detections from the body pose estimator made
the result biased. The current state-of-the-art result on the KTH action database is
96.8% accuracy [87], and because of our introduced bias, we can’t compare our result
with other architectures. Apart from not being able to compare performance, we

66

5. Action Recognition

can still conclude that the body pose estimator of the tracking framework provides
a very good abstract representation of human bodies and can be used as a base for
implementing action recognition modules.

67

5. Action Recognition

68

6
Real-time system

As the performance of Deep Learning solutions has become accurate enough for
practical applications during the last few years, a new central question has been
addressed, namely how to deploy these models in resource constrained environments
like embedded systems and mobile devices. The hardware industry has answered
with inventions like the Neural Engine from Apple [88] and the Jetson embedded
system series from Nvidia [89]. In this chapter, we will investigate how applicable
our most efficient and accurate proposed models are in a GPU accelerated embedded
environment.

One of the end goals of this thesis is to develop a prototype that consists of the
modules presented in previous chapters that is able to operate real-time on a Nvidia
Jetson TX2 embedded platform. More specifically, the on-board camera of Jetson
TX2 should continuously capture images as input to the tracking framework, con-
sisting of the body pose estimator and the object detector, and thereafter use the
extracted features as input to a hand gesture classifier and an action recognizer.

The prototype will not be implemented inside a car for testing, but only on the
Jetson TX2 standalone platform for measurements to see if our models are efficient
enough to be jointly implemented together in an embedded environment.

6.1 Implementation

The live inference software was implemented to run on a Nvidia Jetson TX2 plat-
form using the GPU-accelerated Tensorflow framework. Recall the initial idea of
the architecture from Figure 1.1. A more detailed visualization of the final real-time
inference architecture is shown in Figure 6.1. There is a separate pipeline for han-
dling hand gestures and a separate pipeline for handling body pose actions. Also, we
implemented a guard that is responsible for deciding when a deep inference should
be performed and when its not worth it, to save computing power.

69

6. Real-time system

Figure 6.1: The final architecture of our prototype

6.1.1 Deep inference guard

We call the first component of our real-time system a deep inference guard. Its
mission is to determine when movement in the input image is high enough for a
deep inference to be worth it. Our argument for implementing this component is
that there can be up to multiple seconds in a driving scenario where neither of the
passengers’ hands nor body parts are moving, and therefore the predictions of the
previous frame can be used instead.

The implementation follows mostly the same steps as the fixed window hand detector
implementation in Section 3.3.1. More specifically, lines 2-12 of Algorithm 2 are
implemented in the deep inference guard and performed on the whole image to
extract histv and histh. Thereafter, a simple comparison between the sum of visible
pixels and the total number of pixels are performed to determine how many percent
of the original image is captured by the exponentially averaged moving edges, see
Algorithm 3. If the percent of visible moving edges are above θ, then deep inference
is allowed. θ can be adjusted to meet sensitivity requirements. A value of 0 will
always allow deep inference and a value of 1 will always block deep inference.

input : I as the input image from camera, kwargs as the parameters needed for
Algorithm 2, θ as the deep inference threshold (θ ∈ [0, 1])

output: g as a boolean (True == allow, False == block)
1 pixelstot ← 2 · product(I.shape);
2 histh, histv ← Algorithm2(I, kwargs);
3 pixelsvis ← sum([histh, histv]);
4 s← pixelsvis

pixelstot
;

5 g ← s > θ return g
Algorithm 3: The deep inference guard algorithm. Returns true or false whether
to perform a deep inference or not.

70

6. Real-time system

6.1.2 Gesture recognition pipeline

The gesture recognition module utilizes the object detection capabilities of the track-
ing framework. Every detected hand is extracted from the input image at every time
step. When storing a sequence of hand detections over time, a detected hand at time
step tn has to be paired together with the same hand detected at time steps ti where
i < n. To match a detected hand with any hand at a previous time step, their
intersection-over-union (IoU) was calculated [15]. If the IoU between a detected
hand at time ti−1 and a detected hand at time ti was above a certain threshold θ,
it was considered to be the same hands. If the IoU was too low when comparing
to any previously detected hand at time ti, it was considered to be a new hand not
seen before in the sequence of images.

These sequences of detected hands are stored in separate buffers and the hand
gesture classifier performs an inference on a particular buffer whenever it becomes
large enough (15-30 frames for our dynamic hand classifier and 1 frame for our static
hand classifier). In the case of multiple detected hands that need to be classified in
the same image, we were able to use the batch dimension of the gesture classifier to
perform classification on all detections simultaneously.

6.1.3 Action recognition pipeline

The action recognizer module utilizes the body pose estimation capabilities of the
tracking framework. Just like the input for the dynamic hand gesture classifier,
the action recognizer requires a detected body pose as a sequence over time. An
approach similar to the hand detections for matching and storing the body pose
detection was implemented, but with a difference in the matching algorithm. In-
stead of measuring IoU, the euclidean distance between the mean keypoint for every
detected body pose was compared. If the distance between two body poses of dif-
ferent time steps were within a certian distance threshold θ, they were considered
to originate from the same body and thereby stored in the same buffer.

Since the action recognizer is dynamic and only requires one input pose at each time
step (unlike the gesture classifier that requires more because of 3D convolutions),
it enables a continuous flow of body pose inputs and an action prediction for every
time step. By performing an inference at each time step, the buffer size was able to
be kept at a size of one, with the addition that a separate hidden state of the LSTM
for every unique body pose sequence needed to be stored.

