
10
20

30
40

50
60

70
80

X axis

marker

Data visualisation with a simple syntax
DATX02-15-04

Jimmy Hedström, John Hult, Patrik Göthe,
Oscar Nilsson, Morhaf Alaraj, David Nääs

Institution for Computer Science and Engineering
Supervisor: Bengt Nordström

Chalmers University of Technology
Gothenburg, 2015



Foreword

We would like to thank our mentor Bengt Nordström for the time spent helping us. His
approach to both the subject, and academic writing, was invaluable.

Jimmy Hedström, John Hult, Patrik Göthe, Oscar Nilsson, Morhaf Alaraj, David Nääs,
Gothenburg, 2015-06-02.



Abstract

This thesis describes the development of Marker, a syntax based data visualisation plat-
form with the power and flexibility of a programmers tool, but usable by anyone, pro-
grammer or not. Today more open data than ever is available thanks to the internet but
few people have access to the means to use it. Consequently, some actors on the internet
have the ability to analyse and draw conclusions from data while some do not. Marker’s
purpose is to bridge the gap that this creates.

The project was divided in two parts, a pre-study and the actual development of the
application. The pre-study was conducted as a literature study and in the form of inter-
views with experts on the area of data visualisation. The development was documented
in the form of system design decisions and a full description of the end result.

Based on the results, Marker’s usefulness and viability in comparison to similar tools
and its intended purpose is discussed. The conclusion was made that Marker’s usability
and extendable system design adds new value to the area of data visualisation. However,
more development and user testing is required in order to make Marker a competitive
alternative to the existing data visualisation tools of today.



Sammandrag

Denna rapport beskriver utvecklingen av Marker, en syntaxbaserad plattform för datavi-
sualisering, lika kraftfull och flexibel som ett programmeringsverktyg men ämnat för att
användas av vem som helst. Tack vare internet, är mer öppen data än någonsin till-
gänglig, men få personer har tillgång till den kunskap och de verktyg som krävs för att
kunna dra nytta av situationen. Följaktligen kan vissa aktörer på internet analysera och
dra slutsatser från data medan andra inte har den möjligheten. Markers syfte är att
överbrygga klyftan som detta skapar.

Projektet delades in i två delar, en förstudie samt den faktiska utvecklingen av applika-
tionen. Förstudien utfördes genom en litteraturstudie samt intervjuer med sakkunniga
inom datavisualisering. Utvecklingen dokumenterades i form av designval av systemet
samt en fullständig beskrivning av slutresultatet.

Baserat på resultatet diskuteras Markers relevans och nytta i förhållande till liknande
mjukvara samt projektets syfte. Sammanfattningsvis bidrar Markers enkelhet och ut-
byggbara design med nya värdefulla egenskaper till datavisualiseringsområdet. Trots
detta krävs vidare utveckling samt användartester för att göra Marker till ett konkur-
renskraftigt alternativ.



Glossary

API: An Application Programming Interface is defined rules about how a program can
be communicated with from other programs.

Atom: A core building block of the Marker system, capable of turning JSON-formatted
data into a specific graph or chart.

CSS: Cascading Style Sheets is a computer language used for describing the look and
formatting of a document written in a markup language.

Framework: In computer systems, a framework is often a layered structure indicating
what kind of programs can or should be built and how they would interrelate. Some com-
puter system frameworks also include actual programs, specify programming interfaces,
or offer programming tools for using the frameworks.

GUI: Graphical User Interface. An interface of a computer program that allows users
to interact with the system by visual means.

HTML: HyperText Markup Language is the standard markup language used to create
web pages. A markup language categorises content into predefined elements.

JavaScript: A programming language commonly used to control and manipulate data
in a web browser.

JSON: JavaScript Object Notation, a data-interchange format. A way to define and
describe objects in JavaScript.

Marker: The name of the data visualisation tool developed in this project.

Molecule: A central hub in the Marker system, keeping track of all available atoms.

Parser: Parsing or syntactic analysis is the process of analysing a string of symbols,
either in natural language or in computer languages, conforming to the rules of a formal
grammar.

Platform: Short for Computing Platform. A computing platform is an environment
(hardware of software), designed for running other applications. A computing platform
defines a set of rules that applications adhere to, which make the application able to run
within the platform. Marker is a software based platform for applications that visualise
data.

SVG: Scalable Vector Graphics. A markup Language for creating vector graphics. SVG
is used in Marker to draw the components of a graph.

Syntax: In linguistics, syntax is the set of rules, principles, and processes that govern
the structure of sentences in a given language.



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Parsing expression grammar . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Regular expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 User interface design and usability . . . . . . . . . . . . . . . . . . 4

3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1 Interviews with data journalists . . . . . . . . . . . . . . . . . . . . 6
3.2 Analysis of data from Swedish administrative authorities . . . . . . 9
3.3 Analysis of popular data visualisation tools . . . . . . . . . . . . . 9

4 System design and implementation . . . . . . . . . . . . . . . . . . . . . . 11
4.1 Syntax design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Generating a parser with PEG.js . . . . . . . . . . . . . . . . . . . 12
4.3 The JavaScript framework Meteor . . . . . . . . . . . . . . . . . . 14
4.4 The JavaScript framework D3.js and graphics generation . . . . . . 15
4.5 Jade, Jeet and Stylus . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.6 Ace - Web code editor . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1 Marker syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Marker parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Marker graph modules . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.4 Marker visuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.5 Marker user interface . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.1 Assessment of outcome . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2 Implementation choices . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3 Comparison with other data visualisation tools . . . . . . . . . . . 28
6.4 Platform usefulness . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.5 User interface design . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.6 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.7 Potential business models . . . . . . . . . . . . . . . . . . . . . . . 31



7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Bibliography
Appendix A: Markdown usage
Appendix B: Barchart atom
Appendix C: Marker processing algorithm



1. INTRODUCTION

1 Introduction

During the last decade, the internet has become a significant part of our lives. For exam-
ple, the average Swedish person spent more than 21 hours online per week during 2014
(Findahl, 2014). In addition to this, data from behaviour on popular sites like Facebook
is now continuously tracked and stored (Felix, 2012). Most of this data is kept private by
the companies but more and more data from sources that were previously inaccessible is
being made public through initiatives like Open Knowledge (“Open Knowledge,” 2015)
and European Union Open Data Portal (“European Union Open Data Portal,” 2015).

1.1 Background

When using data to ones advantage, valuable knowledge can be extracted. However,
access to this knowledge is restricted to those who know how to extract it from the
data. Individuals, organisations and enterprises can gain advantages in decision making
if they manage to access this knowledge. One way to accomplish this is through visual-
isations that converts data into graphics, which are more comprehensible to the human
mind. However, creating such visualisations often require some form of knowledge in
programming. Actors possessing such skills are therefore in an advantageous position.

Today, user friendly tools exist that are used for formatting text. Markdown, for example,
is a simple and extremely popular syntax for formatting and working with text in order
to compile it into HTML. Markdown is regarded as effective in many niches, supposedly
because of its simplicity and flexibility which makes it easy to learn. It is easy to teach to
a non-programmer. If the user makes a syntactical mistake the program will not crash any
processes when being compiled or parsed, instead the program will not render the correct
formatting (“Getting the gist of Markdown’s formatting syntax,” 2015). Markdown is
used in many applications for formatting text. One example of this is the large online
community Reddit, this is demonstrated in appendix A1.

This suggests that it is possible to construct a syntax that is simple enough for a non-
programmer to learn yet powerful enough to generate adequate visual results. The syntax
must be defined by a creator, with defined rules about how it works, which then may
be interpreted by a parsing program that reads the syntax and converts it to a data
format usable by an application. While this is a proven method for text formatting with
Markdown, it might also be useful for data visualisation purposes.

1.2 Problem statement

While the amount of data available to the general public is larger than ever, few people
have the ability to take advantage of this situation. This is due to the fact that the
majority do not have experience in programming and possess little or no knowledge

1



1. INTRODUCTION

about how the internet actually works theoretically. This gap between users is a problem
since it creates hierarchy and consequently inequality.

This problem could be seen as an extension to the digital divide debate which concerns
economic and social inequality and access to information and communication technolo-
gies, i.e. the internet. However, equality on the internet is not only a question of
accessibility, but also a question of knowledge and skill (Norris, 2002). Access to digital
tools that are powerful, without requiring technical skill, are needed to close this gap.
This project concerns the creation of such a tool, which is easy to use for anyone while
still being powerful and extensible.

