
Master Thesis
Deep learning based 2D and 3D joint object detection with
camera and LIDAR for ADAS and AD

Di Xue
Peizheng Yang

Supervisor:
Hossein Nemati <hossein.nemati@huawei.com>,
Samuel Scheidegger <samuel.scheidegger@huawei.com>

Examiner: Alexandre Graell i Amat <alexandre.graell@chalmers.se>
Advisor: Mohammad Hossein Moghaddam <mh.moghaddam@chalmers.se>

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg
Sweden 2020

mailto:dixu@student.chalmers.se
mailto:peizheng@student.chalmers.se

Master’s thesis in Electrical engineering (EENX30)

Deep learning based 2D and 3D joint object detection
with camera and LIDAR for ADAS and AD

Di Xue, Peizheng Yang

Supervisor: Hossein Nemati, Samuel Scheidegger
Examiner: Alexandre Graell i Amat

Advisor: Mohammad Hossein Moghaddam

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden, 2020

Typeset in LATEX
Gothenburg, Sweden 2020

ii

Abstract
In this thesis, we studied the topic of deep learning based object detection in the
context of environment perception for ADAS and AD. The deep learning model we
implemented is a joint 2D-3D detector, and the sensors used are camera and LIDAR.
The 2D detector outputs 2D bounding boxes with category, location and size on the
camera image. The 3D detector takes the information from 2D detection as prior
knowledge, localize the object in 3D space and predict corresponding 3D bounding
box. In our work, we studied both 2D and 3D detectors. In the 2D detector part,
we compared the detection ability of the state-of-art two-stage 2D detector faster R-
CNN using two different backbones (VGG16 and ResNet101 FPN) on the NuScenes
dataset and found that VGG16 backbone outperforms ResNet101 FPN backbone.
We did experiments on how occlusion affects the 2D detectors in the urban traffic
scenes, and found that object with occlusion larger than 20% will be difficult to
detect.

The 3D detector we implemented is a modified version of Frustum ConvNet which
detects the object from the point cloud inside the frustum that is confined by the
2D bounding box. We found that the 3D detector is inherently good at detecting
objects with small size.

We also studied the influence of unfavourable weather condition in our 2D and 3D
detection task. Surprisingly, the LIDAR performance does not decrease in rain scene
or night scene. And the decreased performance of 3D detector in the night scene
mainly comes from the decreased performance of 2D detector.

iii

Acknowledgment
First of all, we would like to express our sincere thanks to Huawei Gothenburg Re-
search Center for providing us with this challenging and excellent project. Thanks
to Hossein Nemati as our industrial supervisor for his guidance to help us control
the overall research . Thanks to Samuel Scheidegger as our mentor in the company
for his professional and patient supervision during the whole research process. Also
sincerely thanks to Peter Svenningsson as our co-worker for his valuable comments
in each meeting and generous technical help. We also want to express our sincere
gratitude to the teachers at campus who give us firm support. Thanks to Alexandre
Graell i Amat as our academic examiner. Thanks to Andreas Buchberger for the
great effort in helping us finding academic examiner. Thanks to Madeleine Persson
and Mohammad Hossein Moghaddam for their great help in both academic and
administrative tasks.

Secondly, we would like to thank Chalmers University of Technology for its academic
resources and environment during our two-year master’s program. The courses and
projects offered by Chalmers University of Technology have helped us accumulate
valuable experience in both theory and practice.

Finally, we want to thank every close friend of us for their kind support during
the whole process, thanks for their encouragement and accompany. Thank them for
sharing our joy and frustration all the way. None mentioned, none forgotten.

Di Xue, Peizheng Yang, Gothenburg, August 2020

iv

v

Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Background . 1
1.2 Limitations . 3
1.3 Thesis Outline . 3

2 Theory & Related work 5
2.1 2D object detection . 5

2.1.1 Two-stage architecture . 5
2.1.2 Faster R-CNN . 6

2.1.2.1 VGG backbone . 7
2.1.2.2 ResNet backbone . 7
2.1.2.3 Feature pyramid network 8
2.1.2.4 Region proposal network 9
2.1.2.5 Proposal target creator and feature map selection . . 11
2.1.2.6 ROI feature extractor: ROI pooling 12
2.1.2.7 ROI feature extractor: ROI align 13
2.1.2.8 Detection head . 14

2.1.3 One-stage architecture . 14
2.2 Point cloud feature learning . 15

2.2.1 PointNet feature extraction 15
2.2.2 Graph-based feature extraction 15
2.2.3 Voxel-based feature extraction 16

2.3 3D object detector using only LIDAR point cloud 16
2.4 3D object detector using both LIDAR and camera 18

2.4.1 Multimodal/multiView feature fusion 18
2.4.2 Camera detector as prior information 18
2.4.3 Frustum ConvNet . 19

2.4.3.1 Entire detection pipeline 20
2.4.3.2 Multi resolution PointNet backbone 22
2.4.3.3 Fully convolutional layer 23

vi

Contents

2.4.3.4 Detection head . 23
2.4.3.5 Loss function . 25

2.5 Literature review summary . 26

3 Implementation & Experiments 27
3.1 2D detector’s architecture details . 27

3.1.1 VGG16 backbone faster R-CNN 28
3.1.2 ResNet101 FPN backbone faster R-CNN 28

3.2 3D detector’s implementation details 30
3.2.1 Multi resolution PointNet backbone 30
3.2.2 Fully convolutional layer . 30
3.2.3 Detection head . 31
3.2.4 Loss function . 32

3.3 Training settings . 32
3.3.1 The training settings of faster R-CNN 32
3.3.2 The training settings of Frustum ConvNet 32

3.4 Evaluation metrics . 33
3.5 2D-3D joint detection process . 33
3.6 Experiments design . 34

3.6.1 Experiments on 2D detector 34
3.6.2 Experiments on 3D detector 34

4 Results 36
4.1 2D detection results . 36

4.1.1 Quantitative results . 36
4.1.1.1 Scene agnostic, visibility agnostic results 36
4.1.1.2 Scene Aware, visibility agnostic results 37
4.1.1.3 Scene agnostic, visibility aware results 38

4.1.2 Qualitative results . 39
4.2 Benchmark 3D detection results . 41

4.2.1 Category agnostic, scene agnostic results 41
4.2.2 Category aware, scene agnostic results 41
4.2.3 Category agnostic, scene aware results 41
4.2.4 Category aware, scene aware results 42

4.3 2D-3D joint detection results . 45
4.3.1 Quantitative results . 45

4.3.1.1 Category agnostic, scene agnostic results 45
4.3.1.2 Category aware, scene agnostic results 45
4.3.1.3 Category agnostic, scene aware results 46
4.3.1.4 Category aware, scene aware results 47

4.3.2 Qualitative results . 52

5 Discussion 55
5.1 The performance of 2D detector . 55
5.2 The benchmark performance of 3D detector 57

5.2.1 AP, ATE, ASE, AOE in all scenes 57
5.2.2 AP in different scenes . 59

vii

Contents

5.3 Joint 2D-3D detection performance 63
5.3.1 AP, ATE, ASE, AOE in all scenes 63
5.3.2 AP in different scenes . 64

6 Conclusion & Future Work 65
6.1 Conclusion . 65
6.2 Future Work . 66

Bibliography 67

viii

List of Figures

1.1 Autonomous System, illustration inspired by [1–3] 2

2.1 faster R-CNN structure . 7
2.2 VGG16 structure . 7
2.3 Residual block of 3 cascaded convolutional layers 8
2.4 ResNet structure . 8
2.5 Feature pyramid network structure 9
2.6 RPN, ROI and detection head for the single feature map case. 10
2.7 RPN, ROI and detection head for the multiple feature maps case. . 11
2.8 ROI pooling first step . 12
2.9 ROI align bilinear interpolation . 14
2.10 Illustration of Frustum ConvNet . 20
2.11 Entire 2D-3D joint detection pipeline work flow 21
2.12 The rotation of the point cloud from camera coordinate to frustum

coordinate . 21
2.13 PointNet backbone illustration for a single resolution 22
2.14 The structure of fully convolutional layer and detection head in Frus-

tum ConvNet [4]. 24

3.1 ResNet101 FPN backbone structure 29
3.2 The evaluation process of 3D detector. 34

4.1 faster R-CNN 2D bounding boxes output illustration for different
weather and lightning conditions . 40

4.2 Benchmark AP, ATE, ASE, AOE for each category, each scene. . . . 43
4.2 Benchmark AP, ATE, ASE, AOE for each category, each scene. . . . 44
4.3 AP for each category, each scene. 48
4.4 ATE for each category, each scene. 49
4.5 ASE for each category, each scene. 50
4.6 AOE for each category, each scene. 51
4.7 The qualitative results of normal scene. 52
4.8 The qualitative results of rain scene. 53
4.9 The qualitative results of night scene. 54

5.1 Scatter plot of the NuScenes evaluation metrics of benchmark 3D
detection results. 58

ix

List of Figures

5.2 Scatter plot of the category percentage and each category’s AP of
benchmark 3D detection results. 59

5.3 Scatter plot of the category average volume and each category’s AP
of benchmark 3D detection results. 59

5.4 LIDAR points of road surface in normal and rain scene. 61
5.4 LIDAR points of road surface in normal and rain scene. 62
5.5 Scatter plot of AP decay in joint detection and 2D AP for each category 64

x

List of Tables

2.1 The data used and its source sensor 20

3.1 Parameters of the VGG16 backbone 28
3.2 Configuration of multi-resolution PointNet backbone 30
3.3 The parameters of fully convolutional layer 30
3.4 Frustum ConvNet detection head orientation label definition 31
3.5 Mean width, length, height of each detection category by calculating

through all ground-truth in NuScenes dataset 31
3.6 Training configuration of both faster R-CNN with different backbones. 32
3.7 Training configuration of Frustum ConvNet. 32
3.8 Definition of visibility level in NuScenes dataset 34

4.1 mAP of faster R-CNN with VGG16 backbone and ResNet101 FPN
backbone . 36

4.2 AP for each category of both 2D detectors 37
4.3 mAP for normal, rain and night scene of both 2D detectors 37
4.4 AP for each category in normal, rain and night scene 37
4.5 mAP for different visibility of both 2D detectors 38
4.6 AP for each category in different visibility 39
4.7 Benchmark 3D detector results: all scenes, all categories 41
4.8 AP, ATE, ASE, AOE on each category 41
4.9 mAP, mATE, mASE, mAOE on normal, rain, night scenes 42
4.10 The four NuScenes metrics of 2D-3D joint detection results on all

scenes, all categories. 45
4.11 AP, ATE, ASE, AOE on all categories for both faster R-CNN with

different backbones . 46
4.12 AP, ATE, ASE, AOE on normal, rain, night scenes of joint detection

for both versions of 2D detectors. 47

5.1 AP and mAP of two faster R-CNN with different backbones under
different scenes. 63

5.2 Pearson coefficient of AP decay and 2D AP of each scene. 64

xi

1
Introduction

This thesis is carried out for the object detection in Advanced driver-assistance sys-
tems (ADAS) and Autonomous Driving (AD) research team under Huawei Gothen-
burg Research Center.

1.1 Background
We are in an era of automation, from industrial production to daily life, more and
more automation products are playing an increasingly important role in different
positions. Broadly speaking, autonomous robots include all machines that perform
behaviors or tasks with a high degree of autonomy. Products such as indoor auto-
matic vacuum cleaners and manufacturing automatic processing robots have been
developed to a mature stage and now are widely used in modern households and
industries. However, in transportation, one of the most important aspects of daily
life, the autonomous level still has great potential to be improved. Passenger cars
that are closely related to life are still not available in AD context, and the last-mile
delivery nowadays still relies on manual driving. McKinsey [5] has estimated that
we would soon inhabit a world where more than 80% of the parcel delivery will
have autonomous vehicles (AV) to complete the last mile of delivery. As a part of
the autonomous family, AD is an active research area that attracts researchers from
different backgrounds to research actively. Considering the room for improvement
and massive on-going research, the future of AD is infinite.

AD [6] refers to intelligent vehicles that can completely replace the driver to make de-
cisions in a narrow sense. Broadly speaking, six levels of AD has been defined by The
Society of Automotive Engineers (SAE). The second level is also called advanced
driver-assistance systems (ADAS) and is the highest level of mature automotive
products on the market. The researches on ADAS and AD are often inseparable.
They share many technologies and the common purpose is to make driving safer.
Most traffic accidents are caused by human factors. To reduce or eliminate unsafe
human factors, ADAS and AD need to assist or substitute drivers to make decisions.

A complete autonomous system for AD is illustrated as Figure 1.1. The sensors
sample data from environment. The decision making part, consisting of three mod-
ules, perception, planning, and control, takes the sensor data as input and decides
which actions will be taken. The command of actions are sent to the actuators of
the vehicle to execute.

1

1. Introduction

Perception

Planning

Sensors
Ve

hi
cl
e

Control

intended
actions

Environment
Perception

Localization

surrounding objects
and vehicle pose

Acuators command

data

Mission Planning

Behaviour Planning

Motion Planning

Path Tracking

Trajectory Tracking

Figure 1.1: Autonomous System, illustration inspired by [1–3]

The sensors that currently accomplish this task are mainly camera, Light detection
and ranging sensor (LIDAR), and Radio detection and ranging sensor (radar) [7, 8].
These three sensors have different characteristics. Camera is of low cost and has
high resolution but is greatly affected by illumination. LIDAR and radar can di-
rectly obtain distance information but the maximum distance is limited compared
with a camera. LIDAR is expensive and more weather-sensitive while radar is the
most stable one to weather factors but also returns the most sparse point cloud and
in most cases no height information. To be more specific, there are 3D radar which
can return height information but they are relatively rare and quite expensive. The
three sensors are complementary to each other. Some AD dataset [9] install all three
types of sensors when collecting data and call this combination the full sensor suite
of a real self-driving car.

After the sensor completes the original data collection, a detection algorithm is
needed to process the data from sensor and output the detection results. Perception
is the first step for decision making. It means the ability of an autonomous system
to collect information and extract relevant knowledge from the environment. The
relevant knowledge includes two aspects: the semantic meaning of the surrounding
environment and the position of the vehicle with respect to the environment. The
perceived knowledge provides the evidence for planning, which refers to the process
of making purposeful decisions that safely brings the vehicle from a start location
to a goal location while avoiding obstacles and optimizing over designed heuristics.
The control module converts the intended actions of a vehicle to the real actions.
The main purpose of this module is to provide the necessary hardware-level com-
mands so that the actuators can generate the desired motions.

Our work only focuses on the environment perception. To be more specific, our

2

1. Introduction

task is object detection which is part of the environment perception. The nature
of object detection is to build a learning model that learns the features from the
input data. The traditional methods use hand-crafted methods to generate features
and use shallow trainable structures [10–14]. In recent years, thanks to the develop-
ment of computer hardware, object detection using deep learning [15] have become
increasingly popular. More and more powerful object detection algorithms have
been developed to extract deeper and richer semantics from the original data and
achieve the detection effect that traditional methods can not achieve. This thesis
also chooses deep learning as the approach to conduct object detection.

Deep learning methods are hungry of large-scale data. The collection and annotation
in the autonomous driving usually takes great labour. The open-source database
with a considerable amount of data makes the deep learning research much easier.
Currently popular published databases include Lyft Level 5 Dataset [16], KITTI
dataset [17], ApolloScape Dataset [18] from Baidu, Waymo open dataset [19] and
NuScenes dataset [9]. The database that we use in this thesis is NuScenes dataset
since it is the newest and the first dataset that carries the full autonomous vehicle
sensor suite, which is to say, it contains data from all three main ADAS and AD
sensors, i.e., camera, LIDAR and radar.

In this thesis we investigated different networks that utilize one or multiple sensors
among camera, LIDAR and radar, which results in a literature review of related
work in both 2D and 3D object detection. We did exploration on NuScenes dataset
and implemented an object detection architecture utilizing its data and examine the
performance.

1.2 Limitations
Since NuScenes dataset is a new dataset, most of the state-of-art object detection
algorithms have not been verified on it. Our investigation for appropriate algorithm
does not include implementation and verification of every investigated algorithm on
NuScenes dataset.

Moreover, although the hyperparameters in our implemented network are manu-
ally tuned, a greedy search that goes through every hyperparameter possibility and
pushes the performance of the network to the maximum is not involved due to time
and resource limitation.

1.3 Thesis Outline
We structure this thesis report to show all the work in the thesis project. Inves-
tigation on different object detection methods which results in a literature review
and a detailed description for selected algorithm are provided in Chapter 2. Chap-
ter 3 introduces the implementation and experiment details. Chapter 4 shows the
quantitative and qualitative results of the algorithms. Chapter 5 gives discussion.

3

1. Introduction

Chapter 6 offers final conclusion and insights for future works.

