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Abstract
Increasing software performance makes it possible to compute problems consisting larger data sets,
which corresponds to more accurate real life simulations. However, there is always strive to achieve
even faster computations is always desirable due to profiting from reduced time. By implementing
hardware designed to perform a specific task can accelerate computations as well as it is power
efficient. OpenFOAM is a computational fluid dynamics tool able to simulate real life problems
such as thermodynamics. The authors got the task to investigate if  OpenFOAM is suited to be
accelerated with an FPGA. During the investigation a model was built from an existing model and
after profiling the computations, the Gauss-Seidel smoother where chosen to be implemented on a
FPGA. Several attempts were made to understand the arithmetic function of the smoother.  The
implementation made for it is actually slower than the regular CPU based software. One of the
reasons is  that the PCIe cannot transfer data fast  enough to the FPGA, to resolve this,  another
smoother have to be implemented that get the same result as Gauss-Seidel. Such as Jacobi's method
which  can  be  even  more  parallelized.  Other  possibilities  include  finding  different  matrix
compression method which is more beneficial for the task or even use GPU:s as accelerators
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1. Introduction
Since software today increase in performance, they are also applied with bigger tasks with heavier
calculations. It is beneficial to reduce the computation time due to the simple reason that is saves
time. To accomplish a reduction in computation time one option is to design hardware capable of
performing computations regarding a specified task. FPGA:s consist of large arrays of configurable
logic blocks (CLB), digital signal processing blocks (DSP), block RAM and input/output blocks
(IOB). Usage of DSP:s and CLB:s are similar to a processors arithmetic logic unit (ALU) except the
fact the CLB:s can be programmed solely with operations needed by an application,  instead of
being designed in a general-purpose manner. Because of this higher computation efficiency can be
acquired at the same time as power efficiency is gained. The FPGA architecture enables application
specific ALU:s to be constructed, which makes data-level parallelism possible. Due to direct data
flow between operators data can efficiently be pipelined through a design [1]. When using FPGA
and/or GPU to speed up the CPU, the performance can be increased substantially. For example:

• Computational speed increased up to 10 times – 100 times.

• System size reduced up to 10 times.

• Power consumption reduced up to 10 times [2].

These  speedups  are  especially  interesting  for  companies  within  fields  with  computing  intense
applications, such as OpenFOAM.

1.1. Background

The company Synective Labs is interested to know the possibility to accelerate the Computational
Fluid Dynamic (CFD) software OpenFOAM with FPGA:s to increase its competitiveness. There
exists a few other CFD-tools on the market that are faster but also expensive since they are licensed.
But open source software are free and Synective Labs believes there is an opening in the market for
OpenFOAM if it were to become faster. 

1.2. Project goals

1.2.1. Objectives

The main goal of this project is to investigate the possibility to accelerate the open source software
OpenFOAM with an Xilinx Virtex 6 FPGA. As guidelines some questions need to be stated:

• Is it possible to accelerate OpenFOAM using an FPGA?

• Which function or part of OpenFOAM is best suited for acceleration?

• Are there any limitations for the speedup gained? If so, what is the cause of the limitation?

1.2.2. Scope 

Since the project is very extensive and the time is short some limitations need to be set. The model
which Synective Labs requested can be simplified to get a working model faster. The focus will lie
on a module within OpenFOAM software that solves heat transferring problems. Another limitation
are that only one or a part of a function needs to be implemented since programming VHDL code is
time consuming. Furthermore when coding VHDL, utilization of the LogiCORE IP Generator tool
in Xilinx ISE is used to generate as much as possible, such as memory blocks and FIFO:s. Because
writing floating-point arithmetic is very challenging for the time-schedule of this project. 
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1.2.3. Related work

A similar project where done by Taouil at Delft University of Technology [3] where he constructed
a  hardware  accelerator  for  the  OpenFOAM sparse  matrix-vector  product.  His  project  covers  a
profiling  and  acceleration  of  a  specific  solver,  simpleFoam. Furthermore  he  investigates
different sparse matrix formats. This has been a great source for quickly learn and understand sparse
matrices.

Mannakkara [4] wrote about implementing an asynchronous design on a FPGA to accelerate the
Gauss-Seidel method. This design cannot be implemented in the present project since his design
uses fixed-point,  where this project needs floating-point.  Furthermore his design implements an
asynchronous design which is difficult to construct.
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2. Method
To start the project, an investigation of OpenFOAM is carried out to get a greater understanding of
the software and how to build a model. This will be a primary focus since a working dataset has to
be  acquired.  When  enough  information  is  acquired  about  constructing  a  case  in  the  software,
construction of a case matching the specifications set by Synective Labs. When a working dataset is
obtained an investigation process will be carried out, to find the most time consuming parts within
the software and whether the time consuming parts are suitable for FPGA implementation or not.
During this process a profiling tool will be used to assist in analyzing the function usage as well as
time consumed within these functions. Profiling results will be evaluated where each of the top
functions is examined to see what sort of computation is made. For the examination a great effort is
put in to understand the C++ code and to see where heavy computations are done. This will make it
easier to choose a function to accelerate. When a selection has been completed, the next step is to
start  planning  the  hardware  architecture  of  the  implementation  before  constructing  a  VHDL
implementation. During the construction the code will be simulated to see if it is working correctly.
This is an important step since the output of the hardware need to match the software output. Lastly
when the output of the hardware matches the software output, an evaluation of the acceleration
gained or lost is done.

The  company  has  provided  an  Acer  computer  with  5.3 Gb  DDR3  RAM,  an  AMD  A6-3620
processor with four cores and 2.5 GHz speed. Which is  used to run OpenFOAM version 2.3.0
installed on Ubuntu 13.10 64 bit.  Additional  hardware such as a FPGA made of Xilinx,  model
Virtex  6 XC6VHX380T where  provided.  The FPGA has  27 648 kb block RAM and 4  760 kb
distributed RAM, which during the implementation of the VHDL code will be essential to see if
everything fits on the FPGA. Additional tools used are Xilinx ISE 14.2 Design Suite to simulate and
code VHDL and Perf, which is used for profiling software.
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3. Technical background
The following chapters give a deeper insight into what an FPGA and OpenFOAM is. Here we also
describes what the IEEE 754 Standard is and how rounding works for binary floating-point.

3.1.  FPGA

FPGA is a field-programmable gate array, which is one of the most sophisticated programmable
logic devices (PLD). Compared to a standard chip which have a fixed functionality,  PLD:s are
digital integrated circuits that consists of programmable blocks of logic which are connected with
programmable interconnects [5]. This allows the circuitry to be configured for a wide range of
different applications. The user can program a FPGA by using different languages, such as VHDL
and Verilog HDL [6].  

FPGA was created  in  the  mid-1980s.  It  was  mainly used  for  glue  logic,  such as  simple  logic
functions and address decoding circuitry, and tasks with relatively limited data processing tasks.
Since then FPGAs have been undergoing a massive evolution and are now containing millions of
gates, embedded microprocessor cores and high-speed input/output devices. Today they can be used
to  almost  anything.  Another  major  development  is  the  memory of  the  FPGA,  which  is  called
embedded RAM. This has grown in size and can now contain several thousand bytes and is split in
two categories: distributed RAM and block RAM. Distributed RAM is memory that is allocated all
over  the  chip  of  the  FPGA and  used  when  smaller  memory blocks  are  needed,  such  as  state
machines. Block RAM on the other hand is big chunks of data for implementation that require a lot
of memory, such as single- or dual-port RAM or first-in first-out (FIFO) functions [5].

3.2. IEEE 754 Standard for binary floating-point

Binary floating-point can be represented with single- or double-precision floating point. The two
differs only in length and number presentation. Table 1 shows each format's parameters.

Table 1: Format parameters for floating point

Parameter
Format

Single Double

p 32 53

Emax +127 +1023

Emin -126 -1022

Exponent bias +127 +1023

Exponent with in bits 8 11

Format with in bits 32 64

The precision,  p, is the number of significant bits.  Emax and  Emin is the maximum and minimum
value for the exponent, E. The sum of the exponent and a constant (bias), which is chosen to make
the biased exponent's range non-negative is called Exponent bias, i.e:

e=E+bias (1)
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These parameters form a binary representation according to following formula: 

(−1)s 2E
(b0⋅b1⋅b2 .. .bp−1) (2)

Where  s in the formula above is either zero or one to implement if the number represented is
negative  or  positive.  bp are  the  binary  representation  of  the  number,  also  called  fraction,  see
functions 3.

f =b0⋅b1⋅b2 .. .bp−1 (3). 

e, s and f is put together, to get the binary representation just as Figure 1 and 2 shows.