1.3 Purpose

This report aims to describe the creation of a development platform, known as Marker,
for data visualisation based on a plain text syntax. The formatting syntax should be easy
to learn, understand and use. The platform shall be constructed in a way that allows
other programmers to add additional methods of data visualisation. This platform will
be implemented as a web application for inputting data and to create visualisations by
wrapping the data in a syntax.

1.4 Scope

The project scope is limited to creation of a development platform by designing a text
syntax, and to program a parser that generates JSON formatted data from that syntax.
Some less complex methods of visualising data will be implemented in the context of the
platform, which use the JSON formatted data. The platform will also be implemented in
a JavaScript web application, that demonstrate some platform capabilities by wrapping
a text editor and generated visualisations in a simple GUI.

2



2. THEORY

2 Theory

The Marker platform contains several components that are built upon theory from dif-
ferent areas in computer science. This includes parsing, regular expressions and user
interface design. These are all very different in nature, but they all require explanation
in order to understand how the Marker platform is built.

2.1 Parsing expression grammar

A parsing expression grammar, hereinafter called PEG, is a formal grammar consisting
of rules that define strings. A rule in this context, describes the structure of a string.
PEG is often contrasted to Context Free Grammar, hereinafter called CFG. The main
difference between these two is that PEG is not ambiguous, meaning that there is only
one resulting tree structure. If PEG succeeds parsing the syntax, the result will be the
first matching expression and the other results are ignored. PEG grammar is therefore
strict while CFG offers multiple solutions. PEG is used to implement Marker’s own
parser upon which the application is built.

One major difference between PEG and Regular expressions, which will be described in
detail in the next section, is that PEG does not skip characters in order to find expressions
(Sigaud, 2015). PEG extends regular expressions and is therefore more powerful. PEG
supports "ordered choices", which allows the parser to search for different rules in the
same expression. This could be used when providing a data set that consist of both
strings and integers. The expression integer/double/string will search for one of the
predefined matching rules in the input. The number occurrences of each rule can also be
specified in combination with the ordered choices (Sigaud, 2015).

2.2 Regular expressions

A regular expression describes a pattern of characters. Regular expressions can be used
for parsing and identifying characters in strings (w3schools, 2015). Regular expressions
are powerful and are of great value when parsing, due to their extensibility and modu-
larity. Using regular expressions within rules in PEG extends the functionality of PEG.

Table 1: Regular expressions explanation table

Characters []

At least one +

Result or null ?

Literal "literal"

Zero or more *

3



2. THEORY

An example of a regular expression that checks for at least one character could therefore
look like seen in listing 1:

[A-Za -z]+

Listing 1: Simple regular expression rule

The "+" character could be replaced with expressions like e.g. "?" or "*" from table
1. The strength of regular expressions appears when analyzing different data types as
strings, doubles and integers etc.

JavaScript functions like replace, match and split are all based on regular expressions.
Regular expressions could be objects in JavaScript. An object of this type can be created
with a constructor as seen in listing 2 (Mozilla, 2015).
// JavaScript code
var RegExpObj = new RegExp("ab+c");

Listing 2: Example of object creation

The created object can be used to test strings. The method exec() will return the first
match of an input string. The test() method will return a boolean if the string matches
the regular expression (w3schools, 2015).

The function in listing 3 shows how the string "Excel" is replaced with the string
"Marker".
// JavaScript code
var textStr = "Excel is great!";
var result = textStr.replace("Excel", "Marker");

Listing 3: Example of JavaScript string replacement

2.3 User interface design and usability

There are several important parts to consider when designing a user interface in order
to maintain a high degree of usability. Usability describes the ease of use of some object
and can in turn be divided into sub categories; effectiveness, efficiency, safety, utility,
learnability and memorability. Theses categories must be taken into consideration when
designing a user interface (Rogers, Sharp, and Preece, 2011).

• Effectiveness describes how well the system performs the tasks that it is supposed
to support. Does the GUI allow users to perform the tasks? A poorly designed
interface may interfere with function while a well designed one can enhance it.

• Efficiency is a way of quantifying the amount of resources a user has to consume in
order to complete a task. Common tasks should be easy to complete and demand
little resources. By resources, things such as time or similar are meant. In the case

4



2. THEORY

of this project it could mean that a user creating a simple graph should be able to
do so with only minimal effort. An example would be to use good default values for
the graphics and thereby only requiring minimal input from the user in the form
of data values. Entering only data into bar chart should still yield a good visual
result.

• Safety alludes to avoiding undesirable situations for the user. A typical example
is the use of a dialog box for certain actions, such as the confirmation dialog box
when deleting a file from the hard drive of a computer. It is important that the
user does not accidentally remove all work done and if it were to happen, that the
user can recover as much as possible.

• Utility refers to at what extent the application offers the necessary features. A
graph tool where the user cannot create a bar chart, which is a standard way of
expressing data, lacks utility. This does not mean that the amount of features
should be as high as possible. Superfluous features might cause confusion and
distract the user from the more important parts.

• Learnability describes how easy the application is to learn. This is a crucial part
of designing a GUI since a hard to learn interface quickly will turn off users. An
easy to learn interface is often a familiar one, this means that convention should
be followed where possible.

• Memorability is closely related to learnability and refers to how easy the applica-
tion is to use again once it has been learned. The user should not have to re-learn
the application every time it is used.

The colors used in a GUI are also important since different colors might give different
conception and should not only be decided on because they look good. For example,
a dark page can feel edgier, more somber or more energetic depending on other design
aspects (Tidwell, 2010). A light page, on the other hand, gives a more spacious feeling.
Certain colors also give different impressions and feelings. Despite being quite individual
there are some general factors that can be used. For example, the color yellow is often
related to warmth and cheerfulness (Cherry, 2015).

5



3. METHOD

3 Method

The project was divided into a pre-study and the implementation of the system. The
pre-study phase was used to gather both theoretical information about underlying topics
as well as provide insight into the current technologies such as programming frameworks
that might be of use to the project.

The pre-study was started of by investigating what the current tools in data visualisation
are, what they are good at and more importantly what they are lacking in the context
of our purpose. This was done primarily through qualitative analysis in the form of
interviews with experts in the area and thereafter exploring this domain ourselves.

Another important aspect is how different types of data are structured and accessed.
Since the application should be able to create more than just common bar charts, broader
insight into data visualisation was needed. Thus, a hackathon was attended where large
volumes of data from the Swedish authorities was made accessible and put to use by the
attending programmers.

Lastly, a literature study was carried out in order to gain more in-depth knowledge about
parsing, syntax construction and other relevant areas.

3.1 Interviews with data journalists

In order to assess the current situation of data visualisation tools we decided to contact
a specific group of people; journalists working with data and data visualisation. So
called data journalists often create advanced data visualisations in their work but are
journalists rather than programmers and therefore part of our target group. They possess
knowledge about the possibilities as well as drawbacks of the current tools. To learn
more, we conducted two semi-structured interviews with knowledgeable people from this
group. The interviewees were two journalists at the forefront of data driven journalism in
Sweden; Kristoffer Sjöholm from SVT Pejl and Jens Finnäs from Journalism++. These
interviews served the purpose of answering the following questions:

• What methods and tools are used today in the making of statistical graphics and
visual representations?

• How well do the current tools work and what are the biggest issues?

• Is this project and it’s philosophy relevant and viable?

• What type of data is used and from where is it obtained?

• Can a text based application be adopted by a community of non programmers?

According to Sjöholm and Finnäs, some of the commonly used tools today are Highcharts,
Data wrapper and Tableau. Highcharts, while being used by many big companies, does
not contain the simplicity we want since our intended user will not be programmers, but

6



3. METHOD

journalists and such. Looking at the syntax below in listing 4, one can see that creating
a simple bar chart as in figure 1, requires specific prerequisites in programming. Even
though one can see what the different parts of the syntax relates to, the structure is quite
complex and the syntax itself is not forgiving, which means that small errors in the code,
such as missing a colon, leads to the code not executing.
$(function () {

$(’#container ’). highcharts ({
chart: {

type: ’column ’
},
title: {

text: ’Monthly Average Rainfall ’
},
subtitle: {

text: ’Source: WorldClimate.com’
},
xAxis: {

categories: [
’Jan’

],
crosshair: true

},
yAxis: {

min: 0,
title: {

text: ’Rainfall (mm)’
}

},
plotOptions: {

column: {
pointPadding: 0.2,
borderWidth: 0

}
},
series: [{

name: ’Tokyo’,
data: [49]

}, {
name: ’New York’,
data: [84]

}, {
name: ’London ’,
data: [50]

}, {
name: ’Berlin ’,
data: [43]

}]
});

});

Listing 4: Example of JavaScript bar chart creation function

7



3. METHOD

Figure 1: A simple bar chart created with Highcharts.

