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Abstract 
 
In this thesis we examine the Swedish electricity market and the effects from the 
deregulation of it. The fact that the deregulation has given rise to highly volatile prices 
has created a strong need for more sophisticated models to yield better electricity price 
forecasts.  
We examine and evaluate the ARMA models as forecasting models for electricity prices. 
We also examine how outdoor temperatures influence electricity consumption and 
electricity prices. Hourly and daily temperature data are then used as exogeneous input to 
ARMAX models which we also evaluate for use as forecasting models. 
Both ARMA models and ARMAX models provide good fits during shorter time–periods 
and using temperature data has turned out to provide a significant improvement to the 
models. However, they all fail to properly capture the extreme behaviour with price 
spikes that occur during the winter seasons. They are also not suitable for long run 
predictions without further sophistications e.g. by using time–varying parameters such as 
time–varying volatilities and mean values. 
The conclusions are that the need for improved forecasting methods indeed are imminent 
and that the ARMA and ARMAX models in some circumstances has the potential to 
provide good predictions. 
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1. Theory and background 
 
Since the deregulation of the electricity market, electricity prices have become 
extremely volatile putting a potentially serious strain on consumers’ budgets, 
especially during the winter months. This development has created a need for 
financial instruments that protect against the fluctuating nature of the electricity 
prices. The usage of such financial instruments has prompted the need for more 
sophisticated forecasting methods that better predict electricity price movements in 
order to be able to make fair estimations on these instruments. The ARMA and 
ARMAX models have capabilities to capture some of the characteristics inherent in 
electricity price movements that traditional random walk models fail to capture. This 
thesis intends to evaluate using ARMA models and ARMAX models with outdoor 
temperatures as exogeneous data as forecasting models for electricity price 
movements.  
 
This thesis is divided as follows; Chapter 1 gives a background of the electricity 
market and introduces the models that are intended to be used for estimations on this 
market. Chapter 2 provides the methodology behind model estimations and the 
evaluation of these estimations. Chapter 3 presents the results and we provide 
concluding remarks in Chapter 4. 
 
Chapter 1 begins by analyzing the Swedish electricity market discussing the actors 
on the market, their roles and their market power in Section 1.1. Section 1.2 
discusses the producers vs. the consumers and various factors that affect supply and 
demand of electricity. Section 1.3 discusses the electricity price movements and what 
distinguishes these movements from e.g. the movements of stocks. Section 1.4 
conducts a statistical analysis of hourly observed electricity price data for 2010. 
Section 1.5 introduces the ARMA and ARMAX models and discusses their 
theoretical properties. 
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1.1 The Swedish electricity market 
 

The electricity market has grown considerably over the past 20 years and 
consists today of many different actors [Svenska Kraftnät 2007]. On the supply 
side we have the electricity producers and on the demand side, we have the 
consumers. The connection between consumers and producers is mediated 
through brokers and other intermediaries that interact with the commodities 
market that is maintained by Nord Pool Spot A/S1. The electricity is delivered 
through the national power grid and regional networks. The national grid is 
maintained by Svenska Kraftnät whom also have the role to ensure that the 
balance between supply and demand is in harmony and that the supply of 
electricity is stable throughout the country. The roles of the different actors are 
illustrated in Figure 1.1. 

 

Power Grid
(National, Regional

and Local)Electricity
Producers

Electricity
Consumers

Brokers

 
 

Figure 1.1: An illustration of the relationship between the different roles on 
the electricity market. 

Source: Svenska Kraftnät 
 

Electricity markets are also characterized by capacity constraints in the 
distribution networks. Due to these constraints, Svenska Kraftnät have decided 
to divide Sweden into four separate regions with different tariffs. This division 
is illustrated in Figure 1.2.  

 

                                                 
1 Nord Pool Spot A/S is owned by the Nasdaq OMX Group Inc which is an American financial services 
corporation that runs the Scandinavian stock exchange. 



ELECTRICITY PRICES AND ARMAX ESTIMATIONS 
 

10 
 

ELECTRICITY SURPLUS

ELECTRICITY SURPLUS

ELECTRICITY DEFICIT

ELECTRICITY 
DEFICIT

POWER GRID 
CONSTRAINTS

POWER GRID 
CONSTRAINTS

POWER GRID 
CONSTRAINTS

HYDROPOWER

VATTENKRAFT

NUCLEAR POWER

NUCLEAR POWERNUCLEAR POWER

 

Region Luleå (SE 1)

Region Sundsvall (SE 2)

Region Stockholm (SE 3)

Region Malmö (SE 4)

 
Figure 1.2: Division of Sweden into four price regions (SE 1 – SE 4) as 
decided in December 1 2011 by Svenska Kraftnät. 

Source: Svenska Kraftnät 
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The distribution between consumers and producers is uneven which tends to 
create a surplus in the north where most of the electricity is produced and a 
deficit in the more densely populated regions in the south where most of the 
electricity is consumed. Each line within the power grid has a maximum 
amount of electricity that it can carry at a given moment which tends to put a 
serious strain on the marginal costs of transmission. This has a considerable 
potential to isolate regions of the electricity market from the rest of the market. 
In such situations, the producers and market makers have the ability to exercise 
a greater level of market power and influence over prices as has been 
demonstrated in e.g. the Californian electricity market after the restructuring 
and deregulation of electricity prices in that market [Borenstein et al 1999]. In 
general, suppliers have a considerable potential to exercise market power. 
Some studies have indicated this by deducing large Lerner indices (even 
though a large part of the Lerner index can be explained by the inelastic nature 
of electricity demand) in e.g. the British electricity markets [Wolfram 1999]. 
Also political agendas and energy policies such as the trade with carbon 
emissions, the political aftermath after the Fukushima incident, and mandates 
requiring the production of electricity to only come from renewable sources 
have shown to give rise to increasing electricity prices [Bryce 2012] and 
[Svenska Kraftnät 2007]. 
 
During the early years of the reform and deregulation of the electricity market, 
there was a rule of thumb that set the electricity costs to consist of three equally 
large parts: 

 
 The cost of the electrical energy itself 
 Network fees and charges for the transmission of the electricity 
 Energy taxes and VAT 

 
This rule of thumb has been blurred out as the cost of electrical energy by 2007 
constituted 35% of the final tariff, 20% network fees and 45% taxes [Svenska 
Kraftnät 2007]. Today, the cost of energy can account for as much as 50% 
followed by a 40% tax and a transmission fee down to 10% of the total cost of 
electricity consumption. 

 

1.2 Producers, consumers and factors affecting 
supply and demand 

 
The electricity is mainly produced by nuclear power reactors and hydropower 
plants. In Sweden there are a total of 10 nuclear reactors, each of them located 
in Ringhals, Forsmark, and Oskarshamn. Together they constitute about half of 
the electricity production, the other half comes from hydropower. By 2010, 
about 144.9 TWh of electricity was produced [SCB 2012]. The sources of 
electricity production are summarized in Figure 1.3. 
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Wind power (2,4 %)

Conventional thermal power (13,1 %)

Nuclear power (38,4 %)

Hydropower (46,0 %)

 
 

Figure 1.3: The Swedish electricity production as of 2010 by energy source 
as a percentage of the total electricity production. 

 Source: SCB 
 

Factors that affect the production capacity are the number of reactors that are 
online and the water levels in the dams. A period of low precipitation reduces 
the production capacity of the hydropower plants. Also, the need to take down 
a nuclear reactor for maintenance also reduces the production capacity. 
 
The majority of electricity consumption comes from heating of real estate and 
residential consumption which constitutes about half of the total consumption 
in Sweden. The other half of the consumption comes from the industry such as 
the paper industry. The total domestic usage of electricity at 2010 was at 136.3 
TWh. The electricity consumption is summarized in Figure 1.4. 

 
Heating stations (1,8 %)

Railroad (2,6 %)

Chemical industry (6,4 %)

Steel & metal industry (8,6 %)

Misc industry (15,1 %)

Paper industry (16,5 %)

Real estate (49,1 %)  
 

Figure 1.4: Major applications for electricity consumption as a percentage 
of total Swedish consumption by 2010. 

Source: SCB 
 

The major factor that affects the electricity consumption in Sweden is the 
temperature. The lower the outdoor temperature, the more electricity is 
consumed as houses need more heating. The correlation between the electricity 
consumption and outdoor temperature is illustrated in Figure 1.5.  
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Figure 1.5: The hourly electricity consumption (upper figure) and daily 
electricity consumption (lower figure) as a function of temperature 
difference between a weighted average nationwide outdoor temperature and 
average indoor temperature (20C). 

Source: SMHI & Nord Pool Spot A/S consumption data 
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Another factor that affects consumption is the business cycle. At the peak of 
the economy, more electricity is consumed for production whereas less is 
consumed during a recession. The Swedish power grid is connected to Norway, 
Finland, Germany and Poland where some electricity is exported during a 
surplus production and imported whenever there is a national deficit. 

 

1.3 Properties of electricity price movements 
 

In 1992 the electricity market became deregulated and restructured which gave 
more freedom for electricity producers’ pricing strategies. Since 2002 
electricity has become available for public trade in the spot market through 
Nord Pool Spot. The deregulation and public trade has made the electricity 
prices considerably more volatile than in the past. Since the means to store 
electricity are limited, electricity prices are very sensitive to sudden shortages 
which make prices even more volatile, especially during the winter seasons. 
This has created a stronger need for protection against such fluctuations in the 
past few years and the volatile nature of the electricity prices have put a 
stronger demand for sharper instruments that give proper protection at the right 
price–premium. 
 
