

Department of Industrial and Materials Science

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2020

www.chalmers.se

Development of an Anti-Pinch
System for Passenger Vehicles
A Product Development Project at Volvo Cars
Master’s thesis in Product Development

MARCUS BOHLIN

GUNJAN NAGPAL

iii

MASTER’S THESIS 2020

Development of an Anti-Pinch System for

Passenger Vehicles

An Anti-Pinch System that can replace multiple

such systems used today, while also meeting legal safety

regulations. In collaboration with Volvo Car Corporation.

Marcus Bohlin

Gunjan Nagpal

Department of Industrial and Materials Science

Division of Product Development

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2020

v

Development of an Anti-Pinch System for Passenger Vehicles

An Anti-Pinch System that can replace multiple such systems used today, while also meeting

legal safety regulations. In collaboration with Volvo Car Corporation.

MARCUS BOHLIN

GUNJAN NAGPAL

© MARCUS BOHLIN, GUNJAN NAGPAL, 2020.

Supervisor: Egoi Sanchez Basualdo, Volvo Car Corporation, Interior Lights and Functional

Parts

Examiner: Dr. Erik Hulthén, Chalmers University of Technology, Department of Industrial

and Materials Science

Master’s Thesis 2020

Department of Industrial and Materials Science

Division of Product Development

Chalmers University of Technology

SE-412 96 Gothenburg

Telephone +46 31 772 1000

Cover: A lineup of Volvo Cars. © Volvo Car Corporation

Printed by Chalmers Reproservice

Gothenburg, Sweden 2020

vii

Development of an Anti-Pinch System for Passenger Vehicles

An Anti-Pinch System that can replace multiple such systems used today, while also meeting

legal safety regulations. In collaboration with Volvo Car Corporation.

A Product Development Project at Volvo Cars

MARCUS BOHLIN

GUNJAN NAGPAL

Department of Industrial and Materials Science

Chalmers University of Technology

Abstract
Products are becoming increasingly complex and so is every vehicle on the road. Passenger car

manufacturers are adding more customer-oriented comfort features at every price segment in

order to differentiate themselves from the competition. A lot of these features make use of

automating the movement of various parts such as sunroof panels, seats and tailgates.

Automation through motorized components needs to be accompanied by systems that can act

as safeguards to prevent human injury due to this automation process. This thesis aims to lay

the groundwork thereby equipping Volvo Cars with the knowledge to develop a consolidated

anti-pinch system that could potentially be used in several different automotive components.

Different approaches for detecting pinch situations across industries and environments were

evaluated. Two principally different approaches were chosen for further development, the first

using hall sensors and the second leveraging ripple counting. A fundamental requirement for

the developed concepts was conforming with legal regulations, namely the US regulation

FMVSS No. 118 and the UN regulation ECE-R21-01. Taking an approach of early prototyping

and testing, the concepts were continuously being tested along with their development.

After going through prototyping and testing, three different recommendations were made for

Volvo Cars based on different timescales. A concept that meets legal testing requirements was

suggested for implementation in 1-2 years, whereas other concepts that would require more

developmental effort were suggested for timescales of 3-4 years and 7+ years. With an in-

house system at their disposal, Volvo will have greater control over the functionality and safety

of their anti-pinch systems, while also enabling cost savings.

Keywords: Automotive, Mechatronics, Passenger Safety, Anti-Pinch System, Hall Sensors,

Sensorless Motor Control, Product Development

ix

Acknowledgements

We would like to express our gratitude to our supervisor and examiner from Chalmers, Dr. Erik

Hulthén, Associate Professor at Chalmers University of Technology, for his guidance

throughout the project. We would also like to thank our supervisor from Volvo, Egoi Sanchez

Basualdo, System Architect Interior Lights at Volvo Cars, for his support and constant

motivation.

We are also grateful for the irreplaceable help and guidance received from David Johansson,

Analysis Engineer at Volvo Cars, in the Strength and Endurance laboratory, and from Patrick

Bobink, Hardware Designer DCU in Steering Wheel and Seat Electronics.

We would also like to thank our colleagues at Chalmers Technical University and Volvo Cars,

especially interior light team and the HIL Laboratory.

Finally, we would like to thank all the people who were involved in the progress made during

this thesis work for their contributions.

Marcus Bohlin and Gunjan Nagpal, Gothenburg, June 2020

Contents

1 Introduction .. 1

1.1 Background ... 1

1.2 Problem Description .. 2

1.3 Aim .. 3

1.4 Limitations .. 3

1.5 Scope ... 3

2 Methodology ... 5

2.1 Planning ... 5

2.2 Research and Technology Study ... 5

2.3 Customer Needs Study .. 6

2.4 Concept Development ... 6

2.5 Prototyping .. 6

2.6 Prototype Testing .. 6

2.7 Concept Evaluation ... 7

3 Risk Management ... 9

4 Customer Needs Analysis ... 13

4.1 Interview Structure .. 13

4.2 Interview Summary ... 13

4.3 Observation Structure .. 17

4.4 Observation Summary ... 17

4.5 Legal Requirements... 17

4.6 Customer Needs List ... 19

4.7 Metrics for User Requirements ... 20

5 Technology Study ... 23

5.1 Driving Systems .. 23

5.2 Electrical Drive ... 24

5.3 Sensors for Detecting Pinch Situations ... 25

5.4 Signal Filtering .. 30

5.5 Communication Protocols ... 33

6 Concept Generation .. 35

6.1 Identification of sub-functions .. 35

6.2 Morphological matrix .. 35

6.3 Generated Concepts... 38

6.4 Concept Elimination .. 39

6.5 Concepts Proceeding from the Elimination Matrix... 40

7 Prototyping ... 45

7.1 Early Prototyping Quick & Dirty .. 45

7.2 Prototyping Concept 1 ... 46

7.3 Prototyping Concept 2 ... 58

7.4 Prototyping Concept 3 and 4 ... 65

7.5 Software Development .. 66

8 Concept Testing and Results .. 73

8.1 Testing Procedure .. 73

8.2 Testing Results .. 77

8.3 Test Analysis and Concept Evaluation.. 79

9 Cost Estimation .. 83

9.1 Cost Estimation of Outsourcing .. 83

9.2 Cost Estimation of In-house Development ... 84

9.3 Estimation of Component Costs .. 84

9.4 Total Cost per Vehicle... 87

10 Concept Selection ... 89

10.1 Concept Screening... 89

10.2 Concept Scoring .. 90

11 Discussion ... 91

11.1 Project.. 93

11.2 Applicability for Multiple Applications .. 93

11.3 Concept Recommendation .. 94

11.4 Further Development... 94

11.5 Patents ... 95

11.6 Ethical Considerations... 95

12 Conclusion .. 97

13 Bibliography ... 99

Appendix A .. 103

Appendix B .. 108

Appendix C .. 109

Appendix D .. 111

Appendix E .. 112

Appendix F .. 120

Appendix G .. 137

Appendix H .. 157

1 Introduction
This chapter introduces the reader with the topic and the underlying motivation for conducting

this thesis work. Some background information about Volvo Cars, the department where the

thesis work was carried out and legal regulations is given. This is followed by sections

explaining the aim, scope, and limitations of this thesis work.

1.1 Background

Volvo Cars is a leading personal passenger vehicle manufacturer based in Gothenburg,

Sweden. The company is strongly associated with safety and innovation. It was founded as an

affiliate of SKF (Svenska Kullagerfabriken), and the first mass-produced car “Jakob” was

produced in 1927. Volvo Cars was a part of the Volvo Group until 1999 when it was sold to

the Ford Motor Company, which remained the owner until 2010 when Geely Holding

purchased Volvo Cars and became the current owner.

Today Volvo Cars has a presence in over 100 countries, has a workforce of approximately

38,000 employees, and in 2019 managed to produce over 700 000 vehicles in a year for the

first time. The models in 2019 were – one hatchback, V40; two sedans, S60 and S90; two

station wagons, V60 and V90; and three SUVs, XC40, XC60, and XC90. It should be noted

that the V40 model went out of production in mid-2019. The headquarters and main R&D

facility are located in Gothenburg, along with R&D offices in Shanghai and Chengdu in China.

Volvo Cars is a part of the Volvo Car Group that also owns the consumer businesses Care by

Volvo and M, Polestar, LYNC & CO, and Zenuity. (Volvo Cars Group, 2020)

The interior lighting and functional parts is a department within Volvo Cars that is responsible

for the overhead console (OHC) including reading light lamps, general light lamps, mood light

lamps, sunroof control, telematic buttons such as SOS/OnCall, and a host of indicators such as

passenger airbag status, seat belt reminder, etc. The responsibility for the operations of the

sunroof lies as the foundation for this master theses and is the main reason for that it is

conducted within this department.

The underlying motivation for the topic of this master thesis is the unfortunate incidents of

children dying or inflicting severe injuries in accidents involving motorized functions in

vehicles, like with power windows or powered sunroofs. To address these safety issues, there

are two legal motor vehicle regulations, the Federal Motor Vehicle Safety Standard No. 118

(FMVSS No. 118) in the United States and the United Nations Economic Commission for

Europe ECE R21-01 standard in the rest of the world. This chapter will mainly address the

FMVSS No. 118 regulation since it comprises of harsher requirements that also encompass the

ECE R21-01 regulations.

According to the US Department of Transportation, National Highway Traffic Safety

Administration (NHTSA) estimated that there were 6 deaths and 12 severe injuries related to

power functions in vehicles per year in the USA before 2008. In addition to these, around 1900

less severe injuries like severed fingers, fractures, or bruises were treated by emergency rooms.

There is also a large number of unrecorded cases of less severe injuries that did not get or

require any medical treatment. Most of the deaths and severe injuries involve young children

that were leaning on the door panel with their head or other parts of their body out through the

1. Introduction

2

window and accidentally activating the closing of the power window with a knee or foot and

causing the window to close on the body part.

To prevent this type of accidents has a couple of legal actions been taken, first was the ball-test

introduced which required that the closing of a power function could not be activated by a

metal sphere with a radius of 20 mm ± 2mm that symbolizes a child’s knee (Cornell Law

School, n.d.). After that was the requirement modified to only allow “pull-to-close” buttons,

this means that the user is forced to pull the switch upwards in order to close the power window.

These measurements were effective against accidents occurring when children were left alone

in a vehicle but did not mitigate those that occurred when a person is operating the window

without noticing that someone has a body part out through the window. This type of incident

is referred to as “obstructed closing” by NHTSA and to deal with it were requirements on

automatic reversal systems introduced which will overwrite the closing operation and reverse

if a force of a certain magnitude is detected. The FMVSS No. 118 includes two main

approaches to prevent these injuries, the requirements in the S4 paragraph are easier to fulfill

but demands the attendance of the person opening or closing the window. The S4 paragraph

must be fulfilled, otherwise the manufacturer is not allowed to sell the vehicle in the US.

Meanwhile, the S5 paragraph is technically harder to satisfy and more costly for the

manufacturer but allows for a much higher degree of design freedom like operating the

functions remotely or via smartphone applications, etc. (National Highway Traffic Safety

Administration, 2009)

1.2 Problem Description

At present, Volvo Cars sources the subsystems for power functions like the power windows,

powered tailgate, electric sunroof, etc. from different suppliers. Along with the subsystem(s),

the supplier also provides the safety system that prevents pinching accidents during the

operation of the subsystem. For example, the supplier of the power window provides the pinch

prevention system along with the components that are used to drive and control the operation

of the window. In most instances, these components are placed together in a separate module

for which the supplier has the design responsibility, and that module can easily be mounted on

the Volvo assembly line. Due to this, several different “anti-pinch systems” from various

suppliers are used in a vehicle, for example, one system for the power windows, another for

the tailgate, and so on. Utilizing several different systems that mainly perform the same

function can be an inefficient solution. As these suppliers provide such systems to several

automobile manufacturers, the anti-pinch systems are generic and not specific to Volvo Cars.

Sometimes resulting in non-optimal performance and an expensive and time-consuming

calibration processes. These anti-pinch systems are very similar to each other, with only some

modifications to fit the specific application. To this end, Volvo Cars ends up paying multiple

times for the same or similar product. In addition to this, there are some performance problems,

the most notable being that the electric sunroof system does not meet the legal requirements in

the S5 paragraph in the US FMVSS No. 118, preventing Volvo from being able to use

smartphone applications or rain sensors for controlling the sunroof in vehicles sold in the

United States.

1. Introduction

3

1.3 Aim

The aim of this thesis work was to develop an anti-pinch system that could work with all

applications in a vehicle and that is compatible with the existing systems and standards in use

by Volvo Cars. The developed system should meet the harsher US regulation FMVSS No. 118

to allow operations via the Volvo app. By developing this system, Volvo Cars aims to be able

to reduce expenses since they would not need to buy the anti-pinch systems from multiple

suppliers and avoid costs associated with their calibration. In addition to this, standardization

could help in reducing the number and variation of parts that are needed to be stocked in the

inventory. An in-house developed system would also provide Volvo Cars much more granular

control over the functioning of the anti-pinch systems, creating room for improvement and

thus, better safety and comfort for passengers.

1.4 Limitations

A couple of limitations are made in the project, mainly due to the project time of 20 weeks.

The development work focuses on the software and no hardware components will be

developed, instead will of the shelf hardware components be used in the project. The project is

only focusing on the anti-pinch and the position control systems, no development effort will be

put into reducing the risk of an accident by changing the button layout like pull to close.

Due to the limited time available to carry out this work, the system was only developed for the

sunroof and the power windows, no further applications were investigated. The testing of the

developed system was carried out only in lab conditions and was not implemented in a real

vehicle.

No exact budget is set for the project and requests for funds were done throughout the project

when needed.

1.5 Scope

The scope of the thesis was to develop a proof of concept for an anti-pinch and position control

system that can be used in multiple areas within a vehicle and meet the legal requirements

imposed on the system. A report that gives account for the development works should be

delivered to Volvo Cars and Chalmers University of Technology. The project was carried out

at Volvo Cars R&D center in Torslanda, Sweden, and ran for over 20 weeks during the two

first quarters of 2020.

2 Methodology
In this chapter, the different stages of the project have been explained and the work has been

carried out in these stages is also presented. In addition, the methods and tools that have been

used in these phases have been shortly described.

The project was divided into seven major phases to make it easier to manage the project, with

each phase having its own deliverables. Some of the phases were active concurrently to utilize

time in the best possible manner. In Table 1, the phases are listed along with some of their most

important deliverables.

Table 1 The seven major phases of the project and some of the most important deliverables for each phase

Phase Major Deliverables

1 Planning

Planning report

Initial time plan

Risk severity matrix

2 Research and Technology Study Technology Study Chapter

3 Customer Needs Study
Customer Needs List

Customer Needs Metrics

4 Concept Development
Morphological Matrix

Elimination Matrix

5 Prototyping
Prototypes for testing in different

stages of the development process

6 Prototype Testing Test report for the concept(s)

7 Concept Evaluation

Pugh Matrix

Kesselring Matrix

Final Concept(s)

2.1 Planning

The first phase of the project was dedicated to planning, starting with a planning report. The

original time management plan was formatted into a Gantt Chart using Microsoft Project. One

big part of the planning phase was the initial risk assessment. The purpose was to identify risks

that could affect the project and come up with risk contingency plans where it is decided what

should be done if a risk should occur. Through this planning, the impact of the events could be

reduced. Risk assessment and management was also carried out continuously throughout the

project. In addition to this, stakeholder management was also a part of the planning phase,

when all the parties that had an interest in the outcome of the project were listed and assessed.

Initial meetings were also held with the stakeholders to understand their expectations related

to the project.

2.2 Research and Technology Study

The information gathered in the research and technology phase formed the foundational

knowledge that all later development activities were built upon. This provided an

understanding of how the market and products looked at the time. The phase mainly consisted

of secondary research, which meant gathering information from academic papers written

within the area and the legal regulations that affect anti-pinch systems. Information from

patents and similar technologies within other areas where anti-pinch systems exist like

elevators and machine tools was also included. For organizing the research, a literature data

2. Methodology

6

extraction worksheet was used, where all sources of information were listed along with their

author(s), publication year, quality of content, relevance to the work, etc. To organize the patent

landscaping was a patent data extraction sheet used. It includes the keywords, strings, patent

classes and how many hits the searches gave. In this spreadsheet were also information from

the most relevant of the identified patents stored. For the patent landscaping, the databases

Espacenet and Google Patents were used.

2.3 Customer Needs Study

Identifying the customer needs and involving them in the development process is of utmost

importance for a project to be successful. In this project were the customer needs identified by

conducting semi-structured interviews. Mainly with Volvo personnel from the groups that have

the technical responsibility for areas where an anti-pinch system is required and with the lab

that perform the tests of the systems. An interview guide was prepared before the interviews to

make sure that the most relevant topics are discussed. In addition to the interviews were semi-

structured observations performed to get an understanding of how the current systems perform.

The customer needs study and the legal documents resulted in a customer needs list with wishes

and demands. The customer needs list was used throughout the development process to make

sure that the developed concepts aligned with the customer needs.

2.4 Concept Development

The development done in this project followed the process described in Product Design and

Development by Ulrich and Eppinger and started by identifying the sub-problems that the

system needs to solve. Then finding solutions to these sub-problems, the solutions were then

organized in a morphological matrix where a great number of concepts could be generated. The

generated concepts were then taken through an evaluation process where the first step was the

Elimination matrix.

2.5 Prototyping

Prototyping was used as a tool throughout the entire project with quick and dirty prototyping

in the early stages to understand technologies or specific functions. As many concepts as

possible were built to enable performance testing and data gathering from multiple concepts.

In the prototyping was existing vehicle hardware used to the greatest extent possible in order

to reduced cost and time consumption, this also included electronic components in the vehicles.

Components that didn’t exist in the current vehicle was bought off the shelf. The focus of the

prototyping was on the software and the interface between the software and the hardware, not

on hardware development.

2.6 Prototype Testing

The developed prototypes went through a formal testing procedure performed by the Strength

and Endurance Laboratory at Volvo. The testing procedure is standardized in the legal

document ECE R21-01 and the FMVSS No. 118 and is the same for all anti-pinch systems.

The results from these tests gave a fair and unbiased data that could be used to evaluate the

performance of the developed concept(s) to the anti-pinch systems bought from suppliers and

2. Methodology

7

used in the current Volvo models. It also provided important information about the concept

performance that was used in the concept screening and scoring instead of taking decisions

based on estimates.

2.7 Concept Evaluation

Based on the research done and the results obtained during the prototype testing was the

performance of the remaining concepts screened against a reference solution in a Pugh matrix,

the customer needs will serve as criteria’s in this screening. The Pugh matrix was followed by

the Kesselring matrix, which is a scorning method where the customer needs are weighted

according to their importance. Based on the results from the evaluation were few concepts

recommended for further development.

3 Risk Management
This chapter gives account for the risk management activities that were undertaken during the

course of the project. The importance of risk management in general is elaborated and after

that are the identified risks, their consequences and what should be the response to these risks

presented.

Risks exist in every project and poor risk management is often ranked as one of the most

common reasons for why projects fail (Nelson, 2007). One important first step within risk

management is to identify the areas where risks could occur and what the response should be

if those risks occur. By doing this, there is a better chance to manage the situation if the risk

occurs compared to if there were no guidelines for response. Some problems are unknown and

caused by events that are hard or impossible to predict or prepare for beforehand, making such

risks harder to handle. By being aware of risks in general and letting risk management be an

ongoing process throughout the project, there is a possibility of a faster and more efficient

response to these unknown risks as well. The process of identifying risks is an ongoing process

that is active throughout the entire project.

There were four categories within which risks were identified. These categories were technical,

project management, organizational and external. Technical risks are associated with

technological aspects of the product like reliability and quality. Risks related to project

management have more to do with time management and communication. Organizational risks

consist of resources and their management. And external risks relate to factors like economy,

changes in legislation, natural disasters, diseases, environmental hazards, etc. The identified

risks along with their category, consequence, likelihood, impact, score, and response are listed

in Table 2.

Some of the more important risks related to project management were about waiting times for

parts, inputs, and organizational bureaucracy. These risks have a pretty high likelihood of

occurring and their impact is significant as well. These risks can be mitigated by using methods

such as concurrent engineering and by communicating timely. Organizational risks that were

identified included risks such as no availability of an appropriate workplace for prototyping

and testing. This could have happened during times when all facilities are fully booked due to

ongoing projects and the impact could affect the time taken to finish the prototyping and testing.

Early communication is a good way of mitigating this risk. The biggest technical risk identified

was the concept not being able to meet the legal requirements. Since not meeting the legal

requirements would make the concept useless, so this is a very high impact risk. The likelihood

of this happening would be quite low, since legal requirements are very well defined and

known. To mitigate this, knowledge about the legal requirements should be gathered early on

and testing methods should be adopted that can check whether the concept meets these

requirements. The most significant external risk identified was the breakout of a disease and

the impact it could have on the project, which although had very little likelihood of happening,

could potentially have a huge impact on the outcome of the project.

3. Risk Management

10

Table 2 Risk identification matrix, in this matrix are all the identified risks categorized and combined with their expected

consequence, their likelihood of occurrence, the assumed impact it would have on the project, and what actions are taken to

respond to the risk.

#
 I

D

C
a

te
g

o
ry

R
is

k

C
o

n
d

it
io

n

C
o

n
se

q
u

en
ce

L
ik

el
ih

o
o

d

Im
p

a
ct

S
co

re

R
is

k

R
es

p
o

n
se

1
Project

Management

Lose a lot of time waiting

for input / parts /

company bureaucracy

Lose a lot of valuable

time on critical path.

Iterating/Changes can

take very long time

4 3 12

Mitigate: Concurrent

engineering, working on

multiple tasks to prevent

sitting and waiting,

timely communication

2
Project

Management

Lack of knowledge in the

team (software) / Not able

to find the correct

knowledge

Product will not have

desired performance,

unnecessary time

spent on learning &

troubleshooting

3 3 9
Accept: Not so much to

do except trying to learn

3
Project

Management

Time estimation – Never

managed a project on

fulltime for so long, hard

to know how much that

can be accomplished

Not able to deliver the

product with desired

quality at the desired

time

4 2 8

Accept: Cannot do so

much to prevent this

except by being flexible

and listen to advice from

supervisors

4
Project

Management

Long lead times when

ordering from Volvo

laboratories

Won’t receive the

desired components

when they are needed

4 2 8

Mitigate: Order as early

as possible, Concurrent

engineering

5 Organizational

Lack of interest / input

from stakeholders. Not

enough information

regarding existing

solutions, user

requirements or interfaces

Development process

will be based on

insufficient

information and not

all functions will be

addressed

2 4 8

Mitigate: Clear and open

communication,

presenting the benefits

that they can get from

being involved in the

project

6 Organizational

Senior management is

resistant to take on the

risk that is connected to

providing safety functions

with harsh legal

requirements

No support for

implementing the

developed concept

even if it

meets/exceeds the

performance

requirements

4 2 8
Accept: Not so much we

can do

7 Technical

Final concept doesn’t

meet legal requirements

The concept will be

useless
2 5 10

Mitigate: Knowing the

legal requirements and

test the concepts to make

sure that they meet them

8 Technical
Concept only works for

some parts of vehicle

Will not meet the

scope of the project
3 3 9

Mitigate: Testing the

concept and doing

development for the

affected parts of the

vehicle

9 Technical

Inferior in performance to

current solution bought

from supplier

The concept would

need to be developed

further or be rejected

3 1 3

Mitigate: Benchmarking

to understand the

performance of the

competing solutions

3. Risk Management

11

10 Technical
Product cost is too high

for mass manufacturing

Concept would be

rejected even if it

meets/overperforms

the requirements

2 4 8

Mitigate: Considering

cost early in the concept

evaluation process

11 Technical

The developed system

cannot be integrated in a

good way with the

existing components in

the vehicle

The system would

need modification or

be rejected

2 4 8

Mitigate: Considering

compatibility early in the

concept evaluation

process

12 External

Suppliers of current

systems have a negative

attitude to the project

Suppliers refuse to

participate in the

project

3 1 3
Accept: Nothing can be

done

13 Organizational

No available space to do

the practical development

and testing of the project

The development

process can become

ineffective and testing

insufficient

3 3 9
Mitigate: Early

communication

14
Organizational/

External
Leak in the roof

Can destroy electrical

equipment
1 3 6

Mitigate: Move the

electrical equipment

away from the sections in

the roof that leaks.

15 External

Breakout of a pandemic

of a new strain of a

coronavirus

Could lead to the

closure of the

company or affect

project members

1 5 5

Accept: Comply with

government and

healthcare regulations

16 External
Company shut down due

to COVID-19 virus

Reduced time for

development work,

longer lead time and

reduced access to

Volvo resources

3 3 9

Accept: Comply with

Volvo and healthcare

regulations

4 Customer Needs Analysis
This chapter presents the structure, summaries and customer needs that were extracted from

the interviews and observations. A detailed description of the FMVSS No. 118 is also given

along with other legal requirements relevant for this project. In addition to this, the list of

customer needs and the metrics against which they were evaluated have been detailed.

4.1 Interview Structure

The interviews conducted in this project aims at including the identified stakeholders in the

development work. When gathering customer needs it is desired to interview the end-user or

customer to understand their point of view. But for this project, the final product is a function

in a vehicle that does not attract user attention, unless the function does not work, thereby

causing injury. The amount of work needed to identify these cases, contact, and interview the

affected users was considered to be excessive in relation to the input they could provide.

Instead, the people within Volvo Cars that are responsible for the anti-pinch system in a specific

area of the vehicle were treated as the internal customers and interviewed so that their

knowledge could be utilized in the development process. Secondly, the interviews were

conducted in the form of a normal office meeting, with an interview guide being used as the

meeting agenda to allow for a semi-structured discussion. The interviews started with some

background information about the project and its aim, and then following a funnel structure,

general questions were asked about the previous and current anti-pinch systems that were used

and the relationship with the suppliers. Then narrowing down to more specific questions about

the technology and specific areas of improvement. A lot of emphasis was put on giving the

interviewees the opportunity to speak freely and provide information even if no specific

questions were asked within an area. Notes were taken during the interviews for documentation

and more detailed summaries were written directly after.

4.2 Interview Summary

Anti-pinch systems do not have the same importance for all areas with moving parts. For the

sunroof and power windows, the anti-pinch system is properly tested and there is a continuous

process of improving both cost and performance of these systems. On the other hand, very little

thought given to the anti-pinch system in other areas like the tailgate and the seats. The

following sub-sections contain the summaries from all the conducted interviews and the

customer needs that were derived from the interviews are listed, along with a short explanation

of the need in Table 3.

4.2.1 Sunroof

This meeting was conducted at the department of interior lighting and functional parts, the

same department that commissioned this project. The department is responsible for the

operations of the electric sunroof and its anti-pinch system.

The main problem with the existing solution in the sunroof is directly connected to the

extensive calibration process that is required for each model, model year and if one model is

produced in multiple factories are calibrations done on a vehicle from each factory due to

uncertain supplier and manufacturing variance. Even a change in the tooling used in the

4. Customer Needs Analysis

14

manufacturing or assembly process of the sunroof can require new calibrations. The calibration

process is both time-consuming and expensive since it is done by the supplier at another

location. The entire roof solution including the anti-pinch system used in current models are

provided by one supplier, to protect intellectual property and “know-how” is Volvo’s insight

in technical details limited. This lack of insight also makes it hard to derive expenses and

identify what the exact price that Volvo pays for certain functions is, for example, the anti-

pinch. The high price tag for such a simple system is motivated by that the supplier will take

the legal responsibility if a pinching accident would occur.

When one supplier is responsible for such a large portion of the vehicle is it more difficult to

replace them or negotiate the price. This is due to the cumbersome and expensive process of

identifying a new supplier that can deliver the required quality and volume.

In addition to this are there some performance issues with the existing solution. Mainly, it does

not meet the legal requirements in FMVSS No. 118 paragraph S5. The consequence of this is

that the sunroof cannot be controlled using the Volvo mobile application in the US. The

employees at Interior Light and Functional parts believe that this issue could be fixed relatively

easy. For example, by reducing the speed of the panel in the areas where the requirements on

the stopping distance are the harshest. Or by using ripple count instead of hall sensors to get a

system that can react faster to a pinch situation. One other strong opinion is that the legal

responsibility in case of an accident might be taken by the supplier, but it would still have a

very negative impact on the brand Volvo. It is believed that it exists a general fear or

unwillingness within the organization to take responsibility for functions that are governed by

strict legal requirements and that this lies as a foundation for the unnecessary high price tag is

accepted. It is also believed that this project can a step towards changing this mentality.

4.2.2 Power Windows

This meeting was conducted with personnel from the department of Switches and Door

Electronics which among other things are responsible for the control of the power windows

where the anti-pinch system is included. The supplier situation looks a bit different here

compared to the sunroof, there is no system supplier that is responsible for an entire system.

Instead is one supplier responsible for the glass, the window lift regulator is another and the

door DCU is a third one. These suppliers tend to be the same for most or all models within one

platform. This leads to that the suppliers have a much smaller area of responsibility and that

Volvo gets better insight in what they are doing and can control the costs in a more efficient

way. It is also easier to replace suppliers that cannot meet the requirements. It is required by

all suppliers that the system should fulfill the legal requirements in FMVSS No. 118 paragraph

S5. To guarantee that the process variation won’t make some cars exceeding this limit is Volvo

requiring a maximum force of 75 N, which all suppliers currently meats. The systems are based

on hall sensors and the current consumption for both position control and to detect pinches. It

works fine for the windows mainly due to that they reduce the speed in the critical areas and

that the inertia is much lower in the windows compared to the sunroof, so it is easier to stop is

in a short distance. Using a system based on hall sensors is cost efficient and reliable, the only

problem they experience at present is that the system detects false pinches. The cost for the

system is not considered to be too high, even if cost reduction is a never-ending process is this

not a focus area for the moment.

4. Customer Needs Analysis

15

The calibration process has a very noticeable impact on the power windows as well, here is it

the many variations that are the problem. At present there are two different window options

per model, laminated and tempered glass, that all are different in size, thickness, weight and

these should be combined with different types of seals where all combinations need to be

calibrated. The calibration needs to be done for both the front and rear windows since they

differ a lot from each other. In addition to this is smaller calibration fixes needed approximately

once a year due to unknown manufacturing parameters that seldom can be identified.

Also here is the general opinion that Volvo could develop the anti-pinch system on their own

and that it is the unwillingness within the organization to take the legal responsibility that is

the reason for why they aren’t doing it.

4.2.3 Tailgate and Seats

The anti-pinch system in the tailgate falls under the responsibility of the art Security and Body

Electronics, but the situation is very different here compared to in the power windows and the

sunroof. There is an anti-pinch system and there is a requirement that the tailgate movements

shouldn’t cause any injuries, except from this is everything handled by a supplier that provides

the system for all models, no testing of the system is done by Volvo.

For the seats, there was no anti-pinch system in the current models. There are plans to include

an anti-pinch system in models based on the SPA2 platform.

4.2.4 Test Lab

The strength and endurance laboratory at Volvo performs the testing of the anti-pinch system

in the sunroof and the power windows. The testing is done both against the European ECE

R21-01 and the US FMVSS No. 118 legal requirements for the windows, but only the ECE

R21-01 for the sunroof. The tests are performed only in room temperature, with all other testing

done by the supplier.

For some of the endurance and temperature tests that are done on the sunroof and the power

windows, it is required to disable the anti-pinch system so that the testing can be performed

correctly. Due to Volvo’s lack of low-level control over the anti-pinch system, this must be

done by the supplier. This is time-consuming and frustrating for the personnel working in the

lab and they wanted to be able to go in and disable the system themselves, something which

they would be able to do if Volvo developed their own anti-pinch system.

4. Customer Needs Analysis

16

Table 3 Customer needs identified during the interviews

Need

No
Need Explanation

2
Maximum pinch force is lower than the

Volvo demand of 75 N

To guarantee that the process variation won’t make

some cars exceeding the legal limit is Volvo requiring

a maximum force of 75 N instead of 100 N

4 Detect pinch over the entire range of motion

To prevent the risk of a pinching accident, even if the

pinch occurs outside of the range for the anti-pinch

system as stated in FMVSS No. 118

8
The system cost per vehicle should be lower

than for the current solution

Cost reduction is a continuous process and currently

is the calibration standing for a big portion of the

cost. Due to the mass manufacturing aspect can a

small increase in cost for a component have large

effects on the overall system cost.

9
The system should work in all-weather

condition

Volvo Cars sell vehicle that can operate in all-

weather condition therefore must the safety systems

work in all-weather condition as well

10 The system should work in all climates

Volvo Cars sell vehicle that can operate in all

climates therefore must the safety systems work in all

climates as well

11
The system should be adaptable to wear and

debris

After a number of opening and closing cycles will

seals start to wear. This affect the friction against the

moving object which in turn affects the working

conditions for the motor. This should be considered

by the system so that the threshold curve can be

adjusted and keep the same level of sensitivity

12
The system should not detect false positive

pinch situations

The anti-pinch system should not be activated by

changes in the working conditions of the motor which

are not caused by an object blocking the path of the

moving object

13
It should be possible to disable the system

when the vehicle is in factory mode

For some of the endurance and temperature tests that

are done on the sunroof and the power windows is it

required to disable the anti-pinch system so that the

testing can be performed correctly

14

The system should be able to do a final

calibration by itself for every individual

vehicle when in factory mode

Due to the process variance will every vehicle be

unique. The system should do a final calibration for

the vehicle on its own

15
The system should meet Volvo’s endurance

testing standards

The system should meet the endurance requirements

set by Volvo Cars

16 The system should operate in real time
The system must process real time data continuously

so that it understands the current situation

17
The real time system must have a deadline

of 100 ms

To prevent lag between an input signal and the

reaction from the system

18
The real time system should have a deadline

of 10 ms

To prevent lag between an input signal and the

reaction from the system

19
The system should be compatible with

existing hardware in the vehicle

The developed system should not require any

hardware changes in the vehicle to avoid extra cost

20
The system should be compatible with

existing software in the vehicle

The developed system should be compatible with the

software system used to control the specific part of

the vehicle. Example: LIN

21
The system should detect an object before

colliding with it

To prevent causing any harm to the object and to

avoid false positive pinch detections should the

system have a direct system that can detect objects

before they come in mechanical contact with the

moving object

22
The system should not increase the noise

level in the vehicle

To preserve a good noise level for the user, the

system should not increase the noise level

4. Customer Needs Analysis

17

4.3 Observation Structure

To get an understanding of how the current anti-pinch systems worked in a Volvo vehicle, an

observation study was performed. The observation was structured to be simple and took

approximately one hour to complete. The examined vehicle was a Volvo V90 Cross Country.

The areas that were observed were the sunroof, front and rear windows, the seats and the

tailgate.

4.4 Observation Summary

In the sunroof, it was observed that the anti-pinch system worked moderately well. The anti-

pinch systems in both the panel and the curtain relied on indirect methods to detect a pinch

situation. The force required to trigger the anti-pinch system was perceived as higher for the

curtain than the panel. The pinch force seemed to vary over the range of motion with lower

forces when the panel or curtain was closer to the closing edge. When the anti-pinch system

got activated, the panel retracted by a few centimeters not to the fully open position. The overall

impression was that the system works but could be more sensitive.

The anti-pinch system in the windows worked the best. The force required to initiate a pinch

differed depending on the position of the window. The system was more sensitive when the

window was close to its fully closed position. When the anti-pinch system got activated, the

window rolls down completely, instead of just a few centimeters like in the sunroof. The overall

impression was that this system worked very well. The system was very sensitive in the critical

zone close to the upper edge.

The anti-pinch systems in the tailgate worked moderately well. Contrary to expectations, no

direct sensing was present, and the system depended only on indirect sensing. The force

required to trigger the anti-pinch was quite high. When the anti-pinch system was triggered,

the tailgate stopped right at the position where it was triggered and a beep from the center

console was sounded. The overall impression was that this system required the least possible

sensitivity to get approved.

Despite the seats having motorized functions inside of the vehicle which could cause pinching

accidents, no anti-pinch system was observed. According to Volvo, an anti-pinch system was

not used in the seats on the current SPA1 platform, but there would be some anti-pinch

functionalities for the seats in the next generation platform.

4.5 Legal Requirements

A majority of the most important demands for this project come directly from the governing

legal document FMVSS No. 118. As described in the This chapter introduces the reader with

the topic and the underlying motivation for conducting this thesis work. Some background

information about Volvo Cars, the department where the thesis work was carried out and legal

regulations is given. This is followed by sections explaining the aim, scope, and limitations of

this thesis work.

Background chapter, there is also the United Nation’s legislation ECE R21-01 which is very

similar to FMVSS No. 118 but is easier to fulfill. In the following section, the relevant

4. Customer Needs Analysis

18

paragraphs of the FMVSS No. 118 have been explained and the customer needs derived from

the sections have also been listed.

The FMVSS No. 118 regulation consists of nine paragraphs, out of which paragraph S4, S5

and S8 affect this project to a great extent. In short, the paragraphs are as follows; S1. Purpose

and scope; S.2 Application; S3. Definitions; S4. Operating requirements; S5. Automatic

reversal systems; S6. Actuation Device; S7. Test procedure; S8. Test rods; and S9. Procedure

for measuring infrared reflectance of test rod surface material ((National Highway Traffic

Safety Administration, 2011). The complete legal document with all nine paragraphs can be

seen in Appendix A.

Paragraph S4 is about the basic level of protection. It states that functions relying on power

supply from the vehicle, like windows and roof panels, can only be activated if the key is in

the ignition and in the “On”, “Start” or “Accessory” position. Also are listed, some other cases

where a remote control can be used from a limited distance range, but these exceptions still

require the operator to be in close proximity to the vehicle. The purpose of this paragraph is to

ensure that children cannot operate the power functions without the presence of an adult

(National Highway Traffic Safety Administration, 2009).

Paragraph S5 allows for a different approach to minimize the risk for accidents related to power

functions by introducing an “automatic reversal system” (ARS). If the ARS system meets the

requirements set in S5, it no longer needs to comply with the restrictions stated in paragraph

S4. Which means that the power functions can be operated remotely, without the presence of

the ignition key. The only demand that is stated in paragraph S5 is that if a pinch is detected,

the window or panel must stop and reverse for a minimum of 0.015 seconds before the pinch

force exceeds 100 N. In addition, the paragraph is connected to test and test rod conditions

explained in paragraph S7 and S8, which makes the pinch force demand hard to fulfill. The

biggest difference compared to the ECE R21-01 is that the test rod used to measure the pinch

force should be placed angled relative to the window or panel to make it more difficult for the

system to detect the test rod as seen in the middle example in Figure 1, in ECE R21-01 are the

test rod always placed perpendicular to the moving object. (National Highway Traffic Safety

Administration, 2009)

Paragraph S8 specifies details about the test rods that should be used when performing a test

on an ARS system, making it an important factor for deciding customer needs. A test rod must

be between 4 and 200 mm, indicating that the ARS system can be deactivated outside of these

limits. Each test rod must have a force-deflection ratio of 65 N/mm if the diameter is less or

equal to 25 mm; and 20 N/mm if the diameter is greater than 25 mm. This means in practice

that for rods of diameter ≤ 25 mm, a pinch force of 100 N will be obtained when the window

or panel moves
100 𝑁

65
𝑁

𝑚𝑚

= 1.54𝑚𝑚 and a pinch force of 75 N, which is the maximum that Volvo

allows, will be obtained after 1.15 mm. For test rods > 25 mm, these distances are 5 mm and

3.74 mm, respectively. The placement of test rods for three different applications can be seen

in Figure 1 and customer needs derived from the legal documents can be seen in Table 4.

4. Customer Needs Analysis

19

Table 4 Needs extracted from the legal documents

Need

No
Need Explanation

1 Maximum pinch force is lower than 100 N
Specified in FMVSS No. 118

paragraph S5

3
Detect pinches in the range between 4 and 200 mm from

the frame

Specified in FMVSS No. 118

paragraph S8

5 Reverse direction on pinch
Specified in FMVSS No. 118

paragraph S5

6
Meet force requirements using a spring stiffness of 65

N/mm for the last 25 mm

Specified in FMVSS No. 118

paragraph S8

7
Meet force requirements using the spring stiffness of 20

N/mm for distances greater than 25 mm from the frame

Specified in FMVSS No. 118

paragraph S8

Figure 1 Test rods placed in different positions for pinch tests of sunroofs and power windows (National Highway Traffic

Safety Administration, 2011)

4.6 Customer Needs List

The interview and observation phase ends with defining a list with customer needs that are

important for the success of the product. These customer needs are often expressed in general

terms when it comes to language, often called “language of the customer”. In this case, when

the interviewees are relatively familiar with the subject and the technology, the needs become

more concrete. In the customer needs list, the needs have been divided into two different

classes: “D” demands that must be fulfilled; and “W” wishes that should be fulfilled as good

as possible. The wishes are in turn ranked on a scale from 1 to 5, where 1 is the least important

and 5 is the most important. A wish with a rank of 5 is as close to being a demand as possible.

4. Customer Needs Analysis

20

What rank a wish should get was determined based on the information gathered in the

interviews and the observation. In addition to this, the needs have been divided into categories

depending on which area that the need was relevant for, these categories were: Legal, referring

to needs derived directly from the FMVSS No. 118 and ECE R21-01; Standards, for needs

connected to Volvo or universal standards; Operations, for needs related to the operations and

performance of the system; Economics, for cost-related needs; and finally, Manufacturing, for

needs related to the manufacturing and development process at Volvo. The complete customer

needs list can be seen in Table 5.

Table 5 Customer needs

No Need W/D Imp Category

1 Maximum pinch force is lower than 100 N D D Legal

2 Maximum pinch force is lower than the Volvo demand of 75 N W 4 Standards

3 Detect pinches in the range between 4 and 200 mm from the frame D D Legal

4 Detect pinch over the entire range of motion W 4 Operation

5 Reverse direction on pinch D D Legal

6
Meet force requirements using a spring stiffness of 65 N/mm for the

last 25 mm
W 5 Legal

7
Meet force requirements using the spring stiffness of 20 N/mm for

distances greater than 25 mm from the frame
W 5 Legal

8
The system cost per vehicle should be lower than for the current

solution
W 5 Economic

9 The system should work in all-weather condition D D Operation

10 The system should work in all climates D D Standards

11 The system should be adaptable to wear and debris W 4 Standards

12 The system should not detect false positive pinch situations W 5 Operation

13
It should be possible to disable the system when the vehicle is in

factory mode
W 3 Manufacturing

14
The system should be able to do a final calibration by itself for every

individual vehicle when in factory mode
W 3 Manufacturing

15 The system should meet Volvo’s endurance testing standards D D Standards

16 The system should operate in real-time D D Operation

17 The real-time system must have a deadline of 100 ms D D Operation

18 The real-time system should have a deadline of 10 ms W 3 Operation

19
The system should be compatible with existing hardware in the

vehicle
D D Compatibility

20
The system should be compatible with existing software in the

vehicle
D D Compatibility

21 The system should detect an object before colliding with it W 3 Operation

22 The system should not increase the noise level in the vehicle W 3 Operation

4.7 Metrics for User Requirements

The customer needs that have been listed in the requirements specification are general. To be

able to quantify them and to make sure that the developed concept meets the performance

targets, metrics and target values for the individual needs were set. The list with these metrics

and target values can be seen in Table 6.