6.1.4 Merged feature extractor

Since the hand detector and the pose estimator both use a general feature extractor
CNN at the beginning of each network, we experimented with merging these layers

71

6. Real-time system

into a common feature extractor, see Figure 6.2. This resulted in a multitask learn-
ing problem, where the common feature extractor needs to learn good features for
both object detection and keypoint estimation. Training was performed by using
a pre-trained SqueezeNet as common layers and then freezing them. The idea was
that no task should dominate in which direction to update the weights and a pre-
trained SqueezeNet on ImageNet classification should already have learned valuable
features. Freezing the majority of layers and only training the upper layers has been
shown to work well for transfer learning scenarios when the end goal is also image
classification [90]. We try this approach for transfer learning for object detection
and pose estimation.

Figure 6.2: The tracking framework with the merged feature extractor. After
an image has passed the deep inference guard it is first sent through the first nine
layers of a MobileNet before being divided into the object detector and body pose
estimator.

6.2 Results

Inference times for the hand gesture classifiers and action recognizer were tested
separately to examine how much overhead they would cause when appending on top
of the tracking framework. Unfortunately, the dynamic hand gesture classifier were
not able to run on Jetson TX2 due to limited RAM. However, inference times for
the static Hand Gesture Classifier are shown in Table 6.1 for different amount of
input hands. Inference times for the action recognizer were also tested with different
amount of input body poses at once, presented in Table 6.2.

Hands inference (ms) FPS
1 21 48
2 29 34
3 40 25
4 47 21

Table 6.1: Inference times for the static hand gesture classifier with different num-
ber of hands to classify at once.

72

6. Real-time system

Body poses inference (ms) FPS
1 7 143
2 8 125
3 14 71
4 17 59
5 19 52

Table 6.2: Inference times for the Action Recognizer with different number of
hands to classify at once.

Inference times for our implemented modules are shown in Table 6.3. Inference times
for each module tested separately, the final tracking framework and the framework
with additional modules are shown.

Module inference (ms) FPS
Object Detector (SqueezeNet) 62 16.7

Action Recognizer 7 142
Hand Gesture Classifier (Static) 21 48

Hand Gesture Classifier (Dynamic) - -
Body Pose Estimator 280 3.6
Tracking Framework 390 2.6

Tracking Framework & Hand Gesture Classifier (Static) 410 2.4
Tracking Framework & Action Recognizer 397 2.5
Tracking Framework & Gestures & Actions 417 2.4

Table 6.3: Inference times of separate modules and combined modules of the real-
time inference implementation.

6.3 Discussion

Empirical results of the inference guard were promising. It successfully blocked
any deep inferences whenever the changes over time were insignificant. The guard
also includes a threshold θ that enables easy tuning of its sensitivity. We believe
that saving computing power by avoiding to perform inference on similar images
is critical when implemented in an embedded environment. A problem that may
occur when deployed inside a car is that major sections of the background may be
moving because of transparent windows, and we suspect that further development of
this guard component is needed to emphasize the moving pixels of the areas where
passengers are located.

The framework can successfully operate real-time on the Jetson TX2 platform. Un-
fortunately, the dynamic hand gesture classifier was not able to fit into RAM. Testing
the live inference capabilities of the dynamic hand gesture classifier on a machine
with bigger RAM revealed additional setbacks. When the framework is cropping a

73

6. Real-time system

detected hand from the input image, the information of where in space the hand
is moving is lost. For example, in the case of the "swipe right" gesture, the hand
is moving from left to right in space over time, but the hand detector removes this
information because the bounding box prediction is moving along the hand every
time step. This resulted in the dynamic hand gesture classifier in combination with
the object detector to be unusable. Instead, we recommend having a fixed window
to be input to a dynamic hand gesture classifier without cropping out the hand.
This will preserve the movement in space over time of the hand.

The dynamic hand gesture model is heavy with an unattractive inference time. By
jumping more than one frame at a time allows the system to a deep inference less
frequent. However you do not want to slide too heavy, making the model ignore
the first movements of the gesture. Additionally, making less inferences also po-
tentially increases the response time to detect a gesture from our model. After
experiments the real time implementation strides five frames between each deep
inference, constituting the best trade off between inferences per second and infor-
mation retained.

The static hand gesture classifier was able to operate real-time together with the
tracking framework on Jetson TX2. Empirical results also revealed that the perfor-
mance of the classifier was moderate with the object detector. This is due to the
classifier not being dependant on movements over time, and only a snapshot of the
current pose of the hand is necessary to classify a gesture.

Since the action recognition module only consisted of one LSTM layer and a softmax,
it was able to operate real-time on top of the tracking framework with only 7ms
overhead. According to Table 6.2, increasing the number of body pose inputs to 5
for a single image added only an additional 12ms overhead, which means that this
implementation will be able to handle an in-car scenario with maximum number of
passengers present.

Freezing the first 6-8 layers of the SqueezeNet YOLO object detector before training
resulted in the model not learning to detect anything at all. This means that the
merged feature extractor CNN implementation was not trainable, and was there-
fore not included in the final prototype. We suspect SqueezeNet having not very
rich transfer learning capabilities, since it has much fewer parameters than other
architectures that are common for transfer learning, such as VGG19.