The most commonly used instrument to protect or hedge against such price 
fluctuations is the swap agreement which basically means that a user can enter 
into a bound agreement to either pay a fixed price for the electricity or a 
floating price that depends on time to maturity of the agreement [Hull 2007]. 
Pricing of financial derivatives such as swap agreements basically hinges on 
the assumption that the underlying asset follows some sort of stochastic 
process. The most basic derivatives are the European put and call options that 
are mostly used for stocks and other equities. Such financial instruments build 
upon statistical models that are specifically designed for equities. The problem 
with such statistical models is that they fail to properly capture the movements 
in electricity prices and therefore more sophisticated models are needed for 
pricing electricity based derivatives. As we have mentioned before, electricity 
prices have the following three characteristics that stock prices don’t have 
[Knittel Roberts 2005]: 

 
 Short term stationarity – they are stationary in the short term and have 

no trend when looking at shorter time intervals. There is also a mean–
reversion property inherent in the electricity prices which means that 
the electricity prices tend to converge toward a long–term mean over 
time. 

 Seasonalities – they have different types of seasonal cycles that come 
from the fact that people tend to take showers in the mornings and 
therefore consume more electricity during such times. Also more 
electricity is consumed during weekdays than during weekends and 
during winters than during summers.  
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 Sudden price spikes – sudden shortages and a demand that saturates the 
production tend to give rise to price spikes which comes from the 
difficulty to store electricity. 

 
A mathematical model must take these factors into account in order to achieve 
a fair accuracy.  There is also a positive skew larger during periods of high 
demand variability and smaller during periods of low demand variability 
[Bessembinder Lemmon 2002]. The volatility of spot prices is considerably 
higher in periods of high demand than during periods of low demand. 
 
There is also an "inverse leverage effect" inherent in the spot price movements. 
The traditional leverage effect is experienced when e.g. stock prices drop 
which tends to panic the market and raise the implied volatilities. The higher 
implied volatility is a result of the inherent risk–aversion among traders and 
investors for markets that are going down. Another way to look at this is 
through financial instruments that are used to hedge against such 
developments, such as put options. The increased demand for out of the money 
puts gives rise to higher implied volatility for lower strikes2 [Hull 2007]. With 
many commodities such as the electricity, this effect is reversed which means 
that the implied volatility increases when the commodities prices increase. So 
there is an aversion in the market against rises in commodities prices. Also, 
price increases also increases the demand for derivative instruments such as 
forward agreements, futures contracts, swap agreements or call options which 
are instruments that are used to hedge against rising commodity prices. 
 
Another feature of electricity prices that is quite distinct from equities is that 
they sometimes can be negative [Brandstätt et al 2011]. This happens when 
supply outstrips demand and the producers literally don’t know where to put it. 
Measures have been taken to prevent such events from happening. In 
Scandinavia, Danish wind power is used to pump water into Norwegian and 
Swedish reservoirs which are later used to drive hydropower plants whenever 
the demand requires it. Also, at Nord Pool there is a minimum price policy 
which most likely explains why we don’t see any negative prices in our 
electricity price data. 

 

                                                 
2 The strike price of a put–option, or put which is the price at which a holder of it has the right but not the 
obligation to sell the underlying asset. A put is out of the money when the strike price of the put is lower 
than the price of the underlying asset and it is at–the–money or in–the–money when the strike price of the 
put is higher than the price of the underlying asset. 



ELECTRICITY PRICES AND ARMAX ESTIMATIONS 
 

16 
 

1.4 A statistical analysis of observed electricity 
price data 

 
Since 2010, trading data for electricity spot prices have become publicly 
available via Nord Pool Spot A/S and in this Section we analyze the Swedish 
electricity prices for the year of 2010 as noted on the Nord Pool Spot 
commodities exchange using the framework as provided by Knittel, Roberts 
[Knittel Roberts 2005]. Electricity price data show distinct variations within 
one day. In Figure 1.6 we see the average hourly electricity prices measured in 
Swedish Krona per megawatt hour (SEK/MWh).  
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Figure 1.6: Average hourly electricity prices for 2010. 
 

On average, the prices are higher during the weekdays than during the 
weekends. The price begins to increase at roughly 6 in the morning. A peak 
sets in at around 9 in the morning and is sustained a bit into lunch time. As the 
workday ends, the electricity prices begins to decline, the demand begins to 
shift over to residential use and another peak occurs at dinner time in the 
evening. In Figure 1.7 we see a 10 day sample of hourly price and demand 
data for the time periods 1 – 11 January 2010 and 30 June – 10 July 2010. 
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Figure 1.7: Samples of hourly electric prices for the periods 30 June – 10 
July 2010 and 1 – 11 January 2010. 
 

The left vertical axis shows the demand in gigawatts (GWh/h = GW) and the 
right vertical axis shows the electricity price in SEK/MWh. The horizontal axis 
corresponds to midnight of that particular day. These figures give a clear view 
over the daily usage patterns and their persistence over time. It is apparent that 
the summer prices mimic the pattern of the demand movements. During the 
winter days it seems that when the demand reaches 25 GW it appears to over–
saturate the supply as this demand level seems to trig price spikes in the 
electricity market.  
 
It is also apparent that the electricity prices have a strong seasonal component 
that chiefly reflects the residential and commercial heating needs during the 
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winters. This is illustrated in Figure 1.8 that shows hourly weekday averages 
for each of the four seasons. 
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Figure 1.8: Average weekday hourly electricity prices by season. 
 

Compared to southern countries there is no significant need for air conditioning 
during the summer as is clearly illustrated in Figure 1.5.  

 
Figure 1.9 presents a 5–day OHLC chart and a daily OHLC chart showing 
hourly electricity price developments during 2010. It illustrates how prices 
make dramatic swings which tend to occur in clusters. This is a result of 
demand saturating and even exceeding the capacity of the electricity system. 
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Figure 1.9: The upper pane of the upper figure is a 5–day OHLC chart with 
20–day Bollinger bands of second order superimposed and the lower figure 
shows a daily OHLC chart with the same Bollinger bands. The lower panes 
show the amount of electricity delivered during each period, i.e. each 5–day 
period in the upper figure and 1–day period in the lower figure. 
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We end this Section with a brief discussion about the distributional properties 
of the electricity price data. In Figure 1.10 we have an empirical 100–bin 
histogram of the electricity price data with the normal distribution 
superimposed on it. The figure shows that the deviations from the normal 
distribution are significant. 
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Figure 1.10: Empirical histogram of electricity prices with the normal 
density superimposed. 
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Figure 1.11: QQ–plot of electricity prices. 
 

In Figure 1.11 we have a QQ–plot of the data. The superimposed line 
represents the normal distribution and if the empirical distribution were 
perfectly normal, all points would coincide with that line. We see that the 
empirical distribution shows a fairly normal behaviour within the first positive 
and the first two negative quantiles but deviates from that behaviour beyond 
those quantiles. Both of these figures suggest that the empirical distribution is 
more heavily tailed than the normal distribution. Table 1.1 shows some 
summary statistics of the electricity price data. It also indicates heavily tailed 
properties showing a considerably higher kurtosis than the normal distribution 
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and a positive skewness. Something to note is that we don't have negative 
prices in the data. 

 
Statistic Value
Mean 505.9123
Minimum 17.1900
Maximum 3063.3100
Standard Deviation 152.4489
Skewness 3.5065
Kurtosis 38.9342

 
Table 1.1: Electricity price summary statistics. 
 

In Figure 1.12 we have the autocorrelation function for the price levels and 
they are statistically significant even beyond 1000 lags. 
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Figure 1.12: Autocorrelation function for electricity prices. 
 

The behaviour of the correlogram reflects the recurring daily usage patterns 
and the weekend/weekday cycle. This is quite distinct from the behaviour of 
e.g. equity prices that are commonly assumed to follow a random walk with 
drift. Although there is a field of research in behavioural finance that suggests 
that there are some predictable movements in equity prices and they in many 
cases also have a statistically significant autocorrelation [Ding Granger 1996], 
they are considerably smaller than the autocorrelation inherent in the electricity 
price data. In Figure 1.13 we have the autocorrelation function for the square 
of the prices which is quite similar to the correlogram in Figure 1.12.  
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Figure 1.13: Autocorrelation function for the square of electricity prices. 
 

We have a high degree of persistence of the second order moment even after 
100 lags which implies high volatility persistence over time. From the analysis 
of the data we conclude just like Knittel, Roberts [Knittel Roberts 2005] that it 
is suggestible that any modeling effort should account for the following 
characteristics of the price series: 

 
 Mean reversion 
 Seasonal effects for the short-term (i.e. time of day, weekend vs. 

weekdays) 
 Seasonal effect for the time of the year and/or correlation with 

temperatures 
 Time-varying volatility 
 Extreme values 
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1.5 The ARMA model 
 

The ARMA model is a linear model to describe a time–series data that is 
assumed to be a linear combination of a purely autoregressive process and the 
moving average of some white noise process [Kitagawa 2010]. An 
autoregressive process of order p, or in short AR(p) is described by 

 

1

p

t i t i t
i

y a y 


  , (1.1)

 
where the coefficients a1, …, ap are the parameters of the model and t is a 
Gaussian white–noise process with variance 2 that is stochastically 
independent of yt–1, yt–2, …, yt–p. A process that can be entirely described by 
this model is called an autoregressive process. The model can also be looked 
upon as a linear filter where the observations yt is the input signal and the 
process t is an output signal [Albin 2003 p99]. The impulse response of that 
filter is then defined as h(k) = ak. The autoregressive model can also be looked 
upon as a difference equation [Eriksson Larsson Wahde 2000 p35] which has 
analogies with linear differential equations. If we define the lag operator B 
where Byt = yt–1 and Bkyt = yt–k for any integer k ≥ 0, then we have  

 

0

ˆ
p

k
k t t

k

a B y 


 , 

 
where a0 is –1 and t̂ t   . The lag operator is analogous to the differential 
operator of differential equations and this difference equation has the 
characteristic equation 

 
1 2

1 2 0p p p
pz a z a z a      , 

 
where the roots describe the characteristics of the autoregressive model. If we 
want the model to be stationary, the roots of its characteristic equation must lie 
within the unit circle, i.e. each root zi must satisfy the relation |zi| < 1. 
Autoregressive processes with unit roots are called integrated processes and 
detection of integration can be done with e.g. the Augmented Dickey–Fuller 
test [Greene 2011]. An example of a non–stationary autoregressive process is 
illustrated in Figure 1.14. We assume that the electricity price data follows a 
stationary process. The two most common ways of fitting an autoregressive 
model to a stochastic process are the Least–Square method and the Yule–
Walker method. 
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Figure 1.14: Estimations of autoregressive processes can easily turn non–
stationary, this figure shows a simulation of such a process. 
 