4. Customer Needs Analysis

21

Table 6 Metrics and target values for the individual customer needs

Metric

Need

Metric Unit

Target

Value

1 1,2 Maximum detected pinch force N <75

2 3,4
A pinch is detected between 4 mm and 200 mm from the edge or

over the entire range of motion
Binary Yes

3 5 The moving object reverses after a pinch Binary Yes

4 6
Stopping distance for moving object using a spring with the spring

force of 65 N/mm, for a distance ≥ 4 mm & ≤ 25 mm from the edge
mm 1.15

5 7
Stopping distance for moving object using a spring with the spring

force of 20 N/mm, for a distance ≤ 25 mm from the edge
mm 3

6 8 Estimation of cost per vehicle for concept in mass production SEK 151

7 9 Dust/water resistance IP class 64/65

8 10 Operating temperature °C
-40 to +

80

9 11 Meets pinch force requirements after Volvo lifecycle test Binary Yes

10 12 Number of false pinch detections in demanding operation conditions No 0

11 13 User test, is it possible to disable system Binary Yes

12 14 System test if it can calibrate itself Binary Yes

13 15 Volvo lifecycle test Cycles
Volvo

Standard

14 16 System test Binary Yes

15 17,18 System time test ms 10

16 19,20 System compatibility test Binary Yes

17 21 Pinch detection test, is contact needed for pinch detection Binary No

18 22 Sound level increase compared to old system dB 0

5 Technology Study
This chapter presents the technologies relevant to this thesis work, starting with the motors

and electrical drive. A lot of information is given about the sensors that could be used for

detecting a pinch situation, both with and without mechanical contact. Additionally,

technologies for signal filtering and communication protocols have been presented.

5.1 Driving Systems

The need for all anti-pinch systems arises from the risk associated with a moving object. To

move an object, some sort of motor is required. For most applications that require a motor in

automobiles like fans, pumps, etc., DC motors are used. This is also the case for the applications

that are relevant to this project. Two different types of DC motors can be used, brushed (BDC)

and brushless motors (BLDC). Diagrams of the two motor types are shown in Figure 2. The

working principles for both types of motors are similar, there is one stationary part, the stator;

and one rotating part, the rotor. The rotor is most often placed inside of the stator, but it could

also be done in the opposite way with the rotor on the outside. These motors are called radial

flux motors since the magnetic field travels in the radial direction through the airgap between

the stator and the rotor (Microchip Technology Inc., 2004). In a brushed DC motor, the

electrical windings are placed in the rotor. These windings are energized so that they create a

magnetic field that can be attracted by opposite poles in the stator where permanent magnets

or electromagnets are placed. As the rotor rotates, the windings are energized in different

patterns so that the magnetic poles shift, and the motor keeps rotating. This is done

mechanically by the brushes and the commutator; the commutator is a ring on the rotating axis

where different sections are connected to the windings in the rotor. The brushes slide over the

commutator and changes the direction of the current in the windings. Due to this sliding contact

between the commutator and the brushes, there is a lot of wear on these parts which requires

maintenance. These brushed DC motors are generally cheap, easy to control, and a well-tested

technology that are used in a wide range of applications from toys to automotive (Hanselman,

2006).

Figure 2: To the left in the figure can a brushless DC motor (BLDC) be seen and to the right a Brushed DC motor

(BDC)

In brushless DC motors (BLDC), on the other hand, the windings are always placed in the

stator and a controller is used to switch the polarity. This is a more complex and expensive

system but has a lot of advantages since there is no mechanical contact needed, which

5. Technology Study

24

eliminates almost all wear and maintenance. It is also much easier to cool the windings when

they are on the stator (ATMEL Corporation, 2016).

5.2 Electrical Drive

Motors in automobiles are primarily driven by two different electrical driving systems. The

first system is based on relays and the other system uses MOSFETs.

5.2.1 Relays

A relay can be termed as an electronically actuated switch. It consists of an electromagnetic

coil, which when energized causes the switching in an external circuit. This allows isolation

between a low-power circuit, for example with a microcontroller, and a high-power circuit, for

example, a DC motor. Relays can be used in an H-Bridge configuration to drive a brushed DC

motor in two directions, as shown in Figure 3.

5.2.2 MOSFET Drivers

In contrast to relays, which are electromechanical devices, Metal Oxide Semiconductor Field

Effect Transistors (MOSFETs) are electronic devices. They can act as switches that turn on or

off based on Pulse Width Modulation (PWM) signals given to a gate driver. Similar to relays,

it is possible to get bi-directional control of a brushed DC motor by using MOSFETs in an H-

Bridge configuration, as shown in Figure 4. A MOSFET’s rate of switching on or off

determines how much current can pass through it. By controlling the current that is allowed to

pass, speed control of a brushed DC motor can be achieved.

PWM signals, which instruct the motor driver for switching the MOSFET on or off, are

generated by a microcontroller unit (MCU). A PWM signal is an on-off signal pattern, where

the time duration for which a signal is ON is referred to as the width of the pulse, and the

proportion of the ON time to the time period of the signal is called the duty cycle (expressed

in %). PWM signals at different duty cycles from an Arduino microcontroller board are shown

in Figure 5.

Figure 3 An H-Bridge arrangement using two relays for bi-directional motor control (Amin & Beard, 2016)

5. Technology Study

25

Figure 4 An H-Bridge arrangement using four MOSFETs

for bi-directional motor control (Amin & Beard, 2016)

Figure 5 PWM signals from an Arduino at different duty

cycles (Hirzel, n.d.)

5.3 Sensors for Detecting Pinch Situations

The primary methods for anti-pinch systems can be divided into two major categories, those

systems that can detect an obstacle before any mechanical contact has occurred and those that

require mechanical contact to be able to detect an obstacle. The following subsections are

aimed at explaining the different sensors that can be used for detecting pinch situations.

5.3.1 Sensors not Requiring Mechanical Contact

These sensors can detect a pinch situation before it occurs without inflicting any force, making

them very suitable for use in anti-pinch systems. They are also generally insensitive to

vibrations, temperature variations, deformations, and wear, which has a significant impact on

the reliability of the system over its lifetime. These sensors need to be mounted in such a way

that they can monitor the area where a pinch could potentially occur, resulting in that the

sensors often are separated from the module containing the motor, driving electronics, etc. This

can lead to complications, as the module often is provided by a supplier which is responsible

for that particular module but lacks the authority to change anything outside of it. In addition

to this, extra wiring is required for the sensors to communicate with the control module. The

most common types of these sensors are explained in more detail below.

5.3.1.1 Ultrasonic

These sensors use ultrasonic sound waves to detect the presence of objects in their vicinity.

Sound waves are termed as ultrasonic when they have a frequency greater than 20 kHz, which

is above the range of ‘sonic’ frequencies audible to humans. Ultrasonic sensors use the time-

of-flight technique to determine the distance of a target object. A transmitting ultrasonic

transducer sends a burst of ultrasonic sound waves, which get reflected from the target object’s

surface. These reflected waves are called the echo. The echo is then picked up by a receiving

ultrasonic transducer. The difference between the time of sending the waves and the time when

the echo was received is measured. Since the speed of sound waves in the traveling medium is

known, the distance of the target object can be calculated.

Since the distance of the target surface can be determined in a short interval of time, it can also

be used as an input for pinch detection. A microcontroller can be used to track the distance of

the target. When the user initiates the movement, the distance values must increment gradually

5. Technology Study

26

in an expected behavior, which can be continuously verified by the microcontroller. If an

abnormal change in the distance is detected, it would mean that there is an unexpected object

in the path of the moving object which could get pinched. When this occurs, the microcontroller

can stop the movement, preventing the pinch situation. A diagram illustrating the principle of

distance measurements for ultrasonic sensors is shown in Figure 6.

Ultrasonic transducers needed for range finding applications consume low power and are very

inexpensive but integrating them into highly space-constrained applications can be difficult.

These sensors can detect a pinch before there is mechanical contact, but they have a minimum

limit on sensing range under which they do not perform reliably (Nitsche & Herrmann, 2009).

They can also be used as an indirect method, for example monitoring the speed of a window.

More about indirect methods will be explained in later subsections.

5.3.1.2 Infrared

Infrared refers to the light signals that have a wavelength longer than the red light in the visible

spectrum, generally between the range of 700 nm - 1 mm. Infrared sensors are used for night

vision, wireless communication, astronomy, obstacle detection, etc. Infrared sensors are

divided into two main categories, active and passive. Active sensors consist of a diode emitting

light and a receiver. Infrared light is transmitted from the diode, reflected against the target

object and then received by the receiver. By continuously repeating this process, the distance

of the target object can be determined. Meanwhile, a passive sensor only has a receiver and is

more suited for motion detection than for distance tracking. (Jost, n.d.)

5.3.1.3 LiDAR

LiDAR stands for Light Detection and Ranging. Like ultrasonic sensors, LiDAR makes use of

time-of-flight calculations to determine the distance to a target object. However, instead of

using ultrasonic sound waves, LiDAR makes uses of light beams, mostly infrared lasers. As a

result, by using a signal of a higher frequency (430 THz - 750 THz), LiDAR acquires more

accurate and reliable data than ultrasonic sensors (40 kHz – 10 MHz). The data from a LiDAR

can be used to create a 3D image of its surroundings (Allodi et al., 2016).

A short-range LiDAR could be used as a system for interior monitoring. Intelligent algorithms

have made it possible for computers to identify objects and humans using LiDAR data. These

techniques could be used to develop an intelligent system that can identify passengers,

windows, sunroof panels, seatbelts, etc., and determine risky behavior (Simons-Morton et al.,

2005). Such a system could also be able to identify pinch situations. For example, if a passenger

Figure 6 Principle of an ultrasonic distance measurement system (Webster & Eren, 2017)

5. Technology Study

27

has their hands outside the window, and if the window close button is pressed, the system could

be trained to recognize this as a pinch situation.

5.3.1.4 Capacitive

Capacitance is referred to as the ability of a system to store electrical energy or charge. The

capacitance of a capacitor depends on the distance between the plates of the capacitor (d), area

of the plates (A) and the dielectric constant (εr), and is defined as:

𝐶 = 𝜀𝑟

𝜀0𝐴

𝑑

where, ε0 is the dielectric constant of vacuum, which is equal to 8.854188 x 10-12 F/m.

Capacitive sensors generate electrical signals in response to changes in either of these three

parameters. (Webster & Eren, 2017)

Capacitive sensors can be used to detect the presence of objects without requiring mechanical

contact, as shown in Figure 7. Capacitance-based proximity sensors rely on the changes to the

frequency of an LC tank circuit, which is connected to a metal plate. A change in the oscillator

frequency occurs when the target object moves within the capacitor’s electrical field. The

changed frequency can be detected by a microcontroller unit and mapped to the relative or

absolute position. (Terzic et al., 2012)

5.3.2 Sensors Requiring Mechanical Contact

As the name suggests, sensors in this category require that the moving object, a sunroof or

window glass, actually comes in contact with the object that blocks its path, which can inflict

some damage. The sensors used can be divided into two categories; direct systems, where a

force sensor is located on the surface that will come in contact, and indirect systems, where the

performance of the motor is monitored to detect abnormal behavior in various motor

parameters, for example, the angular velocity, torque or back-emf. Indirect systems are mainly

used in automotive applications since these solutions, in general, are the most cost-optimized

alternatives. (ATMEL Corporation, 2016)

5.3.2.1 Direct Sensing

Pinch detection can be done through direct sensing of the physical movement of the object

under the pinch forces. The movement can be detected by placing two parallel conductive

surfaces in, for example, the door arc seal, which would come in contact with each other when

Figure 7 Changes in the electrical field of the capacitive sensor can detect presence of a human body part

5. Technology Study

28

an object presses against the seal. Connecting wires to these conductive surfaces would result

in the joining of a circuit that is connected to a microcontroller, which would detect the signal

as a pinch situation. Figure 8 shows three sketches of how a sensor in a seal might look.

Such a system would require minimal calibration and have less dependence on external factors,

like the speed of the vehicle, the roughness of the road, wear and tear, etc., as only the physical

interaction with the object would trigger the pinch situation. (Sollmann et al., 2004)

5.3.2.2 Indirect Sensing

Indirect measures are used by monitoring the motors that drive the system. This is the standard

in the automotive industry since it is cost-optimized and gives a lot of design freedom as the

systems can be placed elsewhere than in the contact region (Pak et al., 2017). The two leading

technologies for indirect monitoring are Hall sensors and ripple counting, both of which are

explained in the following sections.

5.3.2.2.1 Hall Sensor

One of the most common methods for indirect motor position control in automotive is to use a

sensor that is measuring the Hall effect (Westgate & Chien, 1980). By monitoring the changes

in the density of the magnetic field can the sensor determine when a motor pole is passing, this

information is then converted to an electric pulse that is processed by a control unit. By

measuring the width of and interval between the pulses, the rotational velocity of the motor or

shaft can be calculated. Since the number of poles in the motor is known and how many pulses

that are received per revolution can the hall sensors be used for position control as well.

There are mainly four types of hall sensors: latching switches, bipolar switches, omnipolar

switches and unipolar switches. A latching switch is often used in an anti-pinch system due to

its characteristics in controlling the switching between negative and positive poles. The sensor

requires a positive and a negative pole to be able to operate. When the magnetic flux density

from a positive pole (south) reaches a pre-determined value, the magnetic operate point (𝐵𝑂𝑃)

of the device be gets switched on and stays in that state, even if the magnetic flux density

decreases. It will stay switched on until a negative magnetic flux density from a negative pole

(north) of adequate strength is detected, triggering the magnetic release point (𝐵𝑅𝑃). Then the

sensor will switch to its turned-off state and stay there until the next 𝐵𝑂𝑃 value is detected. The

𝐵𝑂𝑃 and the 𝐵𝑅𝑃 are symmetric around 𝐵 = 0, the neutral magnetic flux density field, but with

opposing polarities. When used to monitor the movement of a motor, a latching switch hall

sensor provides a pulse-train of ON and OFF pulses, which provides an effective way of

controlling the motor. (Allegro MicroSystems, 2013a)

Bipolar switches were developed as a low-cost alternative to latching switches where the 𝐵𝑂𝑃

and the 𝐵𝑅𝑃 are not symmetric around B. It is now mainly used in applications that require high

sensitivity or that both the 𝐵𝑂𝑃 and the 𝐵𝑅𝑃 are in the same polarity (Allegro MicroSystems,

2013b). The placement of a hall sensor around a motor shaft can be seen in Figure 9.

Figure 8 Different seal profiles with sensor (in red color) inserted (Sollmann et al., 2004)

5. Technology Study

29

Unipolar and omnipolar switches are only operated by one polarity and are more suitable for

translating applications rather than rotating. Hence, these cannot be used for motor control

(Storr, n.d.).

Detection of a pinch situation starts by using the values received from the Hall sensor(s) and

computing a physical quantity, like angular velocity, torque, torque rate, etc. Then this

computed value is compared with reference values for that specific application. For example,

if the angular velocity is lower than a threshold value determined based on a reference dataset,

a pinch situation can be declared. The nature of these values depends on the motor parameters,

friction between the moving parts and the seals, mass of the moving part, etc. Deciding which

physical quantity to use is a tradeoff between required computational power and insensitivity

towards measurement noise. Calculating the angular velocity requires the least computational

power but is more sensitive to parameters that can vary over time due to changes in the

environment and wear. Torque and torque rate are comparatively less sensitive to changes over

a long time, but for their computation, a current sensor is needed.

The main advantage with Hall sensors is their cost-effectiveness, and their low maintenance as

they are contact-free and are not affected by moisture or vibrations. The accuracy of the sensor

depends on the number of poles in the motor and the number of sensors, since a minimum of

two poles must pass the sensor to identify any change in velocity or pulse width. This can lead

to undesirable lag before the sensor is able to identify a pinch situation (Rajaram & Murugesan,

1978).

5.3.2.2.2 Ripple Count

Measuring the motor speed using Hall effect sensors requires placing physical sensors along

with the motor and separate wires for signal transmission. Thus, there is a need for sensorless

methods of measuring motor speed and position. One way of achieving this is by measuring

back electromotive force (back EMF) pulses that are generated in the motor (Sullivan, 2017).

The back EMF is generated due to the motion of the motor windings inside the magnetic field

generated by the permanent magnets. This back EMF produces a sinusoidal signal, the

frequency of which is proportional to the speed of the motor. Another way of sensorless

measurements makes use of the commutation and the construction of the motor. When the

motor windings get in contact with the commutator, they effectively short and produce a ripple

of current, thus making the frequency of this ripple also proportional to the speed of the motor

(Consoli et al., 2004).

Figure 9 The placement of a bipolar hall sensor around the poles and the motor shaft (Allegro, 2013)

5. Technology Study

30

The motor’s in-line current consists of DC and AC components. The DC component is the

input current that drives the motor, and the AC component is made up of the back EMF and

the commutation ripples. Also, there are some variations that can be observed in the current

measurements. These can be attributed to many factors like changes in friction, wear and tear,

temperature, etc. As a result, there is a need for filtering and conditioning the signal to make it

useful for establishing accurate speed and position (Testa et al., 2014). This signal can then be

fed into a microcontroller, which can compare the instantaneous speed and position data with

a reference dataset. A threshold value can be associated with a pinching event and when this

value is detected, the microcontroller can stop or reverse the motor.

Various studies have suggested different methods of filtering and conditioning the current

signals. The general approach to this starts with filtering of the DC part of the signal and then

further filtering the AC signal to remove unwanted components like electromagnetic noise and

current spikes from the motor’s starting. A study made by Testa et al., suggests the use of high

bandpass filter, which filters out all frequencies that are not between a specific cutoff frequency

“𝜔𝑐”, and a π filter for removing the DC component, and the use of subsequent tunable

bandpass filter, switched capacitor filter and pulse check and correction procedures to condition

the circuit for the microcontroller (Ghosh et al., 2018). Further recent studies have suggested

the use of hybrid computation techniques such as the use of fuzzy logic (Mellah et al., 2018)

and cascade-forward neural networks for better estimation of speed and position (Zarchan, P.,

& Musoff, 2000), but their usability in automotive environments is yet to be tested.

5.4 Signal Filtering

Every signal contains some noise. To be able to separate the noise from the signal, a filter is

used. There are many different types of signal filters. Based on number of measurements

required, they can be divided in to two types: Infinite impulse response (IIR) filters, that use

infinite number of measurements in a feedback system; and Finite impulse response (FIR)

filters, that uses a finite number of previous measurements. There are also filters based on

frequency response. Some of these have been described in the following subsections.

5.4.1 Kalman Filter

The Kalman filter is one of the most commonly used methods for filtering signals. It is an

infinite impulse response filter based on linear predictions that optimize the least-squares

method. The filter was introduced in 1960 by R. E. Kalman in the article “A New Approach to

Linear Filtering and Prediction Problems.” According to Zarchan and Musoff, the Kalman

filtering is probably the most important algorithm in use. It has been used in applications like

the Apollo spacecraft, predicting fluctuations on the stock market, inside GPS devices, and

many more (Biezen, 2015). The algorithm can combine measurements from one or multiple

sensors with the predictions of a mathematical model, then use the information from all sources

to find the optimal prediction. It can do so by taking the error in the estimate (𝐸𝐸𝑆𝑇) and the

error in the measurements (𝐸𝑀𝐸𝐴) into account, based on these errors, the Kalman Gain (𝐾𝐺)

can be calculated. The 𝐾𝐺 is a fraction between one and zero that indicates how much the

algorithm “trusts” the sensors or the mathematical model, the closer 𝐾𝐺 is to one, the more

trust is put on the measurement. So, if 𝐾𝐺 = 1 is all information coming from the sensors and

if 𝐾𝐺 = 0 all the information is based on the estimates from the mathematical model. Over

time the 𝐾𝐺 will go closer and closer to zero since the information from the measurements tend

5. Technology Study

31

to be jumpy and 𝐸𝑀𝐸𝐴 tends to be fixed over time, meanwhile 𝐸𝐸𝑆𝑇 will be updated in each

iteration (sen M. Kuo, Bob H. Lee, 2013). The process in the Kalman filter has two distinct

parts, one estimation phase where the information from the mathematical model and the sensor

from the previous time step (k-1) is used to perform an estimate for the current time step (k)

and one updating phase. A weighted average is then taken from the estimate and the update

depending on the KG and this is the updated state. The updated state is then sent as an output

from the filter and used as input data for the next iteration, a flow chart that illustrates the

process of a Kalman filter can be seen in Figure 10.

Figure 10 Flow chart illustrating the process of a Kalman filter

5.4.2 Finite Impulse Response (FIR) Filter

The fundamental difference between an IIR filter and a FIR filter is, as mentioned earlier, that

the FIR filter only relies on a finite number of previous measurements. This number of

measurements is denoted as “N” or “L” in literature and is called the memory size, the horizon

or the length of the filter. For a filter with the length L is the order L-1 since that is the number

of zeros. As L increases, the noise suppression improves, but uncertainties in the model

parameters will have a more significant effect on the results. So, it is vital to select a value of

L that is suitable for the application. There are four different types of FIR filters, depending on

if the length L is an even or odd number and what type of symmetry the coefficients have. A

schematic diagram of a symmetric FIR filter with an even length can be seen in Figure 11.

Since an FIR filter uses the previous measurements stored in the memory and not a feedback

loop, these filters are more responsive, which gives a shorted delay between the input and the

output signal. Not using a feedback loop facilitates the implementation of the filter and

guarantees that the filter is stable at all times. Unfortunately, this also requires a bigger memory

and a higher processing power, which often can be a limiting factor. (sen M. Kuo, Bob H. Lee,

2013)

5. Technology Study

32

5.4.3 RC Filters

RC-filter stands for Resistor Capacitor filter, they consist of a resistor and a capacitor. These

are the most fundamental type of frequency signal filters. Based on the configuration, RC filters

can act as low pass, high pass, bandpass or band stop filters. By selecting the resistance and

capacitance values is the cutoff frequency determined. The cutoff frequency is specified above

or below which the filter will be active. A low pass filter only allows signals of frequency

below the cutoff frequency to pass through. A high pass filter works in the opposite way and

only allows signals of frequency higher than the cutoff frequency to pass. If a high pass and a

low pass filter is combined can a bandpass filter be created, which only allows signals that lie

between two cutoff frequencies to pass. In contrast, a band stop filter works in the opposite

way an only allows signals that lie outside the two cutoff frequencies to pass through. Figure

12 illustrated how low, high, bandpass and band stop filters work.

Figure 11 Schematic diagram of a symmetric FIR filter with the length L as an even number, 𝑧−1 is the tapped-delay, x(n)

is the input signal, and y(n) is the output signal (Watters, 2015)

Figure 12 Range of frequencies allowed to pass through different filters (Storr, 2014)

5. Technology Study

33

5.5 Communication Protocols

In order to optimize the performance of the anti-pinch system, information from other sensors

in the vehicle is needed. Parameters which are determined by other systems and are needed for

the anti-pinch system are for example the ambient temperature and the speed of the vehicle. To

obtain this information, a way for the system to communicate with the main control unit (MCU)

is needed. The two most common protocols used in automobiles for this type of communication

are CAN and LIN, which are explained further below.

5.5.1 CAN

Controller Area Network (CAN bus) is a serial communication protocol where communication

happens in the form of messages. It is used for real-time control of many essential functions in

automobiles, for example, for power train control, stability control, On-Board Diagnostics

(OBD-II) based vehicle diagnostic standard, etc. The development of CAN was started by

Robert Bosch GmbH. (History of the CAN technology, n.d.)

5.5.2 LIN

Similar to CAN, Local Interconnect Network (LIN) is also a serial communication protocol

but is mainly used for low-cost automotive applications. It allows the creation of distributed

electronic networks which are ideal for simple components, such as actuators and sensors (LIN

Steering Group, n.d.). It was developed by the LIN Steering Group till Specification 2.2.A,

after which LIN was made a part of the ISO 17987 Part 1-7 standard. The use of LIN is

widespread in parts like light control panels and panel switches. (Rylander & Wallin, 2003)

6 Concept Generation
In this chapter, the sub-functions that need to be solved have been identified. This is followed

by presenting the suggested solutions to these sub-functions, putting these solutions into a

morphological matrix and generation of concepts. Finally, the screening process of concepts

that do not meet the requirements has been described.

6.1 Identification of sub-functions

The first step in the concept generation process is to identify which sub-functions the generated

concepts would need to be able to perform in order to meet the requirements. For the anti-pinch

system, 8 functions were identified and are listed in Table 7. The next step was to come up

with sub-solutions to the identified functions. These sub-solutions would later be used in the

morphological matrix.

Table 7 Identified functions required in the Anti-Pinch system

No Identified function

A Driving the system

B Detecting the pinch with mechanical contact

C Detecting the pinch without mechanical contact

D Filtering signal

E Logic check position

F Logic speed of process

G Logic reverse distance

H Communication with main ECU

6.2 Morphological matrix

The primary purposes of the morphological matrix are to visualize and organize the concept

generation phase. This is done by listing the identified functions and their solutions in a user-

friendly manner. The format of the matrix makes it possible to generate a vast amount of

concepts in a short time. Each row in the morphological matrix is dedicated to a function and

its solutions. Since 8 sub-functions were identified for the anti-pinch system, the matrix will

have 8 rows. In the first column, the functions are listed, and the subsequent columns contain

the solutions. The concepts are generated by picking one solution from each row to get a

complete concept consisting of 8 sub-solutions in the end.

By following this method, a lot of these concepts will be unfeasible, since not all sub-solutions

can be combined with each other. Most of the sub-solutions have been explained in great depth

in the chapter Technology Study. A short description of each sub-solution can be seen in Table

8, and the morphological matrix can be seen in Figure 13.

6. Concept Generation

36

Table 8 Short explanation of solutions to identified function

A Driving the system B Detecting pinch with

mechanical contact

C Detecting the pinch without mechanical

contact

A1 A BDC motor

drives the system

A2 A BLDC motor

drives the system

B1 Hall Sensors are used to monitor

the motor performance

B2 Ripple Count is used to monitor

the motor performance

B3 Capacitive sensors are used to

detect contact with objects

B4 Ultrasonic sensors monitor the

back side of the moving to detect

changes in the speed

B5 Infrared sensors monitor the

back side of the moving to detect

changes in the speed

B6 No system used

C1 Ultrasonic sensors monitor the opening to

detect foreign objects

C2 Infrared sensors monitor the opening to

detect foreign objects

C3 Capacitive sensors detect electromagnetic

fields surrounding body parts in the way for

the moving object

C4 Image processing to monitor the inside of

the vehicle and to detect obstacles in the way

for moving objects

C5 LiDAR monitor the inside of the vehicle

and to detect obstacles in the way for moving

objects

C6 No system used

D Filtering signal E Logic check position F Logic speed of process

D1 Kalman Filter

D2 Finite Impulse

Response (FIR) Filter

D3 No filtering

E1 The data from the sensor

determine the position of the moving

object

F1 The moving object has a constant speed

over the entire range of motion

F2 The speed of the moving object changes

in different areas of the range of motion

G Logic reverse distance H Communication with ECU

G1 Reverses to a fully open position

G2 Reverses 20% of its range of motion

G3 Stop without reversing

H1 Communication via CAN

H2 Communication via LIN

6. Concept Generation

37

Figure 13 Morphological matrix with solutions to different sub functions

6. Concept Generation

38

6.3 Generated Concepts

From the morphological matrix, in theory 2592 concepts could be generated. In order to reduce

the number of concepts to a more manageable level, the feasibility of combining the sub-

solution was discussed. From that discussion, 17 feasible and unique concepts were generated.

These concepts were given the names Concept 1 through Concept 17 and they are listed in

Table 9 with a short description of which solutions they utilize.

Table 9 The 17 concepts taken from the morphological matrix with short explanations of how they work

Nr Combined Solutions Description

1 A1-B1-C6-D3-E1-F1-G1-H2 Most basic concept of all, uses hall sensors to monitors a BDC motor

without any filtering. Constant speed through the entire range of

motion, which allows for a much simpler motor controlling function.

Uses LIN for communication

2 A1-B1-C6-D3-E1-F2-G1-H2 Bit more complex than 1, uses position dependent speed to reduce

inertia in some areas for faster stop

3 A1-B2-C6-D3-E1-F1-G1-H2 Most Basic Ripple Count Concept similar to 1 but uses ripple count

instead of hall sensors

4 A1-B2-C6-D3-E1-F2-G1-H2 Bit more complex than 3, uses position dependent speed to reduce

inertia in some areas for faster stop.

5 A1-B1-C1-D1-E1-F2-G2-H1 Ultrasonic sensing for detecting pinches, hall sensors for position

control uses position dependent speed and CAN to communicate with

ECU

6 A1-B3-C3-D1-E1-F2-G2-H2 Capacitive sensors for detecting objects on distance and with contact,

Kalman filtering, position dependent speed and LIN for

communication

7 A2-B6-C5-D3-E1-F2-G3-H1 BLDC motor for high performance and LiDAR system to monitor the

inside of the vehicle, stops before mechanical contact so no reverse

needed, CAN for communication

8 A2-B2-C1-D1-E1-F2-G2-H1 BLDC motor combined with ripple count and ultrasonic sensing.

Kalman filter combines the inputs from both sensing methods,

position dependent speed and CAN

9 A1-B2-C1-D1-E1-F2-G2-H2 Same as 8 but uses a BDC motor as a cheaper alternative

10 A1-B2-C6-D1-E1-F1-G2-H2 Similar to 3 but uses a Kalman filter and only reverses certain % of

the range of motion in case of a pinch detection

11 A1-B6-C4-D3-E1-F1-G3-H1 BDC motor, Camera for direct monitoring of vehicle, no filtering and

stops no reverse if an object is in the way without making contact uses

CAN for communication

12 A1-B4-C6-D3-E1-F1-G1-H2 BDC motor, uses ultrasonic to monitor back side of moving object no

filtering or direct sensing, constant speed all the way and reverses %

of range of motion if pinch, LIN communication

13 A1-B4-C1-D1-E1-F2-G2-H1 Similar to 12 but adds ultrasonic sensors for direct sensing and a

Kalman filter to combine the sensors, position dependent speed and

CAN

14 A1-B5-C6-D1-E1-F1-G1-H1 Infrared sensors monitoring back side of moving object, no direct

sensing, Kalman filter is used and constant speed, reversing the full

distance if pinch occurs and CAN for communication

15 A2-B5-C6-D3-E1-F1-G1-H2 Similar to 14 but uses a BLDC motor and no filtering

16 A1-B6-C5-D2-E1-F2-G3-H2 Anti-pinch will just be a function in a larger system that monitor the

entire inside of the vehicle using LiDAR, no reverse is needed since it

stops before contact. Signals are filtered using FIR and

communication is done via LIN

17 A1-B6-C1-D2-E1-F2-G3-H2 Similar to 16 but uses ultrasonic sensors instead to monitor the inside

of the vehicle

6. Concept Generation

39

6.4 Concept Elimination

The next step in the development process was to screen the concepts that were generated using

the morphological matrix against the demands in the customer needs list. For this, an

elimination matrix was used, which allows for an unbiased and structured way of evaluating

concepts.

6.4.1 Elimination matrix

The elimination matrix is manly used to remove concepts that do not meet the requirements or

demands placed on them. Concepts also get removed if they don’t solve the main problem,

aren’t realizable, are too expensive, dangerous for the user or if they don’t fit the company’s

portfolio. The elimination matrix is considered to be a strong filter that removes many concepts.

The concepts taken into the matrix are listed in a column, for each of the listed elimination

criteria is the concept given a score; a (+) if it passes, a (-) if it fails, a (?) if more information

is needed or a (!) if the specifications should be checked. After all concepts are scored, the

concepts with a (-) were eliminated and more information was gathered about concepts with

(?). (Almefelt, 2019)

The elimination matrix can be seen in Appendix B, below follows a summary of the results

from the matrix.

All 17 concepts from the morphological matrix were taken into the elimination matrix, out of

these were 9 eliminated. The eliminated concepts were; 5, 7, 8, 9, 11, 13, 14, 15 and 17, all

eliminated concepts except 7 had a (-) on is realizable, and all except 11 and 17 had a (-) on

fulfills all demands, in addition to this did concept 7, 11, 15 and 17 have a (-) on have a

reasonable cost. More information (?) was needed to determine if concept 14 would fulfill all

demands and be realizable. A more detailed explanation of why the individual concepts got

deleted follows.

Concept 5, 8, 9 and 13 got eliminated mainly due to the complication that arises due to that the

ultrasonic sensors, which the concepts are based on, needs to be located on a different location

than the rest of the module provided by the supplier. This is troublesome since the supplier has

design responsibility for one module and is not allowed to affect anything outside of it. In

addition to this is the ultrasonic sensor itself a problem. The sensors should be mounted in a

way, so that they can monitor the opening of for example the window to detect objects that are

in its path. The sensor itself shouldn’t risk being in the way for the window which could make

it hard to combine it with the existing hardware in the vehicles.

Concept 7 and 15 got eliminated due to the unnecessary extra cost that is connected to using a

BLDC motor instead if a BDC motor. BLDC motors are often good motors with long service

life and almost no maintenance but the loads on the motors are relatively low in these

applications and they are more expensive that BDC motors.

Concept 11 was eliminated based on that processing images is a heavy process and expensive,

a camera is also sensitive to light conditions. Furthermore, having a camera monitoring the

inner compartment of the vehicle at all times could bring some passenger privacy issues.

Concept 17 was eliminated since ultrasonic is susceptible to disturbances, which would reduce

the reliability in such an open environment.

6. Concept Generation

40

Concept 14 and 15 required more information before they could get any score for the criteria

fulfill all demands and are realizable. This was due to some uncertainties in the performance

of infrared sensors available in the market, it was found out that the available sensors would

not be suitable for continuous monitoring of a moving object. So, both concepts got eliminated.

In addition to this was concept 3 and 10 combined due to their similarities leaving 7 concepts

for the next step in the process. The remaining concepts and their paths in the morphological

matrix can be seen in Appendix C.

6.5 Concepts Proceeding from the Elimination Matrix

Out of the seven concepts that remain in the process after the elimination matrix are two based

on Hall sensors, two are based on ripple counting, one on capacitive sensors, one on indirect

sensing using ultrasonic sensors, and one based on LiDAR technology. This section will give

a more detailed description of these concepts. The sub solutions that together creates the

concepts are listed in Table 9 in the Generated Concepts section above, in order to quickly give

an understanding on what sub-solutions that are the same in the remaining concepts and which

that differs are the paths of each concept in the morphological matrix shown in Appendix C.

From the figure, all remaining concepts use a brushed DC motor for driving the system and

LIN for communication, but apart from these sub-functions, all other sub-functions have very

different sub-solutions.

Concept 1

Just as stated in Table 9, is this the simplest of all concept. The entire concept is based on that

a number of hall sensors are placed in close proximity to the BDC motor poles or the motor

shaft. The sensitivity of the system depends partly on the number of hall sensors and partly on

the number of poles in the motor. The hall sensors detect when a motor pole is passing close to

them and since the number of poles in the motor is known can the system keep track of how

many times the motor has rotated. For example, if the motor is used to move a window up and

down and it is known that when the motor makes one revolution is the window raised 1 mm,

if the motor makes 100 revolutions is the window raised 100 mm. By knowing when the

window is fully closed or fully open, and then counting the number of revolutions the motor

has done can the system control the position of the window, which is a necessity for an anti-

pinch system.

By measuring the time between two sensor inputs can also the rotation speed be calculated.

The speed will naturally change over the range of motion for the window in the example due

to reasons like variation in the contact with the rubber seal surrounding the window. But if an

obstacle like an arm would come in contact with the upper edge off the window would the

speed decrease unnaturally. If the speed becomes lower than a pre-determined value will the

system act like there is something blocking its path and a pinch is detected, the window will

then stop and reverse the full distance. The signals from the Hall sensors are so stable that no

filtering is needed.

Concept 2

Concept 2 is based on the same principles as concept 1 for position control and for detecting

pinches. The difference lies in that for concept 2 is the motor speed decreased in regions where

there is a high risk for pinching accidents. Decreasing the speed lowers the inertia, which makes

6. Concept Generation

41

it easier to stop, and as a result, the pinching force is lowered. A PWM signal is used to regulate

the speed of the motor.

Concept 3

Concept 3 uses the ripple counting method for both position control and for detecting pinches

instead of hall sensors that the concept 1 and 2 does. By using ripple count, more inputs per

motor revolution can be given, this means in practice that a change in speed can be detected

much quicker and the system can detect a pinch situation earlier which reduces the pinch force.

Except from that is the position control and anti-pinch system working in the same way as for

a system based on hall sensors, it just uses the ripples instead of sensor inputs.

Concept 4

Concept 4 is a combination of concept 2 and 3, it utilizes ripple counting technology and speed

control. This gives a very exact system with low pinch forces since the ripple counting method

allows for exact control and reducing the speed will enable quick reactions by the system.

Concept 6

Concept 6 relies on a completely different method for detecting pinches compared to the first

four concepts. It is the first direct system, so instead of monitoring the motor in order to detect

unnatural decreases in speed, a capacitive sensor is inserted into the seal on the closing edge of

the windows or on the sunroof. The capacitive sensors can detect a pinch before there is any

physical contact between, for example, the window and a finger. This is possible since the

sensors detects changes in the electrical field surrounding the sensor. If something would enter

this field, like a jacket, or if there is another type of object blocking the path, a pinch is detected.

Capacitive sensors are excellent for an anti-pinch system, but they cannot be used for position

control. This means that hall sensors or ripple counting is needed to determine the position of

the window or sunroof. In order to combine the sensor inputs from the capacitive sensors and

the sensors used for position control a Kalman filter is needed. The placement of a seal with

inserted capacitive sensors can be seen in Figure 14.

Figure 14 A sketch illustrating the use of capacitive sensors (in red) and their electric field (in yellow)

6. Concept Generation

42

Concept 12

Both the position control and the anti-pinch system of concept 12 relies on indirect sensing

using ultrasonic sensors. For the windows is the ultrasonic sensor places inside of the door and

monitor the bottom side of the window. By doing so can the distance to bottom edge of the

window and the speed with which it opens, or closes be determined. This system is relatively

similar to the first four concepts with the difference that it uses inputs from an ultrasonic sensor

instead of input from a hall senor or ripples from the motor. The ultrasonic sensor can give

even more exact readings then the ripple counting method, but it has a big disadvantage when

it comes to the placing of the sensor. For the window is there a possibility to place the sensors

inside the door, but for the panel and the curtain in the sunroof is the situation different and it

can be hard to find a good location for the sensor. Figure 15 shows an illustration of how the

ultrasonic sensor could be places inside a door.

Figure 15 A sketch illustrating the use of ultrasonic sensors to indirectly measure a pinch situation

Concept 16

Concept 16 differentiates itself from all the other concepts, instead of just monitoring one

window is two sensors placed in the front of the interior compartment. From that position can

the LiDAR sensors create an 3D image of the inside of the vehicle and monitor all activity.

This includes determining the position of the sunroof and all the windows, if one of the

windows would be closing when a passenger have an arm out through the window is this seen

by the system and the window is stopped before it can pinch the arm. This system is much more

advanced than the other but can also be used for other functionalities than just the anti-pinch

system and the position control of the windows and sunroof. A sketch of what the interior of

the vehicle would look like from the perspective of the LiDAR sensors can be seen in Figure

16.

6. Concept Generation

43

Figure 16 The sketch illustrated how the interior compartment of a vehicle would be seen by a LiDAR sensor

7 Prototyping
In this chapter, the prototyping efforts conducted in this project have been elaborated. Starting

with the quick and dirty prototyping done early on in the project, and the continuation of the

development work done for concepts 1, 2, 3 and 4. The hardware used and the process of

developing the software is also explained in detail.

The prototyping phase took up most of the time in this project, a lot of things can be learned in

theory but being able to implement the theory in a product or prototype adds much more values.

The best scenario would be to build prototypes of all the 7 remaining concepts and then test

them in the same way so that they can be compared in a fair manner. The time limitations in

this project makes it impossible to build prototypes of all concepts, so the prototyping effort

will be focused on concepts 1, 2, 3 and 4.

7.1 Early Prototyping Quick & Dirty

An early stage prototype was created using a LEGO EV3 programmable robotics kit. The

prototype uses a motor to move a plate of LEGO blocks in a translating motion, similar to the

motion of the sunroof panel and curtain. Two different approaches to anti-pinch systems were

implemented. The first approach monitored the speed of the motor, like a system based on hall

sensors would do. The second system measured the current that the motor required. Both

systems were functional, they stopped and reversed the panel when an obstacle was detected.

Due to LEGO’s user friendly block programming, this simple but functioning prototype could

be built and tested in approximately 3 hours to translate theoretical knowledge into practice.

The LEGO EV3 brick and the LEGO panel can be seen in Figure 17.

Figure 17 LEGO EV3 system used for early prototyping in order to increase the understanding of how a system would

work in practice

7. Prototyping

46

7.2 Prototyping Concept 1

The prototypes of the four concepts rely on similar hardware and software set ups. The

prototyping started with concept 1. As a result, a lot of functionalities and circuitry developed

for concept 1, could be carried over to the prototypes of the other concepts. Because of this, a

lot of the common basic functionalities are explained in this section.

7.2.1 Prototyping Hardware

A cut off section of the roof from a standard Volvo S60 was used as the base for building the

prototypes. This section was cut off on the A, B, C and D pillars, leaving a complete roof

without any interior parts. This allowed for quick and easy access to the BDC motors mounted

on the roof for operating the panel and the curtain beneath it. The roof was mounted on a trolley

to secure it from falling and to allow easy access and mobility. The cut off section of the roof

can be seen in Figure 18.

The two brushed DC motors on the roof were from the manufacturer Nidec. These are standard

for the sunroof on Volvo vehicles. The motors have an 8-pole ring magnet mounted on the

shaft and two hall sensors integrated in the motor. Both hall sensors are placed on the upper

side of the motor as can be seen in Figure 19 and can be accessed via pins in the motor

connections. The 8-pole ring magnet in combination with the two hall sensors gives 8 positive

readings per revolutions, 4 from each hall sensors, this sets a physical limitation of how

sensitive this system can become since it is not possible to increase the number of readings per

revolution and thereby a quicker reaction. A diagram of the hall sensor signals from the two

sensors for one revolution can be seen in Figure 20.

Figure 18 The cut off section of the roof, including sunroof panel and curtain mounted on a trolley

Figure 19 Positioning of the two hall

sensors in relation to the 8-pole ring magnet

Figure 20 Diagram of the hall sensor inputs from the two hall sensors for

one revolution in clockwise direction

7. Prototyping

47

In addition to the roof, a front and a rear door from Polestar 2 was used for developing the

prototype for the power windows, as can be seen in Figure 21. To get access to the power

window motors, the inner panels were removed from both doors. Figure 22 shows the inside

of the front door without the inner panel so that the placement of the power window motor can

be seen. No trolley or frame was built for the doors, instead they stood in EUR-pallets.

The motor situation looked a bit different for the doors compared to the roof. The hall sensors

were positioned on the door’s control board and then inserted into the motor as can be seen in

Figure 23 and Figure 24 instead of being integrated in the motor. The hall sensors could not be

accessed via the pins on the door control board because the signals are processed directly and

never leaves the board. To get access to the hall sensors, connections were made directly on

the board instead of connecting to a pin as for the roof motors. The wires soldered to the sensors

can be seen in Figure 25.

Figure 22 Inside of the front door showing the placement of the power window motor

Figure 21 Front and rear doors of a Polestar 2

7. Prototyping

48

Figure 23 The hall sensors are mounted on the MCU and then inserted into the motor so

that they can get in contact with the poles on the ring magnet

Figure 24 The opening in

the motor where the hall

sensors are inserted

To drive and control the motors, an electrical and an electronic system was set up. To provide

the power to run the motors, a DC variable power supply was used in constant voltage mode at

12V. For processing the sensor input a microcontroller was needed. For reasons of simplicity

and ease of use, an Arduino Mega 2560 was used for this purpose and to control the motor

movement based on user inputs. A circuit diagram illustrating how the components, including

the Arduino Mega, the power source, motors etc., in the electrical circuit are connected to each

other can be seen in Figure 26.

Figure 25 To get the hall sensors signals where connections soldered directly to the sensors on the MCU

7. Prototyping

49

7.2.2 Prototyping process

A multistep prototyping process was carried out with the focus of implementing one required

function in each step. The development work started with the sunroof panel. When all functions

were implemented on the panel, the software code was copied and modified for the sunroof

curtain, and then for the power windows.