As seen in the figures above, msb mean most significant bit and lsb means least significant bit and
width is the number of bits for each section [7].

3.2.1. Conversion between Binary and Decimal

Conversion between binary and decimal is possible,  but the figure will  always be rounded off.
When implementing the IEEE 754 standard the representable value is rounded off to the closest
most  precise result.  Such as if  the two nearest  representable values  are  equally near  it  will  be
rounded off to the value with the least significant bit zero. Rounding off to ∞  with no change in
sign happens when the magnitude of the value extends to:

2[E max](2−2−p
) (4) 

In formula 4 Emax and p are determined by the wanted format, see table 1. 
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Figure 1: Binary representation of single precision



Consider two integers M and N, which represents a decimal value shown in formula 5 below.

±M×10±N (5)

The maximum values for  M and  N when converting a decimal value to binary and vice versa is
shown in the table below.

Table 2: Decimal conversion ranges

Format
Decimal to Binary Binary to Decimal

Max M Max N Max M Max N

Single 109-1 99 109-1 53

Double 1017-1 999 1017-1 340

However for the rounding off in order to work as specified in the previous section the values for M
and N needs to be within the limits as seen in table 3.

Table 3: Correctly rounded conversion range

Format
Decimal to Binary Binary to Decimal

Max M Max N Max M Max N

Single 109-1 13 109-1 13

Double 1017-1 27 1017-1 27

Furthermore, conversions must be monotonic, which means that an increased value of a binary
floating-point number shall not get a decreased value when converted to decimal, vice versa. This
will occur as long as the digits for the decimal value is carried to the maximum precision specified
in Table 2. Maximum M is 9 digits for single and 17 digits for double [7].

6



3.3.  OpenFOAM

OpenFOAM  was  released  by  OpenCFD  Ltd.  in  2004  and  is  an  open  source  software  that  is
available for everyone to use. It is a Computational Fluid Dynamic (CFD) software that can handle
much  more  than  just  complex  fluids  flows,  for  example  solid  dynamics,  electromagnetics  and
chemical reactions. OpenFOAM is written in the program language C++ and all of its source code
can be reached at OpenFOAM C++ Documentation web-page [8].

3.3.1. The mesh of a model

The most fundamental step when developing a 3D process is modeling. Most applications uses what
is commonly called a mesh, a set of points describing coordinates as well as edges that arises from
these points and faces that are surfaces enclosed by these edges. In OpenFOAM a model is built by
a mesh which is defined by a set of vertices or set of points of which 3-dimensional models is
described by. Within these set of vertices there can be an arbitrary number of cells, also called
computational molecules, which represent coefficients connected to the properties of the specified
area, where cells can take any shape. Cells are connected amongst each other by faces of the cell,
for example two cells can share a face and will therefore directly affect each other. One cell can
have an unlimited number of faces with an unlimited number of edges. Faces are defined by a list of
points that are connected by edges that in turn are defined by points. These points are ordered in an
anti-clockwise manner where the director of the normal vector can be acquired by using the right
hand rule when looking towards a face [9]. 

Figure 3: A face consisting of five points connected by edges and showing the face
normal vector [9]

There are two types of faces in a mesh which are known as internal faces and boundary faces.
Internal faces connects two cells, the face normal then points into an adjacent cell the direction
being into the cell with the larger label for example the cell sorted later in a list. Boundary faces are
faces connecting a cell to the edge of a defined space which means the face normal points outside
the computational domain. Cells are defined by a list of faces [9].

Geometric shapes can be acquired by defining coordinates which encloses a space with a number of
cells within this space. In addition to this boundary, conditions needs to be defined to wherever
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there is a cell owning a face adjacent to the end of this defined space. Boundary conditions can be
specified to represent physical attributes so that a finite space can be defined, this way a real-life
problem can be delimited and simulated. As an example, consider a 3-dimensional cube; it needs to
be assigned coordinates that represents the area of which it will exist. Let’s say that the cube is
1×1×1,  this  is  preset  as  meters  in  OpenFOAM,  and  it  will  be  given  those  coordinates  in  file
blockmeshdict as seen in Figure 4. 

These set of coordinates (x, y, z), are ordered in a Cartesian manner and by configuring this list of
points, a geometric shape can be acquired. In this case we have a cube as mentioned above. Figure 5
defines a block, which in this case is a hexahedron. It also defines which vertices to use and gives
the option to set number of cells within the block. [10]
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blocks 
( 

hex (0 1 2 3 4 5 6 7) //Vertex numbers
(100 100 1) //Number of cells in each direction
simpleGrading (1 1 1) //Expansion ratio of the cell

);

Figure 5: Geometric properties of a block

vertices 
( 

    ( 0 0 0 ) // Vertex number 0
    ( 1 0 0 ) // Vertex number 1
   ( 1 1 0 ) // Vertex number 2
   ( 0 1 0 ) // Vertex number 3
    ( 0 0 1 ) // Vertex number 4
    ( 1 0 1 ) // Vertex number 5
    ( 1 1 1 ) // Vertex number 6
   ( 0 1 1 ) // Vertex number 7

);

Figure 4 Vertices for the Mesh



4. Implementation
In a logic fashion this section describes how we constructed the model and evaluated results from a
profiling of OpenFOAM. It also further explains which dependencies the selected function has and
how that reflects the outcome of the investigation. Lastly, the thought process regarding the VHDL
implementation is explained.  

4.1. The model

Synective Labs requested a model for OpenFOAM which should simulate a tube enclosing a fluid
flow with a certain temperature. The tube should also be contained by a substance, which can be a
fluid as well, to make it simple, with a lower temperature as compared to the fluid inside the tube.
The desired area of simulation is the change in temperature of the liquid inside the tube when the
flow changes to standing still.

However this model can be simplified by looking only at an intersection of this tube showing the
outer fluid and inner fluid parted by insulation, which will be the intersection of the tube wall. As
shown in Figure 6. 

Containing three regions, where the lower region has the same properties of water with a flow equal
to zero and a certain temperature, in our model the temperature is set to 300 degrees K. The middle
region depicts the isolator, with the same properties as iron. Above the isolator there is the third
region which has a constant temperature of 273 K that will act as a cooler affecting the other two
regions.

An  existing  model,  planewall2D [11]  which  is  a  recreation  of  an  example  from the  book
Fundamentals of Heat and Mass Transfer [12], was modified to the specifications of Synective
Labs. In the following chapters there is a description of which files are changed to achieve this.
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4.1.1. File structure

A model  contains  several  folders  where  each  one  contains  files  and  folders  with  different
parameters  to  setup  a  model  to  a  specific  case.  Figure  7 illustrates  the  file  structure  of
planewall2D,  to  give  a  greater  understanding  when  describing  changes  made  to  the
planewall2D case in the following chapters. 
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.<planewall2D>
|- system folder

|- bottomAir folder
|- changeDictionaryDict
|- decomposeParDict
|- fvSchemes
|- fvSolution

|- topAir folder
|- <same as bottomAir>

|- wall folder
|- <same as bottomAir>

|- controlDict
|- decomposeParDict
|- fvSchemes
|- fvSolution
|- topoSetDict

|- constant folder
|- bottomAir folder

|- g
|- radiationProperties
|- RASproperties
|- thermophsicalProperties
|- turbulenceProperties

|- polyMesh
|- blockMeshDict
|- boundry

|- topAir folder
|- <same as bottomAir>

|- wall folder
|- radiationProperties
|- thermophysicalProperties

|- regionProperties
|- time directories

Figure 7: The folder and file structure of planewall2D



4.1.2. Constant folder

The constant folder handles how the model should look like and the properties of each block in the
model. Firstly bottomAir is renamed bottomWater and topAir is deleted. Furthermore the
properties of air is not the same as water, this is accomplished by changing some constants in the
thermophysicalProperties file. This is also done for the same file in the wall folder since
the wall in planewall2D is concrete. However, in our model the isolator will be iron. 