4

2
Theory & Related work

Object detection is widely used in ADAS and AD and many other research fields
such as biomedical imaging. The definition of object detection is to detect the cat-
egory and location of each instance giving one environment sample data. Location
is commonly represented by a rectangular bounding box that is drawn around the
instance and contains every part of it. The input data for object detection can be
image, commonly RGB image, from camera, point cloud from LIDAR, point cloud
from radar or different data from different sensors fusing together. Object detection
can be divided into 2D object detection [14, 20–27] and 3D object detection [4, 28–
42]. Notably, both 2D object detection and 3D object detection may leverage data
fusion for a better performance. 2D object detection means the bounding box is 2D
and drawn on a 2D plane, commonly on an image from camera, while 3D object
detection means the bounding box is 3D and drawn in 3D space. Some work [43]
uses polylines instead of bounding boxes to better represent the shape.

2.1 2D object detection
Architectures with region proposal stage are called two-stage detector, which means
a region is firstly detected as foreground or background and then foreground regions
are fed into the later structure to do category-wise classification. On the other hand,
one-stage detector does not have region proposal part in its architecture.

2.1.1 Two-stage architecture
Rich feature hierarchies convolutional neural network (R-CNN) [20], the first up-
dated version of R-CNN (fast R-CNN) [21], the second updated version of R-CNN
(faster R-CNN) [22] and the third updated version of R-CNN which can do both
object detection and semantic segmentation (mask R-CNN) [24] are a series of two-
stage objection architecture. We will introduce faster R-CNN in detail.

In the first ten years of 21st century, feature extraction is mainly based on hand-
crafted techniques such as scale-invariant feature transform (SIFT) [10] and his-
togram of oriented gradients (HOG) [11], R-CNN [20] is a breakthrough outperform-
ing these by using deep convolutional neural networks (CNN) as feature extractor
which shows a stronger feature representation capability.

5

2. Theory & Related work

The architecture of R-CNN composites 3 parts. The first part generates category-
independent region proposals which tells the architecture where to look at for ob-
jects. The second part is a deep CNN that extracts a fixed-length feature vector
from each region proposal. The third part is a set of class-specific linear support
vector machines (SVM) which are used for classification. The region proposals are
generated using selective search, which intuitively is using the color, texture, com-
position and hierarchy to segment the image and select regions of interest (ROI). All
candidate regions are then warped into the same size in order to be able to feed to-
gether into the following CNN. To solve localization error, a simple linear regression
model between selective region proposals and corresponding ground truth bounding
boxes are trained, which is proved to be very useful in improving performance.

Based on R-CNN, fast R-CNN [21] applies the deep CNN feature extractor on the
whole image instead of on each region proposal to reduce repetitive convolutional
computation. It also proposes ROI pooling to resize candidate region proposals and
puts location regression and category classification together by using two parallel
fully connected layers (FC).

Faster R-CNN [22] proposes region proposal network (RPN) and the concept of
anchor to replace selective search and generate region proposals. This helps to dra-
matically reduce the computation cost in region proposal generation and further
improves the speed and performance.

Feature pyramid network (FPN) [23] generates a series of feature maps representing
different resolutions. FPN expands the scope of feature extractor by using multiple
feature maps in parallel. Big size objects are detected from low resolution feature
maps while small size objects are detected from high-resolution feature maps. [23]
and [30] prove that FPN shows better detection performance in small objects. Mask
R-CNN [24] absorbs FPN and proposes ROI align to better localize ROIs in order
to improve bounding box localization accuracy. It also add a semantic segmentation
branch based on faster R-CNN architecture to do object detection and semantic
segmentation simultaneously.

2.1.2 Faster R-CNN
The diagram of faster R-CNN is illustrated in Figure 2.1. Given an input image,
the backbone consisting many convolutional layers generates one feature map or
multiple feature maps of different scales. Two representative backbones are very
deep convolutional networks for large-scale image recognition (VGG) [44] backbone
and deep residual neural networks for image recognition (ResNet) [45] backbone.
Multiple feature maps can be achieved by adding the feature pyramid structure to
the backbone network. RPN takes in the feature map(s) and outputs several pro-
posals. A proposal means a rough bounding box including any object of interest in
the detection task and does not tell the specific category of the object. The ROI

6

2. Theory & Related work

feature extractor selects the feature inside the proposals from the feature map. The
mainstream ROI feature extractors are ROI pooling and ROI align. The selected
ROI feature is finally sent to the detection head to classify the category and further
refine the localization of each proposal.

BackBone Region Proposal
Network

RGB image
3xHxW

one or multiple
feature maps

RoI feature
Extractor

proposals

RoI featureDetection Head

label

box location

Figure 2.1: faster R-CNN structure

2.1.2.1 VGG backbone

VGG [44] includes a series of same structure but different depth image recognition
networks which take an image of size 224×224×3 as input and predict its category.
VGG family includes VGG11, VGG13, VGG16 and VGG19, with different number
of weight layers. We take VGG16 as illustration example, as shown in Figure 2.2.
A set of cascaded convolutional layers and max-pool layers extracts the features
from the input image and finally generates one feature map. All the convolutional
kernels are of size 3× 3 and the output feature depth, i.e., number of convolutional
kernels, are gradually increased from 64 to 512 as the network forwards deeper to
get richer semantic information. The VGG backbone that we use in faster R-CNN
architecture consists of only the layers before the last max-pooling layer.

co
nv

3x
3,

 6
4

co
nv

3x
3,

 6
4

co
nv

3x
3,

 1
28

co
nv

3x
3,

 1
28

co
nv

3x
3,

 2
56

co
nv

3x
3,

 2
56

co
nv

3x
3,

 2
56

co
nv

3x
3,

 5
12

co
nv

3x
3,

 5
12

co
nv

3x
3,

 5
12

m
ax

po
ol

m
ax

po
ol

m
ax

po
ol

images

VGG BackBone

m
ax

po
ol

co
nv

3x
3,

 5
12

co
nv

3x
3,

 5
12

co
nv

3x
3,

 5
12

m
ax

po
ol

FC
 4

09
6

FC
 4

09
6

FC
 1

02
4

So
ftm

ax prob
map

Figure 2.2: VGG16 structure. The layers in the blue box make up the VGG16
backbone.

2.1.2.2 ResNet backbone

ResNet [45] is another family of image recognition networks. The smallest unit
block of ResNet which is called residual block, as shown in Figure 2.3, consists of
three cascaded convolutional layers and one skip layer. The number of cascaded
convolutional layers are usually 2 or 3. The skip layer takes the same input as the
cascaded convolutional layers, and it can be either a convolutional kernel of size
1× 1 or simply pass the identity map of the input, depending on whether the depth
dimension of the input and output of the cascaded convolutional layers match or
not. The outputs of both paths are element-wise added as the final output of this

7

2. Theory & Related work

basic block.

conv1x1

conv3x3

conv1x1

conv1x1

Figure 2.3: Residual block of 3 cascaded convolutional layers

The complete structure of a ResNet is illustrated in Figure 2.4. The initial 7 × 7
convolutional kernel and max-pooling layer is common for all members in ResNet
family. The number of the following residue blocks varies among different ResNets.
The network outputs the probability of each category. The ResNet backbone for
faster R-CNN only includes the parts within the blue box.

conv7x7, 64image Resudule blockmaxpool Resudule block... avgpool FC 1000 prob map

ResNet backbone

Figure 2.4: ResNet structure. The layers within the blue box make up the ResNet
backbone.

2.1.2.3 Feature pyramid network

Feature pyramid network (FPN) [23] is a structure which can be applied on the
backbone to generate several feature maps of different resolutions. As illustrated in
Figure 2.5, the deepest feature from the backbone, which is denoted as feature map
k-1, is the feature map with the coarsest resolution. The coarsest feature map is
up-sampled and added with the second deepest feature from the backbone to form
the finer feature map which is denoted as feature map k. The other feature maps
are formed in the same way.

Using multiple feature maps has the advantage that objects with different sizes can
be well represented by these feature maps with different resolutions. As the exper-
iments shown in [23], FPN based faster R-CNN can achieve higher mean average
precision (mAP) than the single feature map faster R-CNN.

8

2. Theory & Related work

input image

+

+

feature map k-1

feature map k

feature map
k+1

Figure 2.5: Feature pyramid network structure

2.1.2.4 Region proposal network

After the feature map is extracted by the backbone feature extractor, it is sent to
region proposal network (RPN). Faster R-CNN proposed the concept of anchor in
RPN. Anchor means a set of multiple rectangle boxes with fixed sizes that traverse
every pixel on the feature map. From another perspective, anchor borrows the
concept of exhaustive method and will hopefully enclose the target object feature
representation inside one of the considerable amount of anchors. At the beginning,
a 3× 3, stride 1 convolution kernel traverses through each pixel on the feature map
to perform a semantic space transformation. Then the forward path is divided into
two branches. Let k denote the number of anchors. As in Figure 2.6, the left
classification branch outputs a tensor of shape 2×k for each pixel, which represents
the probability of background or foreground, i.e., probability of enclosing an object
of interest or not, for each anchor. The other localization regression branch outputs
a tensor of shape 4×k for each pixel to predict the variable needed for characterizing
the adjusted location of each anchor at each pixel. The adjusted location of each
anchor are not directly predicted, instead, the relative offset value from anchor center
(xa, ya) and anchor width and height (wa, ha) are predicted. The localization output
is

tx = x− xa
wa

, ty = y − ya
ha

(2.1a)

tw = log(w/wa), th = log(h/ha), (2.1b)

where (tx, ty, tw, th) represent the offset value from anchor center and anchor size
respectively.

In RPN the loss function

LRPN = Lcls + Lreg (2.2)

is composed by loss from both classification branch and localization branch.

Under training mode, anchor target creator is responsible for selecting a subset of
anchors from the original considerable amount of anchors in order to compute the
classification loss and the regression loss. Anchor target creator takes all original

9

2. Theory & Related work

anchors and ground-truth bounding boxes as input. It selects some anchors that
have an intersection over union (IoU) higher than a threshold with any ground-
truth bounding box as positive samples and assigns foreground label 1 to them. It
also selects some anchors that have an IoU lower than a threshold with all ground-
truth bounding boxes as negative samples and assigns background label 0 to them.
Cross-entropy loss is used for classification and smooth l1 loss is used for regression.
Notably, when computing classification loss, both positive samples and negative
samples are taken into account while when computing regression loss, only positive
samples contribute and negative samples are ignored.

feature
map

conv3x3, 512

conv3x3, 36(2x18) conv3x3, 72(4x18)

ProposalCreator rpn_loss

ProposalTargetCreator

AnchorTarget
Creator

ROIs

anchor

gt_bboxes

ROI Pooling

FC 4096

FC 4096

FC 11 FC 44

roi_losssuppress

sample
ROIs

label loc

gt_loc gt_label

Region
proposal
network

ROI
detection

head

Figure 2.6: RPN, ROI and detection head for the single feature map case. The
data flow in the red arrow does not have backward propagation. Illustration style
refers to [46].

In the case of multi-scale feature maps, they are processed in parallel using the same
RPN, as Figure 2.7. In other words, the RPNs chained after each feature map share

10

2. Theory & Related work

weights during training. Each feature map will generate its own ROIs.

feature
map P5

feature
map P4

feature
map P6

feature
map P3

feature
map P2

Region proposal
Network

Region proposal
Network

Region proposal
Network

Region proposal
Network

Region proposal
Network

Proposal Target
Creator

Select Feature
Map Pk

Sampled
RoIs

ROI AlignFC 1024FC 1024

FC 11

FC 44

roi_loss

suppress
label

loc

gt_label, gt_loc detection
head

Proposal
Creator RoIs

gt_bboxes

Figure 2.7: RPN, ROI and detection head for the multiple feature maps case.

2.1.2.5 Proposal target creator and feature map selection

Under training mode, to help the learning process and also accelerate the training
speed, proposal target creator is used to select a subset of the proposals generated
from RPN and pass them to the next step. Taken all proposals, i.e., ROIs, and
ground-truth bounding boxes as input, proposal target creator selects some pro-
posals that have an IoU higher than Tpositive with any ground-truth bounding box
as positive samples and selects some proposals that have an IoU that equals to or
lower than Tnegative as negative samples. The ratio of positive sample number and
negative sample number is set as 1 : 3 since there is always more background than
foreground in a common image. Under inference mode, there will be no proposal tar-
get creator and all proposals generated from RPN are passed to ROI detection head.

For multiple feature maps, proposal target creator selects the ROIs from all the
feature maps and outputs the proposals. Given a proposal, assuming the ROI on
the image has width equal to w and height equal to h,

k = 4 + log2(
√
wh/224) (2.3)

gives the relationship between the size of an ROI and the corresponding resolution
feature map that it should use, k represents the appropriate level of feature map
that should be chosen.

11

2. Theory & Related work

2.1.2.6 ROI feature extractor: ROI pooling

The selected proposals from proposal target creator under training mode or all pro-
posals coming from RPN under inference mode need to be sent to ROI pooling,
because each proposal corresponds to an area of feature map with a different size.
ROI pooling is used to pool all these areas of different sizes to the same scale in
order to enable weights sharing during training. Firstly, the ROIs whose size are
originally represented in the image scale, i.e., 563 × 1000, are scaled to the feature
map size, i.e., 36 × 63, and the float coordinates which are caused by scaling are
transformed to integer, as illustrated in Figure 2.8. Next, the feature map inside the
integer-size ROI is cropped from the feature map. Given pooled feature is initialized
with zeros as the given pooled size (wpooled, hpooled). Then each patch of the pooled
feature retrieves the max value within its neighbourhood from the feature inside the
integer-size ROI. The detailed ROI pooling operation is described in Algorithm 1.

In our implementation, the pooled feature of each proposal is set as 7×7. Finally, as
shown in Figure 2.6, the pooled ROI features are sent to the detection head, which
is composed by two FC and two branches for category classification and predicted
bounding boxes localization regression. The loss function of classification and regres-
sion is same as in RPN. Cross-entropy loss is used for classification and smooth l1
loss is used for regression.In the inference mode, non-maximum suppression (NMS)
will be applied for all the predicted bounding boxes to get the final 2D predictions.

Feature Map RoI (float) int(RoI)

Figure 2.8: ROI pooling first step. The ROIs are scaled to feature map and the
features in the integer blue box are used to generate pooled feature.

12

2. Theory & Related work

Algorithm 1 Different size ROI sharing training weights: ROI pooling
1: function ROI pooling(ROI, featmap, wpooled, hpooled)
2: xmin, ymin, xmax, ymax ← int(ROI)
3: Rcropped ← featmap[ymin : ymax, xmin : xmax]
4: wcropped ← xmax − xmin + 1
5: hcropped ← ymax − ymin + 1
6: sw, sh ← wcropped/wpooled, hcropped/hpooled
7: P = 0[hcropped × wcropped]
8: for i = 0→ hpooled − 1 do
9: for j = 0→ wpooled − 1 do

10: xmin ← jsw
11: xmax ← (j + 1)sw
12: ymin ← isw
13: ymax ← (i+ 1)sw
14: if xmin == xmax or ymin == ymax then
15: continue
16: else
17: P[i, j] = max(Rcropped[ymin : ymax, xmin : xmax])
18: end if
19: end for
20: end for
21: return P
22: end function

2.1.2.7 ROI feature extractor: ROI align

Updated and improved from ROI pooling, ROI align [24] neither rounds the float
ROI sizes after scaling to feature map to integer, nor round the result of after-scale
ROI divided by given pooled size to integer. By eliminating these two approxima-
tion step, the error in localization decreases. Given the example of desired pooled
feature of shape 2 × 2 in Figure 2.9, in each bin, there are four sampling points.
ROI align computes the value of each sampling point by bilinear interpolation from
the surrounding four feature pixels. And the max value of each sampling point is
selected as the pooled feature.

13

2. Theory & Related work

Feature Map RoI (float)

Figure 2.9: ROI align. The gray grid represents each pixel in the feature map.
The gray dot represents the center location of each pixel. The figure illustrates the
pooled feature of shape 2× 2.

2.1.2.8 Detection head

The detection head in faster R-CNN consists of two FC to process the ROI extracted
feature. In the VGG16 backbone version, both FC have an output dimension of
4096. The initial weights of the two FC are taken from the same VGG16 pre-
trained model which provides the initial weights for the feature extractor. In the
ResNet101 FPN backbone version, both FC have an output dimension of 1024, in
which the parameters are initialized randomly. At the last step, two branches are
diverged to do the category classification and box localization regression, similar as
in RPN. The predicted localization variables are the offset of the ROI instead of the
direct corner coordinates.

2.1.3 One-stage architecture
YOLO [25] is a representative work of one-stage 2D object detection architecture.
The object detection problem is framed as a regression problem here so that one
single CNN can be used to predict bounding boxes and class probabilities directly
from image.