Similarly, the other programs mentioned in the interview have disadvantages as well.
Datawrapper is quite simple, using a step-by-step wizard and checkboxes, radio buttons,
small text input areas and drop down menus. Nevertheless, there is no way to add
your own graphs and it does not support any type of customisation or in-depth features.
Tableau is, in contrary to Datawrapper, a quite complex software aimed at businesses
and offers more features than wanted in this project.

Summarizing existing tools, there exists many programs today that visualise data. How-
ever, most of these programs are directed at a different target group than intended for
this project. Many of these are complex in nature and require knowledge about pro-
gramming. The ones that are easy to use on the other hand, lack customisation and
power.

The type of data that is used in visualisations today of course varies. But one standard
way to store and represent data for a common chart such as a bar chart is comma-
separated values. This is often saved as .csv-files. Comma-separated values can also be
applied to other graphs, such as line charts, pie charts and more. Thus, this is a key part
in representing data and adding support for these files is important for the market value
of a data visualisation application.

One application that uses .csv-files is Excel. According to the interviewees, a lot of
data is often stored in Excel or Google Sheets. This means that in order to address a
lot of users, adding data from external sources such as Excel and Google Sheets should
be supported. Linking a Google Sheet could also mean that data could be updated live.
Data that changes over time is rarely used though, meaning that the data sources for the
most part are static.

8



3. METHOD

The interviewees also say that a text based application could be adopted by a community
of non-programmers if made easy enough. The data journalists that were interviewed say
that they are missing a service that creates a foundation quickly through templates but
also is easy to customize later on. On a side note, they also mention that current tools lack
support for annotations and highlighting, i.e. graphics on top of the visualisation such as
arrows and high quality tooltips. It should also be possible to export the graphics as an
iframe. An iframe is an HTML Inline Frame Element that represents a nested browsing
context, effectively embedding another HTML page into the current page. Other than
that, exporting graphics to host on your own server should also be supported. Existing
tools also lack responsive design when exporting from current services.

Based on what Sjöholm and Finnäs have said, it is a fact that there is a need for a
platform where non-programmers can translate their data into knowledge. This means
that there exist a possible business case from the data visualisation tool being created.
This will be further discussed later in the report but not taken into account during the
time of the actual project.

Sjöholm and Finnäs both agreed on one thing as a conclusion; Generally, journalists know
nothing about programming or similar. This information has to be taken into account
during this project. From constructing a syntax to designing the GUI, simplicity needs
to be prioritized.

3.2 Analysis of data from Swedish administrative authorities

As part of our pre-study we also participated in a programming event hosted by the
Swedish authorities in Stockholm. Among these authorities were Lantmäteriet, SMHI,
SCB and Skatteverket. The authorities opened up large sets of data of various kinds with
hopes that the participating programmers would make constructive use of it. This was a
way for the team to assess what kind of data that can be used in visualisations and what
the most common types are. It also served the purpose of a practice round in coding
data driven applications. The event, considering the hosts, also indicates that the topic
of this project is currently very relevant and not only of great interest to ourselves.

3.3 Analysis of popular data visualisation tools

One of the goals of the pre-study was to find out in which way the imagined tool could
bring the most new value into the area of data usage and visualisation, thus our pre-study
include an analysis of the most popular current tools, to be able to assess what is missing
from them, and what could be improved upon.

• Excel, Numbers and Google Sheets. Excel, Google Sheets and Numbers are
all popular programs with both data management and graphing capabilities. They
import data both with proprietary formats, and plain text data like .csv-files. In

9



3. METHOD

some cases, like with Google Sheets, the data can be pulled from online services,
such as online forms. Graphing capabilities include making the most common visu-
alisations such as bar and pie-charts, and they are configured with a user interface
consisting of checkboxes, dropdowns and text fields. An example of this can be
seen in figure 2.

Figure 2: An Example spreadsheet with a graph, using Google Sheets

• R Statistics. In the statistical research community, R statistics is a popular pro-
gramming language that puts emphasis on easy handling of data, and a widespread
array of packages that can visualise data (“What is R?,” 2015) .

• Processing. Processing is a programming language aimed towards generating
visuals. It is popular among professionals who want an advanced tool for visualisa-
tion, with interaction and animation possibilities (“Overview. A short introduction
to the Processing software and projects from the community,” 2015).

• Infogram. Infogram is an online tool for generating small infographics quickly
(“Infogram is the data visualization product that brings out the best in your data,”
2015).

• Charts.js. Charts.js is a JavaScript graphing framework, aimed towards web de-
velopers who want to have live graphs and charts on their webpages. Possibilities
when using JavaScript frameworks include live generation of charts using arbitrary
data available to the programmer building the website (“Simple, clean and engaging
charts for designers and developers,” 2015).

10



4. SYSTEM DESIGN AND IMPLEMENTATION

4 System design and implementation

The system design of Marker is constructed to allow extensibility and flexibility by
providing the possibility for third party developers to contribute additional graph mod-
ules. This is accomplished by separating the different components of the application and
thereby allowing developers to connect their own components. When a developer creates
such a graph-module, the developer has to register it to the Marker framework which
then incorporates it into the system. Each graph-module also declares a small API (Ap-
plication Program Interface) specific to that graph-module, stating what selectors and
properties are customizable.

The design of the system can be abstracted as 5 different sub systems as illustrated in
figure 3.

• Syntax. A syntax that is deemed easy and forgiving, with both flexibility as a
development tool, and usability for users that might be non-programmers.

• Parser. A program that analyzes our syntax and converts it into a predictable
and usable data structure.

• JSON. The output from the parser in the form of JSON. An intermediate form
that links the syntax to the subsystem responsible for graphics.

• Processing. Program packages, made by us or others, that construct the desired
data visualisation from the JSON data.

• Visuals. The final stage, the actual graphics generated from the processing step,
that could be exported in various forms - either as static images or interactive web
components.

Figure 3: The main building blocks of the system.

4.1 Syntax design

When designing the syntax for the Marker system, the syntax was made as easy and
usable as possible for new users. One way of doing this is to build on a foundation of

11



4. SYSTEM DESIGN AND IMPLEMENTATION

what our users already know.

To accomplish this, platforms where non-programmers already have used a structured
syntax were studied. Two example of this are Markdown and LATEX, but another example
are users of the social network Twitter, who use a syntax to format their tweets. This
syntax looks as follows.

• @-symbols are used to target names of users of the Twitter platform.

• #-symbols are used to categorize the tweets with different keywords.

The at-sign is noted to act as a selection operator, as every at-name on twitter is a
unique identifier. The number sign is noted to act as a categorizing operator, useful for
searching for tweets on a specific topic.

This train of thought inspired the syntax design process, along with trying to make it
feel less like a programming language and more like intuitively structured data about the
visualisation. Care was also take to ensure that the syntax actually could be parsed into
relevant structured data.

4.2 Generating a parser with PEG.js

PEG.js is a parser generator which uses language grammar, rules that dictate the seman-
tics and syntax, for the JavaScript programming language. Given a grammar consisting
of rules, the parser will return an output specified by the programmer (“Parser Generator
for JavaScript,” 2015).

PEG.js is easy to use and to install. PEG.js grammar can be compiled through PEG.js
online tool (“Parser Generator for JavaScript,” 2015) or compiled on the command line.
The command in listing 5 requires an installation of PEG.js, which could be done simply
with a package manager.
> pegjs grammar.pegjs

Listing 5: Compilation of the PEG.js grammar

Running this command from the terminal produces a JavaScript file containing the parser.
If the grammar contains non valid syntax, the errors will appear in the command line
window. The parser is simply a JavaScript function that takes a string as input, and
outputs the result from the matched expressions.