Figure  8  is  the  thermophysical  properties  for  air,  to  get  water  instead  molWeight is  set  to
18 g/mol and Cp, liquid viscosity, is set to  4181. Furthermore the transport properties mu and Pr
also needs to be changed. Reduced chemical potential, mu, is set to 659e-6 and Prandtl number, Pr
[13], is set to 6.62. OpenFOAM now handles the bottomWater block as water and not air. When
concrete is changed to iron, the appropriate constants need to be changed accordingly.  
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thermoType
{
    type            heRhoThermo;
    mixture         pureMixture;
    transport       const;
    thermo          hConst;
    equationOfState perfectGas;
    specie          specie;
    energy          sensibleEnthalpy;
}

mixture
{
    specie
    {
        nMoles          1;
        molWeight       28.9;
    }
    thermodynamics
    {
        Cp              1000;
        Hf              0;
    }
    transport
    {
        mu              1.8e-05;
        Pr              0.7;
    }
}

Figure 8: Code from thermophysicalProperties

regions
(
    fluid       (bottomAir topAir)
    solid       (wall)
);

Figure 9: Code from regionProperties



Some changes needs to be done to regionProperties to get OpenFOAM to understand what 
each block is for state, to be more precise Figure 9 shows which block is fluid and which is solid. 
Here topAir and bottomAir is replaced by bottomWater in the fluid region and wall is 
unchanged.

Lastly, a lot of changes are done in the blockMeshDict file in the polyMesh folder where the
mesh of the model is expressed. The changes made were for the model's boundary condition. Most
of the existing walls had the wrong boundary condition and had to be deleted and exchanged for
walls with correct boundary conditions. In blockMeshDict these are set as types. There are a
lot of types for walls such as empty, patch and wall. In the model all of the walls where set to
empty  except  topWall that  has  the  type  of  wall.  When  a  wall  is  set  to  the  type  empty,
OpenFOAM handles that wall as if it does not exist but the type wall can be set to a constant value,
which  was done in  chapter  3.1.3.  To review the  complete  blockMeshDict see  Appendix  A
Figure 21. 

4.1.3.System folder

In  the  system folder,  the  properties  of  the  regions  of  the  model  is  set,  which  as  is  also  how
OpenFOAM perform its  calculations for the case.  In the  controlDict file  the properties  of
which solver and the time between calculations can be set. This is shown in Figure 10. Most of the
lines were left unchanged but some had to be changed to get a proper result in the simulation. 

To get a proper result when simulating, deltaT was changed to 10, this means that the timesteps
are 10 time units. To make OpenFOAM write data every second timestep during the execution,
writeInterval is changed to 2. Further changes include changing purgeWrite to 0 to show
all of the data written by OpenFOAM. If purgeWrite is set to, for example 1, then only one time
folder will be created and every new data will overwrite the old data, see time directories in Figure
7.  Lastly  endTime is  changed to 30000, because to keep the amount  of data  at  a  reasonable
amount. The application is the solver for the case. It can be changed but in this case it is unchanged.
More information on the controlDict file can be found at [14]. 

Just like the constant folder bottomAir, is renamed to bottomWater, and topAir are deleted
for the system folder. Only one file needs to be changed in the new folder bottomWater, and that
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application     chtMultiRegionSimpleFoam; 
startFrom       startTime; 
startTime       0; 
stopAt          endTime; 
endTime         50000; 
deltaT          1; 
writeControl    timeStep; 
writeInterval   100; 
purgeWrite      5; 
writeFormat     ascii; 
writePrecision  7; 
writeCompression uncompressed; 
timeFormat      general; 
timePrecision   6; 
runTimeModifiable true;

Figure 10: Code in the controlDict file



is changeDictionaryDict. In this file all the start values for the different properties are set,
such as temperature and pressure. The velocity of the water is changed to zero; this is because it
was specified by Synective Labs. The same changes is done with the changeDictionaryDict
file in the  wall folder with one exception, the wall on the top is set to a constant temperature of
273 K. This is to simplify the model and to achieve a constant temperature of the water above the
isolation. See Appendix A Figure  22, 23 and 24 for the changes in  changeDictionaryDict
file for bottomWater.

Furthermore is topoSetDict an important file, which illustrated in Appendix A Figure 25. Here
is where the blocks  bottomWater and  wall is located in the mesh. As seen in Figure 25 in
Appendix A the block wall start at the coordinates (0 0.8 0) and ends at the coordinates (1 1 0.1) in
the mesh. Meanwhile  bottomWater start at the coordinates (0 0 0) and ends at the coordinates
(1 0.8 0.1). This means that the model contains two separate blocks,  wall and  bottomWater.
Now OpenFOAM can  calculate  the  heat  exchange between both  of  these  blocks,  by choosing
suitable boundary conditions which allows adjacent regions to affect each other.

4.2. OpenFOAM sparse matrix format

Data structure is of great importance when it comes to hardware implementation, since an FPGA is
well suited for performing high speed calculations. But will only be able to do so efficiently when
data  can  be  directly  streamed  to  the  hardware.  Preferably  data  should  be  preprocessed  before
performing computations with the FPGA and to investigate this, the compressed matrix format that
OpenFOAM currently uses will be looked into.

Matrices in OpenFOAM are sparse, meaning matrices that consist of a significantly higher number
of zero elements in comparison to the number of non-zero elements. Usually when this is the case it
is  profitable,  in terms of memory allocation,  to remove all  zero elements.  Since for example a
SMVM otherwise will result in a lot of unnecessary multiplications by zero. By removing all zero
elements, a way of indexing for all non-zero elements must be introduced. There are a number of
ways  to  accomplish  this.  Below  depicts  how  this  is  done  in  the  OpenFOAM  software.  Let’s
consider an example matrix as follows.

[
d1 u1 0 u2 0
l1 d2 u3 0 u4

0 l3 d3 u5 0
l2 0 l5 d4 u6

0 l4 0 l6 d5

]    

All  non-zero  elements  are  stored  in  three  separate  arrays;  one  array  containing  of  all  upper
contributions,  upperPtr,  a second array containing diagonal values,  diagPtr, and lastly,  all
lower  contributions  are  stored  in  a  third  array called  lowerPtr.  These  three  arrays  together
represent the full matrix, such as A=L+D+U .    
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UpperPtr [l1, l2, l3, l4, l5, l6 ]

LowerPtr [u1, u2, u3, u4, u5, u6]

DiagPtr [d1, d2, d3, d4, d5 ]

Since all zero elements are excluded, the addressing, coordinates to positions within the full matrix,
has to be introduced. OpenFOAM uses addressing by column combined with row to locate elements
with arrays,  uPtr and  lPtr. When looking at UpperPtr, values in  uPtr expresses column
coordinates  and  lPtr row  coordinates.  While  addressing  elements  within  LowerPtr,  lPtr
combined with  uPtr now expresses  coordinates  in  reverse.  Meaning that  lPtr acts  as  column
index, while uPtr acts as row index. uPtr and lPtr below is shown with values corresponding
to the example matrix [15].

uPtr [1, 3, 2, 4, 3, 4 ]

lPtr  [0, 0, 1, 1, 2, 3 ]     

4.3. Investigate functions

To  obtain  enough  information  about  the  functions  used,  a  profiling  tool,  Perf,  was  of  great
assistance.  It  gives a better  insight of how the program is distributing its workload in terms of
function usage.  From that  information  it  is  possible  to  search for  a  candidate  for  acceleration.
Optimally a function will be found that consisting of simple arithmetic which is executed over and
over, of which several iterations can be executed simultaneously. This is the type of function that is
suited for FPGA implementation. Perf produces an extensive list of functions which are ordered by
the number of samples taken within each function. Although Perf does not consider the amount of
time in each function, but it conveys helpful information and is of guidance to find where the most
time is consumed when executing the case. Therefore further analysis of the code need to be done to
find the bottleneck for each function. The following list consists of the result when using Perf while
executing the case with a mesh of (100 100 1) and 8.000 cells:

• 2.25% inv 

• 2.17% GaussSeidelSmoother

• 1,90% multiply 

• 1,88% Amul 

• 1,85% List 

Notice that the functions  GaussSeidelSmoother and  Amul are in the top of the list among
with inv, multiply and List. However when increasing number of cells in the mesh, a scaling
in usage by the GaussSeidelSmoother and Amul is observed. This information is acquired by
an additional profiling, result listed below. When increasing the number of cells which corresponds
to matrix size, since matrices are N×N where N equals to the number of diagonal cells, the profiling
indicates the GaussSeidelSmoother and Amul functions to be more computational heavy then
the rest. This is shown when the mesh is increased to (300 300 1) in the  blockmeshDict file.
This also increases the number of cells to 72.000. 

• 36,39% GaussSeidelSmoother 

• 21,82% Amul 

With an increased mesh, both  GaussSeidelSmoother and  Amul increased in usage. This is
excellent for acceleration, since the speedup over the serial case increases when a model increases
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in size. Other functions such as  inv,  multiply and List where not chosen because of their
complexity in code and none of them consisted of any heavy computational loops.