The pipeline of YOLO is that, an input image is divided into grids, each grid cell
predicts bounding boxes and corresponding confidence scores. To be more specific,
if no object exists in the cell, the confidence scores should be 0. Otherwise the con-
fidence score is supposed to equal IoU between the predicted bounding box and the
ground truth bounding box. At the same time, each grid cell also predicts classifi-
cation score for each category. [25] also tried to combine YOLO with fast R-CNN
and the results show a boost in accuracy because YOLO can distinguish background
better. But because fast R-CNN runs much slower than YOLO, this combination
makes the detection runs much slower than original YOLO.

The successive version of YOLO, YOLOv2 [26], modifies the backbone, imports
the concept of anchor box and uses the offset from anchor boxes to train localiza-

14

2. Theory & Related work

tion. The number of bounding boxes that each grid cell predicts also increases to
enrich prediction results. YOLOv3 [27] supports multi-scale prediction and uses its
original darknet-53 as backbone. The softmax classifier has been replaced by mul-
tiple independent binary logistic classifier. The performance for small objects has
been improved compared to YOLOv2.

Thanks to its one-stage design, YOLO can run really fast at 45 fps in real time.
Compared with fast R-CNN, YOLO has lower detection accuracy. YOLO shows
that it makes more localization error which is its main source of error, especially in
small objects, but it is very good at eliminating false positives on background.

Essentially, one-stage 2D detector provides a significantly faster inference speed at
the expense of partial accuracy loss. Currently, only the speed of one-stage detector
can be regarded as real time in the context of commercial use. The reason why
two-stage 2D detector has an obvious performance accuracy boost is RPN. RPN
needs more computation budget but at the same time reduces localization error.

2.2 Point cloud feature learning
The feature extractor in image object detection is usually a CNN. The convolution
operation utilizes the fact that the pixels are arranged regularly in the 2D plane.
The input feature of image object detection only contains the RGB feature and not
include each pixel’s position in the 2D plane. However, in point cloud, the naive
convolution operation on the input points fail due to the points are not regularly
distributed as the 2D image pixel. Thus, a special architecture is needed for the
point cloud feature learning.

2.2.1 PointNet feature extraction
PointNet [47] is an architecture specialized for point cloud learning. The input
of PointNet is a single point characterized by its spatial coordinates. For LIDAR
point, reflective intensity can also be one of the input dimension. The input feature
is processed by several FC layers which output a high dimensional tensor with rich
feature of each point. The FC layer is shared by each point of the input point
cloud. This set of FC layers is called multilayer perceptron (MLP). An element wise
max operation will output the max elements of each dimension along all the points.
In many point cloud object detection architectures, PointNet is widely used as the
backbone network that extracts the features of a pre-confined local region.

2.2.2 Graph-based feature extraction
A graph is composed of a set of vertices and a set of unordered pairs of the edges.
Dynamic Graph CNN (DGCNN) [41] is one of the graph-based feature extraction
method. This method proposes edge function and edge convolution. The edge
function explicitly concatenates the global feature structure and local structure of
each point. MLP is also used to get high dimensional feature. The global feature is

15

2. Theory & Related work

extracted the same way as PointNet [47], the local feature is captured from K-nearest
neighbourhood of each point in the feature space. Note that the the K-nearest
neighbourhood is updated from the feature space after each layer of MLP.

2.2.3 Voxel-based feature extraction
Another point cloud learning method is based on voxels. The representative work is
VoxelNet [32]. The points are grouped by a set of regularly-aligned 3D cubic voxels,
and the feature from each voxel is extracted by MLP layer similar as PointNet. After
this, borrowing the idea from 2D convolution, 3D convolution can further extract
higher level feature from each voxel with its voxel-level feature.

Generally speaking, PointNet has the highest simplicity and also a strong repre-
sentation ability. Point-wise MLP as the key component of PointNet is also used
in graph-based and voxel-based feature extraction methods. Voxel-based 3D con-
volutional neural network usually has high computational cost since it adds one
dimension to 2D convolution. Graph-based feature extraction utilizes the concept
of PointNet in its architecture and becomes more complex. It is inherently powerful
to handle irregular data and attracts increasing attention as a newer network in
recent years.

2.3 3D object detector using only LIDAR point
cloud

Similar to the 2D object detection architecture, 3D object detection architecture
can also be divided into one-stage and two-stage. Moreover, like 2D object detector
needs to extract features from image pixels, 3D object detector using LIDAR point
cloud also needs feature extraction method in Chapter 2.2 to do 3D representation.

LaserNet [34] is a one-stage detector which only takes 3D LIDAR data as input and
the format is raw range view data, which is not in Cartesian coordinates system but
instead in range-angle system. Especially, for the first time, LaserNet proposes to
predict a soft localization which models the distribution of bounding boxes’ corners
instead of just predicting single fixed values to localize the bounding boxes. Laser-
Net [34] proves that predicting a probability distribution of 3D boxes is very vital
to the performance. The pipeline is that, firstly the range view is arranged into
a pseudo image map which has 5 channels that are range, height, intensity, flag,
and azimuth angle. Then a fully convolutional neural network is applied to predict
classification and soft box estimation for each point. Finally mean shift clustering
and adaptive NMS are applied to get the final result. Notably, LaserNet does not
consider offset to ground and vehicle height, the 3D bounding boxes only have 4
corners and are essentially bird’s eye view (BEV) 2D bounding boxes. The class
imbalance problem is handled by using focal loss.

PointPillars [36] is another one-stage detector which only uses LIDAR point cloud

16

2. Theory & Related work

data. The pipeline of PointPillars is that, firstly divide the 3D point cloud space
into grids in BEV, i.e., infinite length in vertical so that no need to tune cell size in
vertical. Secondly count the points inside each pillar and add decorations to make
each point have 9 dimensions. Thirdly extract features from pillars and generate a
pseudo image which is the feature map of all pillars, then a 2D CNN is applied to
proceed the pseudo image and finally the processing result is fed into a SSD [48]
detection head.

MEGVII [37] is a voxel-based two-stage detector for 3D object detection. The input
is only 3D LIDAR point cloud. The main contribution of MEGVII is its way to
deal with imbalance issue on datasets. Firstly a class-balanced sampling strategy
handles extreme imbalance issue by duplicating samples of one category according
to its fraction among all samples, then randomly selecting and pasting ground-truth
boxes of different classes using different magnitude on the ground plane. Secondly
a multi-group head network is designed to make categories of similar shapes or
sizes could benefit from each other, and categories of different shapes or sizes stop
interfere with each other. After the multi-grouping, the class is reduced from 10 to 6.

Sparse-to-Dense (STD) [38] 3D Object Detector is a two-stage detector that utilizes
both PointNet and voxelized method, and it generates region proposals in a multi-
step fashion. PointNet++ [49] serves as the backbone and generates preliminary
class score and features of each point. The spherical anchors are used to generate
the initial proposals. The proposal predicted by each anchor is based on the points
in the spherical receptive field. NMS is then applied to remove the redundant ones
among candidate anchors. With selected anchors and features output from the back-
bone, 3D points within anchors is fed into a PointNet [47] to predict classification
scores, regression offsets and orientations. By adding the offsets and orientation to
the predefined anchors, a more refined proposal can be generated. Another NMS is
used based on classification scores to eliminate redundant proposals one more time
to get the filtered proposals. At the second stage, the feature of each proposal is
from voxelization and voxel feature encoding (VFE) layer. The features are fed to
two branches, IoU estimation branch and box prediction branch. Box prediction
branch generates classification and regression. IoU estimation branch plays a sup-
portive role and predicts the IoU value of each predicted box. The predicted IoU
value is multiplied by the classification score to do NMS to get the final bounding
boxes.

PointRGCN [39] is a two-stage 3D detector. The first stage RPN takes off-the-
shelf methods to generate high-recall proposals. The focus of [39] is its second stage
named refine proposals. In the second stage, residual graph convolutional neural
network (R-GCN) is used to extract local features from each proposals. Further,
to refine all proposals better, all proposals are put in a graph representation where
each node is a proposal, EdgeConv [41] is then applied to get global feature. Both
local and global feature contributes to the box prediction.

VoteNet [40] is a one-stage detector takes the point cloud of a scene which con-

17

2. Theory & Related work

tains multiple objects and backgrounds and outputs the 3D bounding box of each
object. A backbone , which is PointNet++ in [40], has input N×3, subsamples and
learns the feature of the selected points, and outputs M × (3 + C). Voting module
is MLP which learns the xyz offset of each point to its object center. A well-learned
voting module will increase the cohesion of the points which belongs to the same
object. Then the points after vote layer are clustered and each cluster is meant to
represent one object. Each cluster is finally classified and predict bounding box.

Part-aware and Part-aggregation Network [42] is another two-stage architecture.
The entire pipeline is mostly based on voxelization. In the part-aware stage, the
point cloud is voxelized and fed to a sparse 3D convolutional encoder and decoder
network to generate features of each point. In the part-aggregation stage, each 3D
proposal is divided into a regular shape of voxels (eg. 14 × 14 × 14). The points
with features that lies inside each voxel is voxel-wised maxpooled and voxel-wised
average pooled. The output from the pooling is further sent to a sparse convolution
layer to get the 3D box prediction.

2.4 3D object detector using both LIDAR and
camera

Besides models that only utilize point cloud, there are researches focusing on fusing
camera data and LIDAR data together to take advantage of mature on-board digital
cameras and off-the-shelf image-based computer vision techniques.

2.4.1 Multimodal/multiView feature fusion
One type of the detectors fuses the features from different sensor modalities together.
For example, in MV3D [28], a 3D proposal is generated by using only LIDAR BEV
feature. The 3D proposal is projected to LIDAR BEV, LIDAR front view and front
camera view respectively, and the features inside the projected proposals of one 3D
proposal are concatenated together as a fused feature of the 3D proposal. In AVOD
[30], the same fusion method is used to extract the feature from front camera and
LIDAR BEV of a given pre-defined 3D anchor box. Another example is LaserNet++
[35], which projects each LIDAR point to the front camera image. A CNN extracts
the image features. The camera features that lie at the location where LIDAR points
are projected to are concatenated with the LIDAR features.

2.4.2 Camera detector as prior information
Frustum PointNet (F-PointNet) [31] is a novel 3D object detection network that
directly operates on point cloud. It directly takes off-the-shelf 2D object detectors
and uses results from them, i.e., 2D bounding boxes and corresponding classifica-
tions, as prior region proposals. The 2D bounding boxes in image are then projected
into 3D space as a frustum and LIDAR point cloud inside each projected frustum

18

2. Theory & Related work

is recorded. Notably, each frustum is set to contain exactly one object of interest
whose detection points are selected by instance segmentation. 3D bounding box
estimation is conducted using discrete and fixed anchor candidates after object of
interest is segmented. A novel regularization loss called corner loss [31] is used to
jointly optimize bounding boxes’ location and orientation.

Inspired by [31, 32], another novel 3D object detection architecture named Frustum
ConvNet (F-ConvNet) [4] is proposed. Same as F-PointNet, an off-the-shelf 2D
detector is used to provide frustums of LIDAR points. However, the performance
of F-PointNet is limited because it does not use end-to-end learning to estimate
oriented boxes and the final estimation relies on too few foreground points which
themselves are possibly segmented wrongly. F-ConvNet resolved these two issues.

F-ConvNet has three main contributions. It proposes a novel grouping mechanism
named sliding frustum, as well as the concept of multi-resolution frustum and a
refinement method after the 3D bounding boxes have already been generated to
deal with the inaccurate 2D proposal issue. Compared with MV3D, AVOD and
F-PointNet, F-ConvNet has outbreak progress in hard detection task. The key
design of F-ConvNet is to aggregate point-wise features inside each frustum at the
early stage as a frustum-wise feature vector. The imbalance issue of foreground
and background is dealt with focal loss. F-ConvNet will be introduced in detail in
Chapter 2.4.3.

2.4.3 Frustum ConvNet
Frustum ConvNet (F-ConvNet) [4] is an end-to-end structure that utilizes the 2D
detection results as prior information for the 3D detector. Given a 2D detection
bounding box on an image and the detected category, F-ConvNet takes the LIDAR
points that can be projected inside the 2D bounding box, and the one-hot vector
that represents the detected 2D category as input. The output is the predicted
center, size and orientation of an 3D bounding box. The assumption is that only
one object of interest is in each frustum, as in Figure 2.10.

19

2. Theory & Related work

Figure 2.10: Illustration of Frustum ConvNet

Frustum ConvNet is composed by three parts, PointNet backbone as feature ex-
tractor, fully convolutional layer for feature aggregation and detection head that
is responsible for classification and regression. The entire 2D-3D joint detection
pipeline and each part of Frustum ConvNet will be introduced in this chapter.

2.4.3.1 Entire detection pipeline

The entire pipeline utilize three sensors on a vehicle, camera, LIDAR and Inertial
Measurement Unit (IMU). Given a single timestamp, camera and LIDAR provide
not only the captured data, i.e., 2D image and 3D point cloud, but also their pose
information at this timestamp and the intrinsic matrix for the camera. The sensor
modalities of the data used is shown in Table 2.1. The data flow is shown in Figure
2.11. The point cloud from the LIDAR is in LIDAR coordinate system, and it is
transformed to the camera coordinate system first.

Table 2.1: The data used and its source sensor

sensor data provided
camera image, camera pose, camera intrinsic
LIDAR point cloud, LIDAR pose
IMU ego pose

20

2. Theory & Related work

 point cloud at
LIDAR

coordinate

Intrinsic

camera image

Filter points
outside
Frustum

Spacial
Transform

 point cloud at
camera

coordinate

ego pose
points inside

frustum at
camera

coordinate Spacial
Transform

point inside
frustum at
frustum

coordinate

2D
detector

2D bounding
box

Frustum
Convnet

one-hot
vector

detected 3D
box at

frustum
coordinate Spacial

Transform
(inverse)

3D box at
LIDAR

coordinate

camera pose

Figure 2.11: Entire 2D-3D joint detection pipeline work flow

Next, given the 2D bounding box and the camera intrinsic, only the 3D points that
can be projected inside the 2D bounding box will be kept. Let x = (x, y, z)T denote
the point at the camera coordinate, u = (x2D, y2D, 1)T denote the homogeneous
point on the camera plane, and K denote the camera intrinsic matrix. The camera
projection equation is

λ

x2D
y2D
1

 = Kx. (2.4)

The projected (x2D, y2D) outside the image canvas will be removed.

Next, the remaining points at camera coordinate will be rotated to frustum coordi-
nate, as in Figure 2.12. The z axis of frustum coordinate system points to the center
of the 3D object at BEV, as Figure 2.12 indicates. The point cloud at frustum coor-
dinate system will be sent to the 3D detector to generate predicted 3D boxes which
are also at the frustum coordinate system. Finally, each predicted 3D bounding box
will be transformed back to the LIDAR coordinate system.

z

xy

z

x

y

Figure 2.12: The rotation of the point cloud from camera coordinate to frustum co-
ordinate. Left: camera coordinate, Right: frustum coordinate. Blue dots represent
the point cloud on the object of interest.

21

2. Theory & Related work

Concatenate

Sample
& center

re
so
lu
tio
n

Sample
& center

Sample
& center

Sample
& center

Sample
& center

max

PointNet

PointNet

mx3 1xd

mx3

PointNet
mx3

PointNet

PointNet

mx3

mx3

..
..
..
..
..
..
..
. stack

1xd

Lk x ck

One hot vector
Lk x n_cls

Lk x (ck+n_cls)
feat

st
rid
e re
so
lu
tio
n

Figure 2.13: PointNet backbone illustration for a single resolution. The PointNet
module is shared by each slice under the single resolution. The one-hot vector from
2D detection is concatenated in the last step.

2.4.3.2 Multi resolution PointNet backbone

The PointNet backbone as in Figure 2.13 is responsible for extracting feature in
multiple resolutions. Firstly, we consider a single resolution case. Given a 2D de-
tection, a fixed detection range Dmax, and a pair of resolution and stride (rk, dk),
a sequence of overlapping frustum slices are generated to group the points in the
frustum view. Dmax determines the maximum detection distance from the origin of
frustum coordinate, and objects lie outside Dmax will not be detected. The length of
each slice and the sliding stride are dk and sk respectively. In our implementation,
dk = 2sk. The number of slices Lk is determined by Dmax

sk
. The points in each slices

of the same resolution are randomly sampled and the coordinates are centered by
subtracting the centroid of each slice. These sampled group of points are used as
the input of a shared PointNet. The feature of each slice is obtained after a max
operation after 3 MLP layers, and later stacked together with the order from close
to far. Next, the stacked feature with shape Lk × dk will concatenate a one-hot
vector which represents the category detected by the 2D detector. The final output
shape of a single resolution dk is Lk × (dk + ncls).

In order to extract to the features at different scales, more than one dk are applied
and each dk has its own PointNet as feature extractor. Thus, sk and Lk vary with
resolution scales.