74

7
Conclusions

The proposed system was implemented with the objectives that was established
in the beginning of this thesis in mind. Overall, we believe that the thesis was
successful carrying out the set objectives. However, all implementations currently
assumes an RGB input, which was not desirable with the prerequisites set from
Smart Eye. Furthermore three bonus objectives were explored; dynamic hand ges-
tures, multi-person pose, and a merge of the first layers of feature extractors of the
object detector and body pose estimator. As a consequence of the embedded envi-
ronment constraint, all our models have been experimented with to find a suitable
trade-off between performance and efficiency.

7.1 Future work

Given additional time, there exists several additional adaptions of our system to
make it more valuable and by extension integrable into Smart Eye’s product segment.
In the field of Deep Learning in general and Computer Vision in particular, new
state-of-the-art solutions are continuously published in a rapid pace. Therefore,
we anticipate that new improved ideas of solving similar problems to the ones this
thesis tackles will be published on an on-going basis, becoming the solutions to
ideally research for future work.

Our system shall be able to work under various lightning conditions, day and night.
During night time, color information is redundant, thus there is no need for RGB
input, which also complies with Smart Eye’s main sensor of choice - near infrared
cameras. A requirement to train the models used throughout this thesis is the use
of pre-trained weights. Architectures such as SqueezeNet is extensively used, but
currently there are no pre-trained weights available in gray-scale format. Therefore
retraining SqueezeNet on ImageNet and converting the images and the architecture
to one channel input would be a necessity for an implementation usable by Smart
Eye given their current constraints. Another direction would be to convert gray-
scale input to a RGB-format, using the current implementation, however this may
result in a to significant performance loss.

Embedded environments do not only require a tractable inference time, but also

75

7. Conclusions

small model sizes. Smaller models make less memory references and thus require
less energy. In addition, it also makes over air updates on limited bandwidth easier,
and may result in the entire model being fit into SRAM. For this purpose it is our
belief that all real-time implementations should be coded in C/C++ with frame-
works such as Nvidia’s TensorRT when deploying live on a Jetson TX2. TensorRT
performs automated compression of model size through methods such as quanti-
zation of weights and removing unnecessary nodes. Additionally, you can cluster
weights from hidden layers to a discrete representation along with aforementioned
methods, as proposed in Deep Compression by Song Han et al. Deep compression
reduces VGG-19 model size 49 times and speed-up off up to 3 times [37].

The proposed framework is currently built for the purpose of helping our action
recognizer and hand gesture classifier. However, ideally it should be able to support
the classification of arbitrary tasks. The object detector is only trained on detecting
hands. If found useful, additional objects such as mobile phones may be added
to the detector without interfering with the network architecture. In addition, the
human body pose estimator is also architectured in a way to be able to add more
joints.

An issue with recognizing actions solely on human body pose estimations is that it
completely removes environmental information. Therefore the potential to recognize
actions that interacts with the the environment, e.g. talking in a phone or interacting
with the infotainment, may be diminished. Extending our framework, the object
detector, to detect additional objects such as mobile phones and integrating it into
the action recognizer may increase its applicability, while keeping the inference time
close to as before.

7.2 Conclusion

The purpose of this thesis was to investigate how Deep Learning based methods can
be used in order to increase passenger safety. This thesis response to the open-ended
question comes in the form of a Deep Learning based framework for monitoring
passengers inside a car. The framework provide tools with the possibility to be
integrated into solutions such as automated adjustment of seats and mirrors, and
observing passengers in various ways. Additionally, this thesis demonstrates the
applicabilities of said framework in practice with an action recognizer and a hand
gesture classifier.

The body pose estimator is trained to track keypoints from the upper body and the
object detector to keep track of hands. However, their general architecture enables
extending the capabilities by tracking additional objects and body keypoints if the
required labels are available. Adding extra tracking capabilities will only increase
the last layer of the architectures, hence our framework is scalable.

The applicability of the object detection module of the framework has been demon-

76

7. Conclusions

strated by training on hand detection datasets and using detected hands as input
to a gesture classifier. We conclude that this approach works well for detecting and
recognizing static hand gestures from any hands located anywhere within the recep-
tive field of the camera. However, this approach is unusable for the case of dynamic
hand gestures, because cropping the hand results in loss of location in space.

We have also demonstrated the applicability of detected keypoints from our tracking
framework. Our results show that the keypoints represent good features for learning
actions involving body part movements. This implementation assumes that the
keypoints will include the information needed to classify an action, i.e. no external
objects will be taken into account. Expanding actions to include external objects
has been left to future work.

Lastly, we have successfully implemented the proposed tracking framework onto a
Nvidia Jetson TX2 embedded platform, with a run time of 2.6 fps. Unfortunately,
our dynamic hand gesture classifier has too many parameters to fit onto the embed-
ded system. However, we can include the static hand gesture recognition module
and the action recognition module on top of the framework. It reduces the run time
to 2.4 fps, but still considered a successful real-time implementation.