   

4.3.1.GaussSeidelSmoother

Figure 26 in Appendix A,  GaussSeidelSmoother.c,  consists of several intertwined loops.
Starting at the outer scope, an update of coefficients is performed before any kind of computations
are  made.  This  communicational  part  updates  coefficients  used  for  the  computation,  which  is
controlled by number of sweeps. Perhaps it is possible to include number of sweeps within the
FPGA as well; further investigation will be needed to determine this.

GaussSeidelSmoother.c operates  with  the  iterative  technique  known  as  GaussSeidel
algorithm [16]. This method is used to solve square systems of n linear equations with an unknown

x . 

Ax=b (6)

Where x is  initiated  with  a  primary  guess, x(0) ,  which  will  converge  into  a  better
approximation after a number of sweeps. Gauss Seidel method is defined by the iteration.

Lxk+1
=b−Ux k (7)

Matrix A  in formula 6 is decomposed into a lower triagonal and a strictly upper triagonal. L
now represents strictly lower elements within the matrix A as well as diagonal elements and U
consists of the strictly upper contributions of matrix A .

By multiplying the lower triagonals inverse, xk+1 can be computed by using the previous x with
the following iteration: 

xk+1
=L−1

(b−Ux k
) (8)

Since L includes the diagonal of the matrix it can be taken advantage of, resulting in sequential
computation of xk+1 as follows.

x i
k+1

=
1
aii

(bi−∑
j<i

aij x j
k+1

−∑
j>i

aij x j
k
) (9)
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As seen above there is a dependency when computing the next x value, due to the previous x will
have to be calculated in order to obtain the lower product sum. However, upper product sum are not
affected by this. This dependency will limit the level of parallelism that can be achieved, since some
arithmetic operations will have to be executed sequentially in order to obtain every x i

k+1 . Perhaps
this  limitation  can  be  diminished by isolating  the  dependency further  since  it  only lies  within
calculating the lower sum. Lets consider the following example:

[
a11 a12 a13

a21 a22 a23

a31 a32 a33
]⋅[

x1

x2

x3
]=[

b1

b2

b3
] (10)

x1
k+1

=
1

a11

(b1−(a12 x2
k
+a13 x3

k
)) ⇒ [

x1
k +1

x2
k

x3
k ] (11)

x2
k+1

=
1

a22

(b2−a21 x1
k +1

−a23 x3
k
) ⇒ [

x1
k +1

x2
k +1

x3
k ] (12)

x3
k+1

=
1

a33

(b3−(a31 x1
k+1

+a32 x2
k+1

)) ⇒ [
x1

k +1

x2
k +1

x3
k +1] (13)

It is shown from the formulas above that x i
k+1 will, iteration by iteration, overwrite elements in

vector x row by row. This will have an advantage in terms of amount of memory required when
successfully overwrite a memory containing vector x , while reading values simultaneously. By
the example above, a conclusion can be drawn that it is possible to compute the lower product sum
column wise. While simultaneously, compute row by row matrix vector multiplication, since all
elements located in columni will be multiplied with x i

k+1 . Lower triagonal part multiplications

with rows further down, will have to be stored and subtracted to get the full x i
k+1 result. These pre-

calculated products will need some sort of index, to know if the actual row being calculated have a
pre-calculated product, which needs to be subtracted.
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4.3.2.Amul

Amul,  Figure 11, consists of a pre-computational part  where interfaces are initialized, which is
followed by an update of interfaces. The computational part, which will be in focus, consists of two
loop  performing  several  multiplication  accumulate  instructions.  Initially  a  matrix  diagonal  is
multiplied  by a  vector,  which accumulates  into  a  new vector.  By multiplying lower and upper
triagonal by a vector accumulated in a new vector. This is how matrix by vector multiplication is
done. According to Taouil [3], there are dependencies for the computational part. The dependency
lies within the second for-loop, which cannot be parallelized because of it.  This  is  because all
iterations  depend  on  the  previous  iteration.  Taouil  [3]  continues  to  say  that  a  change  in  the
OpenFOAM matrix format needs to be done to get rid of this dependency.   
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// Initialise the update of interfaced interfaces
initMatrixInterfaces
(
      interfaceBouCoeffs,
      interfaces,
      psi,
      Apsi,

cmpt
);

register const label nCells = diag().size();
for (register label cell=0; cell<nCells; cell++)
{

ApsiPtr[cell] = diagPtr[cell]*psiPtr[cell];
}

register const label nFaces = upper().size();

for (register label face=0; face<nFaces; face++)
{

ApsiPtr[uPtr[face]] += lowerPtr[face]*psiPtr[lPtr[face]];
      ApsiPtr[lPtr[face]] += upperPtr[face]*psiPtr[uPtr[face]];
}

// Update interface interfaces
updateMatrixInterfaces
(

interfaceBouCoeffs,
      interfaces,
      psi,
      Apsi,
      cmpt
);

tpsi.clear();

Figure 11: Code from Amul.C



4.3.3. Final words

After investigating functions GaussSeidelSmoother and Amul, the conclusion drawn is that
GaussSeidelSmoother are  a  more  suitable  candidate  for  implementation  on  the  Virtex  6
FPGA.  Because  of  its  scaling  in  usage  due  to  heavy  computations.  Repetitive  in  terms  of
computations,  in  addition changing sparse matrix  format might  not  be necessary.  Changing the
matrix format will be to complex and too time consuming for this thesis. However it might be good
for optimizing an implementation to reformat the data structure. The dependency will however be a
limitation in the level of parallelization of this function since only one row can be computed at a
time.  Therefore  the  parallelizing  arithmetic  instructions  which  is  not  affected  directly  by  the
dependency will be focused on. 

4.4. VHDL architecture

The VHDL code is structured by several blocks where each has its own function. Top-level is the
first block which controls everything. Under top-level there are a block for storing all vectors from
the CPU to the memory and another block which calculates the upper triagonal. One final block
calculates  lower  triagonal  and  finalizing  the  calculation  for  each  row.  This  chapter  gives  an
overview of how these blocks work.

In the top level of the architecture, a state machine is controlling whether calculations shall be
computed or if the FPGA shall transfer data from the software. It is constructed as follows; the state
machine gets a start signal and begins to collect all the data needed for the calculations. When all of
the data is collected calculations are initiated. This is the slowest way, since all calculations has to
wait for the data to be stored in memories. In a private communication with Tomas Frostensson,
System designer at Synective Labs, he mentioned that the PCIe can stream 256 bits every clock
cycle which can be distributed in either four 64 bit or eight 32 bit channels. Since the construction
needs values for Upper,  Lower,  X and B and addresses for the Upper-values and upper-values
column indexes. It also needs ownerPtr which indicates how many values there are in each row for
Upper and in each column for Lower. This means six vectors need to be transferred to the FPGA.
To get the fastest transfer, all vectors need to be 32 bit in size which means single-precision floating
point. One problem is that OpenFOAM uses double-precision floating point, 64 bit. This means
some errors occur since rounding is a problem for values converted between single-precision to
double-precision.
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4.4.1. Output error

The output error was tested and controlled beforehand, using C++ for a standalone GaussSeidel
method. This test was done by letting a 32 bit and a 64 bit version of GaussSeidel run in parallel,
which allows to complete a comparison between the results. The formulas used to calculate error
and average error are as follows:

Error :|(result 32bit−result64 bit)

result 64 bit

⋅100| (14)

Average Error :
∑ Error

N
(15)

From the  test  the  average  error  was  calculated  to 3.59223⋅10−6 %  and  maximum  error  was
calculated to 2.44492⋅10−5 %. This is a very low error meaning that the output from the 32 bit
version is almost identical with the output from the 64 bit version.
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4.4.2. Top-Level FSM

As mentioned the FSM in the top level controls input of data and the calculations. It also controls
which signals that reaches the memories.

As seen in Figure 12, the FSM sets input_or_write signal to zero when input of data to the
memories are needed, and one when calculations are ongoing. This is needed because the memories
only have two inputs and outputs. Since there are memories that need to be able to deliver two data-
values  at  once,  the  top  level  FSM controls  so  there  are  no  collisions  in  data  requests  for  the
memories. In addition the amount of memories needed will be reduced.
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Figure 12: Flow chart of top-level FSM



The top-level FSM has five different states. In  idle everything is resetted and the FSM keeps
waiting for a start signal from the software. Get_data starts the FSMs handling the input of data,
while all of the data is being stored in the memories, the top-level FSM waits in w8_for_data.
When all data has been stored it jumps to start_math which starts the calculations and sets the
input_or_read to one. This is done to enable reading from both ports of the memory at the
same time. Last step is to wait for the calculations to be done, when this occurs a jump to idle is
performed.