22

2. Theory & Related work

2.4.3.3 Fully convolutional layer

The illustration of a fully convolutional layer taking 4 features as input is in Figure
2.14. The fully convolutional layer takes the multi-resolution features concatenated
with one-hot vector from the PointNet Backbone as input, and fuses these features
in a cascaded structure. Convolution and deconvolution are used in this cascaded
structure. The idea is that the more detailed feature should be aggregated at the
earlier stage. The purpose of deconvolution layer is to make sure that the feature
aggregated at all the early and late stage will have the same length L̃. The feature
after deconvolution will be concatenated at the feature dimension as the enriched
feature for the detection head.

We name each i ∈ {0, 1, ..., L̃− 1} as virtual slice since the feature belongs to each
virtual slice is not strictly from points in any explicitly separated slices, instead, it
contains the feature close to the center of each virtual slice.

Each virtual slice has a ground truth binary label of foreground or background. In
training mode, if the virtual slice center lies inside the γmin times 3D ground-truth
bounding box size scope, the virtual slice is assigned as foreground, if the virtual
slice center lies in (γmin, γmax) times of the 3D ground-truth bounding box, the slice
will be assigned as ignored, which means it will not contribute to the loss function.
Virtual slice center lies outside the 3D ground-truth bounding box will be assigned
as background.

2.4.3.4 Detection head

The detection head has two tasks. The first is to classify each virtual slice as fore-
ground or background, i.e., whether the object of interest lies within this virtual
slice. The output is a probability map of L̃× 2.

The second task, i.e., 3D bounding box localization regression, will output all the
parameters that can determine a 3D bounding box, including the center offset ∆xc =
(∆xc,∆yc,∆zc) in respect to corresponding slice centroid, orientation bin label Oj ∈
{0, ..., nangle − 1}, orientation residual δj, size label Su (u ∈ {0, ..., nsize − 1}) and
size residual (σwu , σlu, σhu). nangle and nsize are the predefined number of orientation
bins and bounding box sizes. The illustration of the detection head following fully
convolutional layer is in Figure 2.14.

23

2. Theory & Related work

B1_conv1

B2_conv1

B2_conv2

concatenate

feat1

feat2

B2_conv_merge

B2_deconv

B3_conv1

B3_conv2

concatenate
feat3

B3_conv_merge

B3_deconv

B4_conv1

B4_conv2

concatenate
feat4

B4_conv_merge

B4_deconv

Concatenate

feat
L_tilde x c

Fg/Bg
classification center orientation

classification
orientation

residule regression
size

classification
size

residule egresssion

L_tilde x 2 L_tilde x 3 L_tilde x
n_angle

L_tilde x
n_angle L_tilde x n_size L_tilde x n_size

Fully	Convolutional	Layer	

Detection	Head

L_tilde x cB2 L_tilde x cB3 L_tilde x cB4

Figure 2.14: The structure of fully convolutional layer and detection head in
Frustum ConvNet [4].

The detection head will classify which orientation and which size the input belongs
to, and predict the residual value from the reference angle and size template. A pre-
dicted bounding box is parameterized as (xc, w, l, h, θ), where xc is the box center
representing (xc, yc, zc), w, l, h is the width, length and height and θ is the orienta-
tion. The bounding box parameters can be obtained by the following equations

xc = ∆xc + xc
fg (2.5)

θ = θj + δj (2.6)
w = wu(1 + σwu) (2.7)
l = lu(1 + σlu) (2.8)
h = hu(1 + σhu), (2.9)

where ∆xc, δj, σwu , σlu, σhu are five values directly output from the detection head.
xc

fg is the center of the some virtual slice which is classified as foreground. Oj is
the predicted label of this virtual slice, and θj is the central degree of the bin label
Oj. Su is the predicted size label of this virtual slice, and wu, lu, hu are the average
width, length and height of Su. Note that each slice can generate a 3D prediction,

24

2. Theory & Related work

but we only keep the 3D prediction of the virtual slice with the highest foreground
probability.

2.4.3.5 Loss function

The total loss function is

L = Lcls + λbox (Lcenter + Langle + Lsize + Lcorner) , (2.10)

where λbox is a parameter to balance the loss of classification and the loss related to
the bounding box.

Lcls represents the loss of foreground/background classification. The formula of Lcls
is

Lcls =
∑

t
−αt(1− pt)γlog(pt), t ∈ {fg, bg}. (2.11)

Considered the imbalance of foreground and background, focal loss [50] is used. pt
is the correct probability of foreground or background. For example, if a slice is
labeled as foreground and has a probability in background at 0.8, then 0.2 is its
correct probability of foreground.

Lcenter is the huber loss for the center regression with the following form

Lcenter =
{

1
2(δad− δd∗)2 |δd− δd∗| ≤ ε
ε|δd− δd∗| − 1

2ε
2 otherwise, (2.12)

where ∆d = ||∆xc||2 is a scalar that represents the length of the center offset ∆xc,
∆d∗ = ||∆xc

∗||2 represents distance of the ground-truth center offset, and ε is hyper-
parameter needs to be manually set.

Langle is the loss of orientation, including the orientation classification loss and ori-
entation residual regression loss. As defined by NuScenes official, traffic cone does
not contribute to the orientation loss due to its symmetry. The classification loss
uses cross-entropy loss, and residual loss uses huber loss. Similar to orientation loss,
size loss is also composed by classification loss and residual regression loss.

Corner loss [31] is the sum of distance between predicted corners and ground truth
corners, denoted as P ∗

i , i ∈ {1, ..., 8}. It has the following formula

Lcorner = min(
8∑
i=1
||Pi − P ∗

i ||2,
8∑
i=1
||Pi − P ∗∗

i ||2). (2.13)

Note that to avoid the huge penalty when the predicted box orientation has a flipped
heading with respect to the ground truth box, we also computed the corner loss from
the flipped ground-truth box corners, denote as P ∗∗

i , i ∈ {1, ..., 8}. The smaller loss
is the one to be optimized.

25

2. Theory & Related work

2.5 Literature review summary
Object detection can be divided into one-stage object detection and two-stage object
detection. Two-stage detector has RPN which can be further divided into anchor-
based proposal generation and anchor-free proposal generation. Generally speaking,
two-stage methods have higher performance than one-stage methods but execute
slower. Similarly, anchor-based proposal generation tends to have higher proposal
recall compared with anchor-free proposal generation but is computationally more
expensive.

Feature extraction is an important part in object detection. CNN is widely used
as the feature extractor. For 3D object detection, the methods need to deal with
the irregularly distributed 3D points in euclidean space. The methods can be cate-
gorised as PointNet based, graph-based and voxel-based.

Some 3D object detection architectures use only LIDAR point cloud as input data,
while the others use multi-modal sensor. The sensor fusion method has two lev-
els. The stronger level is directly concatenating features from different sensor. The
weaker level is to use information from one sensor as prior information and data
from another sensor as the main source for detection.

Class imbalance may exist in some datasets, proper sampling strategies and focal
loss help to alleviate the negative influence of data imbalance.

26

3
Implementation & Experiments

In our work, we chose 2D+3D pipeline as our detection algorithm. The 2D detector
provides the detected category and the 2D location on the camera plane. The 3D
detector further utilizes these as prior information and localize the bounding box in
3D space.

We utilized this type of pipeline and choose camera and LIDAR as our environ-
ment perception sensors. Camera was chosen because the 2D detection technique
based on it is widely researched and used in many aspects besides AD, including
medical imaging, astronomy, streaming media, etc. [51–53]. With a solid research
foundation, many state-of-art 2D detectors have been repeatedly verified in different
context to ensure their reliability. Therefore it is reasonable to take an off-the-shelf
2D detector to narrow down search areas by feeding its result into a 3D detector for
further detection.

In this thesis we chose faster R-CNN [22] as the 2D object detection model to repli-
cate since it is an algorithm with meticulous logic targeting at high accuracy and
has been iterated and improved several times by its inventors. Meanwhile, it still
shows vitality in the latest literature [4, 52].

LIDAR was selected as the input data for 3D detector because of its high resolution
and dense pointcloud. According to the exploration on NuScenes, LIDAR has gen-
erated point cloud on more objects than radar. Thus we chose LIDAR in order to
make the final detection performance better.

The 3D object detection model that we chose to replicate was Frustum ConvNet
[4] because it was a recent network that theoretically absorbed the advantages of
VoxelNet [32] and F-PointNet [31], as described in Chapter 2, and has achieved good
results on KITTI dataset [17].

In this chapter, we will present the implementation details of 2D and 3D detectors,
and the corresponding experiments we did with them.

3.1 2D detector’s architecture details
We implemented two versions of faster R-CNN as 2D detector: faster R-CNN with
16-layer version VGG as backbone (VGG16 backbone) and faster R-CNN with 101-

27

3. Implementation & Experiments

layer version ResNet based feature pyramid network as backbone (ResNet101 FPN
backbone). NuScenes dataset provides images at the size of 3 × 900 × 1600. We
re-scale all images into 3×563×1000 in the dataloader before sending them to both
2D detectors.

3.1.1 VGG16 backbone faster R-CNN
The configuration and output structure of each layer in VGG16 backbone is illus-
trated in Table 3.1. In this version of faster R-CNN, ROI pooling is used as ROI
feature extractor.

Table 3.1: Parameters of the VGG16 backbone

Layer Type kernel size, stride, padding num kernel output shape (depth× h× w)
conv 3× 3, 2, 1 64 64× 563× 1000
conv 3× 3, 2, 1 64 64× 563× 1000

max-pool 2× 2, 2, 0 / 64× 282× 500
conv 3× 3, 2, 1 128 128× 282× 500
conv 3× 3, 2, 1 128 128× 282× 500

max-pool 2× 2, 2, 0 / 128× 141× 250
conv 3× 3, 2, 1 256 256× 141× 250
conv 3× 3, 2, 1 256 256× 141× 250
conv 3× 3, 2, 1 256 256× 141× 250

max-pool 2× 2, 2, 0 / 256× 71× 125
conv 3× 3, 2, 1 512 512× 71× 125
conv 3× 3, 2, 1 512 512× 71× 125
conv 3× 3, 2, 1 512 512× 71× 125

max-pool 2× 2, 2, 0 / 512× 36× 63
conv 3× 3, 2, 1 512 512× 36× 63
conv 3× 3, 2, 1 512 512× 36× 63
conv 3× 3, 2, 1 512 512× 36× 63

max-pool 2× 2, 2, 0 / 512× 36× 63

3.1.2 ResNet101 FPN backbone faster R-CNN
We built the FPN backbone structure based on ResNet101, as illustrated in Figure
3.1. Pre-trained ResNet101 model on ImageNet [54] was used for initialization.

ResNet101 consists of five cascaded units, conv1, conv2_x, conv3_x, conv4_x and
conv5_x. Conv1 is an ordinary 7×7 conv layer. All the other units are composed of
several cascaded residual blocks. The tensors output by conv2_x to conv5_x repre-
sent the features from a fine resolution to a coarse resolution. These tensors will be
processed further in the feature pyramid structure to generate their corresponding
feature map.

In the feature pyramid structure, the tensors output by conv2_x to conv5_x are
processed by one convolutional layer to get the same depth dimension. Then the

28

3. Implementation & Experiments

output from convk_x (k = 3, 4, 5) is up-sampled and element-wise added with the
output from conv(k− 1)_x. Feature map P5 will be simply down-sampled by max-
pooling to get the feature map P6. All of the feature maps will be used by RPN
while feature map P6 will not be passed to ROI detection head.

In the ResNet101 FPN version, we chose ROI align as the ROI feature extractor.

conv7x7, 64

conv1x1, 64

conv3x3, 64

maxpool

conv1x1, 256

conv1x1, 256

conv1x1, 64

conv3x3, 64

conv1x1, 256

conv1x1, 64

conv3x3, 64

conv1x1, 256

conv1x1, 128

conv3x3, 128

conv1x1, 512

conv1x1, 512 conv3x3, 128

conv1x1, 512

conv1x1, 256

conv3x3, 256

conv1x1, 1024

conv1x1, 1024

conv1x1, 256

conv3x3, 256

conv1x1, 1024

conv1x1, 256

conv3x3, 256

conv1x1, 1024

conv1x1, 512

conv2_x, 3 blocks

conv3x3, 512

conv1x1, 2048

conv1x1, 2048

conv1x1, 512

conv3x3, 512

conv1x1, 2048

conv3x3, 512

conv1x1, 2048

images

conv1x1, 256

conv3x3, 256 conv3x3, 256

feature
map P5

feature
map P4

feature
map P6

maxpooling

feature
map P3

conv3x3, 256 conv3x3, 256

conv1x1, 128 conv1x1, 128

conv3x3, 128

conv1x1, 512

conv1x1, 128

conv3x3, 128

conv1x1, 512

conv3x3, 256 conv3x3, 256

Upsampling

feature
map P2

conv3_x, 4 blocks

conv4_x, 23 blocks

Upsampling

conv5_x, 3 blocks

conv1x1, 512 Upsampling

ResNet101

Feature Pyramid

 means element wise addition

conv1

Figure 3.1: ResNet101 FPN backbone structure

29

3. Implementation & Experiments

3.2 3D detector’s implementation details
The detailed parameters of our implementation of Frustum ConvNet is introduced
in this chapter.

3.2.1 Multi resolution PointNet backbone
We set the detecting range Dmax = 50m, and extract features of 4 resolutions. The
stride sk, frustum resolution dk, MLP layer and feature shape of each resolution is
presented in Table 3.2.

Table 3.2: Configuration of multi-resolution PointNet backbone, unit for strides
and resolutions is meter.

feat_k stride sk resolution dk feat shape Lk × (ck + ncls) MLP
feat1 0.25 0.5 200× (128 + 10) [64, 64, 128]
feat2 0.5 1.0 100× (128 + 10) [64, 64, 128]
feat3 1.0 2.0 50× (256 + 10) [128, 128, 256]
feat4 2.0 4.0 25× (512 + 10) [256, 256, 512]

3.2.2 Fully convolutional layer
The detailed parameters of the fully convolutional layer is in Table 3.3. The number
of foreground categories ncls = 10, according to the NuScenes dataset. The threshold
value γmin = 0.5 and γmax = 1.0. The number of virtual slices L̃ = 100.

Table 3.3: The parameters of fully convolutional layer

Module Name nc_in length_in nc_out length_out
kernel,
stride,
padding

B1_conv1 138 200 128 200 3, 1, 1
B2_conv1 128 200 128 100 3, 2, 1
B2_conv2 128 100 128 100 3, 1, 1

B2_convmerge 128+138 100 128 100 1, 1, 0
B3_conv1 128 100 256 50 3, 2, 1
B3_conv2 256 50 256 50 3, 1, 1

B3_convmerge 256+266 100 256 50 1, 1, 0
B4_conv1 256 50 512 25 3, 2, 1
B4_conv2 512 25 512 25 3, 1, 1

B4_convmerge 512+522 25 512 25 1, 1, 0
B2_deconv 128 100 256 100 1, 1, 0
B3_deconv 256 50 256 100 1, 1, 0
B4_deconv 512 25 256 100 1, 1, 0

30

3. Implementation & Experiments

3.2.3 Detection head
Note that what we did here is different from the original paper [4]. In [4], the cat-
egory classification is conducted in the 3D detector by setting the probability map
as L̃ × (ncls + 1). However, according our experiments, we found that the training
loss of 3D detector does not go down if we output 11 probability map for NuScenes
dataset. To make this branch work, we made the modification and only predict
the foreground/background probability instead of a more detailed category classi-
fication. The slice with the highest foreground probability, which is also known as
detection score, is considered as the slice where the object lies.

nangle = 12 orientation bins and their range are defined in Table 3.4. We set the
each foreground category a predefined bounding box size, as in Table 3.5.

Table 3.4: Frustum ConvNet detection head orientation label definition

orientation bin angle range
0 [−π,−10

12π)
1 [−10

12π,−
8
12π)

2 [− 8
12π,−

6
12π)

3 [− 6
12π,−

4
12π)

4 [− 4
12π,−

2
12π)

5 [− 2
12π, 0)

6 [0, 2
12π)

7 [2
12π,

4
12π)

8 [4
12π,

6
12π)

9 [6
12π,

8
12π)

10 [8
12π,

10
12π)

11 [10
12π, π)

Table 3.5: Mean width, length, height of each detection category by calculating
through all ground-truth in NuScenes dataset

category name (wu, lu, hu)
barrier (2.3, 0.61, 1.1)
bicycle (0.64, 1.80, 1.40)
bus (3.0, 11.0, 3.8)
cars (1.91, 4.63, 1.71)

construction vehicle (2.6, 5.6, 2.4)
motorcycle (0.68, 2.0, 1.5)
pedestrian (0.68, 0.74, 1.8)
traffic cone (0.47, 0.45, 0.78)

trailer (2.3, 10.0, 3.7)
truck (2.4, 6.5, 2.6)

31

3. Implementation & Experiments

3.2.4 Loss function
λbox in Eq 2.10 is set as 0.01 to manually balance the magnitude difference between
different losses in our case. The focal loss weight in Eq 2.11 is set as αbg = 0.75,
αbg = 0.25, which keeps the same with [4]. The hyper-parameter in 2.12 is 3.0.