Figure 26 Circuit diagram showing concept 1 for the sunroof panel with the motor, hall sensors, Arduino Mega, control

buttons, power source and relays

7. Prototyping

50

7.2.2.1 Sunroof Panel Concept 1

The first step in the process was to establish position control. This means the ability to open

and close the panel, determine the range of motion and the position of the panel in every

instance. This was done by detecting the rising edges from the hall sensor signal to see how

many inputs were received for a certain distance. Establishing position control is relatively

complex for the panel, since the panel needs to tilt up before it can slide into its fully open

position. During this lifting procedure, the performance of the system is different compared to

other sections of the opening and closing operations where the panel is only sliding. The fully

closed, tilted and fully open positions of the sunroof panel can be seen in Figure 27 to Figure

29. It was observed that during the tilting procedure, 197 signals arrive from the hall sensors,

whereas over the remaining range of motion 1188 such signals were received giving a total of

1385 hall sensor inputs from a fully closed to a fully opened position. These hall sensor inputs

are used to determine the distance of the panel.

Figure 27 Sunroof panel in its fully closed position

Figure 28 Sunroof panel in its tilted position

7. Prototyping

51

Figure 29 Sunroof panel in its fully open position

When the position control worked reliably, the next step was to make the system identify pinch

situations. This started with using the hall sensor inputs to calculate the speed of the motor in

every position of the panel. Since the sensors are not symmetrically located around the 8-pole

ring magnet, four sensor inputs are needed to get somewhat uniform measurements. The time

it took to get these four inputs is measured and used to calculate the rotational speed of the

motor. The calculations of the rotational speed are done in two steps, first the absolute value of

the time difference between the first inputs from hall sensor 1 and hall sensor 2 calculated and

saved. The same calculation is then done for the next inputs from both sensors. Finally, the

difference between the newer and older measurement is calculated as:

𝑇𝑖𝑚𝑒 𝑃𝑒𝑟 𝑅𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝑎𝑏𝑠(𝑇𝑖𝑚𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑁𝑒𝑤 − 𝑇𝑖𝑚𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑂𝑙𝑑)

So, the variable name “Time Per Revolution” is a misnomer, since it only takes four

measurements into account and not eight which would be needed for a full rotation, but it gives

a good and simple explanation of what parameter the variable is supposed to convey. Thus, the

variable “Time Per Revolution” is inversely proportional to the speed of the motor; the slower

the motor rotates, the higher will the time per revolution be - as the time between the hall sensor

inputs will be longer. An explanation of how this was done in the software is given in the

Software Development chapter.

When the “Time Per Revolution” could be calculated in every position of the panel, ten

consecutive test runs were made to see how the time per revolution varies over the range of

motion and between different runs. These values were saved and plotted in MATLAB to

illustrate the operation variance. These measurements can be seen in Figure 30.

7. Prototyping

52

Figure 30 Time per revolution measurements for the sunroof panel. The spike in the middle shows the fully open position

and the distinguishing regions in the beginning of the opening phase and in the end of the closing phase is the tilting

7.2.2.1.1 Threshold Curve

Once all values from the 10 test runs were recorded, these “Time Per Revolution”

measurements were then used to determine the threshold values for the zones where the anti-

pinch system should be activated. The threshold line is a curve fit created with the help of

Microsoft Excel, that is raised above the measurement values. If the panel hits an obstacle, its

speed will decrease leading to longer time interval between the hall sensor inputs. This in turn

leads to the increase in the value of “Time Per Revolution”. If the “Time Per Revolution”

increases to the extent that it intersects the threshold line, a pinch is detected, and the motor

stops and reverses until the panel reaches its fully open position. The threshold curve and the

ten measurements for the closing of the panel can be seen in Figure 31.

Figure 31 10 Time per revolution measurements for the closing phase of the sunroof panel, the threshold curve can also

be seen for the parts where the anti-pinch system is active

7. Prototyping

53

Depending on the position of the panel, different amount of speed reduction will cause the time

per revolution to pass the threshold line. For this, six different zones were defined. The zones

can be seen in the plot in Figure 31, and all zones except the “Tilt Zone” are marked with lines

A, B, C and D in Figure 32. Determining the required difference in amplitude between the time

per revolution curve and the threshold curve was an iterative process. The amplitude of the

threshold curve was set to an initial value, and then the corresponding pinch force at that

amplitude was measured. If the pinch force was found to be too high, the amplitude of the

threshold curve was lowered, and if the system had a tendency of detecting false pinches, the

threshold curve was raised, and new pinch force values were gathered. This process was

repeated until the pinch force was at a good level and no false pinches were detected.

In the “No Pinch Zone” before line “A” in Figure 32, the anti-pinch system is not active. The

“Normal Pinch Zone” starts at line “A” that was 200 mm from the edge and ends at line “B”.

In this zone, the spring stiffness required during the legal testing for FMVSS No. 118 is 20

N/mm. The “Super Sensitive Pinch Zone” lies between lines “B” and “C” which is the last 25

mm before the panel has covered the entire opening seen from the inside of the vehicle. In the

“Super Sensitive Pinch Zone”, the spring stiffness used during testing is 65 N/mm. Resulting

in that the panel can only move 1.5 mm before the pinch force reaches 100 N. The next zone

is the “Between Pinch Zones”, between line “C” and “D”, this zone is unique since the opening

that could be seen from the inside of the vehicle is already covered by the panel. But the panel

will keep on moving for another 50 mm before the front edge has reached its final position seen

in Figure 28. There is a possibility that a pinch situation occurs if the user, for example, is

gripping the edge of the inner ceiling, and therefore the anti-pinch system is still active in this

zone. The fifth zone is the “Tilt Zone”, where the front of the panel has already reached its final

position, but the rear end is lowered down as can again be seen in Figure 28. Finally, there is

one more zone where the anti-pinch system is deactivated, because the panel is less than 4 mm

from the edge.

Figure 32 Line A marks the start of the “Normal Pinch zone”, the “Super Sensitive Pinch Zone” is between the lines B

and C. At line C has the panel cover the entire opening that can be seen from inside the vehicle, but it will keep closing

until it has reached line D before it starts to tilt down.

The closer the threshold curve is to the actual readings, the more sensitive the system will be

towards pinch detections. This is a tradeoff between sensitivity and the risk that the system

detects “false pinches” if the motor would slow down for any other reason than that there is an

7. Prototyping

54

obstacle blocking its path. It is important to notice that these test values are recorded in lab

conditions without any impact from vehicle vibrations, air resistance, extreme temperatures or

other elements. These factors could force the lowering of the sensitivity in order to avoid false

pinches.

7.2.2.1.2 Adaptive Threshold Curve

One way of avoiding “false pinches” caused by changes to the factors which are consistent

throughout the entire closing phase, like ambient temperature, was to make the threshold curve

adaptive in nature. Out of the ten consecutive test measurements shown in Figure 31, the first

and the last of those measurements are separately shown in Figure 33. The only factor that

causes the differences between these two measurements is the motor temperature. The change

in motor temperature resulted in a difference in the amplitude of the time per revolution curve

but not its shape. The measurements from the tenth test run are much lower than the ones from

the first run. To cope with this difference in amplitude, reference values called “threshold base”

are gathered from the last four hall sensor inputs before the panel enters the pinch zone. This

is done every time the panel is closing. The amplitude of the threshold curve is adjusted based

on these threshold base values, so that the curve has the correct sensitivity for every specific

instance the panel is closed.

Figure 33 Measurement values from test run 1 and 10 with their respective threshold base line and threshold curve.

7.2.2.1.3 Hard Stop

One of the most important basic functions is the hard stop. It is used to prevent the drifting of

the distance, in turn the threshold curve, and ensuring a safe operation. The hard stop function

detects when the panel has reached its fully open or its fully closed position and stops the

movement by turning off the current supply to the motor. This is done by checking if an

open/close signal is given by the user and comparing the time difference between two hall

sensor inputs to a pre-determined value. For example, if the closing button is pressed, the

signals from the hall sensors come in at a regular basis until the panel reaches its fully closed

position. Then it becomes impossible for the panel to move any longer and the motor will stop

rotating. When the motor isn’t rotating, no signals will be received from the hall sensors. After

250 µs without any sensor input, the hard stop will turn the motor off and set the distance to 0.

7. Prototyping

55

The system functions in the same way for the opening procedure, and when a hard stop is

detected, the distance is set to the fully open distance of 1385. Resetting the fully open and

fully closed distance every time the panel reaches one of its end positions minimizes the drifting

of the threshold curve due to varying numbers of hall sensor inputs that are received. If the

panel is opened and closed several times in a row without the hard stop function, the threshold

curve was found to be misplaced, causing false pinches or a low sensitivity.

7.2.2.2 Sunroof Curtain Concept 1

For the sunroof curtain that sits beneath the panel, the procedure of building the code required

less effort since all functions like the hard stop and the adaptive threshold curve where already

implemented on the panel. The panel code was just copied and variable names where change

to fit for the curtain. Then the same procedure for determining a threshold curve was repeated.

The major difference for the curtain is that there is no tilting phase which makes it much easier

to control. Since it also has a longer range of motion than the panel, 2150 hall sensor inputs are

received to reach the fully open position. The curtain sits on the inside of the roof and when it

is opened is it rolled up on a cylinder behind the sunroof. The placement of the curtain, its

motor and the roll-up structure are shown in Figure 34. The time per revolution for the entire

range of motion and the threshold curve for the closing phase can be seen in Figure 35, and

Figure 36.

Figure 34 The placement of the sunroof curtain, its motor and the roll-up structure

7. Prototyping

56

Figure 35 Time per revolution measurements for the sunroof curtain

Figure 36 Time per revolution measurements for the closing phase of the sunroof curtain, the threshold curve can be seen

for the parts where the anti-pinch system is active

7.2.2.3 Power windows Concept 1

For the power windows, the existing code with all functions was copied and modified in a

similar way as for the curtain. The code that was built for the sunroof panel, worked for the

window without any issues. However, some problems arose due to the improvised connections

that were made on the door control board, as described in the Prototyping Hardware section

and showed in Figure 25. The connections worked good for a little while testing the windows,

but after opening and closing the windows multiple times, one of the motor’s hall sensor got

damaged. Different reasons for why the sensors were “dying” were investigated, but after

testing and destroying sensors on four different control boards, for both the front and rear doors,

the investigation was canceled due to lack of time and new boards. Instead, it was accepted that

7. Prototyping

57

only one hall sensor could be used for the window, which reduced the sensitivity of the system

drastically. During the full range of motion 460 hall sensor inputs are received which is half

compared to if the system would have both hall sensors functional. Since the same software

was used for the window as for the panel, the only development effort, except creating the

circuit, was to gather measurement values and create a threshold curve. The threshold curve

was created using the same iterative process as described for the sunroof panel. Unlike the

sunroof panel and curtain, the windows slide in the vertical direction. This affects the time per

revolution measurements and the current consumption. As can be seen in Figure 37, there is a

significant difference in the time per revolution measurements between the opening and closing

phases. The naturally slower pace during the closing of the window is advantageous when it

comes to getting a more sensitive anti-pinch system. A lower pinch force is caused by the

reduced inertia. The closing phase consists of three zones; the no pinch zone, the normal pinch

zone and the super sensitive pinch zone which are shown together with the threshold curve in

Figure 38.

Figure 37 Time per revolution measurements for both the opening and closing of the front power window

7. Prototyping

58

Figure 38 Time per revolution measurements for the closing phase of the front power window, the threshold curve can be

seen for the parts where the anti-pinch system is active

7.3 Prototyping Concept 2

A lot of the basic software and hardware developed for concept 1 was reused for concept 2. By

doing so, a lot of time was saved, and also made it easy to switch between the two concepts to

compare and illustrate their differences.

7.3.1 Prototyping Hardware

The hardware for concept 2 comprised of mostly the same hardware as for concept 1, but

instead of using relays for changing the direction of the motor, a motor controller was used.

The motor controller is a reference design from Texas Instruments called the DRV8703-

Q1EVM, shown in Figure 39. This reference design is based on the DRV8703-Q1 Automotive

H-Bridge Gate Driver, consisting of a single H-bridge gate driver that can make use of four

external MOSFETs to rotate a single brushed DC motor in two directions at different speeds.

Speed and directional control were attained using PWM signals generated from Arduino’s

timers 1 and 2.

Figure 39 DRV8703-Q1EVM motor controller from Texas Instruments (Texas Instruments, n.d.)

7. Prototyping

59

The fluctuation from the PWM signals caused a lot of measurement noise in the hall sensors’

output. In order to get a low-noise, reliable signal, an RC low-pass filter was introduced. The

resistance and capacitance values used in the RC filters for the panel, curtain and the window

are listed in Table 10 together with the cut-off frequency of the filters. The circuit used for

concept 2 is illustrated in a circuit diagram in Figure 41, and an image showing the actual

circuit can be seen in Figure 40.

Table 10 The table shows the resistance and capacitance values together with the cut-off frequency for the RC-filters in the

panel, curtain and window

Figure 40 The image shows the circuit used for concept 1 and 2. The image includes the Arduino, two motor controllers,

the wiring from the hall sensors, the buttons and the RC-filters

Component Resistance (kΩ) Capacitance (nF) Cutoff Frequency (kHz)

Panel 4 4.7 8.47

Curtain 200 0.15 5.31

Window 510 1 0.31

7. Prototyping

60

Figure 41 Circuit diagram for concept 2 panel

7.3.2 Prototyping process Concept 2

Similar to concept 1, the prototyping was started with the sunroof panel. When the panel could

be operated reliably, the hardware reused and the software were copied with some

modifications to make them work for the curtain and then, finally the power window.

7.3.2.1 Sunroof Panel Concept 2

The first challenge with building the circuit for concept 2 was to replace the relays in concept

1, with the motor controller from Texas Instrument. In order to do that, a PWM signal of 31.272

kHz frequency was generated from the Arduino Mega. A high frequency was required by the

motor driver to reduce noise and increase the reliability of the operation. The motor controller

was used for controlling both the duty cycle and direction of the current, meaning that it could

change both the speed and direction of the panel.

7. Prototyping

61

As described in Sunroof Panel Concept 1, the movement of the panel is a bit complex. For most

parts of the range of motion it is sliding in the horizontal plane, but it also has a tilting motion

as shown in Figure 28. For the region where the sliding occurs, the speed could be reduced

drastically, but in the region where the tilting motion was performed, the speed could only be

reduced with a few percentages. If it was reduced by a bigger extent, the panel stops moving

and gets stuck in the tilting region. The speed was thereby reduced to different extents in

different zones.

But, changing the PWM duty cycle brought with it more difficulties than just the panel getting

stuck at lower speeds. Whenever the panel was driven by a duty cycle lower than 100%, there

was a huge increase in measurement noise from the hall sensors. Over the full range of motion,

more than 30 000 hall sensor inputs could arrive, which can be compared to 1385 for concept

1. To minimize the measurement noise a lowpass RC filter was built. After a few iterations

with different resistance and capacitance values, a filter with a cut-off frequency of 8.47 kHz

was used. Even though the RC filter was implemented, an additional 30 hall sensor inputs were

received over the entire range of motion, giving a fully open distance of 1425. These few false

hall sensor inputs are registered by the Arduino like if two signals were coming at the same

time, giving a time difference of 0 between these two inputs. As the system made use of four

hall sensor inputs when calculating the time per revolution, these false inputs generated steep

valleys of half the magnitude in the plots of the time per revolution. Since these false inputs

never affected the performance of the system, they were accepted without any

countermeasures.

Just as in concept 1, ten consecutive test runs were made to gather measurements of how the

time per revolution varied. Following this, a threshold curve based on these values was created

using the same method as in concept 1. The new threshold curve and the time per revolution

measurements are shown in Figure 42. The reduction in speed appears significantly in the plot.

Figure 42 Time per revolution measurements for the closing phase of the sunroof panel, the threshold curve can also be

seen for the parts where the anti-pinch system is active. The increased amplitude of both the measurements and the

threshold curve indicates a lowered speed in that region.

7. Prototyping

62

During the prototyping of concept 2, a very inconsistent and nonlinear relationship between

the reduction of PWM duty cycle and the increase in time per revolution was noticed. This can

be seen in all plots of the time per revolution for the panel, curtain and power window. For the

panel, the PWM duty cycle in the “No Pinch Zone” is 100%, when it enters the “Normal Pinch

Zone” the duty cycle is set to 91% resulting in an increase in the time per revolution with

around 300µs. In the “Super Sensitive Pinch Zone” the PWM duty cycle is set to 88% but here

the increase in time per revolution is approximately 6400µs.

An additional troublesome behavior in the time per revolution values appeared when the duty

cycle was less than 100%. The variation in the time per revolution values increased drastically

with a lower duty cycle. In Figure 43, the variance at every point of the ten time per revolution

measurements from concept 1 and concept 2 is plotted. The figure shows significant increase

in variation in the regions where the PWM duty cycle is less than 100%. In the “No Pinch

Zone” with a duty cycle of 100%, the variance is around 80 between the highest and lowest

time per revolution values at a point. This stays relatively unchanged in the beginning of the

“Normal Pinch Zone” with a duty cycle of 91%. After that, when the duty cycle is set to 88%,

the variance reaches around 300 with a lot of peaks that go up to 1000. The difference in

variation can also be seen in Figure 42 where the measurement values in the “No Pinch Zone”

are closer to each other compared to the regions with a reduced speed. In the regions with a

duty cycle of 100%, the variance in concept 2 was observed to be lower than that in concept 1.

This can be explained by the better current regulation of the motor controller compared to the

relays used in concept 1.

The purpose of reducing the speed of the panel is to get a more sensitive system with a lower

pinch force, but the increased variation in the curve counteracts this. Due to the increased

variation in the measurements, the threshold curve needs to be higher above the time per

revolution curve to avoid false pinches, reducing the sensitivity of the system.

Figure 43 The plot shows the variance in the ten time per revolution measurements runs for both concept 1 with constant

speed and for concept 2 with position dependent speed and how it varies with the changes in the PWM duty cycle

7. Prototyping

63

7.3.2.2 Sunroof Curtain Concept 2

Reducing the speed for the sunroof curtain was less challenging than for the panel. Mainly

because the curtain only performs a sliding motion, thereby avoiding the difficulties that arose

from the tilting movement of the panel. The speed of the curtain could be lowered to a great

extent without it getting stuck. The other side-effects experienced for the panel, like a noisier

signal from the hall sensors, false hall sensor inputs and measurement variation were much less

evident in the curtain. After implementing a lowpass RC-filter with a cut-off frequency of 5.31

kHz, no false hall sensor inputs were received. The measurement variance was smaller for the

entire range of motion compared to the curtain in concept 1, except in the region with reduced

speed, where the variance was similar for both concepts.

The speed was only reduced in the last 50 mm before the curtain reached its fully closed

position. In this last region, the PWM duty cycle was set to 78% causing the time per revolution

to increase to around 6200 µs compared to 4200 µs for the other regions. Again, ten consecutive

test runs were made to gather data of how the time per revolution changes over the range of

motion. The threshold curve was created based on the time per revolution measurements using

the same iterative method as used for concept 1. The measurements and the threshold curve

can be seen in Figure 44.

7.3.2.3 Power Window Concept 2

Implementing the speed reduction in the window was similar to the curtain. The base software

was already created and the only things that were done additionally was to build a new lowpass

RC-filter and to decide in which regions the speed should be lowered. For the power window

in concept 2, only one hall sensor could be used because the other hall sensor was damaged, as

explained in the previous subsections. The speed of the window was reduced to different

extents in the entire pinch zone, with a smaller speed reduction in the beginning and then

Figure 44 Time per revolution measurements for the closing phase of the sunroof curtain, the threshold curve can also be

seen for the parts where the anti-pinch system is active. The increased amplitude of both the measurements and the

threshold curve indicates a lower speed in that region

7. Prototyping

64

increased stepwise in the more sensitive regions. The steps where the speed had been reduced

stand out clearly in both the time per revolution measurements and the threshold curve plotted

in Figure 45. The variance in the measurement values also increased drastically if the PWM

duty cycle was less than 100%, similar to the behavior observed for the curtain. The duty cycle

is reduced in the following steps when the window enters the “Normal Pinch Zone”: 98%, 94%,

90%, 82%, 58% and increasing to 70% before accelerating back to 100% when it has exited

the pinch zone. The variation in the measurements increases with the reduction in duty cycle,

which can also be seen in Figure 46, where the variation in the measurements is plotted for the

window in concepts 1 and 2. The variation was found to be the biggest in the “Super Sensitive

Pinch Zone” which can also be seen in Figure 45. This forces the threshold curve to be placed

high above the time per revolution measurement values in this vital region.

Figure 45 Time per revolution measurements for the closing phase of the front power window, the threshold curve can

also be seen for the parts where the anti-pinch system is active. The increased amplitude of both the measurements and

the threshold curve indicates a lower speed in that region

7. Prototyping

65

Figure 46 The plot shows the variance in the ten time per revolution measurements runs for both concept 1 with constant

speed and for concept 2 with position dependent speed and how it varies with the changes in the PWM duty cycle

7.4 Prototyping Concept 3 and 4

A lot of the basic software and hardware developed for concept 1 and 2 was reused for concept

3 and 4. By doing so, a lot of time was saved, and also made it easy to switch between the

concepts to compare and illustrate their differences. This could be done even if concepts 3 and

4 relied on fundamentally different technologies compared to concepts 1 and 2.

7.4.1 Prototyping Hardware

The ripple counting circuit that is the fundamental technology that these concepts rely on is

called TIDA 01421. It is an automotive brushed-motor ripple counter reference design for

sensorless position measurement from Texas Instruments. This design uses a current sensor, a

band-pass filter, a differential amplifier, and a comparator to condition the ripple signals from

the motor into 5V signals that can be measured by a microcontroller without requiring

additional digital signal processing. An image of the ripple counting circuit can be seen in

Figure 47.

7. Prototyping

66

In theory, ripple counting should have higher output resolution than hall sensor signals. This is

because in one rotation of the motor, the number of times the windings short with the motor

brushes is much higher than the number of times the poles cross the hall sensor. Unfortunately,

the reference design boards that were obtained from Texas Instruments were either not

compatible with the tested motors or were faulty. As a result, a usable output signal was not

obtained. Figure 48 shows the signals output of the shunt resistor in the circuit.

7.4.2 Prototyping process concept 3

The prototyping process was expected to be similar to that of concepts 1 and 2. The biggest

difference would lie in the magnitude of number of position readings for a given range of

motion. This would present the need to change ‘expected’ values of various distance related

parameters. Apart from this, the other change from previous concept would be the introduction

of a Kalman filter in concept 4.

7.5 Software Development

The following chapter describes how the software for the developed concept works. Code

snippets from principal parts of the program are provided along with short descriptions of what

they do.

7.5.1 Flowchart

The logic behind the software code can be understood by following a simplified flowchart of

the program. Figure 49 shows the flow chart for the opening of the panel and Figure 50 shows

the closing of the panel.

Figure 47 Ripple counter board from Texas Instrument

(Texas Instruments, 2018)

Figure 48 Oscilloscope image of the signal received at the

shunt resistor

7. Prototyping

67

Figure 49 Flowchart showing the opening functionality

7. Prototyping

68

7.5.2 Important sections from software code

As mentioned in previous chapters, the MCU used for prototype development was an Arduino

Mega 2560. The following sub-sections provide software code snippets and description of how

it interfaces with the hardware. The snippets are taken from the software that controls the

sunroof panel, but it looks the same for the curtain and the windows.

7.5.2.1 Detecting Hall sensor inputs

One of the most fundamental function of the program is to keep track of the motor’s position

and speed. This is done by using signals from the motor’s hall sensors. When a hall sensor

signal arrives, it triggers an interrupt service routine (ISR) and calls the magnet_detect

function as can be seen in the code snippet below. Interrupts have the advantage of running at

a high priority. So, if the program is busy in executing a different task, when the interrupt

arrives, the normal program is stopped and the ISR is executed. When the ISR is executed, the

Figure 50 Flowchart showing the closing functionality

7. Prototyping

69

normal program can resume. Using interrupts for acquiring hall sensor signals makes sure that

the program can always keep correct track of the motor’s position and speed.

7.5.2.2 Distance

Each hall sensor signal corresponds to rotational movement in the motor, which in succession

corresponds to the movement of the panel. When the panel is opened, every subsequent hall

sensor signal will correspond to an increase in the distance by which the panel is opened. Thus,

the total number of hall sensors signals received by the Arduino, from when the panel was fully

closed to when the panel was fully open, has been used to calculate the total distance the panel

travels. As described above, the magnet detect function gets called every time a signal is

received from a hall sensor. The magnet_detect function consist of an if statement seen in

the code snippet bellow. If any button is pressed or a pinch is detected, and the panel is not in

its fully open or fully closed position will the hsDetectPanel and the confirmerPanel be

increased by 1. The time at which the hall sensor input was received is also saved in

hs1TimePanel which is set to the program time.

After the hsDetectPanel is increased by 1 in the magnet_detect function,

distancePanel is increased with 1 by adding the value of the confirmerPanel to the

distancePanel. After that, confirmerPanel is set to 0 and the PaceFunkPanel function

is called to calculate the time per revolution. The hSensitivityPanel is equal to 1 and the

hsDetectPanel will be reset to 0, so this statement is only fulfilled when an input from a hall

sensor has been received.

Similarly, when the panel is being closed, the distance value is decreased with every hall sensor

signal by subtracting the confirmerPanel from the distancePanel.

if (hsDetectPanel >= hSensitivityPanel) // Enters when a hall sensor is detected
 {
 distancePanel = distancePanel - confirmerPanel; // Decreases the distance
 confirmerPanel = 0; // Resets the confirmer
 PaceFunkPanel(); // Calls the pace function to calculate the time per revolution
 }

attachInterrupt(digitalPinToInterrupt(hs1Panel), magnet_detect1Panel, RISING); // Interr
upts the system if a hall sensor signal is detected
attachInterrupt(digitalPinToInterrupt(hs2Panel), magnet_detect2Panel, RISING); // Interr
upts the system if a hall sensor signal is detected

void magnet_detect1Panel()
{
 if ((digitalRead(openButtonPanel) == HIGH || digitalRead(closeButtonPanel) == HIGH ||
pinchDetectorPanel == 1) && fullyOpenPanel == 0 && fullyClosedPanel == 0)
 {
 hsDetectPanel++;
 confirmerPanel++;
 hs1TimePanel = micros();
 }
}

if (hsDetectPanel >= hSensitivityPanel) // Enters when a hall sensor is detected
 {
 distancePanel = distancePanel + confirmerPanel; // Increases the distance
 confirmerPanel = 0; // Resets the confirmer
 PaceFunkPanel(); // Calls the pace function to calculate the time per revolution
 }

7. Prototyping

70

7.5.2.3 Time per revolution

The PaceFunkPanel function is called every time the distance has been increased or

decreased. As described above, the time at which a hall sensor signal arrives is recorded in

hs1TimePanel, and the same is done in hs2TimePanel when an input is received from the

other hall sensor. The time difference between the sensor inputs is saved in

Time_Between_Hs_Input_Panel and then by using the time between four consecutive

signals, time per revolution is determined. It is inversely proportional to the rotational speed of

the motor, such that a higher time per revolution value corresponds to a slower motor speed,

and vice versa.

7.5.2.4 Pinch detection

Time per revolution values are plotted against distance values and quadratic curve fits are

generated. The pinch zone was split into 7 segments, with each segment having its own curve

fit. The equation from these curve fits are then implemented as an inequality statement in the

program. When the actual time per revolution value is greater than the expected threshold value

from the curve fit, it is defined as a pinch situation. The code snippet below shows the statement

that is fulfilled if the distancePanel is within the lower limit, LL1Panel, and the upper

limit, UL1Panel, of the first of these 7 segments. If the value of the curve fit for this exact

distance is lower than the time per revolution, the pinchDetectorPanel is set to 1, meaning

that a pinch has been detected.

7.5.2.5 Adaptive curve

The speed of the motor does not remain constant and varies between different closing runs.

This implies that a static threshold curve risks to either become too sensitive or too little

sensitive, both of which are not ideal. In order to accommodate this variance in the motor speed,

the vertical intercept values for the curve are calculated based on time per revolution values

from just outside the pinch zones. The quadratic curve fits are defined in the form 𝑎2𝑥 + 𝑏𝑥 +

𝑐 where the vertical intercept value, c, has the biggest impact on the amplitude of the threshold

curve. The c values for all the 7 curve fit segments are set based on the Tresh_base_pos and

void PaceFunkPanel()
{
 Time_Between_Hs_Input_Panel = hs1TimePanel - hs2TimePanel; // Inverse of RPM
 Time_Between_Hs_Input_Panel = abs(Time_Between_Hs_Input_Panel); // Take absolute value
 Time_Per_Revolution_Panel=Time_Between_Hs_Input_Panel- Time_Between_Hs_Input_Panel_Old;
 // Checks the difference between the old and new time difference between hs input
 Time_Per_Revolution_Panel = abs(Time_Per_Revolution_Panel); // Take the absolute value
 hsDetectPanel = 0; // Resets Hs detect to 0
 Time_Between_Hs_Input_Panel_Old = Time_Between_Hs_Input_Panel; // Updated the Time_
Between_Hs_Input_Panel_Old
}

else if (distancePanel >= LL1Panel && distancePanel < UL1Panel) // Enters Pinch Zone
 {
 // Checks if the treshold curve for Zone 1 is lower than the "time per revolution"
 if (A1Panel * (UL1Panel - distancePanel) * (UL1Panel - distancePanel) + B1Panel *
(UL1Panel - distancePanel) + C1Panel - pinchSensitivityPanel < Time_Per_Revolution_Panel
)
 {
 pinchDetectorPanel = 1; // If the treshold curve is lower than "time per
revolution" is a pinch detected --> pinchdetector = 1
 }
 }

7. Prototyping

71

corresponding C#Panel_tresh values. The Tresh_base_pos is equal to the highest time

per revolution measurement received within the last four measurements received, just before

the panel enters the pinch zone. This is the adaptive part of the curve since it changes every

time the panel is closed. C#Panel_tresh values are pre-determined c values needed to create

the desired shape of the curve fit. How the Tresh_base_pos is set and the C#Panel values

are determined can be seen in the code snippet below.

7.5.2.6 PWM generator for concept 2

The motor controller requires PWM signals to set the speed of the motor. The Arduino’s

internal timer TCCR1 is used to generate the square wave PWM signal for the curtain and the

window. Also, the internal timer TCCR2 is used to generate the square wave PWM signals for

the panel.

The duty cycle and direction of the timers are controlled by registers OCR1A and OCR1B for

timer 1, and registers OCR2A and OCR2B for timer 2. The duty cycle can be varied between 0

(no speed) and 255 (full speed). The panel moves in the opening direction when OCR2B is 0

and in the closing direction when it is 255.

else if (digitalRead(closeButtonPanel) == HIGH && fullyClosedPanel == 0)
 {
 fullyOpenPanel = 0; // Resets the "fullyOpenPanel" flag to 0
 OCR2A = 255; // Speed 100%
 OCR2B = 255; // Closing direction
 DistanceCloseFunkPanel(); // Cals the Distance closing function
 } // Stops Stop in pinch zone statement

if (distancePanel > UL1Panel && distancePanel <= UL1Panel + 4) // Adaptive threshold cur
ve
 {
 if (Time_Per_Revolution_Panel > Tresh_base_pos) // If The time per revolution is
higher than the treshold base will a new treshold value be given
 {
 Tresh_base_pos = Time_Per_Revolution_Panel; // A new base value is assigned to
 the treshholdcurve that is unique for this operation
 }
 // Asigned the Adaptive treshold base value to the C values for the curve
 C1Panel = Tresh_base_pos + C1Panel_tresh; // Zone 1
 C2Panel = Tresh_base_pos + C2Panel_tresh; // Zone 2
 C3Panel = Tresh_base_pos + C3Panel_tresh; // Zone 3
 C4Panel = Tresh_base_pos + C4Panel_tresh; // Zone 4
 C5Panel = Tresh_base_pos + C5Panel_tresh; // Zone 5
 C6Panel = Tresh_base_pos + C6Panel_tresh; // Zone 6
 C7Panel = Tresh_base_pos + C7Panel_tresh; // Zone 7
 }

// PWM control changing frequency for TIMER 1
 TCCR1A = _BV(COM1A1) | _BV(COM1B1) | _BV(WGM20);
 TCCR1B = TCCR1B & 0b11111000 | 0x01;

// PWM control changing frequency for TIMER 2
 TCCR2A = _BV(COM2A1) | _BV(COM2B1) | _BV(WGM20);
 TCCR2B = TCCR2B & 0b11111000 | 0x01;

if (digitalRead(openButtonPanel) == HIGH && fullyOpenPanel == 0)
 {
 fullyClosedPanel = 0; // Resets the "fullyClosedPanel" flag to 0
 OCR2A = 255; // Speed = 100%
 OCR2B = 0; // Opening direction
 DistanceOpenFunkPanel(); // Calls the Distance open function
 }

8 Concept Testing and Results
The developed prototypes that reached a fully functioning stage were tested so that their

performance could be compared to each other and to the requirements placed on them. This

chapter is divided into three main parts, first is the testing procedure described, then is the test

results showed and finally are the test results analyzed.

8.1 Testing Procedure

The original plan was to get Volvo to perform formal testing of all parts in all concepts against

the harsher legal requirements of FMVSS No. 118. Unfortunately, the work limitations due to

COVID-19 reduced the available development time and the possibility that Volvo personnel

had to conduct the formal testing before the deadline of the thesis. Instead, only the panel and

curtain of concept 1 could be tested formally. Since the current supplier cannot fulfill the

requirements of FMVSS No. 118, no measurement equipment for testing the sunroof against

those requirements was available at Volvo. Instead, tests were performed according to the legal

requirements of ECE R21-01. The remaining parts and concepts were tested informally by

using a MARK-10 Series 5 force gauge without any spring stiffness specified. The informal

testing procedure imitated the formal Volvo testing procedure.

8.1.1 Formal Testing of Panel and Curtain Concept 1

The tests were performed by a test engineer and a mechanic in the strength and endurance

laboratory at Volvo Cars in Torslanda. First, a test rig consisting of a metal beam with rails

was mounted on the inside of the roof. In one of the rails, an L-shaped beam was mounted and

on top of the L-shaped beam a force gauge was placed. The force gauge had a specified spring

force of 10 N/mm as required in accordance with ECE R21-01. An L-shaped pressure plate

was attached to the force gauge’s measuring rod. With the specified spring stiffness, a force of

100 N would be registered when the spring is compressed by 10 mm. The rails on the rig

allowed the position of the force gauge to be easily adjusted in X, Y and Z directions, enabling

the gathering of measurements from all specified positions and distances. The test rig set up

can be seen in Figure 51.

Figure 51 The test rig mounted under the roof, with the force gauge in place.

During the test will the panel/curtain move forward until its front edge touches

the pressure plate of the force gauge and compresses it to some degree before

a pinch is detected. The compression will generate a force that that is noted

down and then is the procedure repeated for all measurement points.

Figure 52 Diagram showing the testing

locations for the sunroof panel and

curtain. The grey rectangle symbolizes

the panel/curtain and the upper black

line is the closing edge.

8. Concept Testing and Results

74

In the ECE R21-01, it is specified that measurements should be taken in three different

positions: P1 at the center line of the sunroof; P2 150 mm from the center line; and P3 250 mm

from the center line. Since the sunroof is symmetric around the center line, measurements were

taken only on one side. Measurements were required to be taken at two distances from the

closing edge in all three positions: distance 1 at 50 mm from the edge; and distance 2 at 100

mm from the edge. In each of these six measurement points, five measurements should be taken

at each point. For each measurement, the pinch force, the distance of the panel or curtain before

it starts to move (distance A), and the distance where the panel or curtain stops after the pinch

(distance B) should be noted down. Figure 52 shows a simple diagram of the measurement

points. From the five measurement values, the pinch force average and variance at each point

was calculated.

Measurements of the pinch force were also taken at the rear edge of the sunroof panel in the

tilt zone. Volvo’s vehicles have a “tilt function” which gives the user the opportunity to only

open the panel to its “tilted” position as showed in Figure 54. When the panel is closing from

a tilted position and a pinch is detected, the panel is reversed to the “fully tilted” position. This

function does not exist either of the two concepts. As such, if a pinch is detected when the panel

is closing from a tilted position, the panel reverses to its fully opened position. This caused

problems while using the equipment for measuring the pinch force in the tilt zone. The force

gauge was placed on top of the roof, behind the panel with suction cups as seen in Figure 53.

After a pinch is detected, the force gauge would be in the way for the panel when it is travelling

towards its fully open position. To circumvent this problem, the power to the panel was cut off

after each pinch detection, forcing the panel to stop abruptly. This gave time to remove the

force gauge and then the system was rebooted. This was cumbersome and time consuming so

only one pinch force measurement was taken from each position instead of five as specified in

ECE R21-01.

The last part of the test was to place a rod of diameter of 4 mm against the closing edge and

test if the anti-pinch system registers a pinch at the minimum distance required by ECE R21-

01 and FMVSS No. 118. This was done at all three positions on the front edge and in the tilt

for the panel, and only at the front edge for the curtain. The test rod used during the 4 mm pinch

test at position 1 for the tilt function is shown in Figure 54.

The testing procedure was first performed on the panel as described above. Followed by this,

the procedure was carried out for the curtain. Five measurements were taken at distances 1 and

2 at position 3. No measurements were taken from other positions.

Figure 53 Force gauged placed to measure the pinch in the

"tilt zone"

Figure 54 4 mm test rod used to control if the anti-pinch

system fulfils demand on minimum pinch distance

8. Concept Testing and Results

75

8.1.2 Testing of Panel and Curtain Concept 2

Since the formal testing that was done for the sunroof panel and curtain in concept 1 could not

be done for concept 2, an informal testing was performed without the standardized equipment.

For the informal testing, a MARK-10 Series 5 force gauge was used. The measurement rod in

this force gauge is completely stiff unlike the one used in the formal testing which had a spring

stiffness of 10 N/mm. A stiff rod should result in higher pinch force values since the distance

that the panel moves after coming in contact with the force gauge is minimized, due to the very

high spring stiffness of the force gauge.

To gather the measurement values, the force gauge was placed with its bottom against the fully

closed edge of the panel. Then the panel or curtain was closed until it pinched against the

pressure plate. The set up can be seen in Figure 55. Measurements were taken from the same

positions and distances as in the formal testing shown in Figure 52. Additionally, measurements

were also taken at a distance of 20 mm, inside the “super sensitive pinch zone”. The pinching

distances were changed by changing the length of the measurement rod of the force gauge

using the parts enclosed with it.

Five measurements were taken at each point; the pinching force and the distance at which the

pinch occurred was noted down. The average and the variance of the pinch force values was

then calculated. In order to be able to compare concepts 1 and 2, it was required that both

concepts were tested using the same method. Therefore, additional measurements were taken

for concept 1 using the informal set up. This enabled a fair comparison between the

measurement values from concept 1 and 2.

Due to the shape of the force gauge, no measurements could be taken in the “tilt zone”. The

testing with the 4 mm rod was conducted in the same way as in the formal testing.

The test set up for the curtain was a little different. When placing the bottom of the force gauge

against the fully closed edge of the panel, the height difference was unsuitable for testing,

because the curtain could not pinch against the pressure plate. In order to get the readings, a

wrench of size 8 was clamped on to the measurement rod of the force gauge creating an L-

shape similar to the one used during the formal testing, as shown in Figure 56. With this set

up, the force measurements were gathered at all the measurements points on the curtain. The

Figure 55 Setup of the force gauge used during the informal testing of the panel. The bottom of the force gauge is placed

against the fully closed edge of the panel and the panel is pinching against the pressure plate.

8. Concept Testing and Results

76

values were gathered from the same positions as were in the formal testing of concept 1. The

setup used for gathering the informal measurements for the curtain can be seen in Figure 57.

Figure 56 L-shape se up with the force gauge and a wrench

Figure 57 The set up used when gathering the

informal measurement from the curtain. The

bottom edge of the force gauge is placed

against the fully closed edge for the panel and

the curtain is pinching against the wrench.

8.1.3 Testing of Windows Concept 1 and 2

The testing procedure for the windows was similar to the testing of the sunroof, but unlike the

sunroof the windows are not symmetric. So, the rear edge of the door arc was set as the base

from where the measurements were taken at four positions: P1 190mm; P2 500 mm; P3 650

mm; and P4 900 mm. At each position should three distance be tested: D1 25 mm; D2 50 mm;

and D3 100 mm from the closing edge. A diagram showing the measurement points at the front

door can be seen in Figure 58. At each measurement point, five pinch measurements were

recorded and then the average and the variation of the pinch forces were calculated.

The 4 mm test rod was used in the same way as for the sunroof, but for the window the test

was conducted at every 50 mm from the rear edge of the door arc over the entire length of the

arc.

Figure 58 Diagram showing the four positions and three distances for the test procedure of the anti-pinch system in the

front window

8. Concept Testing and Results

77

8.2 Testing Results

A summary of the testing results from the formal and informal testing of the sunroof panel,

curtain and windows is presented in following sub-sections.

8.2.1 Results from Formal Testing of the Sunroof Panel and Curtain Concept 1

The complete test results from the testing against the ECE R21-01 legal requirement for the

sunroof panel, the tilting of the sunroof panel and the sunroof curtain can be seen in Appendix

E. A summary of the maximum, minimum and average pinch forces for the three positions and

two distances is listed in Table 11.

Table 11 Summary of the test results for the sunroof panel, tilt, and curtain. The position, distance, max, min and average

values are given

8.2.2 Results from Testing of Panel and Curtain Concept 2

The results from the informal testing of concept 1 and 2 can be seen in Appendix E. Table 12

shows a summary of the measurement values from the panel, the maximum, minimum and

average pinch force are given for three positions and three distances for both concept 1 and 2.

The results from the measurement points are placed next to each other in order to ease the

comparison. The same information is given for the curtain in Table 13.

Table 12 Summary of the test results from the informal testing of the sunroof panel. The position, distance, max, min and

average values are given for both concepts. The columns showing results from concept 1 have a blue background and those

showing results from concept 2 have a green background in order to ease the comparison of the informal results

Sunroof Panel

Pos Distance 1: 50[mm] Distance 2: 100[mm] Tilt

Max Pinch

Force [N]

Min Pinch

Force [N]

Average Pinch

Force [N]

Max Pinch

Force [N]

Min Pinch

Force [N]

Average Pinch

Force [N]

Pinch

Force [N]

P1 40 27 37 34 33 34 47

P2 37 37 37 53 32 44 52

P3 49 35 43 56 55 55 48

Sunroof Curtain

 Distance 1: 50[mm] Distance 2: 100[mm]

P3 34 32 33 35 33 34

Sunroof Panel

Pos

Distance 1: 20 [mm]
Concept 2/Concept 1 [C2/C1]

Distance 2: 50 [mm]
Concept 2/Concept 1 [C2/C1]

Distance 3: 100 [mm]
Concept 2/Concept 1 [C2/C1]

Pinch Force [N] Pinch Force [N] Pinch Force [N]

Max Min Average Max Min Average Max Min Average

C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1

P1 77 88 38 63 54 74 39 77 27 40 31 53 72 77 52 45 64 62

P2 47 70 38 60 44 64 38 66 32 42 36 52 78 92 52 57 63 76

P3 55 69 28 60 42 66 43 60 18 52 29 56 68 81 44 46 58 62

8. Concept Testing and Results

78

Table 13 Summary of the test results from the informal testing of the sunroof curtain. The position, distance, max, min and

average values are given for both concepts. The columns showing results from concept 1 have a blue background and those

showing results from concept 2 have a green background in order to ease the comparison of the informal results

8.2.3 Results from Testing of Windows Concept 1 and 2

Measurements could not be gathered from all measurement points for the window. Table 14

shows a summary of the received values, the maximum, minimum and average pinch forces

are shown in the same way as for the panel and the curtain. If the measurement values are

missing for a distance/position, there is a “-” in the box.