77

7. Conclusions

78

Bibliography

[1] Microsoft COCO. (2014) Keypoint Evaluation - Object Keypoint Similarity.
[Online]. Available: http://cocodataset.org/#keypoints-eval

[2] National Highway Traffic Safety Administration. (2015) Critical Reasons for
Crashes Investigated in the National Motor Vehicle Crash Causation Survey.
[Accessed: 2017-11-22]. [Online]. Available: https://crashstats.nhtsa.dot.gov/
Api/Public/ViewPublication/812115

[3] National Highway Traffic Safety Administration . (2011) Drowsy Driving.
[Accessed: 2017-11-22]. [Online]. Available: https://crashstats.nhtsa.dot.gov/
Api/Public/ViewPublication/811449

[4] Y. Hatakeyema, “Feasibility Study of Drowsy Driving Prediction based on
Eye Opening Time,” in SAE Technical Paper. SAE International, 03 2017.
[Online]. Available: https://doi.org/10.4271/2017-01-1398

[5] B. Reddy, Y. H. Kim, S. Yun, C. Seo, and J. Jang, “Real-Time Driver Drowsi-
ness Detection for Embedded System Using Model Compression of Deep Neural
Networks,” in 2017 IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops (CVPRW), July 2017, pp. 438–445.

[6] V. Corcoba Magaña, M. Muñoz Organero, J. Arias Fisteus, and L. Sánchez Fer-
nández, “Estimating the stress for drivers and passengers using deep learning,”
CEUR-WS. org, 2017.

[7] B. X. Nie, C. Xiong, and S.-C. Zhu, “Joint action recognition and pose esti-
mation from video,” The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1293–1301, 2015.

[8] G. Ch, I. Laptev, C. Schmid, G. Ch, and G. Ch, “P-CNN : Pose-based CNN
Features for Action Recognition,” International Conference on Computer Vi-
sion (ICCV), pp. 3218–3226, 2015.

[9] IHS Markit. (2013) Sales of Automotive Proximity and Gesture Recognition
Systems Shift into High Gear. [Accessed: 2018-01-22]. [Online]. Avail-

79

http://cocodataset.org/#keypoints-eval
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812115
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812115
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811449
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811449
https://doi.org/10.4271/2017-01-1398

Bibliography

able: http://news.ihsmarkit.com/press-release/design-supply-chain-media/
sales-automotive-proximity-and-gesture-recognition-systems-s

[10] Regeringen. (2017) Händerna på ratten – inte på mobilen. [Accessed:
2018-01-22]. [Online]. Available: http://www.regeringen.se/pressmeddelanden/
2017/11/handerna-pa-ratten--inte-pa-mobilen/

[11] Sony Depthsensing Solutions. (2018) Sony DepthSense CARlib. [Online]. Avail-
able: https://www.sony-depthsensing.com/DepthSense/Markets/Automotive

[12] L. Deng and D. Yu, “Deep Learning: Methods and Applications,” Tech.
Rep., 2014. [Online]. Available: https://www.microsoft.com/en-us/research/
publication/deep-learning-methods-and-applications/

[13] F. Rosenblatt, “The Perceptron: A Probabilistic Model for Information Storage
and Organization in The Brain,” Psychological Review, pp. 65–386, 1958.

[14] S. Yeung, “Lecture 6 | Training Neural Networks I,” Stanford University, 2017.
[Online]. Available: https://www.youtube.com/watch?v=wEoyxE0GP2M&
list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv&index=6

[15] A. Ng. (2017, August) Convolutional Neural Networks - Intersection
Over Union. Coursera. [Online]. Available: https://www.coursera.org/
specializations/deep-learning

[16] J. Hui. (2018) mAP (mean Average Precision) for Object
Detection. [Online]. Available: https://medium.com/@jonathan_hui/
map-mean-average-precision-for-object-detection-45c121a31173

[17] S. Ruder, “An overview of gradient descent optimization algorithms,” CoRR,
vol. abs/1609.0, 2016. [Online]. Available: http://arxiv.org/abs/1609.04747

[18] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
CoRR, vol. abs/1412.6, 2014. [Online]. Available: http://arxiv.org/abs/1412.
6980

[19] A. Krogh and J. A. Hertz, “A simple weight decay can improve generalization,”
in Advances in Neural Information Processing Systems, 1992, pp. 950–957.

[20] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Improving neural networks by preventing co-adaptation of feature detectors,”
CoRR, vol. abs/1207.0580, 2012. [Online]. Available: http://arxiv.org/abs/
1207.0580

[21] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift,” CoRR, vol. abs/1502.0, 2015.
[Online]. Available: http://arxiv.org/abs/1502.03167

80

http://news.ihsmarkit.com/press-release/design-supply-chain-media/sales-automotive-proximity-and-gesture-recognition-systems-s
http://news.ihsmarkit.com/press-release/design-supply-chain-media/sales-automotive-proximity-and-gesture-recognition-systems-s
http://www.regeringen.se/pressmeddelanden/2017/11/handerna-pa-ratten--inte-pa-mobilen/
http://www.regeringen.se/pressmeddelanden/2017/11/handerna-pa-ratten--inte-pa-mobilen/
https://www.sony-depthsensing.com/DepthSense/Markets/Automotive
https://www.microsoft.com/en-us/research/publication/deep-learning-methods-and-applications/
https://www.microsoft.com/en-us/research/publication/deep-learning-methods-and-applications/
https://www.youtube.com/watch?v=wEoyxE0GP2M&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv&index=6
https://www.youtube.com/watch?v=wEoyxE0GP2M&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv&index=6
https://www.coursera.org/specializations/deep-learning
https://www.coursera.org/specializations/deep-learning
https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173
https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1502.03167

Bibliography

[22] M. J. Jones and P. Viola, “Robust real-time object detection,” in Workshop on
Statistical and Computational Theories of Vision, vol. 266, 2001, p. 56.