12



4. SYSTEM DESIGN AND IMPLEMENTATION

Listing 6 shows one snippet of example grammar:
start = ((val:int "\n"*) { return val })+

int = digits :[0 -9]+ {
return {

type: "int",
value: parseInt(digits.join(""), 10)

}
}

Listing 6: Example grammar snippet

Rules in PEG.js uses regular expressions to match expressions. For the parser to be
able to look for expressions, a start rule must be defined. This rule defines the search
pattern for the parser. The int rule from the example above matches input containing
0-9, labeled as digits. The plus sign inherits from regular expressions and represents "at
least one", which means that at least one occurrence should be present in the input.
The return statement is used for specifying which output should be presented. For each
occurrence, the parser produces JSON-data in shape of an abstract syntax tree (AST),
with the labels type and value. JavaScript code and functions can be used to modify the
input which extends the functionality of the parser.

PEG.js is a powerful parser generator and is also easy to learn since it is mostly based on
regular expressions and rules following the same structure. PEG.js offers intuitive and
natural ways to specify a grammar. Rules, labels, expressions and operators are essential
when defining a grammar with PEG.js.

• Rules A rule is unique and is followed by an equality sign. The int rule from the
above example parses integers. Rules can refer to other rules. Rules in PEG.js can
be recursive and can therefore be useful when searching for an arbitrary amount of
data in a row, like arrays. Recursion and the ability to put matched expressions
into variables leads to cleaner and a more intuitive grammar that is easy to follow.

• Start rule A start rule is obligatory and the first to be interpreted. Often referred
to as start, as in the example above.

• Labels Labels are used for referencing matched expressions. In the int rule from
the example above, the expression will be referenced as digits, which can be used
in the return statement and could also be sent to an external JavaScript function.

• Expressions Several expressions can be used to determine number of occurrences
of matched syntax. These expressions inherit from regular expressions. The ex-
pressions mentioned in table 1 in chapter 2.2 are equivalent.

A general rule could therefore look as in listing 7:
ruleName = reference :("expression") {return reference}

Listing 7: A general PEG.js expression rule

13



4. SYSTEM DESIGN AND IMPLEMENTATION

The parser could also be implemented directly in HTML or JavaScript file like in listing
8:
// JavaScript code
var parser = PEG.buildParser("rule = (’first ’ / ’second ’)*");

Listing 8: Parser in JavaScript code

The parser object could thereafter be used together with the function parse in order to
parse the input.
// JavaScript code
parser.parse("Parse this string")

Listing 9: String parsing in JavaScript

4.3 The JavaScript framework Meteor

All the graph-components of Marker are created as plain JavaScript files. However, to
make the graph-components, a user interface, an editor and a server component work
together; They need to be bundled into a web application. Web applications are generally
dependent on a web application framework, which are in turn bundles of code easing the
process of making something interactive running on the internet.

This project utilizes a web application framework called Meteor. To get a grasp of what
Meteor is, and why it suits this project, we must first take a look at something called
Node.js.

Node.js is one of the most popular and extensive web application platform frameworks
as of 2015 and is written solely in JavaScript. It offers low level control and high levels of
customisation of all components in the application, and the user is obligated to configure
the program-flow of databases, back-end and front-end components, and explicitly state
how they are going to communicate with each other. In other words, in Node.js the user
is responsible for the application architecture (“About Node.js,” 2015).

Meteor is an open-source web application framework written on top of Node.js. It is an
abstraction of Node.js, which bundles database, server and client logic in one framework.
When deployed for production, the Meteor application builds itself into a Node.js appli-
cation. In Meteor, the developer is not forced to configure how all the components are
connected, almost all set-up is done automatically and lets the developer focus on cre-
ating the product from the start, instead of the application architecture. This allows for
rapid prototyping. Meteor also produces cross-platform code, which means that the web
application can be converted into a native iPhone– or Android application with minimal
effort (“The Meteor mission,” 2015). While not in the scope of this project, this could
prove valuable for future development.

Meteor is, at the time of writing (March 27, 2015), the 10th most starred repository on
the largest open source development site GitHub.com (“GitHub,” 2015).

14



4. SYSTEM DESIGN AND IMPLEMENTATION

Meteor also features what is called a package manager. A package manager is a tool used
for organising and distributing third party frameworks, and allows for easy extension of an
application. For example, if a user needs authentication functionality in an app, the user
can simply add a finished package offering login functionality, instead of implementing
one. Meteors package manager is called Atmosphere and is operated via command line
input. More information about Atmosphere can be found at http://atmospherejs.
com.

At the time of writing (March 31, 2015), there exist over 4500 packages in Atmosphere.
Several packages was used in the project to simplify styling, layout and functionality
of the application. Installing a package through Meteors package manager is done by
command line input as seen in listing 10:
> meteor install package -name

Listing 10: Installation of a Meteor package

Once this is done, Meteor will install the package and, given that the package itself works,
it can be used straight away. Basically, this means that getting a package up and running
within the project is extremely efficient.

4.4 The JavaScript framework D3.js and graphics generation

The graph components in Marker are contained within standard JavaScript-files and the
creation of the visuals may be performed in what ever way is preferred by the developer.
One of the most common tools for doing this and what is used throughout this project
is the framework D3.js. It supplies means to establish a connection between individual
elements from a data set to corresponding graphical components of the web site (“Data-
Driven Documents,” 2015).

D3.js does not provide or create any graphics by itself, instead, the framework works as a
link between data and graphics. The graphics are created by using SVG (Scalable vector
graphics) in conjunction with D3.js.

4.5 Jade, Jeet and Stylus

Some of the packages used extensively in the project are Jade, Jeet and Stylus. These
packages are all used in order to simplify the development of Marker’s front-end and
does not add any extra functionality. Stylus and Jeet both serve the purpose of creating
a layout and design. Ultimately, they both produce CSS code as output. Jade serves a
similar purpose but instead creates the main markup of the page and outputs HTML-
code.

Jade is a template engine which is used in conjunction with Meteor. Jade produces
HTML code, and supports dynamic code and re-usability (“Jade Language Reference,”

15

http://atmospherejs.com
http://atmospherejs.com


4. SYSTEM DESIGN AND IMPLEMENTATION

2015). Meteor has a good default template mechanic but using Jade removes some of
the tedious work required with HTML syntax. Jade has a minimalistic syntax based
on indentation levels, which is in contrast to the more verbose (i.e. many symbols)
HTML that it outputs. Jade also incorporates logic such as loops and conditions which
is essential when creating a non static web page. A simple page created with Jade might
look like listing 11:
doctype html
html(lang="en")

head
title= pageTitle
script(type=’text/javascript ’).

if (foo) bar(1 + 5)
body

h1 Jade - node template engine
#container.col

if youAreUsingJade
p You are amazing

else
p Get on it!

p.
Jade is simple.

Listing 11: Simple web page made with Jade

The above Jade-code will produce the following HTML as seen in listing 12:
<!DOCTYPE html>
<html lang="en">

<head>
<title >Jade</title>
<script type="text/javascript">

if (foo) bar(1 + 5)
</script >

</head>
<body>

<h1>Jade - node template engine </h1>
<div id="container" class="col">

<p>You are amazing </p>
<p>Jade is simple.</p>

</div>
</body>

</html>

Listing 12: Example of how Jade will be compiled into HTML

Stylus is a style sheet pre-processor meaning that it ultimately outputs CSS. The point
of using such a pre-processor is that it makes the writing of complex CSS easy. Amongst
other things, Stylus makes it possible to reuse code, define variables and functions and
evaluate mathematical expressions (“Stylus - Expressive, dynamic, robust CSS,” 2015).
On top of this, Stylus uses a similar syntax as Jade in the sense that it is indentation
based.

16



4. SYSTEM DESIGN AND IMPLEMENTATION

a
color black
font -size 12px

h1
color blue
font -size 28px

Listing 13: Example of Stylus syntax

The above Stylus-code in listing 13 will produce the following CSS in listing 14:
a{

color: black;
font -size: 12px;

}

h1{
color: blue;
font -size: 28px;

}

Listing 14: Simple CSS code

Jeet is a framework that is used in order to create layout columns and grids on a web
page. By providing Jeet with either a decimal number or a fraction, it creates a column
of corresponding width (“A grid system for humans,” 2015). In order to create a column
that spans half of the page, the following expression simply has to be added to the style
sheet file as seen in listing 15:
.a-class -in-stylus

col (1/2)

Listing 15: Simple Jeet example

This expression will evaluate to more complex CSS code. Hence, Jeet does not extend
CSS but makes it easier to both write and read. The effect of the code is that every
HTML element with the CSS-class a-class-in-stylus now will span half of the web page.