4.4.3. Memory and FIFO

In the architecture several memories and FIFO:s are needed. FIFO is an acronym for first in, first
out. This is a sort of data queue. Oldest data that is put into it is also the first one to leave it. It is
used to quickly transfer data without accidentally losing any. All of the FIFO:s in the design has
been generated by LogiCORE IP Generator tool in Xilinx ISE, same with the memories.

As seen in Figure 13 it has several inputs and outputs. The signals FULL and EMPTY indicate if it is
full or empty, just to prevent data loss for example when trying to write to a full FIFO.  WR_EN
enables writing to the FIFO while RD_EN requesting data from it. To clarify, when WR_EN is set to
one the FIFO stores  the value that  are  available  on the  din signal,  vice versa.  The last  signal,
VALID, is set to one when valid data is represented on the DOUT port, which will only occur when
RD_EN is set to one to request data from the FIFO.
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Figure 13: In- and Out-ports of a FIFO



Memories for the project are block-RAM and there are two different memory sizes used in the
architecture.  Though  all  of  them have  elements  which  are  32 bit  of  size  but  the  depth  differs
depending on which vector that is stored. For example the vector for the X-values has a memory
with a depth of 8000 elements, same for the  B vector and  ownerPtr.  Upper-,  Lower- and
UpperAddr vector all needs a memory with a depth of 16000 elements.

Figure 14 visualizes the memory. All memories are dual port which means they can read and write
at the same time, only limitation is that both ports cannot write to the same address and writing to
an address while reading from it  is also prohibited.  ADDR is the address for an element in the
memory. A memory of 8000 elements needs 13 bits to address all of the elements, on the other hand
a memory with 16000 elements needs 14 bits. The signal EN enables the CLK for the port wanted to
either write or read from. The WE signal tells the memory whether it shall store the data from the
din port on the element with the address of  ADDR or if it shall fetch data from the memory and
send it to DOUT.
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Figure 14: In- and Out-ports of a 8000 depth memory



4.4.4. Incoming data

As mentioned before, there are six different streams of incoming data to the FPGA. This data need
to be placed in the right memory and on the right place in the memory. To manage this FSM is
needed, below is the flowchart of this type of FSM.

The FSM has several outputs and inputs. A start signal is received from the top-level FSM to begin
to store data and RD_EN is set to one, to request data from the FIFO.  Valid_data is received
from the  FIFO which  is  set  to  one  when  valid  data  is  on  the  output  of  it,  which  is  directly
transferred to the memory which is enabled with the signals  MEM_en and  write_en. To keep
track of which address to put the data in the memory, the FSM counts every valid signal. First valid
signal the value stored in address zero is received, next valid signal the value stored in address one
and so on. When the counter for the signal has reached either 8000 or 16000 depending on which
memory used, the FSM resets and tells the top level FSM that it is ready with data transfer. For
every vector that has to be stored on the FPGA is a FSM of this type.

4.4.5. Calculations

There are three operands needed to do all calculations: multiplication, addition and subtraction. The
diagonal will be divided from all constant values on the CPU as a pre-process, which is why the
quotient is not calculated on the FPGA. In the LogiCORE IP Generator tool all of operands can be
generated and all of them can perform their designated operand with floating point numbers. A
drawback is that each block have a latency, which means that when for example multiplication get
data on the in-ports, it takes a certain amount of clock cycles to get a result on the out-port. The
latency can be tweaked depending on the frequency of the clock. A higher clock frequency results in
a  higher  latency  while  a  lower  frequency  results  in  a  lower  latency.  For  this  case  the  clock
frequency of 400 MHz where assumed, because of the arithmetic blocks maximum frequency is
400 MHz.

In chapter 4.4 a dependency is mentioned that slows down the calculations. For every row in the
matrix the previous calculated value is  needed to complete the calculations of the current row.
Further studies of the Gauss-Seidel smoother reveals that the upper triagonal is not dependent on
the previous row, only lower the triagonal are. So to get the fastest possible calculations on the
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Figure 15: Flowchart for a input FSM



FPGA all  of  the  upper  triagonal  calculations  can  be  done  in  parallel  to  the  lower  triagonal
calculations. This means that for every row is a minimum of latency of one multiplication, one
addition and one subtraction. This is the wait time to calculate the dependency, though the first row
has a latency of one multiplication, one subtraction and one addition.

4.4.6. Calculation of Upper triagonal

From the example in chapter 4.4 the first row is calculated using this formula:

x1
k+1

=
1

a11

(b1−(a12 x2
k
+a13 x3

k
)) (16)

As mentioned the division with the diagonal, in this case a11 , is already precalculated and scaled
from b1 , a12 and a13 on the CPU. The new formula is as follows:

x1
k+1

=b1−(a12 x2
k
+a13 x3

k
)⇒bi−∑

j> i

aij x j
k (17)

This can be expressed in the following binary tree:

The binary tree in Figure 18 can be used for whole upper triagonal and illustrates function 16. 

bi−∑
j>i

aij x j
k (18)
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Figure 16: Binary tree for the first row



Input data can be streamed to the in-ports, which are fed with new values every clock cycle. This
will result in a good throughput and latencies are concealed since a result value is acquired every
clock cycle after the first result value is received, this method is known as pipelining. Each value is
stored in a memory to be used later when calculating a whole row. The Figure 17 gives a greater
understanding on how calculation of the upper triagonal is competed.

When the top-level FSM signals to start the calculations, FSM 1 in Figure 17 begins to collect data
needed to put into the pipeline of multiplication and addition of Upper-values and X-values. This
process takes four clock cycles, since ownerPtr contains of how many X- and Upper-values there
are in each row and UpperAddr contains the address for the X-values needed. To further explain,
the first  clock cycle  is  used get  how many X- and Upper-values  needed from the  ownerPtr
memory, let’s say two. Afterward it needs to get two values from UpperAddr which is addresses
to get the X-values needed. This takes one additional clock cycle. Thereafter another clock cycle is
used to gather all the correct values of Upper and X from respective memory. On the last cycle,
transfer them to the pipeline.

FSM 2 waits for the first value from the multiplication and addition block. This is known to arrive
after the latency of the pipeline however it only need to wait for the latency the very first time. Plus
three clock cycles since every fourth cycle a new value is put into the pipeline, which means a new
value is presented every fourth clock cycle. A clock cycle before a new value from the pipeline is
presented FSM 2 fetches the correct value from the B memory which is subtracted with the value
from the pipeline.

Lastly FSM 3 main purpose is to store the result of upper triagonal. Just like the previous FSM it
waits for a value to be presented from the subtraction. This means it has to wait for latency of the
pipeline and subtraction plus four clock cycles. These values stored in the memory is used later to
solve rows together with the lower triagonal.
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Figure 17: Function blocks for upper triagonal



4.4.7. Calculation of Lower triagonal

Lower triagonal is more complex compared to the upper triagonal. As mentioned in chapter 4.4
there is a dependency for the Gauss-Seidel smoother where the lower part of the matrix needs the
previous calculated value for a row. Another difficult problem is how the Lower values are stored in
the vector. As an example consider this example matrix:

[
d1 u1 0 u2 0
l1 d2 u3 0 u4

0 l3 d3 u5 0
l2 0 l5 d4 u6

0 l4 0 l6 d5

]  

For this matrix there are six values in the lower triagonal, l1 to l6 . The ownerPtr vector states
how many values there are in each column instead of row for Lower. Which means that for the
Lower  vector  the  values  are  in  this  order: [l1 ,l2 , l3 , l4 , l5 , l6 ] .  So  when  fetching l1 from the
memory to multiply with the correct X-value, the l2 value can be fetched at the same time because
it has to be multiplied with the same X-value. The figures below corresponds to the architecture of
the lower triagonal.

There are  a lot  of similarities compared to  the upper triagonal.  For  example FSM 1 for lower
triagonal works exactly the same as for upper. It gathers correct values for X and Lower depending
on ownerPtr. See previous chapter for more information. The only difference is that there are two
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Figure 18: Function blocks for lower triagonal



multiplications. Lets take the same matrix as example. Multiplication for current row block receives
l1 and x0

k+1 while multiplications for future row block receives l2 and x0
k+1 . 

FSM 2 stores the values from the multiplication for future row block at corresponding row. For this
example it is stored on memory address three. Since l2 is located on row three Meanwhile, FSM 3
checks if there are a calculated value on row one, same example as section above. Since there is not
a previous calculated value from Memory of future L⋅X block, it simply bypass Subtraction 1 and
stores it in the memory for Subtraction 1. If for example FSM 3 where looking at row three, it will
subtract the value from the upper triagonal with l2⋅x0

k+1 . FSM 4 constantly sends correct value to
the Subtract 2 block to complete the final value for a row. While FSM 5 only stores each result from
Subtraction 2 block.  