[23] A. Karpathy. (2017, May) CS231n Convolutional Neural Networks for Visual
Recognition. Stanford University. [Accessed: 2018-08-26]. [Online]. Available:
http://cs231n.github.io/convolutional-networks/

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in Proceedings of the 25th
International Conference on Neural Information Processing Systems - Volume
1, ser. NIPS’12. USA: Curran Associates Inc., 2012, pp. 1097–1105. [Online].
Available: http://dl.acm.org/citation.cfm?id=2999134.2999257

[25] R. Pascanu, T. Mikolov, and Y. Bengio, “Understanding the exploding
gradient problem,” CoRR, vol. abs/1211.5063, 2012. [Online]. Available:
http://arxiv.org/abs/1211.5063

[26] Y. Bengio, P. Simard, and P. Frasconi, “Learning Long-term Dependencies
with Gradient Descent is Difficult,” Trans. Neur. Netw., vol. 5, no. 2, pp.
157–166, Mar. 1994. [Online]. Available: http://dx.doi.org/10.1109/72.279181

[27] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. [Online]. Available:
http://dx.doi.org/10.1162/neco.1997.9.8.1735

[28] C. Olah. (2017) Understanding LSTM Networks. [Online]. Available:
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

[29] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. S. Bernstein, A. C. Berg, and F. Li, “ImageNet
Large Scale Visual Recognition Challenge,” CoRR, vol. abs/1409.0575, 2014.
[Online]. Available: http://arxiv.org/abs/1409.0575

[30] V. Golkov, A. Dosovitskiy, J. I. Sperl, M. I. Menzel, M. Czisch,
P. Sämann, T. Brox, and D. Cremers, “q-Space Deep Learning: Twelve-Fold
Shorter and Model-Free Diffusion MRI Scans,” IEEE Transactions on
Medical Imaging, vol. 35, no. 5, pp. 1344–1351, 2016. [Online]. Available:
http://arxiv.org/abs/1602.07360

[31] A. Canziani, A. Paszke, and E. Culurciello, “An Analysis of Deep Neural
Network Models for Practical Applications,” CoRR, vol. abs/1605.0, pp. 1–7,
2016. [Online]. Available: http://arxiv.org/abs/1605.07678

[32] D. H. Hubel and T. N. Wiesel, “Receptive Fields and Functional Architecture of
Monkey Striate Cortex,” Journal of Physiology (London), vol. 195, pp. 215–243,
1968.

[33] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning ap-

81

http://cs231n.github.io/convolutional-networks/
http://dl.acm.org/citation.cfm?id=2999134.2999257
http://arxiv.org/abs/1211.5063
http://dx.doi.org/10.1109/72.279181
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1605.07678

Bibliography

plied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp.
2278–2324, nov 1998.

[34] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for
Large-Scale Image Recognition,” CoRR, vol. abs/1409.1, 2014. [Online].
Available: http://arxiv.org/abs/1409.1556

[35] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going Deeper with Convolutions,” CoRR,
vol. abs/1409.4, 2014. [Online]. Available: http://arxiv.org/abs/1409.4842

[36] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” CoRR, vol. abs/1512.0, 2015. [Online]. Available:
http://arxiv.org/abs/1512.03385

[37] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing Deep
Neural Networks with Pruning, Trained Quantization and Huffman Coding,”
pp. 1–14, 2015. [Online]. Available: http://arxiv.org/abs/1510.00149https:
//github.com/songhan

[38] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5MB model size,” pp. 1–13, 2016. [Online]. Available:
http://arxiv.org/abs/1602.07360

[39] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications,” CoRR, vol. abs/1704.0, 2017.
[Online]. Available: http://arxiv.org/abs/1704.04861

[40] A. Karpathy, “What I learned from competing against a ConvNet on
ImageNet,” 2014. [Online]. Available: http://karpathy.github.io/2014/09/02/
what-i-learned-from-competing-against-a-convnet-on-imagenet/

[41] A. Ng. (2017, June) Structuring Machine Learning Projects (Course
3 of the Deep Learning Specialization). Coursera. [Online]. Available:
https://www.coursera.org/specializations/deep-learning

[42] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detec-
tion,” in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, vol. 1. IEEE, 2005, pp. 886–893.

[43] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,” CoRR,
vol. abs/1311.2, 2013. [Online]. Available: http://arxiv.org/abs/1311.2524

[44] R. B. Girshick, “Fast R-CNN,” CoRR, vol. abs/1504.08083, 2015. [Online].
Available: http://arxiv.org/abs/1504.08083

82

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1510.00149 https://github.com/songhan
http://arxiv.org/abs/1510.00149 https://github.com/songhan
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1704.04861
http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/
http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/
https://www.coursera.org/specializations/deep-learning
http://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1504.08083

Bibliography

[45] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal Networks,” CoRR,
vol. abs/1506.0, no. 6, pp. 1137–1149, 2015. [Online]. Available: http:
//arxiv.org/abs/1506.01497