3.3 Training settings

3.3.1 The training settings of faster R-CNN
The training details are listed in Table 3.6.

Table 3.6: Training configuration of both faster R-CNN with different backbones.

backbone batch size optimizer lr epoch pretrained
VGG16 6 SGD 0.001 14 caffe-VGG16

ResNet101 FPN 6 SGD 0.001 14 PyTorch-ResNet101

3.3.2 The training settings of Frustum ConvNet
Before training, the ground-truth data are wrapped for the F-ConvNet. The wrapped
data includes: camera channel, category string, 2D bounding box, 3D bounding box,
camera pose, camera intrinsic, ego pose, LIDAR point cloud. The 2D bounding box
are projected to the image canvas from the 3D bounding box, and if the projected
2D box intersects the boundary of the image canvas, then the projected 2D bound-
ing box is cropped within the image canvas.

The training data is screened by the following criterion. The object with 3D bound-
ing box includes 0 LIDAR points, or the object that has visibility level lower than
“3”, or the projected 2D bounding box have an intersection with the image less than
20% will be discarded from the training dataset. After the screening, the remaining
number of sampling annotation is 68.15% of all the annotations in the whole dataset.

The training configurations are as Table 3.7. The model was only trained for two
epochs due to time limitation.

Table 3.7: Training configuration of Frustum ConvNet.

batch size epoch optimizer lr betas eps
35 2 ADAM 1.0× 10−4 (0.9, 0.999) 1.0× 10−4

32

3. Implementation & Experiments

3.4 Evaluation metrics
The average precision (AP) [55] is calculated from precision and recall. Taking true
positive (TP), false positive (FP), false negative (FN) as input,

precision = TP

TP + FP
= TP

all detections (3.1)

recall = TP

TP + FN
= TP

all ground-truths . (3.2)

For 2D detection part, whether a detection is decided as a correct detection, i.e., TP,
or a wrong detection, i.e., FP, is by comparing the IoU between predicted bounding
boxes and ground-truth bounding boxes. In our case, IoU ≥ 0.5 is regarded as TP.
Further AP calculation follows PASCAL VOC standard [56]. The mean AP among
all categories is named mean average precision (mAP).

For 3D detection part, TP or FP is calculated by comparing the distance between
the center of predicted bounding boxes and ground-truth bounding boxes. The fur-
ther AP computation uses NuScenes standard [9].

NuScenes dataset defines six metrics, but in this thesis we only focus on the following
four metrics when doing 3D detection evaluation. They are one precision metric and
three error metrics:

1. AP: average precision.
2. ATE: Euclidean center distance in 2D in meters.
3. ASE: Calculated as 1 - IoU after aligning centers and orientation.
4. AOE: Smallest yaw angle difference between prediction and ground-truth in

radian. Orientation error is evaluated at 360 degree for all classes except bar-
riers where it is only evaluated at 180 degrees. Orientation errors for cones
are ignored in any condition due to its symmetry.

Note that when indicating the mean results on all categories, the above metrics are
renamed as mAP, mATE, mASE, mAOE respectively.

3.5 2D-3D joint detection process
We evaluate the joint 2D-3D detector by the steps illustrated in Figure 3.2. After
the 2D detection procedure is finished, the predicted 2D bounding boxes with a
score higher than Seval are sent to 2D detection evaluation metric to calculate the
AP for 2D detection network part. Meanwhile, the predicted 2D bounding boxes
with a score higher than Sto3D are selected as the prior information input to the 3D
detector. Each 2D detection that is fed into F-ConvNet generates its corresponding
3D detection. Since a single object in 3D is likely to be visible in more than one
camera image, thus several 2D detection results which belong to the same object
might have their corresponding 3D detection bounding boxes overlapping. Consid-
ering this, we perform category-wise NMS among the 3D predictions to eliminate

33

3. Implementation & Experiments

the overlapping issue. The NMS IoU is set in the context of BEV. The final step is
to calculate the NuScenes evaluation metrics on the post NMS 3D detection results
using NuScenes evaluation standard. Note that we also calculate the NuScenes eval-
uation metrics based on the ground-truth 2D bounding boxes annotations in order
to get the quantitative performance of a benchmark 3D detector regardless of the
performance of 2D detector.

Frustum
ConvNet

2D detections
from 2D detectors

NMS
Iou=0.05

NuScenes
 Evaluation Tool

NuScenes
metrics

Keep score
>= 0.7

Figure 3.2: The evaluation process of 3D detector.

3.6 Experiments design

3.6.1 Experiments on 2D detector
The NuScenes dataset contains three different weather and lightning conditions,
namely normal scene, rain scene and night scene. For 2D detectors, we calculated
the mAP, AP of each category at the whole validation set, and also each scene sep-
arately. We not only wanted to see the 2D detectors’ performance on each category,
but also to see how the different scene can influence the detection results.

NuScenes dataset defined 4 visibility levels to describe the occlusion level of an
object. The definition table is shown in Table 3.8. We evaluated the detection
performance of two 2D detectors under different visibility levels separately to see
how the occlusion affect the performance of 2D detector.

Table 3.8: Definition of visibility level in NuScenes dataset

Visibility code Definition
“1” Fraction of whole object’s pixels visible in all the images

collected from 6 different cameras is between 0 and 40%
“2” Fraction of whole object’s pixels visible in all the images

collected from 6 different cameras is between 40 and 60%
“3” Fraction of whole object’s pixels visible in all the images

collected from 6 different cameras is between 60 and 80%
“4” Fraction of whole object’s pixels visible in all the images

collected from 6 different cameras is between 80 and
100%

3.6.2 Experiments on 3D detector
Our experiments on 3D detectors have two parts. We first used the ground-truth
2D detections as input for 3D detector to calculate the mAP, mATE, mASE, mAOE
and AP, ATE, ASE, AOE of each category at the whole validation scene and each

34

3. Implementation & Experiments

scene separately. By calculating the NuScenes metrics on ground-truth 2D detec-
tions, we can know the inherent characteristics of 3D detector, without influence by
the 2D detector. We were also interested in how our 3D detector performs different
under different scenes.

We also did the same experiments given the input as the 2D detection results from
two 2D detectors. By comparing the benchmark results and 2D-3D joint detec-
tion results, we are able to see how the 2D detections influence the results of 3D
detections.

35

4
Results

This chapter will show the 2D object detection results from two 2D detectors, i.e.,
faster R-CNN with two different backbones, 3D object detection results using ground
truth 2D bounding boxes and 2D bounding boxes coming from 2D detectors.

4.1 2D detection results
We implemented two faster R-CNNmodels using different backbones, namely VGG16
and ResNet101 FPN, as described in chapter 2 and 3. Both models are trained and
validated on NuScenes dataset v1.0-trainval version. 2D bounding boxes ground-
truth is obtained by projecting 3D bounding boxes annotations onto each camera
plane. This section will show the performance of the two 2D detectors under different
conditions.

4.1.1 Quantitative results

4.1.1.1 Scene agnostic, visibility agnostic results

The mAP of VGG16 backbone faster R-CNN is obviously higher than that of
ResNet101 FPN backbone faster R-CNN, as shown in Table 4.1. When we list
all AP of each category in Table 4.2, it is found that the AP in each category of
ResNet101 FPN backbone faster R-CNN is relatively uniformly lower than that of
VGG16 backbone faster R-CNN, which proves that VGG16 backbone has a better
performance than ResNet101 FPN backbone in this context by being able to de-
tect more accurately in each category instead of for example by having extremely
unbalanced AP.

Table 4.1: mAP of faster R-CNN with VGG16 backbone and ResNet101 FPN
backbone

Backbone mAP
VGG16 0.441

ResNet101 FPN 0.3254

36

4. Results

Table 4.2: AP for each category of both 2D detectors

Category barrier bicycle bus car const. vehicle
VGG16 0.442 0.392 0.62 0.64 0.204

ResNet101 FPN 0.339 0.263 0.515 0.54 0.129
Category motorcycle pedestrian traffic cone trailer truck
VGG16 0.429 0.448 0.476 0.29 0.467

ResNet101 FPN 0.245 0.347 0.309 0.218 0.349

4.1.1.2 Scene Aware, visibility agnostic results

Considering that camera is sensitive to illumination, we evaluate the performance
of our 2D detector under normal scene, rain scene and night scene separately. Table
4.3 shows that the values of normal scene mAP and rain scene mAP are really close
while night scene mAP suffers an obvious decrease.

Table 4.3: mAP for normal, rain and night scene of both 2D detectors

Backbone Normal mAP Rain mAP Night mAP
VGG16 0.443 0.44 0.337

ResNet101 FPN 0.329 0.322 0.219

Table 4.4: AP for each category in normal, rain and night scene

Normal scene barrier bicycle bus car const. vehicle
VGG16 0.426 0.406 0.629 0.633 0.206

ResNet101 FPN 0.326 0.264 0.524 0.531 0.133
Normal scene motorcycle pedestrian traffic cone trailer truck

VGG16 0.442 0.453 0.483 0.278 0.473
ResNet101 FPN 0.262 0.351 0.316 0.222 0.357
Rain scene barrier bicycle bus car const. vehicle

VGG16 0.493 0.409 0.581 0.656 0.191
ResNet101 FPN 0.421 0.269 0.467 0.542 0.148
Rain scene motorcycle pedestrian traffic cone trailer truck

VGG16 0.458 0.356 0.459 0.339 0.458
ResNet101 FPN 0.268 0.274 0.282 0.212 0.333
Night scene barrier bicycle bus car const. vehicle

VGG16 0.299 0.287 nan 0.631 nan
ResNet101 FPN 0.19 0.195 nan 0.544 nan
Night scene motorcycle pedestrian traffic cone trailer truck

VGG16 0.34 0.348 0.072 nan 0.385
ResNet101 FPN 0.141 0.256 0.002 nan 0.207

37

4. Results

According to Table 4.4, compared with the normal scene, generally category AP
in the rain scene has no significant difference. For some categories, AP is slightly
higher in normal scene and for others, AP is slightly higher in rain scene. But the
difference is minor. For night scene, both VGG16 and ResNet101 FPN backbone
faster R-CNN models do not have AP results, i.e., the result is not a number (nan),
for bus, construction vehicle and trailer because there is no corresponding ground
truth in NuScenes dataset. Most categories in night scene have a much lower AP
than that in the normal scene or rain scene. For traffic cone, the decrease is dra-
matic. Notably for car, the AP does not show obvious fluctuation among normal,
rain and night scene.

4.1.1.3 Scene agnostic, visibility aware results

For 2D object detection based on camera, occlusion is part of the main issues. If an
object is highly occluded in an image, which means the camera can not really see
the object, the detection will be severely affected.

Table 4.5: mAP for different visibility of both 2D detectors

backbone “1” mAP “2” mAP “3” mAP “4” mAP
VGG16 0.046 0.067 0.153 0.491

ResNet101 FPN 0.026 0.036 0.1 0.368

From Table 4.5 it is observed that visibility loss, i.e. occlusion or truncation, has
a significant impact on both VGG16 and ResNet101 FPN backbone faster R-CNN
models. Surprisingly, even with visibility code “3”, which means more than half of
an object is visible, the mAP is dramatically lower than that of visibility code “4”.
Table 4.6 shows the AP of each category under different visibility. From visibility
code “1” to visibility code “2”, AP of all categories for both VGG16 and ResNet101
FPN backbone faster R-CNN models increase slightly but are still too low to give
very meaningful detection results. In visibility code “3”, ResNet101 FPN backbone
has a slight higher AP in car and traffic cone although in other categories it lags be-
hind with a certain gap, but VGG16 backbone overtakes ResNet101 FPN backbone
completely in visibility code “4” in all categories by a large margin.

38

4. Results

Table 4.6: AP for each category in different visibility

Visibility “1” barrier bicycle bus car const. vehicle
VGG16 0.02 0.112 0.009 0.061 0.026

ResNet101 FPN 0.015 0.021 0.007 0.045 0.007
Visibility “1” motorcycle pedestrian traffic cone trailer truck

VGG16 0.027 0.04 0.009 0.138 0.019
ResNet101 FPN 0.014 0.04 0.004 0.09 0.012
Visibility “2” barrier bicycle bus car const. vehicle

VGG16 0.029 0.134 0.099 0.104 0.04
ResNet101 FPN 0.02 0.029 0.055 0.074 0.019
Visibility “2” motorcycle pedestrian traffic cone trailer truck

VGG16 0.033 0.101 0.016 0.063 0.05
ResNet101 FPN 0.011 0.064 0.008 0.054 0.03
Visibility “3” barrier bicycle bus car const. vehicle

VGG16 0.166 0.233 0.26 0.174 0.092
ResNet101 FPN 0.08 0.075 0.179 0.205 0.052
Visibility “3” motorcycle pedestrian traffic cone trailer truck

VGG16 0.145 0.112 0.033 0.154 0.163
ResNet101 FPN 0.057 0.081 0.056 0.12 0.094
Visibility “4” barrier bicycle bus car const. vehicle

VGG16 0.481 0.485 0.619 0.686 0.245
ResNet101 FPN 0.377 0.323 0.531 0.618 0.161
Visibility “4” motorcycle pedestrian traffic cone trailer truck

VGG16 0.509 0.526 0.54 0.3 0.522
ResNet101 FPN 0.274 0.414 0.354 0.218 0.408

4.1.2 Qualitative results
Figure 4.1 shows some qualitative detection results in different scenes. Intuitively,
ResNet101 FPN backbone faster R-CNN is making predictions more aggressively
than VGG16 backbone faster R-CNN, which is also proved by its much larger pre-
diction results file. It also generates more false positives than VGG16 backbone
faster R-CNN. As we can see, in normal scene and rain scene, the number of predic-
tion bounding boxes in the right column are significantly much more than those in
the left column. In night scene, considering the fact that the objects moving around
ego vehicle are significantly fewer, the number of both ground truth bounding boxes
and predictions is smaller. It is surprising to see how precise the predictions are in
the left column of last line even under such a dark condition.

39

4. Results

0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

600

700

800

900

0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

600

700

800

900

(a) normal scene

0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

600

700

800

900

0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

600

700

800

900

(b) rain scene

0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

600

700

800

900

0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

600

700

800

900

(c) night scene

Figure 4.1: faster R-CNN 2D bounding boxes output illustration for different
weather and lightning conditions, only showing bounding boxes with score >=0.7.
Left column: VGG16 backbone, Right column: ResNet101 FPN backbone. Blue
rectangle: ground truth, Red rectangle: detection box.

40

4. Results

4.2 Benchmark 3D detection results
The benchmark detection result represents the upper-bound performance of our 3D
detector. Since the benchmark results are calculated based on the ground-truth 2D
detection, and the 2D detection from the real 2D detector cannot surpass the ground
truth. These results are presented in Table 4.7 to 4.9.

4.2.1 Category agnostic, scene agnostic results

Table 4.7: Benchmark 3D detector results: all scenes, all categories

Benchmark
mAP mATE mASE mAOE
0.5955 0.4421 0.3982 1.0006

4.2.2 Category aware, scene agnostic results

Table 4.8: AP, ATE, ASE, AOE on each category

Benchmark
Category car truck bus trailer const.vehicle

AP 0.725 0.584 0.475 0.191 0.355
ATE 0.271 0.479 0.885 0.984 0.678
ASE 0.316 0.423 0.553 0.529 0.515
AOE 0.381 0.631 0.755 1.492 1.397

Category pedestrain motorcycle bicycle traffic cone barrier
AP 0.774 0.628 0.681 0.835 0.707
ATE 0.133 0.352 0.263 0.117 0.259
ASE 0.306 0.363 0.338 0.310 0.329
AOE 1.421 1.189 1.652 / 0.086

In Table 4.8, given the ground-truth 2D detection as input, the AP varies with the
category. Car, pedestrian and traffic cone are the top three categories in AP, while
the lowest AP is achieved on trailer. The ATE is the lowest at traffic cone and
highest on trailer. The AOE of barrier is the lowest while bicycle has the highest
AOE.

4.2.3 Category agnostic, scene aware results
From Table 4.9, we noticed that the mAP in rain and night scene are higher than
that in normal scene. While mATE, mASE and mAOE do not show a specific
pattern related to the scene condition.

41

4. Results

Table 4.9: mAP, mATE, mASE, mAOE on normal, rain, night scenes

Benchmark
scene mAP mATE mASE mAOE

normal* 0.7020 0.2656 0.3390 0.8770
rain* 0.7334 0.2514 0.3600 0.8780
night* 0.7679 0.2956 0.3141 1.0357

Since there is no ground-truth bus, trailer and construction vehicle in night scene,
the mAP, mATE, mASE values in Table 4.9 are calculated only on 7 categories
(car, truck, pedestrian, motorcycle, bicycle, traffic cone, barrier). The mAOE is
calculated on 6 categories (car, truck, pedestrian, motorcycle, bicycle, barrier), since
mAOE of traffic cone is ignored by the NuScenes standard. All the scenes evaluated
on a subset of all the 10 categories are marked with *.