Table 14 Summary of the test results from the informal testing of the front window. The position, distance, max, min and

average values are given for both concepts. The columns showing results from concept 1 have a blue background and those

showing results from concept 2 have a green background in order to ease the comparison of the informal results

Front Window

Pos

Distance 1: 25 [mm]
Concept 2/Concept 1 [C2/C1]

Distance 2: 50 [mm]
Concept 2/Concept 1 [C2/C1]

Distance 3: 100 [mm]
Concept 2/Concept 1 [C2/C1]

Pinch Force [N] Pinch Force [N] Pinch Force [N]

Max Min Average Max Min Average Max Min Average

C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1

P1 40 59 31 46 36 53 54 60 40 46 46 53 73 55 60 45 68 52

P2 28 41 19 32 24 36 - - - - - - - - - - - -

P3 - - - - - - - - - - - - - - - - - -

P4 - - - - - - - - - - - - - - - - - -

Sunroof Curtain

Pos

Distance 1: 25 [mm]
Concept 2/Concept 1 [C2/C1]

Distance 2: 50 [mm]
Concept 2/Concept 1 [C2/C1]

Distance 3: 100 [mm]
Concept 2/Concept 1 [C2/C1]

Pinch Force [N] Pinch Force [N] Pinch Force [N]

Max Min Average Max Min Average Max Min Average

C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1

P1 30 42 21 41 26 42 36 39 26 32 30 35 39 42 33 36 37 40

P2 32 37 26 25 28 30 39 44 30 39 35 41 45 46 34 39 40 43

P3 29 37 23 31 27 34 39 46 30 35 34 41 38 39 35 32 36 37

8. Concept Testing and Results

79

8.3 Test Analysis and Concept Evaluation

The results from the two concepts presented above have been evaluated in the following

section. The positions that received the highest and lowest pinch forces have been mentioned.

The results have been compared to the legal requirements and in-between the different

concepts.

8.3.1 Sunroof Concept 1

The pinch forces measured during the formal testing of concept 1 were significantly lower than

both the legal requirements specified in ECE R21-01 and Volvo’s internal force requirements.

The maximum pinch force in the panel was received at position 3, distance 2 and was 56 N. In

most regions, the pinch forces were much lower than this, with a minimum pinch force of 27

N received at position 1 distance 1. The three measurements taken in the “tilt zone” gave an

average of 49 N which was also below the maximum limit. The number of measurements taken

for the curtain were few, but they were taken from the measuring point that gave the highest

pinch forces for the panel, positions 3 and for both distances. Thus, the results for the curtain

cannot be considered as credible as for the panel due to the lower number of measurements.

However, the force values were quite low, around 33 N. So, it can be said that the force

requirements were met. To support this, the measurements from the informal test can be used.

Despite the informal testing using a completely stiff spring, the maximum pinch force for the

curtain was 46 N, which further validates the conclusion that the legal requirements were met

for the curtain.

It was unfortunate that only testing against the ECE R21-01 could be performed. In order to

overcome this deficiency as much as possible, the informal measurements were the only data

points that existed. The FMVSS No. 118 requires that a spring stiffness of 20 N/mm is used

for distances between 25 mm and 200 mm from the closing edge and a spring stiffness of 65

N/mm for distances less than 25 mm. The uncertainties in the process of gathering the

measurements and the absence of an unbiased third party lowers the credibility of these values.

So, the informal testing can only be used as an indicator of how the concept would perform

when tested against the FMVSS No. 118. However, with a maximum pinch force of 92 N and

an overall average of 63 N, it is very likely that the concept would fulfill the FMVSS No. 118

requirement and the internally set Volvo requirement of 75 N.

The pinch force is directly proportional to the sensitivity of the system. Thus, a system which

gives a lower pinch force value would be more sensitive. Unfortunately, a more sensitive

system has a higher risk of detecting false pinches. To this end, there is no reason for

developing a system that results in a lower pinch force than the one specified by Volvo Cars.

From the test results, it can be concluded that Concept 1 was much more sensitive than it needed

to be for meeting the ECE R21-01 requirements. The sensitivity seems to be correctly balanced

to fulfill the requirements in the more sensitive zone of the FMVSS No. 118 with a spring force

of 65 N/mm.

8.3.2 Sunroof Concept 2

For Concept 2 all the testing data come from the informal testing. So, the uncertainties

described for the informal testing of Concept 1 apply here as well. The maximum pinch force

in the sunroof panel was 78 N at position 2, distance 3. This is at the same location that gave

the maximum pinch force of 92 N for the informal testing of Concept 1. The minimum pinch

8. Concept Testing and Results

80

force is 18 N, received at position 1 distance 2, which is 9 N lower than the minimum pinch

force received during the formal testing of concept one, but here with a stiff measurement rod.

For the panel, the average pinch force values were observed to be generally 15-20 N lower for

concept 2 in comparison to concept 1. Which in turn can be related to the values received during

the formal testing of concept 1, where it was concluded that the system fulfils the pinch force

requirements and was very sensitive. Based on this, a similar conclusion can be drawn for

concept 2 which produced even lower pinch force values. And as explained earlier, the

variation in the time per revolution values being much higher in concept 2 increases the risk

for false pinches.

The same argument applies for the curtain. However, the risk for false pinches caused by

external factors like wind or temperature is lower for the curtain since it is places further into

the vehicle than the panel. This means that a more sensitive system for the curtain does not

impose the same risks of detecting false pinches as in the panel. The pinch forces received

during the informal testing for the curtain in concept 2 are extremely low with an overall

average of 32.5 N.

8.3.3 Window for concept 1 and 2

Since a stable frame or rig could not be built to affix the doors in their correct position, reliable

measurement values could not be gathered. Additional problems existed with the doors,

comprising of many different factors. The improvised connections and the dead hall sensors

have been explained in earlier chapters. In addition to these, the absence of a frame/rig resulted

in that the doors were standing in the EUR-pallets, in which they were received. The position

measurements of the window kept changing randomly due to the lack of structural support.

This resulted in randomly changing load cases for the motor, and thereby varying time per

revolution measurements. Since the windows are moving in the vertical plane, they are very

sensitive to changes at which angle the door was standing at. Tilting the door more inwards

would increase the contact area between the window and the seal on the inside. This led to

increased friction, which consequently changed the load case for the motor causing the shape

of the time per revolution curve to alter. These varying load cases resulted in either an

unexpected increase of the pinch force values or an unexpected increase in the number of false

pinches. To address this, new time per revolution measurements and new threshold curve were

needed.

These problems were present during the entire development process. Another issue that arose

during the informal testing due to the substandard fixing of the doors, was that when the

window pinched against the force gauge, the resulting reaction force caused the door to move

some measurements. This resulted in lower and misleading pinch force values.

After gathering the force values from all three distances at position 1 and from distance 1 at

position 2 for both concepts, it was decided to stop the testing due to the low quality of the test

values. During the process of gathering the test values, a lot of measurements were forced to

be retaken, due to extreme low pinch forces resulting from the movement of the door. At one

point, the actual speed of the window had strayed away from the threshold curve so much that

false pinches were detected before the window glass could reach the force gauge.

Figure 59 shows one of the last futile attempts of fixing the front door in one position using

tension straps and an applied force from the side.

8. Concept Testing and Results

81

 Despite the failed testing and the low quality of the gathered pinch forces can it be noted that

all measurement values are below both the Volvo and legal requirements. The testing could be

redone at a later stage if the concepts are further developed and the doors can be fixed in their

correct position. The most important thing for the windows might not have been to gather the

exact pinch forces, but to prove that a software developed for the sunroof can be implemented

in the windows without any major modification.

Figure 59 One of the attempts of securing the front door in one position so that reliable measurements could be taken

without that the door moved

9 Cost Estimation
This chapter is divided into two parts that detail the estimation of the development costs and

the costs for the components needed in the different concepts. The estimations for the

development costs have been done for two scenarios, the current scenario where all

development and calibration were done by different suppliers, and for a scenario where both

the development and the calibration were done by Volvo Cars. In addition, the chapter contains

information about the development and component costs for the different concepts.

9.1 Cost Estimation of Outsourcing

Estimating the cost of the system currently used by Volvo was hard, since the anti-pinch and

position control systems are a part of the complete sunroof package. This package includes the

entire hardware for the panel, curtain, controller, etc., and the anti-pinch system. The situation

is similar for the windows.

The following cost calculations were based on data received from the product owners

responsible for the anti-pinch system in the sunroof, windows and tailgate at Volvo Cars. The

costs for the anti-pinch system in the tailgate is included since it is assumed that that the

developed concepts could be implemented there as well. If no exact values could be obtained,

they had been estimated by the product owner. These estimates were made conservatively in

order to accommodate for uncertainty. The calculations were done for the 6 models on the

SPA1 platform and a production volume of 100 000 cars per model. The total cost estimation

can be seen in Appendix D.

The D&D cost for outsourcing the anti-pinch system consists of three main parts, the

development cost, the calibration cost and the resources required by Volvo for administrating

everything related to the anti-pinch system. These costs for the sunroof, windows and tailgate

can be seen in Table 15.

Table 15 Cost calculations for outsourcing the anti-pinch system for the sunroof, windows and tailgate

In addition to the D&D costs listed in the table, there is a license cost that Volvo pays for every

vehicle. The license cost is 8 SEK for the sunroof, 32 SEK for the windows and 8 SEK for the

tailgate, resulting in a licensing cost of 48 SEK per vehicle and total of 28 800 000 SEK for all

vehicles in SPA1, if 100 000 vehicles were manufactures for every model.

𝐿𝑖𝑐𝑒𝑛𝑠𝑒 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 = 45 × 6 × 100 000 = 28 800 000 𝑆𝐸𝐾

This gives a total cost per vehicle of 90.89 SEK for the D&D and licensing if the anti-pinch

system is outsourced.

Cost Description [SEK] Sunroof Windows Tailgate

Development 10 000 000 5 000 000 500 000

Calibration 4 295 654 2 562 600 2 780 000

Volvo resources administration SPA1 1 600 000 400 000 400 000

D&D Sunroof Anti-pinch cost SPA1 15 895 654 7 962 600 3 680 000

Cost per vehicle 26.49 13.27 6.13

9. Cost Estimation

84

9.2 Cost Estimation of In-house Development

Since no anti-pinch or position control systems has been previously developed at Volvo Cars,

the following estimations were based on assumptions. The base cost of having one engineer

working fulltime with a project for one year is 1 MSEK. Considering the progress that was

made in 20 weeks by a project group consisting of two master’s students with no previous

experience within the area, it was estimated that two experienced engineers with the relevant

knowledge, working full time, would be able to develop a system ready for implementation in

6 months. The estimated cost for this would be 1 MSEK. The prototypes presented in an earlier

chapter were built at a cost of less than 10 000 SEK. Since the development of an anti-pinch

system utilizes vehicle parts from other projects, no expensive prototypes would be needed and

thus costs related to prototyping can be neglected.

It is also believed that the calibration costs can be reduced drastically if it was done within the

organization. For example, for calibration of some of the parts, the suppliers charge 9500 SEK

per hour, which could be done for a much lower cost by a Volvo engineer. It was assumed that

one engineer working full time for a year could do the calibration, resulting in an estimated

calibration cost of 1 MSEK. The development and calibration cost give a total cost per vehicle

of 3.3 SEK for the models on the SPA1 platform. Important to note here is the fact that the total

estimated cost of 2 MSEK for developing the system in-house, is lower than the administration

cost of 2.4 MSEK that Volvo currently pays for the outsourcing of the anti-pinch system.

According to these estimates, the development of an in-house anti-pinch system would reduce

the associated cost per vehicle from 90.89 SEK to 3.3 SEK.

9.3 Estimation of Component Costs

All concepts, including the current systems bought from suppliers, share some common

components that will be the same, independent of the solution. These components are called

sunroof base components and window base components. The sunroof base components consist

of two motors, one each for the panel and for the curtain, the necessary wiring and one control

unit placed in the overhead console (OHC). The window base components consist of four

motors, one for each window, the wiring and four control boards one in each door, and the door

control unit (DCU). The assembly costs for the control boards are also included for both the

sunroof and the windows. Since these costs are the same for all concepts, they were not

considered when calculating the component costs for the concepts.

The cost calculations for concepts 1, 2, 3 and 4 can be done relatively accurately since all

necessary components were bought for building the prototypes. For concepts 6, 12 and 16 the

estimation was harder since similar solutions did not exist at Volvo.

When buying electrical components does the price vary a lot depending on the batch size, the

price is decreasing drastically when buying more units. In order to estimate the component cost

for the concept 1, 2, 3 and 4 was the price per unit checked for buying 1000 units of every

component used when building the prototypes. This price was then used to calculate a total

cost for building each concept and then reduced by an additional 80 % since Volvo would buy

much more than just 1000 components and they could have a special agreement with the

supplier that would lower the cost further. The same approach was used to estimate the

component cost of the systems currently bought from suppliers. Table 16 shows the price when

9. Cost Estimation

85

buying 1000 units of the automotive graded relays, the motor controller and the ripple counting

board from Texas Instruments used during the prototyping. The price information comes from

the webpage Digikey.se which were used for buying all components for the prototypes.

Table 16 Cost calculations for automotive grades relays, motor controller and ripple counting boards form Texas

Instruments. Both when buying 1000 units of each and for mass production

The current solution bought from suppliers looks differently in the sunroof and for the

windows. The sunroof doesn’t have any speed control which means that relays could be used

or a motor controller without changing the PWM duty cycle. The windows have some sort of

speed control since they slowdown in the most sensitive region. The cost for automotive graded

relays is relatively high, the relays used during the prototyping were not automotive graded so

in order to get any price data was an average cost of 75 SEK used for buying 1000 units. This

is a very high cost since 2 relays are needed for every motor and the same functionality could

be achieved using one motor controller per motor. It is not known if the current solution uses

relays or motor controllers or any other solution to change the direction of the sunroof and

windows, so both price estimates are given. The cost per vehicle using the current solution

would be 113 SEK if using relays and 79.55 SEK if using motor controllers.

Concept 1 only need relays to control the sunroof and the windows, but since it works just as

good with one motor controller per motor and since that would be a cheaper option is both cost

estimates given. The cost per vehicle using concept 1 would be 180 SEK if using relays and

79.55 SEK if using motor controllers.

Concept 2 must use motor controllers since it changes the speed of the sunroof and the

windows. Using one motor controller per motor gives a total cost per vehicle of 79.55 SEK.

Concept 3 can just as the current solution and concept 1 use both relays and motor controllers,

in addition to this is a ripple counting board needed for every motor. The cost per vehicle using

concept 3 would be 237.2 SEK if using relays and 136.75 SEK if using motor controllers.

Concept 4 also uses speed control and must have motor controllers, and just like concept 3 is a

ripple counting board needed per motor. Using one motor controller and one ripple counting

board per motor gives a total cost per vehicle of 136.75 SEK.

For estimating the component cost for concept 6, 12 and 16 is the process a bit vaguer sine

these components have not been used during the prototyping process in this project. However,

all three concepts must have some form of relays or motor controller for the position control of

the sunroof and windows. This gives them a minimum cost equal to the cost of using 6 motor

controllers, then should the cost for the components needed to detect a pinch be added to this.

Concept 6 requires one capacitive seal sensor per moving object, giving two for the sunroof

and one for each window. Volvo has received proposals of similar concepts from suppliers and

they have all been disregarded as to expensive. Since no general price data could be found from

the suppliers is a rough estimate done. The price for one capacitive seal for mass manufacturing

Board / Components
Price / piece if buying 1000

pieces [SEK]

Mass manufactured Price per

piece

Relays 75 15

Motor Controller 47.67 13.259

Ripple Counter Board 66.297 9.534

9. Cost Estimation

86

is estimated to be the same as for a motor controller, giving concept 6 twice the cost compared

to concept 2, 159.10 SEK.

For concept 12 is a minimum of one ultrasonic sensor needed for the panel, one for the curtain

and one for each window. A similar concept was tested by Schlegl et. al. which used ultrasonic

sensors from an existing automotive parking assist system (Schlegl et al., 2011). The cost

estimation used here are based on a reference parking assistance system developed by TDK

Product Center (TDK Corporation, 2020). Buying 1000 pieces of the components used by TDK

would give a cost around 50 SEK, with an 80% price reduction due to mass manufacturing

circumstances gives an estimated cost of 10 SEK per unit and a cost per vehicle of 139.55 SEK.

LiDAR technology is very advanced compared to the technologies used in the other concepts,

the capacity of LiDAR sensors varies a lot and so does the price. Volvo are currently using

LiDAR systems for a couple of functions, one of these functions is the breaking assistance. The

retail price for buying one of these sensors as a spare part is 5673.22 SEK, “Teardown.com”

have made an independent deep dive teardown of this breaking assistance sensor, the Volvo

V40 31360888 LiDAR ID 223406-KCd. Based on the used components have they estimated a

total cost for this LiDAR system of 22.61 dollars, equivalent to 218.76 SEK (based on the

exchange rate at the time of writing, 1 USD = 9.68 SEK). A vehicle would require two sensors

in order to monitor the entire inside of the vehicle, giving a total cost of 517 SEK per vehicle.

(Cendrowicz, 2019)

Table 17 shows the estimated component cost per vehicle for the current solution and the

remaining concepts. The table states what components that are needed in order to control the

sunroof and all windows.

Table 17 Estimated component cost per vehicle

Component costs base on prototyping (excluding base costs)

Concepts Components Estimated component cost per

vehicle

Current

solutions

Sunroof 4 Relays or

2 Motor Controllers

113 /

79.55

Windows 4 Motor Controllers

Concept 1 12 Relays or

6 Motor Controllers

180 /

79.55

Concept 2 6 Motor Controllers 79.55

Concept 3 12 Relays + 6 Ripple Counters Or

6 Motor Controllers + 6 Ripple Counters

237.2 /

136.75

Concept 4 6 Motor Controllers + 6 Ripple Counters 136.75

Concept 6 6 Motor Controllers +6 Capacitive sensors 159.10

Concept 12 6 Motor Controllers + 6 ultrasonic sensors 139.55

Concept 16 6 Motor Controllers + 2 LiDAR’s 517

9. Cost Estimation

87

9.4 Total Cost per Vehicle

To be able to compare the developed concepts with the current solution is the estimated

development and calibration cost per vehicle combined with the estimated component cost per

vehicle. For this comparison is it estimated that the development cost and the calibration cost

is the same for all concepts. Table 18 shows the cost estimation for the current solution and all

concepts.

Table 18 Estimated total cost per vehicle, including development, calibration and component costs

Estimated Total Cost Per Vehicle [SEK]

Concepts component cost Development &

Calibration cost

Total Cost

Current solutions 113 /

79.55

90.89 203.93/

170.44

Concept 1 180 /

79.55

3.3 183.30/

82.85

Concept 2 79.55 3.3 82.85

Concept 3 237.2 /

136.75

3.3 240.50/

140.06

Concept 4 136.75 3.3 140.06

Concept 6 159.10 3.3 162.41

Concept 12 139.55 3.3 142.85

Concept 16 517 3.3 520.37

10 Concept Selection
In this chapter, the process of concept selection has been presented in two stages. Firstly, the

screening of the remaining concepts against a reference solution and each other using the

customer needs in a Pugh matrix. This is followed by the scoring stage where the concepts have

been compared against each other using weighted criteria. After these stages, the results have

been analyzed and the final recommendations have been made.

The knowledge gained during the prototyping and testing of the concepts combined with the

cost estimations lay as the foundation for decision making in the concept selection phase. The

concepts for which no working prototype could be built was the decisions based on the theory

presented in the Technology Study. An overview of the remaining concepts and for which a

working prototype could be built can be seen in Table 19.

Table 19 Show an overview of the 7 concepts taken into the Pugh matrix and for which a working prototype were build and

what type of testing underwent

An elimination matrix, as shown in earlier chapters, and a Pugh matrix are used in the screening

stage and a Kesselring matrix is used in the scoring stage. These matrices provide a structured

method for evaluating concepts. They also visualize information that can support in decision

making. Based on the results from the screening and scoring, one or a few concepts will be

recommended for further development.

10.1 Concept Screening

The Pugh matrix is a method for unbiased concept screening. One concept is used as a reference

solution and all the other concepts are then compared to this reference solution based on how

well they fulfill the customer needs. The concepts are compared to the reference using a “+” if

it performs better, a “-” if it performs worse and a “0” if it is like the reference. When all

customer needs are evaluated, the scores are summed, and the concepts get a final score. The

final score will be negative if the concept generally performs worse that the reference, zero if

it is similar and positive if the overall performance is estimated to be better than the reference.

This is done in iterations with different concepts as the reference solution. Normally a

competing product or an earlier generation of the same product is set as reference in the first

iteration. (Ulrich & Eppinger, 2012)

Three iterations of the Pugh matrix were performed. In the first iteration, the current solution

for the sunroof was set as the reference. The current solution is an indirect system based on hall

sensors without any type of speed control. It is very similar to concept 1 but the current solution

Concept Prototyping Overview

Concept Prototyping [✔/ ✖] Prototype Testing [Formal/Informal/ No Testing]

1 ✔ Formal & Informal

2 ✔ Informal

3 ✔ No Testing

4 ✔ No Testing

6 ✖ -

12 ✖ -

16 ✖ -

10. Concept Selection

90

does not meet the requirements of FMVSS No. 118. In the second iteration, concept 16 was

used as reference, and concept 2 was used as the reference in the final iteration.

All concepts performed well in the first iteration. Only concept 12 got a score of 1, indicating

that it would perform very similar to the reference. Concepts 1 and 6 got a score of 3 and the

others scored even higher. Concept 16 scored best of all with 8, performing better than or equal

to the reference for all criteria except cost where it got a “-”. Since it performed so well, concept

16 was set as the reference in the second iteration.

In the second iteration, all concepts got a negative score and concept 6 performed the best with

scoring -3. The others got a score of -6. It is worth noting that all concept performed better than

the reference in the cost criterion.

For the final iteration, concept 2 was used as reference since the prototype of the concept

performed well in the in the testing. This iteration gave mixed results.

Concept 16 still scored the highest with 7, concepts 1 and 12 got negative results -2 and -3

respectively. Concept 3 scored 0 and concept 4 and 6 scored 2 each.

Based on the results from the three iterations, it was decided to eliminate concept 12. The

concept scored lower than all the other concepts throughout the process. The remaining 6

concepts were taken further to the scoring process.

10.2 Concept Scoring

In the Pugh matrix, all the evaluation criteria have the same importance. The big difference

with the Kesselring or scoring matrix is that the criteria are weighted based on the importance

of the customer need they represent. A customer need with an importance of 5 in the customer

needs list, is assigned a weighting of 5 in the Kesselring matrix. Similarly, a customer need

with the importance of 3 get a weighting of 3. This entails that the more important needs have

a greater influence on the final score of the concept. Another difference compared to the

concept screening is that no reference concept is used. Every concept is scored completely

based on its own performance. The performance of a concept against a specific criterion is

ranked on a scale from 0-5, where 5 means that the concept completely fulfills or if possible,

surpasses the criterion. A concept receives a score of 0 if it cannot in any way fulfill the

criterion. Determining where on this scale that a concept is located is done through a discussion

in the project group based on test results if there are any available, otherwise based on the

theoretical knowledge about the concepts.

The scoring process has a couple of draw backs. Mainly that setting the importance of a

customer need and determining how well a concept fulfils that need is extremely subjective if

no concrete test results or extensive market analysis exists.

The concept that performed best in the scoring matrix was just like in the earlier stage concept

16 with an impressive margin of 23 points to concept 2 and 28 to concept 1 which ended up

with scores of 187 respective 182 points. Concept 3 followed just behind with scores of 181.

Concept 6 and 4 got the lowest scores with 173 and 176. The entire scoring matrix can be seen

in Figure 60.

10. Concept Selection

91

Based on the results from the prototype testing is it believed that both concept 1 and 2 will

fulfill the customer needs related to the pinching forces. Since concept 3 and 4 are based on

ripple counting technology, which should be even more sensitive are they also believed to meet

these needs. Concept 6 and 16 can detect obstacles before colliding with them meaning that

they automatically have a pinch force of 0 N. That three of the most important criteria are

related to the pinch force which are met to a great extent by all concepts, inevitably leads to

that the concepts receive similar scores. In fact, the scores are so similar, and the estimations

of the importance of specific needs and how well they are fulfilled by the concepts are so

uncertain. That no direct conclusions could be taken based solely on these results. Different

concepts suit better for different scenarios, concept 16 for example outperforms the other

concepts when its coms to technical performance. But it has a huge disadvantage due to its high

cost, which is of outmost importance in the automotive industry. The recommendations for a

suitable concept are elaborated further in the discussion chapter.

Figure 60 Kesselring matrix

11 Discussion
In this chapter, general observations from the project, the concept recommendations and

further development of these concepts has been discussed. The chapter ends with a short

account on the patent situation and ethical aspects considered during the project.

11.1 Project

When the project started only a few guidelines were given by Volvo. Scope determination and

project planning were carried out by the project team to a great extent. Since no similar system

existed at Volvo, no previous knowledge existed that could be utilized. Instead, the work started

from scratch by gathering information from research articles, patents, internet search etc. The

basic technologies that an anti-pinch system is based on are relatively simple and well

established, so the first steps in building simple prototypes could be taken after just a couple of

weeks using the hardware that existed at Volvo. The fact that the prototyping could start at

such an early stage into the project turned out to be extremely fortunate, since in response to

the COVID-19 pandemic, Volvo Cars was forced to shut down temporarily and operate at

reduced working hours. By the time the shutdown occurred, enough progress on the

prototyping was already made, so the project proceeded without being affected to any great

extent. However, some disturbance due to the shutdown occurred, mainly when it came to lead

times for ordering parts or services within Volvo. One example of this was the ordering of the

ripple counting boards, which were vital for building the prototypes of concepts 3 and 4. The

ripple counting board is a reference design from Texas Instruments, but cannot be bought off

the shelf. Instead the components must be bought separately and mounted on a PCB. The

mounting of the components was done within Volvo. But it took just over nine weeks from the

day of placing the order before the boards were received. In addition to this, none of the boards

were fully functioning. This long lead time left a small amount of time for troubleshooting the

problems with the boards and get the prototypes of concept 3 and 4 to work properly.

One thing that distinguished itself in this project compared to earlier projects that the group

members have participated in at the university, was that the developed prototypes could be

tested by an independent third party in accordance to a standardized testing procedure. Even if

not all concepts were tested by this independent party, similar results were obtained and by

comparing them to the results from the standardized testing, their credibility increased

drastically.

11.2 Applicability for Multiple Applications

One of the main goals of the project was to show that one system could be implemented in

multiple parts in a vehicle that required an anti-pinch system. Unfortunately, the limited time

restricted the work to only be focused on the sunroof and the power windows, both of which

utilize sliding motion. Most of the other applications like the tailgate are based on rotating

motions, which could require different solutions. So, even if the time was the limiting factor

for the project from investigating all areas, it was showed that a software developed for the

sunroof panel could be used for the sunroof curtain and the power windows. Only small

changes in the software, like changing the range of motion and creating a new threshold curve

were enough to make it work in the different applications.

11. Discussion

94

11.3 Concept Recommendation

The six concepts that made it through the entire development process were ranked very

similarly to each other in both the screening and the scoring processes, except concept 16. This

makes it hard to take a decision based on those results. The anti-pinch system must fulfill a few

requirements regarding the pinching force stated by Volvo and the legal documents. If these

requirements are fulfilled, there are none or diminishing returns to user value by having a more

sensitive system. As stated earlier, the anti-pinch system only attracts the user’s attention if it

registers false pinches or if the system malfunctions and thereby causes an accident. Based on

this, it would be a reasonable recommendation to use the simplest and cheapest solution that

meets the requirements, referring to concept 1 or concept 2. And this is the recommendation

that would be given by the project group to Volvo if they asked for a solution that could be

implemented within one to two years. It must be noted that is not completely verified if the

prototypes of concept 1 and 2 would meet the harsher FMVSS No. 118 requirement in a

realistic environment since the concepts have only been tested in laboratory conditions. Some

additional improvement through iterations with formal testing needs to be done in order to

reduce the sensitivity of the systems to avoid false pinches.

If the concept were to be implemented in three to four years, the recommendation could look

different. In that case, concept 3 or 4 would be more suitable. The cost of the components can

decrease drastically and concept 3 and 4 would then provide a much more granular control

compared to concept 1 and 2 at a similar cost.

A similar argument applies for concept 16 but for an even longer time horizon. Throughout the

screening and scoring process concept 16 outperforms all the other concepts, but the cost per

vehicle makes it difficult to justify the implementation of the concept. LiDAR technology is

significantly newer and more advanced than the other technologies evaluated. Thanks to its

important role within autonomous driving, a lot of research and development is being done

within LiDAR technology. The technology is also starting to appear in consumer electronics

like smartphones and tablets which will help in reducing the cost and increasing the

performance. One of Volvo’s partners within LiDAR technology is expects to be able to

produce LiDAR sensors for around 3 USD per piece within a couple of years. This would

change the cost equation drastically. Concept 16 also has the advantage that it could be used

for more functions than just the anti-pinch and position control systems, spreading the cost

between more functions. If the concept were to be implemented in more than seven years

concept 16 would be recommended.

When it comes to concept 6 is the situation a bit different, the concept requires either hall

sensors or ripple counting technology for the position control system, and then a specially made

seal including capacitive sensors for the anti-pinch system. It is hard to argue for this concept

when the first four concepts meet the requirements by only using hall sensors or ripple

counting. The user value added by having the capacitive sensor for detecting a pinch situation

is very limited, but the extra component and assembly cost is inevitable. Therefore, the concept

6 is not recommended for further development.

11.4 Further Development

One interesting area to look at in order to improve the concepts further, is to minimize the

possibility for false pinches. One of these measures could be to disable the anti-pinch system

11. Discussion

95

in the sunroof panel if the curtain is already fully closed. This can be done since it is almost

impossible to get pinched by the panel, from the inside of the vehicle if the curtain covers the

entire opening in the sunroof. Another option could be to disable or drastically decrease the

sensitivity of the anti-pinch system in the sunroof and front windows when the car is driving.

The purpose of paragraph S5 in FMVSS, that is not fulfilled by the current solution, is to protect

children that are inside a vehicle without a responsible vehicle operator being present. If the S5

requirements are fulfilled can the functions such as closing the windows or sunroof be operated

from a distance, for example by using a mobile application. If the vehicle is driving, there is no

longer any point in operating these functionalities from a distance since the driver obviously

already is in the vehicle and would observe if a pinch situation is about to occur in the sunroof

or the front windows. Implementing these solutions could drastically reduce the risk of false

pinches without any major developmental effort.

Another area that could be improved without major developmental efforts is the calibration of

the anti-pinch system. This is a very expensive and time-consuming activity that affected Volvo

employees have expressed dissatisfaction with during the interviews. By creating simulation

models of the sunroof and the windows, it should be possible to perform at least parts of the

calibration using a software tool. This could have a great impact on the development time and

the calibration costs, and reduce the frustration felt within the organization.

11.5 Patents

Two different patent analyses were done during the project, one in the early stage of the project

and one in the later stages. The result was the same from both analyses, that a lot of patents

existed for anti-pinch and position control systems. Most of them are very similar, stating that

they rely on hall sensors or ripple counting technology to determine the position and speed of

the window, sunroof or slide door, and then compare the speed to a threshold value to identify

a pinch situation. It is difficult to distinguish the patents from each other and define what

novelty they were protecting since they were so similar. Most of them were protecting a specific

circuit set up which was irrelevant for this project since the aim has been on getting a proof of

concept, and off the shelf circuits and components have been used throughout the project.

11.6 Ethical Considerations

Although the main function of an anti-pinch systems relates to the safety of passengers, there

are a few ethical aspects that were considered as a part of the development process. The main

underlying reason behind the introduction of the American and United Nations safety

regulations has been injury incidents related to children. Furthermore, the most recent

amendments and proposed amendments are also driven by factors that improve safety for

children. By having more control over the operation of the anti-pinch system in different parts,

Volvo Cars can make sure that they deliver the safest possible experience for children inside

their vehicles. Contrary to this, if Volvo fails to ensure a safe-enough anti-pinch system for

their vehicles, they risk customer disappointment, and in some extreme situations, fines and/or

legal action. The Volvo Cars brand is known for its focus on safety. At present, if there happens

to be a safety related incident with the anti-pinch system(s), it would be Volvo’s supplier that

takes the responsibility since that is a part of the agreement with the supplier. This saves Volvo

from legal consequences in the case of a severe accident related to the anti-pinch system, but

11. Discussion

96

the focus of the general public would most likely be on Volvo not the supplier. If Volvo were

to implement their own anti-pinch system, they will have to bear all responsibility.

Some ethical questions could also be raised regarding concept 16 since it is always monitoring

the inside of the vehicle. It is of privacy concern how the data from the LiDARs is stored and

what it is used for. The data could be used for improving the system further, but it might also

infringe on the passenger’s privacy. This problem is relevant for all types of monitoring of the

interior compartment but using LiDAR sensors might be a better alternative from a passenger

privacy perspective compared to other types of image processing methods.

12 Conclusion
The purpose of the thesis was to show that one anti-pinch system could be developed and

adapted to work with multiple applications, instead of buying separate systems from multiple

suppliers.

The prototypes built during this project proves that within a short time and limited resources,

an anti-pinch system that meets the ECE R21-01 requirements, and with high certainty also the

FMVSS No. 118 requirements, can be developed. It was also demonstrated that one software

developed for the sunroof panel could be implemented in the sunroof curtain and in the power

windows with minimal modification. Based on this, one system can be used for multiple

applications which would enable significant cost reductions relating to development and

calibration. This showed the possibility of developing a system in-house bringing cost

reductions since a single Volvo owned system can be used across all models instead of buying

separate systems for each.

The developed concepts show that multiple different technologies can be used for an anti-pinch

system and based on the test results it can be said that even the simplest of all the concepts has

a realistic chance of meeting the strictest requirements. Five concepts suited for implementation

at varying time scales were suggested. Two concepts based on hall sensors were suggested for

an implementation within one to two years. Two concepts based on ripple counting technology

were recommended for implementation within three to four years, and finally a concept based

on LiDAR sensors was recommended for the time when the technology matures. In addition to

these concepts, different methods of counteracting the current problems with false pinches were

suggested. These methods could be combined with the developed concepts or implemented in

the system currently in use.

The prototypes built during the project were only proof of concept in nature, as they required

further refinement before they could become ready for implementation. The next steps in the

development process would be to adjust the sensitivity of the system to minimize the risk for

false pinches and implementing the software in a vehicle and performing tests in real world

environments.

13 Bibliography
Allegro. (2013). Unipolar Hall-Effect Sensor IC Basics.

https://www.allegromicro.com/en/Insights-and-Innovations/Technical-

Documents/Hall-Effect-Sensor-IC-Publications/Unipolar-Hall-Effect-Sensor-IC-

Basics

Allegro MicroSystems, L. (2013a). Bipolar Switch Hall-Effect ICs. Allegro

MicroSystems, LLC. https://www.allegromicro.com/en/Insights-and-

Innovations/Technical-Documents/Hall-Effect-Sensor-IC-Publications/Bipolar-

Switch-Hall-Effect-ICs

Allegro MicroSystems, L. (2013b). Unipolar Hall-Effect Sensor IC Basics. Allegro

MicroSystems, LLC. https://www.allegromicro.com/en/Insights-and-

Innovations/Technical-Documents/Hall-Effect-Sensor-IC-Publications/Unipolar-

Hall-Effect-Sensor-IC-Basics

Allodi, M., Broggi, A., Giaquinto, D., Patander, M., & Prioletti, A. (2016). Machine

learning in tracking associations with stereo vision and lidar observations for an

autonomous vehicle. 2016 IEEE Intelligent Vehicles Symposium (IV), 648–653.

https://doi.org/10.1109/IVS.2016.7535456

Almefelt, L. (2019). Systematic Design - Overview (p. 69).

Amin, I., & Beard, P. (2016). Relay Replacement for Brushed DC Motor Drive in

Automotive Applications. Texas Instruments. https://www.ti.com/lit/pdf/slva837

ATMEL Corporation. (2016). AVR480: Anti-Pinch System for Electrical Window.

http://ww1.microchip.com/downloads/en/AppNotes/doc7559.pdf

Biezen, M. van (Loyola M. U. (2015). Special Topic - The Kalman Filter. ILectureOnline.

http://www.ilectureonline.com/lectures/subject/SPECIAL TOPICS/26/190

Cendrowicz, K. (2019, July). Deep Dive Teardown of Volvo LiDAR 31360888 Brake

Assist Sensor. TechInsights. https://www.techinsights.com/products/ddt-1709-805

Consoli, A., Bottiglieri, A., Letor, R., Ruggeri, R., Testa, A., & Caro, S. de. (2004).

Sensorless position control of DC actuators for automotive applications. Conference

Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual

Meeting., 2, 1217–1224 vol.2. https://doi.org/10.1109/IAS.2004.1348568

Cornell Law School. (n.d.). Legal Information Institute.

https://www.law.cornell.edu/cfr/text/49/571.118

Ghosh, M., Saha, P. K., & Panda, G. K. (2018). Hybrid Computational Mechanical

Sensorless Fuzzified Technique for Speed Estimation of Permanent Magnet Direct

Current Brushed Motor. IEEE Transactions on Industrial Electronics, 65(6), 4565–

4573. https://doi.org/10.1109/TIE.2017.2767553

Hanselman, D. (2006). Brushless Permanent Magnet Motor Design. Magna Physics

Publishing.

13. Bibliography

100

Hirzel, T. (n.d.). Arduino - PWM. Arduino.Cc. Retrieved May 26, 2020, from

https://www.arduino.cc/en/Tutorial/PWM

History of the CAN technology. (n.d.). CAN-CIA. Retrieved May 20, 2020, from

https://www.can-cia.org/can-knowledge/can/can-history/

Jost, D. (n.d.). What is an IR sensor. FIRCE Electronics.

https://www.fierceelectronics.com/sensors/what-ir-sensor

LIN Steering Group. (n.d.). LIN Steering Group. Retrieved May 20, 2020, from www.lin-

subbus.org

Mellah, H., Hemsas, K. E., Taleb, R., & Cecati, C. (2018). Estimation of speed, armature

temperature, and resistance in brushed DC machines using a CFNN based on BFGS

BP. Turkish Journal of Electrical Engineering & Computer Sciences, 26(6), 3181–

3191. https://doi.org/10.3906/elk-1711-330

Microchip Technology Inc. (2004). Brushed DC Motor Fundamentals.

http://fritzing.org/media/fritzing-repo/projects/c/cmn-fan-

control/other_files/Brushed DC Motor Fundamentals.pdf

National Highway Traffic Safety Administration. (2009). Federal Motor Vehicle Safety

Standards: Power-operated window, partition, and roof panel systems.

https://www.federalregister.gov/documents/2009/09/01/E9-21042/federal-motor-

vehicle-safety-standards-power-operated-window-partition-and-roof-panel-systems

National Highway Traffic Safety Administration. (2011). Standard No 118; Power-

operated window, partion, and roof panel systems.

https://www.govinfo.gov/app/details/CFR-2011-title49-vol6/CFR-2011-title49-

vol6-sec571-118

Nelson, R. R. (2007). IT Project Management: Infamous Failures, Classic Mistakes, and

Best Practices. MIS Quarterly Executive, 6, 74.

Nitsche, B., & Herrmann, R. (2009). Direct Sensor Solutions for Anti Pinch and Collision

Avoidance for Motorized Closures. SAE Technical Paper 2009-01-0637.

https://doi.org/10.4271/2009-01-0637

Pak, J. M., Kang, S. J., Pae, D. S., & Lim, M. T. (2017). Accurate pinch detection using

recent finite measurements for automotive anti-pinch sunroof systems. International

Journal of Control, Automation and Systems, 15(5), 2443–2447.

https://doi.org/10.1007/s12555-016-0328-8

Rajaram, S., & Murugesan, S. (1978). A New Method for Speed Measurement/Control of

DC Motors. IEEE Transactions on Instrumentation and Measurement, 27(1), 99–

102. https://doi.org/10.1109/TIM.1978.4314629

Rylander, A., & Wallin, E. (2003). LIN - Local Interconnect Network - for use as sub-bus

in Volvo Trucks.

13. Bibliography

101

Schlegl, T., Bretterklieber, T., Neumayer, M., & Zangl, H. (2011). Combined Capacitive

and Ultrasonic Distance Measurement for Automotive Applications. IEEE Sensors

Journal, 11(11), 2636–2642. https://doi.org/10.1109/JSEN.2011.2155056

sen M. Kuo, Bob H. Lee, and W. T. (2013). Real-Time Digital Signal Processing :

Fundamentals, Implementations and Applications (3rd ed.). John Wiley & Sons,

Incorporated.

Simons-Morton, B., Lerner, N., & Singer, J. (2005). The observed effects of teenage

passengers on the risky driving behavior of teenage drivers. Accident Analysis &

Prevention, 37(6), 973–982. https://doi.org/10.1016/j.aap.2005.04.014

Sollmann, M., Schurr, G., Duffy-Baumgaertner, D., & Huck, C. (2004). Anti Pinch

Protection for Power Operated Features. SAE 2004 World Congress & Exhibition.

https://doi.org/10.4271/2004-01-1108

Storr, W. (n.d.). Electronics Tutorials - Hall Effect Sensors. AspenCore Electronics

Tutorials. Retrieved January 22, 2020, from https://www.electronics-

tutorials.ws/electromagnetism/hall-effect.html

Storr, W. (2014). Passive Low Pass Filter. AspenCore Electronics Tutorials.

https://www.electronics-tutorials.ws/filter/filter_2.html

Sullivan, M. (2017). The seat remembers: Brushed DC motor ripple counting drives

innovation in full-featured memory seats (No. 199; Behind the Wheel).

https://e2e.ti.com/blogs_/b/behind_the_wheel/archive/2017/08/16/the-seat-

remembers-brushed-dc-motor-ripple-counting-drives-innovation-in-full-featured-

memory-seats

TDK Corporation. (2020). Ultrasonic Parking Sensors for Automated Parking.

https://product.tdk.com/info/en/products/sensor/ultrasonic/sensor-

disk/technote/apn_parking-assist.html

Terzic, E., Terzic, J., Nagarajah, R., & Alamgir, M. (2012). Capacitive Sensing

Technology. In A Neural Network Approach to Fluid Quantity Measurement in

Dynamic Environments (pp. 11–37). Springer. https://doi.org/10.1007/978-1-4471-

4060-3_2

Testa, A., de Caro, S., Scimone, T., & Letor, R. (2014). Pulse Counting Sensorless

Detection of the Shaft Speed and Position of DC Motor Based Electromechanical

Actuators. Journal of Power Electronics, 14(5), 957–966.

https://doi.org/10.6113/JPE.2014.14.5.957

Texas Instruments. (n.d.). DRV8703-Q1 Automotive Brushed DC Gate Driver Evaluation

Module. Retrieved March 3, 2020, from https://www.ti.com/tool/DRV8703-Q1EVM

Texas Instruments. (2018). Automotive Brushed-Motor Ripple Counter Reference Design

for Sensorless Position Measurement. https://www.ti.com/tool/TIDA-01421#0

Ulrich, K. T., & Eppinger, S. D. (2012). Product Design and Development (5th ed.).

Volvo Cars Group. (2020). Volvo Cars Group. https://group.volvocars.com/company

13. Bibliography

102

Watters, A. (2015). Lego Mindstorms: A History of Educational Robots.