[46] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick, “Mask R-CNN,” CoRR,
vol. abs/1703.0, 2017. [Online]. Available: http://arxiv.org/abs/1703.06870

[47] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, “Deformable
Convolutional Networks,” CoRR, vol. abs/1703.0, 2017. [Online]. Available:
http://arxiv.org/abs/1703.06211

[48] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path Aggregation Network for
Instance Segmentation,” CoRR, vol. abs/1803.0, 2018. [Online]. Available:
http://arxiv.org/abs/1803.01534

[49] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You Only Look
Once: Unified, Real-Time Object Detection,” CoRR, vol. abs/1506.0, 2015.
[Online]. Available: http://arxiv.org/abs/1506.02640

[50] M. J. Shafiee, B. Chywl, F. Li, and A. Wong, “Fast YOLO: A Fast You Only
Look Once System for Real-time Embedded Object Detection in Video,” CoRR,
vol. abs/1709.0, 2017. [Online]. Available: http://arxiv.org/abs/1709.05943

[51] B. Wu, F. N. Iandola, P. H. Jin, and K. Keutzer, “SqueezeDet: Unified,
Small, Low Power Fully Convolutional Neural Networks for Real-Time Object
Detection for Autonomous Driving,” CoRR, vol. abs/1612.0, 2016. [Online].
Available: http://arxiv.org/abs/1612.01051

[52] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” CoRR,
vol. abs/1612.0, 2016. [Online]. Available: http://arxiv.org/abs/1612.08242

[53] T. H. N. Le, Y. Zheng, C. Zhu, K. Luu, and M. Savvides, “Multiple Scale
Faster-RCNN Approach to Driver’s Cell-Phone Usage and Hands on Steering
Wheel Detection,” IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Workshops, pp. 46–53, 2016.

[54] T. Hoang, N. Le, C. Zhu, Y. Zheng, K. Luu, M. Savvides, T. H. N. Le, C. Zhu,
Y. Zheng, K. Luu, and M. Savvides, “Robust hand detection in Vehicles,” in
2016 23rd International Conference on Pattern Recognition (ICPR), dec 2016,
pp. 573–578.

[55] T. H. N. Le, K. G. Quach, C. Zhu, C. N. Duong, K. Luu, and M. Savvides,
“Robust Hand Detection and Classification in Vehicles and in the Wild,” IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
Workshops, vol. 2017-July, pp. 1203–1210, 2017.

[56] N. Das, E. Ohn-Bar, and M. M. Trivedi, “On Performance Evaluation of Driver

83

http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1703.06211
http://arxiv.org/abs/1803.01534
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1709.05943
http://arxiv.org/abs/1612.01051
http://arxiv.org/abs/1612.08242

Bibliography

Hand Detection Algorithms: Challenges, Dataset, and Metrics,” in 2015 IEEE
18th International Conference on Intelligent Transportation Systems, sep 2015,
pp. 2953–2958.

[57] S. Bambach, S. Lee, D. J. Crandall, and C. Yu, “Lending A Hand: Detecting
Hands and Recognizing Activities in Complex Egocentric Interactions,” in The
IEEE International Conference on Computer Vision (ICCV), dec 2015.

[58] N. Das, E. Ohn-Bar, and M. M. Trivedi, “On performance evaluation of driver
hand detection algorithms: Challenges, dataset, and metrics,” in Intelligent
Transportation Systems (ITSC), 2015 IEEE 18th International Conference on.
IEEE, 2015, pp. 2953–2958.

[59] S. Bambach, S. Lee, D. J. Crandall, and C. Yu, “Lending a hand: Detecting
hands and recognizing activities in complex egocentric interactions,” in Com-
puter Vision (ICCV), 2015 IEEE International Conference on. IEEE, 2015,
pp. 1949–1957.

[60] BKZero. (2017) Tensorflow issue - slim.separable_conv2d is too slow. GitHub.
[Online]. Available: https://github.com/tensorflow/tensorflow/issues/12132

[61] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen, “Inverted
Residuals and Linear Bottlenecks: Mobile Networks for Classification,
Detection and Segmentation,” CoRR, vol. abs/1801.04381, 2018. [Online].
Available: http://arxiv.org/abs/1801.04381

[62] A. Gholami, K. Kwon, B. Wu, Z. Tai, X. Yue, P. H. Jin, S. Zhao, and
K. Keutzer, “SqueezeNext: Hardware-Aware Neural Network Design,” CoRR,
vol. abs/1803.10615, 2018. [Online]. Available: http://arxiv.org/abs/1803.
10615

[63] J. Guo and S. Li, “Hand gesture recognition and interaction with 3D stereo
camera,” 2011, The Project Report of Australian National University.

[64] H. Cheng, Z. Dai, Z. Liu, and Y. Zhao, “An image-to-class dynamic time
warping approach for both 3D static and trajectory hand gesture recognition,”
Pattern Recognition, vol. 55, pp. 137 – 147, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0031320316000157

[65] A. Camurri, G. Volpe, S. A. (e-book collection), and S. (e-book collection),
Gesture-based communication in human-computer interaction: 5th Interna-
tional Gesture Workshop, GW 2003 : Genova, Italy, April 2003 : selected
revised papers. New York: Springer, 2004, vol. 2915.