4.6 Ace - Web code editor

Ace, is an open-source JavaScript framework for integrating a powerful code editor to
a website. In the application, Ace will be used as a standard text editor where a user
enters syntax in order to visualise their data. It supports most features that developers
are used to, such as code indentation, syntax highlighting and search-and-replace. It also
supports working with large documents of text without slowing down the web browser
(“The high performance code editor for the web,” 2015).

17



5. RESULTS

5 Results

The result of this project is Marker v0.1, a web application residing on the domain
markerapp.meteor.com . The complete application includes several modules and vital
parts which will all be explained in this section.

5.1 Marker syntax

The primary goal of constructing the syntax was to strive for both understanding and
intuition for a non-programmer and maximum extensibility for users with coding expe-
rience.

The Marker syntax follows similar design patterns mentioned in 4.1 to make it more
appealing and intuitive for the large audience. Its primary operators are number sign
and at-symbols. The at-symbols are used for selection and the number sign is used for
formatting.

For example, the at-sign could select an element that is exposed by the creator of a
specific graph. E.g. @highest could select the bar with the highest value in a bar chart.
The user of the language is then allowed to send (pre-defined) CSS properties to the
specific element using indentation under the @highest keyword, perhaps to make its
label bold or underlined.

The syntax is interpreted sequentially and designed to be very user friendly and allows
the user to make small mistakes without any difference in the parsed output. The string
#data must occur in order for the expression to succeed. The data field could be a
comment, so the labels are passed to the function commentOrValue in order to determine
this. The data set could be doubles, integers, characters, arrays of data and file names.
The input could be a combination of these types, which the ordered choice operator
/ specifies. The formal language grammar uses regular expressions within the rules to
distinguish between the syntax components.

With support for both csv (Comma-separated values) and json files, the user can directly
pass a local stored file through the syntax to the graph instead of manually type all values.
This can be done in the following way after the user has selected the corresponding file
via the Import Data button. And the syntax could look like in listing 16
#data: weather_data.json
#title: My Chart

Listing 16: Simple Marker syntax of external data import

18

markerapp.meteor.com


5. RESULTS

5.2 Marker parser

The parser is implemented using PEG.js and the grammar is a combination of JavaScript
and regular expressions as mentioned in section 2.2. The parser input is interpreted and
parsed towards the formal language grammar. Each input that matches a given rule
produces an output. Each data type that is specified in the grammar is defined as a
rule. A matched expression returns JSON-data, which structure is defined in the return
statement in the rule. The intended use of the resulting JSON tree is as input data to
the Marker atoms, which will visualise the data.

The data set is typed after the #data syntax. The data rule below in listing 17 validates
the syntax towards matched expressions. The string, file, double and int rules will all
return arrays which will form the AST, while chars rule just return regular characters.
data = comm:("--")* _ ’#data’ _ array :((" "* (nlTab/’,’)? nlTab? " "* (

string / file / double / int / chars) (’ ’/’\t’)* ’\n’?)+) ’;’? (nlTab
*)? {

var newArray = new Array ([]);
var valueArray = [];
var tempArray = [];
var separatorArray = [];
var arrayCounter = 0;

function createArray(array) {
(array ? array.map(function(array) { valueArray.push(array [4]);

separatorArray.push(array [6]) }) : null)
for(var i = 0; i < valueArray.length; i++) {

tempArray.push(valueArray[i]);
if (separatorArray[i] != null) {

newArray[arrayCounter] = tempArray;
tempArray = [];
arrayCounter ++;

}
}

if (newArray.length > 1) {
return newArray;

} else {
return valueArray;

}
}
return commentOrValue(comm , "data", createArray(array))

}

Listing 17: PEG.js grammar of the #data expression

The underscore (_) character rule, shown below in listing 18, is commonly used in the
Marker’s language grammar and it makes sure the parser does not crash, e.g. if the
user types an extra space character or misses a comma character. The nlTab commando
simply ignores new lines and tabs.

19



5. RESULTS

space = [(" ") / ("\t")]*
_ = (space ’:’? ’=’? space) {

return null
}

Listing 18: Grammar rule over how space and tab should be handled

Below is an example that shows how user friendly the parser actually is. Following inputs
in listing 19, 20 and 21 will be generated to an identical abstract syntax tree:

The first example:
-- This is a comment
#data: A,1,B,2
#title: My Chart

Listing 19: First Marker example syntax

The second example:
-- This is another comment
#data = A 1 B, 2;
#title My Chart

Listing 20: Second Marker example syntax

The third example:
-- This is a third comment
#data

A
1
B
2

#title My Chart

Listing 21: Third Marker example syntax

Notice that it does not matter for the user if they type tokens like :/=/, etc. The regular
expressions handles all these types of combinations and filter them out.

After the syntax has been parsed, the parser will output an abstract syntax tree in the
form of a JSON value as seen in listing 23. It is this data structure that the graphics are
based upon. With the following syntax input as in listing 22:
-- This is a comment
#data

’Gothenburg , Sweden ’ 500
’Stockholm , Sweden ’ 1000
’Berlin , Germany ’ 3502

#title Population in big cities x1000
#type BarChart

Listing 22: Marker syntax over a simple bar chart

20



5. RESULTS

The following output will be generated:
[

{
"type": "comment",
"value": null

},
{

"type": "data",
"value": [

{
"type": "string",
"value": "Gothenburg , Sweden"

},
{

"type": "int",
"value": 500

},
{

"type": "string",
"value": "Stockholm , Sweden"

},
{

"type": "int",
"value": 1000

},
{

"type": "string",
"value": "Berlin , Germany"

},
{

"type": "int",
"value": 3502

}
]

},
{

"type": "title",
"value": "Population in big cities x1000"

},
{

"type": "type",
"value": "BarChart"

}
]

Listing 23: Abstract syntax tree in JSON format

After the JSON-structure has been created by the parser, the data have to be processed
in JavaScript in order to draw the corresponding chart. For this purpose there is a
processing algorithm which do exactly this. Please see Appendix C for the full code
reference. At first, the loop will look for the data array and then loop through that array
to collect all input data and store it in a new array. This array will then later be the

21



5. RESULTS

input to the chart. Later, the first loop will look for the chart type to be drawn.

5.3 Marker graph modules

Integrating new graph modules is easy with Marker. A single graph module is referred
to as an atom within the Marker API. These atoms can be developed by anyone but
they need to register themselves to a central unit called the Molecule.

The atom needs to implement the methods below and follow a specific design pattern.

• init The init method is called by the Marker application when the atom is initiated.
It takes JSON-data, options and a callback as parameters.

• draw The draw method is called by the Marker application when the visualisations
need to be initially drawn or updated if the values in the syntax has changed. It
takes a paper as a parameter. The atom is responsible for appending its visuals to
that paper.

An object named info supplies a description of the graph to the user, it needs to contain
a name and a description of the atom. It is important to note that the name is case
sensitive, as it is used in the syntax for using calling a specific atom. Then follows a
function, or a closure, named after the atom that is created. The closure wraps the
whole functionality of the atom and will later be exported as an object and registered
to the Molecule to become part of Marker. The closure contains two private variables:
data and defaults. The variable data stores the data set to be visualised, it will be
assigned in the init method.

The variable defaults is the key to user customisation from the syntax level. It is an
object that provides all mutable style values of the graph such as colors, title and labels.
This object is the declared API of the atom, i.e. the properties of the atom the creator
of it has exposed for modification to the end user. All properties sent to init as options
will be overwritten to the defaults object, the key in option has to have the same name
as a key in defaults for changes to affect the atom. The scenario below shows how this
looks in practise.