Webster, J. G., & Eren, H. (2017). Measurement, Instrumentation, and Sensors

Handbook: Electromagnetic, Optical, Radiation, Chemical, and Biomedical

Measurement (2nd Editio). CRC Press.

https://www.routledge.com/p/book/9781138072176

Westgate, C. R., & Chien, C. L. (1980). The Hall effect and its applications. Springer,

Boston, MA.

Zarchan, P., & Musoff, H. (2000). Fundamentals of kalman filtering : A practical

approach (F. K. Lu, Ed.). American Institute of Aeronautics and Astronautics.

Appendix A
FMVSS Legal Document

Appendix B
The elimination matrix

Appendix C
Morphological matrix Figure 61 with the paths of the concepts remaining after the elimination

matrix marked out.

Figure 61 The morphological matrix with the paths of combined sub solutions that are used to generate the 7 concepts that

remains after the elimination matrix.

Appendix D

Appendix E
Formal Testing Concept 1

Test Results from the formal testing of the sunroof panel and curtain.

Sunroof Panel Position 1

Measurement Distance 1: 50[mm] Distance 2: 100[mm]

Pinch Force

[N]

Sunroof A

[mm]

Sunroof B

[mm]

Pinch Force

[N]

Sunroof A

[mm]

Sunroof B

[mm]

1 40 334 335 34 333 332

2 40 248 335 34 250 333

3 35 195 331 33 213 333

4 40 135 335 33 174 333

5 27 87 333 33 140 333

Average 37

34

Within 14 1

Sunroof Panel Position 2

Measurement Distance 1: 50[mm] Distance 2: 100[mm]

Pinch Force

[N]

Sunroof A

[mm]

Sunroof B

[mm]

Pinch Force

[N]

Sunroof A

[mm]

Sunroof B

[mm]

1 37 330 330 36 327 326

2 37 260 330 32 244 326

3 37 196 330 49 201 325

4 37 129 325 53 170 330

5 37 85 325 48 132 330

Average 37 44

Within 1 22

Sunroof Panel Position 3

Measurement Distance 1: 50[mm] Distance 2: 100[mm]

Pinch Force

[N]

Sunroof A

[mm]

Sunroof B

[mm]

Pinch Force

[N]

Sunroof A

[mm]

Sunroof B

[mm]

1 43 320 320 56 225 320

2 43 270 325 55 242 321

3 49 196 325 55 183 322

4 45 153 323 55 147 320

5 35 85 325 55 127 321

Average 43 55

Within 14 1

4 mm Rod Test

 P1 P2 P3

Reacted [Yes/No] Reacted [Yes/No] Reacted [Yes/No]

Yes Yes Yes

Sunroof Panel Tilt

Measurement P1 P2 P3

Pinch Force [N] Pinch Force [N] Pinch Force [N]

1 47 52 48

4 mm Rod Test

 P1 P2 P3

Reacted [Yes/No] Reacted [Yes/No] Reacted [Yes/No]

Yes Yes Yes

Sunroof Curtain Position 3

Measurement Distance 1: 50[mm] Distance 2: 100[mm]

Pinch Force

[N]

Sunroof A

[mm]

Sunroof B

[mm]

Pinch Force

[N]

Sunroof A

[mm]

Sunroof B

[mm]

1 32 694 710 33 710 710

2 34 543 710 35 550 710

3 33 406 710 34 418 710

4 33 280 710 34 288 710

5 33 153 710 34 163 710

Average 33 34

 Within 1 1

4 mm Rod Test

P1 P2 P3

Reacted [Yes/No] Reacted [Yes/No] Reacted [Yes/No]

Yes Yes Yes

Informal Testing Concept 1

Sunroof Panel Concept 1

Test Results from the informal testing of the sunroof panel.

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

1 54 823 57 824 68 829

2 77 824 65 823 46 829

3 70 823 92 822 58 826

4 45 824 86 822 55 831

5 65 820 81 826 81 831

Average 62 76 62

Within 32 35 35

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

1 42 628 57 629 60 629

2 77 625 42 631 59 627

3 40 629 47 631 52 629

4 56 627 66 627 52 627

5 49 627 50 627 59 627

Average 53 52 56

Within 37 24 9

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

1 74 511 70 514 60 514

2 81 512 64 514 69 511

3 67 513 62 514 72 511

4 88 507 60 514 68 511

5 63 514 67 513 63 511

Average 74 64 66

Within 25 10 12

Measure-

ment

Position 1 Position 2 Position 3

Panorama Roof Panel Distance 1: 25 [mm]

Measure-

ment

Position 1 Position 2 Position 3

Panorama Roof Panel Distance 3: 100 [mm]

Measure-

ment

Position 1 Position 2 Position 3

Panorama Roof Panel Distance 2: 50 [mm]

Sunroof Curtain Concept 1

Test Results from the informal testing of the sunroof curtain.

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement Position 2

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

1 42 83 25 105 36 95

2 41 85 37 91 37 95

3 42 81 31 93 31 97

4 42 81 28 105 34 97

5 41 81 31 101 34 97

Average 42 30 34

Within 1 12 6

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

1 34 173 44 184 43 145

2 33 173 39 183 35 147

3 35 173 39 181 46 143

4 39 173 43 181 37 145

5 32 175 42 181 42 145

Average 35 41 41

Within 7 5 11

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

1 36 317 42 327 32 332

2 42 319 43 329 38 327

3 38 313 43 331 37 327

4 42 317 46 331 38 327

5 41 313 39 33 39 327

Average 40 43 37

Within 6 7 7

Measure-

ment

Position 1 Position 2 Position 3

Curtain distance 1 25 mm

Measure-

ment

Position 1 Position 2 Position 3

Panorama Roof Distance 2

Measure-

ment

Position 1 Position 2 Position 3

curtain Roof Distance 3

Windows Concept 1

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement Position 2

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

1 58 49 36 56

2 46 52 32 55

3 48 49 40 54

4 55 49 41 49

5 59 49 33 52

Average 53 36 ######## ########

Within 13 9 0 0

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

1 53 92

2 60 91

3 52 91

4 46 92

5 56 90

Average 53 ######## ######## ########

Within 14 0 0 0

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

1 52 151

2 45 151

3 54 151

4 55 150

5 52 149

Average 52 ######## ######## ########

Within 10 0 0 0

Window distance 3

Measure-

ment

Position 1 Position 2 Position 3 Position 4

Window distance 2

Measure-

ment

Position 1 Position 2 Position 3 Position 4

Window distance 1

Measure-

ment

Position 1 Position 2 Position 3 Position 4

Informal Testing Concept 2

Sunroof Panel Concept 2

Test Results from the informal testing of the sunroof panel.

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement Position 2

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

1 52 823 65 824 44 829

2 67 824 57 823 66 829

3 72 823 52 822 68 826

4 60 824 64 822 63 831

5 68 820 78 826 51 831

Average 64 63 58

Within 20 27 24

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

1 32 580 32 569 28 577

2 31 585 36 578 18 572

3 39 582 35 572 43 572

4 27 584 37 578 23 579

5 28 581 38 577 36 576

Average 31 36 29

Within 13 6 25

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

1 77 415 43 401 55 392

2 39 413 47 400 28 392

3 46 414 46 390 50 386

4 60 413 47 399 34 393

5 51 412 38 404 42 382

Average 54 44 42

Within 38 9 27

Measure-

ment

Position 1 Position 2 Position 3

Panorama Roof Panel Distace 1: 25 [mm]

Measure-

ment

Position 1 Position 2 Position 3

Panorama Roof Panel Distace 3: 100 [mm]

Measure-

ment

Position 1 Position 2 Position 3

Panorama Roof Panel Distace 2: 50 [mm]

Sunroof Curtain Concept 2

Test Results from the informal testing of the sunroof curtain.

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement Position 2

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

1 21 79 30 99 29 95

2 26 78 26 98 23 88

3 30 78 27 95 29 91

4 28 78 32 95 28 93

5 26 80 26 99 27 95

Average 26 28 27

Within 9 6 6

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

1 26 161 37 185 33 139

2 28 159 37 175 33 137

3 32 159 30 185 34 137

4 36 161 31 173 39 137

5 30 163 39 173 30 139

Average 30 35 34

Within 10 9 9

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

1 36 320 41 321 38 315

2 38 317 45 325 37 313

3 33 319 34 327 35 313

4 39 317 40 328 36 313

5 38 317 39 325 36 313

Average 37 40 36

Within 6 11 3

Measure-

ment

Position 1 Position 2 Position 3

Curtain Distance 3 100 mm

Measure-

ment

Position 1 Position 2 Position 3

Curtain Distance 1 25 mm

Measure-

ment

Position 1 Position 2 Position 3

Curtain Distance 2 50 mm

Windows Concept 1

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement Position 2

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

1 39 58 28 45

2 32 64 25 50

3 38 61 25 70

4 40 62 19 76

5 31 45 25 70

Average 36 24 ######## ########

Within 9 9 0 0

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

1 41 105

2 40 105

3 46 105

4 48 96

5 54 98

Average 46 ######## ######## ########

Within 14 0 0 0

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

Pinch Force

[N]

Distance

Measurement

Panorama

Roof B [mm]

1 73 179

2 71 177

3 60 172

4 64 172

5 70 176

Average 68 ######## ######## ########

Within 13 0 0 0

Window distance 3

Measure-

ment

Position 1 Position 2 Position 3 Position 4

Window distance 50 mm

Measure-

ment

Position 1 Position 2 Position 3 Position 4

Window distance 1 25 mm

Measure-

ment

Position 1 Position 2 Position 3 Position 4

Appendix F
Arduino code concept 1.

//
// This proram uses the hall sensor input from the panel, curtain and front window motors to determine their position and speed //
//

/// Initiate Parameters Panel //

volatile byte hsDetectPanel = 0; // Hall Sensor detection in the panel
const byte hSensitivityPanel = 1; // How sensitive will the system be / the readings of the hall sensors
volatile byte confirmerPanel = 0; // Vairable used to help determine the distance

unsigned long hs1TimePanel = 0; // Time when hall sensor 1 is detected
unsigned long hs2TimePanel = 0; // Time when hall sensor 2 is detected

// Parameters for determining if the panel has reached its end position
long progTimePanel = 0; // A timer to start timing when the user presses the button
long fullyOpenedTimerPanel = 0; // A timer to measure time between the last hall sensor input and program time while closin
g the panel
long fullyClosedTimerPanel = 0; // A timer to measure time between the last hall sensor input and program time while openin
g the panel
byte oneTimeCheckPanel = 0; // A flag to initiate values of fullyOpened and fullyClosed timers
byte fullyOpenPanel = 0; // A flag that tells the panel is in fully opened position
byte fullyClosedPanel = 0; // A flag that tells the panel is in fully closed position
byte bufferOpenPanel = 0; // A one time buffer that allows the panel to open for one more program cycle when panel mo
vement is stopped either by user or hard stop
byte bufferClosePanel = 0; // A one time buffer that allows the panel to close for one more program cycle when panel m
ovement is stopped either by user or hard stop
const int hardStopTimePanel = 100; // Time in milliseconds for hard stop detection to trigger
const int fullyOpenDistancePanel = 1390; // The distance value that is forcefully assigned when panel is fully open
const int fullyClosedDistancePanel = 0; // The distance value that is forcefully assigned when panel is fully closed

long Time_Between_Hs_Input_Panel = 0; // The time between Hall Sensor inputs, gives information about how fast the panel is movin
g / it is the reverese of rpm
long Time_Between_Hs_Input_Panel_Old = 0; // Time between Hall Sensor Inputs in earlier iteration
long Time_Per_Revolution_Panel = 0; // The time it takes to get 4 Hs inputs --> for half a rotation

int distancePanel = 0; // The number of Hs inputs recived from the starting position of the panel (fully closed)
long Tresh_base_pos = 0; // Parameter that enables the curve to adapt to the characteristics of the current operatio
n
const int pinchSensitivityPanel = 0; // Parameter that enables change of the amplitude of the treshold curve for all zones

 //Pinching Zones upper & lowe limits
const int UL1Panel = 1050; // Upper limit of the distance for Pinch Zone 1
const int LL1Panel = 650; // Lower limit of the distance for Pinch Zone 1

const int UL2Panel = LL1Panel; // Upper limit of the distance for Pinch Zone 2
const int LL2Panel = 520; // Lower limit of the distance for Pinch Zone 2

const int UL3Panel = LL2Panel; // Upper limit of the distance for Pinch Zone 3
const int LL3Panel = 380; // Lower limit of the distance for Pinch Zone 3

const int UL4Panel = LL3Panel; // Upper limit of the distance for Pinch Zone 4
const int LL4Panel = 230; // Lower limit of the distance for Pinch Zone 4

const int UL5Panel = LL4Panel; // Upper limit of the distance for Pinch Zone 5
const int LL5Panel = 140; // Lower limit of the distance for Pinch Zone 5

const int UL6Panel = LL5Panel; // Upper limit of the distance for Pinch Zone 6
const int LL6Panel = 90; // Lower limit of the distance for Pinch Zone 6

const int UL7Panel = LL6Panel; // Upper limit of the distance for Pinch Zone 7
const int LL7Panel = 60; // Lower limit of the distance for Pinch Zone 7

// Treshold curve fit parameters on the form: A* Distance^2 + B* Distance + C for the Panel
// Zone 1
const float A1Panel = -0.0015;
const float B1Panel = 0.0318;
int C1Panel_tresh = 170; // C value for the adaptive Curve
int C1Panel = 4150;

// Zone 2
const float A2Panel = 0.0052;
const float B2Panel = 0.3854;
int C2Panel_tresh = 0; // C value for the adaptive Curve
int C2Panel =4000;

// Zone 3
const float A3Panel = -0.04;
const float B3Panel = 6;
int C3Panel_tresh = 140; // C value for the adaptive Curve
int C3Panel = 4150;

// Zone 4
const float A4Panel = 0.029;
const float B4Panel = -3.31;
int C4Panel_tresh = 150; // C value for the adaptive Curve
int C4Panel = 4150;

// Zone 5
const float A5Panel = 0.11;

const float B5Panel =-2.5;
int C5Panel_tresh = 150; // C value for the adaptive Curve
int C5Panel = 4150;

// Zone 6
const float A6Panel = 0;
const float B6Panel = 0;
int C6Panel_tresh = 1150; // C value for the adaptive Curve
int C6Panel = 5200;

// Zone 7
const float A7Panel = 0;
const float B7Panel = -5.4011;
int C7Panel_tresh = 1150; // C value for the adaptive Curve
int C7Panel = 0;

// Parameters used to set a state, varies between 1 & 0 depending on if they are on or off
int pinchDetectorPanel = 0; // Sets the system in "Pinch mode" 0 = Nothing is happening 1 = A pinch has occured

int stopInPinchZonePanel = 0; // Allows the system to overwrite a Pinch if the user stops the pannel within the "Pinch Zon
e" avoids fals pinches 0 = Nothing is happening 1 = Panel has stoped in the pinch zone
int stopDistancePanel = 0; // Sets the distance at which the panel has been stoped

// Initiate Parameters Curtain ///

volatile byte hsDetectCurtain = 0; // Hall Sensor detection in the Curtain
const byte hSensitivityCurtain = 1; // How sensitive will the system be / the readings of the hall sensors
volatile byte confirmerCurtain = 0; // Vairable used to help determine the distance

unsigned long hs1CurtainTime = 0; // Time when hall sensor 1 is detected
unsigned long hs2CurtainTime = 0; // Time when hall sensor 2 is detected

// Parameters for determining if the Curtain has reached its end position
long progTimeCurtain = 0; // A timer to start timing when the user presses the button
long fullyOpenedTimerCurtain = 0; // A timer to measure time between the last hall sensor input and program time while cl
osing the curtain
long fullyClosedTimerCurtain = 0; // A timer to measure time between the last hall sensor input and program time while op
ening the curtain
byte oneTimeCheckCurtain = 0; // A flag to initiate values of fullyOpened and fullyClosed timers
byte fullyOpenCurtain = 0; // A flag that tells the curtain is in fully opened position
byte fullyClosedCurtain = 0; // A flag that tells the curtain is in fully closed position
byte bufferOpenCurtain = 0; // A one time buffer that allows the curtain to open for one more program cycle when cu
rtain movement is stopped either by user or hard stop
byte bufferCloseCurtain = 0; // A one time buffer that allows the curtain to close for one more program cycle when c
urtain movement is stopped either by user or hard stop
const int hardStopTimeCurtain = 100; // Time in milliseconds for hard stop detection to trigger
const int fullyOpenDistanceCurtain = 2160; // The distance value that is forcefully assigned when curtain is fully open
const int fullyClosedDistanceCurtain = 0; // The distance value that is forcefully assigned when curtain is fully closed

long Time_Between_Hs_Input_Curtain = 0; // The time between Hall Sensor inputs, gives information about how fast the Curtain is
 moving / it is the reverese of rpm
long Time_Between_Hs_Input_CurtainOld = 0; // Time between Hall Sensor Inputs in earlier iteration
long Time_Per_Revolution_Curtain = 0; // The time it takes to get 4 Hs inputs --> for half a revolution

int distanceCurtain = 0; // The number of Hs inputs recived from the starting position of the Curtain (fully clo
sed)
int SensitivityCurtain = 0; // Parameter that enables change of the amplitude of the treshold curve for all zones
long Tresh_base_Curtain = 0; // Parameter that enables the curve to adapt to the characteristics of the current oper
ation

// Upper & lowe limits for the Pinch Zones
const int UL1Curtain = 956; // Upper limit of the distance for Pinch Zone 1
const int LL1Curtain = 540; // Lower limit of the distance for Pinch Zone 1

const int UL2Curtain = LL1Curtain; // Upper limit of the distance for Pinch Zone 2
const int LL2Curtain = 210; // Lower limit of the distance for Pinch Zone 2

const int UL3Curtain = LL2Curtain; // Upper limit of the distance for Pinch Zone 3
const int LL3Curtain = 100; // Lower limit of the distance for Pinch Zone 3

const int UL4Curtain = LL3Curtain; // Upper limit of the distance for Pinch Zone 4
const int LL4Curtain = 20; // Lower limit of the distance for Pinch Zone 4

// Treshold curve fit parameters on the form: A* Distance^2 + B* Distance + C. Straight line for curtain so C is tha amplitude
// Zone 1
const int C1Curtain_tresh = 200; // C value for the adaptive Curve
int C1Curtain = 5000;

// Zone 2
const int C2Curtain_tresh = 300; // C value for the adaptive Curve
int C2Curtain = 5100;

// Zone 3
const int C3Curtain_tresh = 400; // C value for the adaptive Curve
int C3Curtain = 5200;

// Zone 4
const int C4Curtain_tresh = 500; // C value for the adaptive Curve
int C4Curtain = 5300;

// Parameters used to set a state, varies between 1 & 0 depending on if they are on or off
int pinchDetectorCurtain = 0; // Sets the system in "Pinch mode" 0 = Nothing is happening 1 = A pinch has occured

int stopInPinchZoneCurtain = 0; // Allows the system to overwrite a Pinch if the user stops the Curtain within the "Pin
ch Zone" avoids fals pinches 0 = Nothing is happening 1 = Curtain has stoped in the pinch zone
int stopDistanceCurtain = 0; // Sets the distance at which the Curtain has been stoped

// Initiate Parameters Window //

volatile byte hsDetectWindow = 0; // Hall Sensor detection in the Window
volatile byte confirmerWindow = 0; // Vairable used to help determine the distance
const byte hSensitivityWindow = 1; // How sensitive will the system be / the readings of the hall sensors

unsigned long hs1TimeWindow = 0; // Time when hall sensor 1 is detected
unsigned long hs2TimeWindow = 0; // Time when hall sensor 2 is detected

// Parameters for determining if the Window has reached its end position
long progTimeWindow = 0; // A timer to start timing when the user presses the button
long fullyOpenedTimerWindow = 0; // A timer to measure time between the last hall sensor input and program time while cl
osing the panel
long fullyClosedTimerWindow = 0; // A timer to measure time between the last hall sensor input and program time while op
ening the panel
byte oneTimeCheckWindow = 0; // A flag to initiate values of fullyOpened and fullyClosed timers
byte fullyOpenWindow = 0; // A flag that tells the panel is in fully opened position
byte fullyClosedWindow = 0; // A flag that tells the panel is in fully closed position
byte bufferOpenWindow = 0; // A one time buffer that allows the panel to open for one more program cycle when pane
l movement is stopped either by user or hard stop
byte bufferCloseWindow = 0; // A one time buffer that allows the panel to close for one more program cycle when pan
el movement is stopped either by user or hard stop
const int hardStopTimeWindow = 120; // Time in milliseconds for hard stop detection to trigger
const int fullyOpenDistanceWindow = 460; // The distance value that is forcefully assigned when panel is fully open
const int fullyClosedDistanceWindow = 0; // The distance value that is forcefully assigned when panel is fully closed

long Time_Between_Hs_Input_Window = 0; // The time between Hall Sensor inputs, gives information about how fast the Window is
moving / it is the reverese of rpm
long Time_Between_Hs_Input_WindowOld = 0; // Time between Hall Sensor Inputs in earlier iteration
long Time_Per_Revolution_Window = 0; // The time it takes to get 4 Hs inputs --> for half a revolution

int distanceWindow = 0; // The number of Hs inputs recived from the starting position of the Window (fully clos
ed)
long Tresh_base_Window = 0; // Parameter that enables the curve to adapt to the characteristics of the current oper
ation
int sensitivityWindow = 0; // Parameter that enables change of the amplitude of the treshold curve for all zones

// Treshold section parameters
const int UL1Window = 310; // Upper limit of the distance for Pinch Zone 1
const int LL1Window = 270; // Lower limit of the distance for Pinch Zone 1

const int UL2Window = LL1Window; // Upper limit of the distance for Pinch Zone 2
const int LL2Window = 235; // Lower limit of the distance for Pinch Zone 2

const int UL3Window = LL2Window; // Upper limit of the distance for Pinch Zone 3
const int LL3Window = 145; // Lower limit of the distance for Pinch Zone 3

const int UL4Window = LL3Window; // Upper limit of the distance for Pinch Zone 4
const int LL4Window = 85; // Lower limit of the distance for Pinch Zone 4

const int UL5Window = LL4Window; // Upper limit of the distance for Pinch Zone 5
const int LL5Window = 50; // Lower limit of the distance for Pinch Zone 5

const int UL6Window = LL5Window; // Upper limit of the distance for Pinch Zone 6
const int LL6Window = 30; // Lower limit of the distance for Pinch Zone 6

// Treshold curve fit parameters on the form: A* Distance^2 + B* Distance + C for the different zones
// Values comes from Window
const float A1Window = 0;
const float B1Window = 20;
int C1Window = 10270;
const int C1Window_thresh = 700; // C value for the adaptive Curve

const float A2Window = 0;
const float B2Window = -5;
int C2Window = 11270;
const int C2Window_thresh = 1500; // C value for the adaptive Curve

const float A3Window = 0;
const float B3Window = -5;
int C3Window = 10770;
const int C3Window_thresh = 1200; // C value for the adaptive Curve

const float A4Window = 0;
const float B4Window = 5;
int C4Window = 10460;
const int C4Window_thresh = 800; // C value for the adaptive Curve

const float A5Window = 0;
const float B5Window = 2;
int C5Window = 11000;
const int C5Window_thresh = 1000; // C value for the adaptive Curve

const float A6Window = 0;
const float B6Window = 2;
int C6Window = 10000;
const int C6Window_thresh = 1200; // C value for the adaptive Curve

const int pinchSensitivityWindow = 0; // Used to lower or raise the curve against the pace input to change the sensitivity of
 the treshold curve fit

// Parameters used to set a state, varies between 1 & 0 depending on if they are on or off
int pinchDetectorWindow = 0; // Sets the system in "Pinch mode" 0 = Nothing is happening 1 = A pinch has occured

int stopInPinchZoneWindow = 0; // Allows the system to overwrite a Pinch if the user stops the window within the "Pinc
h Zone" avoids fals pinches 0 = Nothing is happening 1 = Window has stoped in the pinch zone
int stopDistanceWindow = 0; // Sets the distance at which the Window has been stoped

//
/// Defining input/output pins

////////////////////////// Input/Output pins Panel
const int closeButtonPanel = 6; // Defines the pin on the Arduino for the button that closes the panel
const int openButtonPanel = 7; // Defines the pin on the Arduino for the button that opens the panel
const int hs1Panel = 20; // Defines the pin on the Arduino which recives the input from hall sensor 1 for the pa
nel
const int hs2Panel = 21; // Defines the pin on the Arduino which recives the input from hall sensor 2 for the pa
nel

//////////////////////// Input/Output pins Curtain
const int closeButtonCurtain = 4; // Defines the pin on the Arduino for the button that closes the curtain
const int openButtonCurtain = 5; // Defines the pin on the Arduino for the button that opens the curtain
const int hs1Curtain = 18; // Defines the pin on the Arduino which recives the input from hall sensor 1 for the cu
rtain
const int hs2Curtain = 19; // Defines the pin on the Arduino which recives the input from hall sensor 2 for the cu
rtain

////////////////////////// Input/Output pins Window
const int closeButtonWindow = 4; // Defines the pin on the Arduino for the button that closes the window
const int openButtonWindow = 5; // Defines the pin on the Arduino for the button that opens the window
const int hs1Window = 2; // Defines the pin on the Arduino which recives the input from hall sensor 1 for the wi
ndow (only one hs for window)
const byte curtainVSwindow = 3; // Defines the pin on the Arduino which says if the switch is active for the window or
the curtain

/////////////////////// Controlling the direktion & speed (allways 100%/255 for this concept)

const byte PHpinPanel = 9; // Corresponds to direction of rotation (OCR2B)
const byte ENpinPanel = 10; // Corresponds to PulsWdtMod duty cycle (OCR2A)
const byte PHpinCurtain = 11; // Corresponds to direction of rotation (OCR1A)
const byte ENpinCurtain = 12; // COrresponds to PulsWdtMod duty cycle (OCR1B)

//
// All parameters and variables defined //
//

void setup() // Void Setup
{
 Serial.begin(115200);

///////////////////////////// Setup direction & Speed Control

// PWM control changing frequency for TIMER 1
 TCCR1A = _BV(COM1A1) | _BV(COM1B1) | _BV(WGM20);
 TCCR1B = TCCR1B & 0b11111000 | 0x01;

// PWM control changing frequency for TIMER 2
 TCCR2A = _BV(COM2A1) | _BV(COM2B1) | _BV(WGM20);
 TCCR2B = TCCR2B & 0b11111000 | 0x01;

// Setting the pin mode to HIGH for PH/EN pins for
 pinMode(PHpinPanel, OUTPUT);
 pinMode(ENpinPanel, OUTPUT);
 pinMode(PHpinCurtain, OUTPUT);
 pinMode(ENpinCurtain, OUTPUT);

 ////////////////////////// Void Setup Panel

 pinMode(openButtonPanel, INPUT); // Open Button is an input
 pinMode(closeButtonPanel, INPUT); // Close Button is an input
 OCR2A = 0; // Initial state of Direction & speed is 0 = nothing happens before button is pressed
 OCR2B = 0; // Initial state of Direction & speed is 0 = nothing happens before button is pressed

 attachInterrupt(digitalPinToInterrupt(hs1Panel), magnet_detect1Panel, RISING); // Interuppts the system if a hall sensor is detecte
d
 attachInterrupt(digitalPinToInterrupt(hs2Panel), magnet_detect2Panel, RISING); // Interuppts the system if a hall sensor is detecte
d

 ////////////////////////// Setup Curtain

 pinMode(openButtonCurtain, INPUT); // Open Button is an input
 pinMode(closeButtonCurtain, INPUT); // Close Button is an input
 OCR1A = 0; // Initial state of Direction & speed is 0 = nothing happens before button is pressed
 OCR1B = 0; // Initial state of Direction & speed is 0 = nothing happens before button is pressed

 attachInterrupt(digitalPinToInterrupt(hs1Curtain), magnet_detect1Curtain, RISING); // Interuppts the system if a hall sensor is det
ected
 attachInterrupt(digitalPinToInterrupt(hs2Curtain), magnet_detect2Curtain, RISING); // Interuppts the system if a hall sensor is det
ected

 ////////////////////////// Setup Window

 pinMode(openButtonWindow, INPUT); // Open Button is an input
 pinMode(closeButtonWindow, INPUT); // Close Button is an input
 pinMode(curtainVSwindow, INPUT);
 attachInterrupt(digitalPinToInterrupt(hs1Window), magnet_detect1Window, RISING); // Interuppts the system if a hall sensor is detec
ted (only one for window)

} // Ends the void setup

void loop()
{
//
// PANEL
////////////////////////// OPEN Panel

// Enter the open statement if the open buttons is presses and the panel is not in its fully open position
 if (digitalRead(openButtonPanel) == HIGH && fullyOpenPanel == 0)
 {
 fullyClosedPanel = 0; // Resets the "fullyClosedPanel" flag to 0
 stopInPinchZonePanel = 0; // Resets the "stopInPinchZonePanel" flag to 0

 OCR2A = 255; // Speed = 100%
 OCR2B = 0; // Opening direction
 DistanceOpenFunkPanel(); // Calls the Distance open function
 } // Ends the opening statement

 //
 // CLOSE Panel

// Enter the close statement if the close buttons is presses, the panel is not in its fully closed position,
// if there is no stop in the pinch zone, and if no pinch is detected

 else if (digitalRead(closeButtonPanel) == HIGH && stopInPinchZonePanel == 0 && pinchDetectorPanel == 0 && fullyClosedPanel == 0)
 {
 fullyOpenPanel = 0; // Resets the "fullyOpenPanel" flag to 0
 OCR2A = 255; // Speed = 100%
 OCR2B = 255; // Closing direction

 if (pinchDetectorPanel == 0) // enters if no pinch is detected
 {
 DistanceCloseFunkPanel(); // Calls the Distance close function
 }

 if (distancePanel > UL1Panel && distancePanel <= UL1Panel + 4) // Adaptive threshold curve
 {

 if (Time_Per_Revolution_Panel > Tresh_base_pos) // If The time per revolution is higher than the treshold base wil
l a new treshold value be given
 {
 Tresh_base_pos = Time_Per_Revolution_Panel; // A new base value is assigned to the treshholdcurve that is uniq
ue for this operation
 }

 // Asigned the Adaptive treshold base value to the C values for the curve
 C1Panel = Tresh_base_pos + C1Panel_tresh; // Zone 1
 C2Panel = Tresh_base_pos + C2Panel_tresh; // Zone 2
 C3Panel = Tresh_base_pos + C3Panel_tresh; // Zone 3
 C4Panel = Tresh_base_pos + C4Panel_tresh; // Zone 4
 C5Panel = Tresh_base_pos + C5Panel_tresh; // Zone 5
 C6Panel = Tresh_base_pos + C6Panel_tresh; // Zone 6
 C7Panel = Tresh_base_pos + C7Panel_tresh; // Zone 7
 }

 else if (distancePanel >= LL1Panel && distancePanel < UL1Panel) // Enters Pinch Zone 1
 {

 // Checks if the treshold curve for Zone 1 is lower than the "time per revolution"
 if (A1Panel * (UL1Panel - distancePanel) * (UL1Panel - distancePanel) + B1Panel * (UL1Panel - distancePanel) + C1Panel - pinchS
ensitivityPanel < Time_Per_Revolution_Panel)
 {
 pinchDetectorPanel = 1; // If the treshold curve is lower than "time per revolution" is a pinch detected --
> pinchdetector = 1

 // Printind details about the pinch situation
 Serial.print(round(A1Panel * (UL1Panel - distancePanel) * (UL1Panel - distancePanel) + B1Panel * (UL1Panel - distance
Panel) + C1Panel - pinchSensitivityPanel));
 Serial.print("; ");
 Serial.print(distancePanel);
 Serial.print("; ");
 Serial.print(Time_Per_Revolution_Panel);
 Serial.print("; ");
 Serial.print("Zone1");
 Serial.print("; ");
 Serial.println(Tresh_base_pos);
 }
 }
 else if (distancePanel >= LL2Panel && distancePanel < UL2Panel) // Enters Pinch Zone 2
 {
 // Checks if the treshold curve for Zone 2 is lower than the "time per revolution"
 if (A2Panel * (UL2Panel - distancePanel) * (UL2Panel - distancePanel) + B2Panel * (UL2Panel - distancePanel) + C2Panel - pinchS
ensitivityPanel < Time_Per_Revolution_Panel)
 {
 pinchDetectorPanel = 1; // If the treshold curve is lower than "time per revolution" is a pinch detected --
> pinchdetector = 1

 // Printind details about the pinch situation
 Serial.print(round(A2Panel * (UL2Panel - distancePanel) * (UL2Panel - distancePanel) + B2Panel * (UL2Panel - distance
Panel) + C2Panel - pinchSensitivityPanel));
 Serial.print("; ");
 Serial.print(distancePanel);
 Serial.print("; ");

 Serial.print(Time_Per_Revolution_Panel);
 Serial.print("; ");
 Serial.print("Zone2");
 Serial.print("; ");
 Serial.println(Tresh_base_pos);
 }
 }
 else if (distancePanel >= LL3Panel && distancePanel < UL3Panel) // Enters Pinch Zone 3
 {
 // Checks if the treshold curve for Zone 3 is lower than the "time per revolution"
 if (A3Panel * (UL3Panel - distancePanel) * (UL3Panel - distancePanel) + B3Panel * (UL3Panel - distancePanel) + C3Panel - pinchS
ensitivityPanel < Time_Per_Revolution_Panel)
 {
 pinchDetectorPanel = 1; // If the treshold curve is lower than "time per revolution" is a pinch detected --
> pinchdetector = 1

 // Printind details about the pinch situation
 Serial.print(round(A3Panel * (UL3Panel - distancePanel) * (UL3Panel - distancePanel) + B3Panel * (UL3Panel - distance
Panel) + C3Panel - pinchSensitivityPanel));
 Serial.print("; ");
 Serial.print(distancePanel);
 Serial.print("; ");
 Serial.print(Time_Per_Revolution_Panel);
 Serial.print("; ");
 Serial.print("Zone3");
 Serial.print("; ");
 Serial.println(Tresh_base_pos);
 }
 }
 else if (distancePanel >= LL4Panel && distancePanel < UL4Panel) // Enters Pinch Zone 4
 {
 // Checks if the treshold curve for Zone 4 is lower than the "time per revolution"
 if (A4Panel * (UL4Panel - distancePanel) * (UL4Panel - distancePanel) + B4Panel * (UL4Panel - distancePanel) + C4Panel - pinchS
ensitivityPanel < Time_Per_Revolution_Panel)
 {
 pinchDetectorPanel = 1; // If the treshold curve is lower than "time per revolution" is a pinch detected --
> pinchdetector = 1

 // Printind details about the pinch situation
 Serial.print(round(A4Panel * (UL4Panel - distancePanel) * (UL4Panel - distancePanel) + B4Panel * (UL4Panel - distance
Panel) + C4Panel - pinchSensitivityPanel));
 Serial.print("; ");
 Serial.print(distancePanel);
 Serial.print("; ");
 Serial.print(Time_Per_Revolution_Panel);
 Serial.print("; ");
 Serial.print("Zone4");
 Serial.print("; ");
 Serial.println(Tresh_base_pos);

 }
 }
 else if (distancePanel >= LL5Panel && distancePanel < UL5Panel) // Enters Pinch Zone 5
 {
 // Checks if the treshold curve for Zone 5 is lower than the "time per revolution"
 if (A5Panel * (UL5Panel - distancePanel) * (UL5Panel - distancePanel) + B5Panel * (UL5Panel - distancePanel) + C5Panel - pinchS
ensitivityPanel < Time_Per_Revolution_Panel)
 {
 pinchDetectorPanel = 1; // If the treshold curve is lower than "time per revolution" is a pinch detected --
> pinchdetector = 1

 // Printind details about the pinch situation
 Serial.print(round(A5Panel * (UL5Panel - distancePanel) * (UL5Panel - distancePanel) + B5Panel * (UL5Panel - distance
Panel) + C5Panel - pinchSensitivityPanel));
 Serial.print("; ");
 Serial.print(distancePanel);
 Serial.print("; ");
 Serial.print(Time_Per_Revolution_Panel);
 Serial.print("; ");
 Serial.print("Zone5");
 Serial.print("; ");
 Serial.println(Tresh_base_pos);

 }
 }
 else if (distancePanel >= LL6Panel && distancePanel < UL6Panel) // Enters Pinch Zone 6
 {
 // Checks if the treshold curve for Zone 6 is lower than the "time per revolution"
 if (A6Panel * (UL6Panel - distancePanel) * (UL6Panel - distancePanel) + B6Panel * (UL6Panel - distancePanel) + C6Panel - pinchS
ensitivityPanel < Time_Per_Revolution_Panel)
 {
 pinchDetectorPanel = 1; // If the treshold curve is lower than "time per revolution" is a pinch detected --
> pinchdetector = 1

 // Printind details about the pinch situation
 Serial.print(round(A6Panel * (UL6Panel - distancePanel) * (UL6Panel - distancePanel) + B6Panel * (UL6Panel - distance
Panel) + C6Panel - pinchSensitivityPanel));
 Serial.print("; ");
 Serial.print(distancePanel);
 Serial.print("; ");
 Serial.print(Time_Per_Revolution_Panel);
 Serial.print("; ");
 Serial.print("Zone6");
 Serial.print("; ");
 Serial.println(Tresh_base_pos);
 }
 }
 else if (distancePanel >= LL7Panel && distancePanel < UL7Panel) // Enters Pinch Zone 7
 {

 // Checks if the treshold curve for Zone 7 is lower than the "time per revolution"
 if (A7Panel * (UL7Panel - distancePanel) * (UL7Panel - distancePanel) + B7Panel * (UL7Panel - distancePanel) + C7Panel - pinchS
ensitivityPanel < Time_Per_Revolution_Panel)
 {

 pinchDetectorPanel = 1; // If the treshold curve is lower than "time per revolution" is a pinch detected --
> pinchdetector = 1

 // Printind details about the pinch situation
 Serial.print(round(A7Panel * (UL7Panel - distancePanel) * (UL7Panel - distancePanel) + B7Panel * (UL7Panel - distance
Panel) + C7Panel - pinchSensitivityPanel));
 Serial.print("; ");
 Serial.print(distancePanel);
 Serial.print("; ");
 Serial.print(Time_Per_Revolution_Panel);
 Serial.print("; ");
 Serial.print("Zone7");
 Serial.print("; ");
 Serial.println(Tresh_base_pos);
 }
 }
 } // Stops Close statement

///

 else if (pinchDetectorPanel == 1) // If a pinch is detected in the pannel will it change direction and open fully
 {
 OCR2A = 255; // Speed 100%
 OCR2B = 0; // Opening direction
 DistanceOpenFunkPanel(); // Cals the Distance opening function
 } // Stops pinch in panel statement

///
///// Avoids falls pinches by overwriting the pinch stement if the user stops the panel within the pinch zone
// Enters if Close button is high, stop in pinch zone is high and the pannel is not fully closed

 else if (digitalRead(closeButtonPanel) == HIGH && stopInPinchZonePanel == 1 && fullyClosedPanel == 0)
 {

 OCR2A = 255; // Speed 100%
 OCR2B = 255; // Closing direction
 DistanceCloseFunkPanel(); // Cals the Distance closing function
 } // Stops Stop in pinch zone statement

//
////// Allow the user to stop the panel within the pinch zone
// Enters if both buttons are low and the panel is in the pinch zone
 else if (digitalRead(openButtonPanel) == LOW && digitalRead(closeButtonPanel) == LOW && distancePanel > LL7Panel && distancePanel <
 UL1Panel)
 {
 fullyOpenPanel = 0; // Resets the "fullyOpenPanel" flag to 0
 fullyClosedPanel = 0; // Resets the "fullyClosedPanel" flag to 0

 OCR2A = 0; // Speed 0%
 OCR2B = 0; // Opening direction/ doesn't matter which direction

 stopInPinchZonePanel = 1; // Sets the "stopInPinchZonePanel" flag to 1
 stopDistancePanel = distancePanel; // Assigns the distance value at which the pannel is stoped
 }

 else // If nothing happens
 {

 OCR2A = 0; // Speed 0%
 OCR2B = 0; // Opening direction/ doesn't matter which direction
 }

//
// OPEN Curtain ///
if (digitalRead(curtainVSwindow) == HIGH) // If switch is in curtain position(HIGH)
{
// Enter the open statement if the open buttons is presses and the curtain is not in its fully open position
if (digitalRead(openButtonCurtain) == HIGH && fullyOpenCurtain == 0)
{
 fullyClosedCurtain = 0; // Resets the "fullyClosedCurtain" flag to 0
 OCR1A = 0; // Opening Direction
 OCR1B = 255; // Speed 100% PWM
 DistanceOpenFunkCurtain(); // Calls the Distance open function
} // Ends the opening statement

//
// CLOSE Curtain

// Enter the close statement if the close buttons is presses, the curtain is not in its fully closed position,
// if there is no stop in the pinch zone, and if no pinch is detected

else if (digitalRead(closeButtonCurtain) == HIGH && stopInPinchZoneCurtain == 0 && pinchDetectorCurtain == 0 && fullyClosedCurtain ==
 0)
{
 fullyOpenCurtain = 0; // Resets the "fullyOpenedCurtain" flag to 0
 OCR1A = 255; // Closing Direction
 OCR1B = 255; // Speed 100% PWM

 if (pinchDetectorCurtain == 0) // enters if no pinch is detected
 {
 DistanceCloseFunkCurtain(); // Calls the Distance close function
 }

 if (distanceCurtain > UL1Curtain && distanceCurtain <= UL1Curtain + 4) // Adaptive threshold curve

 {

 if (Time_Per_Revolution_Curtain > Tresh_base_Curtain) // If The time per revolution is higher than the treshold base will a new
treshold value be given
 {
 Tresh_base_Curtain = Time_Per_Revolution_Curtain; // A new base value is assigned to the treshholdcurve that is unique for t
his operation
 }
 // Asigned the Adaptive treshold base value to the C values for the curve
 C1Curtain = Tresh_base_Curtain + C1Curtain_tresh; // Zone 1
 C2Curtain = Tresh_base_Curtain + C2Curtain_tresh; // Zone 2
 C3Curtain = Tresh_base_Curtain + C3Curtain_tresh; // Zone 3
 C4Curtain = Tresh_base_Curtain + C4Curtain_tresh; // Zone 4
 }

 else if (distanceCurtain >= LL1Curtain && distanceCurtain < UL1Curtain) // Enters Pinch Zone 1
 {
 // Checks if the treshold curve for Zone 1 is lower than the "time per revolution"
 if (C1Curtain + SensitivityCurtain < Time_Per_Revolution_Curtain)
 {
 pinchDetectorCurtain = 1; // If the treshold curve is lower than "time per revolution" is a pinch detected --
> pinchdetector = 1

 // Printind details about the pinch situation
 Serial.print(distanceCurtain);
 Serial.print("; ");
 Serial.print(Time_Per_Revolution_Curtain);
 Serial.print("; ");
 Serial.print("Zone1");
 Serial.print("; ");
 Serial.println(C1Curtain);
 }
 }
 else if (distanceCurtain >= LL2Curtain && distanceCurtain < UL2Curtain) // Enters Pinch Zone 2
 {
 // Checks if the treshold curve for Zone 2 is lower than the "time per revolution"
 if (C2Curtain + SensitivityCurtain < Time_Per_Revolution_Curtain)
 {
 pinchDetectorCurtain = 1; // If the treshold curve is lower than "time per revolution" is a pinch detected --
> pinchdetector = 1

 // Printind details about the pinch situation
 Serial.print(distanceCurtain);
 Serial.print("; ");
 Serial.print(Time_Per_Revolution_Curtain);
 Serial.print("; ");
 Serial.print("Zone2 ");
 Serial.print("; ");
 Serial.println(C2Curtain);
 }
 }
 else if (distanceCurtain >= LL3Curtain && distanceCurtain < UL3Curtain) // Enters Pinch Zone 3
 {
 // Checks if the treshold curve for Zone 3 is lower than the "time per revolution"
 if (C3Curtain + SensitivityCurtain < Time_Per_Revolution_Curtain)
 {
 pinchDetectorCurtain = 1; // If the treshold curve is lower than "time per revolution" is a pinch detected --
> pinchdetector = 1