[66] D. Tran, L. D. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “C3D: Generic
Features for Video Analysis,” CoRR, vol. abs/1412.0767, 2014. [Online].
Available: http://arxiv.org/abs/1412.0767

84

https://github.com/tensorflow/tensorflow/issues/12132
http://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1803.10615
http://arxiv.org/abs/1803.10615
http://www.sciencedirect.com/science/article/pii/S0031320316000157
http://arxiv.org/abs/1412.0767

Bibliography

[67] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-
Fei, “Large-Scale Video Classification with Convolutional Neural Networks,”
in 2014 IEEE Conference on Computer Vision and Pattern Recognition, June
2014, pp. 1725–1732.

[68] H. J. Escalante, V. Ponce-López, J. Wan, M. A. Riegler, B. Chen, A. Clapés,
S. Escalera, I. Guyon, X. Baró, P. Halvorsen, H. Müller, and M. Larson,
“ChaLearn Joint Contest on Multimedia Challenges Beyond Visual Analysis:
An overview,” in 2016 23rd International Conference on Pattern Recognition
(ICPR), Dec 2016, pp. 67–73.

[69] B. Zhou, A. Andonian, and A. Torralba, “Temporal Relational Reasoning
in Videos,” CoRR, vol. abs/1711.08496, 2017. [Online]. Available: http:
//arxiv.org/abs/1711.08496

[70] X. Shi, Z. Chen, H. Wang, D. Yeung, W. Wong, and W. Woo,
“Convolutional LSTM Network: A Machine Learning Approach for
Precipitation Nowcasting,” CoRR, vol. abs/1506.04214, 2015. [Online].
Available: http://arxiv.org/abs/1506.04214

[71] G. Zhu, L. Zhang, P. Shen, and J. Song, “Multimodal Gesture Recognition
Using 3-D Convolution and Convolutional LSTM,” IEEE Access, vol. 5, pp.
4517–4524, 2017.

[72] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial Pyramid Pooling in Deep
Convolutional Networks for Visual Recognition,” CoRR, vol. abs/1406.4729,
2014. [Online]. Available: http://arxiv.org/abs/1406.4729

[73] R. B. Miller, “Response Time in Man-computer Conversational Transactions,”
in Proceedings of the December 9-11, 1968, Fall Joint Computer Conference,
Part I, ser. AFIPS ’68 (Fall, part I). New York, NY, USA: ACM, 1968, pp.
267–277. [Online]. Available: http://doi.acm.org/10.1145/1476589.1476628

[74] Twenty Billion Neurons GmbH. (2018) the 20bn-jester dataset v1. [Accessed:
2018-06-08]. [Online]. Available: https://20bn.com/datasets/jester

[75] S. Marcel. (1999) Hand Posture and Gesture Datasets static hand posture
database. [Online]. Available: http://www-prima.inrialpes.fr/FGnet/data/
10-Gesture/gestures/main.html

[76] L. Wang, Y. Qiao, and X. Tang, “Action recognition with trajectory-pooled
deep-convolutional descriptors,” Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, vol. 07-12-June, pp.
4305–4314, 2015. [Online]. Available: http://arxiv.org/abs/1505.04868

[77] C. Feichtenhofer, A. Pinz, and A. Zisserman, “Convolutional Two-Stream
Network Fusion for Video Action Recognition,” CoRR, vol. abs/1604.0, 2016.
[Online]. Available: http://arxiv.org/abs/1604.06573

85

http://arxiv.org/abs/1711.08496
http://arxiv.org/abs/1711.08496
http://arxiv.org/abs/1506.04214
http://arxiv.org/abs/1406.4729
http://doi.acm.org/10.1145/1476589.1476628
https://20bn.com/datasets/jester
http://www-prima.inrialpes.fr/FGnet/data/10-Gesture/gestures/main.html
http://www-prima.inrialpes.fr/FGnet/data/10-Gesture/gestures/main.html
http://arxiv.org/abs/1505.04868
http://arxiv.org/abs/1604.06573

Bibliography

[78] G. Gkioxari, R. B. Girshick, and J. Malik, “Contextual Action Recognition
with R*CNN,” CoRR, vol. abs/1505.0, 2015. [Online]. Available: http:
//arxiv.org/abs/1505.01197

[79] A. Newell, K. Yang, and J. Deng, “Stacked Hourglass Networks for
Human Pose Estimation,” CoRR, vol. abs/1603.0, 2016. [Online]. Available:
http://arxiv.org/abs/1603.06937

[80] C.-J. Chou, J.-T. Chien, and H.-T. Chen, “Self Adversarial Training for
Human Pose Estimation,” CoRR, vol. abs/1707.0, 2017. [Online]. Available:
http://arxiv.org/abs/1707.02439

[81] W. Yang, S. Li, W. Ouyang, H. Li, and X. Wang, “Learning Feature Pyramids
for Human Pose Estimation,” CoRR, vol. abs/1708.0, 2017. [Online]. Available:
http://arxiv.org/abs/1708.01101

[82] L. Ke, M.-C. Chang, H. Qi, and S. Lyu, “Multi-Scale Structure-Aware
Network for Human Pose Estimation,” CoRR, vol. abs/1803.0, 2018. [Online].
Available: http://arxiv.org/abs/1803.09894

[83] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime Multi-Person 2D Pose
Estimation using Part Affinity Fields,” CoRR, vol. abs/1611.0, 2016. [Online].
Available: http://arxiv.org/abs/1611.08050