A moving average model of order q, or in short MA(q) is defined by 
 

0

q

t k t k
k

y b  


 , 

 
where  t t   is a set of stochastically independent Gaussian variables with 
mean 0 and variance 2, which are also called error terms. Also this model can 
be seen as a filter where the error terms represent the signal in and yt the 
filtered signal out. The impulse response of that filter is then defined as h(k) = 
bk. We don’t have to worry about integration as this model yields only 
stationary processes [Albin 2003 p109]. Figure 1.15 illustrates how the order 
of a moving average process affects its behaviour.  
 
An ARMA(p, q) model with autoregressive order p and a moving average 
order q is described by 

 

1 1

p q

t i t i t i t i
i i

y a y b  
 

    , (1.2)

 
where  t t




 is a set of Gaussian variables with a mean 0 and variance 2 just 
like in the case with the pure moving average model. These error terms are 
stochastically independent of each other and the past observations in the 
autoregressive part of the model. 
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MA(1) MA(25)

MA(100)

 
MA(1) MA(5)

MA(100)

 
 

Figure 1.15: An illustration on moving average processes of different 
orders with a white noise process (upper triad) and a Wiener trajectory 
(lower triad) as a background process. A higher order yields a lower “detail” 
in the output which suggests that it has low–pass like filter properties. 
 

This model can be seen as a generalization of the pure autoregressive model 
and the pure moving average model where each of them is a special case where 
the AR(p) model actually is an ARMA(p, 0) model and the MA(q) model is an 
ARMA(0, q) model. If we let   11 p i

i ia B a B  and   11 q i
i ib B b B  then the 

ARMA model can be expressed more concisely as 
 

   t ta B y b B  , 
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and the ARMA model can actually be expressed as a moving average model 
with infinite order. Let g(B) = a(B)–1b(B) then 

 

 
0

t t i t i
i

y g B g 





  . 

 
It can also be looked upon as a filter just as the pure AR(p) and MA(q) models 
and its impulse response function is then defined as h(k) = gk. ARMA models 
go under the Box–Jenkins framework and are sometimes called Box–Jenkins 
models [Brockwell Davis 2006]. The Box–Jenkins framework is a framework 
for fitting ARMA and ARIMA models in the presence of trend and 
seasonalities, this will be covered in more depth in the methodology Chapter of 
this paper. Also, filter theory becomes significant when one wants to filter out 
trend and seasonality variations. An ARIMA model is a model that deals with 
integration as discussed above. Another way to generalize the ARMA model is 
to account for exogeneous influences such as temperature variations. The 
ARMAX(p, q, r) model where r is the order of exogeneous influence is 
described by  

 

1 1 1

p qr

t i t i j t d j t k t k
i j k

y a y b u c    
  

      , (1.3)

 
where d is the delay in discrete time–steps, or samples that occur before the 
exogeneous influence affects the output yt. 
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2. Methodology 
 
This Chapter presents the methodology behind estimation and evaluation of the 
models as presented in Chapter 1. The first Section discusses the general principles 
behind model estimation and validation. Section 2.2 and 2.3 discusses general 
methods for estimating pure autoregressive processes whereas Section 2.4 and 2.5 
provide an estimation framework for more complex ARMA and ARMAX models. 
Section 2.6 introduces and discusses the Box–Jenkins framework for identifying and 
removing trend and seasonalities within observed data to be used for model 
estimation. Section 2.7 introduces the concept of goodness–of–fit and provides 
criteria for validating model estimations. 
 

2.1 Principles behind model estimation and 
evaluation 

 
The basic approach is to define a set of models or a set of candidates to fit to 
observed data. The accuracy of the fit is usually compared against a criterion or 
tested using e.g. a 2 based test criterion such as the Ljung–Box test or an 
information criterion such as the Akaike information criterion (AIC). These 
test criteria get less reliable the more complexity there is in the model and even 
less reliable when comparing different types of models. So, a more rigorous 
approach to test the fit of a model is by making a simulation based on the 
model and comparing it to the empirical distribution of the observed sample 
data. Information criteria can on the other hand be used to estimate the optimal 
order of e.g. an autoregressive model. The general approach is illustrated in 
Figure 2.1 [Ljung 1999]. 
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Experiment
Design

Data

Choose
Model Set

Choose
Criterion

of Fit

Calculate Model

Validate
Model

Prior Knowledge

Not OK: Revise

OK: Use It!
 

 
Figure 2.1: The system identification loop used to find the model that best 
represents the observed data. 

Source: Ljung, 1999 
 

The experiment design involves fitting ARMA and ARMAX models to 
observed electricity price data (that has trends and seasonal cycles removed 
according to the Box–Jenkins framework) and temperature data. The model set 
comprises of ARMA(p, q) and ARMA(p, q, r) models over a parameter space  
(p, q) and (p, q, r) that is computationally viable. Each of these models is fit to 
the electricity price data using a least–squares approach which is inherent in the 
recursive iterative Kalman filtration process. The estimated model is then 
checked for non–stationarity and validated against an information criterion 
and/or the measurement criteria as defined in the Kolmogorov–Smirnov 
framework. 

 

2.2 Fitting AR models using least–squares 
 

The least square method can be used for estimating linear models such as the 
autoregressive model and the moving average model. If we let ty be the value 
described by the model to be fitted, then the equation to be minimized is 

 

   
0

2
T

t t
t t

S y y


     
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for a series of T observations. The parameter vector Θ contains the parameters 
{θ1,…,θN} that are to be estimated. The starting time t0 is set so that the 
equation is defined for the parameters of the highest order in the model. For an 
ARMAX(p, q, r) model, the starting point is t0 = max(p, q, r + d)  + 1. So we 
have a minimization problem with the partial derivatives 

 

0
i





. 

 
For simpler models such as the AR(p) model, we can formulate a linear vector 
equation 

 

Ax b


 
 

where b


is a vector of the observed values at each time point t in the time–
series, x


 is a vector with the model parameters a1, …, ap and A is a matrix with 

prior observations yt–1,…,yt–p at each time point t. So if the first equation is at 
time point t = p + 1 then the first observation in the time–series has taken place 
at t = 1. So we have a system with more equations than unknowns and it is 
minimized by multiplying both sides of the transpose of the matrix A from the 
left and then multiplying by the inverse of ATA on both sides 

 

  1Tx A A b





. 

 
The projection inherent in the scalar product automatically finds the shortest 
distance between the higher dimensional “equation” space and the lower 
dimensional parameter space. This makes it a computationally efficient and yet 
powerful method to minimize the errors in the estimation. The error terms are 
then estimated from 

 

t t ty y     (2.1)
 

where  
 

1

p

t k t k
k

y a y 


  (2.2)

 
and they are assumed to be  20,N   distributed. Another important result of 
the least–squares method is that the error terms are orthogonal to the 
observations. One can actually show that the least–squares solution is optimal 
if and only if the error terms are orthogonal to yt through the Wiener–Hopf 
equations [Sorenson 1970]. 
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2.3 Fitting AR models using the Yule–Walker 
method 

 
Another approach to estimate an autoregressive model is through the Yule–
Walker equations [Albin 2003 p112]. The autocovariance function for a 
stochastic process {X(t)}tT is defined as rX(s, t) = E[X(s) X(t)] for s, tT if 
E[X(t)2] < ∞. Let e(t) be an AR(p)–process where    0

p
k ke t a Z t k   with a 

characteristic polynomial   0
p k
k kA z a z   such that A(1)  0, then (see [Albin 

2003 p113] for proof) 
 

     

     
1

2

1 0 for 1

0 1

X X p X

X X

r a r a r p

r r r p 

      


   

    


 

 
where rX(k) = rX(t, t–k). If we let k =  rX(k) then 

 

1 0 1 2 1

2 1 0 1 1 2

3 2 1 0 2 3

1 2 0

p

p

p

p p p p p

a

a

a

a

    
    
    

    





 

     
     
     
     
     
     
          





      


 

 
or, in short 

 
a  

 
, 

 
where  is a vector of autocorrelation values.  is the autocovariance matrix 
and a


is the parameter vector of the AR(p) model [Brockwell Davis 2006 

p239]. The elements 0 in the diagonal in the matrix are the variance 2 of the 
observations. So, by constructing the covariance matrix we can estimate the 
AR(q)–coefficients from 1a  

 
. This method is similar to the least–square 

method in that we try to minimize the prediction errors. The error terms are 
estimated as in (2.1) by using the Yule–Walker estimated parameters in (2.2).  