 // Printind details about the pinch situation
 Serial.print(distanceCurtain);
 Serial.print("; ");
 Serial.print(Time_Per_Revolution_Curtain);
 Serial.print("; ");
 Serial.print("Zone3 ");
 Serial.print("; ");
 Serial.println(C3Curtain);
 }
 }
 else if (distanceCurtain >= LL4Curtain && distanceCurtain < UL4Curtain) // Enters Pinch Zone 4
 {
 // Checks if the treshold curve for Zone 4 is lower than the "time per revolution"
 if (C4Curtain + SensitivityCurtain < Time_Per_Revolution_Curtain)
 {
 pinchDetectorCurtain = 1; // If the treshold curve is lower than "time per revolution" is a pinch detected --
> pinchdetector = 1

 // Printind details about the pinch situation
 Serial.print(distanceCurtain);
 Serial.print("; ");
 Serial.print(Time_Per_Revolution_Curtain);
 Serial.print("; ");
 Serial.print("Zone4 ");
 Serial.print("; ");
 Serial.println(C4Curtain);
 }
 }

} // Stops closing of curtain
///
else if (pinchDetectorCurtain == 1)// If a pinch is detected in the curtain will it change direction and open fully
{

 fullyOpenCurtain = 0; // Resets the "fullyOpenCurtain" flag to 0
 OCR1A = 0; // Opening Direction
 OCR1B = 255; // Speed 100% PWM
 DistanceOpenFunkCurtain(); // Cals the Distance opening function

} // Stops Pinch in curtain statement

///
///// Avoids falls pinches by overwriting the pinch stement if the user stops the curtain within the pinch zone
// Enters if Close button is high, stop in pinch zone is high and the curtain is not fully closed

else if (digitalRead(closeButtonCurtain) == HIGH && stopInPinchZoneCurtain == 1 && fullyClosedCurtain == 0)
{
 fullyOpenCurtain = 0; // Resets the "fullyOpenCurtain" flag to 0
 OCR1A = 255; // Closing Direction
 OCR1B = 255; // Speed 100% PWM
 DistanceCloseFunkCurtain(); // Cals the Distance close function
} // Stops Stop in pinch zone statement
//
////// Allow the user to stop the curtain within the pinch zone
// Enters if both buttons are low and the curtain is in the pinch zone

else if (digitalRead(openButtonCurtain) == LOW && digitalRead(closeButtonCurtain) == LOW && distanceCurtain > LL4Curtain && distanceC
urtain < UL1Curtain)
{
 OCR1A = 255; // Closing direction/ doesn't matter which direction
 OCR1B = 0; // Speed 0% PWM
 stopInPinchZoneCurtain = 1; // Sets the "stopInPinchZoneCurtain" flag to 1
 stopDistanceCurtain = distanceCurtain; // Assigns the distance value at which the curtain is stoped
} // Stops Stop in pinch zone statement

else // If nothing happens in Curtain
{
 OCR1A = 255; // Closing direction/ doesn't matter which direction
 OCR1B = 0; // Speed 0% PWM
} // Stops if nothing happens statement

} // Stops switch statement
///
// OPEN Window //
///
else if (digitalRead(curtainVSwindow) == LOW) // If switch is in Window position(LOW)
{
// Enter the open statement if the open buttons is presses and the window is not in its fully open position
 if (digitalRead(openButtonWindow) == HIGH && fullyOpenWindow == 0)
 {
 fullyClosedWindow = 0; // Resets the "fullyClosedWindow" flag to 0
 OCR1A = 0; // Opening Direction
 OCR1B = 255; // Speed 100% PWM
 DistanceOpenFunkWindow(); // Calls the Distance open function
 }

///
// CLOSE Window

// Enter the close statement if the close buttons is presses, the window is not in its fully closed position,
// if there is no stop in the pinch zone, and if no pinch is detected

 else if (digitalRead(closeButtonWindow) == HIGH && stopInPinchZoneWindow == 0 && pinchDetectorWindow == 0 && fullyClosedWindow == 0
)
 {
 fullyOpenWindow = 0; // Resets the "fullyOpenWindow" flag to 0
 OCR1A = 255; // Closing Direction
 OCR1B = 255; // Speed 100% PWM

 if (pinchDetectorWindow == 0) // enters if no pinch is detected
 {
 DistanceCloseFunkWindow(); // Calls the Distance close function
 }

 if (distanceWindow > UL1Window && distanceWindow <= UL1Window + 4) // Adaptive threshold curve
 {

 if (Time_Per_Revolution_Window > Tresh_base_Window) // If The time per revolution is higher than the treshold base will a new
treshold value be given
 {

 Tresh_base_Window = Time_Per_Revolution_Window; // A new base value is assigned to the treshholdcurve that is unique for t
his operation
 }
 // Asigned the Adaptive treshold base value to the C values for the curve

 C1Window = Tresh_base_Window + C1Window_thresh + sensitivityWindow; // Zone 1
 C2Window = Tresh_base_Window + C2Window_thresh + sensitivityWindow; // Zone 2
 C3Window = Tresh_base_Window + C3Window_thresh + sensitivityWindow; // Zone 3
 C4Window = Tresh_base_Window + C4Window_thresh + sensitivityWindow; // Zone 4
 C5Window = Tresh_base_Window + C5Window_thresh + sensitivityWindow; // Zone 5
 C6Window = Tresh_base_Window + C6Window_thresh + sensitivityWindow; // Zone 6
 }
 else if (distanceWindow >= LL1Window && distanceWindow < UL1Window) // Enters Pinch Zone 1
 {
 // Checks if the treshold curve for Zone 1 is lower than the "time per revolution"
 if (A1Window * (UL1Window - distanceWindow) * (UL1Window - distanceWindow) + B1Window * (UL1Window - distanceWindow) + C1Window
 - pinchSensitivityWindow < Time_Per_Revolution_Window)
 {
 pinchDetectorWindow = 1; // If the treshold curve is lower than "time per revolution" is a pinch detected --
> pinchdetector = 1

// Printind details about the pinch situation
 Serial.print(round(A1Window * (UL1Window - distanceWindow) * (UL1Window - distanceWindow) + B1Window * (UL1Window - distanceW
indow) + C1Window - pinchSensitivityWindow));
 Serial.print("; ");

 Serial.print(distanceWindow);
 Serial.print("; ");
 Serial.print(Time_Per_Revolution_Window);
 Serial.print("; ");
 Serial.print("Zone1");

 }
 }
 else if (distanceWindow >= LL2Window && distanceWindow < UL2Window) // Enters Pinch Zone 2
 {
 // Checks if the treshold curve for Zone 2 is lower than the "time per revolution"
 if (A2Window * (UL2Window - distanceWindow) * (UL2Window - distanceWindow) + B2Window * (UL2Window - distanceWindow) + C2Window
 - pinchSensitivityWindow < Time_Per_Revolution_Window)
 {
 pinchDetectorWindow = 1; // If the treshold curve is lower than "time per revolution" is a pinch detected --
> pinchdetector = 1

 // Printind details about the pinch situation
 Serial.print(round(A2Window * (UL2Window - distanceWindow) * (UL2Window - distanceWindow) + B2Window * (UL2Window - distanceW
indow) + C2Window - pinchSensitivityWindow));
 Serial.print("; ");
 Serial.print(distanceWindow);
 Serial.print("; ");
 Serial.print(Time_Per_Revolution_Window);
 Serial.print("; ");
 Serial.println("Zone2");

 }
 }
 else if (distanceWindow >= LL3Window && distanceWindow < UL3Window) // Enters Pinch Zone 3
 {
 // Checks if the treshold curve for Zone 3 is lower than the "time per revolution"
 if (A3Window * (UL3Window - distanceWindow) * (UL3Window - distanceWindow) + B3Window * (UL3Window - distanceWindow) + C3Window
 - pinchSensitivityWindow < Time_Per_Revolution_Window)
 {
 pinchDetectorWindow = 1; // If the treshold curve is lower than "time per revolution" is a pinch detected --
> pinchdetector = 1

 // Printind details about the pinch situation
 Serial.print(round(A3Window * (UL3Window - distanceWindow) * (UL3Window - distanceWindow) + B3Window * (UL3Window - distanceW
indow) + C3Window - pinchSensitivityWindow));
 Serial.print("; ");
 Serial.print(distanceWindow);
 Serial.print("; ");
 Serial.print(Time_Per_Revolution_Window);
 Serial.print("; ");
 Serial.println("Zone3");

 }
 }
 else if (distanceWindow >= LL4Window && distanceWindow < UL4Window) // Enters Pinch Zone 4
 {
 // Checks if the treshold curve for Zone 4 is lower than the "time per revolution"
 if (A4Window * (UL4Window - distanceWindow) * (UL4Window - distanceWindow) + B4Window * (UL4Window - distanceWindow) + C4Windo
w - pinchSensitivityWindow < Time_Per_Revolution_Window)
 {
 pinchDetectorWindow = 1; // If the treshold curve is lower than "time per revolution" is a pinch detected --
> pinchdetector = 1

 // Printind details about the pinch situation
 Serial.print(round(A4Window * (UL4Window - distanceWindow) * (UL4Window - distanceWindow) + B4Window * (UL4Window - distanceW
indow) + C4Window - pinchSensitivityWindow));
 Serial.print("; ");
 Serial.print(distanceWindow);
 Serial.print("; ");
 Serial.print(Time_Per_Revolution_Window);
 Serial.print("; ");
 Serial.println("Zone4");
 }
 }
 else if (distanceWindow >= LL5Window && distanceWindow < UL5Window) // Enters Pinch Zone 5
 {
 // Checks if the treshold curve for Zone 5 is lower than the "time per revolution"
 if (A5Window * (UL5Window - distanceWindow) * (UL5Window - distanceWindow) + B5Window * (UL5Window - distanceWindow) + C5Windo
w - pinchSensitivityWindow < Time_Per_Revolution_Window)
 {
 pinchDetectorWindow = 1; // If the treshold curve is lower than "time per revolution" is a pinch detected --
> pinchdetector = 1

 // Printind details about the pinch situation
 Serial.print(round(A5Window * (UL5Window - distanceWindow) * (UL5Window - distanceWindow) + B5Window * (UL5Window - distanceW
indow) + C5Window - pinchSensitivityWindow));
 Serial.print("; ");
 Serial.print(distanceWindow);
 Serial.print("; ");
 Serial.print(Time_Per_Revolution_Window);
 Serial.print("; ");
 Serial.println("Zone5");

 }
 }
 else if (distanceWindow >= LL6Window && distanceWindow < UL6Window) // Enters Pinch Zone 6
 {
 // Checks if the treshold curve for Zone 6 is lower than the "time per revolution"
 if (A6Window * (UL6Window - distanceWindow) * (UL6Window - distanceWindow) + B6Window * (UL6Window - distanceWindow) + C6Window
 - pinchSensitivityWindow < Time_Per_Revolution_Window)
 {
 pinchDetectorWindow = 1; // If the treshold curve is lower than "time per revolution" is a pinch detected --
> pinchdetector = 1

 // Printind details about the pinch situation
 Serial.print(round(A6Window * (UL6Window - distanceWindow) * (UL6Window - distanceWindow) + B6Window * (UL6Window - distanceW
indow) + C6Window - pinchSensitivityWindow));
 Serial.print("; ");
 Serial.print(distanceWindow);
 Serial.print("; ");
 Serial.print(Time_Per_Revolution_Window);
 Serial.print("; ");
 Serial.println("Zone6");
 Serial.print("; ");
 Serial.println(C6Window);
 }
 }
 } // Stops Close statement

///
 else if (pinchDetectorWindow == 1)// If a pinch is detected in the window will it change direction and open fully
 {

 fullyOpenWindow = 0; // Resets the "fullyOpenWindow" flag to 0
 OCR1A = 0; // Opening Direction
 OCR1B = 255; // Speed 100% PWM
 DistanceOpenFunkWindow(); // Cals the Distance opening function
 } // Stops pinch in Window statement

///
///// Avoids falls pinches by overwriting the pinch stement if the user stops the window within the pinch zone
// Enters if Close button is high, stop in pinch zone is high and the window is not fully closed

 else if (digitalRead(closeButtonWindow) == HIGH && stopInPinchZoneWindow == 1 && fullyClosedWindow == 0)
 {
 fullyOpenWindow = 0; // Resets the "fullyOpenWindow" flag to 0
 OCR1A = 255; // Closing Direction
 OCR1B = 255; // Speed 100% PWM
 DistanceCloseFunkWindow(); // Cals the Distance close function
 } // Stops Stop in pinch zone statement

//
////// Allow the user to stop the window within the pinch zone
// Enters if both buttons are low and the window is in the pinch zone

 else if (digitalRead(openButtonWindow) == LOW && digitalRead(closeButtonWindow) == LOW && distanceWindow > LL6Window && distanceWi
ndow < UL1Window)
 {

 OCR1A = 255; // Closing direction/ doesn't matter which direction
 OCR1B = 0; // Speed 0% PWM
 stopInPinchZoneWindow = 1; // Sets the "stopInPinchZoneWindow" flag to 1
 stopDistanceWindow = distanceWindow; // Assigns the distance value at which the window is stoped
 } // Stops Stop in pinch zone statement

 else // If nothing happens in Window
 {
 OCR1A = 255; // Closing direction/ doesn't matter which direction
 OCR1B = 0; // Speed 0% PWM
 } // Stops if nothing happens statement

} // Stops switch statement

} //ENDS VOID LOOP

///
// Calculate the pacing in Panel
void PaceFunkPanel()
{
 Time_Between_Hs_Input_Panel = hs1TimePanel - hs2TimePanel; // Inverse of RPM
 Time_Between_Hs_Input_Panel = abs(Time_Between_Hs_Input_Panel); // Take the absolute value

 Time_Per_Revolution_Panel = Time_Between_Hs_Input_Panel - Time_Between_Hs_Input_Panel_Old; // Checks the difference between the
 old and new time difference between hs input
 Time_Per_Revolution_Panel = abs(Time_Per_Revolution_Panel); // Take the absolute value

 hsDetectPanel = 0; // Resets Hs detect to 0

 Time_Between_Hs_Input_Panel_Old = Time_Between_Hs_Input_Panel; // Updated the Time_Between_Hs_Input_Panel_Old

// Printing of the treshold curve
 if (digitalRead(closeButtonPanel) == HIGH && distancePanel >= LL1Panel && distancePanel < UL1Panel)
 {
 Serial.print(round(A1Panel * (UL1Panel - distancePanel) * (UL1Panel - distancePanel) + B1Panel * (UL1Panel - distancePanel)
 + C1Panel - pinchSensitivityPanel));
 Serial.print("; ");
 }

 else if (digitalRead(closeButtonPanel) == HIGH && distancePanel >= LL2Panel && distancePanel < UL2Panel)
 {
 Serial.print(round(A2Panel * (UL2Panel - distancePanel) * (UL2Panel - distancePanel) + B2Panel * (UL2Panel - distancePanel)
 + C2Panel - pinchSensitivityPanel));
 Serial.print("; ");
 }

 else if (digitalRead(closeButtonPanel) == HIGH && distancePanel >= LL3Panel && distancePanel < UL3Panel)
 {
 Serial.print(round(A3Panel * (UL3Panel - distancePanel) * (UL3Panel - distancePanel) + B3Panel * (UL3Panel - distancePanel)
 + C3Panel - pinchSensitivityPanel));
 Serial.print("; ");
 }

 else if (digitalRead(closeButtonPanel) == HIGH && distancePanel >= LL4Panel && distancePanel < UL4Panel)
 {
 Serial.print(round(A4Panel * (UL4Panel - distancePanel) * (UL4Panel - distancePanel) + B4Panel * (UL4Panel - distancePanel)
 + C4Panel - pinchSensitivityPanel));
 Serial.print("; ");
 }

 else if (digitalRead(closeButtonPanel) == HIGH && distancePanel >= LL5Panel && distancePanel < UL5Panel)
 {
 Serial.print(round(A5Panel * (UL5Panel - distancePanel) * (UL5Panel - distancePanel) + B5Panel * (UL5Panel - distancePanel)
+ C5Panel - pinchSensitivityPanel));
 Serial.print("; ");
 }

 else if (digitalRead(closeButtonPanel) == HIGH && distancePanel >= LL6Panel && distancePanel < UL6Panel)
 {
 Serial.print(round(A6Panel * (UL6Panel - distancePanel) * (UL6Panel - distancePanel) + B6Panel * (UL6Panel - distancePanel)
+ C6Panel - pinchSensitivityPanel));
 Serial.print("; ");
 }

 else if (digitalRead(closeButtonPanel) == HIGH && distancePanel >= LL7Panel && distancePanel < UL7Panel)
 {
 Serial.print(round(A7Panel * (UL7Panel - distancePanel) * (UL7Panel - distancePanel) + B7Panel * (UL7Panel - distancePanel) +
 C7Panel - pinchSensitivityPanel));
 Serial.print("; ");
 }

 else
 {
 Serial.print(0);
 Serial.print("; ");
 }
 // Printing distance, Time_Per_Revolution_Panel and the treshbase
 Serial.print(distancePanel);
 Serial.print("; ");
 Serial.print(Time_Per_Revolution_Panel);
 Serial.print("; ");
 Serial.println(Tresh_base_pos);
}

///
// Calculated the distance during the opening of the panel

void DistanceOpenFunkPanel()
{
 progTimePanel = millis(); // Updated the program time

 if (oneTimeCheckPanel == 0) // Enters When there is a hall sensor input
 {
 fullyOpenedTimerPanel = progTimePanel; // When there is a hall sensor input is the timer reseted
 oneTimeCheckPanel = 1; // Sets flag to 1
 }

 // To detect if the panel is at its fully open position
 // Enters if the difference between the program time & the fully open time is less than the specified hard stop time
 if (progTimePanel - fullyOpenedTimerPanel <= hardStopTimePanel)
 {
 if (hsDetectPanel >= hSensitivityPanel) // Enters when a hall sensor is detected
 {
 distancePanel = distancePanel + confirmerPanel; // Increases the distance
 confirmerPanel = 0; // Resets the confirmer
 PaceFunkPanel(); // Calls the pace function to calculate the time per revolution
 bufferClosePanel = 0; // Resets the closing buffer for the hard stop
 fullyClosedPanel = 0; // Tells the system that the panel has not reached it fully closed position
 oneTimeCheckPanel = 0; // Resets one time check
 bufferOpenPanel = 0; // Resets the opening buffer for the hard stop
 }
 }

 // Enters if the difference between the program time & the fully open time is more than the specified hard stop time (to longe betw
een hall sensor input)
 else if (progTimePanel - fullyOpenedTimerPanel > hardStopTimePanel)
 {
 if (bufferOpenPanel == 0) // Enters if the buffer is 0 --> first time it is to long between Hs inputs
 {
 Serial.println(" --- buffer --- "); // Prints buffer
 distancePanel = distancePanel + confirmerPanel; // Ingreases the distance
 confirmerPanel = 0; // Resets the confirmer
 PaceFunkPanel(); // Calls the pace function to calculate the time per revolution
 fullyClosedPanel = 0; // Tells the system that the panel has not reached it fully closed position
 oneTimeCheckPanel = 0; // Resets one time check
 bufferOpenPanel = 1; // Sets buffer to 1 so that it doesnt enter tha same statement next time
 }
 else
 {
 Serial.println(" --- PANEL FULLY OPEN --- "); // Prints That the panel is fully open
 pinchDetectorPanel = 0; // Resets the pinch detector to 0 so that the panel can be operated as normal a
gain if a pinch was detected
 distancePanel = fullyOpenDistancePanel; // Sets the distance to the fully open distance
 progTimePanel = 0; // Resets the program time to 0
 fullyOpenedTimerPanel = 0; // Resets the fully open timer
 oneTimeCheckPanel = 0; // Resets one time check
 fullyOpenPanel = 1; // Tells the system that the panel is fully open
 fullyClosedPanel = 0; // Tells the system that the panel is NOT fully closed
 }
 }
}

///
// Calculated the distance during the closing of the panel
void DistanceCloseFunkPanel()
{
 progTimePanel = millis(); // Updated the program time
 if (oneTimeCheckPanel == 0) // Enters When there is a hall sensor input
 {
 fullyClosedTimerPanel = progTimePanel; // When there is a hall sensor input is the timer reseted
 oneTimeCheckPanel = 1; // Sets flag to 1
 }

 // To detect if the panel is at its fully closed position
 // Enters if the difference between the program time & the fully close time is less than the specified hard stop time
 if (progTimePanel - fullyClosedTimerPanel <= hardStopTimePanel)
 {
 if (hsDetectPanel >= hSensitivityPanel) // Enters when a hall sensor is detected
 {
 distancePanel = distancePanel - confirmerPanel; // Decreases the distance
 confirmerPanel = 0; // Resets the confirmer
 PaceFunkPanel(); // Calls the pace function to calculate the time per revolution
 bufferOpenPanel = 0; // Resets the Opening buffer for the hard stop
 fullyOpenPanel = 0; // Tells the system that its NOT fully open
 oneTimeCheckPanel = 0; // Resets one time check
 bufferClosePanel = 0; // Resets the buffer for the closing Hard Stop

 if (distancePanel < stopDistancePanel - 20) // Enter is if the panel has moved more than 20 steps since the stop in pinch z
one
 {
 stopInPinchZonePanel = 0; // Resets stopInPinchZonePanel flag to 0 so that anti-
pinch works as normally after the stop
 }
 }
 }
 // Enters if the difference between the program time & the fully closed time is more than the specified hard stop time (to longe be
tween hall sensor input)
 else if (progTimePanel - fullyClosedTimerPanel > hardStopTimePanel)
 {
 if (bufferClosePanel == 0) // Enters if the buffer is 0 --> first time it is to long between Hs inputs
 {
 Serial.println(" --- buffer --- "); // Prints buffer
 distancePanel = distancePanel - confirmerPanel; // Decreases the distance
 confirmerPanel = 0; // Resets the confirmer
 PaceFunkPanel(); // Calls the pace function to calculate the time per revolution
 fullyOpenPanel = 0; // Tells the system that the panel has not reached it fully open position
 oneTimeCheckPanel = 0; // Resets one time check
 bufferClosePanel = 1; // Sets buffer to 1 so that it doesnt enter tha same statement next time
 if (distancePanel < stopDistancePanel - 20) // Enter is if the panel has moved more than 20 steps since the stop in pinch z
one
 {
 stopInPinchZonePanel = 0; // Resets stopInPinchZonePanel flag to 0 so that anti-
pinch works as normally after the stop
 }
 }
 else
 {
 Serial.println(" --- PANEL FULLY CLOSED --- "); // Prints That the panel is fully closed
 distancePanel = fullyClosedDistancePanel; // Sets the distance to the fully closed distance
 progTimePanel = 0; // Resets the program time to 0
 fullyClosedTimerPanel = 0; // Resets the fully closed timer
 oneTimeCheckPanel = 0; // Resets one time check
 fullyClosedPanel = 1; // Tells the system that the panel is fully closed
 fullyOpenPanel = 0; // Tells the system that the panel is NOT fully open
 }
 }
}

///
//Funktion that Identifies input from Hall sensor 1 in Panel
void magnet_detect1Panel() // The funtions is called by the interrupt when a signal is recived from hall sensor 1
{
 // Enter if any of the buttons are pressed, if there has been a pinch and if the panel is not in its fully closed/open position
 if ((digitalRead(openButtonPanel) == HIGH || digitalRead(closeButtonPanel) == HIGH || pinchDetectorPanel == 1) && fullyOpenPanel ==
 0 && fullyClosedPanel == 0)
 {
 hsDetectPanel++; // Steps upp hsDetect
 confirmerPanel++; // Steps upp the confirmer
 hs1TimePanel = micros(); // Updates the hall sensor 1 timer
 }
}

//
//Funktion that Identifies input from Hall sensor 2 in Panel
void magnet_detect2Panel() // The funtions is called by the interrupt when a signal is recived from hall sensor 2
{
 // Enter if any of the buttons are pressed, if there has been a pinch and if the panel is not in its fully closed/open position
 if ((digitalRead(openButtonPanel) == HIGH || digitalRead(closeButtonPanel) == HIGH || pinchDetectorPanel == 1)&& fullyOpenPanel ==
0 && fullyClosedPanel == 0)
 {
 hsDetectPanel++; // Steps upp hsDetect
 confirmerPanel++; // Steps upp the confirmer
 hs2TimePanel = micros(); // Updates the hall sensor 2 timer
 }
}

///
// Calculate the pacing in the Curtain
void paceCurtainFunk()
{
 Time_Between_Hs_Input_Curtain= hs1CurtainTime - hs2CurtainTime; // Inverse of RPM

 Time_Between_Hs_Input_Curtain= abs(Time_Between_Hs_Input_Curtain); // Take the absolute value

 Time_Per_Revolution_Curtain = Time_Between_Hs_Input_Curtain- Time_Between_Hs_Input_CurtainOld; // Checks the difference between t
he old and new time difference between hs input
 Time_Per_Revolution_Curtain = abs(Time_Per_Revolution_Curtain); // Take the absolute value

 hsDetectCurtain = 0; // Resets Hs detect to 0

 Time_Between_Hs_Input_CurtainOld = Time_Between_Hs_Input_Curtain; // Updated the Time_Between_Hs_Input_CurtainOld

 // Printing distance and Time_Per_Revolution_Curtain
 Serial.print(distanceCurtain);
 Serial.print("; ");
 Serial.println(Time_Per_Revolution_Curtain);
}

///
// Calculated the distance during the opening of the curtain
void DistanceOpenFunkCurtain()
{
 progTimeCurtain = millis(); // Updated the program time
 if (oneTimeCheckCurtain == 0) // Enters When there is a hall sensor input
 {
 fullyOpenedTimerCurtain = progTimeCurtain; // When there is a hall sensor input is the timer reseted
 oneTimeCheckCurtain = 1; // Sets flag to 1
 }

 // To detect if the curtain is at its fully open position
 // Enters if the difference between the program time & the fully open time is less than the specified hard stop time
 if (progTimeCurtain - fullyOpenedTimerCurtain <= hardStopTimeCurtain)
 {
 if (hsDetectCurtain >= hSensitivityCurtain) // Enters when a hall sensor is detected
 {
 distanceCurtain = distanceCurtain + confirmerCurtain; // Increases the distance
 confirmerCurtain = 0; // Resets the confirmer
 paceCurtainFunk(); // Calls the pace function to calculate the time per revolution
 bufferCloseCurtain = 0; // Resets the closing buffer for the hard stop
 fullyClosedCurtain = 0; // Tells the system that the curtain has not reached it fully closed
position
 oneTimeCheckCurtain = 0; // Resets one time check
 bufferOpenCurtain = 0; // Resets the opening buffer for the hard stop
 }
 }

 // Enters if the difference between the program time & the fully open time is more than the specified hard stop time (to longe betwe
en hall sensor input)
 else if (progTimeCurtain - fullyOpenedTimerCurtain > hardStopTimeCurtain)
 {
 if (bufferOpenCurtain == 0) // Enters if the buffer is 0 --
> first time it is to long between Hs inputs
 {
 Serial.println(" ---buffer--- "); // Prints buffer
 distanceCurtain = distanceCurtain + confirmerCurtain; // Ingreases the distance
 confirmerCurtain = 0; // Resets the confirmer
 paceCurtainFunk(); // Calls the pace function to calculate the time per revolution
 fullyClosedCurtain = 0; // Tells the system that the curtain has not reached it fully closed
position
 oneTimeCheckCurtain = 0; // Resets one time check
 bufferOpenCurtain = 1; // Sets buffer to 1 so that it doesnt enter tha same statement next t
ime
 }
 else
 {
 Serial.println(" --- CURTAIN FULLY OPEN --- "); // Prints That the curtain is fully open
 pinchDetectorCurtain = 0; // Resets the pinch detector to 0 so that the curtain can be operated
 as normal again if a pinch was detected
 distanceCurtain = fullyOpenDistanceCurtain; // Sets the distance to the fully open distance
 progTimeCurtain = 0; // Resets the program time to 0
 fullyOpenedTimerCurtain = 0; // Resets the fully open timer
 oneTimeCheckCurtain = 0; // Resets one time check
 fullyOpenCurtain = 1; // Tells the system that the curtain is fully open
 fullyClosedCurtain = 0; // Tells the system that the curtain is NOT fully closed
 }
 }
}

///
// Calculated the distance during the closing of the curtain
void DistanceCloseFunkCurtain()
{
 progTimeCurtain = millis(); // Updated the program time
 if (oneTimeCheckCurtain == 0) // Enters When there is a hall sensor input
 {
 fullyClosedTimerCurtain = progTimeCurtain; // When there is a hall sensor input is the timer reseted
 oneTimeCheckCurtain = 1; // Sets flag to 1
 }

 // To detect if the curtain is at its fully closed position
 // Enters if the difference between the program time & the fully close time is less than the specified hard stop time
 if (progTimeCurtain - fullyClosedTimerCurtain <= hardStopTimeCurtain)
 {
 if (hsDetectCurtain >= hSensitivityCurtain) // Enters when a hall sensor is detected
 {
 distanceCurtain = distanceCurtain - confirmerCurtain; // Decreases the distance
 confirmerCurtain = 0; // Resets the confirmer
 paceCurtainFunk(); // Calls the pace function to calculate the time per revolution
 bufferOpenCurtain = 0; // Resets the Opening buffer for the hard stop
 fullyOpenCurtain = 0; // Tells the system that the curtain is NOT fully open
 oneTimeCheckCurtain = 0; // Resets one time check

 bufferCloseCurtain = 0; // Resets the buffer for the closing Hard Stop

 if (distanceCurtain < stopDistanceCurtain - 20) // Enter is if the curtain has moved more than 20 steps since the sto
p in pinch zone
 {
 stopInPinchZoneCurtain = 0; // Resets stopInPinchZoneCurtain flag to 0 so that anti-
pinch works as normally after the stop
 }
 }
 }
 // Enters if the difference between the program time & the fully closed time is more than the specified hard stop time (to longe bet
ween hall sensor input)
 else if (progTimeCurtain - fullyClosedTimerCurtain > hardStopTimeCurtain)
 {
 if (bufferCloseCurtain == 0) // Enters if the buffer is 0 --
> first time it is to long between Hs inputs
 {
 Serial.println(" --- buffer --- "); // Prints buffer
 distanceCurtain = distanceCurtain - confirmerCurtain; // Decreases the distance
 confirmerCurtain = 0; // Resets the confirmer
 paceCurtainFunk(); // Calls the pace function to calculate the time per revolution
 fullyOpenCurtain = 0; // Tells the system that the curtain has not reached it fully open po
sition
 oneTimeCheckCurtain = 0; // Resets one time check
 bufferCloseCurtain = 1; // Sets buffer to 1 so that it doesnt enter tha same statement next t
ime

 if (distanceCurtain < stopDistanceCurtain - 20) // Enter is if the curtain has moved more than 20 steps since the sto
p in pinch zone
 {
 stopInPinchZoneCurtain = 0; // Resets stopInPinchZoneCurtain flag to 0 so that anti-
pinch works as normally after the stop
 }
 }
 else
 {
 Serial.println(" --- CURTAIN FULLY CLOSED --- "); // Prints That the curtain is fully closed
 distanceCurtain = fullyClosedDistanceCurtain; // Sets the distance to the fully closed distance
 progTimeCurtain = 0; // Resets the program time to 0
 fullyClosedTimerCurtain = 0; // Resets the fully closed timer
 oneTimeCheckCurtain = 0; // Resets one time check
 fullyClosedCurtain = 1; // Tells the system that the curtain is fully closed
 fullyOpenCurtain = 0; // Tells the system that the curtain is NOT fully open
 }
 }
}

///
//Funktion that Identifies input from Hall sensor 1 in Curtain
void magnet_detect1Curtain() // The funtions is called by the interrupt when a signal is recived from hall sensor 1
{

 // Enter if any of the buttons are pressed, if there has been a pinch and if the curtain is not in its fully closed/open position
 if ((digitalRead(openButtonCurtain) == HIGH || digitalRead(closeButtonCurtain) == HIGH || pinchDetectorCurtain == 1) && fullyOpenCu
rtain == 0 && fullyClosedCurtain == 0)
 {
 hsDetectCurtain++; // Steps upp hsDetect
 confirmerCurtain++; // Steps upp the confirmer
 hs1CurtainTime = micros(); // Updates the hall sensor 1 timer
 }
}

//
//Funktion that Identifies input from Hall sensor 2 in Curtain
void magnet_detect2Curtain() // The funtions is called by the interrupt when a signal is recived from hall sensor 2
{

 // Enter if any of the buttons are pressed, if there has been a pinch and if the curtain is not in its fully closed/open position
 if ((digitalRead(openButtonCurtain) == HIGH || digitalRead(closeButtonCurtain) == HIGH || pinchDetectorCurtain == 1) && fullyOpenCu
rtain == 0 && fullyClosedCurtain == 0) {

 hsDetectCurtain++; // Steps upp hsDetect
 confirmerCurtain++; // Steps upp the confirmer
 hs2CurtainTime = micros(); // Updates the hall sensor 2 timer
 }
}
///

///
// Calculate the pacing in the front Window
void PaceFunkWindow()
{
 Time_Between_Hs_Input_Window = hs1TimeWindow - hs2TimeWindow; // Inverse of RPM
 Time_Between_Hs_Input_Window = abs(Time_Between_Hs_Input_Window); // Take the absolute value

 Time_Per_Revolution_Window = Time_Between_Hs_Input_Window - Time_Between_Hs_Input_WindowOld;// Checks the difference between the ol
d and new time difference between hs input
 Time_Per_Revolution_Window = abs(Time_Per_Revolution_Window); // Take the absolute value

 hsDetectWindow = 0; // Resets Hs detect to 0

 Time_Between_Hs_Input_WindowOld = Time_Between_Hs_Input_Window; // Updated the Time_Between_Hs_Input_WindowOld

// Printing of the treshold curve
 if (digitalRead(closeButtonWindow) == HIGH && distanceWindow >= LL1Window && distanceWindow < UL1Window)
 {
 Serial.print(round(A1Window * (UL1Window - distanceWindow) * (UL1Window - distanceWindow) + B1Window * (UL1Window - distanc
eWindow) + C1Window - pinchSensitivityWindow));

 Serial.print("; ");
 }

 else if (digitalRead(closeButtonWindow) == HIGH && distanceWindow >= LL2Window && distanceWindow < UL2Window)
 {
 Serial.print(round(A2Window * (UL2Window - distanceWindow) * (UL2Window - distanceWindow) + B2Window * (UL2Window - distanc
eWindow) + C2Window - pinchSensitivityWindow));
 Serial.print("; ");
 }

 else if (digitalRead(closeButtonWindow) == HIGH && distanceWindow >= LL3Window && distanceWindow < UL3Window)
 {
 Serial.print(round(A3Window * (UL3Window - distanceWindow) * (UL3Window - distanceWindow) + B3Window * (UL3Window - distanc
eWindow) + C3Window - pinchSensitivityWindow));
 Serial.print("; ");
 }

 else if (digitalRead(closeButtonWindow) == HIGH && distanceWindow >= LL4Window && distanceWindow < UL4Window)
 {
 Serial.print(round(A4Window * (UL4Window - distanceWindow) * (UL4Window - distanceWindow) + B4Window * (UL4Window - distanc
eWindow) + C4Window - pinchSensitivityWindow));
 Serial.print("; ");
 }

 else if (digitalRead(closeButtonWindow) == HIGH && distanceWindow >= LL5Window && distanceWindow < UL5Window)
 {
 Serial.print(round(A5Window * (UL5Window - distanceWindow) * (UL5Window - distanceWindow) + B5Window * (UL5Window - distance
Window) + C5Window - pinchSensitivityWindow));
 Serial.print("; ");
 }

 else if (digitalRead(closeButtonWindow) == HIGH && distanceWindow >= LL6Window && distanceWindow < UL6Window)
 {
 Serial.print(round(A6Window * (UL6Window - distanceWindow) * (UL6Window - distanceWindow) + B6Window * (UL6Window - distance
Window) + C6Window - pinchSensitivityWindow));
 Serial.print("; ");
 }

 else
 {
 Serial.print(0);
 Serial.print("; ");
 }
 // Printing distance and Time_Per_Revolution_Window
 Serial.print(distanceWindow);
 Serial.print("; ");
 Serial.println(Time_Per_Revolution_Window);

}

///
//Calculated the distance during the opening of the Window
void DistanceOpenFunkWindow()
{
 progTimeWindow = millis(); // Updated the program time
 if (oneTimeCheckWindow == 0) // Enters When there is a hall sensor input
 {
 fullyOpenedTimerWindow = progTimeWindow; // When there is a hall sensor input is the timer reseted
 oneTimeCheckWindow = 1; // Sets flag to 1
 }

 // To detect if the front window is at its fully open position
 // Enters if the difference between the program time & the fully open time is less than the specified hard stop time
 if (progTimeWindow - fullyOpenedTimerWindow <= hardStopTimeWindow)
 {
 if (hsDetectWindow >= hSensitivityWindow) // Enters when a hall sensor is detected
 {
 distanceWindow = distanceWindow + confirmerWindow; // Increases the distance
 confirmerWindow = 0; // Resets the confirmer
 PaceFunkWindow(); // Calls the pace function to calculate the time per revolution
 bufferCloseWindow = 0; // Resets the closing buffer for the hard stop
 fullyClosedWindow = 0; // Tells the system that the front window has not reached it fully clo
sed position
 oneTimeCheckWindow = 0; // Resets one time check
 bufferOpenWindow = 0; // Resets the opening buffer for the hard stop
 }
 }

 // Enters if the difference between the program time & the fully open time is more than the specified hard stop time (to longe betwe
en hall sensor input)
 else if (progTimeWindow - fullyOpenedTimerWindow > hardStopTimeWindow)
 {
 if (bufferOpenWindow == 0) // Enters if the buffer is 0 --
> first time it is to long between Hs inputs
 {
// Serial.println(" ---buffer--- "); // Prints buffer
 distanceWindow = distanceWindow + confirmerWindow; // Ingreases the distance
 confirmerWindow = 0; // Resets the confirmer
 PaceFunkWindow(); // Calls the pace function to calculate the time per revolution
 fullyClosedWindow = 0; // Tells the system that the front window has not reached it fully clo
sed position
 oneTimeCheckWindow = 0; // Resets one time check
 bufferOpenWindow = 1; // Sets buffer to 1 so that it doesnt enter tha same statement next ti
me
 }
 else
 {
// Serial.println(" --- WINDOW FULLY OPEN --- "); // Prints That the front Window is fully open

 pinchDetectorWindow = 0; // Resets the pinch detector to 0 so that the window can be operated a
s normal again if a pinch was detected
 distanceWindow = fullyOpenDistanceWindow; // Sets the distance to the fully open distance
 progTimeWindow = 0; // Resets the program time to 0
 fullyOpenedTimerWindow = 0; // Resets the fully open timer
 oneTimeCheckWindow = 0; // Resets one time check
 fullyClosedWindow = 0; // Tells the system that the window is NOT fully closed
 fullyOpenWindow = 1; // Tells the system that the window is fully open
 }
 }
}

///
// Calculated the distance during the closing of the Window
void DistanceCloseFunkWindow()
{
 progTimeWindow = millis(); // Updated the program time
 if (oneTimeCheckWindow == 0) // Enters When there is a hall sensor input
 {
 fullyClosedTimerWindow = progTimeWindow; // When there is a hall sensor input is the timer reseted
 oneTimeCheckWindow = 1; // Sets flag to 1
 }

 // To detect if the front window is at its fully closed position
 // Enters if the difference between the program time & the fully close time is less than the specified hard stop time
 if (progTimeWindow - fullyClosedTimerWindow <= hardStopTimeWindow)
 {
 if (hsDetectWindow >= hSensitivityWindow) // Enters when a hall sensor is detected
 {
 distanceWindow = distanceWindow - confirmerWindow; // Decreases the distance
 confirmerWindow = 0; // Resets the confirmer
 PaceFunkWindow(); // Calls the pace function to calculate the time per revolution
 bufferOpenWindow = 0; // Resets the Opening buffer for the hard stop
 fullyOpenWindow = 0; // Tells the system that the window is NOT fully open
 oneTimeCheckWindow = 0; // Resets one time check
 bufferCloseWindow = 0; // Resets the buffer for the closing Hard Stop

 if (distanceWindow < stopDistanceWindow - 20) // Enter is if the window has moved more than 20 steps since the stop
in pinch zone
 {
 stopInPinchZoneWindow = 0; // Resets stopInPinchZoneWindow flag to 0 so that anti-
pinch works as normally after the stop
 }
 }
 }
// Enters if the difference between the program time & the fully closed time is more than the specified hard stop time (to longe betw
een hall sensor input)
else if (progTimeWindow - fullyClosedTimerWindow > hardStopTimeWindow)
 {
 if (bufferCloseWindow == 0) // Enters if the buffer is 0 --
> first time it is to long between Hs inputs
 {
// Serial.println(" --- buffer --- "); // Prints buffer
 distanceWindow = distanceWindow - confirmerWindow; // Decreases the distance
 confirmerWindow = 0; // Resets the confirmer
 PaceFunkWindow(); // Calls the pace function to calculate the time per revolution
 fullyOpenWindow = 0; // Tells the system that the window has not reached it fully open posi
tion
 oneTimeCheckWindow = 0; // Resets one time check
 bufferCloseWindow = 1; // Sets buffer to 1 so that it doesnt enter tha same statement next ti
me

 if (distanceWindow < stopDistanceWindow - 20) // Enter is if the window has moved more than 20 steps since the stop i
n pinch zone
 {
 stopInPinchZoneWindow = 0; // Resets stopInPinchZoneWindow flag to 0 so that anti-
pinch works as normally after the stop
 }
 }
 else
 {
// Serial.println(" --- WINDOW FULLY CLOSED --- "); // Prints That the window is fully closed
 distanceWindow = fullyClosedDistanceWindow; // Sets the distance to the fully closed distance
 progTimeWindow = 0; // Resets the program time to 0
 fullyClosedTimerWindow = 0; // Resets the fully closed timer
 oneTimeCheckWindow = 0; // Resets one time check
 fullyOpenWindow = 0; // Tells the system that the window is NOT fully open
 fullyClosedWindow = 1; // Tells the system that the window is fully closed
 }
 }
}

///
//Funktion that Identifies input from Hall sensor 1 in the front window
void magnet_detect1Window() // The funtions is called by the interrupt when a signal is recived from hall sensor 1
{
 // Enter if any of the buttons are pressed, if there has been a pinch and if the window is not in its fully closed/open position
 if (digitalRead(openButtonWindow) == HIGH || digitalRead(closeButtonWindow) == HIGH || pinchDetectorWindow == 1)
 {
 hsDetectWindow++; // Steps upp hsDetect
 confirmerWindow++; // Steps upp the confirmer
 hs1TimeWindow = micros(); // Updates the hall sensor 1 timer
 }
}

Appendix G
Arduino code concept 2.