The defaults object in an arbitrary atom, before modification in listing 24.
ArbitraryAtom = function (){

var defaults = {
title: "Default title",
titleColor: "red"

};

// (Rest of the atom code is omitted)
}

Listing 24: Default atom function

A property named title is specified in the Marker syntax as follows in listing 25:

22



5. RESULTS

#title Weather

Listing 25: Example of Marker #title attribute

The property title is then overridden in the defaults object.
ArbitraryAtom = function (){

var defaults = {
title: "Weather",
titleColor: "red"

};

// (Rest of the atom code is omitted)
}

Listing 26: Updated atom defaults

The draw method is were the data is turned into graphics. Primarily this is done through
the use of D3.js, but it does not matter which software is used, as long as the contents
is appended to the paper parameter, which is an SVG HTML-node.

Last but not least, the BarChart closure is exported as an immutable object, its required
methods made public, and registered to the Molecule. This is done in the atom file calling
the registerAtom method on the global Molecule object, and sending the atom closure
and info as parameters.

The complete implementation of a bar chart atom can be found in Appendix B.

5.4 Marker visuals

From the text editor the user can program charts and diagrams which are displayed
directly in the browser. In comparison to the city weather example in section 3.1, figure
1, the Marker syntax for similar data could be written as in listing 27:
#data

Tokyo 49
NewYork 84
London 50
Berlin 43

#title Weather
#type BarChart

Listing 27: Example Marker syntax of a bar chart

Which renders the following chart as seen in figure 4.

23



5. RESULTS

Figure 4: City weather graph from Marker syntax

5.5 Marker user interface

The user interface of Marker is based on a text editor and a view of the generated graphs
as seen in figure 5. The editor supports color highlighting of the syntax according to
our syntax specifications, as well as auto completion of properties. These two features
increase typing efficiency and flattens the learning curve of the application. The high-
lighting provides visual feedback that makes the code easier to read, meaning that less
resources has to be spent on this part. It also becomes evident if the user writes ill-formed
syntax since this will not highlight. The auto completion partly has the same effect on
efficiency since typing becomes quicker but it is also useful to new users. They can use
the auto completion to get a list of possible alternatives when typing and thereby explore
the full syntax.

When the user has written a segment of code and wants to view the resulting graph, he
can do so by evaluating the code. This is done through the keyboard shortcut cmd+return
for OS X users and ctrl+return for Windows users. Evaluation will instantly show the
resulting visualisation over the text editor.

24



5. RESULTS

Figure 5: A view of the Marker GUI where a Venn diagram is being created.

25



6. DISCUSSION

6 Discussion

The purpose of this project was to create a development platform where a user without
programming knowledge should be able to format and visualise data, using the simple
plain text syntax developed for the project. The project included background research,
with interviews and market analysis, which laid the groundwork for design of a useful
platform for this purpose, that had the potential to bring value to the area of data
visualisation.

After the design phase, the platform was implemented according to the proposed design.
Being a platform, the implementation had to support many use cases, ranging from
usability from the perspective of a programmer that want to build a custom visualisation,
to a non-technical user that want to visualise their data. This wide scope was picked
since early hypotheses concluded that this would make this type of application valuable
- the wide variety of potential visualisations that are useful, make a niche application
less interesting. This somewhat spread the project groups efforts thin, which affected to
what extent the purposed could be fulfilled.

6.1 Assessment of outcome

The project resulted in a development platform for data visualisations, and a web appli-
cation that implements this framework. The application is not feature complete at the
time of writing, i.e. more development is required to make Marker full-fledged. However,
it defines the core structure for both the syntax and the parser as well as the way in which
graph modules may be integrated. In doing so, it also fulfills the major part of the thesis
purpose. The different parts of the system were mostly developed in parallel in order
to increase efficiency but this also became an issue when dependant parts of the system
were out of sync. E.g developing a new graph module requires that the parser supports
the data type to be used. This led to the fact that graph modules took longer time to
develop than initially expected.

A significant part of the project’s purpose was to create something that was user friendly,
yet powerful. The applications performance in terms of usability can not be evaluated
since user tests unfortunately are yet to be performed, thus, only the functionality itself
may be evaluated. As of now, the application is developed in a way that the project group
think our intended end users will be using the product. Having more user tests during
the development and, especially, prototyping phase would have helped shape the project
in a direction that could have further encouraged the end users to use our product.

Another significant part of the project was to support extensibility of the platform by
other programmers, for adding more types of data visualisations, atoms. This is very
much supported by the resulting platform technically, but several efforts remain for the
platform to fulfill its potential here. Adding atoms require a programmer to do a pull
request on Github with the new atom, that the project group then would accept into

26



6. DISCUSSION

the platform. This process could be done in an more open manner, not requiring active
participation from the project group. There is also potential for lessening the effort
needed for making the actual atom, for example by improving the JSON value generated
from the parser.

6.2 Implementation choices

One of the defining decisions in the project was to implement the application as a web
application rather than a desktop application. This will hopefully increase spontaneous
use of our tool since no installation is needed, which might help in acquiring new users.
Since the data used in most cases will come from a web source and the publishing often
takes place online as well, keeping the application within the same domain is a logical
design choice.

Another important decision was to use Meteor as the main web application framework
for the project. This has proved to be efficient since many components of a complete
web application is already provided by Meteor. However, it was not without draw-
backs, mainly concerning the compatibility between the Ace editor and Meteor, both
very complex frameworks. There exists a number of different Ace editor packages for
Meteor that all can be found using the official Meteor package manager, found on
http://www.atmospherejs.com. Some of these were added to the project but later
removed since Meteor syntax had to be used to interact with these packages. For exam-
ple, adding the project groups own syntax highlighting mode was a big problem and the
Ace editor was instead added manually to the project. In the end, using Meteor seems
like the right choice since gains and time savings heavily outweighed the compatibility
problems.

Using Jade, Stylus and Jeet was another choice the project group made. Jeet as a grid
system has been working like intended and no further reflection has been made concerning
this. There exist a lot of different ways to use grids but Jeet, being both minimalistic
and intuitive, has been fully functional. Stylus and Jade are both whitespace sensitive
languages and made both CSS and HTML coding efficient, despite some of the project
members not having used this before. The learning curves for these are quite low and
the payoff for using them is quite big time-wise.

During the implementation of the parser, a choice was made between using PEG or
CFG. The main difference between these two is that PEG is not ambiguous, meaning
that there is only one resulting tree structure that matches the expression. The lack
of ambiguity was not the main reason PEG was preferred. CFG parsers often offers
the ability to prioritize resulting trees. But this was excluded since that extra logic is
not needed. PEG’s behaviour is optimal in its functionality due to Marker’s need of a
consistent resulting JSON structure. Atoms would become too complex if they would
take the JSON tree structure into consideration each time processing the input. The
advantage of using a parser generator like PEG.js is the modularity it delivers. PEG.js

27

http://www.atmospherejs.com


6. DISCUSSION

is also well documented and many examples are provided. In PEG.js it is also possible
to name input parameters arbitrarily, which makes it simple and intuitive to follow the
code.

The possibility to pass internal PEG.js variables to pure JavaScript functions really
extends the functionality of the parser. This is a valuable feature since it allows the
parser to be integrated with other systems. The parsed input could for example be
passed to a JavaScript function that sends HTTP POST requests to other more complex
back-end systems.

PEG.js ordered choices functionality is used for enabling multiple data types in the same
data set. This is essential for the use of e.g. key-value data sets. This allows programmers
to build and combine data sets within the atom. Having an easy and forgiving syntax
leads to less parsing grammar, in contrast to more advanced syntax, where indentation
and brackets are used. More advanced parsing could be used if support for more complex
relational data sets were to be implemented.

The error handling in PEG.js does not work that well now since the error exceptions are
difficult to interpret for a non programmer. The error handling could be extended to
match Marker’s syntax.
-- My chart
#data

Sweden 10 & 2
Norway 12

#type BarChart
#title Countries

Listing 28: Example Marker syntax

The above non valid syntax in listing 28 throws the following exception in listing 29:
Uncaught SyntaxError: Expected " ", "#", "#data", "’", ",", "--", ".", "/

", ":", ";", "=", "@", "\n", "\t", [(" ") \/ ("\t")], [(\n\t)], [A-Za-
z(_)?], [\-0-9], [\-A-Za -z0 -9_\/\/ .?,\xE4\xC5\xE5\xD6\xF6\xC4], [\-A-
Za -z0 -9_\/\/.?\ xE4\xC5\xE5\xD6\xF6\xC4] or end of input but "&" found.

Listing 29: Example of syntax exception

which is not optimal for inexperienced users.