 

2.4 State–space modeling 
 

Linear models such as the autoregressive model and the autoregressive moving 
average model can also be expressed through a state–space representation and 
be treated entirely within the state–space framework. The state–space 
framework is essential when estimating linear models using the Kalman filter. 
The state–space representation is divided in two parts 
 



ELECTRICITY PRICES AND ARMAX ESTIMATIONS 
 

31
 

1 (system model)

(observation model)
n n n n n

n n n n

x F x G v

y H x w
 

 

  
    

(2.3) 

(2.4)
 
where nx


 is a k–dimensional unobservable vector commonly referred to as the 

state, nv


 is the system noise, or state noise; an m–dimensional vector with zero 
mean and a covariance matrix Qn. The vector nw


 is an l–dimensional vector 

with Gaussian white noise just like the vector nv


but with covariance matrix Rn. 
So, the dimensions of the matrices Fn, Gn, and Hn and the vectors nx


, ny


, nv


 
and nw


 looks like this 

 

       
      

1 1 1

1 1 1

k k k k k m m

k k

      

       
. 

 
Generally, the vector ny


 in the observation model (2.4) represents 

observations, or measurements of some data that is unobservable due to some 
uncertainty that is inherent in the process of retrieving that data. If the 
observation model in (2.4) is considered to be a regression model that 
represents a mechanism for obtaining the time–series ny


, then the vector nx


 

corresponds to the regression coefficients of that model and the system model 
in (2.3) represents the time–change of these coefficients. If the vector nx


 is 

considered to be an unknown input signal, then the system model represents 
the generation mechanism of that signal, and the observation model represents 
the structure of the observed signal. 

 

2.4.1 State–space representation of the AR model 
 

If we consider the autoregressive model just as in (1.1) 
  

1

p

t i t i t
i

y a y v


   

 
then the state–vector is defined as tx


= (yt, yt–1, …, yt–p+1)

T. Since the 
model is stationary, the parameters are time–independent and the system 
matrix in (2.3) is time–invariant, i.e. Fn = Ft = F. Thus F is a pp matrix 
and the system noise matrix G is a time–invariant p–dimensional vector 
where 
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1 2 2 1 1

1 0 0 0 0 0

0 1 0 0 0 0
,

0 0 1 0 0 0

0 0 0 1 0 0

p p pa a a a a

F G

    
   
   
   

    
   
   
   
   





      



. 

 
Since the first element in the state–vector tx


 is actually the observation 

ty


, we can define the observation model by setting the observation 
matrix H as a time–invariant vector where H = [1 0 … 0]. Since we don’t 
have any observation noise, we end up with the following models 

 

1 (system model)

(observation model).
t t t

t t

x Fx Gv

y Hx
 



  
  

 

 
The system noise is a univariate Gaussian stochastically independent 
variable as defined in the AR(p) model with a time–invariant 11 
dimensional covariance matrix Q = 2 and the covariance matrix for the 
observation noise is R = 0. So, in the state–space framework, the 
autoregressive model is a special case where the state–vector tx


 is 

completely determined up to time t without any observation noise. It 
should be noted that this state–space representation is by no means a 
unique representation of the autoregressive model and there are other 
state–space representations for the very same model. Another way to find 
a state–space representation for the autoregressive model is by defining a 
step–ahead predictor. So, given a series of observations up to time t – 1 
and the autoregressive model we can find a step–ahead prediction | 1t i ty    
at a future time t + i by 

 

| 1
1

p

t i t j t i j
j i

y a y   
 

   

 
that must be recursively evaluated one step at a time until time t + i. If we 
define the state–vector tx


 in terms of step–ahead predictors as 

 

1| 1

1| 1

t

t t

t

t p t

y

y
x

y

 

  

 
 
 
 
 
  






 

 
we can define the matrices in the system model and the observation 
model as 
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 

1

2

2

1

1 0 0 0

0 1 0 0

,
0 0 1 0

0 0 0 1

0 0 0 0

1

0
, 1 0 0 ,

0

p

p

p

a

a

F
a

a

a

G H





 
 
 
 

  
 
 
 
  
 
 
  
 
 
 




     







 

 
which is another state–space representation of the linear autoregressive 
model. 
 

2.4.2 State–space representation of the ARMA 
model 

 
If we consider the autoregressive moving average model as in (1.2)  

 

1 1

p q

t i t i t k t k
i kj

y a y v c v 
 

     

 
we can find a state–space representation for it using step–ahead 
predictors. The step–ahead based state–space representation considerably 
simplifies the moving average part of the system model which is why we 
choose this form for the ARMA model. The moving average coefficients 
can then be defined with the system noise as a time–invariant [1  q+1] 
matrix G where 

 

1

1

q

c
G

c

 
 
 
 
 
  


 

 
and the covariance matrix for the system noise is Q = GGT. The rest is 
the same as in the state–space representation for the autoregressive 
model, i.e. 
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 
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2

2
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0 1 0 0

,  and 
0 0 1 0

0 0 0 1

0 0 0 0

1 0 0 .

p

p

p

a

a

F
a

a

a

H





 
 
 
 

  
 
 
 
  





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





 

 
For the dimensions to add up, the matrices and vectors are set up as 

 
       
      

1 1 1 1 1

1 1 1 1 1 1

s s s s s

s s

      

     
 

 
where s = max(p, q + 1). If the order p is larger than q + 1 or the other 
way around, the overshooting elements will be zero and not distort the 
state–space representation of the model. 

 

2.4.3 State–space representation of the ARMAX 
model 

 
If we consider the autoregressive moving average model with an 
exogeneous influence as in (1.3)  

 

1 1 1

p qr

t i t i j t d j t k t k
i j kj

y a y b u v c v   
  

       (2.5)

 
we need to redefine the system model such that we also account for the 
external influence in the state–space representation 

 

1 1 1 (system model)

(observation model).
t t t t

t t

x Fx Eu Gv

y Hx
    



   
  

(2.6) 

(2.7)
 

which could be seen as a more generic version of the state–space model. 
So the previous cases are then special cases of the state–space 
representation where E = 0. We once again assume that the transition 
matrices are time–invariant and that the parameters are stationary. The 
state–space representation for the ARMAX model is then the same as in 
the case for the previously mentioned state–space representation for the 
ARMA model but with 
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1

0
0

, 0

0

d

d

r

b
E

b

 
  
      
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 




, 

 
where 0d is a delay vector with d zero–elements. So tu


 is an observation of the 

external influence at time t and in fact, a scalar just like the tv


 in the system 
noise term is a scalar. Here we have s = max(p, q + 1, r + d + 1). The validity 
of this state–space representation can be shown by deriving the equation line–
by–line starting at the bottom row of the system model equation and applying a 
lag operator to get to the top equation. Through this procedure one ends up 
with Equation (2.5). A more thorough treatment can be found in [Hamilton 
1994]. 

 

2.5 Kalman filtration 
 

This Section outlines the Kalman filtration framework beginning by discussing 
the principles behind it. It begins by introducing the iterative prediction–
filtration process and formulating it as a minimization problem. The second 
half of this Section discusses ways to set initial values for the parameters and 
the system covariance matrix before running the Kalman filtration. 

 

2.5.1 The principles of Kalman filtration 
 

The general approach to estimate the state in a state–space model is to 
obtain the conditional distribution p(xt|Yj) of the state xt for a given set of 
prior observations Yj = {y1, …, yj} [Kitagawa 2010]. Since the state–
space model is a linear model with Gaussian noises and an initial state x0 
that is normally distributed, the conditional distributions to be estimated 
also become normal distributions. Since the only parameters that 
completely determine such distributions are the mean and variance, it is 
sufficient to estimate the mean vectors and the variance–covariance 
matrices of the conditional distributions. However, such estimations 
require a vast amount of computations. The Kalman filtration technique 
is a recursive state estimation technique given a set of past observations 
that greatly reduces the amount of computations required for such 
estimations. At large [Welch Bishop 2001] identifies four major 
operations that are provided by the Kalman framework 

 
 One–step prediction – This operation predicts the state and the 

error covariance in the next time–step (say t + 1) given a set of 
assumptions (that are given in the matrices in the system part of the 
state–space model) and a series of past observations 
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 Filter – When a new observation has been collected in the next 
time–step, this operation extracts this observation from the 
observation part of the state–space model and adjusts the prior 
prediction accordingly. The adjustment will be weighted in favor of 
the factor with the lowest noise; if the system noise is lower than 
the observation noise the adjustment will be weighted towards the 
prediction, if otherwise, it will be weighted towards the 
observation. 

 Smoothing – If there are missing past observations, this operation 
can estimate these missing observations given future observations. 
It is similar to prediction but running backwards. 

 Increasing horizon prediction – This is similar to the one–step 
prediction, but this time there is no filtering in between and the 
same matrices in the system equation are reapplied repeatedly 
without adjustment. 

 
In short, to estimate a linear model such as the ARMA(p, q) or 
ARMAX(p, q, r) model the procedure is as follows 

 
1. Estimate an initial state and an initial covariance matrix 
2. Take the first element of a time–series of given observations and 

adjust the initialization state with it using the Kalman–filter 
3. Make a prediction for the next time–step using the adjusted state 

using the prediction operation 
4. Adjust the prediction against the observation at that time–step 

using the Kalman–filter 
5. Go back to the third calculation step until the last observation is 

reached 
 

FiltrationPredictiondiction tFiltraFiltra

 
Figure 2.2: An illustration of the recursive iteration process behind 
Kalman–filtration. 