//
// This program uses the hall sensor input from the panel, curtain and front window motors to determine their position and speed //
//
/// Initiate Parameters Panel //
volatile byte hsDetectPanel = 0; // Hall Sensor detection in the panel
volatile byte confirmerPanel = 0; // Vairable used to help determine the distance
const byte hSensitivityPanel = 1; // How sensitive will the system be / the readings of the hall sensors

unsigned long hs1TimePanel = 0; // Time when hall sensor 1 is detected
unsigned long hs2TimePanel = 0; // Time when hall sensor 2 is detected

// Parameters for determining if the panel has reached its end position
long progTimePanel = 0; // A timer to start timing when the user presses the button
long fullyOpenedTimerPanel = 0; // A timer to measure time between the last hall sensor input and program time while closing
 the panel
long fullyClosedTimerPanel = 0; // A timer to measure time between the last hall sensor input and program time while opening
 the panel
byte oneTimeCheckPanel = 0; // A flag to initiate values of fullyOpened and fullyClosed timers
byte fullyOpenPanel = 0; // A flag that tells the panel is in fully opened position
byte fullyClosedPanel = 0; // A flag that tells the panel is in fully closed position
byte bufferOpenPanel = 0; // A one time buffer that allows the panel to open for one more program cycle when panel mov
ement is stopped either by user or hard stop
byte bufferClosePanel = 0; // A one time buffer that allows the panel to close for one more program cycle when panel mo
vement is stopped either by user or hard stop
const int hardStopTimePanel = 100; // Time in milliseconds for hard stop detection to trigger
const int fullyOpenDistancePanel = 1425; // The distance value that is forcefully assigned when panel is fully open
const int fullyClosedDistancePanel = 0; // The distance value that is forcefully assigned when panel is fully closed

long Time_Between_Hs_Input_Panel = 0; // The time between Hall Sensor inputs, gives information about how fast the panel is moving
 / it is the reverese of rpm
long Time_Between_Hs_Input_Panel_Old = 0;// Time between Hall Sensor Inputs in earlier iteration
long Time_Per_Revolution_Panel = 0; // The time it takes to get 4 Hs inputs --> for half a rotation

int distancePanel = 0; // The number of Hs inputs recived from the starting position of the panel (fully closed)
long Tresh_base_pos = 0; // Parameter that enables the curve to adapt to the characteristics of the current operation
const int pinchSensitivityPanel = 0; // Parameter that enables change of the amplitude of the treshold curve for all zones

// Treshold section parameters
const int UL1Panel = 956; // Upper limit of the distance for Pinch Zone 1
const int LL1Panel = 650; // Lower limit of the distance for Pinch Zone 1

const int UL2Panel = LL1Panel; // Upper limit of the distance for Pinch Zone 2
const int LL2Panel = 520; // Lower limit of the distance for Pinch Zone 2

const int UL3Panel = LL2Panel; // Upper limit of the distance for Pinch Zone 3
const int LL3Panel = 380; // Lower limit of the distance for Pinch Zone 3

const int UL4Panel = LL3Panel; // Upper limit of the distance for Pinch Zone 4
const int LL4Panel = 280; // Lower limit of the distance for Pinch Zone 4

const int UL5Panel = LL4Panel; // Upper limit of the distance for Pinch Zone 5
const int LL5Panel = 205; // Lower limit of the distance for Pinch Zone 5

const int UL6Panel = LL5Panel; // Upper limit of the distance for Pinch Zone 6
const int LL6Panel = 150; // Lower limit of the distance for Pinch Zone 6

const int UL7Panel = LL6Panel; // Upper limit of the distance for Pinch Zone 7
const int LL7Panel = 90; // Lower limit of the distance for Pinch Zone 7

// Positive Treshold curve fit parameters on the form: A* Distance^2 + B* Distance + C
// Zone 1
const float A1Panel = -0.0022;
const float B1Panel = 0.0318;
int C1Panel_tresh = 550;
int C1Panel = 4550;

// Zone 2
const float A2Panel = 0.1;
const float B2Panel = -3;
int C2Panel_tresh = 5850; // C value for the adaptive Curve
int C2Panel = 9750;

// Zone 3
const float A3Panel = -0.08;
const float B3Panel = 7.0;
int C3Panel_tresh = 6710; // C value for the adaptive Curve
int C3Panel = 10700;

// Zone 4
const float A4Panel = 0.07;
const float B4Panel = -3.31;
int C4Panel_tresh = 5700; // C value for the adaptive Curve
int C4Panel = 9700;

// Zone 5
const float A5Panel = 0;
const float B5Panel = 0;
int C5Panel_tresh = 10050;// C value for the adaptive Curve
int C5Panel = 10100;

// Zone 6
const float A6Panel = 0;
const float B6Panel = 12.0;
//int C6Panel_tresh = 800;
int C6Panel_tresh = 1050; // C value for the adaptive Curve
int C6Panel = 4900;

// Zone 7
const float A7Panel = 0;
const float B7Panel = -5.4011;
int C7Panel_tresh = 1950; // C value for the adaptive Curve
int C7Panel = 5500;

// Parameters used to set a state, varies between 1 & 0 depending on if they are on or off
int pinchDetectorPanel = 0; // Sets the system in "Pinch mode" 0 = Nothing is happening 1 = A pinch has occured

int stopInPinchZonePanel = 0; // Allows the system to overwrite a Pinch if the user stops the pannel within the "Pinch Zone"
avoids fals pinches 0 = Nothing is happening 1 = Panel has stoped in the pinch zone
int stopDistancePanel = 0; // Sets the distance at which the panel has been stoped

// Initiate Parameters Curtain ///

volatile byte hsDetectCurtain = 0; // Hall Sensor detection in the Curtain
const byte hSensitivityCurtain = 1; // How sensitive will the system be / the readings of the hall sensors
volatile byte confirmerCurtain = 0; // Vairable used to help determine the distance

unsigned long hs1TimeCurtain = 0; // Time when hall sensor 1 is detected
unsigned long hs2TimeCurtain = 0; // Time when hall sensor 2 is detected

// Parameters for determining if the Curtain has reached its end position
long progTimeCurtain = 0; // A timer to start timing when the user presses the button
long fullyOpenedTimerCurtain = 0; // A timer to measure time between the last hall sensor input and program time while closing th
e curtain
long fullyClosedTimerCurtain = 0; // A timer to measure time between the last hall sensor input and program time while opening th
e curtain
byte oneTimeCheckCurtain = 0; // A flag to initiate values of fullyOpened and fullyClosed timers
byte fullyOpenCurtain = 0; // A flag that tells the curtain is in fully opened position
byte fullyClosedCurtain = 0; // A flag that tells the curtain is in fully closed position
byte bufferOpenCurtain = 0; // A one time buffer that allows the curtain to open for one more program cycle when curtain mo
vement is stopped either by user or hard stop
byte bufferCloseCurtain = 0; // A one time buffer that allows the curtain to close for one more program cycle when curtain m
ovement is stopped either by user or hard stop

const int hardStopTimeCurtain = 100; // Time in milliseconds for hard stop detection to trigger
const int fullyOpenDistanceCurtain = 2150; // The distance value that is forcefully assigned when curtain is fully open
const int fullyClosedDistanceCurtain = 0; // The distance value that is forcefully assigned when curtain is fully closed

long Time_Between_Hs_Input_Curtain = 0; // The time between Hall Sensor inputs, gives information about how fast the Curtain is
 moving / it is the reverese of rpm
long Time_Between_Hs_Input_CurtainOld = 0; // Time between Hall Sensor Inputs in earlier iteration
long Time_Per_Revolution_Curtain = 0; // The time it takes to get 4 Hs inputs --> for half a revolution
long Time_Per_Revolution_CurtainOld = 0; // Time per revolution in earlier iteration

int distanceCurtain = 0; // The number of Hs inputs recived from the starting position of the Curtain (fully clo
sed)
int distanceOldCurtain = 0; // The distance in earlier iteration
int SensitivityCurtain = 0; // Parameter that enables change of the amplitude of the treshold curve for all zones
long Tresh_base_Curtain = 0; // Parameter that enables the curve to adapt to the characteristics of the current oper
ation

// Upper & lowe limits for the Pinch Zones
const int UL1Curtain = 956; // Upper limit of the distance for Pinch Zone 1
const int LL1Curtain = 540; // Lower limit of the distance for Pinch Zone 1

const int UL2Curtain = LL1Curtain; // Upper limit of the distance for Pinch Zone 2
const int LL2Curtain = 210; // Lower limit of the distance for Pinch Zone 2

const int UL3Curtain = LL2Curtain; // Upper limit of the distance for Pinch Zone 3
const int LL3Curtain = 100; // Lower limit of the distance for Pinch Zone 3

const int UL4Curtain = LL3Curtain; // Upper limit of the distance for Pinch Zone 4
const int LL4Curtain = 40; // Lower limit of the distance for Pinch Zone 4

// Treshold curve fit parameters on the form: A* Distance^2 + B* Distance + C. Straight line for curtain so C is tha amplitude
// Zone 1
const int C1Curtain_tresh = 200; // C value for the adaptive Curve
int C1Curtain = 4700;

// Zone 2
const int C2Curtain_tresh = 300; // C value for the adaptive Curve
int C2Curtain = 4800;

// Zone 3
const int C3Curtain_tresh = 2300; // C value for the adaptive Curve
int C3Curtain = 6800;

// Zone 4
const int C4Curtain_tresh = 2400; // C value for the adaptive Curve
int C4Curtain = 6850;

// Parameters used to set a state, varies between 1 & 0 depending on if they are on or off
int pinchDetectorCurtain = 0; // Sets the system in "Pinch mode" 0 = Nothing is happening 1 = A pinch has occured

int stopInPinchZoneCurtain = 0; // Allows the system to overwrite a Pinch if the user stops the Curtain within the "Pin
ch Zone" avoids fals pinches 0 = Nothing is happening 1 = Curtain has stoped in the pinch zone
int stopDistanceCurtain = 0; // Sets the distance at which the Curtain has been stoped

// Initiate Parameters Window //

volatile byte hsDetectWindow = 0; // Hall Sensor detection in the Window
volatile byte confirmerWindow = 0; // Vairable used to help determine the distance
const byte hSensitivityWindow = 1; // How sensitive will the system be / the readings of the hall sensors

unsigned long hs1TimeWindow = 0; // Time when hall sensor 1 is detected
unsigned long hs2TimeWindow = 0; // Time when hall sensor 2 is detected

// Parameters for determining if the Window has reached its end position
long progTimeWindow = 0; // A timer to start timing when the user presses the button
long fullyOpenedTimerWindow = 0; // A timer to measure time between the last hall sensor input and program time while closi
ng the panel
long fullyClosedTimerWindow = 0; // A timer to measure time between the last hall sensor input and program time while openi
ng the panel
byte oneTimeCheckWindow = 0; // A flag to initiate values of fullyOpened and fullyClosed timers
byte fullyOpenWindow = 0; // A flag that tells the panel is in fully opened position
byte fullyClosedWindow = 0; // A flag that tells the panel is in fully closed position
byte bufferOpenWindow = 0; // A one time buffer that allows the panel to open for one more program cycle when panel m
ovement is stopped either by user or hard stop
byte bufferCloseWindow = 0; // A one time buffer that allows the panel to close for one more program cycle when panel
movement is stopped either by user or hard stop
const byte hardStopTimeWindow = 100; // Time in milliseconds for hard stop detection to trigger
const int fullyOpenDistanceWindow = 455; // The distance value that is forcefully assigned when panel is fully open
const int fullyClosedDistanceWindow = 0; // The distance value that is forcefully assigned when panel is fully closed

long Time_Between_Hs_Input_Window = 0; // The time between Hall Sensor inputs, gives information about how fast the Window is mov
ing / it is the reverese of rpm
long Time_Between_Hs_Input_WindowOld = 0; // Time between Hall Sensor Inputs in earlier iteration
long Time_Per_Revolution_Window = 0; // The time it takes to get 4 Hs inputs --> for half a revolution

int distanceWindow = 0; // The number of Hs inputs recived from the starting position of the Window (fully closed)
long thresh_base_Window = 0; // Parameter that enables the curve to adapt to the characteristics of the current operation
int thresh_base_Window_5 = 18500; // Parameter that enables the curve to adapt to the characteristics of the current operation for zo
ne 5

const int pinchSensitivityWindow = 0; // Used to lower or raise the curve against the pace input to change the sensitivity of
 the treshold curve fit

// Treshold section parameters
const int UL1Window = 310; // Upper limit of the distance for Pinch Zone 1
const int LL1Window = 270; // Lower limit of the distance for Pinch Zone 1

const int UL2Window = LL1Window; // Upper limit of the distance for Pinch Zone 2
const int LL2Window = 230; // Lower limit of the distance for Pinch Zone 2

const int UL3Window = LL2Window; // Upper limit of the distance for Pinch Zone 3
const int LL3Window = 150; // Lower limit of the distance for Pinch Zone 3

const int UL4Window = LL3Window; // Upper limit of the distance for Pinch Zone 4
const int LL4Window = 100; // Lower limit of the distance for Pinch Zone 4

const int UL5Window = LL4Window; // Upper limit of the distance for Pinch Zone 5
const int LL5Window = 50; // Lower limit of the distance for Pinch Zone 5

const int UL6Window = LL5Window; // Upper limit of the distance for Pinch Zone 6
const int LL6Window = 15; // Lower limit of the distance for Pinch Zone 6

// Treshold curve fit parameters on the form: A* Distance^2 + B* Distance + C for the different zones
// Zone 1
const float A1Window = 0.04;
const float B1Window = -2.69;
int C1Window = 12000;
const int C1Window_thresh = 2700; // C value for the adaptive Curve

// Zone 2
const float A2Window = 0.04;
const float B2Window = -2.69;
int C2Window = 13000;
const int C2Window_thresh = 3000; // C value for the adaptive Curve

// Zone 3
const float A3Window = 0.04;
const float B3Window = -1.0;
int C3Window = 14000;
const int C3Window_thresh = 3800; // C value for the adaptive Curve

// Zone 4
const float A4Window = -0.04;
const float B4Window = -1;
int C4Window = 17000;
const int C4Window_thresh = 7000; // C value for the adaptive Curve

// Zone 5
const float A5Window = -3.04;
const int B5Window = 223;
unsigned int C5Window = 30000;
const int C5Window_thresh = 24000; // C value for the adaptive Curve
const int C5Window_thresh_5 = 8500; // C value for the adaptive Curve only zone 5

// Zone 6
const int A6Window = 0;
const int B6Window = 0;
unsigned long C6Window = 20500; // C value for the adaptive Curve

const int C6Window_thresh = 15000; // C value for the adaptive Curve only zone 6

// Parameters used to set a state, varies between 1 & 0 depending on if they are on or off
int pinchDetectorWindow = 0; // Sets the system in "Pinch mode" 0 = Nothing is happening 1 = A pinch has occured
int stopInPinchZoneWindow = 0; // Allows the system to overwrite a Pinch if the user stops the window within the "Pinc
h Zone" avoids fals pinches 0 = Nothing is happening 1 = Window has stoped in the pinch zone
int stopDistanceWindow = 0; // Sets the distance at which the Window has been stoped

//
/// Defining input/output pins
////////////////////////// Input Panel
////////////////////////// Input/Output pins Panel
const int closeButtonPanel = 6; // Defines the pin on the Arduino for the button that closes the panel
const int openButtonPanel = 7; // Defines the pin on the Arduino for the button that opens the panel
const int hs1Panel = 20; // Defines the pin on the Arduino which recives the input from hall sensor 1 for the pa
nel
const int hs2Panel = 21; // Defines the pin on the Arduino which recives the input from hall sensor 2 for the pa
nel

//////////////////////// Input/Output pins Curtain
const int closeButtonCurtain = 4; // Defines the pin on the Arduino for the button that closes the curtain
const int openButtonCurtain = 5; // Defines the pin on the Arduino for the button that opens the curtain
const int hs1Curtain = 18; // Defines the pin on the Arduino which recives the input from hall sensor 1 for the cu
rtain
const int hs2Curtain = 19; // Defines the pin on the Arduino which recives the input from hall sensor 2 for the cu
rtain

////////////////////////// Input/Output pins Window
const int closeButtonWindow = 4; // Defines the pin on the Arduino for the button that closes the window
const int openButtonWindow = 5; // Defines the pin on the Arduino for the button that opens the window
const int hs1Window = 2; // Defines the pin on the Arduino which recives the input from hall sensor 1 for the wi
ndow (only one hs for window)
const byte curtainVSwindow = 3; // Defines the pin on the Arduino which says if the switch is active for the window or
the curtain

/////////////////////// Speed Control

const byte nSLEEP = 7;
const byte VCC = 8;

const byte PHpinPanel = 9; // Corresponds to direction of rotation (OCR2B)
const byte ENpinPanel = 10; // Corresponds to PulsWdtMod duty cycle (OCR2A)
const byte PHpinCurtain = 11; // Corresponds to direction of rotation (OCR1A)
const byte ENpinCurtain = 12; // COrresponds to PulsWdtMod duty cycle (OCR1B)

//
// All parameters and variables defined //
//

void setup() // Void Setup
{
 Serial.begin(115200);

///////////////////////////// Setup direction & Speed Control

 // PWM control changing frequency for TIMER 2
 TCCR2A = _BV(COM2A1) | _BV(COM2B1) | _BV(WGM20);
 TCCR2B = TCCR2B & 0b11111000 | 0x01;

 // PWM control changing frequency for TIMER 1
 TCCR1A = _BV(COM1A1) | _BV(COM1B1) | _BV(WGM20);
 TCCR1B = TCCR1B & 0b11111000 | 0x01;
 pinMode(nSLEEP, OUTPUT);
 pinMode(VCC, OUTPUT);
 pinMode(PHpinPanel, OUTPUT);
 pinMode(ENpinPanel, OUTPUT);
 pinMode(PHpinCurtain, OUTPUT);
 pinMode(ENpinCurtain, OUTPUT);
 digitalWrite(nSLEEP, HIGH);
 digitalWrite(VCC, HIGH);

 ////////////////////////// Void Setup Panel

 pinMode(openButtonPanel, INPUT); // Open Button is an input
 pinMode(closeButtonPanel, INPUT); // Close Button is an input
 OCR2A = 0; // Initial state of Direction & speed is 0 = nothing happens before button is pressed
 OCR2B = 0; // Initial state of Direction & speed is 0 = nothing happens before button is pressed

 attachInterrupt(digitalPinToInterrupt(hs1Panel), magnet_detect1Panel, RISING); // Interuppts the system if a hall sensor is detecte
 attachInterrupt(digitalPinToInterrupt(hs2Panel), magnet_detect2Panel, RISING); // Interuppts the system if a hall sensor is detecte

 ////////////////////////// Setup Curtain

 pinMode(openButtonCurtain, INPUT); // Open Button is an input
 pinMode(closeButtonCurtain, INPUT); // Close Button is an input
 OCR1A = 0; // Initial state of Direction & speed is 0 = nothing happens before button is pressed
 OCR1B = 0; // Initial state of Direction & speed is 0 = nothing happens before button is pressed

 attachInterrupt(digitalPinToInterrupt(hs1Curtain), magnet_detect1Curtain, RISING); // Interuppts the system if a hall sensor is det
ected
 attachInterrupt(digitalPinToInterrupt(hs2Curtain), magnet_detect2Curtain, RISING); // Interuppts the system if a hall sensor is det
ected

 ////////////////////////// Setup Window

 pinMode(openButtonWindow, INPUT); // Open Button is an input
 pinMode(closeButtonWindow, INPUT); // Close Button is an input
 pinMode(curtainVSwindow, INPUT);

 attachInterrupt(digitalPinToInterrupt(hs1Window), magnet_detect1Window, RISING); // Interuppts the system if a hall sensor is detec
ted (only one for window)

} // Ends the void setup

//
// PANEL
////////////////////////// OPEN Panel
void loop()
{

// Enter the open statement if the open buttons is presses and the panel is not in its fully open position
 if (digitalRead(openButtonPanel) == HIGH && fullyOpenPanel == 0)
 {
 fullyClosedPanel = 0; // Resets the "fullyClosedPanel" flag to 0
 stopInPinchZonePanel = 0; // Resets the "stopInPinchZonePanel" flag to 0

 if (distancePanel < 300)
 {
 OCR2A = 255; // Speed = 100%
 OCR2B = 0; // Opening direction
 }
 else if (distancePanel > 1300)
 {
 OCR2A = 255; // Speed = 100%
 OCR2B = 0; // Opening direction
 }
 else
 {
 OCR2A = 235; // Speed = 90%
 OCR2B = 0; // Opening direction
 }
 DistanceOpenFunkPanel(); // Calls the Distance open function
 } // Ends the opening statement

//
// CLOSE Panel

// Enter the close statement if the close buttons is presses, the panel is not in its fully closed position,
// if there is no stop in the pinch zone, and if no pinch is detected

 else if (digitalRead(closeButtonPanel) == HIGH && stopInPinchZonePanel == 0 && pinchDetectorPanel == 0 && fullyClosedPanel == 0)
 {
 fullyOpenPanel = 0; // Resets the "fullyOpenPanel" flag to 0

 if (distancePanel > UL1Panel + 4)
 {
 OCR2A = 255; // Speed = 100%
 OCR2B = 255; // Closing direction

 }
 else if (distancePanel > UL1Panel && distancePanel <= UL1Panel + 4)
 {
 OCR2A = 255; // Speed = 100%
 OCR2B = 255; // Closing direction

 if (Time_Per_Revolution_Panel > Tresh_base_pos)// If The time per revolution is higher than the treshold base will a new tresho
ld value be given
 {
 Tresh_base_pos = Time_Per_Revolution_Panel; // A new base value is assigned to the treshholdcurve that is unique for this op
eration
 }

 // Asigned the Adaptive treshold base value to the C values for the curve
 C1Panel = Tresh_base_pos + C1Panel_tresh; // Zone 1
 C2Panel = Tresh_base_pos + C2Panel_tresh; // Zone 2
 C3Panel = Tresh_base_pos + C3Panel_tresh; // Zone 3
 C4Panel = Tresh_base_pos + C4Panel_tresh; // Zone 4
 C5Panel = Tresh_base_pos + C5Panel_tresh; // Zone 5
 C6Panel = Tresh_base_pos + C6Panel_tresh; // Zone 6
 C7Panel = Tresh_base_pos + C7Panel_tresh; // Zone 7
 }

 else if (distancePanel >= LL1Panel && distancePanel < UL1Panel) // Enters Pinch Zone 1
 {
 OCR2A = 235; // Speed = 90%
 OCR2B = 255; // Closing direction

 // Checks if the treshold curve for Zone 1 is lower than the "time per revolution"
 if (A1Panel * (UL1Panel - distancePanel) * (UL1Panel - distancePanel) + B1Panel * (UL1Panel - distancePanel) + C1Panel - pinchS
ensitivityPanel < Time_Per_Revolution_Panel)
 {
 pinchDetectorPanel = 1; // If the treshold curve is lower than "time per revolution" is set to pinchdetector = 1

 // Printind details about the pinch situation
 Serial.print(round(A1Panel * (UL1Panel - distancePanel) * (UL1Panel - distancePanel) + B1Panel * (UL1Panel - distancePanel) +
 C1Panel - pinchSensitivityPanel));
 Serial.print("; ");
 Serial.print(distancePanel);
 Serial.print("; ");
 Serial.print(Time_Per_Revolution_Panel);
 Serial.print("; ");
 Serial.print("Zone1");
 Serial.print("; ");
 Serial.println(Tresh_base_pos);
 }
 }

 else if (distancePanel >= LL2Panel && distancePanel < UL2Panel) // Enters Pinch Zone 2

 {
 OCR2A = 220; // Speed = 86%
 OCR2B = 255; // Closing direction

 // Checks if the treshold curve for Zone 2 is lower than the "time per revolution"
 if (distancePanel >= LL2Panel - 5 && A2Panel * (UL2Panel - distancePanel) * (UL2Panel - distancePanel) + B2Panel * (UL2Panel -
 distancePanel) + C2Panel - pinchSensitivityPanel < Time_Per_Revolution_Panel)
 {
 pinchDetectorPanel = 1; // If the treshold curve is lower than "time per revolution" is set to pinchdetector = 1

 // Printind details about the pinch situation
 Serial.print(round(A2Panel * (UL2Panel - distancePanel) * (UL2Panel - distancePanel) + B2Panel * (UL2Panel - distancePanel) +
 C2Panel - pinchSensitivityPanel));
 Serial.print("; ");
 Serial.print(distancePanel);
 Serial.print("; ");
 Serial.print(Time_Per_Revolution_Panel);
 Serial.print("; ");
 Serial.print("Zone2");
 Serial.print("; ");
 Serial.println(Tresh_base_pos);
 }
 }

 else if (distancePanel >= LL3Panel && distancePanel < UL3Panel) // Enters Pinch Zone 3
 {
 OCR2A = 225; // Speed = 88%
 OCR2B = 255; // Closing direction

 // Checks if the treshold curve for Zone 3 is lower than the "time per revolution"
 if (distancePanel < UL3Panel - 5 && A3Panel * (UL3Panel - distancePanel) * (UL3Panel - distancePanel) + B3Panel * (UL3Panel - d
istancePanel) + C3Panel - pinchSensitivityPanel < Time_Per_Revolution_Panel)
 {
 pinchDetectorPanel = 1; // If the treshold curve is lower than "time per revolution" is a pinch detected --
> pinchdetector = 1

 // Printind details about the pinch situation
 Serial.print(round(A3Panel * (UL3Panel - distancePanel) * (UL3Panel - distancePanel) + B3Panel * (UL3Panel - distancePanel) +
 C3Panel - pinchSensitivityPanel));
 Serial.print("; ");
 Serial.print(distancePanel);
 Serial.print("; ");
 Serial.print(Time_Per_Revolution_Panel);
 Serial.print("; ");
 Serial.print("Zone3");
 Serial.print("; ");
 Serial.println(Tresh_base_pos);
 }
 }

 else if (distancePanel >= LL4Panel && distancePanel < UL4Panel) // Enters Pinch Zone 4
 {

 OCR2A = 226; // Speed = 89%
 OCR2B = 255; // Closing direction

 // Checks if the treshold curve for Zone 4 is lower than the "time per revolution"
 if (A4Panel * (UL4Panel - distancePanel) * (UL4Panel - distancePanel) + B4Panel * (UL4Panel - distancePanel) + C4Panel - pinchS
ensitivityPanel < Time_Per_Revolution_Panel)
 {
 pinchDetectorPanel = 1; // If the treshold curve is lower than "time per revolution" is a pinch detected --
> pinchdetector = 1

 // Printind details about the pinch situation
 Serial.print(round(A4Panel * (UL4Panel - distancePanel) * (UL4Panel - distancePanel) + B4Panel * (UL4Panel - distancePanel) +
 C4Panel - pinchSensitivityPanel));
 Serial.print("; ");
 Serial.print(distancePanel);
 Serial.print("; ");
 Serial.print(Time_Per_Revolution_Panel);
 Serial.print("; ");
 Serial.print("Zone4");
 Serial.print("; ");
 Serial.println(Tresh_base_pos);
 }
 }

 else if (distancePanel >= LL5Panel && distancePanel < UL5Panel) // Enters Pinch Zone 5
 {

 OCR2A = 226; // Speed = 89%
 OCR2B = 255; // Closing direction

 // Checks if the treshold curve for Zone 5 is lower than the "time per revolution"
 if (A5Panel * (UL5Panel - distancePanel) * (UL5Panel - distancePanel) + B5Panel * (UL5Panel - distancePanel) + C5Panel - pinchS
ensitivityPanel < Time_Per_Revolution_Panel)
 {
 pinchDetectorPanel = 1; // If the treshold curve is lower than "time per revolution" --> pinchdetector = 1

 // Printind details about the pinch situation
 Serial.print(round(A5Panel * (UL5Panel - distancePanel) * (UL5Panel - distancePanel) + B5Panel * (UL5Panel - distancePanel) +
 C5Panel - pinchSensitivityPanel));
 Serial.print("; ");
 Serial.print(distancePanel);
 Serial.print("; ");
 Serial.print(Time_Per_Revolution_Panel);
 Serial.print("; ");
 Serial.print("Zone5");
 Serial.print("; ");

 Serial.println(Tresh_base_pos);
 }
 }

 else if (distancePanel >= LL6Panel && distancePanel < UL6Panel) // Enters Pinch Zone 6
 {
 OCR2A = 240; // Speed = 94%
 OCR2B = 255; // Closing direction

 if (distancePanel < UL6Panel - 10 && A6Panel * (UL6Panel - distancePanel) * (UL6Panel - distancePanel) + B6Panel * (UL6Panel -
distancePanel) + C6Panel - pinchSensitivityPanel < Time_Per_Revolution_Panel)
 {
 pinchDetectorPanel = 1; // If the treshold curve is lower than "time per revolution" is a pinch detected --
> pinchdetector = 1

 // Printind details about the pinch situation
 Serial.print(round(A6Panel * (UL6Panel - distancePanel) * (UL6Panel - distancePanel) + B6Panel * (UL6Panel - distancePanel) +
 C6Panel - pinchSensitivityPanel));
 Serial.print("; ");
 Serial.print(distancePanel);
 Serial.print("; ");
 Serial.print(Time_Per_Revolution_Panel);
 Serial.print("; ");
 Serial.print("Zone6");
 Serial.print("; ");
 Serial.println(Tresh_base_pos);
 }
 }

 else if (distancePanel >= LL7Panel && distancePanel < UL7Panel) // Enters Pinch Zone 7
 {
 OCR2A = 240; // Speed = 94%
 OCR2B = 255; // Closing direction

 // Checks if the treshold curve for Zone 7 is lower than the "time per revolution"
 if (A7Panel * (UL7Panel - distancePanel) * (UL7Panel - distancePanel) + B7Panel * (UL7Panel - distancePanel) + C7Panel - pinchS
ensitivityPanel < Time_Per_Revolution_Panel)
 {
 pinchDetectorPanel = 1; // If the treshold curve is lower than "time per revolution" is a pinch detected --
> pinchdetector = 1

 // Printind details about the pinch situation
 Serial.print(round(A7Panel * (UL7Panel - distancePanel) * (UL7Panel - distancePanel) + B7Panel * (UL7Panel - distancePanel) +
 C7Panel - pinchSensitivityPanel));
 Serial.print("; ");
 Serial.print(distancePanel);
 Serial.print("; ");
 Serial.print(Time_Per_Revolution_Panel);
 Serial.print("; ");
 Serial.print("Zone7");
 Serial.print("; ");
 Serial.println(Tresh_base_pos);
 }
 }
 else if (distancePanel < LL7Panel)
 {
 OCR2A = 255; // Speed = 100%
 OCR2B = 255; // Closing direction
 }

 if (pinchDetectorPanel == 0) // enters if no pinch is detected
 {
 DistanceCloseFunkPanel(); // Calls the Distance close function
 }
 } // Stops Close statement

///

 else if (pinchDetectorPanel == 1) // If a pinch is detected in the pannel will it change direction and open fully
 {
 OCR2A = 255; // Speed 100%
 OCR2B = 0; // Opening direction
 DistanceOpenFunkPanel(); // Cals the Distance opening function
 } // Stops pinch in panel statement

///
///// Avoids falls pinches by overwriting the pinch stement if the user stops the panel within the pinch zone
// Enters if Close button is high, stop in pinch zone is high and the pannel is not fully closed

 else if (digitalRead(closeButtonPanel) == HIGH && stopInPinchZonePanel == 1 && fullyClosedPanel == 0)
 {

 OCR2A = 255; // Speed 100%
 OCR2B = 255; // Closing direction
 DistanceCloseFunkPanel(); // Cals the Distance closing function
 } // Stops Stop in pinch zone statement

//
////// Allow the user to stop the panel within the pinch zone
// Enters if both buttons are low and the panel is in the pinch zone
 else if (digitalRead(openButtonPanel) == LOW && digitalRead(closeButtonPanel) == LOW && distancePanel > LL7Panel && distancePanel <
 UL1Panel)
 {
 fullyOpenPanel = 0; // Resets the "fullyOpenPanel" flag to 0
 fullyClosedPanel = 0; // Resets the "fullyClosedPanel" flag to 0

 OCR2A = 0; // Speed 0%
 OCR2B = 0; // Opening direction/ doesn't matter which direction

 stopInPinchZonePanel = 1; // Sets the "stopInPinchZonePanel" flag to 1
 stopDistancePanel = distancePanel; // Assigns the distance value at which the pannel is stoped
 }

 else // If nothing happens
 {

 OCR2A = 0; // Speed 0%
 OCR2B = 0; // Opening direction/ doesn't matter which direction
 }
//
// OPEN Curtain ///
if (digitalRead(curtainVSwindow) == HIGH) // If switch is in curtain position(HIGH)
{
// Enter the open statement if the open buttons is presses and the curtain is not in its fully open position
if (digitalRead(openButtonCurtain) == HIGH && fullyOpenCurtain == 0)
{
 fullyClosedCurtain = 0; // Resets the "fullyClosedCurtain" flag to 0
 OCR1A = 0; // Opening Direction
 OCR1B = 255; // Speed 100% PWM
 DistanceOpenFunkCurtain(); // Calls the Distance open function
} // Ends the opening statement

//
// CLOSE Curtain

// Enter the close statement if the close buttons is presses, the curtain is not in its fully closed position,
// if there is no stop in the pinch zone, and if no pinch is detected

 else if (digitalRead(closeButtonCurtain) == HIGH && stopInPinchZoneCurtain == 0 && pinchDetectorCurtain == 0 && fullyClosedCurtain
== 0)
 {

 fullyOpenCurtain = 0; // Resets the "fullyOpenedCurtain" flag to 0

 if (distanceCurtain > UL1Curtain + 4)
 {
 OCR1A = 255; // Closing Direction
 OCR1B = 255; // Speed 100% PWM
 }
 else if (distanceCurtain > UL1Curtain && distanceCurtain <= UL1Curtain + 4)
 {
 OCR1A = 255; // Closing Direction
 OCR1B = 255; // Speed 100% PWM

 if (Time_Per_Revolution_Curtain > Tresh_base_Curtain) // If The time per revolution is higher than the treshold base will a new
treshold value be given
 {
 Tresh_base_Curtain = Time_Per_Revolution_Curtain; // A new base value is assigned to the treshholdcurve that is unique for t
his operation
 }
 // Asigned the Adaptive treshold base value to the C values for the curve
 C1Curtain = Tresh_base_Curtain + C1Curtain_tresh; // Zone 1
 C2Curtain = Tresh_base_Curtain + C2Curtain_tresh; // Zone 2
 C3Curtain = Tresh_base_Curtain + C3Curtain_tresh; // Zone 3
 C4Curtain = Tresh_base_Curtain + C4Curtain_tresh; // Zone 4
 }

 else if (distanceCurtain >= LL1Curtain && distanceCurtain < UL1Curtain) // Enters Pinch Zone 1
 {
 OCR1A = 255; // Closing Direction
 OCR1B = 255; // Speed 100% PWM

 // Checks if the treshold curve for Zone 1 is lower than the "time per revolution"
 if (C1Curtain < Time_Per_Revolution_Curtain)
 {
 pinchDetectorCurtain = 1; // If the treshold curve is lower than "time per revolution" is a pinch detected --
> pinchdetector = 1

 // Printind details about the pinch situation
 Serial.print(distanceCurtain);
 Serial.print("; ");
 Serial.print(Time_Per_Revolution_Curtain);
 Serial.print("; ");
 Serial.print("Zone1");
 Serial.print("; ");
 Serial.println(C1Curtain);
 }
 }
 else if (distanceCurtain >= LL2Curtain && distanceCurtain < UL2Curtain) // Enters Pinch Zone 2
 {
 OCR1A = 255; // Closing Direction
 OCR1B = 255; // Speed 100% PWM

 // Checks if the treshold curve for Zone 2 is lower than the "time per revolution"
 if (C2Curtain < Time_Per_Revolution_Curtain)
 {
 pinchDetectorCurtain = 1; // If the treshold curve is lower than "time per revolution" is a pinch detected --
> pinchdetector = 1

 // Printind details about the pinch situation
 Serial.print(distanceCurtain);
 Serial.print("; ");
 Serial.print(Time_Per_Revolution_Curtain);
 Serial.print("; ");
 Serial.print("Zone2 ");
 Serial.print("; ");

 Serial.println(C2Curtain);
 }
 }
 else if (distanceCurtain >= LL3Curtain && distanceCurtain < UL3Curtain) // Enters Pinch Zone 3
 {
 OCR1A = 255; // Closing Direction
 OCR1B = 200; // Speed 78% PWM

 if (C3Curtain < Time_Per_Revolution_Curtain)
 {
 pinchDetectorCurtain = 1; // If the treshold curve is lower than "time per revolution" is a pinch detected --
> pinchdetector = 1

 // Printind details about the pinch situation
 Serial.print(distanceCurtain);
 Serial.print("; ");
 Serial.print(Time_Per_Revolution_Curtain);
 Serial.print("; ");
 Serial.print("Zone3 ");
 Serial.print("; ");
 Serial.println(C3Curtain);
 }
 }
 else if (distanceCurtain >= LL4Curtain && distanceCurtain < UL4Curtain) // Enters Pinch Zone 4
 {
 OCR1A = 255; // Closing Direction
 OCR1B = 200; // Speed 78% PWM

 // Checks if the treshold curve for Zone 4 is lower than the "time per revolution"
 if (C4Curtain < Time_Per_Revolution_Curtain)
 {
 pinchDetectorCurtain = 1; // If the treshold curve is lower than "time per revolution" is a pinch detected --
> pinchdetector = 1

 // Printind details about the pinch situation
 Serial.print(distanceCurtain);
 Serial.print("; ");
 Serial.print(Time_Per_Revolution_Curtain);
 Serial.print("; ");
 Serial.print("Zone4 ");
 Serial.print("; ");
 Serial.println(C4Curtain);
 }
 }
 else if (distanceCurtain < LL4Curtain)
 {
 OCR1A = 255; // Closing Direction
 OCR1B = 255; // Speed 100% PWM
 }

 if (pinchDetectorCurtain == 0) // enters if no pinch is detected
 {
 DistanceCloseFunkCurtain(); // Calls the Distance close function
 }
 } // Stops closing of curtain

///
else if (pinchDetectorCurtain == 1)// If a pinch is detected in the curtain will it change direction and open fully
{

 fullyOpenCurtain = 0; // Resets the "fullyOpenCurtain" flag to 0
 OCR1A = 0; // Opening Direction
 OCR1B = 255; // Speed 100% PWM
 DistanceOpenFunkCurtain(); // Cals the Distance opening function

} // Stops Pinch in curtain statement

///
///// Avoids falls pinches by overwriting the pinch stement if the user stops the curtain within the pinch zone
// Enters if Close button is high, stop in pinch zone is high and the curtain is not fully closed

else if (digitalRead(closeButtonCurtain) == HIGH && stopInPinchZoneCurtain == 1 && fullyClosedCurtain == 0)
{
 fullyOpenCurtain = 0; // Resets the "fullyOpenCurtain" flag to 0
 OCR1A = 255; // Closing Direction
 OCR1B = 255; // Speed 100% PWM
 DistanceCloseFunkCurtain(); // Cals the Distance close function
}
//
////// Allow the user to stop the curtain within the pinch zone
// Enters if both buttons are low and the curtain is in the pinch zone

else if (digitalRead(openButtonCurtain) == LOW && digitalRead(closeButtonCurtain) == LOW && distanceCurtain > LL4Curtain && distanceC
urtain < UL1Curtain)
{
 OCR1A = 255; // Closing direction/ doesn't matter which direction
 OCR1B = 0; // Speed 0% PWM
 stopInPinchZoneCurtain = 1; // Sets the "stopInPinchZoneCurtain" flag to 1
 stopDistanceCurtain = distanceCurtain; // Assigns the distance value at which the curtain is stoped
} // Stops Stop in pinch zone statement

else // If nothing happens in Curtain
{
 OCR1A = 255; // Closing direction/ doesn't matter which direction
 OCR1B = 0; // Speed 0% PWM
} // Stops if nothing happens statement

} // Stops switch statement
///
// OPEN Window //
///
else if (digitalRead(curtainVSwindow) == LOW) // If switch is in Window position(LOW)
{

 // Enter the open statement if the open buttons is presses and the window is not in its fully open position
 if (digitalRead(openButtonWindow) == HIGH && fullyOpenWindow == 0)
 {
 fullyClosedWindow = 0; // Resets the "fullyClosedWindow" flag to 0

 if (distanceWindow < LL5Window)
 {
 OCR1A = 0; // Opening Direction
 OCR1B = 180; // Speed 50% PWM
 }
 else if (distanceWindow >= LL5Window && distanceWindow < LL4Window)
 {
 OCR1A = 0; // Opening Direction
 OCR1B = 200; // Speed 78% PWM
 }
 else if (distanceWindow >= LL4Window && distanceWindow < LL3Window)
 {
 OCR1A = 0; // Opening Direction
 OCR1B = 220; // Speed 86% PWM
 }
 else if (distanceWindow >= LL3Window && distanceWindow < LL2Window)
 {
 OCR1A = 0; // Opening Direction
 OCR1B = 240; // Speed 94% PWM
 }
 else if (distanceWindow > 450 && distanceWindow < 500)
 {
 OCR1A = 0; // Opening Direction
 OCR1B = 180; // Speed 50% PWM
 }
 else if (distanceWindow >= 500)
 {
 OCR1A = 0; // Opening Direction
 OCR1B = 255; // Speed 100% PWM
 }
 else
 {
 OCR1A = 0; // Opening Direction
 OCR1B = 255; // Speed 100% PWM
 }
 DistanceOpenFunkWindow(); // Calls the Distance open function
 }

///
// CLOSE Window

// Enter the close statement if the close buttons is presses, the window is not in its fully closed position,
// if there is no stop in the pinch zone, and if no pinch is detected

 else if (digitalRead(closeButtonWindow) == HIGH && stopInPinchZoneWindow == 0 && pinchDetectorWindow == 0 && fullyClosedWindow == 0
)
 {
 fullyOpenWindow = 0; // Resets the "fullyOpenWindow" flag to 0
 if (distanceWindow > UL1Window + 4)
 {
 OCR1A = 255; // Closing Direction
 OCR1B = 255; // Speed 100% PWM
 }
 else if (distanceWindow > UL1Window && distanceWindow <= UL1Window + 4) // Adaptive threshold curve
 {
 OCR1A = 255; // Closing Direction
 OCR1B = 255; // Speed 100% PWM

 // If The time per revolution is higher than the treshold base will a new treshold value be given
 if (Time_Per_Revolution_Window > thresh_base_Window)
 {
 // A new base value is assigned to the treshholdcurve that is unique for this operation
 thresh_base_Window = Time_Per_Revolution_Window ;
 }
 // Asigned the Adaptive treshold base value to the C values for the curve
 C1Window = thresh_base_Window + C1Window_thresh; // Zone 1
 C2Window = thresh_base_Window + C2Window_thresh; // Zone 2
 C3Window = thresh_base_Window + C3Window_thresh; // Zone 3
 C4Window = thresh_base_Window + C4Window_thresh; // Zone 4
 C5Window = thresh_base_Window + C5Window_thresh; // Zone 5
 C6Window = thresh_base_Window + C6Window_thresh; // Zone 6
 }
 else if (distanceWindow >= LL1Window && distanceWindow < UL1Window) // Enters Pinch Zone 1
 {
 OCR1A = 255; // Closing Direction
 OCR1B = 255; // Speed 100% PWM

 // Checks if the treshold curve for Zone 1 is lower than the "time per revolution"
 if (A1Window * (UL1Window - distanceWindow) * (UL1Window - distanceWindow) + B1Window * (UL1Window - distanceWindow) + C1Window
 - pinchSensitivityWindow < Time_Per_Revolution_Window)
 {
 pinchDetectorWindow = 1; // If the treshold curve is lower than "time per revolution" is a pinch detected --
> pinchdetector = 1

 // Printind details about the pinch situation
 Serial.print(round(A1Window * (UL1Window - distanceWindow) * (UL1Window - distanceWindow) + B1Window * (UL1Window - distanceW
indow) + C1Window - pinchSensitivityWindow));

 Serial.print("; ");
 Serial.print(distanceWindow);
 Serial.print("; ");
 Serial.print(Time_Per_Revolution_Window);
 Serial.print("; ");
 Serial.print("Zone1");
 }
 }
 else if (distanceWindow >= LL2Window && distanceWindow < UL2Window) // Enters Pinch Zone 2
 {
 OCR1A = 255; // Closing Direction
 OCR1B = 240; // Speed 94% PWM