6.3 Comparison with other data visualisation tools

Even without user testing and evaluation, there are conclusions to be made about what
the Marker platform technically supports, that makes it stand out from other data visu-
alisation solutions. Feature-wise, the application is not the most advanced. There exist
other applications that handle larger data sets, more complex data and has a bigger
supply of graphics. But what makes Marker really stand out is the open source expand-
ability of the application along with its syntax. Adding new graphs is easily done by

28



6. DISCUSSION

a programmer with basic proficiency in JavaScript, and something not offered by other
tools. Thanks to the system design and the syntax, these graphs may be used by anyone,
even individuals without programming experience.

Yet another feature that is important to take into consideration is how much code is
actually needed to create, for example, a standard bar chart. If compared to Highcharts,
Marker’s code is way more efficient to type and considered more intuitive as a non-
programmer.

Summarizing, Marker offers a simplicity that is not available anywhere else. This is at
the cost of giving up some of the complexity of what the visualisations can represent.
However, the combination of being easy to use but still customisable is something that
does not exist in current market applications.

6.4 Platform usefulness

Is there a need for this kind of platform that standardises a workflow for working with
data, for the purpose of visualisation? On the web today, there are powerful frameworks
available for programmers that let them work with data in applications, and effectively
draw graphics.

D3.js is a popular example of this, where data binding to the web document view is
standardized and simplified, and JSON is very much the lingua franca for working with
data in web applications. However, these tools are only available to programmers. Pro-
grammers are also used to having access to a wide variety of open source code - program
components that once built, is free to use for anyone, anywhere.

Building a platform that enables anyone to utilize these powerful methods, without pre-
vious programming knowledge has potential to be valuable, but what potentially is even
more powerful is introducing a standard for open source pre-built visualisations - to
enable the open source workflow of programmers for data visualisation purposes. The
platform, designed and implemented in the project has the theoretical potential for this
- but further development, testing and research is needed to draw precise conclusions
about what exactly is the best design of such a platform.

Using a syntax as the basis for user input to our platform has drawbacks, such as the fact
that the parser implementation has to support all possible data combinations that differ-
ent atoms might want to utilize for structuring the data input. Atoms might want custom
data combinations, and this has proven to be inflexible with the current implementation
of the parser. This is a trade off that in a way simplifies the user interaction - the user
do not have to select which columns of data that correspond to specific visualisation
features, such as in Microsoft Excel or Google Sheets.

29



6. DISCUSSION

6.5 User interface design

One of the main components of the user interface is the text editor. There are different
ways and tools for implementing such a text editor on a web page. Using the framework
Ace is one of the most well known methods and one that is well documented which is
the reason it was chosen for this project. While technically powerful, it might not be the
easiest tool for a non-programmer to understand. On the other hand, a large part of the
project is focused on the syntax developed specifically for this application.

Using a text syntax and presenting an empty text editor to the user may not be the
optimal way of attracting users without programming experience. This could initially be
daunting for the users. Different ways to solve this issue are discussed in the following
section.

6.6 Future work

One of the most pressing shortcomings of the current state of the application is the lack
of help for new users. The blank canvas of an empty plain text document is possibly
very intimidating for beginners. This is in contrast to one of the main purposes to the
project, that the application should be easy to use for new users and non-programmers.

Implementation of an "onboarding" experience, where the user is guided in a step-by-
step fashion, to the features of the application, would help many. Similarly, a GUI on
top of the plain text document, is also something that would add immense value to the
application for these user categories. This would allow users to grow with the application
and use more in depth features once they have learned more. Finally, one idea would be
to work with auto completion in combination with a lot of documentation.

For a platform to be relevant, and used by other programmers, it is common to encourage
the building of a community with tools such as wikis, forums and up-to-date documen-
tation. Active participation in further development of the open source software is also
crucial for keeping software useful, especially on the web where technology moves fast.
With our current implementation, updates to the core platform is needed to add new
atoms, so as of now updates is also required for integrating new visualisation methods.

Most of the design and functionality implemented in the platform is based on interviews
with people working with data journalism that have code experience. These people are
one part of the proposed userbase; the part which could successfully implement their
own atoms. There are also the other half of the users which have no coding experience.
Performing thorough usability testing on this part of the users would be needed on further
development of the product. This is to make sure the application can appeal to people
without coding experience.

Another consideration for further development is to build APIs for using the platform
tools (syntax, atoms) with other programming languages. For example, languages such

30



6. DISCUSSION

as C, R and Python are all very popular in the scientific community that uses data for
research, and having the option to interface with those would possibly help winning over
those users to the Marker platform.

6.7 Potential business models

When designing the Marker platform, many considerations were made about what would
make the product bring new value to the market of data visualisation software, based on
what was learned in the interviews. As a consequence of this, a successful project might
yield a product that has market value, with potential to build a business upon.

The Marker platform is open source. This is very core to what makes the product
valuable for different users, as described earlier, but it also makes it hard to sell the
software as the actual code, since it is available for anyone to download and use for
themselves, free of charge. So if the project group would like to build a business upon
the Marker platform, it would have to look for other options than to simply charge for
the software.

One option is to offer more advanced features in a premium version offering. This would
be a closed-source program built on top of Marker, that adds more value to the software,
while still building upon the open source core, and using all the advantages from that.
This could also be extended to offering the software as a service, with premium features
that include customer support, a cloud storage/rendering solution, closed APIs and more.

Another option is to utilize the fact that the project group are experts on using the soft-
ware platform, and use it for consulting purposes. From the interviews with professionals
in the business, we learned that there is a large market for consultants that help other
businesses with data visualisation. By using our software and expertise of the platform,
this would be a potential business.

The project group also discussed a third option, which is to build a marketplace ("App
store") for atoms, similar to how, for example, themes are sold for the WordPress blogging
platform - but for data visualisation purposes. Here individuals wanting a very specific
visualisation may purchase an atom which suits those purposes for a small sum - and the
creators of the app store takes a cut.

31



7. CONCLUSION

7 Conclusion

In this report, implementation of a data visualisation development platform known as
Marker has been discussed. An easy plain text syntax was developed in order to make
the visualisation tool accessible for non-programmers. The syntax offers extended cus-
tomisation for the graphs depending on the type of visual that is used. Parsing of the
syntax and a base of standard graphs were all implemented and the complete platform
was then wrapped as a web application currently hosted on markerapp.meteor.com.
The platform allows third party developers to create and easily integrate additional graph
modules.

The goals of the project were met but further development that adds more features and
enhances the user experience would increase the value of the product. Areas such as
the parser, documentation, user testing and support for external data sets could also be
improved upon in order to increase the value of the platform.

With the simplicity of the syntax in combination with the expandable system design,
Marker has the potential to become a valuable tool for data visualisation in a world
where data is becoming increasingly relevant.

32

markerapp.meteor.com


Bibliography

Cherry, K. (2015). Color psychology, how colors impact moods, feelings, and behav-
iors. Retrieved April 15, 2015, from http : / / psychology. about . com/od /
sensationandperception/a/color_yellow.htm

Felix, S. (2012). How facebook is tracking your internet activity. Business Insider. Re-
trieved April 18, 2015, from http://www.businessinsider.com/this-is-how-
facebook-is-tracking-your-internet-activity-2012-9?IR=T

Findahl, O. (2014). Svenskarana och internet 2014. Stiftelsen för internetinfrastruktur.
Retrieved April 18, 2015, from http://www.soi2014.se/sammanfattning/

Mozilla. (2015). Regular expressions. Online tutorial. Retrieved May 12, 2015, from
https : / / developer .mozilla . org / en / docs /Web / JavaScript /Guide /
Regular_Expressions

Norris, P. (2002). Digital divide, civic engagement, information poverty, and the internet
worldwide (1st ed.). Cambridge University Press. Retrieved April 23, 2015, from
http://www.hks.harvard.edu/fs/pnorris/Books/Digital%20Divide.htm

A grid system for humans. (2015). Home page of software. Retrieved April 20, 2015, from
www.jeet.gs

About Node.js. (2015). Home page of software. Retrieved May 8, 2015, from www.
nodejs.org/about

Data-Driven Documents. (2015). Home page of software. Retrieved May 10, 2015, from
http://d3js.org/