4.4.8. Final words

At this point, only upper triagonal calculations are working as intended. Lower triagonal has all its
building blocks completed but there are several timing issues that have to be resolved before the
whole VHDL implementation is working. With this in mind, the only thing limiting the speed of
this implementation is the lower triagonal and the calculation of the first row. Calculation of the
first can be seen in Figure 19, which has a latency of 4 clock cycles and one multiplication, one
addition and lastly one subtraction. Latency of the lower triagonal can be seen in Figure 21, which
also has a latency of four clock cycles but only one multiplication and one subtraction.

For  this  model  with  a  mesh of  (100 100 1)  every vector  fits  into  the  memory of  the  Virtex  6
VHX380T FPGA. As the implementation is structured, the number of Block RAM used is 148 of
768, which is 19 %. This means that an even bigger model will fit into the FPGA. This is also
positive for future acceleration of bigger models.
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Figure 19: Lower triagonal binary tree



5. Result
OpenFOAM version 2.3.0 where installed on Ubuntu 13.10 64 bit on a Acer computer with 5.3 Gb
DDR3 RAM, a AMD A6-3620 processor with four cores and 2.5 GHz speed. The model as seen in
chapter 4.1.4 executes in 442,32 s. Gauss-Seidel smoother is called 113859 times which adds up to
an execution time of 11,7628 s, which is  2,6469 % and approximately 0,10331 ms per call.  By
using Amdahl's law [17] the speedup can be calculated. If Gauss-Seidel smoother where minimized
to zero seconds, the execution of the speedup would be 1,03 times faster, according to function 19.

1
(1−P)

=
1

(1−0,026593417)
=

1
0,973406583

≈1,03 (19)

To get any acceleration on the FPGA, the implementation needs to be faster than 0,10331 ms. 

The initial assumption of a clock frequency at 400 MHz cannot be implemented in our design,
because the PCIe cannot  deliver  eight  32 bit  elements every clock cycle at  that  speed. For the
design to work with eight 32 bit elements every clock cycle, a frequency closer to 125 MHz will be
more accurate. Following paragraphs describes the calculations for our case.

Each iteration of Gauss-Seidel does not contain the same amount of elements, sweeps and cells. For
the model with a mesh of (100 100 1) they changes accordingly:

Table 4: Changes in parameters with each iteration

Iteration Cells Sweeps Max Elements

1 31 4 54

2 62 4 110

3 125 4 232

4 250 4 466

5 500 4 956

6 1000 4 1931

7 2000 3 3911

8 4000 2 7861

9 8000 2 15821

Table 4 shows that each time the function is called, number of cells, etc., increases. This continues
up to the ninth call, the tenth call restart the process. Since Gauss-Seidel is called 113859 times for
the model, the number of recurring patterns is:

113859
9

=12651 (20)
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Knowing this, calculating the total time for the VHDL implementation is performed by calculate the
time for the data transfer to and from the FPGA. Thereafter calculating the time for the FPGA to
perform the calculations needed, which is later added to the time for the data transfer. The following
section shows how to perform the calculations  of  the  ninth  call  with 8000 cells,  2 sweeps and
15821 elements.

 

When transferring data to the FPGA via PCIe, a new element is presented every clock cycle. This
means it takes time to transfer a lot of data. To transfer all data to the FPGA it takes:

number of elements
clock frequency

⇒
15821

125Mhz
≈0,127 ms (21)

Number of elements is the maximum elements in a vector. All vectors from the CPU transfers at the
same time since PCIe can stream eight 32 bit elements simultaneously as mentioned in chapter 4.4.
Additional data needs to be transferred back to the CPU from the FPGA. Since all memories on the
hardware have two ports, it can send two elements at the same time to the CPU. The vector that is
transferred back contains 8000 elements, so it only needs 4000 clock cycles to transfer all elements.
This takes:

4000
125 MHz

=0,032 ms (22)

Total time for data transfer:

0,032+0,126568≈0,159 ms (23)

As mentioned in chapter 4.4.8 there is wait time for every row when performing calculations for
Gauss-Seidel smoother. Firstly every arithmetic block generated with LogiCORE IP Generator tool
has a latency from valid data is put into it and to valid data is presented on the output. Following
table illustrates the latency for each arithmetic block when the clock frequency is set to 125 MHz.

 

Table 5: Latency for arithmetic blocks

Block Latency

Multiplication 2

Addition 3

Subtraction 3

When calculating the first row, see chapter 4.4.6, a total  latency of 2+3+3=8 and four clock
cycles  gives  a  total  of  12  clock  cycles  in  latency.  Thereafter  for  every  row,  a  latency  when
calculating lower triagonal of 3+2=5 plus additional four clock cycles gives a latency of 9. Total
cycles for all calculations are:

12+(9⋅7999)=72003 cycles (24)

 ⇒
72003cycles

125 MHz
≈0,576ms (25)

Since Gauss-Seidel smoother calculate the same matrix twice, set by the number of sweeps, this
value has to be doubled to get total  time for all  calculations, which adds up to a total time of
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1,152048 ms. Adding the time for transfer data, calculations and internal transfer of data gives a
total time of:

0,158568ms+1,1152048ms≈1,274 ms (26)

These calculations can be done for every iteration and are summarized in the table below.

Table 6: Time for each iteration of the execution

Iteration Data Transfer (ms) Calculations (ms) Calculations with sweeps
(ms)

1 0,00056 0,002256 0,009024

2 0,00128 0,004488 0,017952

3 0,00236 0,009024 0,036096

4 0,004728 0,018024 0,072096

5 0,007648 0,036024 0,144096

6 0,019448 0,072024 0,288096

7 0,039288 0,144024 0,432072

8 0,078888 0,288024 0,576048

9 0,158568 0,576024 1,152048

Total 0,312768 2,727528

Table 6 shows that total time for data transfer for nine iterations is 0,312768 s and total calculation
time is 2,727528 s. To get the total time for the whole execution:

(0,312768 ms+2,727528 ms)⋅12651≈38,463 s (27)

That is 3,27 times longer compared to the CPU, which only took 11,7628 s. Also, one iteration takes
according to function 28 approximately 0,339 ms, compared to 0,10331 ms per call for the CPU.

38,462784696 s
113859

≈0,339ms (28)
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Furthermore calculations for how many GB/s is achieved can be done by summarize all elements
that needs to be transferred and divide by the amount of time it takes to transfer them. For this case
there are six vectors, each with different amount of elements, needs to be transferred to the FPGA.
All elements consists of 32 bits. 

Table 7: Total amount of elements

Iteration Elements

1 246

2 516

3 1071

4 2148

5 4368

6 8793

7 17733

8 35583

9 71463

Total 141921

Total amount of elements as shown in Table 7 is 141921, which can be used to calculate GB/s.

141921 elements⇒141921⋅32 bit=4541472bit ⇒
4541472

8
=567684 Byte (29)

 ⇒567684 Byte⋅12651=7181770284 B⇒7,181770284 GB (30)

⇒
totalamount of GB

total time for data transfer
⇒

7,181770284GB
0,312768ms⋅12651

⇒
7,181770284GB

2,814912 s
=2,55GB /s (31)

2,55 GB/s is very plausible to achieve since Synective Labs uses PCIe2.0 x8 which can achieve a
theoretical bandwidth of 4 GB/s [18].

One of the reasons for the slowdown is that the FPGA needs to have a low frequency on the clock.
It needs to be low because of the bandwidth of the PCIe. With a faster clock on the FPGA the PCIe
would only be able to send four 32 bit elements at a time, while it is needed to have six 32 bit
elements at the same time for Gauss-Seidel smoother. Additional delays are when the FPGA waits
for all the values before beginning its calculations. If able to use the correct values every clock
cycle it arrives on the FPGA it can save up to 2,815 s, which still  is not enough. But yes it is
possible to accelerate OpenFOAM but the acceleration is limited to the bandwidth of the transfer
between the CPU and FPGA. Furthermore the time it  takes to evaluate if  a certain function is
accelerate-able and implementing it on an FPGA is considerable large.
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6. Conclusion and Discussion
With  a  model  constructed  out  of  planewall2d,  a  function  called  Gauss-Seidel  smoother  where
chosen to be accelerated and implemented with VHDL. Though only half of the implementation
works as intended, calculations can be done to see whether it will be faster than the CPU. The
execution  time  for  the  model  where  442,32 s  in  which  Gauss-Seidel  smoother  takes  11,763 s,
corresponding to 2,647 %. Our implementation takes approximate 38,463 s and compared to the
CPU it is 3,27 times longer.