 // Checks if the treshold curve for Zone 2 is lower than the "time per revolution"
 if (A2Window * (UL2Window - distanceWindow) * (UL2Window - distanceWindow) + B2Window * (UL2Window - distanceWindow) + C2Windo
w - pinchSensitivityWindow < Time_Per_Revolution_Window)
 {
 pinchDetectorWindow = 1; // If the treshold curve is lower than "time per revolution" is a pinch detected --
> pinchdetector = 1

 // Printind details about the pinch situation
 Serial.print(round(A2Window * (UL2Window - distanceWindow) * (UL2Window - distanceWindow) + B2Window * (UL2Window - distanceW
indow) + C2Window - pinchSensitivityWindow));
 Serial.print("; ");
 Serial.print(distanceWindow);
 Serial.print("; ");
 Serial.print(Time_Per_Revolution_Window);
 Serial.print("; ");
 Serial.println("Zone2");

 }
 }
 else if (distanceWindow >= LL3Window && distanceWindow < UL3Window) // Enters Pinch Zone 3
 {
 OCR1A = 255; // Closing Direction
 OCR1B = 230; // Speed 90% PWM

 // Checks if the treshold curve for Zone 3 is lower than the "time per revolution"
 if (A3Window * (UL3Window - distanceWindow) * (UL3Window - distanceWindow) + B3Window * (UL3Window - distanceWindow) + C3Window
 - pinchSensitivityWindow < Time_Per_Revolution_Window)
 {
 pinchDetectorWindow = 1; // If the treshold curve is lower than "time per revolution" is a pinch detected --
> pinchdetector = 1

 // Printind details about the pinch situation
 Serial.print(round(A3Window * (UL3Window - distanceWindow) * (UL3Window - distanceWindow) + B3Window * (UL3Window - distanceW
indow) + C3Window - pinchSensitivityWindow));
 Serial.print("; ");
 Serial.print(distanceWindow);
 Serial.print("; ");
 Serial.print(Time_Per_Revolution_Window);
 Serial.print("; ");
 Serial.println("Zone3");

 }
 }
 else if (distanceWindow >= LL4Window && distanceWindow < UL4Window) // Enters Pinch Zone 4
 {
 OCR1A = 255; // Closing Direction
 OCR1B = 210; // Speed 82% PWM

 // Checks if the treshold curve for Zone 4 is lower than the "time per revolution"
 if (A4Window * (UL4Window - distanceWindow) * (UL4Window - distanceWindow) + B4Window * (UL4Window - distanceWindow) + C4Window
 - pinchSensitivityWindow < Time_Per_Revolution_Window)
 {
 pinchDetectorWindow = 1; // If the treshold curve is lower than "time per revolution" is a pinch detected --
> pinchdetector = 1

 // Printind details about the pinch situation
 Serial.print(round(A4Window * (UL4Window - distanceWindow) * (UL4Window - distanceWindow) + B4Window * (UL4Window - distanceW
indow) + C4Window - pinchSensitivityWindow));
 Serial.print("; ");
 Serial.print(distanceWindow);
 Serial.print("; ");
 Serial.print(Time_Per_Revolution_Window);
 Serial.print("; ");
 Serial.println("Zone4");

 }
 }
 else if (distanceWindow >= LL5Window && distanceWindow < UL5Window) // Enters Pinch Zone 5
 {
 OCR1A = 255; // Closing Direction
 OCR1B = 150; // Speed 58% PWM

 // New adaptive c value due to very low speed
 if (distanceWindow >= UL5Window - 7 && distanceWindow < UL5Window-4)
 {
 if (Time_Per_Revolution_Window > thresh_base_Window_5)
 {
 thresh_base_Window_5 = Time_Per_Revolution_Window ;
 }

 C5Window = thresh_base_Window_5 + C5Window_thresh_5;
 }

 // Checks if the treshold curve for Zone 5 is lower than the "time per revolution"
 if (distanceWindow >= LL5Window - 4 && A5Window * (UL5Window - distanceWindow) * (UL5Window - distanceWindow) + B5Window * (UL5
Window - distanceWindow) + C5Window - pinchSensitivityWindow < Time_Per_Revolution_Window)

 {
 pinchDetectorWindow = 1; // If the treshold curve is lower than "time per revolution" is a pinch detected --
> pinchdetector = 1

 // Printind details about the pinch situation
 Serial.print(round(A5Window * (UL5Window - distanceWindow) * (UL5Window - distanceWindow) + B5Window * (UL5Window - distanceW
indow) + C5Window - pinchSensitivityWindow));
 Serial.print("; ");
 Serial.print(distanceWindow);
 Serial.print("; ");
 Serial.print(Time_Per_Revolution_Window);
 Serial.print("; ");
 Serial.println("Zone5");

 }
 }
 else if (distanceWindow >= LL6Window && distanceWindow < UL6Window) // Enters Pinch Zone 6
 {

 // Checks if the treshold curve for Zone 6 is lower than the "time per revolution"
 OCR1A = 255; // Closing Direction
 OCR1B = 180; // Speed 70% PWM
 if (distanceWindow < UL6Window - 4 && A6Window * (UL6Window - distanceWindow) * (UL6Window - distanceWindow) + B6Window * (UL6W
indow - distanceWindow) + C6Window - pinchSensitivityWindow < Time_Per_Revolution_Window)
 {
 pinchDetectorWindow = 1; // If the treshold curve is lower than "time per revolution" is a pinch detected --
> pinchdetector = 1

 // Printind details about the pinch situation
 Serial.print(round(A6Window * (UL6Window - distanceWindow) * (UL6Window - distanceWindow) + B6Window * (UL6Window - distanceW
indow) + C6Window - pinchSensitivityWindow));
 Serial.print("; ");
 Serial.print(distanceWindow);
 Serial.print("; ");
 Serial.print(Time_Per_Revolution_Window);
 Serial.print("; ");
 Serial.println("Zone6");
 Serial.print("; ");
 Serial.println(C6Window);
 }
 }
 else if (distanceWindow <= LL6Window)
 {
 OCR1A = 255; // Closing Direction
 OCR1B = 200; // Speed 78% PWM
 }
 if (pinchDetectorWindow == 0) // enters if no pinch is detected
 {
 DistanceCloseFunkWindow(); // Calls the Distance close function
 }
 } // Stops Close statement

///
 else if (pinchDetectorWindow == 1)// If a pinch is detected in the window will it change direction and open fully
 {

 fullyOpenWindow = 0; // Resets the "fullyOpenWindow" flag to 0
 OCR1A = 0; // Opening Direction
 OCR1B = 255; // Speed 100% PWM
 DistanceOpenFunkWindow(); // Cals the Distance opening function
 } // Stops pinch in Window statement

///
///// Avoids falls pinches by overwriting the pinch stement if the user stops the window within the pinch zone
// Enters if Close button is high, stop in pinch zone is high and the window is not fully closed

 else if (digitalRead(closeButtonWindow) == HIGH && stopInPinchZoneWindow == 1 && fullyClosedWindow == 0)
 {
 fullyOpenWindow = 0; // Resets the "fullyOpenWindow" flag to 0
 OCR1A = 255; // Closing Direction
 OCR1B = 240; // Speed 94% PWM
 DistanceCloseFunkWindow(); // Cals the Distance close function
 } // Stops Stop in pinch zone statement

//
////// Allow the user to stop the window within the pinch zone
// Enters if both buttons are low and the window is in the pinch zone

 else if (digitalRead(openButtonWindow) == LOW && digitalRead(closeButtonWindow) == LOW && distanceWindow > LL6Window && distanceWi
ndow < UL1Window)
 {

 OCR1A = 255; // Closing direction/ doesn't matter which direction
 OCR1B = 0; // Speed 0% PWM
 stopInPinchZoneWindow = 1; // Sets the "stopInPinchZoneWindow" flag to 1
 stopDistanceWindow = distanceWindow; // Assigns the distance value at which the window is stoped
 } // Stops Stop in pinch zone statement

 else // If nothing happens in Window
 {
 OCR1A = 255; // Closing direction/ doesn't matter which direction
 OCR1B = 0; // Speed 0% PWM
 } // Stops if nothing happens statement

}
} //ENDS VOID LOOP
///
// Calculate the pacing in Panel
void PaceFunkPanel()

{
 Time_Between_Hs_Input_Panel = hs1TimePanel - hs2TimePanel; // Inverse of RPM
 Time_Between_Hs_Input_Panel = abs(Time_Between_Hs_Input_Panel); // Take the absolute value

 Time_Per_Revolution_Panel = Time_Between_Hs_Input_Panel - Time_Between_Hs_Input_Panel_Old; // Checks the difference between the
 old and new time difference between hs input
 Time_Per_Revolution_Panel = abs(Time_Per_Revolution_Panel); // Take the absolute value

 hsDetectPanel = 0; // Resets Hs detect to 0

 Time_Between_Hs_Input_Panel_Old = Time_Between_Hs_Input_Panel; // Updated the Time_Between_Hs_Input_Panel_Old

// Printing of the treshold curve
 if (digitalRead(closeButtonPanel) == HIGH && distancePanel >= LL1Panel && distancePanel < UL1Panel)
 {
 Serial.print(round(A1Panel * (UL1Panel - distancePanel) * (UL1Panel - distancePanel) + B1Panel * (UL1Panel - distancePanel) + C1P
anel - pinchSensitivityPanel));
 Serial.print("; ");
 }
 else if (digitalRead(closeButtonPanel) == HIGH && distancePanel >= LL2Panel - 5 && distancePanel < UL2Panel)
 {
 Serial.print(round(A2Panel * (UL2Panel - distancePanel) * (UL2Panel - distancePanel) + B2Panel * (UL2Panel - distancePanel) + C2P
anel - pinchSensitivityPanel));
 Serial.print("; ");
 }
 else if (digitalRead(closeButtonPanel) == HIGH && distancePanel >= LL3Panel && distancePanel < UL3Panel - 5)
 {
 Serial.print(round(A3Panel * (UL3Panel - distancePanel) * (UL3Panel - distancePanel) + B3Panel * (UL3Panel - distancePanel) + C3P
anel - pinchSensitivityPanel));
 Serial.print("; ");
 }
 else if (digitalRead(closeButtonPanel) == HIGH && distancePanel >= LL4Panel && distancePanel < UL4Panel)
 {
 Serial.print(round(A4Panel * (UL4Panel - distancePanel) * (UL4Panel - distancePanel) + B4Panel * (UL4Panel - distancePanel) + C4P
anel - pinchSensitivityPanel));
 Serial.print("; ");
 }
 else if (digitalRead(closeButtonPanel) == HIGH && distancePanel >= LL5Panel - 10 && distancePanel < UL5Panel)
 {
 Serial.print(round(A5Panel * (UL5Panel - distancePanel) * (UL5Panel - distancePanel) + B5Panel * (UL5Panel - distancePanel) + C5P
anel - pinchSensitivityPanel));
 Serial.print("; ");
 }
 else if (digitalRead(closeButtonPanel) == HIGH && distancePanel >= LL6Panel && distancePanel < UL6Panel - 10)
 {
 Serial.print(round(A6Panel * (UL6Panel - distancePanel) * (UL6Panel - distancePanel) + B6Panel * (UL6Panel - distancePanel) + C6P
anel - pinchSensitivityPanel));
 Serial.print("; ");
 }
 else if (digitalRead(closeButtonPanel) == HIGH && distancePanel >= LL7Panel && distancePanel < UL7Panel)
 {
 Serial.print(round(A7Panel * (UL7Panel - distancePanel) * (UL7Panel - distancePanel) + B7Panel * (UL7Panel - distancePanel) + C7P
anel - pinchSensitivityPanel));
 Serial.print("; ");
 }
 else
 {
 Serial.print(0);
 Serial.print("; ");
 }
 // Printing distance, Time_Per_Revolution_Panel and the treshbase
 Serial.print(distancePanel);
 Serial.print("; ");
 Serial.print(Time_Per_Revolution_Panel);
 Serial.print("; ");
 Serial.println(Tresh_base_pos);
}

///
// Calculated the distance during the opening of the panel

void DistanceOpenFunkPanel()
{
 progTimePanel = millis(); // Updated the program time

 if (oneTimeCheckPanel == 0) // Enters When there is a hall sensor input
 {
 fullyOpenedTimerPanel = progTimePanel; // When there is a hall sensor input is the timer reseted
 oneTimeCheckPanel = 1; // Sets flag to 1
 }

 // To detect if the panel is at its fully open position
 // Enters if the difference between the program time & the fully open time is less than the specified hard stop time
 if (progTimePanel - fullyOpenedTimerPanel <= hardStopTimePanel)
 {
 if (hsDetectPanel >= hSensitivityPanel)
 {
 distancePanel = distancePanel + confirmerPanel; // Increases the distance
 confirmerPanel = 0; // Resets the confirmer
 PaceFunkPanel(); // Calls the pace function to calculate the time per revolution
 bufferClosePanel = 0; // Resets the closing buffer for the hard stop
 fullyClosedPanel = 0; // Tells the system that the panel has not reached it fully closed position
 oneTimeCheckPanel = 0; // Resets one time check
 bufferOpenPanel = 0; // Resets the opening buffer for the hard stop
 }
 }

 // Enters if the difference between the program time & the fully open time is more than the specified hard stop time (to longe betw
een hall sensor input)

 else if (progTimePanel - fullyOpenedTimerPanel > hardStopTimePanel)
 {
 if (bufferOpenPanel == 0) // Enters if the buffer is 0 --> first time it is to long between Hs inputs
 {
 Serial.println(" --- buffer --- "); // Prints buffer
 distancePanel = distancePanel + confirmerPanel; // Ingreases the distance
 confirmerPanel = 0; // Resets the confirmer
 PaceFunkPanel(); // Calls the pace function to calculate the time per revolution
 fullyClosedPanel = 0; // Tells the system that the panel has not reached it fully closed position
 oneTimeCheckPanel = 0; // Resets one time check
 bufferOpenPanel = 1; // Sets buffer to 1 so that it doesnt enter tha same statement next time
 }
 else
 {
 Serial.println(" --- PANEL FULLY OPEN --- "); // Prints That the panel is fully open
 pinchDetectorPanel = 0; // Resets the pinch detector to 0 so that the panel can be operated as normal a
gain if a pinch was detected
 distancePanel = fullyOpenDistancePanel; // Sets the distance to the fully open distance
 progTimePanel = 0; // Resets the program time to 0
 fullyOpenedTimerPanel = 0; // Resets the fully open timer
 oneTimeCheckPanel = 0; // Resets one time check
 fullyOpenPanel = 1; // Tells the system that the panel is fully open
 fullyClosedPanel = 0; // Tells the system that the panel is NOT fully closed
 }
 }
}

///
// Calculated the distance during the closing of the panel
void DistanceCloseFunkPanel()
{
 progTimePanel = millis(); // Updated the program time
 if (oneTimeCheckPanel == 0) // Enters When there is a hall sensor input
 {
 fullyClosedTimerPanel = progTimePanel; // When there is a hall sensor input is the timer reseted
 oneTimeCheckPanel = 1; // Sets flag to 1
 }

 // To detect if the panel is at its fully closed position
 // Enters if the difference between the program time & the fully close time is less than the specified hard stop time
 if (progTimePanel - fullyClosedTimerPanel <= hardStopTimePanel)
 {
 if (hsDetectPanel >= hSensitivityPanel) // Enters when a hall sensor is detected
 {
 distancePanel = distancePanel - confirmerPanel; // Decreases the distance
 confirmerPanel = 0; // Resets the confirmer
 PaceFunkPanel(); // Calls the pace function to calculate the time per revolution
 bufferOpenPanel = 0; // Resets the Opening buffer for the hard stop
 fullyOpenPanel = 0; // Tells the system that its NOT fully open
 oneTimeCheckPanel = 0; // Resets one time check
 bufferClosePanel = 0; // Resets the buffer for the closing Hard Stop

 if (distancePanel < stopDistancePanel - 20) // Enter is if the panel has moved more than 20 steps since the stop in pinch z
one
 {
 stopInPinchZonePanel = 0; // Resets stopInPinchZonePanel flag to 0 so that anti-
pinch works as normally after the stop
 }
 }
 }

 // Enters if the difference between the program time & the fully closed time is more than the specified hard stop time (to longe be
tween hall sensor input)
 else if (progTimePanel - fullyClosedTimerPanel > hardStopTimePanel)
 {
 if (bufferClosePanel == 0) // Enters if the buffer is 0 --> first time it is to long between Hs inputs
 {
 Serial.println(" --- buffer --- "); // Prints buffer
 distancePanel = distancePanel - confirmerPanel; // Decreases the distance
 confirmerPanel = 0; // Resets the confirmer
 PaceFunkPanel(); // Calls the pace function to calculate the time per revolution
 fullyOpenPanel = 0; // Tells the system that the panel has not reached it fully open position
 oneTimeCheckPanel = 0; // Resets one time check
 bufferClosePanel = 1; // Sets buffer to 1 so that it doesnt enter tha same statement next time
 if (distancePanel < stopDistancePanel - 20) // Enter is if the panel has moved more than 20 steps since the stop in pinch z
one
 {
 stopInPinchZonePanel = 0; // Resets stopInPinchZonePanel flag to 0 so that anti-
pinch works as normally after the stop
 }
 }
 else
 {
 Serial.println(" --- PANEL FULLY CLOSED --- "); // Prints That the panel is fully closed
 distancePanel = fullyClosedDistancePanel; // Sets the distance to the fully closed distance
 progTimePanel = 0; // Resets the program time to 0
 fullyClosedTimerPanel = 0; // Resets the fully closed timer
 oneTimeCheckPanel = 0; // Resets one time check
 fullyClosedPanel = 1; // Tells the system that the panel is fully closed
 fullyOpenPanel = 0; // Tells the system that the panel is NOT fully open
 }
 }
}

///
// Identifies input from Hall sensor 1 in Panel
void magnet_detect1Panel() // The funtions is called by the interrupt when a signal is recived from hall sensor 1
{
 // Enter if any of the buttons are pressed, if there has been a pinch and if the panel is not in its fully closed/open position

 if ((digitalRead(openButtonPanel) == HIGH || digitalRead(closeButtonPanel) == HIGH || pinchDetectorPanel == 1) && fullyOpenPanel ==
 0 && fullyClosedPanel == 0)
 {
 hsDetectPanel++; // Steps upp hsDetect
 confirmerPanel++; // Steps upp the confirmer
 hs1TimePanel = micros(); // Updates the hall sensor 1 timer
 }
}

//
// Identifies input from Hall sensor 2 in Panel
void magnet_detect2Panel() // The funtions is called by the interrupt when a signal is recived from hall sensor 2
{
 // Enter if any of the buttons are pressed, if there has been a pinch and if the panel is not in its fully closed/open position
 if ((digitalRead(openButtonPanel) == HIGH || digitalRead(closeButtonPanel) == HIGH || pinchDetectorPanel == 1)&& fullyOpenPanel ==
0 && fullyClosedPanel == 0)
 {
 hsDetectPanel++; // Steps upp hsDetect
 confirmerPanel++; // Steps upp the confirmer
 hs2TimePanel = micros(); // Updates the hall sensor 2 timer
 }
}
///
// Calculate the pacing in the Curtain
void paceCurtainFunk()
{
 Time_Between_Hs_Input_Curtain= hs1TimeCurtain - hs2TimeCurtain; // Inverse of RPM
 Time_Between_Hs_Input_Curtain= abs(Time_Between_Hs_Input_Curtain); // Take the absolute value

 Time_Per_Revolution_Curtain = Time_Between_Hs_Input_Curtain- Time_Between_Hs_Input_CurtainOld; // Checks the difference between t
he old and new time difference between hs input
 Time_Per_Revolution_Curtain = abs(Time_Per_Revolution_Curtain); // Take the absolute value

 hsDetectCurtain = 0; // Resets Hs detect to 0

 // Digital Filtering
 // If the the time per revolution dropps or increases with more than 1000 from the previous value
 // Is it assumed that it is a false value, and the time per revolution value is set to
 // The old value, same for the distance
 if (Time_Per_Revolution_Curtain < Time_Per_Revolution_CurtainOld - 1000 && distanceCurtain < UL3Curtain - 10 && distanceCurtain
> LL4Curtain && stopInPinchZoneCurtain == 0 && pinchDetectorCurtain == 0)
 {
 Time_Per_Revolution_Curtain = Time_Per_Revolution_CurtainOld ;
 distanceCurtain = distanceOldCurtain;
 }
 else if (Time_Per_Revolution_Curtain > Time_Per_Revolution_CurtainOld + 1000 && distanceCurtain < UL3Curtain - 10 && distanceCu
rtain > LL4Curtain && stopInPinchZoneCurtain == 0 && pinchDetectorCurtain == 0)
 {
 Time_Per_Revolution_Curtain = Time_Per_Revolution_CurtainOld ;
 distanceCurtain = distanceOldCurtain;
 }

 Time_Between_Hs_Input_CurtainOld = Time_Between_Hs_Input_Curtain; // Updated the Time_Between_Hs_Input_CurtainOld
 Time_Per_Revolution_CurtainOld = Time_Per_Revolution_Curtain ; // Updated the Time_Per_Revolution_CurtainOld
 distanceOldCurtain = distanceCurtain; // Updated the distanceOldCurtain

 //Printing distance and Time_Per_Revolution_Curtain
 Serial.print(distanceCurtain);
 Serial.print("; ");
 Serial.println(Time_Per_Revolution_Curtain);
}

///
// Calculated the distance during the opening of the curtain
void DistanceOpenFunkCurtain()
{
 progTimeCurtain = millis(); // Updated the program time
 if (oneTimeCheckCurtain == 0) // Enters When there is a hall sensor input
 {
 fullyOpenedTimerCurtain = progTimeCurtain; // When there is a hall sensor input is the timer reseted
 oneTimeCheckCurtain = 1; // Sets flag to 1
 }

 // To detect if the curtain is at its fully open position
 // Enters if the difference between the program time & the fully open time is less than the specified hard stop time
 if (progTimeCurtain - fullyOpenedTimerCurtain <= hardStopTimeCurtain)
 {
 if (hsDetectCurtain >= hSensitivityCurtain) // Enters when a hall sensor is detected
 {
 distanceCurtain = distanceCurtain + confirmerCurtain; // Increases the distance
 confirmerCurtain = 0; // Resets the confirmer
 paceCurtainFunk(); // Calls the pace function to calculate the time per revolution
 bufferCloseCurtain = 0; // Resets the closing buffer for the hard stop
 fullyClosedCurtain = 0; // Tells the system that the curtain has not reached it fully closed
position
 oneTimeCheckCurtain = 0; // Resets one time check
 bufferOpenCurtain = 0; // Resets the opening buffer for the hard stop
 }
 }

 // Enters if the difference between the program time & the fully open time is more than the specified hard stop time (to longe betw
een hall sensor input)
 else if (progTimeCurtain - fullyOpenedTimerCurtain > hardStopTimeCurtain)
 {
 if (bufferOpenCurtain == 0) // Enters if the buffer is 0 --
> first time it is to long between Hs inputs
 {
 Serial.println(" ---buffer--- "); // Prints buffer
 distanceCurtain = distanceCurtain + confirmerCurtain; // Ingreases the distance

 confirmerCurtain = 0; // Resets the confirmer
 paceCurtainFunk(); // Calls the pace function to calculate the time per revolution
 fullyClosedCurtain = 0; // Tells the system that the curtain has not reached it fully closed
position
 oneTimeCheckCurtain = 0; // Resets one time check
 bufferOpenCurtain = 1; // Sets buffer to 1 so that it doesnt enter tha same statement next t
ime
 }
 else
 {

 Serial.println(" --- CURTAIN FULLY OPEN --- "); // Prints That the curtain is fully open
 pinchDetectorCurtain = 0; // Resets the pinch detector to 0 so that the curtain can be operated
 as normal again if a pinch was detected
 distanceCurtain = fullyOpenDistanceCurtain; // Sets the distance to the fully open distance
 progTimeCurtain = 0; // Resets the program time to 0
 fullyOpenedTimerCurtain = 0; // Resets the fully open timer
 oneTimeCheckCurtain = 0; // Resets one time check
 fullyOpenCurtain = 1; // Tells the system that the curtain is fully open
 fullyClosedCurtain = 0; // Tells the system that the curtain is NOT fully closed
 }
 }
}

///
// Calculated the distance during the closing of the curtain
void DistanceCloseFunkCurtain()
{
 progTimeCurtain = millis(); // Updated the program time
 if (oneTimeCheckCurtain == 0) // Enters When there is a hall sensor input
 {
 fullyClosedTimerCurtain = progTimeCurtain; // When there is a hall sensor input is the timer reseted
 oneTimeCheckCurtain = 1; // Sets flag to 1
 }

 // To detect if the curtain is at its fully closed position
 // Enters if the difference between the program time & the fully close time is less than the specified hard stop time
 if (progTimeCurtain - fullyClosedTimerCurtain <= hardStopTimeCurtain)
 {
 if (hsDetectCurtain >= hSensitivityCurtain) // Enters when a hall sensor is detected
 {
 distanceCurtain = distanceCurtain - confirmerCurtain; // Decreases the distance
 confirmerCurtain = 0; // Resets the confirmer
 paceCurtainFunk(); // Calls the pace function to calculate the time per revolution
 bufferOpenCurtain = 0; // Resets the Opening buffer for the hard stop
 fullyOpenCurtain = 0; // Tells the system that the curtain is NOT fully open
 oneTimeCheckCurtain = 0; // Resets one time check
 bufferCloseCurtain = 0; // Resets the buffer for the closing Hard Stop

 if (distanceCurtain < stopDistanceCurtain - 20) // Enter is if the curtain has moved more than 20 steps since the sto
p in pinch zone
 {
 stopInPinchZoneCurtain = 0; // Resets stopInPinchZoneCurtain flag to 0 so that anti-
pinch works as normally after the stop
 }
 }
 }

 // Enters if the difference between the program time & the fully closed time is more than the specified hard stop time (to longe bet
ween hall sensor input)
 else if (progTimeCurtain - fullyClosedTimerCurtain > hardStopTimeCurtain)
 {
 if (bufferCloseCurtain == 0) // Enters if the buffer is 0 --
> first time it is to long between Hs inputs
 {
 Serial.println(" --- buffer --- "); // Prints buffer
 distanceCurtain = distanceCurtain - confirmerCurtain; // Decreases the distance
 confirmerCurtain = 0; // Resets the confirmer
 paceCurtainFunk(); // Calls the pace function to calculate the time per revolution
 fullyOpenCurtain = 0; // Tells the system that the curtain has not reached it fully open po
sition
 oneTimeCheckCurtain = 0; // Resets one time check
 bufferCloseCurtain = 1; // Sets buffer to 1 so that it doesnt enter tha same statement next t
ime

 if (distanceCurtain < stopDistanceCurtain - 20) // Enter is if the curtain has moved more than 20 steps since the sto
p in pinch zone
 {
 stopInPinchZoneCurtain = 0; // Resets stopInPinchZoneCurtain flag to 0 so that anti-
pinch works as normally after the stop
 }
 }
 else
 {
 Serial.println(" --- CURTAIN FULLY CLOSED --- "); // Prints That the curtain is fully closed
 distanceCurtain = fullyClosedDistanceCurtain; // Sets the distance to the fully closed distance
 progTimeCurtain = 0; // Resets the program time to 0
 fullyClosedTimerCurtain = 0; // Resets the fully closed timer
 oneTimeCheckCurtain = 0; // Resets one time check
 fullyClosedCurtain = 1; // Tells the system that the curtain is fully closed
 fullyOpenCurtain = 0; // Tells the system that the curtain is NOT fully open
 }
 }
}

///
//Funktion that Identifies input from Hall sensor 1 in Curtain
void magnet_detect1Curtain() // The funtions is called by the interrupt when a signal is recived from hall sensor 1
{

 // Enter if any of the buttons are pressed, if there has been a pinch and if the curtain is not in its fully closed/open position
 if ((digitalRead(openButtonCurtain) == HIGH || digitalRead(closeButtonCurtain) == HIGH || pinchDetectorCurtain == 1) && fullyOpenCu
rtain == 0 && fullyClosedCurtain == 0)
 {
 hsDetectCurtain++; // Steps upp hsDetect
 confirmerCurtain++; // Steps upp the confirmer
 hs1TimeCurtain = micros(); // Updates the hall sensor 1 timer
 }
}

//
//Funktion that Identifies input from Hall sensor 2 in Curtain
void magnet_detect2Curtain() // The funtions is called by the interrupt when a signal is recived from hall sensor 2
{

 // Enter if any of the buttons are pressed, if there has been a pinch and if the curtain is not in its fully closed/open position
 if ((digitalRead(openButtonCurtain) == HIGH || digitalRead(closeButtonCurtain) == HIGH || pinchDetectorCurtain == 1) && fullyOpenCu
rtain == 0 && fullyClosedCurtain == 0) {

 hsDetectCurtain++; // Steps upp hsDetect
 confirmerCurtain++; // Steps upp the confirmer
 hs2TimeCurtain= micros(); // Updates the hall sensor 2 timer
 }
}
///
///
// Calculate the pacing in the Window
void PaceFunkWindow()
{
 Time_Between_Hs_Input_Window = hs1TimeWindow - hs2TimeWindow; // Inverse of RPM
 Time_Between_Hs_Input_Window = abs(Time_Between_Hs_Input_Window); // Take the absolute value

 Time_Per_Revolution_Window = Time_Between_Hs_Input_Window - Time_Between_Hs_Input_WindowOld;// Checks the difference between the ol
d and new time difference between hs input
 Time_Per_Revolution_Window = abs(Time_Per_Revolution_Window); // Take the absolute value

 hsDetectWindow = 0; // Resets Hs detect to 0

 Time_Between_Hs_Input_WindowOld = Time_Between_Hs_Input_Window; // Updated the Time_Between_Hs_Input_WindowOld

// Printing of the treshold curve
if (digitalRead(closeButtonWindow) == HIGH && distanceWindow >= LL1Window && distanceWindow < UL1Window)
 {
 Serial.print(round(A1Window * (UL1Window - distanceWindow) * (UL1Window - distanceWindow) + B1Window * (UL1Window - distanceWindo
w) + C1Window - pinchSensitivityWindow));
 Serial.print("; ");
 }
 else if (digitalRead(closeButtonWindow) == HIGH && distanceWindow >= LL2Window - 5 && distanceWindow < UL2Window)
 {
 Serial.print(round(A2Window * (UL2Window - distanceWindow) * (UL2Window - distanceWindow) + B2Window * (UL2Window - distanceWindo
w) + C2Window - pinchSensitivityWindow));
 Serial.print("; ");
 }
 else if (digitalRead(closeButtonWindow) == HIGH && distanceWindow >= LL3Window && distanceWindow < UL3Window - 5)
 {
 Serial.print(round(A3Window * (UL3Window - distanceWindow) * (UL3Window - distanceWindow) + B3Window * (UL3Window - distanceWindo
w) + C3Window - pinchSensitivityWindow));
 Serial.print("; ");
 }
 else if (digitalRead(closeButtonWindow) == HIGH && distanceWindow >= LL4Window && distanceWindow < UL4Window)
 {
 Serial.print(round(A4Window * (UL4Window - distanceWindow) * (UL4Window - distanceWindow) + B4Window * (UL4Window - distanceWindo
w) + C4Window - pinchSensitivityWindow));
 Serial.print("; ");
 }
 else if (digitalRead(closeButtonWindow) == HIGH && distanceWindow >= LL5Window - 4 && distanceWindow < UL5Window)
 {
 Serial.print(round(A5Window * (UL5Window - distanceWindow) * (UL5Window - distanceWindow) + B5Window * (UL5Window - distanceWindo
w) + C5Window - pinchSensitivityWindow));
 Serial.print("; ");
 }
 else if (digitalRead(closeButtonWindow) == HIGH && distanceWindow >= LL6Window && distanceWindow < UL6Window - 4)
 {
 Serial.print(round(A6Window * (UL6Window - distanceWindow) * (UL6Window - distanceWindow) + B6Window * (UL6Window - distanceWindo
w) + C6Window - pinchSensitivityWindow));
 Serial.print("; ");
 }
 else
 {
 Serial.print(0);
 Serial.print("; ");
 }
 // Printing distance and Time_Per_Revolution_Window
 Serial.print(distanceWindow);
 Serial.print("; ");
 Serial.println(Time_Per_Revolution_Window);
}

///
//Calculated the distance during the opening of the Window
void DistanceOpenFunkWindow()
{
 progTimeWindow = millis(); // Updated the program time
 if (oneTimeCheckWindow == 0) // Enters When there is a hall sensor input
 {
 fullyOpenedTimerWindow = progTimeWindow; // When there is a hall sensor input is the timer reseted
 oneTimeCheckWindow = 1; // Sets flag to 1
 }

 // To detect if the front window is at its fully open position
 // Enters if the difference between the program time & the fully open time is less than the specified hard stop time
 if (progTimeWindow - fullyOpenedTimerWindow <= hardStopTimeWindow)
 {
 if (hsDetectWindow >= hSensitivityWindow) // Enters when a hall sensor is detected
 {
 distanceWindow = distanceWindow + confirmerWindow; // Increases the distance
 confirmerWindow = 0; // Resets the confirmer
 PaceFunkWindow(); // Calls the pace function to calculate the time per revolution
 bufferCloseWindow = 0; // Resets the closing buffer for the hard stop
 fullyClosedWindow = 0; // Tells the system that the front window has not reached it fully clo
sed position
 oneTimeCheckWindow = 0; // Resets one time check
 bufferOpenWindow = 0; // Resets the opening buffer for the hard stop
 }
 }

 // Enters if the difference between the program time & the fully open time is more than the specified hard stop time (to longe betw
een hall sensor input)
 else if (progTimeWindow - fullyOpenedTimerWindow > hardStopTimeWindow)
 {
 if (bufferOpenWindow == 0) // Enters if the buffer is 0 --
> first time it is to long between Hs inputs
 {
 Serial.println(" ---buffer--- "); // Prints buffer
 distanceWindow = distanceWindow + confirmerWindow; // Ingreases the distance
 confirmerWindow = 0; // Resets the confirmer
 PaceFunkWindow(); // Calls the pace function to calculate the time per revolution
 fullyClosedWindow = 0; // Tells the system that the front window has not reached it fully clo
sed position
 oneTimeCheckWindow = 0; // Resets one time check
 bufferOpenWindow = 1; // Sets buffer to 1 so that it doesnt enter tha same statement next ti
me
 }
 else
 {
 Serial.println(" --- WINDOW FULLY OPEN --- "); // Prints That the front Window is fully open
 pinchDetectorWindow = 0; // Resets the pinch detector to 0 so that the window can be operated a
s normal again if a pinch was detected
 distanceWindow = fullyOpenDistanceWindow; // Sets the distance to the fully open distance
 progTimeWindow = 0; // Resets the program time to 0
 fullyOpenedTimerWindow = 0; // Resets the fully open timer
 oneTimeCheckWindow = 0; // Resets one time check
 fullyClosedWindow = 0; // Tells the system that the window is NOT fully closed
 fullyOpenWindow = 1; // Tells the system that the window is fully open
 }
 }
}

///
// Calculated the distance during the closing of the Window
void DistanceCloseFunkWindow()
{
 progTimeWindow = millis(); // Updated the program time
 if (oneTimeCheckWindow == 0) // Enters When there is a hall sensor input
 {
 fullyClosedTimerWindow = progTimeWindow; // When there is a hall sensor input is the timer reseted
 oneTimeCheckWindow = 1; // Sets flag to 1
 }

 // To detect if the front window is at its fully closed position
 // Enters if the difference between the program time & the fully close time is less than the specified hard stop time
 if (progTimeWindow - fullyClosedTimerWindow <= hardStopTimeWindow)
 {
 if (hsDetectWindow >= hSensitivityWindow) // Enters when a hall sensor is detected
 {
 distanceWindow = distanceWindow - confirmerWindow; // Decreases the distance
 confirmerWindow = 0; // Resets the confirmer
 PaceFunkWindow(); // Calls the pace function to calculate the time per revolution
 bufferOpenWindow = 0; // Resets the Opening buffer for the hard stop
 fullyOpenWindow = 0; // Tells the system that the window is NOT fully open
 oneTimeCheckWindow = 0; // Resets one time check
 bufferCloseWindow = 0; // Resets the buffer for the closing Hard Stop

 if (distanceWindow < stopDistanceWindow - 20) // Enter is if the window has moved more than 20 steps since the stop
in pinch zone
 {
 stopInPinchZoneWindow = 0; // Resets stopInPinchZoneWindow flag to 0 so that anti-
pinch works as normally after the stop
 }
 }
 }
 // Enters if the difference between the program time & the fully closed time is more than the specified hard stop time (to longe be
tween hall sensor input)
 else if (progTimeWindow - fullyClosedTimerWindow > hardStopTimeWindow)
 {
 if (bufferCloseWindow == 0) // Enters if the buffer is 0 --
> first time it is to long between Hs inputs
 {
 Serial.println(" --- buffer --- "); // Prints buffer
 distanceWindow = distanceWindow - confirmerWindow; // Decreases the distance
 confirmerWindow = 0; // Resets the confirmer
 PaceFunkWindow(); // Calls the pace function to calculate the time per revolution
 fullyOpenWindow = 0; // Tells the system that the window has not reached it fully open posi
tion
 oneTimeCheckWindow = 0; // Resets one time check
 bufferCloseWindow = 1; // Sets buffer to 1 so that it doesnt enter tha same statement next ti
me

 if (distanceWindow < stopDistanceWindow - 20) // Enter is if the window has moved more than 20 steps since the stop
in pinch zone
 {
 stopInPinchZoneWindow = 0; // Resets stopInPinchZoneWindow flag to 0 so that anti-
pinch works as normally after the stop
 }
 }
 else
 {
 Serial.println(" --- WINDOW FULLY CLOSED --- "); // Prints That the window is fully closed
 distanceWindow = fullyClosedDistanceWindow; // Sets the distance to the fully closed distance
 progTimeWindow = 0; // Resets the program time to 0
 fullyClosedTimerWindow = 0; // Resets the fully closed timer
 oneTimeCheckWindow = 0; // Resets one time check
 fullyOpenWindow = 0; // Tells the system that the window is NOT fully open
 fullyClosedWindow = 1; // Tells the system that the window is fully closed
 }
 }
}

///
//Funktion that Identifies input from Hall sensor 1 in the front window
void magnet_detect1Window() // The funtions is called by the interrupt when a signal is recived from hall sensor 1
{
 // Enter if any of the buttons are pressed, if there has been a pinch and if the window is not in its fully closed/open position
 if (digitalRead(openButtonWindow) == HIGH || digitalRead(closeButtonWindow) == HIGH || pinchDetectorWindow == 1)
 {
 hsDetectWindow++; // Steps upp hsDetect
 confirmerWindow++; // Steps upp the confirmer
 hs1TimeWindow = micros(); // Updates the hall sensor 1 timer
 }
}
///

Appendix H
Circuit diagram for concept 1 is shown in Figure 62.

Figure 62 Complete circuit diagram for concept 1 for sunroof panel, curtain, front and rear windows

Circuit diagram concept 2 is shown in Figure 63.

Figure 63 Complete circuit diagram for concept 2 for sunroof panel, curtain, front and rear windows

DEPARTMENT OF INDUSTRIAL AND MATERIAL SCIENCE

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden

www.chalmers.se

	1 Introduction
	1.1 Background
	1.2 Problem Description
	1.3 Aim
	1.4 Limitations
	1.5 Scope

	2 Methodology
	2.1 Planning
	2.2 Research and Technology Study
	2.3 Customer Needs Study
	2.4 Concept Development
	2.5 Prototyping
	2.6 Prototype Testing
	2.7 Concept Evaluation

	3 Risk Management
	4 Customer Needs Analysis
	4.1 Interview Structure
	4.2 Interview Summary
	4.2.1 Sunroof
	4.2.2 Power Windows
	4.2.3 Tailgate and Seats
	4.2.4 Test Lab

	4.3 Observation Structure
	4.4 Observation Summary
	4.5 Legal Requirements
	4.6 Customer Needs List
	4.7 Metrics for User Requirements

	5 Technology Study
	5.1 Driving Systems
	5.2 Electrical Drive
	5.2.1 Relays
	5.2.2 MOSFET Drivers

	5.3 Sensors for Detecting Pinch Situations
	5.3.1 Sensors not Requiring Mechanical Contact
	5.3.1.1 Ultrasonic
	5.3.1.2 Infrared
	5.3.1.3 LiDAR
	5.3.1.4 Capacitive

	5.3.2 Sensors Requiring Mechanical Contact
	5.3.2.1 Direct Sensing
	5.3.2.2 Indirect Sensing
	5.3.2.2.1 Hall Sensor
	5.3.2.2.2 Ripple Count

	5.4 Signal Filtering
	5.4.1 Kalman Filter
	5.4.2 Finite Impulse Response (FIR) Filter
	5.4.3 RC Filters

	5.5 Communication Protocols
	5.5.1 CAN
	5.5.2 LIN

	6 Concept Generation
	6.1 Identification of sub-functions
	6.2 Morphological matrix
	6.3 Generated Concepts
	6.4 Concept Elimination
	6.4.1 Elimination matrix

	6.5 Concepts Proceeding from the Elimination Matrix

	7 Prototyping
	7.1 Early Prototyping Quick & Dirty
	7.2 Prototyping Concept 1
	7.2.1 Prototyping Hardware
	7.2.2 Prototyping process
	7.2.2.1 Sunroof Panel Concept 1
	7.2.2.1.1 Threshold Curve
	7.2.2.1.2 Adaptive Threshold Curve
	7.2.2.1.3 Hard Stop

	7.2.2.2 Sunroof Curtain Concept 1
	7.2.2.3 Power windows Concept 1

	7.3 Prototyping Concept 2
	7.3.1 Prototyping Hardware
	7.3.2 Prototyping process Concept 2
	7.3.2.1 Sunroof Panel Concept 2
	7.3.2.2 Sunroof Curtain Concept 2
	7.3.2.3 Power Window Concept 2

	7.4 Prototyping Concept 3 and 4
	7.4.1 Prototyping Hardware
	7.4.2 Prototyping process concept 3

	7.5 Software Development
	7.5.1 Flowchart
	7.5.2 Important sections from software code
	7.5.2.1 Detecting Hall sensor inputs
	7.5.2.2 Distance
	7.5.2.3 Time per revolution
	7.5.2.4 Pinch detection
	7.5.2.5 Adaptive curve
	7.5.2.6 PWM generator for concept 2

	8 Concept Testing and Results
	8.1 Testing Procedure
	8.1.1 Formal Testing of Panel and Curtain Concept 1
	8.1.2 Testing of Panel and Curtain Concept 2
	8.1.3 Testing of Windows Concept 1 and 2

	8.2 Testing Results
	8.2.1 Results from Formal Testing of the Sunroof Panel and Curtain Concept 1
	8.2.2 Results from Testing of Panel and Curtain Concept 2
	8.2.3 Results from Testing of Windows Concept 1 and 2

	8.3 Test Analysis and Concept Evaluation
	8.3.1 Sunroof Concept 1
	8.3.2 Sunroof Concept 2
	8.3.3 Window for concept 1 and 2

	9 Cost Estimation
	9.1 Cost Estimation of Outsourcing
	9.2 Cost Estimation of In-house Development
	9.3 Estimation of Component Costs
	9.4 Total Cost per Vehicle

	10 Concept Selection
	10.1 Concept Screening
	10.2 Concept Scoring

	11 Discussion
	11.1 Project
	11.2 Applicability for Multiple Applications
	11.3 Concept Recommendation
	11.4 Further Development
	11.5 Patents
	11.6 Ethical Considerations

	12 Conclusion
	13 Bibliography
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G
	Appendix H