European Union Open Data Portal. (2015). Home page of organisation. Retrieved May
18, 2015, from http://open-data.europa.eu/en/about

Getting the gist of Markdown’s formatting syntax. (2015). Home page of software. Re-
trieved May 10, 2015, from http://daringfireball.net/projects/markdown/
basics

GitHub. (2015). Online search. Retrieved May 10, 2015, from https://github.com/
search?q=stars:%3E1&s=stars&type=Repositories

Infogram is the data visualization product that brings out the best in your data. (2015).
Home page of software. Retrieved May 7, 2015, from www.infogr.am/about-us

33

http://psychology.about.com/od/sensationandperception/a/color_yellow.htm
http://psychology.about.com/od/sensationandperception/a/color_yellow.htm
http://www.businessinsider.com/this-is-how-facebook-is-tracking-your-internet-activity-2012-9?IR=T
http://www.businessinsider.com/this-is-how-facebook-is-tracking-your-internet-activity-2012-9?IR=T
http://www.soi2014.se/sammanfattning/
https://developer.mozilla.org/en/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en/docs/Web/JavaScript/Guide/Regular_Expressions
http://www.hks.harvard.edu/fs/pnorris/Books/Digital%20Divide.htm
www.jeet.gs
www.nodejs.org/about
www.nodejs.org/about
http://d3js.org/
http://open-data.europa.eu/en/about
http://daringfireball.net/projects/markdown/basics
http://daringfireball.net/projects/markdown/basics
https://github.com/search?q=stars:%3E1&s=stars&type=Repositories
https://github.com/search?q=stars:%3E1&s=stars&type=Repositories
www.infogr.am/about-us


BIBLIOGRAPHY

Jade Language Reference. (2015). Home page of software. Retrieved April 20, 2015, from
http://jade-lang.com/reference/

Open Knowledge. (2015). Home page of organisation. Retrieved May 18, 2015, from
https://okfn.org/

Overview. A short introduction to the Processing software and projects from the com-
munity. (2015). Home page of software. Retrieved May 7, 2015, from https://
processing.org/overview/

Parser Generator for JavaScript. (2015). Home page of software. Retrieved May 7, 2015,
from www.pegjs.org

Simple, clean and engaging charts for designers and developers. (2015). Home page of
software. Retrieved May 7, 2015, from www.chartjs.org

Stylus - Expressive, dynamic, robust CSS. (2015). Home page of software. Retrieved April
20, 2015, from https://learnboost.github.io/stylus/

The high performance code editor for the web. (2015). Home page of software. Retrieved
April 20, 2015, from http://ace.c9.io/#nav=about

The Meteor mission. (2015). Home page of software. Retrieved May 8, 2015, from www.
meteor.com/about

What is R? (2015). Home page of software. Retrieved May 8, 2015, from http://www.r-
project.org/about.html

Rogers, Y., Sharp, H., & Preece, J. (2011). Interaction design, beyond human computer
interaction (3rd ed.). Wiley.

Sigaud, P. (2015). Parsing expressions grammars basics. Online tutorial. Retrieved May
12, 2015, from https://github.com/PhilippeSigaud/Pegged/wiki/PEG-
Basics

Tidwell, J. (2010). Designing interfaces (2nd ed.). O’Reilly Media.
w3schools. (2015). Javascript regexp reference. Online tutorial. Retrieved May 2, 2015,

from http://www.w3schools.com/jsref/jsref_obj_regexp.asp

34

http://jade-lang.com/reference/
https://okfn.org/
https://processing.org/overview/
https://processing.org/overview/
www.pegjs.org
www.chartjs.org
https://learnboost.github.io/stylus/
http://ace.c9.io/#nav=about
www.meteor.com/about
www.meteor.com/about
http://www.r-project.org/about.html
http://www.r-project.org/about.html
https://github.com/PhilippeSigaud/Pegged/wiki/PEG-Basics
https://github.com/PhilippeSigaud/Pegged/wiki/PEG-Basics
http://www.w3schools.com/jsref/jsref_obj_regexp.asp


Appendix A: Markdown usage

Figure 6: An example of markdown usage, on the popular online community Reddit.



Appendix B: Barchart atom

var info = {
name: "BarChart",
description: "A barchart by the team"

};

function BarChart (){
var data;

// default properties for the atom
var defaults = {

chart:{
background: "white",
foreground: "#333"

},
lines:{},
highest :{

color:"red"
},
barWidth: 50,
barMargin: 20,
labelSize: 20

};

// called by library
// onRecieveJSON
var init = function (json , options , callback ){

data = json;

if(options ){
// recursively merge defaults with options
$.extend(true , defaults , options );

};

if(callback ){
callback ();

};
};

var draw = function (paper) {
var paperHeight = parseInt(paper.attr(’height ’));

var bars = paper.selectAll(’g’)
.data(data)

bars.enter ()
.append(’rect’)

.attr(’width ’, defaults.barWidth)

.attr(’x’, function (d,i) {
return i * (defaults.barWidth + defaults.barMargin );

})



.attr(’fill’, ’#dd7777 ’)

.attr(’height ’ ,0)

.attr(’y’, paperHeight - defaults.labelSize)

.transition ()

.attr(’height ’, function (d) {
return d.value;

})
.attr(’y’, function (d) {

return paperHeight - d.value - defaults.labelSize *2;
});

bars.enter ()
.append(’text’)

.text(function (d) {
return d.label;

})
.attr(’x’, function (d,i) {

return i * (defaults.barWidth + defaults.barMargin );
})
.attr(’y’, function (d) {

return paperHeight - defaults.labelSize;
})
.attr(’fill’,’black ’)

};

// init:init
return Object.freeze ({

init: init ,
draw: draw ,
getDefaults: function (){ return defaults ;}

});
};

Molecule.registerAtom(BarChart , info);



Appendix C: Marker processing algorithm

// Get parsed text from editor and parse it with peg.js
var parsed = parser.parse(text)
var data = [];
var chartType = "";

for (var i = 0; i < parsed.length; i++) {
if (parsed[i].type == "data") {

if (parsed[i]. value [0][0] && parsed[i].value [0][0] !== "undefined")
{

// 2D array , we need to go deeper into the tree structure
var dataArray = parsed[i].value;

// Loop over all elements/arrays in data array
for (var j = 0; j < dataArray.length; j++) {

var temp = [];

// Insert every data value into temporary array
for (var k = 0; k < dataArray[j]. length; k++) {

temp[k] = dataArray[j][k].value;
}

// Assume label in data[j][0]. Values in rest.
if (temp.length > 2) {

// Insert temp array into data array. Remove first element
and add the rest

data.push({label: temp.shift (), value: temp});
} else {

// Do not create new array , just return the values from temp
array

data.push({label: temp[0], value: temp [1]});
}

}
} else {

// Just get the values straight out of AST tree and insert into
data
for (var j = 0; j < parsed[i]. value.length; j++) {

if (parsed[i]. value[i].type == "file") {
data = "";
data = parsed[i].value [0]. value;
break;

} else if (parsed[i]. value[i].type == ("int" || "string"
|| "double")) {
data[j] = parsed[i].value[j]. value;

}
}

}
} else if (parsed[i].type == "type") {

// Chech what chart type we want to draw
chartType = parsed[i]. value;

}
}



var options = {};

// Collect all options as title , color , label etc and insert to options
array

for (var i = 0; i < parsed.length; i++) {
options[parsed[i].type] = parsed[i]. value;

};
delete options.data;


	Introduction
	Background
	Problem statement
	Purpose
	Scope

	Theory
	Parsing expression grammar
	Regular expressions
	User interface design and usability

	Method
	Interviews with data journalists
	Analysis of data from Swedish administrative authorities
	Analysis of popular data visualisation tools

	System design and implementation
	Syntax design
	Generating a parser with PEG.js
	The JavaScript framework Meteor
	The JavaScript framework D3.js and graphics generation
	Jade, Jeet and Stylus
	Ace - Web code editor

	Results
	Marker syntax
	Marker parser
	Marker graph modules
	Marker visuals
	Marker user interface

	Discussion
	Assessment of outcome
	Implementation choices
	Comparison with other data visualisation tools
	Platform usefulness
	User interface design
	Future work
	Potential business models

	Conclusion
	Bibliography
	Appendix A: Markdown usage
	Appendix B: Barchart atom
	Appendix C: Marker processing algorithm