4.2.4 Category aware, scene aware results
The AP, ATE, ASE and AOE of each category at each scene are illustrated in Figure
4.2. It is interesting that for truck, pedestrian, bicycle and barrier, the AP in the
night is significantly higher than that in the other two scenes, while the traffic cone’s
AP in the night is much lower than that in the other two scenes. Also, we noticed
that the ATE of bus and trailer is significantly higher in normal scenes than the rain
scene.

42

4. Results

ca
r

tru
ck bu
s

tra
ile

r

co
ns

t.v
eh

icl
e

pe
de

st
ria

n

m
ot

or
cy

cle

bi
cy

cle

tra
ffi

c
co

ne

ba
rri

er

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
AP

0.
71

6

0.
58

5

0.
47

2

0.
18

1

0.
34

6

0.
77

2

0.
63

3

0.
67

1

0.
84

0.
69

7

0.
74

2

0.
57

2

0.
51

0.
22

2

0.
40

2

0.
81

4

0.
71

3

0.
73

9 0.
82

7

0.
72

70.
79

7

0.
76

5

0.
0

0.
0

0.
0

0.
95

3

0.
57

2

0.
91

9

0.
45

3

0.
91

6

Benchmark: AP of each category, each scene
Normal
Rain
Night

(a) AP

ca
r

tru
ck bu
s

tra
ile

r

co
ns

t.v
eh

icl
e

pe
de

st
ria

n

m
ot

or
cy

cle

bi
cy

cle

tra
ffi

c
co

ne

ba
rri

er

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

AT
E

0.
27

5

0.
49

4

0.
91

6 1.
04

5

0.
66

8

0.
13

3

0.
32

8

0.
26

7

0.
11

3 0.
24

9

0.
25

4

0.
44

5

0.
63

7

0.
81

1

0.
7

0.
14

3 0.
27

2

0.
21

5

0.
14

0.
29

1

0.
27

3

0.
34

2

0.
0

0.
0

0.
0

0.
10

5

0.
49

6

0.
26

2

0.
50

8

0.
08

3
Benchmark: ATE of each category, each scene

Normal
Rain
Night

(b) ATE

Figure 4.2: Benchmark AP, ATE, ASE, AOE for each category, each scene.

43

4. Results

ca
r

tru
ck bu
s

tra
ile

r

co
ns

t.v
eh

icl
e

pe
de

st
ria

n

m
ot

or
cy

cle

bi
cy

cle

tra
ffi

c
co

ne

ba
rri

er

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
AS

E

0.
31

6

0.
41

8

0.
55

3

0.
51

4

0.
51

4

0.
30

3 0.
37

0.
33

6

0.
30

8

0.
32

2

0.
32

2

0.
44

4

0.
54

8

0.
57

5

0.
51

0.
38

3

0.
33

4

0.
36

5

0.
32

1

0.
35

1

0.
29

5

0.
38

6

0.
0

0.
0

0.
0

0.
28

7 0.
33

2

0.
32

1

0.
30

6

0.
27

2

Benchmark: ASE of each category, each scene
Normal
Rain
Night

(c) ASE

ca
r

tru
ck bu
s

tra
ile

r

co
ns

t.v
eh

icl
e

pe
de

st
ria

n

m
ot

or
cy

cle

bi
cy

cle

tra
ffi

c
co

ne

ba
rri

er

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

AO
E

0.
38

3

0.
61

4 0.
75

3

1.
47

8

1.
43

8

1.
42

1

1.
09

2

1.
66

1

0.
0 0.

09
1

0.
36

7

0.
68

8

0.
76

1

1.
52

4

1.
15

9

1.
42

1

1.
22

5

1.
49

6

0.
0 0.

07
1

0.
37

7

0.
61

9

0.
0

0.
0

0.
0

1.
58

9

1.
66

5

1.
89

7

0.
0 0.

06
7

Benchmark: AOE of each category, each scene
Normal
Rain
Night

(d) AOE

Figure 4.2: Benchmark AP, ATE, ASE, AOE for each category, each scene.

44

4. Results

4.3 2D-3D joint detection results
In this section, the 2D detection results from two faster R-CNN models are fed to
F-ConvNet. All evaluation metrics used in this section are the same as in benchmark
results.

4.3.1 Quantitative results
The quantitative results are presented in a similar way as the benchmark 3D detec-
tion results. They are listed in Table 4.10 to 4.12 and Figure 4.3 to 4.6.

4.3.1.1 Category agnostic, scene agnostic results

From the overall detection results in Table 4.10, the mAP of VGG16 backbone
faster R-CNN is around 50% higher than ResNet101 FPN backbone faster R-CNN.
The error metrics of VGG16 backbone faster R-CNN are also lower than those of
ResNet101 FPN backbone.

Table 4.10: The four NuScenes metrics of 2D-3D joint detection results on all
scenes, all categories.

2D detector backbone mAP mATE mASE mAOE
VGG16 0.3649 0.4832 0.4116 0.9715

ResNet101 FPN 0.2589 0.5826 0.4292 1.0425

4.3.1.2 Category aware, scene agnostic results

According to Table 4.11, the mAP of car, pestrain and traffic cone are the top three
in both 2D detectors, while trailer and construction vehicle achieve the poorest mAP.

45

4. Results

Table 4.11: AP, ATE, ASE, AOE on all categories for both faster R-CNN with
different backbones

VGG16
category car truck bus trailer const.vehicle

AP 0.609 0.307 0.346 0.057 0.118
ATE 0.302 0.559 0.892 0.990 0.800
ASE 0.315 0.421 0.567 0.515 0.557
AOE 0.381 0.616 0.672 1.424 1.417

category pedestrain motorcycle bicycle traffic cone barrier
AP 0.519 0.369 0.336 0.581 0.408
ATE 0.168 0.328 0.263 0.165 0.365
ASE 0.333 0.362 0.331 0.366 0.351
AOE 1.405 1.101 1.640 / 0.087

ResNet101 FPN
category car truck bus trailer const.vehicle

AP 0.525 0.208 0.222 0.023 0.068
ATE 0.356 0.712 0.981 0.998 0.853
ASE 0.311 0.447 0.567 0.519 0.581
AOE 0.463 0.750 0.882 1.356 1.381

category pedestrain motorcycle bicycle traffic cone barrier
AP 0.434 0.090 0.198 0.491 0.332
ATE 0.215 0.490 0.401 0.276 0.542
ASE 0.341 0.379 0.369 0.406 0.372
AOE 1.445 1.354 1.651 / 0.100

4.3.1.3 Category agnostic, scene aware results

As shown in Table 4.12, for both 2D detectors, the mAP of night scene is signifi-
cantly lower than that in normal and rain. mASE and mAOE do not show visible
connection to the scene for both faster R-CNN while mATE also does not show
significant scene aware difference for VGG16 backbone faster R-CNN.

46

4. Results

Table 4.12: AP, ATE, ASE, AOE on normal, rain, night scenes of joint detection
for both versions of 2D detectors.

VGG16
scene mAP mATE mASE mAOE

normal* 0.4501 0.3036 0.3520 0.8555
rain* 0.4513 0.3027 0.3739 0.9262
night* 0.3087 0.4106 0.3186 1.0240

ResNet101 FPN
scene mAP mATE mASE mAOE

normal* 0.3351 0.4247 0.3743 0.9463
rain* 0.2716 0.4240 0.3891 1.0267
night* 0.1986 0.4449 0.3357 1.0900

Since there does not exist ground-truth bus, trailer and construction vehicle in
night scene, the mAP, mATE, mASE values in Table 4.12 are calculated only on
7 categories (car, truck, pedestrian, motorcycle, bicycle, traffic cone, barrier). The
mAOE is calculated on 6 categories (car, truck, pedestrian, motorcycle, bicycle,
barrier), since mAOE of traffic cone is ignored by the NuScenes standards. All the
scenes evaluated only on a subset of all the 10 categories are marked with *.

4.3.1.4 Category aware, scene aware results

The AP, ATE, ASE, AOE of each category and each scene are shown in Figure 4.3
to 4.6.

47

4. Results

ca
r

tru
ck bu
s

tra
ile

r

co
ns

t.v
eh

icl
e

pe
de

st
ria

n

m
ot

or
cy

cle

bi
cy

cle

tra
ffi

c
co

ne

ba
rri

er

0.0

0.2

0.4

0.6

0.8

1.0

AP

0.
6

0.
31

9

0.
34

4

0.
04

9 0.
13

8

0.
52

8

0.
39

4

0.
33

9

0.
59

2

0.
37

9

0.
63

4

0.
27

5

0.
38

8

0.
07

5

0.
06

5

0.
43

3

0.
41

1

0.
35

8

0.
53

4

0.
51

4

0.
65

3

0.
25

0.
0

0.
0

0.
0

0.
33

8

0.
22

6

0.
17

2

0.
03

1

0.
49

1

VGG16_backbone: AP of each category, each scene
Normal
Rain
Night

(a) VGG16

ca
r

tru
ck bu
s

tra
ile

r

co
ns

t.v
eh

icl
e

pe
de

st
ria

n

m
ot

or
cy

cle

bi
cy

cle

tra
ffi

c
co

ne

ba
rri

er

0.0

0.2

0.4

0.6

0.8

1.0

AP 0.
52

1

0.
22 0.
23

2

0.
02

5 0.
08

5

0.
45

2

0.
12

4 0.
20

5

0.
50

6

0.
31

8

0.
54

0.
17

6

0.
17

9

0.
01

9

0.
03

0.
24

8

0.
01

3

0.
13

7

0.
41

7

0.
37

0.
53

1

0.
19

1

0.
0

0.
0

0.
0

0.
24

8

0.
01

9 0.
10

7

0.
00

2

0.
29

2

ResNet101FPN_backbone: AP of each category, each scene
Normal
Rain
Night

(b) ResNet101 FPN

Figure 4.3: AP for each category, each scene. Top: VGG16 backbone faster R-
CNN, Bottom: ResNet101 FPN backbone faster R-CNN.

48

4. Results

ca
r

tru
ck bu
s

tra
ile

r

co
ns

t.v
eh

icl
e

pe
de

st
ria

n

m
ot

or
cy

cle

bi
cy

cle

tra
ffi

c
co

ne

ba
rri

er

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
AT

E

0.
30

3

0.
56

3

0.
91

8 1.
03

5

0.
78

2

0.
16

8 0.
30

8

0.
26

6

0.
16

0.
35

7

0.
29

3

0.
54

6 0.
69

3

0.
89

8

0.
90

3

0.
19

7

0.
25

8

0.
24

1

0.
19

7

0.
38

7

0.
30

5 0.
44

7

0.
0

0.
0

0.
0

0.
13

2

0.
50

9

0.
21

6

1.
04

3

0.
22

2

VGG16_backbone: ATE of each category, each scene
Normal
Rain
Night

(c) VGG16

ca
r

tru
ck bu
s

tra
ile

r

co
ns

t.v
eh

icl
e

pe
de

st
ria

n

m
ot

or
cy

cle

bi
cy

cle

tra
ffi

c
co

ne

ba
rri

er

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

AT
E

0.
35

6

0.
71

0.
99

4

1.
02

0.
83

1

0.
21

4

0.
48

6

0.
40

7

0.
26

8

0.
53

2

0.
35

5

0.
72

9 0.
88

8

0.
94

6

0.
95

5

0.
23

9 0.
38

9

0.
34

7

0.
33

8

0.
57

1

0.
34

5

0.
57

7

0.
0

0.
0

0.
0

0.
15

1

0.
58

1

0.
29

2

0.
65

5

0.
51

3
ResNet101FPN_backbone: ATE of each category, each scene

Normal
Rain
Night

(d) ResNet101 FPN

Figure 4.4: ATE for each category, each scene. Top: VGG16 backbone faster
R-CNN, Bottom: ResNet101 FPN backbone faster R-CNN.

49

4. Results

ca
r

tru
ck bu
s

tra
ile

r

co
ns

t.v
eh

icl
e

pe
de

st
ria

n

m
ot

or
cy

cle

bi
cy

cle

tra
ffi

c
co

ne

ba
rri

er

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
AS

E

0.
31

5

0.
41

2

0.
57

1

0.
48

7 0.
55

0.
32

9 0.
36

8

0.
33 0.

36
5

0.
34

5

0.
32

0.
45

4

0.
53

7 0.
57

5

0.
60

1

0.
41

4

0.
34

9

0.
34

2

0.
37

1

0.
36

7

0.
29

4

0.
31

6

0.
0

0.
0

0.
0

0.
31

7

0.
31

8

0.
29

8

0.
38

1

0.
30

6

VGG16_backbone: ASE of each category, each scene
Normal
Rain
Night

(a) VGG16

ca
r

tru
ck bu
s

tra
ile

r

co
ns

t.v
eh

icl
e

pe
de

st
ria

n

m
ot

or
cy

cle

bi
cy

cle

tra
ffi

c
co

ne

ba
rri

er

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

AS
E

0.
31

1

0.
44

2

0.
57

1

0.
49

9 0.
57

2

0.
33

7 0.
38

4

0.
36

9 0.
40

6

0.
37

1

0.
31

6

0.
46

8 0.
53

7 0.
57

9 0.
63

5

0.
41

8

0.
36

8

0.
37

1 0.
40

9

0.
37

4

0.
28

4

0.
41

7

0.
0

0.
0

0.
0

0.
30

2 0.
34

1

0.
36

3

0.
33

0.
31

3
ResNet101FPN_backbone: ASE of each category, each scene

Normal
Rain
Night

(b) ResNet101 FPN

Figure 4.5: ASE for each category, each scene. Top: VGG16 backbone faster
R-CNN, Bottom: ResNet101 FPN backbone faster R-CNN.

50

4. Results

ca
r

tru
ck bu
s

tra
ile

r

co
ns

t.v
eh

icl
e

pe
de

st
ria

n

m
ot

or
cy

cle

bi
cy

cle

tra
ffi

c
co

ne

ba
rri

er

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
AO

E

0.
38

3

0.
61

1

0.
67

8

1.
35

4

1.
39

7

1.
40

5

1.
01

1.
63

1

0.
0 0.

09
3

0.
37

8

0.
61

8

0.
62

4

1.
54

5

1.
47

1

1.
39

9

1.
35

9

1.
73

2

0.
0 0.

07
1

0.
36

6

0.
86

3

0.
0

0.
0

0.
0

1.
54 1.

65
8

1.
64

6

0.
0 0.

07
1

VGG16_backbone: AOE of each category, each scene
Normal
Rain
Night

(a) VGG16

ca
r

tru
ck bu
s

tra
ile

r

co
ns

t.v
eh

icl
e

pe
de

st
ria

n

m
ot

or
cy

cle

bi
cy

cle

tra
ffi

c
co

ne

ba
rri

er

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

AO
E

0.
46

1

0.
74

7 0.
87

3

1.
25

4

1.
33

4 1.
44

1

1.
27

1

1.
65

2

0.
0 0.

10
6

0.
46

6

0.
75

4 0.
94

9

1.
64

3

1.
55

1

1.
49

3 1.
68

5

1.
68

4

0.
0 0.

07
8

0.
44

0.
98

6

0.
0

0.
0

0.
0

1.
67

2

1.
91

1.
41

0.
0 0.

12
2

ResNet101FPN_backbone: AOE of each category, each scene
Normal
Rain
Night

(b) ResNet101 FPN

Figure 4.6: AOE for each category, each scene. Top: VGG16 backbone faster
R-CNN, Bottom: ResNet101 FPN backbone faster R-CNN.

51

4. Results

4.3.2 Qualitative results
The BEV detection illustrations of 3D detector in normal scene, rain scene and night
scene are presented in Figure 4.7, 4.8 and 4.9 respectively. For each scene, three
samples of LIDAR pointcloud are plotted, and the 2D detection result from the
benchmark, VGG16 backbone faster R-CNN and ResNet101 FPN backbone faster
R-CNN are applied as the input of 3D detector.

(a) Benchmark (b) Benchmark (c) Benchmark

(d) VGG16 (e) VGG16 (f) VGG16

(g) ResNet101 FPN (h) ResNet101 FPN (i) ResNet101 FPN

Figure 4.7: The qualitative results of normal scene. Row 1: Benchmark, Row 2:
VGG16 backbone faster R-CNN, Row 3: ResNet101 FPN backbone faster R-CNN.

52

4. Results

(a) Benchmark (b) Benchmark (c) Benchmark

(d) VGG16 (e) VGG16 (f) VGG16

(g) ResNet101 FPN (h) ResNet101 FPN (i) ResNet101 FPN

Figure 4.8: The qualitative results of rain scene. Row 1: Benchmark, Row 2:
VGG16 backbone faster R-CNN, Row 3: ResNet101 FPN backbone faster R-CNN.