Source: Kitagawa 2010 
 

So we are essentially using a for–loop on calculation steps 3–5 that is 
visualized in Figure 2.2. If we let the conditional expectation and the 
variance–covariance matrix for the state xt+1 be denoted by 
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 

   
1| 1

1| 1 1| 1 1|

ˆ |

ˆ ˆ ,

t t t t

T

t t t t t t t t

x E x Y

E x x x x

 

    



     
 (2.8)

 
then we can define the prediction and filtration algorithms in the Kalman 
framework as follows [Welch Bishop 2006]: 

 
Prediction 
 
I. Project the next state 

 

1| 1 | 1 |ˆ ˆt t t t t t t tx F x E u     (2.9)
 

II. Project the next error–covariance 
 

1| 1| | 1| 1 1 1
T T

t t t t t t t t t t tF F G Q G          (2.10)

 
Filtration 
 
I. Compute the Kalman gain 

 

  1

1 1| 1 1 1| 1 1
T T

t t t t t t t t tK H H H R


           (2.11)

 
II. Update the prediction with an observation at yt+1 

 

 1| 1 1| 1 1 1 1|ˆ ˆ ˆt t t t t t t t tx x K y H x          (2.12)

 
III. Update the error covariance 

 

1| 1 1| 1 1 1|t t t t t t t tK H           (2.13)
 

A proof of Equation (2.9) – (2.13) is provided in Appendix A.1. We are 
facing a minimization problem where we want to minimize the squared 
sums of the errors or innovations t which is equal to minimizing the 
following equation [Hamilton 1994 p132] 

 

 
21 1

0 0

log log
N N

t
t

t t t

l N



 

 

   , (2.14)

 
where 

 

| 1
T

t t t t t tH H R     (2.15)
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and 
 

| 1 | 1ˆ ˆt t t t t t t ty y y H x       

 
for some observations y0, y1, …, yN–1. A proof is given in Appendix A.2. 
 

2.5.2 Setting initial values for Kalman filtration 
 

Selecting initial values for the Kalman procedure could be achieved by 
using a less precise method for estimating the ARMA or the ARMAX 
model. Hannan, McDougall [Hannan McDougall 1988] suggest using the 
least–squares method in two steps to estimate the ARMA model. An 
alternative is to use the Yule–Walker method as described in Section 2.3. 
In the first step, pure AR(p) models are estimated by selecting the order p 
= 1, …, log(T)1.5 that yields the AR(p) model with the lowest Bayesian 
information criterion, let’s call it pBIC. Then in the next step AR(p) is 
estimated for order p = pBIC + max(p, q). The first p elements of this 
estimation are the autoregression coefficients and the next q elements in 
this estimation are the moving average coefficients. The estimation of 
these parameters can then be used as initial values for a1, …, ap and for 
c1, …, cq in the Kalman estimation procedure. Finding initial values for 
ARMAX estimations using the methods of Hannan, McDougall and 
Hannan, Kavalieris [Hannan Kavalieris 1984] results according to them 
in a considerable increase in complexity. But since we only want to yield 
an estimation that is fairly close, we make do with estimating AR(p) for p 
= pBIC + max(p, q, r) and let the next q elements after the first p elements 
of the estimation be initial values for c1, …, cq and the r elements 
following the first p elements be initial values for b1, …, bq in the 
ARMAX model to be estimated with the Kalman method. 
 
The system covariance should also be set before the Kalman iterations 
begin, a method to compute the initial system covariance is provided in 
Appendix A.3. 
 

2.6 Trend, seasonality and the Box–Jenkins 
framework 
 
The Box–Jenkins framework provides a methodology for identifying trend and 
seasonality components in a time–series. In the basic Box–Jenkins framework, 
the trend and seasonality cycles are assumed to be deterministic and formulated 
as [Brockwell Davis 2006 p15] 
 

       i
i

X t m t s t Y t   , 



ELECTRICITY PRICES AND ARMAX ESTIMATIONS 
 

39
 

 
where Y(t) is a stationary stochastic process, m(t) the trend component and si(t) 
seasonality components. The trend component to be estimated could either be a 
linear function or a polynomial that is fitted to the data. Another more flexible 
way to estimate the trend is to use a moving average smoothing function. This 
moving average can be estimated by 
 

   1
ˆ

2 1

q

j q

m t X t j
q 

 
  , 

 
which is defined for q + 1  t  T – q for some interval 2q + 1 which has an odd 
number of elements. If one wishes to use a moving average over an even 
interval, the following smoothing function could be used 
 

        
1

1

1 1
ˆ

4 2

q

j q

m t X t q X t q X t j
q q



 

      , 

 
where the end–terms at q are given only half weight so as to give the moving 
average the same weight forward as backward when the interval has an even 
number of elements. This smoothing function can also be looked upon as a 
high–pass filter that removes the (slower moving) trend from the data. A 
seasonality cycle is a variation with a periodicity d where  
 

   i is t s t d  . 

 
This seasonality can have any shape as long as it is d–periodic. A more 
sophisticated approach is to assume that there is some level of interaction 
between the trend and seasonality cycles [Koopman Lee 2008] and [Chen 
Vidakovic Mavris 2004]. For simplicity we assume that the seasonality cycles 
are sinusoidal and non–interacting with the trend. This enables us to use 
Fourier methods to detect and filter out seasonality cycles using band–stop 
filters. 
 
With Fourier analysis, and a proper frequency or period scaling, seasonality 
cycles can easily be detected and filtered out.  Time–series data can be 
transformed to the frequency spectrum using the FFT algorithm. The FFT is an 
algorithm used to compute the discrete Fourier transform (DFT) using less 
computations. The DFT is defined as follows [Folland 1992] 
 

    2

0

ˆ i

T
i t

i
i

f f t e   



 , (2.16)

 
where  is the frequency of the spectral density  f̂  . The highest frequency 
that we can truly see in the Fourier space is set by Nyquist’s sampling theorem 
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which says that if an input signal contains no frequencies higher than  Hz, 
then it will be fully represented if it is sampled at a rate of 2 Hz, i.e. at twice 
that frequency (for an unlimited time–period). So, we cannot expect to find true 
representations for frequencies at higher than half the sampling rate of the 
observations. The lowest frequency is limited by the time–period the 
measurements that are taken, i.e. periodicities that are close to the sampling 
period cannot be differentiated from the trend as their recurrences span beyond 
the sampling period. 
 
A good way to filter out seasonality cycles, once they have been identified is to 
use a set of suitable filters. As we have alluded previously, the models to be 
fitted into the observed stochastic observations can be looked upon as a 
dynamical system. Since the AR, MA, ARMA and ARMAX models are all 
linear and time–invariant, they have an impulse response function where the 
output signal from the model can be described as a convolution between an 
input signal and its impulse response function [Petersson], i.e. for an input 
signal x(t), the output signal y(t) is 
 

         y t h t x t h t x t d 




    , 

 
where h(t) is the impulse response function. The Fourier transform of a 
convolution turns into a product in the Fourier space which makes it 
particularly easy to find a suitable filter that removes the seasonality 
components from the data. 
 
Some things to consider when applying Fourier analysis is that Fourier 
transforms are prone to artifacts that “color” the spectrum when there are 
discontinuities in the data. This stems from the so–called Gibbs phenomenon. 
There are less artifact–prone methods such as Wavelet analysis if such artifacts 
are a concern. Also, the filters work best when applying them on detrended 
data. 
 

2.7 Evaluating goodness–of–fit 
 
When finding and fitting a statistical model to observed data, we strive to make 
the model represent the observed data as closely as possible. For example, 
when fitting the parameters of the AR model, there is an optimization process 
that minimizes the errors of the estimations or in the case of ARMA 
estimations, the best estimation is the one with the highest likelihood, or log 
likelihood fit. There are different criteria than just the maximum likelihood or 
the least squared errors to use to determine goodness–of–fit of a particular 
model. The ideal way of measuring goodness–of–fit is by comparing the 
underlying empirical distribution of the observed data with the distribution of 
the estimation. The problem however, is that the underlying empirical 
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distribution behind the observations is generally not known so one has to find a 
way to measure the goodness–of–fit without knowing it. The likelihood 
measure uses the law of large numbers which says that as the number 
observations tend to infinity, their distribution tends to the true underlying 
distribution. The downside to it is that it is only applicable to a model with a 
fixed number of parameters. Information criteria such as Akaike’s Information 
Criterion or Bayes Information Criterion extend this likelihood function to 
models with different numbers of parameters. The basic assumption among 
these criteria is that the uncertainty increase as the number of parameters to be 
estimated increase. When using a model selection approach based on the 
information criteria, the estimation that yields the lowest value of the 
information criteria is then said to be the best fit. The Akaike Information 
criteria is defined as follows 
 

 AIC 2 2logk L  , (2.17)
 
where k represents the number of parameters in the model and L the maximum 
likelihood measure of the model estimation. Another measure is Akaike’s final 
prediction error, which is defined as follows 
 

FPE
N k

V
N k





 (2.18)

 
for some loss function V defined as 
 

1

1
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 
  

 
where i are the error terms of the model. The downside of such measures is 
that they don’t actually tell the goodness–of–fit or whether the estimation truly 
follows anything that is similar to the empirical distribution. To evaluate the 
goodness–of–fit we need to make simulations of our estimations and compare 
the distribution of those simulations to the empirical distribution, an approach 
that requires considerably more computations than the information criteria 
above. The observation can then be assumed to approximately represent the 
empirical distribution. One such measure that makes these assumptions is the 
Kolmogorov–Smirnov distance which is defined as follows [Massey 1951] 
 

   supn n
x

D F x F x  , (2.19)

 
where Fn(x) is the cumulative distribution of the n observations and F(x) is the 
cumulative distribution of the model simulations. Another approach to measure 
the closeness to the empirical distribution is the following 
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   n nH F x F x dx




  . (2.20)

 
The lower the value of the measure is, the better the fit. 
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3. Results 
 
In this Chapter we present the results from our simulations and estimations of the 
ARMA(p, q) and ARMAX(p, q, r) models on the electricity spot price data as 
retrieved from Nord Pool Spot A/S. The first Section evaluates the Box–Jenkins 
framework on well known and defined simulations. It also evaluates the Kalman 
filtration method and the method used by the internal Matlab ARMAX package for 
model estimation. Section 3.2 evaluates the presence of trend and seasonality cycles 
in the electricity price data. Section 3.3 introduces observed 3–hour temperature data 
for 2010 as retrieved from SMHI. This data is converted to hourly temperature data 
by using piecewise cubic Hermite interpolation and then used as exogeneous input in 
the ARMAX estimations. The actual estimations are made and evaluated in Section 
3.4. 
 