A time plan where constructed before the start of this project, the Gantt-scheme can be viewed in
Appendix C Figure 27. When constructing the time plan we had no idea how long everything would
take. This can be seen in “Build the OpenFOAM model” which took three weeks instead of two.
Because of the delay in building the model, the profiling of OpenFOAM and understanding each
function where delayed. This also took longer than expected, five weeks instead of two. All this
created  a  snowball-effect  where  everything  got  delayed  and  took  longer  time  to  execute  than
expected. This can be seen with the implementation of the VHDL code which is only half done,
even though we had eleven week instead of ten weeks of working with the project.  This project
proved to be very challenging, especially when analyzing OpenFOAM source code, which was a bit
more advanced than we are used to. Also, preparing and planning VHDL-design, considering the
factors determining and affecting the result demanded a lot of investigation. Studying existing work
more thoroughly prior to jumping in to this project would have led to a more structured approach,
planning exactly what we needed to do every step of the way and might have saved us some time.   

The result  of this  project,  as described in the previous chapter,  could not meet the preliminary
expectations  concerning  acceleration  level.  The  design,  while  not  yet  finished,  is  estimated  to
actually slow down the computations of the Gauss-Seidel Smoother. This is because of a bottleneck
arises when transferring a lot of data to the FPGA through a PCIe where the bandwidth is a clear
limitation. In addition, the design is not efficiently pipelined and will need to be optimized in order
to result  in acceleration.  To be able to accomplish an efficiently pipelined FPGA-design of the
Gauss-Seidel Smoother, the input data needs to be structured differently before streamed through
the PCIe. Optimally, a structure where data can directly be fed into the arithmetic operators without
have to index back and forth through memory blocks to obtain correct values to perform these
operations.  The  assumptions  that  a  clock  frequency  of  400Mhz  could  be  reached,  since  such
frequency is possible with IP core generated arithmetic block, is actually limited to about 125 MHz
by the data transfer with PCIe. A clock speed of only 125 MHz will not be enough, with the VHDL-
design intended. Since a critical point in the computations of the Gauss-Seidel smoother arises due
to  a  delay on  each row computed,  because  every row has  to  wait  for  previous  row result.  In
addition,  different  matrices  sizes  are  used  for  computation  of  the  Gauss-Seidel  throughout  the
execution of a case. Nine different matrix-sizes where found when analyzing the case calculations
further. Previous assumption, that only one size of the matrix where used, which where the largest
found  where  wrong,  and  it  where  used  to  estimate  the  time  consumed  by  the  Gauss-Seidel
smoother. That result where not accurate. It is actually considerably less time consumed by the
Gauss-Seidel  smoother.  Although,  profiling results  showed that  usage does  indeed scale  with a
larger mesh. Which means an acceleration of the Gauss-Seidel smoother should have a larger effect
with larger matrices, directly corresponding to the size of the mesh.
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Instead of using Gauss-Seidel method another linear solver might be implemented, one where there
are no dependencies in each iteration. Let’s consider the Jacobi method [19] of with the following
iteration can be used to solve function 32.

Ax=b (32)

x i
k+1

=
1
aii

⋅(b i−∑
i≠ j

aij⋅x i
k
) (33)

Where x i
k+1 is the result vector,  aii  the matrix diagonal,  bi  a vector and  aij symbolizes

matrix elements excluding the diagonal, lastly x i
k a vector given the initial guess. Since there are

no dependencies in obtaining x i
k+1 for each row several rows can be computed simultaneously.

However, the different convergence rates between the Gauss-Seidel method and Jacobi will lead to
approximately twice as many iterations when using the Jacobi method before reaching the same
accuracy [20]. To further investigate if Jacobi's method is a valid supplement for Gauss-Seidel we
can  do  some  calculations.  Since  Jacobi  can  be  more  pipelined  a  binary  tree  with  four
multiplications, two adders and one subtraction can be implemented. Which will have a latency of

2+3+3+3=11 cycles. First value will be presented 11 clock cycles after first input, after that
every clock cycle will present a new value. Since mentioned in chapter 5, there are different matrix
sizes for every function call. To calculate the time for Jacobi's method, we are using the following
formulas:

(Latency+(Cells−1))⋅Sweeps
frequency

=Time for calculation (34)

Cells
2

⋅(Sweeps−1)

frequency
=Time for internal datatransfer (35)

Cells
2

frequency
=Data transfer→the CPU (36)
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Table 8: Calculated times for the Jacobi method

Iteration Cells Sweeps Calculations with sweeps (ms) Internal data
transfer (ms)

Data transfer
to the CPU

(ms)

1 31 8 0,002624 0,000896 0,000128

2 62 8 0,004608 0,001736 0,000248

3 125 8 0,00864 0,003528 0,000504

4 250 8 0,01664 0,007 0,001

5 500 8 0,03264 0,014 0,002

6 1000 8 0,06464 0,028 0,004

7 2000 6 0,09648 0,04 0,008

8 4000 4 0,12832 0,048 0,016

9 8000 4 0,25632 0,096 0,032

Total 0,610912 0,23916 0,06388

With the values from Table 8, the total time for the Jacobi's method can be calculated:

(0,610912+0,23916+0,06388)⋅12651≈11,562 s (37)

Even though Jacobi's method needs double the amount of iterations, it is faster than Gauss-Seidel.
But other factors need to be addressed. Since it uses double amount of iterations, more data needs to
be transferred between memories on the FPGA. In this example the function is fully pipelined with
no delay between data input as our implementation has. If Jacobi can be fully pipelined it is better
suited for FPGA implementation than Gauss-Seidel. Furthermore, since Jacobi's method does not
have any dependencies, we can calculate several rows at the same time. For example, if five rows
are calculated at the same time, the time needed to do all calculations is divided by five. On the
other hand this means that the data has to be transferred before starting the calculations, since PCIe
has a limited bandwidth.

A lot of problems arose when trying to build our own model in OpenFOAM. Luckily we found a
similar  model,  planewall2d which  we  could  modify.  It  was  a  challenge  to  understand  the
functions called by OpenFOAM since there where so many. When we finally chose Gauss-Seidel
smoother as the function to implement, we got stuck trying to directly translate the C++ code to
VHDL. This caused delays in our time plan. This was eventually solved by directly looking at the
arithmetic’s for the Gauss-Seidel method and to construct an implementation which corresponds to
it.
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As conclusion,  there is  no definite  best  function to  be accelerated for OpenFOAM. Since it  is
extensive software many functions need to be implemented on FPGA to get an acceleration worth
of implementing. Our implementation was slower but shows that it is possible to use FPGA for
acceleration but in this case the Gauss-Seidel smoother is not optimal since it has a dependency
which makes it slow. In this case Jacobi's method would be faster if the data from the CPU can be
streamed to the FPGA. Which mean that every element that are needed for every row is presented to
the FPGA every clock cycle. If this is achieved Jacobi's method would be fully pipelined. But when
matrices are growing the biggest problem is that the bandwidth of the data transfer becoming a
bottleneck. Both Gauss-Seidel and Jacobi share this limitation for acceleration. Since bigger models
needs bigger matrices, more data have to be transferred and stored this may make GPU:s a better
choice for accelerating OpenFOAM. According to [21], GPU:s outperform FPGA in almost all their
tests. Since GPU:s is more standardized it is easier to implement than FPGA which needs hardware
developers and it has the disadvantage that it performs less floating-point operands per second than
a GPU. When using FPGA:s and GPU:s to accelerate, a reduction in power consumption with 10 x
to 100 x can be achieved [2]. Just because shorter computation time means that more computations
can be done on the same period as before. This in the long run means less time sitting in front of the
computer waiting for a result.