53

4. Results

(a) Benchmark (b) Benchmark (c) Benchmark

(d) VGG16 (e) VGG16 (f) VGG16

(g) ResNet101 FPN (h) ResNet101 FPN (i) ResNet101 FPN

Figure 4.9: The qualitative results of night scene. Row 1: Benchmark, Row 2:
VGG16 backbone faster R-CNN, Row 3: ResNet101 FPN backbone faster R-CNN

54

5
Discussion

In this chapter a detailed analysis and discussion of the results from the last chapter
will be performed.

5.1 The performance of 2D detector
As shown in Chapter 4, VGG16 backbone faster R-CNN outperforms ResNet101
FPN backbone faster R-CNN by a large margin and is selected as the better 2D de-
tector in our experiment on NuScenes dataset. However, on PASCAL VOC [56]
dataset and COCO [57] dataset on which VGG16 backbone faster R-CNN and
ResNet101 FPN backbone faster R-CNN were originally developed, ResNet101 FPN
backbone performs better than VGG16 backbone. We here argue that since VGG16
is much simpler and more straightforward than ResNet101 and the number of con-
volutional layers in VGG16 is much smaller than ResNet101, it needs much more
hand-crafted hyperparameter tuning for ResNet101 FPN backbone faster R-CNN
to make it perform well. Due to the lack of time and resources, we didn’t manage to
do a greedy search to fine tune ResNet101 FPN backbone faster R-CNN and reveal
its maximum capability on NuScenes dataset, which probably caused its unsatisfy-
ing performance. On the other hand, this comparison result reveals the robustness
of VGG16 backbone faster R-CNN, considering that its good performance without
much tuning on NuScenes dataset which has very different content from PASCAL
VOC or COCO.

Furthermore, the pre-trained initial parameters of VGG16 are taken from caffe li-
brary, while the pre-trained initial parameters of ResNet101 are taken from torchvi-
sion library. It is noticed that at the beginning of the training process, the loss value
imbalance issue is significantly larger for ResNet101 FPN backbone faster R-CNN,
which in other words, the results from four loss functions are on different magni-
tudes. The regression loss for RPN is quite small and the regression loss for ROI
head is even smaller. The small value of ROI regression loss is probably caused by
the usage of ROI align since it aims to eliminate localization error. We therefore
have to manually add weights to different losses to fill the magnitude gap among
them so that the backward propagation is not dominated by one type of loss. This
proves that the pre-trained VGG16 from caffe library provides a better initialization
which makes the following training easier.

On the other hand, we used the mean and standard deviation (std) value from Im-

55

5. Discussion

ageNet to normalize all images in NuScenes as pre-processing. This pre-processing
aims to eliminate extreme differences among images and cooperate with the feature
extractor whose initialization is taken from ImageNet pre-trained model. As men-
tioned above, the VGG16 and ResNet101 pre-trained models are taken from different
libraries so the pre-processing of two faster R-CNN models are also different. We ar-
gue that the pre-processing method is also one of the possible reasons that affect the
final performance. Considering that all images of NuScenes dataset are taken by the
same one suite of cameras, which is different from the condition in ImageNet, a new
pre-processing method, for example using the mean and std value calculated from
NuScenes instead of ImageNet, may also help to improve the detection performance.

As observed in Table 4.2 to 4.6, car has the highest AP under almost every condition
because it is the category with an exclusively high sample number. Thanks to the
huge amount of data of category car, the training process managed to learn its fea-
ture better than other categories. On the other hand, the exclusively high number
of cars causes imbalance issue. To mitigate this issue and let other categories with
much fewer samples have similar good results, one way is to use category balancing
pre-processing technique to reduce the imbalance severity, such as in [37]. Inter-
estingly, with a relatively small number of samples, bus achieves the second best
place in detection performance and even reaches a higher AP than car in visibility
code “3”. One possible reason is that bus shares some features that are similar to
car, which causes that the learning of car also helps the the learning of bus. Fur-
thermore, since trailer has similar size and more samples compared with bus but
its AP is significantly lower, we consider that the good detection performance on
bus is probably because of its regular shape as a closed cubic. On the other hand,
trailer and construction vehicle have a medium amount of samples but they result as
the two categories with lowest AP. Because they both have open irregular structure
shape.

The mAP in rain scene is really close to the mAP in normal scene. The AP per cate-
gory further proves that camera is not affected by rainy weather, at least in NuScenes
dataset. From the qualitative results we can have an intuition that the definition of
rain scene in NuScenes does not include a storm when the sky is completely black.
The rain does not cause a catastrophic affect on the illumination condition, so the
camera can still operate as well as in normal weather. In contrast, the illumination
condition in night scene get significantly worse. Therefore the camera suffers a huge
detection performance decrease. We implemented low-illumination image enhance-
ment algorithm [58] for the inference time of our 2D detector to make night scene
images subjectively look more like taken in normal scenes, but this was found not
helpful for improving the performance since current low-illumination image enhance-
ment algorithms are still quite limited and far from good enough. Another naive
probable way to improve the performance decay at night is to project LIDAR point-
cloud to the camera plane when it is night scene, since LIDAR is not affected by
night condition and can serve as a supplement to the original unclear images taken
at night. Interestingly, the detection performance for car is not impacted by night
scene. One reason is that all cars are supposed to turn on headlights when driving at

56

5. Discussion

night, which turns them into light sources. Meanwhile, the location and brightness
of the headlights are relatively standard, which gives different cars regular features.
It may be noticed that truck should have similar conditions with car since it is also
another standard type of vehicle. But the detection performance of truck at night is
not quite satisfying. We believe that it is because there are approximately 15 times
more samples of car in night scene than those of truck. A significant larger amount
of data helps the detection network learn the features of car much better than truck.

It is observed that visibility loss which is mainly caused by occlusion has a fatal
impact on the 2D object detection performance. There is another visibility loss
cause named truncation, but nowadays since the AD perception sensor suite covers
360 degrees, stitching the images from every camera together will alleviate trun-
cation problem. For occlusion issue, considering that two or more objects have to
be really close to each other to cause occlusion, we were intuitively expecting the
more aggressive prediction behaviour of ResNet101 FPN backbone faster R-CNN
would help on this occlusion issue, which turns out not the case. To be more spe-
cific, we were expecting the denser prediction bounding boxes of ResNet101 FPN
backbone faster R-CNN may hopefully cover the objects that are highly occluded
by another object in the front and result in a better performance in low visibility
code. However, the results show that the performance of ResNet101 FPN backbone
faster R-CNN is inferior to VGG16 backbone faster R-CNN in all directions and
it does not have interesting advantage for alleviating occlusion. One explanation
could be that although an occluded object is enclosed by a bounding box, the cor-
responding classification is not right, which makes the bounding box meaningless.
Another possible way to improve the performance under occlusion condition is to
use video sequence as input instead of conducting frame-wise object detection, since
in ADAS and AD context most occlusion is temporary because the ego vehicle con-
tinues moving. However, video sequence as input has gone beyond the scope of
the capability of faster R-CNN and other 2D detector implementation is needed to
verify this assumption.

5.2 The benchmark performance of 3D detector

5.2.1 AP, ATE, ASE, AOE in all scenes
Figure 5.1 illustrates the scatter plot of AP with the ATE, ASE and AOE. We also
calculated the Pearson correlation coefficient (PCC) between AP and each of ATE,
ASE and AOE respectively as the following equation

ηAP, AxE = cov(AP, AxE)√
var(AP) · var(AxE)

, (5.1)

where AxE represents one of ATE, ASE and AOE. The numerical results are ηAP, ATE =
−0.9421, ηAP, ASE = −0.9074, ηAP, AOE = −0.4943. (AP, ATE) and (AP, ASE) of
benchmark 3D detection are the pairs with strong linear correlation, while (AP,
AOE) does not show very strong correlation.

57

5. Discussion

0.0 0.2 0.4 0.6 0.8 1.0
AP

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

AX
E

Benchmark: AP-AxE
car
truck
bus
trailer
const.vehicle
pedestrain
motorcycle
bicycle
traffic cone
barrier

ATE
ASE
AOE

Figure 5.1: Scatter plot of the NuScenes evaluation metrics of benchmark 3D
detection results. In the plot, x-axis denotes AP of each category, while the y-axis
denote the error metrics, i.e., ATE, ASE and AOE.

We also plotted the the proportion of each valid category among all the valid cat-
egories in Figure 5.2. It is found that the proportion of one category is not a key
factor to determine the AP of that category. Instead, AP and volume are highly
correlated with each other, with ηAP, volume = −0.81, as Figure 5.3 illustrated. Thus,
we can conclude that the category with smaller average volume is likely to have
a higher AP. This finding can be explained intuitively. The more accurate the 2D
detection results a more accurate 3D detection. Recall that the 2D bounding box we
used to generate the frustum view is the intersection of 2D projection and camera
canvas. The 2D projection of the large objects that are close to the ego vehicle is
less likely to be fully included in the camera canvas, which results the inaccurate
frustum, while the smaller object are more likely to be fully included in the camera
image. We infer that the camera with larger view scope can provide more accurate
frustum view for the 3D detector.

58

5. Discussion

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Category %

0.2

0.3

0.4

0.5

0.6

0.7

0.8

AP

Benchmark: Category percentage-AP

car
truck
bus
trailer
const.vehicle
pedestrain
motorcycle
bicycle
traffic cone
barrier

Figure 5.2: Scatter plot of the category percentage and each category’s AP of
benchmark 3D detection results. The AP does not show a clear relation to the
category percentage.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
volume / m^3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

AP

8.25

11.50

17.80

16.00

10.60

3.22

4.18

3.84

1.70

4.01

Benchmark: Average volume-AP

car
truck
bus
trailer
const.vehicle
pedestrain
motorcycle
bicycle
traffic cone
barrier

Figure 5.3: Scatter plot of the category average volume and each category’s AP
of benchmark 3D detection results. The category with larger size is likely to have a
lower AP.

5.2.2 AP in different scenes
To our surprise, from Table 4.9, the mAP of the rain scene and night scene outper-
form that of normal scene. However, we do not know where the difference comes
from. The possible reasons for the difference could be

1. biased samples in the night and rain scene,

59

5. Discussion

2. the LIDAR pointcloud data does show systematic difference in night and rain
scene compared to normal scene.

At first, we thought about the mAP difference between normal scene and night scene.
Since the only difference between night scene and normal scene is the illumination
level and LIDAR unit does not require ambient light to operate, we believe that
there is no difference for LIDAR to operate in normal or night scene. Thus, the sec-
ond assumption is excluded. Given the number of night scenes (14) is much smaller
than the normal scenes (112), the first assumption could explain the mAP difference.

Then we thought about the mAP difference between normal scene and rainy scene.
The first assumption could be one of the reasons, since there are only 24 scenes in
the rain scene, which are fewer than the number of normal scenes. Now we examine
the second assumption. Four pictures of LIDAR detected road surface are plotted
in Figure 5.4. It is easy to notice that the LIDAR scan of road surface in the normal
scene looks like a smooth curve, but in the rain scene the points of road surface
are less smooth. This difference is an evidence to support assumption two, that the
difference of LIDAR pointcloud data between normal and rain scene does exist and
can be perceived by human eyes. We can infer that the difference also exists not
only exist in the road surface, but also in the some of the other objects.

Another question is, does this difference in LIDAR points influence the detection
ability of 3D detector? This is a question we cannot answer yet. According the
mAP of normal scene 0.7020 and of rain scene 0.7334, it is risky to conclude that
the rainy scene helps the 3D detector to achieve higher mAP, since the samples in
rain scenes can be biased towards the easier side for the 3D detector. To answer this
question rigorously, we might need two frames of LIDAR pointcloud with identical
set of objects and surroundings except the difference in rain or not rain, and see the
mAP of the 3D detector these two frames. However, such LIDAR frames this are
unrealistic to get.

60

5. Discussion

(a) normal scene

(b) normal scene

Figure 5.4: LIDAR points of road surface in normal and rain scene.

61

5. Discussion

(c) rain scene

(d) rain scene

Figure 5.4: LIDAR points of road surface in normal and rain scene.

62

5. Discussion

5.3 Joint 2D-3D detection performance
In this section, we aims to discuss how the AP of joint 2D-3D detection is influenced
by the 2D detection. Note that we stated in Chapter 3.4, all the 2D detection from
VGG16 backbone faster R-CNN and ResNet101 FPN backbone faster R-CNN that
serve as the input for F-ConvNet are selected by a threshold at 0.7. However, the
evaluation for the 2D detector itself in Chapter 4.1 takes all 2D bounding boxes with
a score higher than 0.05 into account. Thus, here we evaluate again the performance
of 2D detection with the score threshold 0.7 in order to give better explanations for
the following 3D detection result. The results are shown in Table 5.1.

Table 5.1: AP and mAP of two faster R-CNN with different backbones under dif-
ferent scenes, evaluation score threshold 0.7. Since the bus, trailer and construction
vehicle do not exist in the night scene, all the mAPs in the last row do not count in
these three categories, for the convenience of comparison.

VGG16 backbone ResNet101FPN backbone
all normal rain night all normal rain night

car 0.601 0.599 0.607 0.608 0.494 0.494 0.497 0.494
truck 0.398 0.399 0.334 0.270 0.274 0.302 0.250 0.184
bus* 0.532 0.534 0.523 nan 0.425 0.436 0.373 nan
trailer* 0.227 0.225 0.288 nan 0.131 0.127 0.146 nan
const.veh* 0.152 0.192 0.146 nan 0.107 0.109 0.117 nan
pedestrian 0.417 0.420 0.322 0.339 0.303 0.306 0.239 0.250
motorcycle 0.346 0.351 0.411 0.313 0.219 0.219 0.194 0.073
bicycle 0.343 0.343 0.342 0.253 0.237 0.244 0.175 0.145
traffic cone 0.477 0.480 0.405 0.062 0.294 0.298 0.276 0.008
barrier 0.393 0.383 0.429 0.254 0.292 0.287 0.297 0.188
mAP
(without *) 0.425 0.425 0.407 0.300 0.302 0.307 0.276 0.192

5.3.1 AP, ATE, ASE, AOE in all scenes
From Table 4.7 and 4.10, it is easy to see that the 2D detection from faster R-CNN
yields higher AP of 3D detection and lower ATE by a large margin. While the ASE
and AOE does not show such relation as AP or ATE.

We also compared how much the AP of each category drops from benchmark 3D
AP in the 2D-3D joint detection results. Let “AP decay” denote how much AP of
the joint detection has dropped from the AP of the benchmark detection, i.e.,

AP decay = 1− APjoint

APbenchmark
. (5.2)

A scatter plot of the AP decay and the AP of 2D detection from Table 5.1 is
illustrated as Figure 5.5. The PCC is -0.958 for VGG16 backbone faster R-CNN

63

5. Discussion

and -0.849 for ResNet101 FPN backbone faster R-CNN. Thus, we can conclude that
the detection category with higher AP in 2D detection are likely to have less drop
of AP in the 3D detection from the benchmark results.

0.2 0.3 0.4 0.5 0.6
AP of 2D detection

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
AP

 d
ec

ay
 in

 jo
in

t d
et

ec
tio

n
AP decay - AP 2D

car
truck
bus
trailer
const.vehicle
pedestrain
motorcycle
bicycle
traffic cone
barrier

VGG
ResNet

Figure 5.5: Scatter plot of AP decay in joint detection and 2D AP for each category.
The AP decay describes how much AP has dropped in joint detection from the
benchmark 3D detection. AP decay is highly negatively correlated with the 2D AP
for both 2D detectors.

5.3.2 AP in different scenes
From Table 4.12, we find that 2D mAP in night is significantly lower than that
in normal and rain scene, for both 2D detectors. We also calculate the AP decay
under either 2D detector, which is displayed in Table 5.2. The conclusion that
the AP decay of each category is highly negatively correlated with the AP of 2D
detection also holds for different scenes. The strong dependence on the 2D detector
could be a risk of this joint 2D-3D detection algorithm, especially in the night scene,
where the bicycle, pedestrian are not easy to be detected.

Table 5.2: Pearson coefficient of AP decay and 2D AP (score threshold 0.7) of each
scene. * means only 7 categories are used to calculated the coefficient.

faster R-CNN backbone VGG16 ResNet101 FPN
all -0.958494 -0.849487

normal* -0.904145 -0.82928
rain* -0.944948 -0.888039
night* -0.894487 -0.971984

64

6
Conclusion & Future Work

6.1 Conclusion
In this thesis, we explored NuScenes dataset, which is a newly released AD dataset
and conducted a thorough analysis. We did an extensive literature review on the
deep learning method for 2D and 3D object detection. We implemented and trained
the joint 2D-3D object detector, which uses the 2D detection as the prior informa-
tion for 3D detector, for our NuScenes object detection task. We also conducted an
analysis and discussion of the characteristics of our object detector.