3.1 Simulations and evaluation 
 
In the first step we test our tools provided by the Box–Jenkins framework and 
check that they properly remove trend and seasonality cycles from a time–
series. We do that by taking a set of randomly generated values from a white 
noise process where we add trend and seasonality data synthetically. So by 
taking 1000 samples from a white noise process, adding a 24–hour and 168–
hour periodicity (by using cosines) and a trend following the function 
exp(t/1000) we end up with the process Xsim(t) as in Figure 3.1. 
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Figure 3.1: A simulated discrete stochastic process Xsim(t) with an applied 
trend and seasonalities. 

 
It is quite clear that the series is heavily influenced by periodicities. A Fourier 
analysis is shown in Figure 3.2. 
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Figure 3.2: The process Xsim(t) transformed with (2.16) using an FFT 
algorithm and scaled with respect to periodicity. 

 
The trend is also easily detected by calculating the moving average for the 
process. The 168–hour trend is shown in Figure 3.3. 
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Figure 3.3: The 168–hour trend extracted from the simulated process 
Xsim(t). 

 
We see that once the trend and seasonality components are removed from our 
simulated data, once again it looks like a white noise process as shown in 
Figure 3.4. 
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Figure 3.4: The resulting stochastic process extracted from Xsim(t) with the 
trend and seasonalities removed from it. 

 
So we conclude that our tools for deseasonalization and detrending do a proper 
job. In the next step we test how the Kalman filter and the internal Matlab 
function fits an ARMA(3, 3) model to the simulated data with trend and 
seasonality and the detrended/deseasonalized data. 
 

Xsim(t) 
AR  MA 

Kalman ARMAX  Kalman ARMAX 
2.9256 2.9261  -2.4534 -2.4572 
-2.9195 -2.9206  1.9953 2.0166 
0.9935 0.9941  -0.5133 -0.5336 

 
Ysim(t) 

AR  MA 
Kalman ARMAX  Kalman ARMAX 
-0.6457 -0.5580  9.2819 0.7841 
0.1401 0.3531  6.4188 -0.0869 
0.1261 0.0183  0.3875 0.0574 

 
Table 3.1: A comparison of estimated AR and MA coefficients of an 
ARMA(3, 3) model on simulated data using the Kalman–filtration algorithm 
and the internal ARMAX Matlab package. Ysim(t) is the detrended and 
deseasonalized process. 

 
In Table 3.1 we see that for the series with the trend and seasonalities present 
they yield roughly the same estimations for the ARMA coefficients whereas 
they yield different results when running the estimations on the filtered signals.  
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 Kalman  ARMAX 
 FPE AIC  FPE AIC 
Xsim(t) 1.4372 0.4608  1.6728 0.6127 
Ysim(t) 0.0172 -3.9653  1.2627 0.3314 

 
Table 3.2: The information criteria and future prediction errors as defined 
by (2.17) and (2.18) evaluated for the estimations in Table 3.1. 

 
The information criteria in Table 3.2 suggests that both methods are roughly 
the same but that the Kalman method produce “better” results when there is no 
trend and seasonality present. The Kalman filter takes about 100 times longer 
to run the same estimations as the internal Matlab function. So we choose to 
stick with the internal Matlab function as long as we can get sane estimations 
with it. 
 

3.2 Trends and seasonalities in electricity price 
data 
 
Now that we have established that our tools for deseasonalization and 
detrending are sane, we move on to analyze hourly spot prices on Nord Pool 
spot for the year 2010. The first thing we do is to see what seasonalities there 
are in our data. Figure 3.5 shows periodicities that are up to 500 hours long. 
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Figure 3.5: The estimated period spectrum for the hourly systemic spot 
prices during 2010 as noted on the Nord Pool Spot exchange. 

 
We see several peaks that need to be removed from our data. A careful analysis 
indicates that we have periodicities at 4.77, 7.952, 11.93, 23.9 84.47, 170.6, 
and 2175 hours.  We draw the conclusion that 11.93 and 23.9 are related to the 
24 hour periodicity and 84.47 and 170.6 are related to the 168 hour periodicity. 
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The periodicities at 4.77, 7.952 are a little harder to explain, perhaps they come 
from 8 hour working shifts. The most difficult periodicity to explain is the 
2175 hour (or 90 day) periodicity. It seems like there is something that occurs 
roughly every 3 months. A set of Butterworth filters are designed as narrow 
bandstop filters and we successfully remove the periodicities from the time–
series data. The results from the filtration vs. the original data are shown in 
Figure 3.6. 
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Figure 3.6: A comparison of deseasonalized electricity price data with the 
hourly systemic spot prices as noted on Nordpool Spot during the year 2010. 

Source: Nord Pool Spot A/S 
 
The electricity price data also has a trend. Different estimations for trend on the 
hourly spot price data are illustrated in Figure 3.7. 
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Figure 3.7: Moving average trends ranging from 100 to 1 000 hours added 
on top of each other using a hue that transitions from bright purple (100 
hour moving average trend) to dark blue (1 000 hour moving average trend). 

 
The trend was set as a 500 hours long moving average which was removed in 
the deseasonalization process. 
 

3.3 Using temperature data as exogeneous input 
 
The temperature data used in the estimations come from SMHI (Sweden’s 
Meteorological and Hydrological Institute) and they were sampled every third 
hour of the day during the year 2010. The weather–stations from where the 
data has been collected are illustrated in Figure 3.8. 
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Figure 3.8: The chosen weather stations from where the 3–hour temperature 
data for 2010 were collected. 

Source: SMHI 
 
From this data a national average temperature was calculated. It is well known 
that most of the Swedish population lives in the south, so a 75% weight was 
added to the temperature data retrieved from the three major cities in the south. 
So, the temperature data from the weather–stations in the north; Malung, 
Kuggören, Storlien, Hemavan, Haparanda, Jokkmokk and Katterjåkk only have 
a 25% weight. The data retrieved had been measured only every three hours 
and some temperature values were in fact missing. By using piecewise cubic 
Hermite interpolation, the missing values were filled in and the data were 
converted to hourly data. As we know, what is interesting is the difference 
between the average room temperature and outdoor temperature, assuming that 
the average room temperature is 20 C, the temperature data were converted 
using 20 – x. The national average temperature never exceeded this room 
temperature so we didn’t even need to deal with negative temperature 
differences. This modified temperature data constitutes the external variable 
that we use to fit the ARMAX models. Figure 3.9 clearly shows that there is a 
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considerably higher need for heating during the winter months than for the 
summer months. 
 

January April July October December
0

10

20

30

40

Δt
 (

tin
do

or
 −

 to
ut

do
or
)

Average national temperature vs. room temperature 2010

 
 

Figure 3.9: The hourly temperature as a weighted nationwide average 
where 75 % weight was put on the three major cities in the south and 25 % 
weight was put on the temperature data from the weather stations in the 
north. 

Source: SMHI 
 

3.4 Fitting ARMAX models on electricity price 
data 
 
In this Section we fit ARMA(p, q) and ARMAX(p, q, r) models to hourly and 
daily observed electricity price data for 2010. We make the estimations over 
parameter spaces (p, q) and (p, q, r) respectively and chose the best fit 
according to a criterion. In the first two Sections we primarily focus on the 
Akaike information criteria (AIC) as defined by (2.17) and in the rest of the 
Sections we also use a modified Kolmogorov–Smirnov framework as defined 
by (2.20) to find the best fit on simulations of our estimations. Estimations with 
the lowest AIC and/or lowest K–S measure are considered to be “winners”. We 
also explore how the quality of our estimations are affected by the period 
chosen; we compare estimations on the whole dataset with selected sub–
periods such as the first three (winter) months and three months in the late 
summer / early autumn (July – October). Transformations of the observed data 
can also affect the estimability; we look into estimations on the log() – 
transformed price data and on price data that is divided by 1000.  
 

3.4.1 Hourly data 
 

In the first step we test how deseasonalization and detrending affect the 
goodness of the fit. Using the Akaike information criterion and prediction 
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errors we see that deseasonalization and detrending indeed make the 
ARMAX models easier to fit to the data. We also compare fitting the 
whole year data to the model vs. only fitting the first 3 (winter) months of 
the data. This comparison shows that the winter months are more 
difficult to fit than the rest of the data. We try over a parameter space of p 
= 1, …, 20, q = 1, …, 20, r = 1,…,3 and see what solution yields the 
best/lowest Akaike Information Criteria. The results with the best p, q, r 
values are given in Table 3.3. 
 

 pbest qbest rbest AIC 
1yorig 20 11 3 7.2824 
1ydeseason 17 12 3 7.2693 
1ydeseason, detrend 20 5 3 7.2520 
3morig 19 19 3 8.1876 
3mdeseason 19 19 3 8.1793 
3mdeseason, detrend 19 19 3 8.1723 

 
Table 3.3: The ARMAX estimations with the lowest AIC on different 
variants of the spot price data as estimated on the whole year of data 
and the first 3 months (January–March) of the data. 