[84] H. Fang, S. Xie, and C. Lu, “RMPE: Regional Multi-person Pose
Estimation,” CoRR, vol. abs/1612.00137, 2016. [Online]. Available: http:
//arxiv.org/abs/1612.00137

[85] S. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, “Convolutional
Pose Machines,” CoRR, vol. abs/1602.00134, 2016. [Online]. Available:
http://arxiv.org/abs/1602.00134

[86] Xiangyu Zhu, Yingying Jiang and Z. Luo, “Multi-Person Pose Estimation
for PoseTrack with Enhanced Part Affinity Fields,” 2017. [Online]. Available:
https://doi.org/10.1109/CVPR.2017.143

[87] Y. Shi, Y. Tian, Y. Wang, and T. Huang, “Sequential Deep Trajectory
Descriptor for Action Recognition with Three-stream CNN,” CoRR, vol.
abs/1609.03056, 2016. [Online]. Available: http://arxiv.org/abs/1609.03056

[88] Apple. (2017, sep) The future is here: iPhone X. [Online]. Available:
https://www.apple.com/newsroom/2017/09/the-future-is-here-iphone-x/

[89] NVIDIA Corporation. (c2018) Hardware For Every Situation. [Accessed: 2018-
06-07]. [Online]. Available: https://developer.nvidia.com/embedded/develop/
hardware

86

http://arxiv.org/abs/1505.01197
http://arxiv.org/abs/1505.01197
http://arxiv.org/abs/1603.06937
http://arxiv.org/abs/1707.02439
http://arxiv.org/abs/1708.01101
http://arxiv.org/abs/1803.09894
http://arxiv.org/abs/1611.08050
http://arxiv.org/abs/1612.00137
http://arxiv.org/abs/1612.00137
http://arxiv.org/abs/1602.00134
https://doi.org/10.1109/CVPR.2017.143
http://arxiv.org/abs/1609.03056
https://www.apple.com/newsroom/2017/09/the-future-is-here-iphone-x/
https://developer.nvidia.com/embedded/develop/hardware
https://developer.nvidia.com/embedded/develop/hardware

Bibliography

[90] Y. Katariya. (2017) Transfer Learning. [Online]. Available: https://yashk2810.
github.io/Transfer-Learning/

87

https://yashk2810.github.io/Transfer-Learning/
https://yashk2810.github.io/Transfer-Learning/

Bibliography

88

I

A. Appendix 1

A
Appendix 1

A.1 Hand detection

A.1.1 VIVA dataset predictions

Figure A.1: Some successful predictions for hand detection on the VIVA Challenge
dataset.
II

A. Appendix 1

A.1.2 EgoHands dataset predictions

Figure A.2: Some successful predictions for hand detection on the EgoHands
dataset.

III

A. Appendix 1

Figure A.3: Some unsuccessful predictions for hand detection on the EgoHands
dataset.

IV

A. Appendix 1

A.2 Human pose predictions

A.2.1 COCO dataset predictions

Figure A.4: Some successful predictions for body pose estimation on COCO
dataset.

V

A. Appendix 1

Figure A.5: Some unsuccessful predictions for body pose estimation on COCO
dataset.

A.2.2 Keypoint heatmaps and affinity fields predictions

This section shows a sample of keypoint heat map and part-affinity fields predic-
tions.

VI

A. Appendix 1

VII

A. Appendix 1

VIII

A. Appendix 1

IX

A. Appendix 1

X

A. Appendix 1

XI

A. Appendix 1

XII

A. Appendix 1

XIII

	List of Figures
	List of Tables
	Introduction
	Background
	System overview
	Objectives
	Delimitations
	Thesis Outline

	Deep Learning for Computer Vision
	Supervised Learning
	Deep Learning fundamentals
	Artificial Neural Networks
	Activation functions
	Loss functions
	Mean Average Precision
	Backpropagation
	Optimization
	Weight decay
	Dropout
	Batch Normalization

	Convolutional Neural Networks
	Convolution
	Pooling

	Recurrent Neural Networks
	Long Short Term Memory

	Transfer Learning
	CNN Architectures
	LeNet
	AlexNet
	VGGNet
	GoogLeNet
	ResNet
	SqueezeNet
	MobileNet

	Data Augmentation
	Human performance
	Deep Learning Work Flow
	Bias-variance analysis
	Error analysis

	Hand Detection
	Previous work
	You-Only-Look-Once
	Implementation
	Fixed window hand detector
	Deep learning hand detector

	Results
	Discussion

	Hand Gesture Classification
	Previous work
	Convolutional LSTM
	Implementation
	Dynamic hand gestures
	Static hand gestures

	Result
	Dynamic hand gesture classifier
	Static hand gesture classifier

	Discussion

	Action Recognition
	Previous work
	Pose estimation using Part Affinity Fields
	Implementation
	Pose Estimation component
	Action recognition component

	Results
	Discussion

	Real-time system
	Implementation
	Deep inference guard
	Gesture recognition pipeline
	Action recognition pipeline
	Merged feature extractor

	Results
	Discussion

	Conclusions
	Future work
	Conclusion

	Bibliography
	Appendix 1
	Hand detection
	VIVA dataset predictions
	EgoHands dataset predictions

	Human pose predictions
	COCO dataset predictions
	Keypoint heatmaps and affinity fields predictions