6.1. Future Work

Since this project did not lead to acceleration, due to an unfinished VHDL-design we have reached
the conclusion that  even a completed VHDL-design would still  not have accelerated the linear
solver. Partly because of the dependency in the thought VHDL architecture, a different approach
might  be to use an alternative linear  solver.  The linear  solver  should have better  possibility to
exploit  its  parallelism.  OpenFOAM  includes  a  variety  of  solvers,  pre-conditioners  and  mesh
manipulation,  each  with  advantages  and  disadvantages  regarding  different  problems.  The
computational  workload  seems  to  be  distributed  between  functions,  which  means  accelerating
several functional will lead to a better result. In order to accomplish this, the sparse matrix format
currently used by OpenFOAM might have to be altered. Data should be as compressed as possible
and able to be streamed as well as calculated without dependencies, either using existing formats or
perhaps a modified version of one. Since data transfer is limited by the PCIe bandwidth, a more
compressed format can reduce the limitation of bandwidth, and result in a higher clock frequency.
An idea might be to use run-length encoding (RLE) [22], where coordinates of non-zero elements in
a matrix can be merged with the actual data. To further explain, n zero elements is presented as a
zero  followed  by the  number n . n represents  the  number  of  zeros  in  a  row  but  will  also
determine where the next non-zero element in located in the full matrix, hence the known element
in vector x can be found. In addition, if data corresponding to the number of elements per row
can be merged with the actual data, the bandwidth will be reduced even further. Presently a current
GPU implementation is already available through a plugin to OpenFOAM, SpeedIT, supplied by
Vratis ltd. Including a library providing sparse linear solvers ready to be implemented in a CUDA
supported NVIDIA-card [23]. With SpeedIT 2.4 they have achieved an acceleration up to 6 times.
Further work like this can be the solution to accelerate OpenFOAM, to create general solutions for
solvers and smoothers that easily can be implemented.
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Appendix A: Code for the Model
Figure 20 is the finished blockMeshDict:
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convertToMeters 1;

vertices
(
    (0 0 0)
    (1 0 0)
    (1 1 0)
    (0 1 0)
    (0 0 0.1)
    (1 0 0.1)
    (1 1 0.1)
    (0 1 0.1)
);
blocks
(
    hex (0 1 2 3 4 5 6 7) (100 100 1) simpleGrading (1 1 1)
);
edges
(
);
boundary
(
    topWall
    {
        type wall;
        faces
        (

(3 7 6 2)
        );
    }
    fixedWalls
    {
        type empty;
        faces
        (
   (0 4 7 3)
            (2 6 5 1)
            (1 5 4 0)
        );
    }   
    frontAndBack
    {
        type empty;
        faces
        (

(0 3 2 1)
(4 5 6 7)

        );
    }
);

Figure 20: Code from the finished blockMeshDict



Figure 21 specifies how the code in changeDictionaryDoct of Wall is structured.
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dictionaryReplacement
{
    T
    {
        internalField   uniform 285;

        boundaryField
        {
            topWall
            {
             type  fixedValue;
                value uniform 273;
            }

      frontAndBack
            {
              type empty;
            }

      fixedWalls
      {

type empty;
      }

            "wall_to_.*"
            {
             type compressible::turbulentTemperatureCoupledBaffleMixed;
                Tnbr T;
                kappa       solidThermo;
                kappaName   none;
                value       uniform 285;
            }
        }
    }
}

Figure 21: Code from changeDictionaryDict of Wall



The code of changeDictionaryDict of bottomWater is separated in three parts due to it is so long, 
Figure 22 is the first part.
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dictionaryReplacement
{
    boundary
    {
        fixedWalls
        {
            type            zeroGradient;
        }

  frontAndBack
  {
    type     zeroGradient;
  }

    }
    U
    {
        internalField   uniform (0.0 0 0);

        boundaryField
        {
            fixedWalls
            {
                type            fixedValue;
                value           uniform ( 0 0 0 );
            }

            frontAndBack
            {
                type            fixedValue;
                value           uniform ( 0 0 0 );
            }
            
            "bottomWater_to_.*"
            {
                type            fixedValue;
                value           uniform (0 0 0);
            }
        }
    }

Figure 22: Part 1 of the code from changeDictionaryDict of
bottomWater



Figure 23 is the second part of the changeDictionaryDict of bottomWater. 
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T
    {
        internalField   uniform 300;

        boundaryField
        {
            fixedWalls
            {
                type zeroGradient;
            }

      frontAndBack
{

type zeroGradient;
}

            "bottomWater_to_.*"
            {
                type compressible::turbulentTemperatureCoupledBaffleMixed;
                Tnbr T;
                kappa       fluidThermo;
                kappaName   none;
                value       uniform 300;
            }
        }
    }
    epsilon
    {
        internalField   uniform 0.01;

        boundaryField
        {
            fixedWalls
            {
                type            zeroGradient;
            }

            "bottomWater_to_.*"
            {
                type            compressible::epsilonWallFunction;
                value           uniform 0.01;
            }
        }
    }

Figure 23: Part 2 of the code for changeDictionaryDict of bottomWater



Figure 24 is the third and final part of the changeDictionaryDict of bottomWater.
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k
    {
        internalField   uniform 0.1;
        boundaryField
        {
            fixedWalls
            {
                type            zeroGradient;
            }
            "bottomWater_to_.*"
            {
                type            compressible::kqRWallFunction;
                value           uniform 0.1;
            }
        }
    }
    p_rgh
    {
        internalField   uniform 1e5;
        boundaryField
        {
            ".*"
            {
                type          fixedFluxPressure;
                value         uniform 1e5;
            }
            fixedWalls
            {
                type       zeroGradient;
            }

   frontAndBack
  {
          type zeroGradient;
   } 

        }
    }
    p
    {
        internalField   uniform 1e5;
        boundaryField
        {
            ".*"
            {
                type          calculated;
                value         uniform 1e5;
            }
        }
    }
}

Figure 24: Part 3 of the code for changeDictionaryDict for bottomWater



Figure 25 illustrates the code from the topoSetDict file.
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actions
(
    // wall
    {
        name    wall;
        type    cellSet;
        action  new;
        source  boxToCell;
        sourceInfo
        {
            box (0 0.8 0 )(1 1 0.1);
        }
    }
    {
        name    wall;
        type    cellZoneSet;
        action  new;
        source  setToCellZone;
        sourceInfo
        {
            set wall;
        }
    }

    // bottomWater
    {
        name    bottomWater;
        type    cellSet;
        action  new;
        source  boxToCell;
        sourceInfo
        {
            box (0 0 0 )(1 0.8 0.1);
        }
    }
    {
        name    bottomWater;
        type    cellZoneSet;
        action  new;
        source  setToCellZone;
        sourceInfo
        {
            set bottomWater;
        }
    }

);

Figure 25: Code from the topoSetDict file



Figure 26 illustrates the code from the GaussSeidelSmoother.C file.
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for (label sweep=0; sweep<nSweeps; sweep++)
    {
        bPrime = source;

        matrix_.initMatrixInterfaces
        (
            mBouCoeffs,
            interfaces_,
            psi,
            bPrime,
            cmpt
        );

        matrix_.updateMatrixInterfaces
        (
            mBouCoeffs,
            interfaces_,
            psi,
            bPrime,
            cmpt
        );

        register scalar psii;
        register label fStart;
        register label fEnd = ownStartPtr[0];

        for (register label celli=0; celli<nCells; celli++)
        {
            // Start and end of this row
            fStart = fEnd;
            fEnd = ownStartPtr[celli + 1];

            // Get the accumulated neighbour side
            psii = bPrimePtr[celli];

            // Accumulate the owner product side        
for (register label facei=fStart; facei<fEnd; facei++)

            {
                psii -= upperPtr[facei]*psiPtr[uPtr[facei]];
            }

            // Finish psi for this cell
            psii /= diagPtr[celli];

            // Distribute the neighbour side using psi for this cell
            for (register label facei=fStart; facei<fEnd; facei++)
            {
                bPrimePtr[uPtr[facei]] -= lowerPtr[facei]*psii;
            }

            psiPtr[celli] = psii;

        }

    }

Figure 26: Code for GaussSeidelSmoother.C



Appendix B: Function names
The full function names for a mesh of (100 100 1):

GaussSeidelSmooter: Foam::GaussSeidelSmoother::smooth(Foam::word const&, 
Foam::Field<double>&, Foam::lduMatrix const&, Foam::Field<double> const&, 
Foam::FieldField<Foam::Field, double> const&, Foam::UPtrList<Foam::ldu 

inv: Foam::inv(Foam::Field<Foam::Tensor<double> >&, Foam::UList<Foam::Tensor<double> > 
const&) 

multiply: Foam::multiply(Foam::Field<double>&, Foam::UList<double> const&, 
Foam::UList<double> const&) 

Amul: Foam::lduMatrix::Amul(Foam::Field<double>&, Foam::tmp<Foam::Field<double> > 
const&, Foam::FieldField<Foam::Field, double> const&, Foam::UPtrList<Foam::lduInterfaceField 
const> const&, unsigned char 

List: Foam::List<double>::operator=(Foam::UList<double> const&)

Appendix C: Time Plan
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Figure 27: Gantt-scheme for the time plan
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