 
In both cases we see that deseasonalization and detrending lowers the 
information criteria. We also see that we have corner solutions so we are 
not near an optimal fit in this parameter space. Attempts were made at 
fitting the models to data in the 3 month period after the winter period 
above. This resulted in halved information criteria. It stands clear that the 
spikes prevent the model from properly fitting to the data and that we 
need to deal with these spikes if we want to get proper fits. Also attempts 
at using higher orders for r were made. By setting p = 20 and q = 5, the 
optimal order for r was found at r = 27. The problem is illustrated in 
Figure 3.10 and Figure 3.11. 
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Figure 3.10: The AIC surfaces for ARMAX(p, q, 3) estimations on 
the whole dataset. The upper surface represents estimations run 
directly on the dataset whereas the lower surface represents 
estimations on detrended and deseasonalized data. 
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Figure 3.11: The AIC surfaces for ARMAX(p, q, 3) estimations on 
the first three months (January–March) of spot price data. The upper 
surface represents estimations run directly on the dataset whereas the 
lower surface represents estimations on detrended and deseasonalized 
data. 
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We see from Figure 3.10 and Figure 3.11 that the AIC is rather big and 
there is no obvious minimum to choose from. It also quite clearly 
suggests that there may be a higher order fit outside this parameter space 
that yield lower AIC values. Figure 3.10 compares ARMAX estimations 
on the original data with ARMAX estimations on deseasonalized data 
and it is clear that the deseasonalization allows for better estimations. 
Figure 3.11 looks at the first three months of the data and compares 
ARMAX estimations using first order temperature influence with 
ARMAX estimations  using third order temperature influence and we 
also see that the third order influence is a better fit than the first order. 
Similar conclusions can be drawn from the FPE meshes which are 
omitted from this thesis. 
 

3.4.2 Hourly log() – transformed data 
 
In the next step we examined the possibility of fitting the ARMAX 
model to log() data. We looked at the whole year and the first three 
months using the same parameter space as before which yielded some 
interesting results which are concluded in Table 3.4. 
 

 pbest qbest rbest AIC 
1yorig 20 18 3 -5.0428 
1ydeseason 20 8 3 -5.7913 
1ydeseason, detrend 20 18 3 -5.7936 
3morig 19 17 2 -5.6269 
3mdeseason 18 15 3 -5.3446 
3mdeseason, detrend 20 19 3 -5.3432 

 
Table 3.4: The best estimations of ARMAX(p, q, r) on log() price 
data as chosen by AIC just like in Table 3.3. 

 
We now see that the AIC values are negative which suggests that our 
estimations are better than without the log(). Unfortunately, the results 
once again suggest that we have corner solutions. Selecting sub–data for 
hours 2000 – 4400 instead of the first three months does not make a 
better fit than the whole data but the fit is not much worse either when 
tweaking the parameters. Further tweaking of the parameters yielded an 
even lower AIC value; a “winner” was found at p = 84, q = 18, r = 31, 
yielding AIC = –5.9698 which is even lower than the results in the table 
Table 3.4. Figure 3.12 shows the FPE surfaces for the log() – 
transformed estimations. 
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Figure 3.12: The AIC surfaces for ARMAX(p, q, 3) estimations on 
the detrended/deseasonalized and log() – transformed dataset. The 
upper figure represents estimations on the whole dataset whereas the 
lower figure represents estimations on the first three months of the 
dataset. 
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We can see in Figure 3.12 that the surface for the three months data is 
steeper than when fitting the whole year. An attempt to fit a pure 
ARMA(p, q) model on the log() – transformed data was also made over 
the parameter space p = 1,…, 30 and q = 1,…, 30. The lowest AIC 
solution was achieved at p = 30 and q = 30 yielding AIC = –5.9337 
which regrettably is a corner solution. 
 

3.4.3 Hourly data and evaluation using simulations 
 
In the next step we tried to fit the ARMAX(p, q, r) and simulate the 
estimated model. The cumulative distribution function of the simulation 
was compared to the estimated empirical distribution and the estimation 
that lies closest to the empirical distribution is the “winner”. Also, we 
found another way to transform the electricity price data to make it more 
estimable. By dividing the data by 1000, the information criteria for the 
estimations went even lower than when using the logarithm. This time 
the estimations on the hourly spot price data were made for the period 
mid July to mid October so as to avoid the extreme behaviour that 
occurred during the winter months. The parameter space for these 
estimations were p = 1, …, 24, q = 1, …, 24, r = 1, …, 24. The results are 
concluded in Table 3.5. 
 

 pbest qbest rbest AIC  
ARMAXJul–Oct 24 10 13 3.5331 0.0142
ARMAXJul–Oct/1000 3 17 13 -10.2824 1.1728
ARMAJul–Oct 1 8 – 3.5674 0.4592
ARMAJul–Oct/1000 2 7 – -10.2481 1.1904
 

Table 3.5: ARMAX estimations on deseasonalized and detrended 
price data for the period July–October. The best candidates were 
chosen by the Kolmogorov–Smirnov measure in (2.20). “/1000” 
denotes that the data has been divided by 1000 before estimation. 

 
The Kolmogorov–Smirnov comparisons for the estimations in Table 3.5 
are shown in Figure 3.13. 
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Figure 3.13: The cdf–functions of simulations of the estimations in 
Table 3.5 compared to the cdf–function of the empirical distribution 
estimated from the observed data. 
 



ELECTRICITY PRICES AND ARMAX ESTIMATIONS 
 

58 
 

We can dismiss the first ARMAX estimation right away as it is non–
stationary. A combined evaluation of simulations and the information 
criteria indicates that the ARMAX(3, 17, 13) is the best estimation and 
even better than the pure ARMA estimation. A realization of that 
estimation is visualized and compared to the original data in Figure 3.14. 
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Figure 3.14: A simulation of the ARMAXJul–Oct/1000 (3, 17, 13) 
estimation that is compared directly to the real observed data. 
 

 

3.4.4 Daily data and evaluation using simulations 
 
In the next step we look at the daily electricity price data. The first step is 
to analyze for trend and periodicities. The period spectrum of the daily 
electricity spot price data is shown in Figure 3.15. 
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Figure 3.15: The estimated period spectrum for the observed daily 
systemic spot prices during 2010 as noted on the Nord Pool Spot 
exchange. 

Source: Nord Pool Spot A/S 
 
The largest peak is at 75 days that joins with a peak at 60 days and 100 
days (not shown in Figure 3.15). Then there are two smaller peaks at 2.9 
days and 5.9 days. The AIC surfaces for estimating the daily data is 
shown in Figure 3.16 and Figure 3.17. 
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Figure 3.16: The AIC surfaces for ARMAX(p, q, 1) estimations 
(upper figure) and ARMAX(p, q, 1)/1000 estimations (lower figure) 
on daily spot price data for 2010.  
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Figure 3.17: The AIC surfaces for ARMA(p, q) estimations (upper 
figure) and ARMA(p, q)/1000 estimations (lower figure) on daily spot 
price data for 2010. It should be noted that the lower surface is the 
same as the upper surface but translated downward along the z–axis. 
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The parameter space for the estimations on daily data were p = 1, …, 25, 
q = 1, …, 25, r = 1, …, 25. The results are concluded in Table 3.6. 
 
 

 pbest qbest rbest AIC  
ARMAXdaily 7 24 23 7.1667 8.1697
ARMAXdaily/1000 4 23 1 -6.6488 57.5476
ARMAdaily 8 8 – 7.3351 17.5054
ARMAdaily/1000 2 5 – -6.4804 57.9744

 
Table 3.6: ARMA and ARMAX estimations on daily spot data that 
are chosen by the lowest K–S measure as defined by (2.20). 
 

The Kolmogorov–Smirnov comparisons of the estimations in Table 3.6 
are shown in Figure 3.18. 
 
It is obvious that the ARMA and ARMAX models have problems with 
capturing the average fluctuations of the electricity price data and the 
extreme price fluctuations that occur in the winter months. The ARMA 
models are not as flexible as the ARMAX models and the ARMA(8, 8) is 
actually non–stationary. A comparison between simulations and the 
deseasonalized/detrended price data is done in Figure 3.19. 
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Figure 3.18: The cdf–functions of simulations of the estimations in 
Table 3.6 compared to the cdf–function of the empirical distribution 
estimated from the observed data. 
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Figure 3.19: Simulations of the stationary estimations (dark curves) in 
Table 3.6 compared to detrended and deseasonalized daily spot price 
data (bright curves). 
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4. Final thoughts 
 
In this thesis we have evaluated estimation of ARMA(p, q) models and ARMAX(p, 
q, r) on hourly and daily electricity price data for different orders of p, q and p, q, r 
respectively. We see that both of these model families provide good estimations for 
electricity price movements during the spring, summer and autumn seasons but fail 
to properly capture the extreme behaviour that is present during the winter seasons. 
Attempts at transforming the observations by the log()–function or division by a 
larger number increases the goodness–of–fit but don’t help the model fit the extreme 
price spikes that take place during the winter months but do contribute to better 
estimations in general.  
 
As exogeneous influence we used hourly and daily temperature data transformed to a 
difference between room temperature and outdoor temperature. It is quite clear that 
the seasonal electricity consumption almost exclusively depends on the outdoor 
temperature. The fact that we don’t use air conditioning to a significant degree in the 
Scandinavian regions makes the interaction between temperature data and electricity 
consumption extremely predictable and particularly suitable to use as an exogeneous 
parameter in the ARMAX models. These models show a significantly higher 
flexibility than the ARMA models but estimations still fail to properly capture the 
price spikes and at the same time provide reliable predictions of other electricity 
price movements. We also conclude that temperature don’t have long–term effects 
on the electricity prices. In the cases where we got “reliable” estimations, we found 
that an order of r = 13 hours or 1 day for the temperature gave optimal estimations 
for the ARMAX(p, q, r) models. This suggests that the influences from outdoor 
temperatures on electricity prices only have significance in the short–term in and 
don’t contribute significantly to long–term effects. 
 