Two versions of faster R-CNN as 2D detector with different backbones were imple-
mented for the 2D detection. According to our experiments, the VGG16 backbone
faster R-CNN outperforms the ResNet101 FPN backbone faster R-CNN by a large
margin. We also found that the occlusion has an unfavourable impact on the detec-
tion ability.

The 3D detector we implemented is Frustum ConvNet. The 2D detection’s category
and bounding box is the prior information for the Frustum ConvNet. To be able to
train up to 10 categories on this architecture, we modified the detection head from
the original Frustum ConvNet.

Frustum ConvNet has different inherent detection ability on different categories.
The Frustum ConvNet we implemented did best at traffic cone and the worst on
trailer, if we use AP as the indicator for detection ability. We found that the AP of
each category is correlated with the mean size of this category. The smaller category
is more likely to achieve higher AP.

The performance of 2D-3D detector on some category is determined by the 3D de-
tector’s inherent detection ability on this category together with the 2D detector’s
ability on this category. But generally speaking, the category with higher AP in 2D
detection has less AP drop percentage in AP of joint 2D-3D detection. A successful
2D detector is the necessary condition of a successful joint 2D-3D detector.

We also tested the performance of 2D and 3D detector on different scenes. For
either 2D detector, the detection ability is much weaker in the night scene, except
the car category. The ability for normal scene and raining scene is very similar.
We also noticed that Frustum ConvNet benchmark results in rainy and night scenes

65

6. Conclusion & Future Work

are similar and even slightly better than the normal scene. We can conclude that
LIDAR performs equally well among normal, rain and night scene in the context of
using our 3D detector and the NuScenes dataset.

The joint 2D-3D detection performance in night scene is reduced because of the
limitation of camera. Thus, careful attention should be paid to reliability of camera
sensor in the low light environment when the ADAS algorithm is developed for
commercial purpose.

6.2 Future Work
Due to the time and resource limitation, the 3D detector is only trained two epochs.
It is expected that more epochs will increase the performance of 3D detector.

For the same limitation, we did not evaluate the joint 2D-3D detection performance
using 2D predictions with score over 0.05. Since the 2D detector evaluation using
all predicted bounding boxes with a score higher than 0.05 gives a better result than
using 0.7, and NMS will be applied after F-ConvNet to eliminate the 3D bound-
ing boxes overlapping issue, we believe that feeding more 2D predictions as prior
information to F-ConvNet can improve the performance. However, more 2D prior
information makes the processing time significantly longer, therefore how to make
the computation more efficient and decrease the inference time is also another future
work direction.

In our thesis, we only have one model of 3D detection using PointNet as feature
extractor. More variations of the feature extractor could be explored in the future
so that we can see how the feature extractor will influence the performance of 3D
detector.

NuScenes is very imbalanced in the valid categories. Some work such as [37] uses
pre-processing technique on the dataset to reduce the imbalance issue. We can also
try such technique to further improve the performance.

Finally, since NuScenes also provides Radar data, the pipeline of our work enables
the LIDAR data that we use be transferred to Radar data, and the pioneer work [59]
shows the potential of using PointNet on radar data to conduct object detection,
we believe our work will have some interesting results once transferred on radar data.

66

Bibliography

[1] Nakhaeinia D, Tang SH, Noor SM, Motlagh O. A review of control architec-
tures for autonomous navigation of mobile robots. International Journal of the
Physical Sciences. 2011;6(2):169–174.

[2] Zhu H, Yuen KV, Mihaylova L, Leung H. Overview of environment percep-
tion for intelligent vehicles. IEEE Transactions on Intelligent Transportation
Systems. 2017;18(10):2584–2601.

[3] González D, Pérez J, Milanés V, Nashashibi F. A review of motion planning
techniques for automated vehicles. IEEE Transactions on Intelligent Trans-
portation Systems. 2015;17(4):1135–1145.

[4] Wang Z, Jia K. Frustum convnet: Sliding frustums to aggregate local point-
wise features for amodal 3d object detection. arXiv preprint arXiv:190301864.
2019;.

[5] Schroder J, Heid B, Neuhaus F, Kasser M, Klink C, Tatomir S. Fast forward-
ing last-mile delivery–implications for the ecosystem. Travel, Transport and
Logistics and Advanced Industries, McKinsey & Company, July. 2018;.

[6] Rosenzweig J, Bartl M. A review and analysis of literature on autonomous
driving. E-Journal Making-of Innovation. 2015;p. 1–57.

[7] Yurtsever E, Lambert J, Carballo A, Takeda K. A survey of autonomous driv-
ing: Common practices and emerging technologies. IEEE Access. 2020;8:58443–
58469.

[8] Ilas C. Electronic sensing technologies for autonomous ground vehicles: A
review. In: 2013 8TH INTERNATIONAL SYMPOSIUM ON ADVANCED
TOPICS IN ELECTRICAL ENGINEERING (ATEE). IEEE; 2013. p. 1–6.

[9] Caesar H, Bankiti V, Lang AH, Vora S, Liong VE, Xu Q, et al. nuscenes: A
multimodal dataset for autonomous driving. arXiv preprint arXiv:190311027.
2019;.

[10] Lowe DG. Distinctive image features from scale-invariant keypoints. Interna-
tional journal of computer vision. 2004;60(2):91–110.

[11] Dalal N, Triggs B. Histograms of oriented gradients for human detection. In:
2005 IEEE computer society conference on computer vision and pattern recog-
nition (CVPR’05). vol. 1. IEEE; 2005. p. 886–893.

67

Bibliography

[12] Lienhart R, Maydt J. An extended set of haar-like features for rapid object
detection. In: Proceedings. international conference on image processing. vol. 1.
IEEE; 2002. p. I–I.

[13] Barnich O, Van Droogenbroeck M. ViBe: a powerful random technique to
estimate the background in video sequences. In: 2009 IEEE international con-
ference on acoustics, speech and signal processing. IEEE; 2009. p. 945–948.

[14] Beaupré DA, Bilodeau GA, Saunier N. Improving multiple object tracking with
optical flow and edge preprocessing. arXiv preprint arXiv:180109646. 2018;.

[15] Guo Y, Liu Y, Oerlemans A, Lao S, Wu S, Lew MS. Deep learning for visual
understanding: A review. Neurocomputing. 2016;187:27–48.

[16] Kesten R, Usman M, Houston J, Pandya T, Nadhamuni K, Ferreira A, et al..
Lyft level 5 av dataset 2019; 2019.

[17] Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The kitti dataset.
The International Journal of Robotics Research. 2013;32(11):1231–1237.

[18] Huang X, Cheng X, Geng Q, Cao B, Zhou D, Wang P, et al. The apolloscape
dataset for autonomous driving. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops; 2018. p. 954–960.

[19] Sun P, Kretzschmar H, Dotiwalla X, Chouard A, Patnaik V, Tsui P, et al.
Scalability in perception for autonomous driving: Waymo open dataset. arXiv.
2019;p. arXiv–1912.

[20] Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate
object detection and semantic segmentation. In: Proceedings of the IEEE
conference on computer vision and pattern recognition; 2014. p. 580–587.

[21] Girshick R. Fast r-cnn. In: Proceedings of the IEEE international conference
on computer vision; 2015. p. 1440–1448.

[22] Ren S, He K, Girshick R, Sun J. Faster r-cnn: Towards real-time object de-
tection with region proposal networks. In: Advances in neural information
processing systems; 2015. p. 91–99.

[23] Lin TY, Dollár P, Girshick R, He K, Hariharan B, Belongie S. Feature pyramid
networks for object detection. In: Proceedings of the IEEE conference on
computer vision and pattern recognition; 2017. p. 2117–2125.

[24] He K, Gkioxari G, Dollár P, Girshick R. Mask r-cnn. In: Proceedings of the
IEEE international conference on computer vision; 2017. p. 2961–2969.

[25] Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: Unified,
real-time object detection. In: Proceedings of the IEEE conference on computer
vision and pattern recognition; 2016. p. 779–788.

[26] Redmon J, Farhadi A. YOLO9000: better, faster, stronger. In: Proceedings
of the IEEE conference on computer vision and pattern recognition; 2017. p.
7263–7271.

68

Bibliography

[27] Redmon J, Farhadi A. Yolov3: An incremental improvement. arXiv preprint
arXiv:180402767. 2018;.

[28] Chen X, Ma H, Wan J, Li B, Xia T. Multi-view 3d object detection network
for autonomous driving. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition; 2017. p. 1907–1915.

[29] Chen X, Kundu K, Zhang Z, Ma H, Fidler S, Urtasun R. Monocular 3d object
detection for autonomous driving. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition; 2016. p. 2147–2156.

[30] Ku J, Mozifian M, Lee J, Harakeh A, Waslander SL. Joint 3d proposal gener-
ation and object detection from view aggregation. In: 2018 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). IEEE; 2018. p.
1–8.

[31] Qi CR, Liu W, Wu C, Su H, Guibas LJ. Frustum pointnets for 3d object de-
tection from rgb-d data. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition; 2018. p. 918–927.

[32] Zhou Y, Tuzel O. Voxelnet: End-to-end learning for point cloud based 3d object
detection. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition; 2018. p. 4490–4499.

[33] Shi S, Guo C, Jiang L, Wang Z, Shi J, Wang X, et al. PV-RCNN: Point-
Voxel Feature Set Abstraction for 3D Object Detection. arXiv preprint
arXiv:191213192. 2019;.

[34] Meyer GP, Laddha A, Kee E, Vallespi-Gonzalez C, Wellington CK. Lasernet:
An efficient probabilistic 3d object detector for autonomous driving. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition;
2019. p. 12677–12686.

[35] Meyer GP, Charland J, Hegde D, Laddha A, Vallespi-Gonzalez C. Sensor fusion
for joint 3D object detection and semantic segmentation. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition Workshops;
2019. p. 0–0.

[36] Lang AH, Vora S, Caesar H, Zhou L, Yang J, Beijbom O. Pointpillars: Fast en-
coders for object detection from point clouds. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition; 2019. p. 12697–12705.

[37] Zhu B, Jiang Z, Zhou X, Li Z, Yu G. Class-balanced Grouping and Sampling
for Point Cloud 3D Object Detection. arXiv preprint arXiv:190809492. 2019;.

[38] Yang Z, Sun Y, Liu S, Shen X, Jia J. Std: Sparse-to-dense 3d object detector
for point cloud. In: Proceedings of the IEEE International Conference on
Computer Vision; 2019. p. 1951–1960.

[39] Zarzar J, Giancola S, Ghanem B. PointRGCN: Graph Convolution Networks
for 3D Vehicles Detection Refinement. arXiv preprint arXiv:191112236. 2019;.

69

Bibliography

[40] Qi CR, Litany O, He K, Guibas LJ. Deep hough voting for 3d object detection
in point clouds. In: Proceedings of the IEEE International Conference on
Computer Vision; 2019. p. 9277–9286.

[41] Wang Y, Sun Y, Liu Z, Sarma SE, Bronstein MM, Solomon JM. Dynamic
graph cnn for learning on point clouds. ACM Transactions on Graphics (TOG).
2019;38(5):1–12.

[42] Shi S, Wang Z, Shi J, Wang X, Li H. From Points to Parts: 3D Object Detec-
tion from Point Cloud with Part-aware and Part-aggregation Network. IEEE
Transactions on Pattern Analysis and Machine Intelligence. 2020;.

[43] Kraemer S, Stiller C, Bouzouraa ME. LiDAR-Based Object Tracking and Shape
Estimation Using Polylines and Free-Space Information. In: 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE;
2018. p. 4515–4522.

[44] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:14091556. 2014;.

[45] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition;
2016. p. 770–778.

[46] Chen Y. Learning Faster R-CNN from the perspective of programming im-
plementation (with minimalist implementation);. https://zhuanlan.zhihu.
com/p/32404424 Accessed March 10, 2020. [EB/OL].

[47] Qi CR, Su H, Mo K, Guibas LJ. Pointnet: Deep learning on point sets for
3d classification and segmentation. In: Proceedings of the IEEE conference on
computer vision and pattern recognition; 2017. p. 652–660.

[48] Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, et al. Ssd: Single
shot multibox detector. In: European conference on computer vision. Springer;
2016. p. 21–37.

[49] Qi CR, Yi L, Su H, Guibas LJ. Pointnet++: Deep hierarchical feature learning
on point sets in a metric space. In: Advances in neural information processing
systems; 2017. p. 5099–5108.

[50] Lin TY, Goyal P, Girshick R, He K, Dollár P. Focal loss for dense object
detection. In: Proceedings of the IEEE international conference on computer
vision; 2017. p. 2980–2988.

[51] Tofa KN, Ahmed F, Shakil A, et al. Inappropriate scene detection in a video
stream. BRAC University; 2017.

[52] Jin A, Yeung S, Jopling J, Krause J, Azagury D, Milstein A, et al. Tool detec-
tion and operative skill assessment in surgical videos using region-based convo-
lutional neural networks. In: 2018 IEEE Winter Conference on Applications of
Computer Vision (WACV). IEEE; 2018. p. 691–699.

70

https://zhuanlan.zhihu.com/p/32404424
https://zhuanlan.zhihu.com/p/32404424

Bibliography

[53] González RE, Munoz RP, Hernández CA. Galaxy detection and identifica-
tion using deep learning and data augmentation. Astronomy and computing.
2018;25:103–109.

[54] Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L. Imagenet: A large-scale
hierarchical image database. In: 2009 IEEE conference on computer vision and
pattern recognition. Ieee; 2009. p. 248–255.

[55] Padilla R, Netto SL, da Silva EAB. A Survey on Performance Metrics for
Object-Detection Algorithms. In: 2020 International Conference on Systems,
Signals and Image Processing (IWSSIP); 2020. p. 237–242.

[56] Everingham M, Van Gool L, Williams CK, Winn J, Zisserman A. The pascal
visual object classes (voc) challenge. International journal of computer vision.
2010;88(2):303–338.

[57] Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, et al. Microsoft
coco: Common objects in context. In: European conference on computer vision.
Springer; 2014. p. 740–755.

[58] Shi Z, mei Zhu M, Guo B, Zhao M, Zhang C. Nighttime low illumination image
enhancement with single image using bright/dark channel prior. EURASIP
Journal on Image and Video Processing. 2018;2018(1):13.

[59] Danzer A, Griebel T, Bach M, Dietmayer K. 2d car detection in radar data
with pointnets. In: 2019 IEEE Intelligent Transportation Systems Conference
(ITSC). IEEE; 2019. p. 61–66.

71

	List of Figures
	List of Tables
	Introduction
	Background
	Limitations
	Thesis Outline

	Theory & Related work
	2D object detection
	Two-stage architecture
	Faster R-CNN
	VGG backbone
	ResNet backbone
	Feature pyramid network
	Region proposal network
	Proposal target creator and feature map selection
	ROI feature extractor: ROI pooling
	ROI feature extractor: ROI align
	Detection head

	One-stage architecture

	Point cloud feature learning
	PointNet feature extraction
	Graph-based feature extraction
	Voxel-based feature extraction

	3D object detector using only LIDAR point cloud
	3D object detector using both LIDAR and camera
	Multimodal/multiView feature fusion
	Camera detector as prior information
	Frustum ConvNet
	Entire detection pipeline
	Multi resolution PointNet backbone
	Fully convolutional layer
	Detection head
	Loss function

	Literature review summary

	Implementation & Experiments
	2D detector's architecture details
	VGG16 backbone faster R-CNN
	ResNet101 FPN backbone faster R-CNN

	3D detector's implementation details
	Multi resolution PointNet backbone
	Fully convolutional layer
	Detection head
	Loss function

	Training settings
	The training settings of faster R-CNN
	The training settings of Frustum ConvNet

	Evaluation metrics
	2D-3D joint detection process
	Experiments design
	Experiments on 2D detector
	Experiments on 3D detector

	Results
	2D detection results
	Quantitative results
	Scene agnostic, visibility agnostic results
	Scene Aware, visibility agnostic results
	Scene agnostic, visibility aware results

	Qualitative results

	Benchmark 3D detection results
	Category agnostic, scene agnostic results
	Category aware, scene agnostic results
	Category agnostic, scene aware results
	Category aware, scene aware results

	2D-3D joint detection results
	Quantitative results
	Category agnostic, scene agnostic results
	Category aware, scene agnostic results
	Category agnostic, scene aware results
	Category aware, scene aware results

	Qualitative results

	Discussion
	The performance of 2D detector
	The benchmark performance of 3D detector
	AP, ATE, ASE, AOE in all scenes
	AP in different scenes

	Joint 2D-3D detection performance
	AP, ATE, ASE, AOE in all scenes
	AP in different scenes

	Conclusion & Future Work
	Conclusion
	Future Work

	Bibliography