The models we have used are stationary, time–discrete and assume that the 
background noise is Gaussian and time independent. As can be seen in the Bollinger 
bands of Figure 1.9, the 20–day moving standard deviation clearly suggests that the 
variance is time–variant and especially high during the winter months whereas it is 
very low during the autumn almost suggesting a deterministic nature of the short–
term price movements. So, an extension of the ARMA and ARMAX models to 
account for the time–variability of the volatility inherent in the electricity price data 
is to use time–varying parameters. The time variability of volatility could be 
designed with the inverse leverage effect in mind as discussed in Section 1.3. A non–
Gaussian distribution for the error–terms could be used to better capture the behavior 
of the electricity price movements. The occasionally extreme movements of the 
electricity prices suggest that a heavy tailed or semi heavy tailed distribution would 
be preferred to model this behaviour. A more detailed treatment of processes with 
heavy tailed movements can be found in the extreme value theory. Using such 
distributions however, will most likely lead to more complex computations. 
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The Box–Jenkins framework for analyzing trend components and seasonality cycles 
is rather crude when compared to more recent research on models where the trend 
and seasonality cycles interact with each other in different ways as discussed by 
Koopman Lee [Koopman Lee 2008]. For example, there may exist synergy effects 
between some of the components, or the interaction may be the opposite where the 
high presence of one component gives rise to a suppression of the other. As 
discussed in Section 2.6, the Fourier methods for analyzing seasonal cycles and 
removing them may in some cases give rise to erroneous results, especially when 
dealing with discontinuities. A more sophisticated method using Wavelets with more 
selective Wavelet filters that don’t have these shortcomings can be used instead for a 
more precise treatment of trend–  and seasonality components. 
 
The ARMA and ARMAX models are time–discrete which could lead to problems 
when there is a desire to trade more frequently than by the hour. In such cases the 
ARMA and ARMAX models can be extended by models that use continuous 
stochastic processes such as the Ohrnstein–Uhlenbeck process. It can be shown that 
an ARMA(p, q) or an ARMAX(p, q, r) has a representation in the continuous–time 
framework by using Ohrnstein–Uhlenbeck processes. 
 
It is also quite clear that the electricity prices have a different behaviour when price 
spikes occur than under normal circumstances and it is suggestible to use different 
models for different seasons. Also, a change in political decisions, production 
capacity or other external factors would require an immediate adjustment of the 
models to predict future movements. A higher flexibility can be incorporated by 
using so called regime–shifting models that changes regime according to a certain 
criterion. The regime could for example be shifted to a more volatile one during the 
winter months, one could let the consumption follow a separate stochastic model 
which in turn determines the regime of the electricity prices or one could even work 
with the temperature data and let it determine the characteristics of the consumption. 
To capture the extreme price spikes, an incorporation of a jump–diffusion process or 
any other extreme value model could be sufficient. 
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A. Appendices 
 

A.1 Derivation of the Kalman filter algorithm 
 

In this appendix we prove the prediction and filtration equations in the 
Kalman estimation algorithm as presented in Chapter 2. Let Yt be a set of 
observations {y1, …, yt} and for brevity, let 2x


 = Tx x

 
 where x


 is a 

column vector. For a state–space model with system equation tx


= Et 1tu 


 
+ Ft 1tx 


+Gt 1tv 


 as in Equation (2.6). Then for (2.9) and (2.10) we have 
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(A.1)

 
Let t denote the prediction error of a univariate observation yt, then from 
the observation model as represented in (2.4); t t t ty H x w 


 we have 
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The variance of the prediction error can be derived in a similar way as 
the system variance in (A.1). We have 

 

  | 1
T
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and 
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where the last equality of (A.3) follows from the first equality in (A.1). 
By the incremental nature of Yt, we have that Yt = {Yt–1,yt} =  
Yt–1 t. If we define the orthogonal projection of A onto B as 
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and use this relation we can then express the conditional expectation of 

tx


 given Yt as an orthogonal projection where 
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So, from Equation (A.2) and (A.3) we get 
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which shows (2.11). By expressing the conditional expectation of tx


 

given Yt-1 as an orthogonal projection we get from (A.4) and (A.5) the 
following result 

 

| | 1t t t t t tx x K  
 

, (A.6)
 

which shows (2.12). From the first equality in (A.1) and from (A.6) we 
have 
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So we get 
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which proves (2.13). 

 

A.2 Derivation of the state–space log–likelihood 
function 
 

Given Equation (2.8) the mean squared error matrix is defined by 
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The variance of the residuals t (which are also called innovations) is 
then 
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Given that the conditional probabilities are normally distributed (which is 
assumed in the state–space framework) the likelihood function with 
respect to the residuals is given as 

 
2

2

1

1
e

2

t

t

N

t t

L









 . 

 
By removing the (2)–N/2, taking logarithms and multiplying by 2 we get 
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So, by maximizing this equation with respect to the parameters of the 
model and the variances in Rt we yield the maximum likelihood estimate. 
We want to find a way to find the maximum likelihood estimation 
without taking the variances into consideration. Let Rt be time invariant 
and set Q = RTR2. If we substitute (2.15) in (2.11), use the substitution 
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in (2.13) and put the results in (2.10) then each iteration of the variance–
covariance matrix can be obtained 

 
2

1| | 1 | 1 | 1
T T T

t t t t t t t t t t t t tF H H F RR            . (A.8)

 
Let’s say that we initialize the filter with 1|0 = 2E[ T

t tx x ] instead of 
E[ T

t tx x ], then it follows from (A.8) that each  t+1|t is proportional to 2 
and from (2.15) that the innovation variance in Equation (A.7) becomes 
2t. The contributions from 2 cancel each other out in the prediction 
and the filtration equations in the Kalman algorithm which makes it 
independent from Kalman estimation. So we can optimize in two steps; 
first with respect to 2 and then with respect to the parameters alone by 
replacing the results from the variance optimization into the likelihood 
equation.  So we end up with the following equation 

 

 
2

2
2

1

log
N

t
t

t t

l
 
 

 
   

 
 . (A.9)

 
By setting the derivatives with respect to 2 equal to zero we get 

 
2

2

1

1 T
t

t tT




  . 

 
Replacing this into (A.9) and dropping some constants that are irrelevant 
to the optimization problem yields 

 

 
21 1

0 0

log log
N N

t
t

t t t

l N



 

 

    

 
QED 

 
So if we want to apply the Kalman filter to find an optimal solution for 
the ARMA or the ARMAX models, we set the matrices in the system and 
observation equations as time–invariant, and optimize them with respect 
to (2.14). All that remains is an initial value for the parameters and the 
variance–covariance matrix. 

 

A.3 Estimating initial variance using the 
Kronecker product 
 
Let ty


,  , and t


 be n1 vectors where  
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1

1

t

t
t

t p

y

y

y










 

 
  
 
   

 
 


 
. 

 
Then the variance t is defined as T

t t tE      
 

. If we take the vector form of 
the auto– regressive model (1.1) in terms of deviations around the mean  then 

 
     

 
1 1 2 2

.

t t t

p t p t

y y y

y

  

 
 



      

  

       
    (A.10)

 
To construct a state–space representation of this model we can define 

 

1 2 2 1

00 0 0 0

00 0 0 0
,

00 0 0 0

00 0 0 0

tp p p

n

n
t

n

n

I

I
F v

I

I

        
   
   
   

    
   
   
   
    

     


 

     



 

 
Then we can define the variance representation of (A.10) as 

 

1t t tF v   
  

. 

 
Multiplying this by its own transpose and taking expectations yields 

 

  1 1

1 1

TT
t t t t t t

T T T
t t t t

E E F v F v

FE F E v v

   

 

 

 

        
      

    

     

 
or 

 

1
T

t tF F Q    , (A.11)
 

where 
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 

0 0

0 0 0

0 0 0

Q np np

 
 
   
 
 
 




   


 

 
and  is an [n  n] symmetric positive definite variance–covariance matrix 
representing some white noise vector process t


 where 

 
for 

otherwise
T

i j

i j
E  

       0

 
 

 
A closed–form solution can be obtained in terms of the ‘vec’ operator. If A is 
an [m  n] matrix then vec(A) is an [mn  1] column vector, obtained by 
stacking the columns of A below the other, with the columns ordered from left 
to right. For example if 

 

11 12

21 22

31 32

a a

A a a

a a

 
   
  

 

 
then 

 

 

11

21

31

12

22

32

a

a

a
vec A

a

a

a

 
 
 
 

  
 
 
 
  

. 

 
The following proposition [Hamilton 1994 p265] is very useful: Let A, B and C 
be matrices with dimensions such that the matrix product ABC exists, then 

 
     Tvec ABC C A vec B    

 
where the symbol  denotes the Kronecker product. So if the vec operator is 
applied to both sides of (A.11), then the result is 

 
       

   
1

1

t t

t

vec F F vec vec Q

vec vec Q





     

  A
 (A.12)
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where  
 

 F F A . 

 
If we let r = np so that F is an [r  r] matrix and A is an [r2  r2] matrix, and let 
the variance–covariance matrix be time–invariant then Equation (A.12) has the 
solution 

 

   2

1

r
vec I vec Q


    A  

 
provided that the matrix [ 2r

I –A] is nonsingular. This will hold true so long as 
the identity matrix is not an eigenvalue of A. It can be shown from the 
properties of F that all eigenvalues of F and consequently all eigenvalues of A 
all lie inside the unit circle. We can use this result to estimate the initial value 
of the variance–covariance matrix for our Kalman estimation. 
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